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Abstract

Validity of the Classical Theory of Spontaneous Emission and the

Fast Multipole Method for Electromagnetic Scattering

by

Si Chuen Michael Yeung •

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Andrew R. Neureuther, Chair

The interaction of the electromagnetic field with material boundaries has long been

a subject of intense investigation. On the theoretical side are problems concerning the

quantum-mechanical properties of the electromagnetic field near material boundaries.

Such problems are of interest to physicists in the field of quantum optics near surfaces.

On the practical side are problems concerning the numerical techniques used to solve

the equations of classical electrodynamics in various practical situations involving

boundaries. Such problems are of interest to engineers in the field of electromagnetic

scattering. This thesis provides quantitative solutions to specific theoretical and

practical problems in the subject of the interaction between the electromagnetic field

and material boundaries.

First, the lifetime of an excited atom near a lossy dielectric surface is calculated

from an exact solution of a microscopic Hamiltonian model, which includes the effects

of dispersion, local field correction and near-field Coulomb interaction. Results for

the total decay rate are shown to be in excellent agreement with those based on

classical electromagnetic theory and to yield the well-known result for the rate of

nonradiative energy transfer in the limit of very small distance from the surface.

Because our calculation is based on a fully canonical quantum theory, it provides the

first fundamental demonstration of the validity of the classical electromagnetic theory

of the rate of spontaneous emission near a lossy dielectric surface.

Next, two new numerical techniques for three-dimensional electromagnetic scat

tering are proposed. The first technique is based on the physical-optics approximation



and is suitable for piecewise-linear topography. The formalism of generalized Som-

merfeld integrals is used to treat the effects of intra-surface multiple scattering in

the physical-optics approximation. The technique of multipole acceleration is used

to reduce the CPU cost of intra-surface multiple-scattering computation to 0(iV3/2),

where N is the number of surface unknowns. This approximate numerical technique

is suitable for use in the simulation of photoresist exposure over large, piecewise-linear

3-D topography.

The second technique is a rigorous numerical technique based on an alternative for

mulation of the Fast Multipole Method (FMM) and is suitable for arbitrarily shaped,

perfectly conducting objects. Our FMM algorithm differs from the standard FMM

algorithm in that we represent the field in the far zone due to a localized group of

sources by a sum of multipole waves, rather than by a sum of plane waves. A proce

dure involving a combination of coordinate rotations and translation was developed

to speed up the transformation of the multipole expansions. The CPU cost of our

algorithm is 0(N5/3) compared to 0(iV3/2) for the standard FMM algorithm. How

ever, our algorithm is numerically stable in the long-wavelength limit whereas the

standard FMM algorithm is not. This rigorous numerical technique can be extended^

for use in many important 3-D problems such as the modeling of optical proximity

probes and on-chip interconnects.

Professor Andrew R. Neureuther

Thesis Committee Chairman
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Chapter 1

Introduction

The interaction of the electromagnetic field with material boundaries has long been

a subject of intense investigation. On the theoretical side are problems concerning

the quantum-mechanical properties of the electromagnetic field near material bound

aries. Such problems are of interest to physicists in the field of quantum optics near

surfaces. On the practical side are problems concerning the numerical techniques

used to solve the equations of classical electrodynamics in various practical situations

involving boundaries. Such problems are of interest to engineers in the field of elec

tromagnetic scattering. This thesis is aimed at providing quantitative solutions to

specific theoretical and practical problems in the subject of the interaction between

the electromagnetic field and material boundaries.

1.1 Spontaneous Emission near a Lossy Mirror

The effects of material boundaries on the quantum mechanical properties of atoms

interacting with the electromagnetic field have been observed in many experiments.

Among these are the modification of the lifetime of an excited atom near a mirror [1],

the microlaser [2] and the level shifts of atoms in small cavities [3]. Such effects are

investigated not only for their scientific value, but also for their potential technological

application, such as the possible construction of low-threshold semiconductor lasers

through controlled spontaneous emission. In Chapter 2 of this thesis, we shall be

concerned with the first of the above-mentioned effects, namely, the lifetime of an



excited atom near a mirror.

Different techniques have been used by others to calculate the lifetime of excited

atoms near boundaries. These techniques can be grouped into two main approaches,

the classical approach and the macroscopic quantum-mechanical approach. In the

classical approach, the excited atom is modeled by an oscillating classical dipole and

the radiation field produced by the dipole in the presence of material boundaries is

found by solving Maxwell's equations. Such an approach is suitable for both lossy and

lossless materials, and it has been shown to give good agreement with experimental

data for the lifetime of an excited atom near a lossy mirror [4].

In the macroscopic quantum-mechanical approach, the radiation field is expanded

in a complete, orthogonal set of spatial modes and the rate of spontaneous emis

sion is found by applying Fermi's Golden Rule. These spatial modes are solutions

of the macroscopic Maxwell equations satisfying the usual boundary conditions at

the material interfaces. A complete set of such spatial modes can in general be

constructed when the materials involved are lossless. In that case, the macroscopic

quantum-mechanical approach has been shown to give good qualitative agreement

with experimental data for the spontaneous-emission characteristics of microscopic

optical cavities [5]. An important situation in which a complete set of spatial modes

cannot be constructed is the case of a lossy dielectric half-space. This is because,

in order for the spatial modes to form a complete set, they must represent waves

incident from both sides of the interface between the two half-spaces [6]. When one

of the half-spaces is filled with a lossy material, waves incident from infinity in that

material toward the interface are not well defined, since their amplitudes would have

decayed to zero by the time they reached the interface. Thus, it is not possible to

expand the radiation field in a lossy dielectric half-space in a complete set of spatial

modes. As such, the macroscopic quantum-mechanical approach cannot be used to

calculate the lifetime of an excited atom near a lossy mirror.

The above discussion indicates that, whereas the problem of the lifetime of an

excited atom near a lossless mirror has been analyzed by both the classical and the



macroscopic quantum-mechanical approach, the case of a lossy mirror has up to now

only been analyzed by the classical approach. Although the results of the classical

theory are in good agreement with experimental data, it is desirable to have an

independent check on the validity of the classical theory, by performing an analysis

of the problem based on a fully canonical quantum theory.

A fully canonical quantum theory is one derived from a Lagrangian density, by

imposing equal-time commutation relations between the field operators and their

conjugate momenta. In the case of lossless materials, one can use an effective La

grangian density whose Euler-Lagrange equations reproduce the macroscopic Maxwell

equations in the materials. The constitutive relation D(r,t) = e(r)E(r,t) in this case

is local in time, thus allowing the use of the canonical quantization method. When

losses are present, however, the constitutive relation becomes a convolution in time

and so the canonical quantization method cannot be used. Thus, an effective La

grangian density cannot be used to model lossy materials. Instead, a Lagrangian

density based on a microscopic model of the loss mechanism must be used.

A microscopic model of a lossy dielectric was recently proposed by Huttner and

Barnett [7]. In this model, the bare (lossless) dielectric is represented by a harmonic-

oscillator field and the losses are modeled by an interaction between the bare dielectric

and a reservoir field. The model including the interaction with the electromagnetic

field has been shown to be exactly solvable in the case of an infinite lossy dielectric

[7]. The resulting solution has been used in the study of spontaneous emission in an

infinite lossy dielectric [8].

In Chapter 2 of this thesis, the microscopic model of [7] is extended to included

the effects of local field correction and applied to the case of a lossy dielectric half-

space. Although exact diagonalization of the Hamiltonian is not feasible for the

half-space problem, we have nevertheless been able to obtain exact solutions for the

Green function for the transverse photons and the Green function for the harmonic-

oscillator field in the half-space. These Green functions are used in Section 2.6 to

compute the lifetime of an excited atom near the dielectric surface. Numerical results



of our theory arein excellent agreement with those of classical electromagnetictheory.

In particular, the decay rate of an excited atom near a lossy mirror is shown to follow

an inverse-cubed law in the limit of very small distance from the surface.

1.2 Three-Dimensional Topography Scattering

As the technology of integrated-circuit fabrication evolves, lithographers are faced

with the ever increasing challenge of printing smaller and smaller features over .non-

planar wafer topography. Topography scattering has long been a problem for optical

lithographers. Such scattering gives rise to critical-dimension (CD) variations due to

standing-wave effects and the redirection of light into otherwise unexposed regions

of the photoresist. Computer simulation of topography-scattering effects in pho

tolithography can be a valuable tool for predicting the complex interaction between

the projected aerial image and the wafer topography.

A new class of photolithography simulators based on classical electromagnetic

theory have emerged to take on the challenge of topography-scattering simulation.

Several of the numerical techniques used in these simulators are listed in Table 1.1,

together with their storage and CPU costs in two and three dimensions. From this

table, it can be seen that, while most of the rigorous techniques work well for 2-

D problems, they cannot easily be generalized to 3-D because of storage and speed

limitations. For example, the waveguide, differential and integral methods all have

the same storage requirement as the time-domain method in 2-D. However, in 3-D,

the former three methods are all far more expensive than the time-domain method in

both storage and operation count. At present, the time-domain method is the most

commonly used technique for 3-D problems. However, because its storage cost scales

as n3, where n is the number of nodes in each dimension, it is restricted to use on

supercomputers for all but very small 3-D problems.



1.2.1 The Physical-Optics Method

One way to reduce the storage and CPU costs in 3-D is to use an approximate rather

than a rigorous technique. Approximate techniques based on the Geometrical Theory

of Diffraction [9] and the physical-optics approximation [10] have been developed

for 2-D problems. The latter technique has been shown to give good results for

multilayer, piecewise-linear topography in 2-D. In Chapter 3 of this thesis, we present

a generalization of the physical-optics technique of [10] to 3-D.

To take into account multiple scattering between adjacent surfaces in a multilayer

structure, we use an iterative scheme developed by Pai and Awada [13] for the waveg

uide model. This scheme allows us to treat each surface one at a time and to include

the interaction between adjacent surfaces by iteration. In the treatment of multiple

scattering within a given surface, we consider each element of the surface as a source

of scattered waves illuminating every other point on the same surface. Then, we apply

the physical-optics approximation to determine the fields induced by these scattered

waves on the same surface. Specifically, the scattered waves incident at a given point

on the surface are assumed to interact with the surface in the same way that they

would interact with the tangent planeat that point of the surface. Thus, the problem

becomes one of the reflection of the scattered waves from the tangent planes. In 3-D,

the waves incident on the tangent planes are spherical rather than plane. To treat

the reflection of such spherical waves from the tangent planes, it is necessary to use

the formalism of generalized Sommerfeld integrals developed by Chang and Mei [12],

as discussed in Section 3.8, instead of the usual FYesnel laws.

In contrast to the 2-D case, direct evaluation of the above physical-optics induced

fields over the surface of the topography is impractical in 3-D, since this would require

O^N2) floating-point operations, where N ~ n2 isthenumber ofunknowns on the sur

face. Thus, we have adopted the technique of multipole acceleration used in Rokhlin's

Fast Multipole Method (FMM) [11] to speed up the evaluation of the physical-optics

induced fields. This results in a CPU cost of 0(N^2) in 3-D. Using this multipole

accelerated physical-optics technique, we are able to perform reflective-notching sim-



ulation of large 3-D structures on an ordinary workstation with reasonable CPU time.

1.2.2 The Fast Multipole Method

Instead of using the technique of multipole acceleration in the context of the physical-

optics approximation, as we do in Chapter 3, the Fast Multipole Method (FMM)

[11] can also be used directly in the iterative solution of the integral equations of

electromagnetic scattering. Direct solution of these integral equations, as employed

in the standard Method of Moments (MOM), is impractical in 3-D (see Table 1.1).

There are two key ideas in FMM that render iterative solution of the integral equations

practical in 3-D. The first idea lies in the choice of an iterative algorithm based on

the technique of approximations from Krylov subspaces. In this class of algorithms,

one has to perform a matrix-vector multiplication at each iteration step. The matrix

itself is not needed, but only the result of the matrix-vector multiplication, which

is another vector. Hence, it is not necessary to store the matrix itself, which would

require O^N2) bytes of storage in 3-D. Instead, one only has to store vectors, which

require O(N) bytes of storage. The secondidea lies in the use of multipole acceleration

to speed up the evaluation of the matrix-vector product. Thus, in FMM, both the

storage and CPU costs are rendered practical in 3-D.

FMM was first develop by Rokhlin for the efficient solution of the integral equa

tions of 2-D acoustic scattering [11]. Later, it was generalized to 2-D [14] and 3-D [15]

electromagnetic scattering. In Chapter 4 of this thesis, we present a new, alternative

formulation of FMM for 3-D electromagnetic scattering. Our algorithm differs from

the standard FMM algorithm of [15] in that we represent the radiation field in the far

zone due to the sources in a given panel by a sum of multipole waves, whereas in the

standard FMM algorithm the same radiation field is represented by a sum of plane

waves propagating in various directions. As a result, our FMM algorithm is numer

ically stable in the long-wavelength limit, whereas the standard FMM algorithm is

not. However, this numerical stability is achieved at the expense of a slight increase in

CPU cost, namely, 0(N5^3) for our algorithm compared to 0(JV3/2) for the standard



FMM algorithm. The reason for this increase in CPU cost is that the transformation

formulas for the multipole waves used in our algorithm are more complicated than

those for the plane waves used in the standard FMM algorithm. Indeed, it was neces

sary for us to develop a three-step transformation procedure consisting of a rotation,

a translation and another rotation, as discussed in Section 4.4, in order to achieve a

lower than 0(N2) CPU cost. Fortunately, the benchmarks discussed in Sections 4.7

and 4.10 indicate that, for problem size of a few thousand unknowns, the difference in

CPU cost between our algorithm and the standard FMM algorithm is insignificant.

1.3 Summary

This thesis addresses two specific problems in the subject of the interaction of the

electromagnetic field with material media. The first concerns the validity of the clas

sical theory of the lifetime of an excited atom near a lossy mirror. In Chapter 2 of this

thesis, we present a fully canonical quantum theory of the lifetime of such an excited

atom and show that the results of this theory are in excellent agreement with those

of the classical theory. The second problems concerns the development of numerical

techniques of topography scattering useful for integrated-circuit process simulation.

Two such techniques are presented in this thesis. An approximate technique based on

the physical-optics method is presented in Chapter 3 and a rigorous technique based

on the Fast Multipole Method is presented in Chapter 4.

There are eleven appendices in this thesis. As they contain important though

often lengthly mathematical derivations and formulas, they constitute an integral

part of the thesis.

Throughout this thesis, we use i and j interchangeably for the unit imaginary

number \/—T.



Table 1.1: Comparison of techniques of topography scattering in two and three dimensions
(assuming n grid points in each dimension)

Method Features
Storage
cosr

CPU

cost1,2 Availability

Time-domain finite

difference

Absorbing boundary
conditions.

Massively parallel.
n

(a2)
n3x3

(n2x3)

TEMPEST (UC Berke
ley, 3-D)
EMHex (Weidlinger
Associates, 3-D)

Waveguide Rigorous.
Suitable for small refrac

tive-index changes.
n4

(a2)
n6

(a3)

METRO (Carnegie-
Mellon, 2-D)

Differential Rigorous.
Suitable for smooth

topography.
n4

(a2)
n6

(a3)

iPHOTO (Intel, 2-D)

Integral (Method
of Moments)

Rigorous.
Direct solution. n4

in2)
n6

(a3)

(NIST,2-D)

Frequency-domain
finite element

Periodic boundary con
ditions.

Sparse matrix.
Direct solution.

n5
(a3)

n1

(a4)

(Phillips/Signetics,
2-D)

Physical-optics +
Fast Multipole

Approximate.
Suitable for piecewise-
linear topography.

n2
(a)

n3

(a1'5)

(UC Berkeley, 3-D)

Integral + Fast
Multipole

Rigorous.
Iterative solution. n2

(a)

/i333xK
(n1JxK)

(UC Berkeley, 3-D,
under development)

^osts for 2-D are enclosed inparentheses.
23 is the number of iterations in the time-domainmethod. K is the number of iterations in the
frequency-domain method.
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Chapter 2

Spontaneous Emission Near a
Lossy Mirror

2.1 Introduction

The lifetime of an excited molecule has been known for a long time to be signifi

cantly affected by a partially reflecting mirror in its vicinity [1]. Early attempts to

explain the experimental results using classical electromagnetic theory [16, 17] have

been quite successful. Nevertheless, the accuracy of these theoretical results has so

far not been verified by calculation based on a fully canonical quantum theory. Re

cently, spontaneous emission by an excited atom near a lossless dielectric surface was

analyzed from the viewpoint of quantization of macroscopic spatial modes [18]. How

ever, such an approach cannot easily be extended to include the effects of losses in

the dielectric. Thus, up to now, an analysis of the lifetime of an excited atom near

an absorbing dielectric surface based on a fully canonical quantum theory has been

lacking. In this chapter, we present one such analysis based on an exact solution of a

microscopic Hamiltonian model.

After discussing the Hamiltonian formulation in Section 2.2, we diagonalize the

matter part of the Hamilitonian density to obtain the dressed matter field in Section

2.3. In Section 2.4, the self-energy of an excited atom near the dielectric surface is

obtained to second order of perturbation theory by considering the Green function

of the excited atom to this order. The decay rate of the excited atom, which is pro-



portional to the imaginary part of the atom self-energy, is then expressed in terms of

the instantaneous Coulomb interaction, the Green function for the transverse photons

and the Green function for the harmonic-oscillator field. In Section 2.5, the latter two

Green functions are obtained by solving the corresponding Dyson equations exactly.

This involves a three-step procedure. First, the Green function for the harmonic-

oscillator field is solved exactly by ignoring the coupling to the transverse photons.

Then, the Green function for the transverse photons is solved exactly by including

both the bulk and the surface contributions to the photon self-energy. Finally, the

Green function for the harmonic-oscillator field is corrected by including the coupling

to the transverse photons. Numerical results for the decay rate of the excited atom

obtained from the above theory are compared with those obtained from the classical

theory in Section 2.6.

2.2 The Microscopic Hamiltonian Model

Our microscopic model of the absorbing dielectric is the Hopfield model extended

to include coupling to a continuum [7]. This model has been used in the study of

spontaneous emission in an infinite absorbing dielectric medium [8]. Here, we apply

it instead to an absorbing dielectric occupying the half-space z < 0.

In the absence of the excited atom, the Lagrangian density of the system consisting

of the lossy dielectric half-space and the radiation field is

C = £em + Anat + Aes + Ant "^Ant "^ Mocal • \*"*-)

The various parts of this Lagrangian density are:

1. Am is the Lagrangian density of the free radiation field,

^ =!E2-^B2' (2-2)
where E and B are the electric and magnetic fields which are related to the

vector and scalar potentials by E = -A - VU and B = V x A.

10



2. Anat is the Lagrangian density of the bare dielectric occupying the half-space

z < 0, modeled by a harmonic-oscillator field,

C^ =9(-z) (|*2 -^X2) , (2.3)
where X is the bare matter field operator.

3. Aes is the Lagrangian density of the reservoir associated with the dielectric,

modeled by a continuum of harmonic oscillators,

C^ =9(-z) £° du (fY* -^Yj) . (2.4)
4. AS *s the coupling between the bare dielectric and the reservoir leading to

losses in the dielectric,

TOO

AS = -*(-*)/ duv(w)X.Yu, (2.5)
Jo

where v(u) is a square-integrable function with the following properties: (i) the

analytic continuation of v(u)2 to negative frequencies is an even function and

(ii) v(u) 7^ 0 for all nonzero frequencies.

5. Ant *s tne interaction between the bare dielectric and the radiation field,

AS = eA>±9(-z) + eUV'[X9(-z)]. (2.6)

6. Aocai is a term modeling the effects of local field correction,

Aocal = ^X29(-z). (2.7)

For simplicity, we have omitted the dependence of the fields A, U, X and Yw in the

above expressions on (r,i). Also, we have attached a Heaviside unit function 9(.) to

each occurence of X and Yw to indicate that the dielectric is confined to the half-space

z<0.

Since the time derivative of U does not appear in the above Lagrangian density,

the momentum conjugate to U vanishes identically. Thus, it is impossible to quantize

11



U by applying the canonical quantization procedure to the above Lagrangian density.

One solution to this difficulty is to treat U not as an independent field and to eliminate

it from the Lagrangian density by means of its Euler-Lagrange equation of motion,

d dC dC

dxid(dU/dxi) 8U

= e0V •(A + W) - eV • [X9(-z)]. (2.8)

Eq. (2.8) can be simplified if we choose the Coulomb gauge, in which the vector

potential is purely transverse, V •A = 0. In what follows, we shall use the Coulomb

gauge, so that Eq. (2.8) becomes

v*u = £ll&£)l. (2.9)

The solution of Eq. (2.9) is the instantaneous Coulomb potential for the charge density

-eV • [X9{-z)]:

in which the same value of time t appears on both sides of the equation.

To obtain the Hamiltonian density of the system described by Eq. (2.1), we first

find the momenta conjugate to the fields A, X and Yw:

P* = f£=*(A +W). (2-H)
oA

Px = |§=0(-*)(/>X+eA), (2.12)
OX.

Pw = M=e(-z)[pYIJ-v(u)X], (2.13)

The Hamiltonian density is then obtained from

n = PA.A +Px-X+ rdu>PU'Yu-£. (2.14)
Jo

Substituting Eqs. (2.1) to (2.7) and (2.12) to (2.11) into Eq. (2.14), we obtain

-eUV•[X6(-z)} - |(Vl/)2 - ^X20(-*), (2.15)
12



We now use Eqs. (2.12) and (2.13) to eliminate the velocities X and Yu from Eq.

(2.15). After rearranging terms, we obtain

™ = ^em "f" ^mat + 'Wres + ^int + ^int "*~ ™int i (2.16)

where

Ht =|(A)2+̂ (V xA)2 , (2.17)
UmM = 0(-z)(±-Vx +E$.y?\ , (2.18)

H res

-lyres
rtint = 6(-z) f°° duj^-X •Pu, (2.20)

Jo o

«&t =«("*) [~JA•PX +̂ A2j , (2.21)
«£, =-eUV-[X9(-z)]-£j(VU)2--^X26(-z), (2.22)

and &o =^o+/o° dw^-X2 is the renormalized resonance frequency of the dielectric.
The Hamiltonian of the system is obtained by integrating the Hamiltonian density

H over all space. For the Coulomb interaction /H-*A, we can substitute Eq. (2.10).

After integration by parts, we obtain the part of the Hamiltonian corresponding to

"-intJ

*&(*) = \l f #r*r'Xl(T,t)XJV,t)Fv(T-V, (2.23)
I Jz<0 Jz'<0

where

F^-^ =C[i^(i^i)-i^r-r| (2-24)
The fields are quantized in the usual way by imposing equal-time commutation

relations between the field operators A, X and Yw and their conjugate momenta Eqs.

(2.11) to (2.13):

[AiMM^r',*)] =^(r-r'), (2.25)
[XfafyPxA*',*)] = ^^(r-rO, (2.26)

[y^(r,t),P^(r^ = ihS^w-u'Wr-r'), (2.27)
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where we have used the fact that A commutes with VU.

2.3 Diagonalization of the Matter Part

Ideally, one would like to diagonalize the Hamiltonian H —f^ $rli by means of a

canonical transformation from the field operators A, X and Yw to some other set of

operators. This proved to be too ambitious a task. Instead, we seek an exact solution

of the our Hamiltonian model using diagrammatic perturbation theory.

We first diagonalize the Hamiltonian density of the subsystem consisting of the

bare matter field, the reservoir and the coupling between the two,

^mat = %nat + ^Lres "+• rlxsx • (2.28)

Our approach follows closely that of Huttner et al. [7]. Whereas the latter authors

performed the diagonalization in reciprocal space, as is appropriate for an infinite

dielectric medium, we perform the diagonalization in real space instead, since we are

dealing with a dielectric half-space. The annihilation operators b(r, t) and bw(r, t) for

the bare matter and reservoir fields are defined in terms of X, Yu and their conjugate

momenta by

b=Mx+i%)> (2-29)
bw =JB^ +g), (2.30)

where, for simplicity, we have omitted the dependence of the operators on (r, t). Eqs.

(2.29) and (2.30) may be inverted, using the fact that X,YW and their conjugate

momenta are Hermitian,

x =/3>t+b)- (2-3i)
P* =i^(bt-b), (2.32)

Y- =-VS(*-*•)• (2-33)
P„ =^(bt+bu), (2.34)

14



Using Eqs. (2.29), (2.30), (2.26) and (2.27) we readily obtain

[b,(r,t),${i>,t)] = M(r-r'), (2.35)

[M'A&jO''.*)] = M(«" " w')*(r - r'), (2.36)

while all other commutators between b, bw and their Hermitian adjoints vanish. Eqs.

(2.35) and (2.36) show that b and bw are the annihilation operators for the bare

matter and reservoir fields, respectively.

Substituting Eqs. (2.31) to (2.34) into Eq. (2.28) and using Eqs. (2.18) to (2.20),

we obtain

*42* = ^(-^[^bt.b +jTdw^bt.b,
h r™+| lo°° duV(u) (b* +b) •(b£ +bj) (2.37)

where V(u) =^-Ju/uq and we have omitted an infinite zero-point energy term.
Next, we diagonalize the Hamiltonian density Eq. (2.37) by defining the annihila

tion operator Bw(r,i) for the dressed matter field,

Bw = a0(u)b +fl>(a/)bt +1°°dJ [ax(u,u/)b^ +ft(w,ci/)b£,] , (2.38)

the dependence of the operators on (r,£) being understood. The coefficients ao(uj),

Po(u), ai(u,ujf) and Pi(u,u') are to be chosen so that n^h, IS diagonalized,

tt£L(r,t) = ^-^rdwtoBifp.tJ.^p.t), (2.39)
./o

and furthermore that the transformation Eq. (2.38) is canonical,

[Bv&^Blj&t)] = S^w-u'Wr-r'). (2.40)

Eqs. (2.39) and (2.40) together imply that

[B„(r,*),?40at(r',<)] = ftwBM(p,t)ff(r-rO«(-«). (2.41)

Eqs. (2.37) and (2.38) are substituted into Eq. (2.41) and the commutation bracket

on the LHS of the resulting equation evaluated with the help of Eqs. (2.35) and

15



(2.36). Then, by equating the coefficients of b, b*, bw and bj, on the two sides of the

equation, we obtain the following set of relations among the coefficients:

aQ(u){u - tf0) = I f°° du/[ai(u, u')V{u') - fafa u')V(u')], (2.42)
I Jo

AW(w +Wo) = i rdwf[al(uj,u,)V(w,)-P1(u1u;f)V(u')]1 (2.43)
Z JO

a^u'Ku-w') = jWwl-AMMh/), (2.44)

P^JKu+w') = i[ob(o;)-jflbH]V(a/). (2.45)

These relations, together with the commutation relation Eq. (2.40), allow us to solve

for the coefficients a0(u), fa{u), ai(u,u') and /?i(u;,u;'), as shown in Appendix A.

Assuming that the set of dressed operators Bw and Bj,,0 < u < oo, is complete, it

should be possible to invert Eq. (2.38) to obtain b and bu as functions of the dressed

operators. Writing b as

b = rdu/[r(u/)B^+8(u/)Bl], (2.46)
Jo

we can determine the coefficients r(u) and s(u) by evaluating the commutators of

both sides of Eq. (2.46) with Bw and B£. Using Eqs. (2.35), (2.36), (2.38) and (2.40),

we find r(u) = aj(w) and s(u) = —/30(u). Hence,

b = rdu/[oii(u)Bu-l5o(u)Bl]. (2.47)
Jo

Similarly, we obtain

bu = rdu^oi((Jtw)B^-^iJ,u)Bl]. (2.48)
Jo

The results Eqs. (2.47) and (2.48) are consistent with the commutation relations Eqs.

(2.35) and (2.36) if and only if V2{u) satisfies the inequality

r^YM < Qo. (2.49)
Jo u

The proof of this statement can be found in [7].
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Substituting Eq. (2.47) into Eqs. (2.31) and (2.32), we can express the bare matter

field operator and its conjugate momentum in terms of the dressed operators,

where

x =vSr^[^)Bi+h-c-]' (2-5o)
f^jTdWb(a;)Bt+h.c.]> (2.51)P* =

h(uj) = a0(w) - 0o(v), (2.52)

g(u) = i[ao(a>) + 0o(u)], (2.53)

and h.c. denotes the Hermitian conjugate of the immediately preceding term.

2.4 Spontaneous Decay Rate

Up to now, we have only considered the system consisting of the lossy dielectric half-

space and the radiation field with which it interacts, as described by the Hamiltonian

density H defined by Eqs. (2.16) to (2.22). When an excited atom is introduced into

the system, there is an additional interaction Hamiltonian of the form

Ha = f d3r(-ja •A+paU), (2.54)
Joo

where ja and pa are the current and charge densities of the atom. For simplicity, we

assume the atom to be made up of a single electron of mass m and charge e in orbit

around a fixed nucleus of charge —e at a point ra on the air side of the dielectric

surface, za > 0. Then the current and charge densities of the atom are given by

j.(r,i) = -g{^(r,t)V^(r,t)-[V^t(r,tW(r,t)}
-^A(r,t)^(r,t)^(r,t), (2.55)

p«(r,t) = etf{T,t)1f(T,t)-eS(T-Ta), (2.56)

where ^(r, t) is the field operator of the electron. For a two-level atom, ^(r, t) may be

expanded in annihilation operators Co(t) and Ci(t) for the ground and excited states,
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respectively,

tf(r,t) = CbWtioW+CiWuiW, (2.57)

where u0(r) and ui(r) are the ground and excited state wave functions of the atom,

respectively, which are assumed to have opposite parities. The annihilation operators

co(t) and ci(t) obey the equal-time anti-commutation relation,

{ci(*),c}(t)} = 5{j. (2.58)

The integral over r in Eq. (2.54) can be performed if we make the dipole approxi

mation for the atom. This means that the atomic wave functions uo(t) and ui(r) are

assumed to be localized to within a small neighborhood of the nucleus at r0. In that

case, the vector potential appearing in Eqs. (2.54) and (2.55) may be replaced by its

value at ra. Using Eqs. (2.55) and (2.57), the first term in Eq. (2.54), responsible for

the radiative decay of the excited atom, can be evaluated:

Hl(t) ^ - f dVja •A
Joo

= ~ [4(t)Cl(t)A(ra, t) •poi +c\{t)co(t)A(ra, t) •p10]

+^A2(ra, t) [cl(t)co(t) +c!(t)cx(t)] , (2.59)
where p0i = Pi0 is the matrix element of the operator (—tftV) between the ground

and excited state wave functions.

For the second term in Eq. (2.54), we first expand the instantaneous Coulomb

potential U(r,t) given by Eq. (2.10) about ra,

TT(Tfs _ f ,y-eVMX(r^)0(-*O] [ 1 , x , d 1_

(2.60)

Using Eqs. (2.60), (2.56) and (2.57), the second term in Eq. (2.54), responsible for

the nonradiative decay of the excited atom, can be evaluated,

Hf{t) dM J^rpJJ
=[4Wc^+c{(t)co{t)r10ij] /^V-^'^^^1^^,

(2.61)

18



where roi = rj0 is the matrix element of (r —ra) between the ground and excited

state wave functions. Using the relationship poi = —imbja*ou where ua is the atomic

transition frequency, and performing an integration by parts, Eq. (2.61) becomes

ie2 [<&(t)ci(t)poid - c\(t)co(t)p1Qij] r f f a2 i
4n€omua Jz'<o ' dxajdx,i\ra —r'\'

(2.62)

The radiative and nonradiative perturbation Hamiltonians, Eqs. (2.59) and (2.62),

may now be used to compute the total decay rate of the excited atom in first-order

perturbation theory. This may be accomplished by applying Fermi's Golden Rule

and then expressing the resulting decay rate in terms of Green functions by means

of the fluctuation-dissipation theorem. This was the approach taken by Barnett et

al. [8] in their treatment of the radiative decay rate of an excited atom in an infinite

homogeneous dielectric medium. Instead, we shall obtain the total decay rate of the

excited atom directly in terms of Green functions by considering the self-energy of

the excited atom due the the perturbations Eqs. (2.59) and (2.62).

The self-energy of the excited atom enters into the computation of the Green

function of the atom by diagrammatic perturbation technique. This Green function

is defined by

*(n,««ti-*») = -jCrl^(ri,ti)*M'(raife)])M, (2.63)

where the superscipt ^ denotes exact quantities in the combined system of the half-

space dielectric and the excited atom. Also, the angle brackets denote averaging

over the exact ground state of this combined system and T denotes time order

ing. Using Eq. (2.57), we see that the Green function is a sum of terms involving

-^(T[4a)(*i)4tt)t(*2)]> and -^(T^^O^fe)]}. Since we are only interested in
the self-energy of the excited state, we consider the term involving the excited-state

operators,

s(ti-*2) = -Ifflc '̂Mc^te)])*0', (2.64)
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where we have omitted the dependence on ri and 1*2 which is irrelevant to the following

discussion. Since c^\ti) inEq. (2.64) is an exact operator for the combined system in

the Heisenberg picture, its time dependence is in general unknown. Hence, Eq. (2.64)

must be evaluated by diagrammatic perturbation technique. The general result of

the diagrammatic technique is:

%9{ti-h) = -^(T[ci(*1)5(oo,-oo)^(t2)]>«»a, (2-65)
where quantities without the superscript (a) are unperturbed quantities, that is, those

associated with the Hamiltonian density H of Eq. (2.16) without the perturbation

Ha. Also, 5(oo, —00) is an infinite series of operators,

5(00,-00) = i+f;^(y)n/~.../^^
n=l

(2.66)

and the symbol 'conn' in Eq. (2.65) indicates that only connected diagrams are to be

included in the calculation. The derivation of the fundamental result Eq. (2.65) can

be found in most textbooks on many-body physics [19, 20].

Substituting Eq. (2.66) into Eq. (2.65), we see that the Green function can be

written as an infinite series, g{ti -12) = p(0)(*i -12) +£(1)(*i -12) +y(2)(*i - ^2) + •••,

where the nth term of this series corresponds to the nth term of the series in Eq.

(2.66).

Since co(t) and Ci(t) in Eq. (2.65) are unperturbed operators, their time depen

dence is simple-harmonic,

co(t) = coe-^*, (2.67)

ci(t) = cic-***, (2.68)

where ljq and lj\ are the energies of the ground and excited states of the atom,

respectively, divided by h. Using Eq. (2.68), we can compute the zeroth-order, or

unperturbed, Green function,

S(0)(*i-*2) = ~CTM*i)eto

= -ie-^.e.-^fa-^), (2.69)
h
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where we have used Eq. (2.58) and the fact that C\ acting on the unperturbed ground

state gives zero. It is more useful to consider the Fourier transform with respect to

time of the Green function:

0<°>(u) = r*-*2)eM"-t2V0)(*i-*2)
J— OO

n Jo

(2.70)
ku —hui + ie

Next, we compute the first-order correction to the Green function,

<7(1)(*l-*2) = (-£) /^^(Tldfejifa^ctfe^conn, (2.71)
by substituting the n = 1 term in Eq. (2.66) into Eq. (2.65). In order to have

a non-vanishing expectation value, there must be the same number of annihilation

and creation operators for the ground or excited state in the time-ordered product

in Eq. (2.71). Upon examination of Eqs. (2.59) and (2.62), we find that the only

term in Ha(t$) which contributes to the expectation value in Eq. (2.71) is the term

proportional to A2 in Eq. (2.59). Furthermore, the term cJ(*)coW in Eq. (2.59) does

not contribute, since we can commute the operator Co(t) to the right of all other

operators in the time-ordered product in Eq. (2.71) to annihilate the ground state.

Hence, we are left with

<7(1)(*i -12) = -r^T2 f°° ^3(T[c1(t1)A2(ra,t3)ct1(t3)ci(t3)ct1(t2)])coim .
Zmn, J-oo

(2.72)

We can nowapplyWick's Theorem to evaluate the time-ordered productin Eq. (2.72).

This theorem says that the expectation value in the ground state of a time-ordered

product of operators is equal to the sum of all possible products of expectation values

of the time-ordered products of pairs of the operators [19, 20]. Since only connected

diagrams are counted, we see that there is only one possible pairing of the operators

in Eq. (2.72),

<7(1)(ti-t2) =-^/^*(T[cl(t1)4(tii)]>(T[A(r.f*3)-A(p.,t»)]>
x(T[Cl(tz)c{(t2)]) • (2-73)
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Using Eq. (2.69), we find that the integrand in Eq. (2.73) is non-zero only when

ti > £3 > t2. Then, introducing the transverse photon Green function for the dielectric

half-space

2>«(n,r»; h - h) = ~(T[i4,(n,*iM;K*»)]>, (2-74)

we may rewrite Eq. (2.73) as

gW (tl - h) = -£• ftl dt3V«(vc, ra; t3 - t3)e--'("-"+t3-t2>e(t1 -1»)
Zmn Jt2

** V«(ra, ra; OK*"'"-"5 (t, - t2)6{h - h). (2.75)
2mh

Taking the Fourier transform with respect to (*i —12), we obtain

1 -E<1> r , (2.76)
Tia; —hu\ 4- ie fa*; —^i + ie '

where

S(i) = %*Vu(Tm,u;0), (2-77)
2m

istheself-energy oftheexcited atom due tothe term proportional to A2 inEq. (2.59).

The reason why this is called the self-energy is as follows. Suppose the A2 terms in

Eq. (2.59) were the only perturbation. Then, when we include the higher-order terms

of Eq. (2.66) in Eq. (2.65), we would obtain

hu —hu\ +ie hu —hui -hie hu —hu\ + it

1 -E^ 1 S^r r +-•
hu —hu\ + ie Hu —hu\ -He hu —hu\ + ie

1 (2.78)
~ hu- [hui + E*1)] + ie '

Here, £(1) appears as a correction to the energy hui of the excited state. Hence the

term self-energy.
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It should be noted that £(1) given by Eq. (2.77) is purely real. Substituting Eq.

(2.74) into Eq. (2.77), we obtain

= iL(A2(ra,t3)>, (2.79)

which is purely real since A is Hermitian. Thus, £(1) contributes only to a level-shift

of the excited state, but not to its lifetime. Hence, for the purpose of computing the

lifetime of the excited atom, we may neglect E^.

Next, we consider the second-order contribution to the atom Green function. This

is obtained by substituting the n = 2 term in Eq. (2.66) into Eq. (2.65),

3gPfa-ti) = ^(-£) /^*/^^<T[ci(ti)ira(^)J5ra(t«)cIfe)]><
(2.80)

When Eqs. (2.54), (2.59) and (2.62) are substituted into Eq. (2.80) and the product

of the two Hamiltonians expanded, we find that there are terms proportional to e2, e3

and e4. It will be seen below that one of the factors of e in H™ given by Eq. (2.62) is

absorbed in the definition of the dielectric function [cf. Eq. (2.121)], which is of order

unity. Hence, HJ* should be counted as a term of order e rather than e2. Now, since

we are only interested in the decay rate of the excited atom to the same approximation

as in Fermi's Golden Rule, we retain only the terms proportional to e2 in Eq. (2.80).

This amounts to omitting the A2 term in Eq. (2.59). Thus, we are left with four

terms contributing to the self-energy of the excited atom to order e2: one due to HI

acting twice, one to H™ acting twice, and the two cross terms. We consider each of

these cases separately.

Consider first the effect of HI acting twice. Substituting the first term in Eq.

(2.59) into Eq. (2.80), we obtain

gftto-h) =4(i)7l^£dt4^(r-ra;i3-t4)
x(T {dM [4(*3)ci(t3)Poi,x +h.c] [ct(U)c1(U)p01tj +h.c] c\(t2)})cQrm , (2.81)
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where we have paired the two A operators to form the photon Green function Vij,

since these two operators must be paired together to give a non-vanishing result.

When the time-ordered product in Eq. (2.81) is expanded using Wick's Theorem,

we find that there are two equal pairings of the operators which together cancel the

factor (1/2!),

x(T[c1(t1)ct1(t3)]>(T[co(t3)4(*4)])(T[c1(t4)cl(t2)]). (2.82)

Using Eq. (2.69), Eq. (2.82) becomes

g&ih-h) =-(;^)2pm^j/^
x^(ra, rfl; h - U)e**to-U)9(h ~ t^e'^^MU - h). (2.83)

The integrals over t3 and t4 in Eq. (2.83) are the convolutions of the functions

e-^Oit), %(ra,ra;i)e~iwot0(i) and e_ia,lt0(*). Upon taking the Fourier transform

of Eq. (2.83) with respect to *i —t2, these convolutions become the product of the

Fourier transforms of the individual terms:

«£)(„) = 1 /^e^o.^ow /•°0rfT-^ijr.(ra,r<i;T-)ei<™>)->) i-—
yAAV J hu-hui + ie\ m2 Jo JV ' Jhu-hu1+ie

= E(a1M , (2-84)
hu-hui + ie **v /hu-hui-\-ie

which allows us to identify the contribution to the self-energy of the excited atom to

order e2 due to the first term in Eq. (2.59) acting twice as

Eft(«) = (-)2Pio,iPoij f°°drVi^r^e^-^. (2.85)
\mj Jo

Next, we consider the contribution to the self-energy of the excited atom due to

H^ acting twice. Substituting Eq. (2.62) into Eq. (2.80), we obtain

«(*5EiEb[) (sfbi^bi)««*
x(T (ei(ti)fcdi14(fe)ci(^) - h.c.][poi,n4(*4)ci(t4) - h-cjct^)})^ , (2.86)

24



where we have paired the two X operators, since these two operators must be paired

together to give a non-vanishingresult. When the time-ordered product in Eq. (2.86)

is expanded using Wick's Theorem, we find that there two equal pairings of the oper

ators which together cancel the factor (1/2!). Then, introducing the Green function

for the matter field X

^(ri,r2;t, -12) dM -^[X^t^X^t2))), (2.87)

Eq. (2.86) becomes

X\dxajdx'i\va-^\) ft<(r''r";*3 -U) (to^lr.-r-l)
x(T[d(tM(t3)])(T[co(t3)4(<4)]>(T[cx(t4)ct(t2)]> • (2.88)

Following the steps leadingfrom Eq. (2.82) through (2.83) to (2.84), we can substitute

Eq. (2.69) into Eq. (2.88) andthen take the Fourier transform with respect to (*i —12).

The result is

<7uu(") = * T -SffirM* I , • . (2-89)yuuv ' hu-hui+ie UUK 'hu-hux + ie v

where

S^ =(4^)2^-f^WTX<odVX,odV
*(a^bf) <w™ (ra?l^bf) • (2-90)

In terms of the function F{j defined by Eq. (2.24), we can rewrite Eq. (2.90) as

xFaiva - T^Quir', r"; r)Fln(r,f - r.), (2.91)

since 6(ra - t') and 6(r" - ra) are zero for za > 0 and z!,z" < 0.

Lastly, we consider the contribution to the self-energy of the excited atom due

to HI and iff each acting once. Whether we take Ha(h) in Eq. (2.80) to be ITa
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and Ha(U) to be Hf or vice versa, we get the same result. Hence these two choices

together cancel the factor (1/2!), and we obtain

K^lnrQ-rl)(T[^(r-^(r^4)])
x(T {cx^Oboi^^tsJcife) +h.c]\pQiA(U)ci(t4) - bx.H(t2)})conn , (2.92)

where we have paired the A and X operators, since these two operators must be

paired together to give a non-vanishing result. When the time-ordered product in

Eq. (2.92) is expanded using Wick's Theorem, there are two non-vanishing pairings

of the operators,

x{pio^oi,i<T[c1(t1)ct1(t3)]>(T[co(t3)4(*4)]>(T[c1(t4)ct1(t2)])
-poi,iPioj(T[c1(t1)cI(t4)])(T[c0(t4)4(*3)]>(T[c1(t3)ct1(t2)]>}. (2.93)

Again, following the steps leading from Eq. (2.82) through (2.83) to (2.84), we can

substitute Eq. (2.69) into Eq. (2.93) andthen take the Fourier transform with respect

to (*i —12). The result is

gWfw) = 1 E?iM r , (2.94)9ATJK J hu-hu^ie AUK 'hu-hux+ie' v J

where

Ej&M = 5T- r dre*"** f dV / dV'Fj7(r0-r')
AUK ' m2huaJo Jz'<o Jz"<o

x {puwPttij(T[i4*(r.,T)Xtf,0)]) - Poi,iPioj(T[Ai(ra, 0)X«(i/,r)])} , (2.95)

where we have used Eq. (2.24).

The spontaneous decay rate of the excited atom is proportional to the imaginary

part of its self-energy in the excited state,

(2.96)Wspont = -2Im-^
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where the self-energy H(u) of the atom in the excited state is given to order e2 by

E(w) = E^M + E{&(«) +E&(«) +£&(«) . (2.97)

We now assume that the transition dipole moment of the atom is parallel to one of

the coordinate axes, say, the j-axis. Its decay rate in free-space is given by

2

W"°* = 3^? \m) Pl°'WP01'W ' (2.98)

where the brackets around the index j means that this index is not summed. Then,

normalizing the decay rate Eq. (2.96) near the dielectric surface to this free-space

value and using Eqs. (2.85), (2.91) and (2.95), we obtain

Wsnant.i 67TC3e0 r°°spontj

w{0), ~rKspont

where

Wi.

Im / dre%
Jo V\m(v™T*>T)

+"TT I I <?r dzr'Fb]m(va - r) £mn(r, r'; r)Fnlj](r7 - r«)
e*u£ Jz<o Jz'<o

+ f a*r'Fb]m(Ta - r')Cm\j](r', ra; r)
eua Jz'<o u u

(2.99)

C^(rlf r2; r) d=lf |(TK(ri,r)^(r2,0) - X,(n, 0)^(r2, r)]>. (2.100)

The integration over r in Eq. (2.99) can be performed explicitly by making use

of the analytic properties of the Green functions. This is discussed in Appendix B,

where it is shown that Eq. (2.99) reduces to

Wsspontj

(0)
w,spont

6irc3eo
Im V^M(TaiTa)

Wa

^sf f c?r^FWm(p.-r)0SB(p>r')FflW(r'-ra)
£UJ Jz<0 Jz'<0

j rfVflflm(r.-iOCSM(«',rJ
Jz ^0eua Jz'<0

(2.101)

where the superscript w denotes Fourier transform with respect to r.

Eq. (2.101) shows that the spontaneous decay rate of the excited atom near the

dielectric surface is given, to the same order of approximation as in Fermi's Golden
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Rule, in terms of the Fourier transforms with respect to (ti — t2) of the photon

Green function Eq. (2.74), the matter Green function Eq. (2.87) and the function

Cy(ri,r2;ti —12) defined by Eq. (2.100). The latter three functions are defined with

respect to the Hamiltonian density K for the dielectric half-space defined by Eqs.

(2.16) to (2.22), without the perturbation %a due to the excited atom. In contrast to

the atom Green function Eq. (2.63), the functions V^,Q^ and Cg- cannot be approx

imated by the first few terms of their perturbation expansions, since the cumulative

effect of the electrons in the dielectric can be large. Instead, these functions are ob

tained as exact solutions of the Dyson equations which they satisfy. This is discussed

in the next section.

2.5 Green Functions for the Half-Space

The Hamiltonian density H for the dielectric half-space can be rewritten according

to Eqs. (2.16) and (2.28) as

H = ^i +^L0L +^St +^f (2.102)

To obtain the exact Green functions for this Hamiltonian density, we first separate

the latter into an unperturbed part,

"Ho = ^m+^t+^nt, (2.103)

and a perturbation H^t. First, we consider the photon Green function in the subsys

tem described by the Hamiltonian density of Eq. (2.103),

^(ri.rajti-tj) = -^T^K^f^)])'0', (2.104)
where the superscipt ^°^ denotes quantities associated with the Hamiltonian density

H0. From Eqs. (2.17), (2.37), (2.22) and (2.10), we see that, in the subsystem de

scribed by rio, the transverse radiation field A*0) is completely decoupled from the

matter field X and the instantaneous Coulomb potential U. Hence, in this subsystem,
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A(°) is just the free-space radiation field, which can be expanded in a complete set of

transverse, monochromatic plane waves,

A<0)(r'*> =/(2^/£A52K(k)e^k)e((kr"utt,+h-c-]' ^
where Uk = |k|c and h.c. denotes the Hermitian conjugate of the immediately pre

ceding term. Also, e^k), A= 1,2, are unit vectors such that [e!(k),e2(k), jfel form
an orthonormal right-handed triad. Eq. (2.105) can be inverted to give

Using Eqs. (2.106) and (2.25), we readily obtain

[aA(k), 4(k')] =«^*(k - k'), (2.107)

while the commutator between a*(k) and a^k'), or between o\(k) and <4,(k'), van

ishes. Eq. (2.107) shows that a\(k) and a^(k) are thecreation and annihilation oper

ators of a transverse photon of wavevector k and polarization A. It should be noted

that the expansion Eq. (2.105) would not be possible if we had included the term

H^t as in Eq. (2.102), since then the time dependence of the annihilation operators

a\(k,t) would not be simple-harmonic.

The free-space photon Green function can be computed by substituting Eq. (2.105)

into Eq. (2.104),

(o), . f dzk r d3k' 1 _ _
*>„(*,««*,-*) = -*/ (2^mJ (2*)3/*2eoV^£2A§2

x(T {[^(kKUky**'-"'*) +h.c] [ax, (k')ev^Me***>-»>** +h.c] })(<"
. r dPk 1 ^ ... ... f ^Mri-ro-^di-fa) tl>t2,

=-/ W2^£/xAk)exAk) X1e-*<r.-r2)+^(tl-t2i, tl <t2 ; (2-108)
From the completeness of the triad fei(k), e2(k), p] for each k, we have

EeA)i(k)eAj-(k) +^ = fy. (2.109)
A=l,2 K
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Substituting Eq. (2.109) into Eq. (2.108), we obtain

^ l^r*. tx - t2j - -*y (27r)3 2eoa;jfe j c-&.Cn-r»)4*%(t,-n) , tl <t2 .
(2.110)

Eq. (2.110) can be written in a more compact form,

kjkj \

(2.111)

*8W-*> =I/|^/g-fc|Le-(,-,,-^-.

as can be verified by contour integration in the complex cj-plane. From Eq. (2.111),

we immediately obtain the Fourier transform ofV\f with respect to (ti —12),

2><, (n, r2) - €q J (27r)3 ^2 _ fc2c2 +.e . (2.112)

Next, we consider the Green function for the matter field X for the unperturbed

Hamiltonian density of Eq. (2.103). To do so, it is necessary to partition Ho further

into a part without the Coulomb interaction,

?*00 = ftem +^L, (2.H3)

and the Coulomb interaction term H^t. We first obtain the Green function for X in

the subsystem described by Hoo,

fiT(l.*« *i-**) = -|(T[^°0,(r1,t1)^00)(r2,t2)])(»°), (2.114)
where the superscipt (°°) denotes quantities associated with the Hamiltonian density

Eq. (2.113). For this purpose, the first term in Eq. (2.113) has no effect, since there

is no coupling between the radiation field and matter in this subsystem. Next, since

the term H^at given by Eq. (2.39) is diagonal in the dressed matter operators, the

time dependence of the latter operators in this subsystem is simple-harmonic. Hence,

substitutingEq. (2.50) intoEq. (2.114) andusing the commutation relation Eq. (2.40),
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we obtain

,(00)ore™*-*) = -Eirjt *j£ <kS

x(T {[AMBj/rOe** +h.c.p(u.')i?J,J.(r2)ei<"'* +h.c.]})(°0)

—M(ri - r2) j[ '̂iM-oi2{^,'*;;;::• (2-115)
Taking the Fourier transform with respect to (t\ —12), we obtain

<#*•(*, is) = -M(ri~r2) f°<MM"')l'2pcD| u — u' + ie u + u' — ie.

(2.116)

Using Eqs. (2.52), (A.ll) and (A.13), we obtain

where

UqIMo/)l2 = ^M,

t/ /x def Uou'V2{u')

J(u) d^ I™du'\h(u')\2\ l—
v ' Jo ' v " lu-u' +

Jo a;' a;2 — (a;1 —ze)2

uo f^ , w n 2a;= — du£{U )— j- TTT
u Jo u2 —yu' —ie)2

r°° r l/ du't(u')
Jo

uo

u

= —IP r du'^^- - i^(u)9{u) +iir^(-u)9(-u)
U — U'
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(2.117)

\u'2 - ulz(u')\2 ' (2'118)
Eq. (2.118) shows that £(u) is an even function of a;, since V2(u) is odd and z(—u) =

z*(u). Furthermore, f (u) is analytic on the real u axis. This follows from the fact

that the denominator on the RHS of Eq. (2.118) is non-zero on the real u' axis [7].

The integral over u' in Eq. (2.116) can be rewritten as

1

ie u + u' — ie.

(2.119)
.u — u' + ie u + u' — ie}

Using the fact that £(u) is an even function of u, the principal parts of the two terms

inside the brackets in Eq. (2.119) can be combined,

J(u,) = ^(pf du'-^- - in [°° du'Z{u')[8(u - u') - S(u +u')]\
U { J-oo U —U Jo J

(2.120)



Following Huttner et al. [7], we define the dielectric function of the dielectric as

2peou J-oo u —u' + ie

2pe0u i J-oo u —u'

This function satisfies the Kramers-Kronig relations, since the first form of the func

tion given in Eq. (2.121) shows that e(u) is analytic in the upper half of the complex

plane. Comparing the quantities inside the brackets in Eqs. (2.120) and (2.121) and

using the fact that £(u) is an even function, we see that, when u > 0, the two quan

tities in brackets are identical, whereas when u < 0, they are complex conjugates of

each other. Then, using the fact that e{-u) = e*(o;), we conclude that

J{uj) = -^[e(M) - 1]. (2.122)
e*

Substituting Eq. (2.122) into Eq. (2.116), we obtain

G^(rur2) = _6oKM)-l]M(ri_r2) (2123)

When the Coulomb interaction Eq. (2.23) is added, the matter Green function

G$ can be expressed in terms of quantities without the Coulomb interaction using
the general result of the diagrammatic technique,

fljy'fr.ittti-*) = -t{T[X?0\TUt1)S"(oo,-oo)X?°\r2,h)])™, (2-124)

where

sV>,-oo) =i+£±(?)7^--^
(2.125)

Substituting Eq. (2.125) into Eq. (2.124) and using Eq. (2.23), we obtain an infinite

series

xFto(r' -T'^nX^HTrMXrir^t^X^Kr^t^X^^h)])^ + ••••
(2.126)
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Expanding the time-ordered product in the second term on the RHS of Eq. (2.126) by

means of Wick's Theorem, we find two equal pairings of the operators which together

cancel the factor (1/2),

^(n,ran-fa) = S|°0,(ri,r2;t1-i2)+(^)2r^3/, dV / dV
J \ Tl / J-oo Jz?<0 Jz"<0

x(T[xl00\rllt1)Xlm\r\t3)])^FUrl - vtt)(T[X^\T^t3)XJ00\T2M)m + ••••
(2.127)

Using Eq. (2.114), this may be rewritten as

On.r^i-fa) = G^ur^-^+rdtJ dV/ dV'
J J J-oo Jz'<0 Jz"<0

xGf(n,r'; h - h)Flm(r' - r")C(r", r2; h -t2) +... . (2.128)

Taking the Fourier transform of Eq. (2.128) with respect to (ti —t2), we obtain

Cf(n.ra) = sr"(i.*»)
+ / dV/ dV'400»"(rl,r')Firo(r'-r")C)u(r",r2) +.... (2.129)

Jz'<0 Jz"<0

The infinite seriesin Eq. (2.129) can be summed to give a closed-form integral equation

for <$*

ef"(ri,r2) = g^(rur2)
+ [ d3r'/ d3r>'gT)u(riy)Flm(T>-T>')gV?'(r'',r2), (2.130)

Jz'<0 Jz"<0 J

as can be seen by repeatedly substituting Gij given by the RHS ofEq. (2.130) into

the RHS of the same equation. Using Eq. (2.123), we obtain

<#*>!,r2) =_£°MML^I fV(Pl _r2) +f d3r3Fim(vi ~ra) C(r3,r2)' .
J e L Jzz<o J

(2.131)

Eq. (2.131) is the Dyson equation for the matter Green function G\j for the
system described by the Hamiltonian density of Eq. (2.103). This equation can be

solved exactly for Gip" using an extension of the Wiener-Hopf technique, as discussed
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in Appendix C. The solution is

**S (ri, r2) = -2 V(*i " r2) + A^r(\t,\\*Anei{\u\)e'
d2

+
<l(M) -1 d2

dxudx2j \\ti-t2\J ' eL(\u\) +1 dxudx2j

where f 2 is the image of r2 in the plane z = 0 and

^i>=1+i4!Xi)-i)

*1 - *2

(2.132)

(2.133)

is the dielectric function including local field effects. It is straightforward to check,

using the integrals described in Appendix F, that Gij)u,(rur2) given by Eq. (2.132)
with ex,(|u;|) given by Eq. (2.133) does indeed satisfy the Dyson equation Eq. (2.131).

So far, we have obtained the Green functions for photons and matter, Eqs. (2.112)

and (2.132), for the system described by the Hamiltonian density H0 of Eq. (2.103).

Next, we calculate the Green functions for the complete Hamiltonian density H given

by Eq. (2.102). First, we consider the photon Green function Eq. (2.74) which, by

the diagrammatic technique, can be written as

2>«(ri,r»;*i-*») = -J<T[^0)(r1,t1)SA(oo,-oo)40)(r2,t2)]>(S1I1, (2-134)

where

5a(co,-oo) = i+£;^(y)"jr...jr*
(2.135)

Here, H^A(t) is the Hamiltonian corresponding to the Hamiltonian density %£t(r, t)

ofEq. (2.21),

,2
rj(0)A d3r

Jz<0
--A<°>(r,t) •PJ?(r, i) +f-A<°>(r,t) •A<°>(r, t) (2.136)

As we have mentioned, V\$ cannot be approximated by the first few terms of its

perturbation expansion. Instead, the entire infinite series in Eq. (2.135) must be

substituted into Eq. (2.134). However, we shall see shortly that the resulting infinite
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series of terms in Vij can be summed exactly to give a closed-form Dyson equation

for the photon Green function.

The zeroth-order term in Eq. (2.135) gives just the free-space photon Green func

tion 7>\f of Eq. (2.104), whose Fourier transform is given by Eq. (2.112).
The n = 1 term in Eq. (2.135) gives a first-order correction to the free-space

photon Green function. Since there must be an even number of A operators in the

time-ordered product to give a non-vanishing expectation value, we see that only the

second term in Eq. (2.136) contributes in this order,

C§)(ri,r,;tl-*i) =|L (Zi) jT dfej^*r,<T[4^r1,t1)i4ff(r»,«,)
xA^^tMfi^h)])^. (2.137)

Expanding the time-ordered product in Eq. (2.137) by Wick's Theorem, we find two

equal pairings of the operators which cancel the factor (1/2),

32 coo

P J-OO JZ3<0
^(n.rajti-ta) = —/ dtz f d^V^^h -t3)2><$(r3,r2;t3 ~h),

J P J-OO Jz3<0 J

(2.138)

where we have used Eq. (2.104). Taking the Fourier transform with respect to (*i—12),

we obtain

;2

P Jz3<0

Next, we consider the contribution from the n = 2 term in Eq. (2.135),

4^(rx,r2) =4/ d>r3v2*(rur3)vV>»(.T3,r2). (2.139)
J O Jz%<0

^(n,***!-*) = ifjf) jT*,/^*i(T[^,0(n,*i)a£?A(*»)fl£)A(*«)
Xil^ra,*)]>«,. (2-140)

When Eq. (2.136) is substituted into Eq. (2.140) and the product of the two Hamil-

tonians expanded, there are a total of four terms: one due to the first term in Eq.

(2.136) acting twice, one to the second term in Eq. (2.136) acting twice, and the two

cross terms. The latter cross terms contribute nothing* since they each contain an

odd number of A operators.
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Consider first the contribution due to the first term in Eq. (2.136) acting twice,

*#<*.**-*> =s(t)8(t)2£^
x(T[i4{0)(pllt1)AW(rs,t3) ♦P^(r3,t3)A(°)(r4,t4) .P^(r4,i4)Af(ra,fc)])8L .

(2.141)

Expanding the time-ordered product in Eq. (2.141) using Wick's Theorem, we find

two equal pairings of the operators which together cancel the factor (1/2!). Using the

definition Eq. (2.104), we obtain

Z^fa.rajii-ta) = (—J f° dt3 f° dtA f dzrJ d3r4
J \ P J J-°° J~°° Jzz<0 Jza<0

xBg"(n,r3;*i - fe)affi(r»,r4; t» - t4)X>$(r4, r2;U -1»), (2.142)

where

QJ?W2;*!-*.) * -jffll^(ri,t1)^3(rJ,fe)]>W, (2.143)
is the Green function for the operator P* in the subsystem described by Ho of Eq.

(2.103). The Fourier transform of Eq. (2.142) with respect to (tY -12) is

P|f(ri,r2) = (^)2 f a«rz[ ^4^(r1,r3)Q^(r3,r4)P^(r4,r2),
J \ p J Jz3<0 Jz4<0

(2.144)

where Q^" is the Fourier transform of QJJ\ To compute this quantity, we follow the
same procedure as used in computing G^\ by partitioning Ho into asum of Hoo and
H?t, where Hoo is given by Eq. (2.113). The Green function for P* in the system

described by Hoo is given by an expression similar to Eq. (2.114) but with X replaced

by Px- Comparing Eqs. (2.50) and (2.51), we see that Px is obtained from X by

replacing h(u) by pu0g(u). Hence, following the steps leading from Eq. (2.114) to Eq.

(2.116), we obtain for Q^" aresult similar to Eq. (2.116) but with h(u) replaced
by pu0g(u),

fig^n.r*) = -^M(n-^)jTA/|^)|
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Using Eqs. (2.53), (A.ll) and (A.13), we obtain

u'

\g("')\2 = ^(o/),
Uq

(2.146)

where f(a/) is given by Eq. (2.118). The integral over u' in Eq. (2.145) can be

rewritten as

1 1K(u) d=^ / du/\gW\
Jo

Jo

u —u' + ic u + u' — ie

u . u
-1 +

uo lu — u' + ie
2 roo / ,., \ 2

&o «/o " ' vu;0.

where we have used Eq. (2.119). Now, it is shown in Appendix D that

f°° du'Z(u') = 1.
Jo

Substituting Eq. (2.147) into Eq. (2.145) and using Eq. (2.122), we obtain

Q|^(ri,r2) =-pM(ri-r2)|i +̂![€(M)-l]}.
When the Coulomb interaction Eq. (2.23) is added, the Green function for Px is

given by an infinite series similar to Eq. (2.124),

fifftn, ««*-*») = -|(T[Pi?j)(r1,t1)5u(oo,-oo)P^0)(r2,t2)])(SS1, (2.150)
where Su(oo, —oo) is given by Eq. (2.125). When the latter equation is substituted

into Eq. (2.150), we obtain an infinite series similar to Eq. (2.127),

+ .... (2.151)

We now have to compute the quantities (?IP$$XJm)])W and (T[X^P^])^°\
Using Eqs. (2.50) and (2.51), we obtain

-^[P^HrutOXrir^)])™ =-ff^f <*"'
x(T{[fl(a,)Bi,i(r1)e '̂ +h.c.][ft(a,')Bi,J(r2)e^t= +h.c.]})<00)

*.•<:/ X f" j / \ ff*(w')/t(w')e_ia/(t,"t3) . *1 >*2 , ,„ 1Co\=-2^(ri-r2)yo *" i gWh-M***-*), t1<t2. • (2-152)

u + u' — ie

=-if"««* +©V>.
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Taking the Fourier transform with respect to (ti —i2), we obtain

"^(T[Pi?^ri,ti)^(r2,t2)]> |̂W = ±M(*-*)jf^
g*(u')h(u') g{u')h*{u')
u — u' + ie u + u' — ie

Using Eqs. (2.52) and (2.53), we calculate

(2.153)

g*(u')h{u') = -i[at(u') + &(u%a0(u') - M"')}

= -i {\a0(u')\2 - \(30(u')\2 +2zlm [ao(u')0*o(u')]} . (2.154)

From Eqs. (All) and (A.13), we see that \ao(u')Po{u')] is purely real. Hence,

g*(u')h(u') = -i[\aQ(u')\2-\Mu')\2]
= -it(u'), (2.155)

where we have used Eq. (2.118). Substituting Eq. (2.155) into Eq. (2.153), we obtain

X +
.u — u' + ie u + u' — ie

ipe0u[e(\u\) -1]
ed

(00)w.

•^•<5(ri - r2)

= -yutfSTh.r*), (2.156)

where we have used Eqs. (2.119), (2.122) and (2.123).

For {T[X^0)P^])m, we obtain an expression similar to Eq. (2.153) but with
g(u') and h(u') interchanged. According to Eq. (2.155), this amounts to an extra

minus sign. Hence,

-jCr[Ar)(n,*i)i^5,(rS,t8)]><w»f = W^Cri.r,). (2.157)
We now take the Fourier transform of Eq. (2.151) with respect to (ti - t2) and

then use Eqs. (2.156) and (2.157),

38



^(n.rs) = ^"""(n.isJ +g) /r</r' jzii<#r"Flm(t' -r")
x<T[Pi?°'(r1,il)Xro'(r',t3)])(00»|<J^VrV^J'te^irf +...

= Qir>i,r2)

+pV / <*V / dV'e<00J-(tx,r')F(m(r' - r")<0)u(r", r2) +... . (2.158)
jz'<o yz"<o J

Comparing Eqs. (2.129) and (2.158), we see that the infinite series in the two equa

tions, represented by the second and higher-order terms on the RHS of each of the two

equations, are identical except for a factor p2u2. This holds because each term of the

series in Eq. (2.158) differs from the corresponding term of the series in Eq. (2.129)

only in replacing, in the latter series, a factor 0J>°°)w by (-i/h) (T[P$fX^00)])^\W
and a factor G{$" by (-i/h) (T[P^XJ00)])(00)|W. According to Eqs. (2.156) and
(2.157), this amounts to multiplication by a factor (—ipu)(ipu) = p2u2. Hence, we

conclude

^(t^-QP^^t,) = p^G^^v^-G^^r,)]. (2.159)

Substituting Eqs. (2.123) and (2.149) into Eq. (2.159), we obtain

Q^(ri,r2) = -pd^-v^ +p^G^^v*), (2.160)

where (j§)u is given by Eq. (2.132). Eq. (2.160) is used in Eq. (2.144) to give vf>.
We still have to consider the contribution from the second term in Eq. (2.136)

acting twice, as well as the contributions of the higher order terms in Eq. (2.135).

These contributions can be taken into account by using diagrammatic analysis.

The perturbation series Eq. (2.134) can be represented by an infinite series of dia

grams as shown in Fig. 2.1. Here, the complete photon Green function is represented

by a heavy dashed line and the free-space photon Green function by a thin dashed

line. The contribution Eq. (2.139) due to the second term in Eq. (2.136) acting once

is represented by the second diagram on the RHS of Fig. 2.1a, the contribution Eq.

(2.144) due the the first term in Eq. (2.136) acting twice by the third diagram, the
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contribution due to the second term in Eq. (2.136) acting twice by the fourth dia

gram, etc. It can be seen that any one of the higher-order diagrams in Fig. 2.1a

is constructed from just two types of building blocks, known as self-energy parts,

represented by a cross and a vertical dumbell, which correspond to the second term

in Eq. (2.136) acting once and the first term in Eq. (2.136) acting twice, respectively.

We can separate the higher-order diagrams into two groups: those containing a self-

energy part of the first type at the bottom and those containing a self-energy part of

the second type at the bottom, as shown in Fig. 2.1b. The infinite series connected

to either one of these factors consists of all possible diagrams constructed from an

arbitrary number of self-energy parts of either type strung together in any order by

free-space photon Green functions. Such a series is just the complete photon Green

function. Hence we obtain the equivalent representation shown in Fig. 2.1c. This

means that the higher-order diagrams are all included in just two diagrams obtained

from the second and third diagrams on the RHS of Fig. 2.1a by replacing the thin

dotted lines at the top of the latter diagrams by heavy dotted lines. Mathematically,

the complete photon Green function is given by the sum of the free-space photon

Green function and the two terms derived from Eqs. (2.139) and (2.144) by replacing

the factor V^ in these equations by Z^-,
,2

+(—)*[ d3r3f dV4Bg*'(r1-r,)Qg2-(r„P4)^(r4,ra). (2.161)
\ P J Jz3<0 Jzt<0

Substituting Eq. (2.160) into Eq. (2.161), we obtain

Ugtri.ra) = ^(n-r,)
+eV/ dV3/ d3r4Di10)u(r1-r3)^(r3,r4)^(r4,r2). (2.162)

Jzz<0 JZ4<0

We may now substitute Eq. (2.132) into Eq. (2.162). For the second term in Eq.

(2.132), we perform integration by parts twice and make use of the transversality of

the photon Green function,

A^.(r,rO=̂ .(r,r')=0. (2.163)
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The result is

Bgfa.rj) = 2>f"(n - r2) - iA„MM) - 1] / dS^"^ - r3)^(r3, r2)
Jz3<0 J

u)2e0[eL(\u>\)-l]2 rr» 2 (ow 1
+ ar[«£(M) +l] JJds°ds*V* (l-"»)]^T^[^(««.'a). (2-164)

where s3 and s4 are integration points on the plane z = 0.

Eq. (2.164) is the ea;ac£ Dyson equation for the transverse photon Green function

for the complete Hamiltonian density H of Eq. (2.16). This equation can be solved

exactly for Pg using an extension of the Wiener-Hopf technique, as discussed in

Appendix E.

Before continuing to calculate the other functions Gfj and Cg needed in Eq.

(2.101), it is instructive to consider the photon Green function for an infinite di

electric medium. In that case, the Dyson equation Eq. (2.164) is modified to read

»5(ri, r2) = 4°)u(ri - r2) - w2e0[eL(\u>\) - 1] / d3r3vW»(tl - r»)J£,(r», r2),
(2.165)

where the integral over T3 extends over allof space and the surface term in Eq. (2.164)

is absent. Eq. (2.165) is easily solved by taking the Fourier transform with respect to

(ri - r2),

**<» - S) J^E-^H)-llfe5^^(». (2-166)
To solve Eq. (2.166), we assume a solution of the form

0g(k) =A6ij +B^. (2.167)
Substituting Eq. (2.167) into Eq. (2.166) and using the fact that (Sim - ^n-) km =0,
we obtain

Equating the coefficients of<% and ^ on both sides ofEq. (2.168), we obtain

(2.169)-(h) u2 + u2[eL(\u\) - 1] - k2<? + ie
B = -A. (2.170)
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Hence, for an infinite dielectric medium,

W = (L) 2iV^L- • (2-i7D1J Ve0/ u2eL(\u\) - k2c2 + ze

The dispersion relationship for the photons is given by the singularity of the photon

Green function,

.2k2 = 2L*t(M), (2-172)
Cz

which shows that €£,(.) is indeed the dielectric function of the medium.

Next, we calculate the matter Green function Gfj for the complete Hamiltonian

density H. This is given according to the diagrammatic technique by

fty(rx,r2;tx -1,) = -i{T[X?\Tutx)5A(oo, -oo)*j0)(r2,tj)])2L, (2.173)

where SA(oo,-oo) is given by Eq. (2.135). The zeroth-order term in Eq. (2.173) is

Gip whose Fourier transform is given by Eq. (2.132). The n=1term is

^)(r1,r2;t1-t2) =(-f)7-Io^(T^^,^)^^^)^^,^])^ .
(2.174)

The first term in Eq. (2.136) does not contribute, since it has an odd number of A

operator. Substituting the second term in Eq. (2.136) into Eq. (2.174), we obtain

flPo*.**-*) =H)2 ($)/-> tod3r>
x(T[X|0)(r1,t1)A(°)(r3,t3) •A<°)(r3,i3)XJ0)(r2,t2)])<l - (2-175)

When the time-ordered product in Eq. (2.175) is expanded using Wick's Theorem,

the two A operators must be paired together and so must the two X operators, since,

in the subsystem described by the Hamiltonian density Ho of Eq. (2.103), there is

no coupling between the transverse radiation field A and X. But this results in a

disconnected diagram, which we do not count. Hence,

fi&'On, Hi*!-*) = 0. (2.176)
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Next, consider the contribution from the nth term in Eq. (2.173), where n > 2,

1 / ? \ n"l*l roo roo

4")(i.w*i-t2) = ^(4) Lco---j_jt'i---<wx< (i^)
xJj£?A(J)...l§A(OJrf(ra,t»)]>ffi.. (2-177)

The Xi or J^- operator in Eq. (2.177) cannot be paired with an A<°) operator in
the expansion of the time-ordered product using Wick's Theorem. Hence, Xt- must

be paired with a P^ operator from one of the Hamiltonian factors H^i , and Xj '
must be paired with a Py operator from another Hamiltonian factor. There are

altogether n(n —1) distinct, ordered pairs of these Hamiltonian factors, all of which

contribute equally. Hence, we need only consider one particular pair of Hamiltonian

factors, namely, H^i,A(t'n-i)i and H^A(t'n) and multiply the result by n(n— 1). Using
Eq. (2.136) we obtain

*w-« - ^(-r'(T)7_:-/>-<
x / *,-_! / d3rn(T[x|0)(r1,t1)Pi?!(rn_1,Ci)]>(0)<T[40)(rn-i,4-i)

Jzn-1<0 Jzn<0

xHT(t[) ••.^A(C2)^)(rn,4)])2L<T[P|L(r„,4)XJ0)(r2,t2)])<°)

'(-i)'(Tir<-r<j .*•-/ .*••\ TlJ \ P ) J-OO J-OO Jzn-l<0 Jzn<0

x(T[Af>(rl,*1)/fJ(r^1,Ci)])(,,,^to'(r.-i.r.iCi " 4)
x<T[^rn,0*f(r2,t2)]><°>, (2.178)

where V^~2^ is the (n —2)th term of the perturbation series given by Eq. (2.134).
When Eq. (2.178) is summed from n = 2 to oo, the summation of the PJ"~ '

factor simply gives the complete photon Green function Vij. Hence, summing Gtj

from n = 0 to oo, taking into account Eq. (2.176) and going over to frequency space,

we obtain

*<*,*> =<P^+ti)a{=?fU*r>J^*r<
x(T[X?\rutJP$(T3^])W\aV?m(r3,n)

x (T[pgJn(r4,t4)^0)(r2,t2)])<l,f . (2.179)
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We now have to compute the quantities (T[PJ?]*j0)])<°) and (T[XJ0)PJ?].])(0>.
These are obtained in terms of the quantities (T[PJ??XJ00)])<00) and (T[Af0)PJ$])W
by the diagrammatic technique with the Coulomb interaction H^t' as perturbation,

-{(TlPlx}(ri,h)Xf\T2,t2)])^ = -i(nP^(TUti)Sv(00,-00)
xXJ00)(r2>i2)])Sn, (2-180)

where 5u(oo, —00) is given by Eq. (2.125). Comparing the two infinite series Eqs.

(2.124) and (2.180), we see that each term of the latter series differs from the cor

responding term of the former series only in replacing, in the former series, a factor

(-i/h)(T[X?0)Xl00)])W by (-i/h)(T[P$?xl00)])W. Thus, after taking the Fourier
transform of the series Eq. (2.180) with respect to (ti —tf2), we obtain a series that

differs only from that in Eq. (2.129) by replacing, in each term of the latter series, a

factor G$°){J by (-i/h) (T[P$xlm)])W[. By Eq. (2.156), this amounts to multi
plying each term of the series in Eq. (2.129) by -ipu. Thus, we conclude

-{(nP^utOXffoM)^ = -^^(n.r,). (2.181)
Similarly, using Eq. (2.157),

-| (Tpff(r1,*l)J^(Fa,i4)]>wr = ifiuelP'fn,**) • (2-182)
Substituting Eqs. (2.181) and (2.182) into Eq. (2.179), we obtain

flSfo,*) = Sfd-x.rjReV/ dV3 / d3r4
J J Jzs<0 JZ4<0

xfigfr'fo,rs)Vfm(v3,r4)</$w(r3,r2). (2.183)

Eq. (2.183) is an explicit expression for the complete matter Green function Gfj, since

Gij)u) is known from Eq. (2.132) and the complete photon Green function V% is known
from Appendix E.

Lastly, we calculate the function dj given by Eq. (2.100). We consider each of the

two terms in the latter equation separately. By the diagrammatic technique, we have

\mXi(TUT)M^M) = J(T[^(n.'-)5A(«).-«)^fe.0)]>W, (2.184)
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where 5A(oo, -oo) is given by Eq. (2.135). The zeroth-order term of the series Eq.

(2.184) vanishes, since in the subsystem described by Ho of Eq. (2.103) there is no

coupling between A and X. Hence, consider the nth term in Eq. (2.184), where

n> 1,

ifTKtr.r^fr.O)])^) = -L (4)7l"7-Io^•••«T[*i°W)
xi^A(*'i) ••.^(O^}(r»,0)]>2L • (2.185)

Following the steps leading from Eq. (2.177) to (2.178), we see that X^ must be
paired with aP^ operator from one of the nHamiltonian factors. Choosing H^A(t'n)
to pair with X\ ' and multiplying the result by ra, we obtain

1(^,(^^.(^,0)])^ . -(j)5(4)7n<0^n
x/^---t^--Xm^)(ri,r)l^J(rn,O]>(0)

x<T[A<0>(r "O xHT(h) •..^(Ci^feO)])!
="(£) £<j[^.C^ ,

(2.186)

where V§~1) is the (ra - l)th term of the series in Eq. (2.134). When Eq. (2.186)
is summed from ra = 1 to oo, the summation over the V^~x' factor simply gives
the complete photon Green function Vij. Then, taking the Fourier transform with

respect to r and using Eq. (2.182), we obtain

UT[Xi(tl,T)Aj(T2,0)})r = *>/" <**r*flg,)''(rl,i*)0S(r,f*a). (2.187)
n Jzz<o

Similarly, we obtain

i(T[X<(r1,0)AJ(r2,r)]>r = \ <T[X,(n,T)i4,(«a,0)])r
=e(-w) j d3r3 '̂-"(ri, r3)2>,7"(r3, r2). (2.188)

Jzz<0

It can be seen from Eq. (2.132) and Appendix E that the Green functions Gij and

Z>g are even functions ofu, since u enters into these Green functions only inthe form
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\u\ or u2. Hence, the RHS of Eq. (2.188) is equal and opposite to the RHS of Eq.

(2.187). Taking into account the minus sign between the two terms in Eq. (2.100),

we see that Eqs. (2.187) and (2.188) contributeequally to the Fourier transform with

respect to r of Eq. (2.100). Thus,

<S(ri,r2) = 2eu[ d*r3G$)u(r^r^r^). (2.189)
4 Jz$<0

We now have all the quantities we need, namely, Pg, G?j and Cg, to compute the

spontaneous decay rate of the excited atom using Eq. (2.101).

2.6 Comparison with the Classical Theory

Results for the total decay rate calculated from Eq. (2.101) using the exact functions

Vij, Gij and Cfj are in excellent agreemment with those of classical electromagnetic
theory [16]. These are shown in Fig. 2.2 for a gold mirror with refractive index

ra = 0.505 + 3.66i. The total decay rate contains a nonradiative component due

to energy transfer from the excited atom to the absorbing mirror via the near-field

Coulomb interaction. The contribution due to the instantaneous Coulomb interaction

U alone may be obtained from Eq. (2.101) by setting Z>g equal to zero,

ftrA,T_ 1 j j d3rd3r,F (ra_r)eWM.(r,r0F (r'_ra)
•a;* Jz<o Jz'<o

(2.190)

Wurrspont,j

Wspont
Im

un e2

In Appendix F, the integrals over r and r' are evaluated to give

/ / dird3T'Fv]m(ta-T)g2"(r,r')Fnyi(t'-ta)
Jz<0 Jz'<0

j_ hLM - ii r a2 / i V
4f«0 Let(w«) +1J L^ayi^fa'l \lra-rlil/.

, (2.191)
Tb=Ta

where fa is the image of ra in the plane z —0. Substituting Eq. (2.191) into Eq.

(2.190) and evaluating the partial derivatives, we obtain

-1^spontj _ _30L_jm
Wt

(0)
spont

8w»2» *L(Ua) + lj '
(2.192)
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where 9j = 2 for j = z and 9j = 1 for j = x or y. Eq. (2.192) agrees with the

classical result [16] for the rate of nonradiative energy transfer in the limit za -¥ 0.

At distances za greater than a fraction of a wavelength, however, Eq. (2.192) differs

considerably from the classical result, suggesting that the latter includes partially the

effects of the transverse photons.

Nonradiative decay is absent for a perfect dielectric. In this case, our results for

the decay rate Wj are in excellent agreement not only with the results of classical

electromagnetic theory, but also with those based on quantization of macroscopic

spatial modes [18]. These are shown in Fig. 2.3 for a dielectric half-space with

refractive index ra = 3.

2.7 Conclusions

In this chapter, we have presented an exact solution of a microscopic Hamiltonian

model of an absorbing dielectric half-space and used it to calculate the spontaneous

emission rate to order e2 of an excited atom near the surface. Because our calcu

lation is based on a fully canonical quantization scheme, it provides a fundamental

demonstration of the validity of the classical electromagnetic theory of the rate of

spontaneous emission near an absorbing dielectric surface. This serves to increase

our confidence in the results of recent work on spontaneous lifetime based on classical

electromagnetic theory [21]. Also, the exact photon Green function for the half-space

given in Appendix E can be used to treat other quantum mechanical interaction phe

nomena between charged particles and the electromagnetic field near an absorbing

plane surface, such as the level shift of an electron undergoing cyclotron motion near

such a surface [22]. In the above discussion, we have only considered the case for

which the excited atom is on the air side of the surface. However, our approach can

be extended to treat the other case also.
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Figure 2.1: Perturbation series for photon Green function. A heavy dashed line
represents the complete photon Green function. A light dashed line represents the
free-space photon Green function. A cross represents an interaction vertex due
to the A-A term in Eq. (2.136) acting once. A vertical dumbell consists of two
interaction vertices due to the A^P term in Eq. (2.136) acting twice.
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Vertical dipole
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ko^a
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Figure 2.2: Lifetime of an excited atomnear a gold mirror. Solid lines are the results
of classical electromagnetic theory. Dots are the results of our quantum theory. k0 is
the wavevector in air. za is the distance of the atom above the mirror.
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Figure 2.3: Lifetime of an excited atom near a lossless dielectric surface. Solid lines
are the results of the spatial-mode quantization theory. Dots are the results of our
quantum theory.
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Chapter 3

Three-Dimensional Topography
Scattering Part I: Multipole
Accelerated Physical-Optics
Method

3.1 Introduction

In the past few years, electromagnetic simulation of photolithography has received

much attention. This is because, as the design rule of integrated circuits shrinks, it

becomes necessary to control CD variations due to topography scattering and other

effects within tighter and tighter limits. Accurate simulation of topography scatter

ing using electromagnetic theory can be a valuable tool for predicting CD variations

over wafer topography. A related problem arises in mask design. As the aspect ra

tio of the mask topography increases, due to design-rule shrinkage or to the use of

phase-shifting-mask structures, electromagnetic-diffraction effects in mask transmis

sion become increasingly more important and thus need to be simulated accurately.

Various rigorous techniques of computational electromagnetics have been applied

successfully to topography scattering problems in 2-D. These include the time-domain

finite-difference [24, 25, 26, 27], waveguide [28], differential [29], finite-element [30, 31]

and spectral-element [32] methods. Already in 2-D, such techniques are very CPU

and memory intensive. Their extensions to 3-D would certainly be much more so.

In an attempt to reduce the CPU cost of topography-scattering simulation, approxi-
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mate techniques based on the Geometrical Theory of Diffraction (GTD) [9] and the

physical-optics approximation [10] have been developed for 2-D problems. In this

chapter, we discuss an extension ofthe physical-optics approach in [10] to 3-D topog

raphy scattering. The resulting technique is suitable for piecewise-linear topography

and allows reflective-notching simulation of large 3-D structures to be performed on

an ordinary workstation with reasonable CPU time.

We begin the discussion of our multipole accelerated physical-optics technique

with a review of the diffraction integrals of electromagnetic theory in Section 3.2

and an outline of the physical-optics approximation in Section 3.3. To simplify the

treatment of multilayer structures, we use an iterative scheme developed by Pai and

Awada [13] to take into account multiple scattering between adjacent surfaces in the

structure. This is discussed in Section 3.4, where the special case of a pair of non-

interlacing adjacent surfaces is discussed in detail. The problem of multiple scattering

within a given surface is discussed in Section 3.5, while the problem of the reflection

of multiply scattered dipole waves from the tangent planes on the same surface is

discussed in Section 3.6. Next, the multipole approximation is introduced in Section

3.7 to speed up the computation of the multiply scattered waves. The discussion

for dipole waves in Section 3.6 is then generalized to the case of multipole waves in

Section 3.8. The technique of multipole acceleration is discussed in Section 3.9, while

the approximation methods used to evaluate the resulting integrals are discussed in

Section 3.10. In Section 3.11, the operation count of our algorithm is estimated.

Then, the results of 3-D reflective-notching simulation are presented in Section 3.12.

3.2 Problem Statement

Fig. 3.1 shows the type of topography of interest in photolithography simulation. It

consists of a number of homogeneous media of permittivity e* separated by surfaces

Si. The structure is assumed to be periodic in the horizontal (x and y) directions

with periods dx and dy. A set of plane waves representing an aerial image is incident

on the uppermost, photoresist surface. The incident field on a horizontal reference
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plane above the photoresist surface is in the form of a superposition of a finite number

of spatial harmonics e^otm*+Al|0J where

aro =*$0 +*p, (3.1)

Here, mand nare integers and k^ and ^ ste components ofthe incident wavevector
of the (0,0)-th harmonic. Our goal is to simulate the intensity distribution within

the photoresist layer.

Accordingto the Kirchhoff-Huygens principle [33], the electric and magnetic fields

at any point r within a homogeneous volume can be computed from the values of the

tangential field components over a surface completely enclosing the volume,

E(r) =-^ / \-jup,(n' xH')^ - -^-(n' xH') •V'(Vty) - (n' xE') xV'J dff ,
47r Js L ue\

(3-3)

H(r) = -J- / jwdin' xE')V- +-^-(n' xE') •V'(Vty) - (n' xH') xVij>
47T Js Up,

dS',

(3.4)

where S is the enclosing surface, €i and p, are the permittivity and permeability of

the enclosed volume V, and ty is the Green function for the Helmholtz equation in V,

e;*i|r-r'|

*'T=^' (3-5)
ki being the wavevector in V. Also, in Eqs. (3.3) and (3.4), n' is the outward unit

normal at a point r' on 5, a primeonE orH indicates that the corresponding quantity

is to be evaluated at r', and our time convention is e~Jwt.

Eqs. (3.3) and (3.4) are equivalent to the standard form of the Kirchhoff-Huygens

principle [34],

E(r) = _L / [-jup(n' x H!)i> - (n' •E')V'<0 - (n' xE') xW] dS', (3.6)
47T JS

H(r) = ~ [tiue^n'xE'W-tf-H^ViP-tfxH^xVWdS'. (3.7)
An Js
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This can be seen by performing an integration by parts on the second term on the

RHS of each of Eqs. (3.6) and (3.7). For example, using the Maxwell's equation

—jue{E = V x H, the zth component of the second term on the RHS of Eq. (3.6)

becomes

«\&l> im * f J_L /-(n'-EOfW = f/
Air Js oXi 47r Js

1 ' ' [n' •(V xH')] ^rdS'

Using Stokes' Theorem, the first term on the RHS of Eq. (3.8) is transformed into

a fine integral along the boundary of 5, which is zero since S is closed. Hence, Eq.

(3.8) becomes

4n Js OXi 47r Js ue\ [ \ 0X4/

= -^-/--i-(n'x H') •V'ftd5', (3.9)
47r Js ue\ OXi

which is the same as the ith component of the second term on the RHS of Eq. (3.3).

Similarly, the second terms on the RHS of Eqs. (3.7) and (3.4) can be shown to be

equivalent.

There is an advantage to using the amended form Eqs. (3.3) and (3.4), rather than

the standard form Eqs. (3.6) and (3.7), in that the former has a simple interpretation

in terms of vector potentials. If we regard the tangential fields (n7 x E;) and (—n; x H;)

on 5 as equivalent to magnetic and electric surface current densities, respectively, then

the magnetic and electric vector potentials Am(r) and Ae(r) at any point r within V

due to these equivalent sources on S are

Am(r) = i- / -(n'xE')^dS', (3.10)
47T JS

Ae(r) = ^- f -(n' xH7)^ dS'. (3.11)
47T JS

The electric and magnetic fields are then given by

E(r) = Vx Am+ -^-Vx Vx Ac,
ue\

H(r) = Vx Ae-—Vx Vx Am .
up
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When Eqs. (3.10) and (3.11) are substituted into Eqs. (3.12) and the V operators

allowed to act on ip with the substitution V = —V, we obtain

E(r) =i- fs j-(n' xE') xVty -^- [(n' xH') •V'(Vty) - (n' xH')W]} dS'.
(3.14)

Eq. (3.14) is seen to be the same as Eq. (3.3) when we use the fact that V72^ =

—k^ip = —(u2pei)tl; when r ^ r'. Similarly, Eq. (3.13) can be shown to be equivalent

to Eq. (3.4).

From the above discussions, it is clear that the main problem in topography-

scattering simulation is to determine the values of the tangential fields on the surface

S = S\ + S2 enclosing the photoresist region whose permittivity is €i (see Fig. 3.1).

The rigorous approach would be to set up integral equations for the tangential fields

on S\ and S2, using outgoing-wave boundary conditions in the region above S\ (air)

and the region below 52 (substrate). In this chapter, however, we use instead an

approximate approach based on the physical-optics approximation.

3.3 The Physical-Optics Approximation

The basic idea of the physical-optics approximation is that the tangential fields at

each point on the surface of a scatterer may be approximated by those that would be

present onthe tangent plane at that point, i.e., by the sumofthe incident andreflected

fields on the tangent plane. A condition of validity of this approximation is that the

localradius of curvature rc of the surface be large compared with the wavelength Aof

light in the incidence medium. In the simplest implementation of the physical-optics

approximation, multiple scattering between opposing elements of the same surface is

ignored. We shall refer to thisas the zeroth-order physical-optics approximation. The

condition of validity of this zeroth-order approximation is rccos0 » A/47T, where 9

is the local angle of incidence [35]. This is satisfied for gently undulating topography

in which the surface slope is everywhere small, so that cos0 w 1, and no sharp edges

are present, so that rc » A. A number of structures of interest in photolithography
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simulation are of this type, e.g., bird's beaks and planarizing dielectric layers. In

order to extend the class of topography to which the physical-optics approximation

is applicable to include piecewise-linear topography with large surface slopes, it is

necessary to go beyond the zeroth-order approximation by including the effects of

multiple scattering within each surface.

3.4 Multiple Scattering between Surfaces

In a multilayer structure such as the one shown in Fig. 3.1, multiple scattering between

adjacent surfaces such as S\ and 52 can give rise to important standing-wave effects.

When doing topography-scattering calculations, It is convenient to treat each surface

one at a time and to include the effects of neighboring surfaces by iteration. A

suitable iterative scheme for this purpose is the one-way multiple-reflection-series

method developed by Pai and Awada [13] to improve the numerical stability of the

waveguide model. In this scheme, the field throughout the multilayer structure is

represented by a series of multiply reflected waves,

E(r) = E^W +E^W +E^W-h..., (3.15)

where the subscript on each term on the RHS indicates the number of reflections

undergone by the corresponding wave, and the superscipt indicates whether the wave

is downgoing (-) or upgoing (+). This is illustrated in Fig. 3.2. The zeroth-reflection

wave Eq J(r) is obtained by propagating the incident wave down through the entire

structure, using the transmitted field generated at each surface as incident field for

the surface below. The one-reflection wave E^ (r) is obtained by propagating the

reflected fields generated at the various surfaces during the preceding downgoing

step up through the entire structure. The two-reflection wave E2~^(r) is obtained by

propagating the reflected fields generated at the various surfaces during the preceding

upgoing step down through the structure, and so on.

The propagation of each of the above multiply reflected waves from one surface to

the next can be treated by diffraction theory. The interaction of the waves with each
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surface can then be treated either approximately by the physical-optics method, or

rigorously by the integral method (Method of Moments).

Consider the propagation of waves from a surface 5t- to an adjacent surface Sj

in a multilayer structure such as the one shown in Fig. 3.1. The permittivity of

the intervening medium is assumed to be ci. The fields incident on Sj due to the

tangential fields on Si are given by expressions similar to Eqs. (3.3) and (3.4), except

that the integrations are now restricted to the surface Si. Each surface element 5S'

on 5j, centered at r7, contributes an amount 5E(r) to the electric field incident at a

point r on Sj given by

*E(r) = -L -jup(n' x H7)^ - —(n7 x H7) •V7(Vty) - (n7 x E7) x Vty
ue\

6S'.

(3.16)

From the form of the Green function ip given by Eq. (3.5), we see that Eq. (3.16)

represents a spherical wave originating from the source point r7 on 5,. We are then

faced with the problem of how to treat the interaction of such spherical waves from

Si with the adjacent surface Sj.

In the physical-optics approximation, we assume that the spherical waves repre

sented by Eq. (3.16) interact with the tangent plane at each pointof Sj independently

of the rest of Sj. Because these waves are spherical, the treatment of their reflection

from the tangent planes on Sj is based on Sommerfeld's solution, which is much

more complicated than the Fresnel laws for plane waves. We defer discussion of

Sommerfeld's solution to Section 3.6. For the present, we note that a considerable

simplification occurs when the adjacent surfaces Si and Sj underconsideration do not

interlace, i.e., the lowest pointof the upper surface is higher than the highest point of

the lower surface. In that case, it is possible to draw a horizontal reference plane 5ref

between Si and Sj which does not intersect either surface. The spherical waves from

Si can then be decomposed into a sum of planewaves. To do so, we first evaluate the

fields on the reference plane 5ref using Eqs. (3.3) and (3.4) but with the integrations

restricted to 5f. By Floquet's theorem, the fields on the reference plane 5ref may be
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written as a sum of spatial harmonics,

E(»,y) = SMl+^ii]^^". (3-17)
ro,n

^H(x,y) = E^+B^lfip^W, (3.18)
^1 m,nK

where am and ft» are given by Eqs. (3.1) and (3.2). Also, in Eqs. (3.17) and (3.18),

e$gfi and hjfffi are unit vectors of the (ra, n)-th harmonic for s (p) polarization.

The form of these polarization vectors depends on whether they represent upgoing or

downgoing spatialharmonics. When Si is above 5,-, only downgoing spatialharmonics

are present on the intervening reference plane 5ref, and conversely when 5» is below

Sj. For upgoing spatial harmonics,

where

h(j+) _ -OmJmnX. - PnJmnY +(<*iS, +/%)z . .

efitf = -h£+>, (3.21)

bSS' = eS+), (3.22)

emn

and x, y and z are the Cartesian unit vectors with z pointing upwards. For downgoing

spatial harmonics,

-<•-) _ e<*+)
**mn ^mn *

(3.24)

w5_0 OmTmnX + PnlmnY + (<& + £n)z (3.25)

W* +«
e^") = -h<f-)
^mn "inn »

(3.26)

hfir) = e<s"> (3.27)
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With the help of these polarization vectors, we can invert Eqs. (3.17) and (3.18) to

find the coefficients Amn and Bmn,

A{±) =

xe-i{«**+Mfcdy ? (328)

xe-j(amX+Mdxdy, (3.29)

where the superscript ^ indicates an upgoing or downgoing spatial harmonic.

Knowing the expansion coefficients on the reference plane 5ref, the fields incident

on Sj are easily obtained,

E(r) = £ [i4&>e«SP +B&>e&*>] «*—♦*•**—>, (3.30)
tn,n

/?^H(r) = E[i4ffih<£)+BSghSS)]^,"+*,,*,ta"). (3-31)
^1 m,n

where z is measured from the reference plane. The interaction of the spatial harmonics

contained in Eqs. (3.30) and (3.31) with Sj can now be treated readily within the

physical-optics approximation, by applying the Fresnel laws of optics.

Specifically, consider the interaction of the (ra, ra)-th spatial harmonic contained

in Eqs. (3.30) and (3.31) with the tangent plane V at a particular point r on Sj.

In general, V is not horizontal. Let the normal to V point in a direction described

by polar coordinates (0, $) with respect to the global coordinate system shown in

Fig. 3.1. Then, we can define a local coordinate system (x",y",z") in which the z77

axis is normal to V by the following coordinate transformation:

x77 \ / cos 9cos <j> cos0sin<£ —sin0 \ / x \

y" = -sin^ cos0 _ °- ( y ' '̂32)
z" J \ sinflcos^ sin0sin<£ cos9 ) \ z )

The wavevector (am, /?n, ±jmn) of the (ra, rc)-th spatial harmonic is similarly trans

formed into components (a^, #[, T^J with respect to the local coordinate system,

am \ f cos9cos4> cos9sin<j> -sin0\ / Om \
K] = \ -sin^_ cos<£ _ °~ P* )' (333)

'Ymn / \ sin0cos# sin0sin<£ cos0 / \ ±7mn /
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Next, we construct polarization vectors e££)J" and hj££M" associated with the direc

tion of incidence (cCflJ,^) in the local system, using Eqs. (3.19) to (3.22) with

(am,/3n,7mn) replaced by (a&,&',72m). With the help of these polarization vectors,

we can resolve the amplitudes of the (ra, n)-th spatial harmonic in Eqs. (3.30) and

(3.31) into components A" and B" along the directions of these vectors,

[^,£>+i£»«i£>] = Avar+*•«£:, 0.34)

[i*ffih£) +$£2h£> = Alg +Mg, (3.35)

where

2C

(3.36)

and £" is obtained from Eq. (3.36) by replacing hjj£ and e^' by h^" and eff,

respectively. Also, in Eq. (3.36), C = [e£&w x hgf] -z77. This way, the (ra, n)-th spatial

harmonic incident on the tangent planeV is resolvedinto an s-polarized incident plane

wave with amplitude A" and a p-polarized incident plane wave with amplitide B".

The reflected waves can now be found by applying the lawsof optics. In particular, the

amplitude of the reflected s-polarizedwave is equal to A!' times the Fresnel reflection

coefficient for s-polarization, and similarly for the reflected p-polarized wave.

Having thus found a way to deal with multiple scattering between adjacent surfaces

iteratively, we can now concentrate on the multiple scattering taking placewithin each

surface.

3.5 Multiple Scattering within a Surface

This type of multiple scattering is important in topography with large surface slopes,

or in which the inclined surfaces are closely spaced. The crudest way to take into

account multiple scattering within a surface is to use geometrical optics to trace

the rays reflected multiple times within the surface. However, this technique neglects

near-field diffraction and thus leads to unphysical discontinuities in the reflected fields
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at the geometrical-optics shadow boundaries [10]. Bischoff et al. [9] overcame this

difficulty in the 2-D case by the addition of an edge diffracted field in accordance

with the rules of GTD. We, however, use a different technique to take into account

near-field diffraction, namely, by considering each element dS' of the surface Sj under

consideration as a source of spherical waves illuminating every other point on the

same surface. Thus, the tangential fields (n7 x E7) and (—n7 x H7) induced by some

incident field on an element dS' at r7 may be regarded as dipole sources producing

magnetic and electric vector potentials dAm(r) and c?Ae(r), respectively,

dA^r) = -(n7 xE7)^-^ dS', (3.37)
dAe(r) = -(n7xH7)£^<257. (3.38)

Our terminology for the vector potentials follows that of Stratton [36]. Strictly speak

ing, there are two suchsets of vector potentials to consider, one for the medium above

Sj and the other for the medium below Sj. These correspond to the reflected and

transmitted waves produced by the incident wave. Both sets of vector potentials

have the form of Eqs. (3.37) and (3.38), provided that n7 is interpreted as the unit

surface normal pointing out of the medium under consideration and the appropriate

wavevector ki for that medium is used.

We now have to consider the interaction of the spherical waves scattered by each

surface element dS' of Sj with all other parts of the same surface. In general, the

source element dS' at a given point r7 on Sj may or may not be directly visible from

the field point r on the same surface. In our physical-optics technique, we ignore the

interaction between any pair of points which do not lie on each other's direct line-of-

sight, orwhenthe source point lies on the tangent plane of the field point. The latter

condition means that, as a result of discretization of the surface Sj, we only consider

source elements dSr lying at some finite distance d away from the tangent plane at

the field point. In general, the direct line-of-sight between a pair of interacting points

may lie in the medium above or below Sj. In each case, we must use the set of vector

potentials Eqs. (3.37) and (3.38) appropriate to that medium, as mentioned in the
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last paragraph. It frequently happens in photolithography simulation that one of the

media on the two sides of Sj, for example, silicon, is highly lossy. In such case, it

is a good approximation to neglect the interaction between any pair of points on Sj

whose direct line-of-sight lies in the highly lossy medium. This is because the waves

Eqs. (3.37) and (3.38) scattered into the latter medium are expected to be heavily

attenuated in that medium before they could interact with the same surface again.

3.6 Sommerfeld's Solution

In the physical-optics approximation, we have to consider the reflection of spherical

waves of the form Eqs. (3.37) and (3.38), due to each surface element dS' on Sj,

from the tangent plane at every other point on Sj. The spherical waves represented

by Eqs. (3.37) and (3.38) are the simplest of a type of waves known as multipole

waves. The problem of the reflection of such simplest, or dipole waves, from a lossy

plane surface was first solved by Sommerfeld [37]. The geometry of the problem is

shown in Fig. 3.3, in which a point dipole is situated a distance d from a lossy plane

surface representing the tangent plane at the field point r on Sj. Without loss of

generality, we assume d > 0. The permittivities of the media above and below the

plane surface are e\ and e2, respectively, while the permeability everywhere is p. It

is convenient to resolve the dipole direction, (n7 x E7) or (n7 x H7), into a linearly

polarized vertical direction and left- and right-hand circularly polarized horizontal

directions with respect to the lossy plane surface. We separately consider the cases

when the dipole is of the magnetic [Eq. (3.37)] or electric [Eq. (3.38)] type, and when

it is polarized vertically or horizontally.

For a unit, vertically polarized dipole source of the magnetic type, the incident

and reflected vector potentials are given by

e3kx\T-T>\
A#inc(r) = z2

jfci|r-r7|
00 . .. v »• /i2-T2i~i \d\= z2[ jo^yv^M r*. , (3.39)

Jo kiyjk\ - A2
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A#refl(r) = z2 f~Rs(\)Jo(\p2)etV^W^ yAf , (3.40)

where (p2, <j>2, z2) are cylindrical polar coordinates of the field point r with respect

to a coordinate system centered at the dipole, as shown in Fig. 3.3. Also, RS(X) is

the Fresnel reflection coefficient for an s-polarized incident plane wave at an angle of

incidence 0 = sin_1(A/A;i),

R°{x) ~ y^+v/^r (3-41)
where k\ and k2 are wavevectors in the media above and below the lossy plane surface,

respectively. The branches ofthe quantities y k2 —A2 and yk2 —A2 in Eqs. (3.39) to

(3.41) are chosen so that

Pi = -j\/k\-\2, Re^i>0, (3.42)

p* = -jyfk% - A2 , Re/*2>0. (3.43)

For a unit dipole source of the magnetic type circularly polarized in the horizontal

direction, the incident and reflected vector potentials are given by
eJfcilr-rM

A£)inc(r) = (x2±jy2)7
jki\r - r'\

XdX=(x2±iy2)fM^^^-j^. (3-44)
AM^r) = (^2±jy2) r^WMX^y^^^^-^^

JQ kiyjkf —X2

+jz2e**> fo°°[R,(\) +i^(A)]Jl(Ap2)e'V^<2'<+^ , (3-45)
where Rp(X) is the Fresnel reflection coefficient for a p-polarized incident plane wave

at an angle of incidence 0 = sin~1(A/fci),

e2yfkl - A2 - eiy/k% - A2
~ e2y/k2-X2 +eiy/k%-X*'

Corresponding expressions for the incident and reflected vector potentials for a

unit dipole source of the electric type polarized vertically or horizontally are obtained

from Eqs. (3.39), (3.40), (3.44) and (3.45) by interchanging RS(X) and Rp(X).
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The first-order vector potentials induced at r on Sj by the surface element dS' are

obtained by adding the incidentand reflected vector potentials, Eqs. (3.39) and (3.40),

or (3.44) and (3.45), appropriately weighed by the dipole amplitudes -(n7 x E7)^
and —(n7 x H7)^-. The corresponding first-order induced fields are computed from

Eqs. (3.12) and (3.13). These must be repeated for each source point r' ^ r on Sj

and the results added together to give the total first-order induced fields at r. In

principle, this procedure can be applied repeatedly to a given surface Sj to obtain

physical-optics approximations to the successively higher order multiply scattered

waves within the same surface. In the photolithography simulation problems we have

studied, in which the inclined faces of the topography were sufficiently far apart, the

effects of waves reflected more than twice from the same surface were found to be

quite negligible.

If this procedure were used, the operation count per multiple-scattering calculation

would be proportional to N2, where N is the number of surface elements on Sj. This

would be prohibitively expensive for large3-D problems. Instead, we use the multipole

approximation to speed up the computation of the first-order induced fields.

3.7 The Multipole Approximation

Instead of treating the surface elements dS' on Sj as independent sources of radiation,

it is more efficient, for the purpose of computing the multiply scattered fields, to group

the N surface elements, or nodes, on Sj into P panels, each of which containsroughly

the same number, « N/P, of nodes. For a piecewise-linear surface Sj, the panels can

be chosen to be planar. The radiation field produced in the far zone by the magnetic

current sources in a panel q consistingof the portion ASq of Sj may be approximated

by that of a collection of M multipoles located at the center of that panel,

r gjfcilr-r'l
AA^(r) = / -(n'xE')- Tl dS'

mv ' JASq v MTrlr-r7!

«EE ^mh\l)(kir)Pr(cos9)e^, (3.47)
1=0 m=—l
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where AAj^ is the magnetic vector potential produced by the sources in panel q and

afm are the corresponding multipole coefficients with respect to a coordinate system

Kq centered at that panel,

* = L -(n'x E>) jkl%+%m)! *(fcir')fr(cos<*"dS' -
(3.48)

In Eqs. (3.47) and (3.48), (r,9,<j>) and (r7,07,<£7) are spherical polar coordinates of

the points r and r7, respectively, relative to the distant coordinate system Kq. These

equations follow from the series expansion for the Green function,

Xe-Jm(4>'-4>) ? (3 49)

where we have assumed that r > r'. Similarly, for the electric vector potential

produced by panel q, we have

AA«(r) = £ £ b^MiHcos*)^, (3.50)
1=0 m=-l

where bfm are the electric multipole coefficients of panel q with respect to the coor

dinate system Kq,

bt =l, -(»' >< ho jki% y^-m)! mWW)*-**-* •
(3.51)

The multipole expansions Eqs. (3.47) and (3.50) converge rapidly when the field

point r is more than a wavelength away from the smallest sphere enclosing all the

elements of the panel q. As a rule of thumb, the number of multipole coefficients

M = J^iL0(2l + 1) = (L + l)2 needed to represent the field due to a panel q in the

far zone accurately is on the order of the number of nodes in that panel, M « N/P.

This assumes a fixed discretization rate on the order of 2n nodes per wavelength.

Depending on the accuracy desired, fewer multipole coefficients than this may be used

to reduce computation time. For sources in the panel p containing the field point r
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itself, or in the panels adjacent to panel p, the multipole approximation cannot be

used. Instead, the individual contributions from the sources in these neighboring

panels, Eqs. (3.37) and (3.38), must be used directly.

We may now use the physical-optics approximation to treat the interaction of the

waves scattered from the distant panels, Eqs. (3.47) and (3.50), with the tangent

plane at any point r on Sj. Since the waves represented by Eqs. (3.47) and (3.50)

are multipole waves of arbitrary orders, we need to generalize our earlier treatment

of the reflection of dipole waves from a lossy plane surface to the case of higher-order

multipole waves.

3.8 Generalized Sommerfeld Integrals

The problem of the reflection of a general multipole wave from a lossy plane surface

was first solved by Chang and Mei [12, 38]. The geometry of the problem is the

same as in Fig. 3.3, except that the point dipole is replaced by a collection of M

point multipoles. The basic idea of Chang and Mei's approach is to express the

incident multipole wave asa superposition of cylindrical waves propagating in various

directions,

h\1)(klr)Pr(cos9)^m4' = e?^ T fmtl(X)JMp)e?^^^dX . (3.52)
• 0

Chang and Mei gave a closed-form expression for /m,m(A),

and derived a recurrence relationship for computing fm,iW f°r *> m>

('~™y}/,n.l+i(A) =-iy/T^Mf^W +̂ ^f^W- (3-54)
Actually, the coefficients fm>iW are proportional to the associated Legendre poly

nomials P[n(x). This can be seen from the following textbook relationships for the

associated Legendre polynomials,

J~(*) = (^/^^2)roP™(0), (3.55)
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(l-m +\) _ (l +m)p™(x)
(2/ +1) *m(x) " xFl {x) (2i+iyl-l{xh

If we let x=^1 —X2/k2, Eqs. (3.55) and (3.56) may be rewritten as
/ \ \ m

(l-ro+1)

(2/ + 1) Li

P™(l) = (k~J P™(0)'
;l+l-m

= -jyjl - X2/k2 PT(x)

L J
J—m

+
(l + m)
(2/4-1) L^"1

PPM

(3.56)

(3.57)

(3.58)

Comparing Eq. (3.53) with Eq. (3.57) and Eq. (3.54) with Eq. (3.58), we find that

the quantities fmjW an(^ [PT(X)/Jl~m] aie proportional to each other, and the pro

portionality constant is (X/ki)/yJk2 —A2. Hence,

A/».i(A) = jm-lPT (V71" A2A?) kiyjk2 - X2 '

Eq. (3.59) is correct only when cos0 > 0 in Eq. (3.52). When cos0 < 0, the argument

of the associated Legendre polynomial in Eq. (3.59) should have a minus sign.

An integral representation equivalent to Eq. (3.52) with fm,iW given by Eq. (3.59)

was known as early as 1954 [44]. In this sense, Chang and Mei rediscovered the result

more than twenty years later.

We may now describe the reflection of the multipole waves from the lossy plane

surface. The results are similar to those for the dipole waves discussed previously.

For a unit, vertically polarized multipole source of the magnetic type, the incident

and reflected vector potentials are given by

A#inc(r) = z2e^2 r/„M(A)Jm(Ap2)eV^I^A, (3.60)
./o

AM-V) = z2e*"*> /°°iJs(A)/m,((A)Jm(Ap2)^V*FAJ(M+«)dAi (361)
Jo

where (r2,92, <f>2) and (p2, <j>2, z2) are the spherical and cylindrical polar coordinates,

respectively, of the field point r with respect to a coordinate system centered at the

multipole source, as shown in Fig. 3.3, and RS(X) is given by Eq. (3.41).
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For a unit multipole source of the magnetic type circularly polarized in the hori

zontal direction, the incident and reflected vector potentials are given by

A£)inc(r) = (x2 ±jy2) e?™* f°° /m,,(A)J^Xp^e^^^^dX , (3.62)
Jo

A£)refl(r) = (^2±jy2)^^ rRp(\)fm,l(X)Jm(Xp2)^^i^{2d+Z3)dX
Jo

±jz2 ««-*»)*» r[Rs(X) +R„(X)]fmtt(X)-WA^V^C***)
JO

x/fcf-^, (3.63)
where Rp(X) is given by Eq. (3.46).

Corresponding expressions for the incident and reflected vector potentials for a

unit multipole source of the electric type polarized vertically or horizontally are ob

tained from Eqs. (3.60) to (3.63) by interchanging RS(X) and Rp(X).

The first-order vector potentials induced at r on Sj by the distant panel q are

obtained adding the incident and reflected vector potentials, Eqs. (3.60) and (3.61),

or (3.62) and (3.63), appropriately weighed by the multipole coefficients a^ and

b^, and summing over the multipole indices (l,m). The corresponding first-order

induced fields are computed from Eqs. (3.12) and (3.13). These must be repeated

for each distant panel q and the results added together. To these we must add the

direct contributions from the neighboring panels using Sommerfeld's results for the

individual dipole sources discussed in Section 3.6. If this procedure were used to

compute the distant-panel contributions to the first-order induced fields at the N

nodes of Sj, the operation count would be proportional to NMP « N(N/P)P =

iV2, since each node would require the evaluation of M multipole terms for each of

approximately P distant panels. This would again be prohibitively expensive for

large 3-D problems. Instead, we compute the distant-panel contributions using the

technique of multipole acceleration.
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3.9 Multipole Acceleration

The Fast Multipole Method (FMM) was developed by Rokhlin for the rapid iter

ative solution of the integral equations arising in acoustic [11] and electromagnetic

[14] scattering. The technique can be adapted for use in our case to accelerate the

computation of the distant-panel contributions to the physical-optics induced fields

discussed in the last section. The key idea of FMM is that, for each pair of sufficiently

separated panels p and q, the fields on panel p due to the M multipoles centered at

panel q can be approximated by the first M terms of a multipole expansion about

a local coordinate system Kp centered at panel p, instead of the first M terms of a

multipole expansion about the distant coordinate system Kq.

Consider the total magnetic vector potential induced on panel p by vertically

polarized magnetic multipoles in the distant panel q. This is obtained by adding

the incident and reflected vector potentials, Eqs. (3.60) and (3.61), appropriately

weighed by the ^-components (a?m)z of the multipole coefficients and summing over

the multipole indices (l,m),

A««(r) = z2 £(a?J* e?m<h J°° [e^V?1** +i*s(A)e'V^2^)] /m>,(A)
l,m

xJm(\p2)dX, (3.64)

where (p2, z2,<j>2) are cylindrical polar coordinates of the field point r on panel p with

respect to the distant coordinate system Kq, and we have used the fact that 22 < 0 in

the geometry of Fig. 3.3. In order to transform Eq. (3.64) into a multipole expansion

about the local coordinate system Kp, we first rewritethis equation using the integral

representation of the Bessel function,

Jm(Ap2) = ~ (*dfc**"****"®-*). (3.65)
27T Jo

Substituting Eq. (3.65) into Eq. (3.64) and changingthe variable of integration /? into

(j3 + ^2)5 we obtain

A<*(r) = z2 £(<4J^ f dP r dX H^^22 +*.(A)e*V9=3?«W
7~~ Z7T Jo Jo L J

x fm,i (X)e?xp2 **V-*W™<P-i). (3.66)
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Assume for the moment that the axes of Kq are parallel to those of Kp and that the

origin of Kq has the coordinates (pq, zq, </>q) with respect to coordinate system Kp, as

shown in Fig. 3.4. From this figure and Fig. 3.3, it can be seen that the coordinates

of the field point r in the two coordinate systems are related by

z2 = zi - zq , (3.67)

p2cos(P-(/>2) = PiCos(P-</>i)-pqcos(P-(l>q) , (3.68)

where (p\,z\,<j>i) are the coordinates of the field point r with respect to the local

system Kp. Substituting Eqs. (3.67) to (3.68) into Eq. (3.66) and rearranging terms,

we obtain the desired local expansion for the total vector potential due to vertically

polarized magnetic multipoles in panel q,

A^9(r) = zi— r dQ rdX^^ea^M\e-iy/^^^+R9(X)^y/^=^91
2n Jo Jo L J

xGq(X,P,pq,zq,<j>q), (3.69)

where

G,(A, ff, pq, z„ 4>q) =E(aL),/m,I(A)e-^«"s(/'-*')+jro(''-5)e3V^?s', (3-70)
l,m

and we have used the fact that zq = d. Note that the quantity Gq is independent of

the coordinates (pi,zx,4>i) of the field point. Hence, in summing the contributions

from all the distant panels q, we can carry out the summation over q in Eq. (3.69)

prior to evaluating the integrals over (3 and Afor the different field points (pi, z\, <j>\)

on panel p. This results in substantial saving in computation time for large 3-D

problems, as will be shown in a later section.

It should be noted that the integral over Ain Eq. (3.69) is convergent when z1 < d.

This is due to the factor e*V*?-A**» in Eq. (3.70). From Eq. (3.42) this factor can be

rewritten as e~MlZ« = e~'ild, which approaches e~Xd as A ->> oo, since Re px > 0.

In general, the axes of the coordinate system Kp are not parallel to those of

Kq. The reason is that the expressions Eqs. (3.61) and (3.63) for the physical-optics

reflected waves are valid only in a coordinate system in which the z-axis is normal to
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the tangent plane under consideration. Hence, Kp and Kq are generally chosen so that

their z-axes are normal to their respective panels p and q, which, however, may be

arbitrarily oriented. The multipole coefficients a[^| and b£j] appearing in the distant
expansions Eqs. (3.47) and (3.50) with respect to Kq must first be transformed into

multipole coefficients with respect to the local coordinate system Kp before they may

be used in Eq. (3.70). Suppose (a,(3,j) are Euler angles characterizing the rotation

of the axes of Kq into those of Kp. Then, the magnetic multipole coefficients afm of

panel q with respect to the local system Kp are obtained from the magnetic multipole

coefficients afm with respect to the distant system Kq by

s?a,Im = £ (-1)'
m'=-l 1

(l-m)\(l + m>)\ ,t)
(l + m)\(l-m'y. 2>Z.<(<*>&7)aL> (3-71)

where Vm^mi (a, 0,7) are matrix elements of the irreducible representations of the

rotation group [40]. A similar transformation holds for the electric multipole coeffi

cients bfm. The computation of the matrix elements Vm^m, by means of recurrence

relationship is discussed in Appendix H.

3.10 Numerical Evaluation of the Integrals

The integrand in Eq. (3.69) containsthe functions RS(X) and fm,i(X) which, according

to Eqs. (3.41) and (3.59), depend on quantities yk2 —X2 and y k2 —X2 which have

branch cuts in the complex A-plane. Following Chang [38], we choose these branch

cuts to be vertical, as shown in Fig. 3.5. From this figure, it is clear that when k\

is real or has a very small imaginary part, the path of integration along the positive

real axis will pass very close to the branch point at A = k\. Since /m,z(A) given by Eq.

(3.59) contains the denominator y/k2 —A2, the integrand in Eq. (3.69) will be large
and rapidly changing near A = k\. Chang [38] avoided this difficulty by deforming

the path of integration to go around the branch point at a sufficiently large distance.

This, however, means increasing the total length of the integration path and hence the

amount of computation labor. We instead chose to avoid the singularity by changing
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the variable of integration from A to pi, where, as in Eq. (3.42),

Pi = -jyk2 —X2 , Rep>0.

In the complex /zi-plane, there is no longer any singularity at A = k\, since the

offending denominator yk\ —A2 is transformed away,

y/k2 - X2
Next, we discuss the integration over P in Eq. (3.69). Since the quantity Gq given

by Eq. (3.70) contains the phase factor e-J'Ap«cos(/3"^)+jVn/J, in order to sample the

phase of Gq correctly, the discretization ofthe range [0,2w] of the P integration should

be no coarser than A/9 <minf^, |J]. Since pq is the horizontal distance between
a pair of sufficiently separately panels, it can be equal to many wavelengths for large

3-D problems. Hence, over the range of values of A for which the integrand of Eq.

(3.69) is significant, the quantity l/(Xpq) can be very small. This would necessitate

the use of a very fine grid for the P integration. In order to avoid this problem, we

employ the technique of asymptotic integration for the p integration for large values

of A.

When Xpq is greater than some parameter A0 to be discussed later, the integral

over 0 in Eq. (3.69) may be approximated by its asymptotic value,

— [** d0 e?Xpx cos(0-*i)-J'A^ <*x(0-<t>i)+im(0-%)
27T Jo

„ I 1 LjApi cos(0,-0i)-j(Ap9-f )+jm(^-f)

+e-jApiCOs(^-^i)+j(Ap,-f)+im(0,+f)l (3.73)

To show this, we call the phase of the integrand on the LHS of Eq. (3.73) #(/3) and

expand it about its stationary point,

(P-P0f + ..., (3.74)

0 =

m = HM^m

dp

2 dp2

where po is a stationary point determined by

0=00

= -Api sin(A) - <M + >^Pq sin(/?0 -<j>q) + m. (3.75)
0=00
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In the limit Xpq » 1, Eq. (3.75) may be approximated by the simpler condition

0 = Xpq sm(po —<j>q). This has two solutions, p0 = <j>q or Po = 4>q -f n, each of which

contributes a term to the integral on the LHS of Eq. (3.73). For p0 = (j>q, Eq. (3.74)

gives

9(p) f* XPl cos(^, - fc) -Xpq +m(*f - |) +̂ i(/? - 0,)2 , (3.76)
while for /3o = 0, + 7r, we have

»(/8) «-Aft cos(<£, - fc) +Xpq +m(^ +1) - ^(/J - <t>„ - ir)2 . (3.77)
Hence, the integral on the LHS of Eq. (3.73) becomes

— I dB e?Xpi cos(0-fa )-.?*A/»9 cos(0-<l>q)+jm(0- f)
2* Jo H

QJXpi cosi^-^)-jXPq+jm(<pq-^)+j-^-(0-4>q)i

(3.78)

1 ft*

+ e-jXn cos(«,-#i)+iAp,+jm(#,+f)-ji|l(fl-*,-»)S

The integration over /? in Eq. (3.78) may be performed in the limit A/?g » 1,

r2,r . - u.-*P3.//»_^ ^2 j.,-a / 27T

Substituting Eq. (3.79) into Eq. (3.78) then gives Eq. (3.73).

We now discuss the choice of the parameter Ao- From the discussion following

Eq. (3.75), it is clear that our result for the asymptotic integration, Eq. (3.73), is

valid when A0 » max[l, m] and pq » p\. The latter condition is validwhen panels

p and q are well separated, which is usually the case, since pq must be at least a

few times p\ in order for the multipole approximation to be usable. Next, in the

photolithography simulation problems we have studied using the present technique,

the maximum multipole order used was usually 5 or smaller. Hence, the condition

A0 » m is satisfied when A0 « 50. In practice, a value of A0 = 40 was found to be

adequate.

In Eq. (3.73), we seem to have lost the advantage of FMM in being able to carry

out the summation over the distant-panel index q before evaluating the integral over
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A for different field points (p\,z\, 4>i). This is because the terms on the RHS of Eq.

(3.73) contain the factor e±JXpia*U>*~*1)i which cannot be factorized into a product of

two terms one of which depends only on (p\, zi, <£i) and the other of which depends

only on (pq, zq, <j>q). The solution to this difficulty is to discretize the range [0,2ir] into
a number n > 2L of intervals, where L is the maximum multipole order used. Then

one defines quantities j{z)(X,i) and J^x\X,i), i = 1to n, as follows,

q V27rAP? l,m

4z)(\i) =£^/^ei(A*-<)+i '̂̂ d£^^^ (3.81)
q V ZnAPq l,m

where ft = 2ir(*~0-5) is the center of the zth interval and the double primeon the sum-
* n

mation over q means that only those distant panels q are included whose coordinates

(pq, zq, (j>q) with respect to the local panel p satisfy the following two conditions: (1)
Xpq > A0, and (2) 2^~1? < <j>q < 2f-. The first condition means that we use the
technique of asymptotic integration for the P integration whenever the product Xpq

exceeds the parameter Ao- The second condition means that we sort the <j>q coor

dinates of the distant panels q into n bins of width ~ centered at ft, i = 1 to n.

Subsequent summation over the index i then takes the place of the p integration.

The quantities j[z)(X,i) and J^z)(X,i), i = 1 to n, account for the contribution
to the Aintegration at each point A from those distant panels q for which Xpq > A0.

There can also be combinations of values of A and pq for which Xpq < A0. For such

combinations of Aand pq, we accumulate the summation over q in another quantity

I{Z)(\P),

/<*)(A,p) =-L £7 e-^C0^-^^V^?d£(afJ2/m,,(A)e^-S), (3.82)
27r q l,m

where the prime on the summation over q means that only those distant panels q

are included for which Xpq < A0. Since there is a minimum pq = pj"n for which the

multipole approximation is valid, I(X, P) is non-vanishing only for A<Ao/pJ^ = A0-
The total contribution from the vertically polarized magneticmultipoles in all the

distant panels to the local expansion for thevector potential is obtained by summing
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Eq. (3.69) over the distant-panel index q,

A«(r) = ^A^(r)

/•Ao

Zl /
Jo

/•oo

Zi / i
Jo

dX jy/iJf^zi +dRa(A)^V^-^2l| /" *dPejXpiCoaW-^lW(X,P)
'7*F^i +#a(A)eAAF*M ^ [e^"**-*1^^,*)

J t=i

The first A integral in Eq. (3.83) has finite limits, since I^(X,p) is non-zero only

for A < A0. The second A integral in Eq. (3.83) has an infinite limit. To accelerate

convergence of this integral, the path of integration is deformed in the complex A-

plane as shown in Fig. 3.5. The term containing j[*\x,i) in Eq. (3.83) is integrated

along the path Ta + Tc, since along Tc, the e~*Xp<l factor in j[ (X, i) is exponentially

decaying. Similarly, the term containing J2(X, i) is integrated alongthe path ra+rj„

since along T&, the ejAp« factor in J2 (X, i) is exponentially decaying. Writingthe total

contribution from the vertically polarized magnetic multipoles in all the distant panels

to the vector potential in the form

AW(r) = ziAW(r)f (3.84)

we obtain the final result

L

dX

+ / dX
Ta+rc

.,y*?-** +R3(X)ejy/i^-xl21] f *dffeiXpiaaifi-+l)Ii*)(X,P)

J i=l

+/ dX \e-j^-^zi +#s(A)e'V*F*M £ e~jXpi "**-*)#>(\, i). (3.85)

A similar result is obtained for the total magnetic vector potential induced on

panel p by horizontally polarized magnetic multipoles in all the distant panels, starting

from Eqs. (3.62) and (3.63). We write this total magnetic vector potential as

A(±)W = (ek±j^Mg(r)±jM&>(r), (3.86)
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where the cylindrical unit vectors ePl and e^ are related to the Cartesian unit vectors

xi and yi by

(xiijyi) = (e^ije^e^. (3.87)

The horizontal component A^(r) is then given by

42(r) =e^j dx\e-i^^* +Rp(X)e*J^
+e±j*> [ dX [e-JV*F^^ +Rp(X)ejV^z^zA £ e '̂1 «**-*> J&(A, i)

+e±>'*1 / dX [e-'V*F^ +d (A^V^M V e^'1«»<*-*> j**)(A, *), (3.88)
ira+r6 L J i=1

where /^(A,/?), Ji(±)(A,i) and J^CM) are obtained from Eqs. (3.80) to (3.82)
by replacing the multipole component (aqlrn)z in these equations by the component

2[(a?m)x T i(a?m)y]- Similarly, the vertical component A<*?(r) is given by

4*>(r) = f dXS(X)^E^e?yMIx2^ [*d0j*~^>e*V-*)ll±)(\,0)
JTa X JO

+[ dX S(Xyk^~X2ePy/^Zxlzi V e?Xp> «-C*-*>e=W<*-f^ (A, i)
JTa+Tc X fg

+[ dX S(X)±^^e*V^* y^e-iAp1cos(^-01)e±^+f)7(±)(A,i), (3.89)
^r«+r6 A JrJ

where 5(A) = R3(X) + J?p(A).

What we actually need are the tangential fields rather than the vector potentials.

The former can be computed from the latter by Eqs. (3.12) and (3.13). The resulting

expressions for the tangential fields are given in full in Appendix G.

3.11 Operation Count

The number of floating-point operations required for each computation of multiple

scattering within a surface, using the multipole accelerated physical-optics technique

discussed above, can be estimated as follows:

Step 1: The 2M multipole coefficients for each of the P panels are computed using

Eqs. (3.48) and (3.51). Since there are on the average N/P nodes per panel, each

76



evaluation of the integral in Eq. (3.48) or (3.51) requires 0(N/P) operations. Hence,

the total operation count for this step is ciM(N/P)P = C\MN for some constant c\.

Step 2: For each pair of sufficiently separated panels, the multipole coefficients

with respect to the local system are computed from those with respect to the distant

system using Eq. (3.71). For each I, the quantities afm may be regarded as a column

vector of length (21 + 1). Hence, the matrix-vector multiplication represented by Eq.

(3.71) requires 0[(2/+l)2] operations. To do this for all I from 0 to L therefore requires

O[z£=o(2' +1)2] ~ 0(L3) ~ 0(M3/2) operations. Since there are approximately
P2 pairs of sufficiently separately panels, the total operation count for this step is

oiMzl2P2 for some constant c2.

Step 3: For each panel, the quantities J[i{±)](X,i),J[2z{±)](X,i) and M^(X,P) are

computed using Eqs. (3.80) to (3.82) and similar equations for the ^ quantities. The

summation over (/, m) in these equations is an O(M) process, while the summation

over q is an 0(P) process, since there are approximately P distant panels for each

of the P panels. Hence, the total operation count for this step is c^MP2 for some

constant C3. Notice that C3 » 1, since the quantities Jp (X,i), etc. must be

computed for each A, i and /?.

Step 4: For each panel, the distant-panel contributions to the tangential fields

given by Eqs. (G.9) to (G.12), (G.20) to (G.23) and (G.28) to (G.31), are evaluated

at each of the N/P nodes of that panel. The total operation count for this step is

cA(N/P)P = C4N. Again, c4 » 1, since each of these field expressions involves an

integration over A and an integration over P or a summation over i.

Step 5: For each panel, the neighboring-panel contributions to the tangential fields

are evaluated at each of the N/P nodes of that panel, as discussed in Section G.2 of

Appendix G. For each node, we have to add the contributions from all « N/P nodes

in the neighboring panels. The total operation count for this step is c5(N/P)2P =

cs^/P for some constant c5. Again, c5 » 1, since the contribution from each

neighboring node involves integrations over A and p.

Adding the operation counts for the above five steps, the total operation count T
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for computing the first-order physical-optics induced fields on S is estimated to be

N2
T = c1MN+ c2Mz/2P2 + c3MP2 + cAN + c5—

N2« (ci +cb)-p +c2JV3/2x/P +c3iVP +c4JV , (3.90)

where we have used the fact that M w N/P. In practice, the most time consuming

steps in our algorithm are those involving generalized Sommerfeld integrals, namely,

Steps 3 to 5. This was found to be the case for all the photolithography simulation

problems we have studied, with N as large as tens of thousands. Counting only Steps

3 to 5, we obtain a simpler estimate for T,

N2
T « c5— + czNP + c4N . (3.91)

Minimizing this expression with respect to P, we obtain for the optimum operation

count of our algorithm

Topt « 2y/clclNz/2 + ctN . (3.92)

On the other hand, if multipole acceleration werenot used, the operation count would

be csN2, which would be significantly greater than Topt for large N.

3.12 Application to Reflective Notching

As we do not have a Method-of-Moments (MOM) computer code capableof handling

3-D dielectric substrates, we tested our physical-optics results by comparison with

the results of a 2-D MOM code. The test structure was a 0.4-/xm deep cavity in

silicon with sloping sidewalls, as shown in Fig. 3.6. For simplicity, we refer to such

a structure as a 3-D Matzusawa step. In this example, the medium above the step

was air. From the 2-D MOM results for the tangential magnetic fields Hte(v) and

#tm(£) in TE and TM polarizations, we extrapolated the results to 3-D using the

heuristic formula

H(x, y) =^HTM(x)HTE(y) . (3.93)
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Eq. (3.93) is expected to be a reasonable estimate of the correct fields not too close

to the edges and corners of the topography. The extrapolated results are shown

in Fig. 3.7a, while the physical-optics results for a normally incident plane wave

polarized in the x-direction are shown in Fig. 3.7b. Induced fields up to the first

order were included in the physical-optics calculation. It is seen from these figures

that the physical-optics results are in reasonable agreement with the extrapolated

results based on Eq. (3.93).

Next, we applied our multipole accelerated physical-optics technique to reflective-

notching simulation, using 3-D Matzusawa steps with different slope angles. The

calculations were done on an IBM RS/6000 Model 530workstation with 64 megabytes

of storage. In all cases, the upper surface of the photoresist was taken to be planar

and its refractive index was assumed to be constant at n = 1.70 +0.01j. The incident

light was assumed to be coherent but with the intensity distribution of a partially

coherent aerial image, and the wavelength was 0.365^m. Also, to take into account

multiple scattering between the topography and the upper photoresist surface, a total

of eight terms in the one-way multiple-reflection series were used, which corresponded

to four successive reflections of the scattered light from the photoresist surface back

onto the substrate.

Our first example is a 0.7 pm photoresist line going over the 0.4-^m high step of

Fig. 3.6. The surface of this topography was divided into 613 panels containing a total

of 22,753 nodes. Physical-optics induced fields up to the first order were included in

the intra-surface multiple-scattering calculation, which took a total of 17 hours. The

simulator SAMPLE was used to develop a series of 2-D cross sections of the exposed

photoresist and the resulting 2-D profiles were assembled to produce a 3-D photoresist

profile. The results for x- and ?/-polarized incident light are shown separately in

Figs. 3.8a and 3.8b. In the former case, the foot of photoresist line at the bottom of

the step shows noticeable undercutting. This was caused by light reflected twice from

the substrate, first from sidewall A and then from the bottom of the step, as depicted

in the ray diagram shown in Fig. 3.8c. In the y-polarized result of Fig. 3.8b, this
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undercutting is less noticeable. This was because the angle of incidence on sidewall

A, ftnc = 58°, was near the Brewster angle for this inclined surface, Brewster = 74.6°.

Instead, the photoresist sidewall in Fig. 3.8b shows pronounced standing wave effects

along its length. This was because the light incident on sidewalls C and D was

s-polarized and thus strongly reflected. Furthermore, the resulting reflected light

traveling parallel to the photoresist sidewall hadthe same polarization as the incident

light and thus interfered strongly with the latter. One should expect to find a similar

region of strong standing waves, too, in Fig. 3.8a, but rotated by 90 degrees about

the 2-axis. Indeed, the remnants of such a region of strong interference are visible in

Fig. 3.8a in the form of ripples on the top of the photoresist line near its middle.

Our next example is a 0.35 pm photoresist line going over a 0.128-/mi high step

with a slope angle of 22.8°. The 19,820 nodes on the surface of this topography were

divided into 542 panels. Only the zeroth-order physical-optics induced fields were

included in the calculation, which took only 1.2 hours. The simulated photoresist

profile for unpolarized incident light is shown in Fig. 3.9a. The most prominant

features in this figure are the two notches at the top of the photoresist line near the

middle. These notches can also be understood with the help of ray diagrams. Fig. 3.9b

shows the bundles of rays reflected from sidewalls A and B intersecting the upper

photoresist surface in two trapezoidal areas u and v. Fig. 3.9c shows the bundles

of rays reflected from sidewalls C and D intersecting the upper photoresist surface

in four trapezoidal areas p to s. A OM-pm wide region representing the volume

occupied by the photoresist line is devoid of incident light. From Figs. 3.9b and

3.9c, we see that the six trapezoidal areas overlap in four small regions on the upper

surface of the photoresist, two on each side of the photoresist line near its middle. It

is expected that the photoresist initially developed most rapidly downwards through

these overlap regions of increased exposure dose. This, together with the subsequent

undercutting caused by the light reflected from sidewalls A and B, gave rise to the

notches seen in Fig. 3.9a.

Our last example is a 0.35 pm photoresist line going over a Q.2-pm high step with
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a slope angle of 32.0°. There were 20,490 nodes on the surface of this topography

divided into 544 panels. Again, only the zeroth-order physical-optics induced fields

were included in the calculation, which took 1.7 hours. The simulated photoresist

profile for unpolarized incident light is shown in Fig. 3.10a. This time, the lower

half of the photoresist profile facing the topography sidewalls A and B shows a small

amount of notching. With the help of the ray diagram shown in Fig. 3.10b, we can

understand this notching as being caused by the light reflected from sidewalls A and

B of the topography. This effect was enhanced by the light reflected from sidewalls

C and D, which happened to overlap the light reflected from sidewalls A and B near

the notched parts of the photoresist profile.

3.13 Conclusions

In this chapter, we have discussed a three-dimensional topography-scattering tech

nique based on the physical-optics approximation suitable for piecewise-linear to

pography. It makes use of the Fast Multipole idea to accelerate the computation

of multiple scattering within a surface. Its storage and CPU costs scale as N and

iV3/2, respectively, where N is the number of nodes on the surface of the topography.

This allows reflective-notching simulation of large (N « 20,000) 3-D structures to

be done on an ordinary workstation with reasonable CPU time (< 20 hours). The

technique was tested on 3-D cavities in silicon with sloping sidewalls having different

slope angles. The simulated reflective-notching effects were found to be in qualitative

agreement with a ray-optics model. Although the Fast Multipole algorithm discussed

in this chapter was used in the context of the physical-optics approximation, it can

be extended for use in a rigorous integral-equation approach suitable for arbitrary

topography. This is discussed in the next chapter.
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• X

Figure 3.1: Multilayer piecewise-linear topography.

<-y e/+) E- (-)

Figure 3.2: Multiple-reflection series for multiple scattering between adjacent
surfaces. Eq(_) is the incident field for E^ ,and Ex(+) is the incident
field for E2("') , etc.
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*yi

x2 d=z,

Figure 3.3: Dipole above a lossy plane surface.

Distant
system Kq

(P2,z2,<l>2)

z2=z1-d

Local
system Kp

Figure 3.4: Transformation from distant to local coordinate system.
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0 Re A,
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Figure 3.5: Branch cuts and integration paths in the complex Arplane.

Figure 3.6: Three-dimensional Matzusawa step divided into panels.
Wavelength =0.365 |xm. Substrate refractive index = 6.18 + 2.45j
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0 0

0 0

Figure 3.7: Tangential magnetic field amplitude on bottom of step, for rc-polarized,
normally incident plane wave, (a) 2-D MOM results extrapolated to 3-D using
Eq. (3.93). (b) Physical-optics results including zero- and first-order induced fields.
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Figure 3.8: 0.7 Ll m line over 0.4 [X m high step. Dose = 120 mJ cm .
Develop time = 60 s. (a) x-polarized incident light, (b) y-polarized incident
light, (c) Doubly reflected rays from sidewalls A and B causing undercutting.
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_2
Figure 3.9: (a) 0.35 Llm line over 0.128 |lm high step. Dose = 100 mJ cm
Develop time = 60 s. (b) Beams reflected from sidewalls A and B intersecting
the resist surface at u and v. (c) Beams reflected from sidewalls C and D
intersecting the resist surface at p, q, r and s.
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Y, microns

-2
Figure 3.10: (a) 0.35 Llm line over 0.2 \i m high step. Dose = 95 mJ cm
Develop time =55 s. (b) Singly reflected rays from topography sidewalls
A and B causing dents on resist sidewalls.
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Chapter 4

Three-Dimensional Topography
Scattering Part II: Fast Multipole
Solution of Integral Equation

4.1 Introduction

The physical-optics technique discussed in the Chapter 3 is suitable only for piecewise-

linear topography consisting of planar fragments whose dimensions are at least a

wavelength in each direction. This assures the validity of the tangent-plane approxi

mation used in the treatment of the interaction of the incident and multiply scattered

waves with the topography. Also, the number of sharp edges per period should be

small. This renders negligible the contributions to the integrated field distribution

throughout the photoresist due to non-physical-optics edge currents. In order to han

dle curved topography in which the local radii of curvature are of the order of a

wavelength or smaller, or piecewise-linear topography containing a large number of

sharp edges per period, one has to go beyond the physical-optics approximation and

use a rigorous technique based on an integral formulation of the scattering problem.

An integral formulation of the scattering problem can be based on either the

electric-field integralequation (EFIE) or the magnetic-field integral equation (MFIE).

The kernel of EFIE is more singular than that of MFIE and so requires more sophis

ticated integration technique and choice of basis functions. For simplicity, therefore,

we use the MFIE in this chapter. Direct solution of the MFIE using the standard
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Method of Moments is not practical in 3-D, as Table 1.1 shows. Thus, it is necessary

to use the Fast Multipole Method (FMM) developed by Rokhlin [11] to accelerate

the solution of the MFIE.

We begin the discussion of our FMM algorithm with a derivation of the MFIE for

perfectly conducting objects in Section 4.2 and an outline of the GMRES iteration

algorithm in Section 4.3. The FMM algorithm is then discussed in Section 4.4. The

novelty of our algorithm lies in the use of a three-step distant-to-local transformation

procedure consisting of a rotation, a translation and another rotation. This leads to

an 0(N5/3) algorithm as discussed in Section 4.5. When a problem has reflection

symmetry in some coordinate plane, the symmetry can be exploited to reduce the

number of unknowns. This is discussed in Section 4.6 for reflection symmetry in two of

the coordinate planes. Numerical results and performance benchmarks for scattering

from perfectly conducting plates and cubes are discussed in Section 4.7. In Section

4.8, boundary conditions appropriate to problems with guided mode excitation are

formulated. These are applied to the problems of a shorted waveguide section and

a pyramidal horn antenna. Our FMM algorithm is shown to reduce correctly to the

electrostatics results in the long-wavelength limit in Section 4.9. Then, in Section 4.10,

the standard FMM algorithm is reviewed and the question of numerical instability in

the long-wavelength limit is discussed.

4.2 Problem Formulation

The scattering problem is illustrated in Fig. 4.1. The region outside the perfectly

conducting body is bounded by the surface 50bj of the body and the surface Soo

at infinity. The magnetic field H(r) in this region is given by Eq. (3.4) with S =

Sobj + Soo. The integral over Soo simply gives the incident magnetic field HmC(r).

In the remaining integral over S0bj, the terms containing (n' x E') are absent since

the tangential electric field on the surface of a perfect conductor vanishes. By letting

the field point r approach the surface of the body from the outside and taking the

cross product of the outward surface normal n at r with both sides of the resulting
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equation, we obtain the MFIE,

nxH(r) = nxHinc(r) - -Ui x f (n! xH') xV^dS', (4.1)
47T Jsohi

«jfc|r—r^iwhere tp = .^j is the Green function in the external medium with wavevector k.

The integral over S0bj in Eq. (4.1) includes the field point r on this surface where

tp is singular. Hence, the integration over an infinitesimal area centered at r must

be done analytically. To do this, we choose a local coordinate system with origin

just below r and z-axis coinciding with the normal n pointing into the body, as

shown in the insert of Fig. 4.1. As r' approaches r, n' approaches n = z. Therefore,

n x [(n; x H') x V'^] approaches z x [(z x H') x Vty] = (z x H')(di>/dzf). We can

write the z-derivative of tp as

8&tp_
dz'

>iky/(x-x')*+(y-y')2+(z-z')2

dz' [yj(x - x')2 +(y- y')2 +(z - z')2.

—ik(z —z')
9*fcv/(x-i')2+(y-y/)2+(z-2')J

(x - x')2 + (y - y')2 + (z- z')2

z — z

dz'

yj(x - X1)* + (y- y')2 + (z- z»)2_
In the limit as r; approaches r, the second term inside the brackets in Eq. (4.2)

dominates over the first term. Hence, setting the exponential factor equal to unity in

this limit and multiplying both sides of Eq. (4.2) by dS', we obtain

z-z1

[(x-xf)2 + (y-y')2 + (z-z')2f12
= -d£l',

dS'

(4.2)

(4.3)

where dQ,' is the solid angle subtended by the element of area dS' at the field point

r. In the limit as r; approaches r, dS' becomes essentially a half-plane as seen from

r, and so dQ! = 2n. Hence, the contribution from the infinitesimal area dS' centered

at r; = r to the integral in Eq. (4.1) is

lim-^-nx[(n/xH,)xVV]dS, = --^-n xH(r)|^dS'
*->r 47T 47T OZf

= |nxH(r).
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Hence, Eq. (4.1) becomes

in x H(r) = nxHinc(r) - -Ul x f (n' xH') xVtydS', (4.5)
2 47T Jsob]

where the prime on the integral sign means that the singular point of the integrand

is omitted. For a perfect conductor, the tangential magnetic field is related to the

surface current density J(r) by

J(r) = -nxH(r), (4.6)

since n points into the conductor in our convention. Using the fact that Vip = —V-^,

we may rewrite Eq. (4.5) as

ij(r) = Jinc(r)-nx
ri eJ*|r-r'|

!sohi 47r|r

where Jinc(r) = -n x Hinc(r). Eq. (4.7) is the integral equation that we wish to solve

for J(r).

The simplest way to solve Eq. (4.7) is to divide S0bj into N surface elements over

each of which the surface current density is assumed to be constant with unknown

amplitudes J(rm) for the mth surface element. By enforcing the integral equation

to be satisfied at the center of each surface element, or node, a system of 2N linear

algebraic equations for the 2N unknowns JM(rm) is obtained, where p = 1 or 2 is a

label for two orthogonal directions within the tangent plane at rm,

1 n=l v=\

for some matrix BM77l)I/n, which is dense. Also, the prime on the summation sign in

Eq. (4.8) means that the term n = m is omitted. For small problems in which N is

a thousand or less, the system of equations (4.8) can be solved directly by Gaussian

elimination, which requires 0(NZ) operations. For larger problems, it is usuallymore

efficient to solve Eq. (4.8) iteratively. Now, the matrix J5Mm)1/n in this equation is

complex and non-symmetric. Although it can be transformed into a real matrix

by separately writing the real and imaginary parts of Eq. (4.8), the non-symmetry
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nevertheless remains. The reason for the non-symmetry can be seen by examining

the following form of the matrix elements,

J^/j,m,t/n — ej n x I Vip x e (4.9)
r=Tm,V=Tn

where eM and e'v are unit vectors on the tangent planes at rm and rn, respectively.

Since the surface of the body is arbitrary, there is in general no relationship between

the tangent vectors eM and ej,, or the surface normals n and n', at different points

rm and r„ on the surface. Hence, the matrix BpmiVn is in general non-symmetric.

As a result, the conjugate gradient method cannot be used for the iterative solution

of the system Eq. (4.8). One possibility is to convert Eq. (4.8) into a symmetric

system by multiplying both sides of the equation by the transpose of the matrix

(|<5M,i/£m,n +Bpm^vn). The resulting normal equation can then be solved by the conju
gate gradient method. The disadvantage of this method is that the condition number

of the original matrix is squared. The alternative is to use an algorithm suitable for

general, non-symmetric matrices, such as the generalized minimum residual, GMRES,

algorithm [42].

4.3 GMRES

Eq. (4.8) can be written in the more general form

Ay = b, (4.10)

where A is a 2N x 2N matrix, y is a column vector of unknowns and b is a known

column vector. Given an initial guess solution y0, for example, yo = 0, we compute

the initial residual tq = b — Ayo and use this to construct Krylov subspaces of

increasing dimensionality. Specifically, at the jth iteration step, we construct a j-

dimensional Krylov subspace /C7 consisting of all linear combinations of the j column

vectors r0, Aro, A2t0, ..., ,AJ'~1ro, that is,

K? = Span {r0, Ar0i A2r0,..., ^i_1r0} . (4.11)
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The jth iterate y^ is chosen to be that vector in /CJ which minimizes the norm of the

residual rj = b —Ayj,

yieKj such that ||b- Ayj\\2 < ||b - .4x| |2 Vx€/CJ'. (4.12)

The iteration continues until the norm of the residual becomes less than a desired

fraction of the norm of b.

It is assumed in the above discussion that the vectors To,Aro,A2ro,.. • are lin

early independent. This is generally true, although as j increases, the sequence of

vectors become increasingly parallel to each other. As such, they are not a good

basis for K?. In actual implementation of GMRES, an orthonormal basis for K? is

constructed at each iteration step j, by applying the Gram-Schmidt orthogonaliza-

tion procedure to the vectors r0, Ar0,A2tq,..., ^4J_1r0. To avoid possible numerical

instability in the Gram-Schmidt procedure, the Arnoldi algorithm is used to ensure

mutually orthogonality of the resulting basis vectors {qi, q2,..., qj} for /CJ.

As the iteration number increases, one has to store an increasing number of the

basis vectors q, in the computer. Forlarge 3-D problems, where N can be of the order

of tens of thousands, this could impose a limit on the number of iterations allowed

before memory capacity is exceeded on a small computer. When the latter does

occurs, one is forced to restart the GMRES algorithm, using the most recent iterate

yj as the initial guess and rebuilding the Krylov subspaces from scratch. In discarding

the old Krylov subspaces, one also throws away important information required for

convergence. Thus, restarting GMRES due to memory limitations usually results in

a drastic decrease in the rate of convergence. Because of this, we have chosen to run

all our examples on workstations with sufficient memory to avoid restarting.

GMRES is one of several iterative algorithms based on the idea of approximations

from Krylov subspaces. Others in this class of algorithms include conjugate gradient

(CG) for symmetric matrices and bi-conjugate gradient (BiCG) for non-symmetric

matrices. These and other related algorithms are available in the public domain [43].

For this reason, we do not go into the details of implementation here.
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From the above discussion, it is clear that at each iteration step one has to perform

a matrix-vector multiplication involving the matrix A. This is usually the most time

consuming part of the algorithm. Ordinary matrix-vector multiplication requires

0(iV2) operations, which becomes prohibitively expensive for large 3-D problems.

This operation count can bereduced to 0(N5/3) by using the Fast Multipole algorithm

discussed in the next section.

4.4 The FMM Algorithm

The Fast Multipole Method (FMM) discussed below is similar to that of Chapter 3

in that local, rather than distant, multipole expansions are used to compute distant-

panel contributions to the scattered field. However, in the present discussion, there

is no need to use the formalism of generalized Sommerfeld integrals given in Section

3.8, since we do not use the physical-optics approximation here. Instead, we are here

concerned with the rapid evaluation of the matrix-vector product represented by the

second term on the LHS of Eq. (4.8). From the discussion leading from Eq. (4.7)

to Eq. (4.8), it is clear that the matrix-vector product under discussion represents

the tangential magnetic field scattered to a node m from all other nodes n j= m.

To compute this scattered field efficiently, we again use the multipole approximation

discussed in Section 3.7, by grouping the N elements of S0bj into P panels, each of

which contains roughly the same number (« N/P) of nodes. For a perfect conductor,

there are only electric current sources, —n x H(r), on the surface. The electric vector

potential produced in the far zone by the electric current sources in a panel q is

approximated by a truncated multipole expansion as given by Eq. (3.50), which we

reproduce here for convenience,

AA«(r) = EEbLfc,(1)(fcr)ir(cos0)e^, (413)
1=0 m=-l

where bfm are the electricmultipole coefficients of panel q with respect to a coordinate

system Kq centered at that panel,

*• =jU J(r>) jk%ll%m)l m*™*****"* - (4.i4)
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In Eqs. (4.13) and (4.14), (r,9,<p) and (r',0;, 0') are spherical polar coordinates of

the field and source points r and r', respectively, relative to the distant coordinate

system Kq. By truncating the summation over I in Eq. (4.13) after (L + 1) terms,

we are approximating the sources in panel q by a collection of M multipoles located

at the center of this panel, where M = E£=o(2* + 1) = (L + l)2. The magnetic

field due to the sources in the distant panel q is obtained by taking the curl of the

electric vector potential AAJ(r). For sources in the neighboring panels, however, the

multipole approximation cannot be used. Instead, the contributions from the nodes

in the neighboring panels must be added individually.

If Eq. (4.13) were used to compute the distant-panel contributions to the scattered

magnetic field at each of the N nodes of S0bj, the operation count would be propor

tional to NMP « N(N/P)P = N2, since each node would require the evaluation of

M multipole terms for each of approximately P distant panels. Here, we have used

the fact that the number M of multipole terms needed to represent accurately the

field in the far zone due to a given panel is on the order of the number of nodes in

that panel, M w N/P. This would again be prohibitively expensive for large 3-D

problems. Instead, we compute the distant-panel contributions by transforming the

distant multipoleexpansion given by Eq. (4.13) into a local multipoleexpansion. This

isaccomplished by means ofthe appropriate addition theorem for spherical waves [39].

LetKp bea coordinate system centered at the panel p over which we wish to evaluate

the distant expansion Eq. (4.13). Without loss of generality, we assume that the axes

of Kp are parallel to those of Kq. Suppose the spherical polar coordinates of the ori

gin of the distant coordinate system Kq with respect to the local coordinate system

Kp axe (Ro,9o,<po)' Note that this is opposite to the convention used in [39]. Then,
the addition theorem says that the spherical waves in the two coordinate systems are

related by

oo v v+n

hnl\kr)P^(cos9)ejml> = EE E rn+v+p+2,l(-l)p(2u + l)a(-p,m\p,v,n)
u=0 \i=-v p=\u-n\

xhg>(kR0)Ppm-'i(cos 9o)^m-^0 Ju(krx)P!f(cos 9^^ , (4.15)
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where (r\, 9i,<pi) are spherical coordinates of the field point with respect to the local

system Kp, and the coefficients a(—p, m\p,v, n) are defined through the relationship

u+n

P?(cos9)Pnn(cos9) = E a(p,m\p,u,n)Ppm+tl(cos9). (4.16)
p=\u-n\

The computation of the coefficients a(m, —p\p, n, v) by means of recurrence relation

ship is discussed in Appendix I. Substituting Eq. (4.15) into Eq. (4.13) and renaming

indices, we obtain the desired local expansion,

AAf(r) = E E c?roj,(1)(fcr1)^m(cose1)^m*>, (4.17)
1=0 m=-l

where the new multipole coefficients cfm are related to the old coefficients b'm by

L n u+n

c!, = E E E f^+^(2v + lM-»MP,v,n)h£\kR0)P?->'(c0s6o)
n—0m=—n p=\i/—n\

x^-^b^. (4.18)

In Eq. (4.17) we have truncated the summation over I after (L +1) terms. This is

valid because Eq. (4.17) is to be evaluated only over the local panel p, within which

the field can be adequately approximated by the first M terms of the local expansion.

The summation over p in Eq. (4.18) can be computed in advance, since the terms

depending on p in this equation, hp^(kRo) and P™~p,(cos9o), involve only the fixed

coordinates Rq and 9o of panel q in the local system Kp. In each subsequent iteration

step, according to Eq. (4.18), we still have to perform two summations, namely, those

over n and m, for each pair of multipole indices (v,p). This would result in an

0(N2) algorithm as in ordinary matrix-vector multiplication. In order to obtain a

faster algorithm, we need to develop a more efficient distant-to-local transformation

procedure than the one represented by Eq. (4.18). The key to this development lies

in the observation that Eq. (4.18) becomes simplified for translation along the ±z

axis of the local coordinate system Kp. In that case, cos90 = ±1 and the associated

Legendre polynomial takes on the special value

pm-M(±l) = (±l)PSmtfi. (4.19)
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This means that the summation over m in Eq. (4.18) reduces to a single term m = p,

and we are left with only one summation over n in each iteration step. The translation

along the ±.z axis can be achieved by performingthe distant-to-local transformation

in three steps:

1. Rotate the distant coordinate system Kq so that its z-axis becomes parallel to

the radius vector Ro pointing from the origin of Kp to that of Kq.

2. Translate along the new z-aztis of Kq in the negative direction until its origin

coincides with that of Kp.

3. Rotate the translated system into the orientation of Kp.

The above three-step procedure corresponds to the successive computation of the

following three sets of multipole coefficients:

Km = E (-!)m
m'=—n

L v+n

cjro = E E i'""+p+2(m",1,)(2«' +l)a(-m,m|p,I/,n)^l»(fciJo)b«ro,(4.21)
71=0 p=|i/—n\

C nm = E (-1)'

(n-m)!(n + m/)!/rt(n) . q , .
y [n + m)\[n —my.

Jn"miiira +OT;iiP2,,(0,-go,-^o)£^, (4.22)
\ (n + m)\(n —m)\

where X>^,(a, P, 7) is the rotation matrix discussed in Appendix H. The use ofEqs.

(4.20) to (4.22) for the distant-to-local transformation leads to an 0(N5/S) algorithm

as shown in the next section.

For sources in the panel p containing the field point r itself and sources in the

panels adjacent to panel p, the multipole approximation cannot be used. Instead, the

individual contributions from the sources in the local and neighboring panels must

be computed directly.

What we actually need are the fields rather than the vector potential. Complete

expressions for the magnetic and electric fields are given in Appendix J.
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4.5 Operation Count

As in Section 3.11, we can estimate the number of floating-point operations required

for each matrix-vector multiplication using the above FMM algorithm.

Step 1: The multipole coefficients of each panel are computed using Eq. (4.14).

As in Step 1 of Section 3.11, the total operation count for this step is C\MN for some

constant c\.

Step 2: For each pair of sufficiently separated panels, the multipole coefficients

of the local expansion are computed from those of the distant expansion using Eqs.

(4.20) to (4.22). Tocompute all M coefficients bqnm using Eq. (4.20) requires 0(M^2)

operations, as explained in Step 2 of Section 3.11. The same is true of computing all

M coefficients cnm using Eq. (4.22). Since the separation i2o of each pair of panels

is fixed, the summation over p in Eq. (4.21) can be computed in advance. Hence, to

compute all M coefficients cjm using Eq. (4.21) during each iteration requires only

0(ML) ~ 0(M3f2) operations. Thus, the combined operation count of Eq. (4.20)

to (4.22) is 0(M3/2) per pair of panels. Since there are approximately P2 pairs of

sufficiently separated panels, the total operation count for this step is c^M^P2 for

some constant c?.

Step 3: For each panel, the M multipole coefficents cjm are each summed over the

index q of the distant panels. Since there are approximately P distant panel for each

of the P panels, the total operation count for this step is c^MP2 for some constant

Step 4' For each panel, the local expansion Eq. (4.17), with c£m replaced by its

sum over the index q of the distant panels, is evaluated at all « N/P nodes of that

panel, using the formulas given in Section J.l of Appendix J. The total operation

count for this step is caM(N/P)P = c±MN for some constant C4.

Step 5: For each panel, the direct contribution to the vector potential at each

of its « N/P nodes due to all other nodes in the neighboring panels is computed,

using the quadrature rule discussed in Section J.2 of Appendix J. Since each panel

has only a small number of neighboring panels, there are on the order of N/P other
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nodes in the neighboring panels. Hence, the total operation count for this step is

c5(N/P)2P = c^/P for some constant c5.

Adding the operation counts for the above five steps, the total operation count T

for each computation of the matrix-vector product represented by the second term

on the LHS of Eq. (4.8) is estimated to be

N2
T = (ci + c4)MN + c2Mz/2P2 + c3MP2 + c5— . (4.23)

Using the fact that the number M of multipoles is typically chosen to be of the order

the number of nodes in each panel, M « N/P, Eq. (4.23) becomes

N2
T = (ci + c4 +c5)— +dlPPy/P + c3NP. (4.24)

We would like to choose P so that T is minimized. Differentiating Eq. (4.24) with

respect to P and setting the result to zero, we obtain for the optimum value of P

N2 coN^20 = -(Cl +c4 +c5)— +^— +c3N. (4.25)

Instead of solving Eq. (4.25) for P, we can always choose P to satisfy a simpler

equation obtained from Eq. (4.25) by omitting the third term on the RHS. This

simpler equation has the solution

P = pfo + c4 + c5)/c2]2/3JV1^ . (4.26)

Substituting this value of P into Eq. (4.24) gives

T=|[2(d+c4 +q,)«gV»jvV» +C3[2(Cl +C4 +csy^N4'3 . (4.27)
This means that the optimum operation count of our FMM algorithm will be no

worse than 0(iV5/3) per iteration.

4.6 Use of Symmetry

The geometry of a typical scattering problem is shown in Fig. 4.2. A plane wave

polarized in the x direction is incident in the y direction on a perfectly conducting
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square plate whose broad faces are perpendicular to the incidence direction. Clearly,

this problem has reflection symmetry in the x-y and y-z planes. Such symmetry can

be exploited to reduce the number of unknowns in the problem fourfold. To do so,

we need to know how the electric and magnetic fields transform under reflection in

the x-y and y-z planes.

To determine how the fields transform under reflection in a coordinate plane, we

write the Cartesian components of the Maxwell equation V x H = —jueE out in full,

dH2 dHy
dy dz

dHx dHz

dz dx
dHy dHx

dx dy

Let K' be a left-handed coordinate system obtained by inverting the z axis of the

original right-handed coordinate system K of Fig. 4.2, that is, by reflecting about the

x-y plane. The relationship between vector quantities in the two coordinate systems

are

= -jueEx,

= -jueEy,

= -jueEz.

(x,y,z) = (x^y^-z1),
Ex(x,y,z
Ey(x,y,z
Ez(x,y,z

Hx(x,y,z
Hy(x,y,z
Hz(x,y,z

E'yW,*/,*)
l-E'^xW^)!

H'y(x',X/,Z!)
[-H'z(x',y',zt)\

Substituting Eqs. (4.31) to (4.33) into Eqs. (4.28) to (4.30), we obtain

d(-K) d(-H'y) _
-^ d^~ ~ -3ueE*>
d(-H'x) d(-H'z) _
~ai ST" " -JU€Ev
*(-g;) 9(-h'x) _
~S* W~ " ~3 eEz'

Eqs. (4.34) to (4.36) show that the set of functions (E'x, E'y, E'z) and [(-H'x), (-Hy),

(—H'z)\ satisfy the Maxwell equation V x H = —jo;eE in the variables (x^y^zf).
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Now, the incident fields in the original coordinate system K are Exnc = E0 and

H™0 = —Ho, the other components of the incident fields being zero. In the re

flected coordinate system K', the incident fields are Efc> = E0 and (-i/J10') =

-H0. Thus, the incident excitation for (Ex,Ey,Ez) has the same form as that for

(Ex,Ey,Ez), while the incident excitation for (Hx,Hy,Hz) has the same form as

that for [(-H'x), (-Hy), (-fTJ)]. Because the Maxwell equations Eqs. (4.28) to (4.30)
and (4.34) to (4.36) with the same boundary conditions and the same incident ex

citation must have the same solution, we conclude that the functions (E'x,Ey,Ez)

and [(-Hx),(-Hy),(-H'z)] are in fact identical to the functions (Ex,Ey,Ez) and

(Hx,Hy,Hz) in the same variables:

E'^y^) = En(x,y,z),

Hfay^) = -Hp(x,y,z),

(4.37)

(4.38)

where p = x, y or z. Eqs. (4.37) and (4.38) may be used to determine the fields in

the half-space z < 0 from a knowledge of only the fields in the half-space z > 0.

For example, suppose we know the fields Ei(x, y,z) and Hi(x, y,z) at a point (x, y,z)

with z > 0. The image point reflected inthe x-y plane has the coordinates (x, y, —z)

in the original system K and the coordinates (x\ y', z!) = (x, y,+z) in the reflected

system K'. Hence, Eqs. (4.32) to (4.33) can be rewritten for the image point as

Ex(x,y,-z)
Ey(x,y,-z)

. E2(x,y,-z) _

Hx(x,y,-z)
Hy(x,y,-z)

. Hz(x,y,-z) m

E'x(x,y,z)
E'y(x,y,z)

_-E'z(x,y,z) m

H'x(x,y,z)
H'y(x,y,z)

-H'z(x,y,z) .

(4.39)

(4.40)

Substituting Eqs. (4.37) and (4.38) into the RHS of Eqs. (4.39) and (4.40), respec

tively, we obtain the desired field components with respect to the original system K

at the image point (x,y,—z),

Ex(x,y,-z)
Ey(x,y,-z)
Ez(x,y,-z) m
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Ey(x,y,z)

-Ez(x,y,z) m
(4.41)



Hx(x,y,-z)
Hy(x,y,-z)
Hz(x,y,-z) _

-Hx(x,y,z)
-Hy(x,y,z)
Hz(x,y,z) _

(4.42)

By an exactly similar procedure, we can obtain the transformation of the field

under reflection in the y-z plane,

Ex(-x,y,z)
Ey(-x,y,z)
Ez(-x,y,z) m

Hx(-x,y,z)
Hy(-x,y,z)
Hz(-x,y,z)

-Ex(x,y,z)
Ey(x,y,z)

m-Ez(x,y,z) _

Hx(x,y,z)
-Hy(x,y,z)
Hz(x,y,z) m

(4.43)

(4.44)

By successive application of the transformation equations (4.41) to (4.44), we can

obtain the fields in the regions (x > 0, z < 0), (x < 0, z > 0) and (x < 0, z < 0) from

the fields in the region (x > 0, z > 0). This way, the number of unknowns is reduced

to one-forth.

4.7 Scattering from Plates and Cubes

To illustrate the accuracy of the multipole approximation and the efficiency of the

GMRES algorithm, we computed the radarcrosssections (RCS) of perfectly conduct

ing thick plates and cubes. The calculations were done on an IBM RS/6000 Model

530 workstation with 64 megabytes of storage. In order to conserve storage, we did

not compute the summation over p in Eq. (4.21) in advance, nor did we compute the

rotation matrices X>^,(a, /?, 7) in Eqs. (4.20) and (4.22) in advance. Hence, the CPU

times given below are not the optimum values expected from the algorithm.

The plates used in our examples are square plates with a thickness of 0.0317A. In

order to sample accurately the sharp increase of induced currents near the edges, we

used approximately 40 nodes per A on the front and back faces and 60 nodes per A on

the side faces of the plates. Forthe cubes, we used approximately 40 nodes per A on all

the faces. Symmetry was used to reduce the number of unknowns to one-forth. The

number of multipole coefficients was chosen in all cases to be M = 36 w 0.8 times the

average number of nodes per panel. Figs. 4.3 and 4.4 show the computed broadside
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RCS of the plates and cubes, respectively, as functions of the side length W. Also

shown in these figures are the measured results reported in the literature [44, 45]. It

can be seen from these figures that our computed results are in good agreement with

those of measurement. The number of iterations in the GMRES algorithm required

to achieve an error tolerance of 10~4 and the CPU time per iteration are shown in

Tables 4.1 and 4.2 as functions of the number of complex unknowns n = 2N. It can

be seen that the number of iterations required, iVjter, increased rather slowly with

problem size. For example, in the case of the plates, as n increased from 120 to 2624,

Niter increased only three times.

The speedup achieved with FMM is illustrated in Fig. 4.5, where the CPU time

per iteration using FMM-GMRES is compared with that using standard GMRES.

In the case of standard GMRES, the method discussed in Section J.2 of Appendix J

for neighboring-panel contributions was used for both the distant- and neighboring-

panel contributions to the scattered field. This is equivalent to ordinary matrix-vector

multiplication whose CPU time per iteration is expect to scale as 0(N2). This was

indeed found to be the case, as can be seen from Fig. 4.5. On the other hand, the

CPU time per iteration using FMM-GMRES is seen to follow roughly the <3(iV5/3)

curve, but rather erratically. This was because, in order to achieve the 0(JV5/3)

performance, the number of panels P would have to be chosen in accordance with

the formula Eq. (4.26). For simplicity, however, we did not optimize P in this way

in our examples. Still, Fig. 4.5 shows that our FMM-GMRES algorithm outperforms

the standard GMRES algorithm for N greater than a few hundreds, with increasing

speedup as N increases.

The storage cost of FMM-GMRES is compared in Fig. 4.6 with those of standard

GMRES and the time-domain-finite-difference (TDFD) method. As stated near the

beginning of Section 4.4, the matrix-vector product of the form Ax. required at each

step of the GMRES algorithm represents the field scattered to each node to from all

other nodes n ^ to. In standard GMRES, ordinary matrix-vector multiplication is

used, in which both the matrixA and the vector x must be supplied to the multiplica-
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tion routine. Since A is a 2N x 2N dense matrix, the storage requirement for A alone

is 0(N2). This is shown in Fig. 4.6, where the quantity 16n2 bytes is plotted against

n = 2N, where n is the number of complex unknowns, each of which requires 16 bytes

of storage in double precision. In FMM-GMRES, however, the scattered field itself,

which is equivalent to the matrix-vector product, is computed. This eliminates the

need to set up and store the matrix A itself. Thus, the storage cost of FMM-GMRES

scales as 0(N). In practice, as mentioned in Section 4.3, one usually stores as many

basis vectors of the Krylov subspaces as are needed for convergence, in order to avoid

restarting GMRES. Hence, the storage cost of FMM-GMRES is usually at least mn,

where to is the number of iterations required for convergence. In all our examples

discussed below, to < 200. Hence, in Fig. 4.6, we plot the quantity 16 x 200n as being

representative of the storage cost of FMM-GMRES. Lastly, in TDFD, one has to store

all six components of the electric and magnetic fields at each node of the simulation

volume. Furthermore, one has to store the field components at two successive times.

Roughly speaking, the number ofnodes in the simulation volume is iV3/2 = (ra/2)3' ,

where N is the number of nodes on a two-dimensional surface in the integral-equation

method. Hence, inFig. 4.6, we plot the quantity 8x 6x 2x (n/2)3/2 for TDFD, since

8 bytes are required for each real field component in double precision. From Fig. 4.6,

it can be seen that FMM-GMRES outperforms standard GMRES in storage cost for

n greater than a few hundreds, and that it outperforms TDFD for n greater than

about 104.

4.8 Problems with Guided Mode Excitation

The integral equation formulation discussed in Section 4.2 can be extended to treat

problems with guided mode excitation, such as waveguide sections and horn antennas.

Consider the horn model shown in Fig. 4.7. The horn is excited by a generator

connected to a rectangular waveguide supporting only the lowest-order, or TE\o,

mode. We assume that the generator is well shielded so that it radiates only into

the rectangular waveguide. The problem is to compute the radiation pattern in the
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external region V of Fig. 4.7 where the permittivity is e. This external region is

bounded by the surfaces So to 52 shown in Fig. 4.7 and the surface at infinity. Since

there are no waves incident from infinity, the integral over the surface at infinity in

the Kirchhoff-Huygens principle Eq. (3.4) gives zero. Hence, we are left with only

the integral over the surfaces 5o to 52- Since the generator is well-shielded, the

only surface currents that exist on the exterior parts of these surfaces are those that

pass out of the mouth of the horn and around the flange. These exterior surface

currents are expected to be weaker the farther away they are from the mouth of the

horn. Hence, for simplicity, we can discard the exterior part 52 which is assumed

to be sufficiently far from the mouth of the horn that the surface currents on 52 are

negligible. The integral in Eq. (3.4) is therefore confined to the surfaces 50 and S\,

where 5o is a rectangular cross section of the waveguide, which we refer to as the

input terminal, and Si consists of the inner walls of the waveguide and the inner and

outer walls of the horn. We assume that the walls of the waveguide and horn are

perfectly conducting. Hence, in the integral over 5X, the terms involving (n' x E') are

absent, and Eq. (3.4) becomes

H(r) = H5o(r) - i- / (n' xH') xV><*5', (4.45)
47T JSi

where Hs0(r) represents the contribution from the input terminal 5o,

H5o(r) =i- / Ue(n' xE> +—(n' xE') •V'(Vty) - (n' xH') xVty dff.
47T JSo |_ k'M

(4.46)

By letting the field point r in Eq. (4.45) approach the perfectly conducting surface

5i and taking the cross product with the outward surface normal n at r, we obtain

the MFIE

nxH(r) = nxH5o(r) - -Ui x / (n' xH') xVtPdS', (4.47)
47T J Si

Since the integrand in Eq. (4.47) is singular at r' = r, we must integrate over the

singularity analytically. Following the steps leading from Eq. (4.1) to Eq. (4.7), we
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can remove the singular point from the integral by rewriting the MFIE as

in xH(r) = nxHSo(r) -^nx/(n'x H') xVipdS'. (4.48)
I 47T JS\

In order to evaluate the quantity H50(r) defined by Eq. (4.46), it is necessary to

know the tangential fields (n' x E') and (n' x H') over the input terminal 5o of the

waveguide. In general, the waves inside the waveguide consist of an incident TE\o

wave and a number of reflected waves belonging to various waveguide modes. Since

the waveguide supports only the TE\o mode, we expect that the only reflected wave

with significant amplitude at the input terminal is the TEW reflected wave. This

can be seen by considering the attenuation constants of the higher-order modes. The

attenuation constant a of a cutoff mode in a rectangular waveguide is

• - /(=)'HT)'-(!)'• <»"
where a and b are the transverse dimensions of the waveguide, to and n are integers

and A is the free-space wavelength. In our example, o = 3.485 cm, b = 1.58 cm and

A = 5 cm. Hence, the cutoff waveguide mode with the smallest real value of a is the

one with to = 2 and n = 0, for which a = 1.2928cm-1. In propagating over the

15-cm distance between the waveguide-horn junction, where this cutoff mode could

have been produced, and the input terminal 5o, the amplitude of this cutoff mode

would be attenuated by a factor of e~axl5cm = 3.8 x 10"9 ! Cutoff modes with larger

values of a would, of course, be attenuated even more. This justifies neglecting the

effects of all the reflected cutoffmodes at the input terminal. The waves on the input

terminal 5o then consist of an incident TE\o wave with unit amplitude and a reflected

TE\o wave with an unknown amplitude T. With respect to the coordinate system

shown in Fig. 4.7, the tangential fields H' = H(r') and E' = E(r') on 5o are thus

given by [46]

Hy(z!) = (i +DcosJ^+l) , (4.50)
H&) = -jf(l- T) sin ^ (z1 +1) , (4.51)
Ez{z!) = jfzB(l +T) sin J(V +|) , (4.52)2a
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where

\ = , ". ... (4-53)
RS5'

We may now evaluate the quantity Hs0(r) by substituting Eqs. (4.50) to (4.52) into

Eq. (4.46). The result may be written in the form

nxHft(r) = »xH$„M +r[nx «#&.(*)] . (4-55)

where

H^toW = H^^xmrP
+-^-(n' x E(0)) •V'(Vty) =F (n' x H(0)) x V> dS', (4.56)

and

2*JV) = cob J (^ +I), (4.57)
W) - -i^-nj^+f), (4.58)
4V) =^sin^(^+|). (4.59)

When Eq. (4.55) is substituted intothe RHS ofEq. (4.48), we obtain the MFIE for

the tangential magnetic field n x H(r) on the perfectly conducting surface Si and for

the reflection coefficient T. It should be pointed out, from the steps leading from Eq.

(4.46) to Eq. (4.48), that Eq. (4.48) is valid only when the field point r approaches

Si, rather than S0. To solve Eq. (4.48), we discretize Si into N surface elements,

or nodes, over each of which the tangential magnetic field has a constant, unknown

value (n x H)ro for the TOth node. By letting r range over all the nodes on Si (point

collocation), we obtain as many equations as there are unknown field values (n x H)m

on Si. However, we need one more equation because we have an extra unknown T.
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This extra equation may be obtained by letting r in Eq. (4.47) approach the center

ro of the input terminal So, rather than Si,

nx H(r-o) = nxH5o(r0) -^nx/(n'x H') x V<iP\T=rQdS'. (4.60)
47T JSi

The quantity H(ro) on the LHS of Eq. (4.60) is the magnetic field on So- From Eqs.

(4.50) and (4.51), H(ro) has only the y and z components. Also, in the coordinate

system of Fig. 4.7, the outward unit normal on So is n = —y. Hence, the LHS of Eq.

(4.60) is

nxH(r0) = -(yxz)lf2(0)

= -x(l - T)Hz°\0), (4.61)

where we have used Eqs. (4.51) and (4.58). In the integral over Si in Eq. (4.60), the

integrand has no singularity, since ro is at the center of So while r' lies on Si, so that

the denominator |ro—r'| in ip never vanishes. However, the integral over So occuring

in Hs0(r0) now includes the point r0 on So where the integrand is singular. Hence, the

evaluation of the term n x Hs0(r0) on the RHS of Eq. (4.60) must be done carefully.

This is discussed in Appendix K. When Eq. (K.13) of Appendix K and Eq. (4.61) are

substituted into Eq. (4.60) and the x component of the resulting equation is taken,

we obtain the extra equation needed to solve for the unknown reflection coefficent T.

4.8.1 Shorted Waveguide

The accuracy of the formulation discussed above was tested on the trivial example of

a shorted waveguide section, for which closed-form solution is available. The phase

constant of the TEio mode of the rectangular waveguide used in the horn problem of

Fig. 4.7 is

2tt
P =

A^2
1- - . (4.62)

AV V2a,
The reflection coefficient at the input terminal So for a waveguide section of length

L shorted at the other end is given by

r = -eWL. (4.63)
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In our example, a = 3.485 cm, A = 5 cm and L = 7.5 or 15.0 cm. Hence,

f -0.84397 - 0.53640J , L = 7.5 cm /
T = I . (4.64

\ -0.42455 - 0.90540J , L=15.0 cm

The computed reflection coefficients using FMM-GMRES were

-0.81598 - 0.51777J, £ = 7.5 cm

computed = i 0.41672-0.85894J, L=15.0 cm ' (4'65)-{
The density of nodes used in the above calculationswas approximately 30 nodes per

wavelength. The number of GMRES iterations required to achieve an errortolerance

of 10"4 was 28 for L = 7.5 cm and 41 for L = 15.0 cm. The agreement between

the computed and theoretical reflection coefficients is seen to be quite good. The

small discrepancies observed are believed to be due to (i) an insufficient density of

nodes near the sharp edges, (ii) inaccuracy of the four-point Gaussian quadrature

method used to compute neighboring-panel contributions, and (iii) inaccuracy of the

rectanglar rule used in the same-cell integration method discussed in Appendix K.

4.8.2 Horn Antenna

The horn geometry is shown in Fig. 4.8, which is similar to the geometry of the C36

horn antenna studied by Ratajczak et al. [47] except for the detailed shape of the

flange. In our calculation, the density of nodes used was approximately 10 nodes per

wavelength in regions of low current level and 15 nodes per wavelength in regions

of high current level and near the sharp edges. Symmetry was used to reduced the

number of unknowns to one-forth. Thus, although the total number of nodes in all

four quadrants of the horn was 10,240, the total number of complex unknowns was

only [(10,240/4) x 2 + 1] = 5121, since there are two tangential field components

at each node and one extra unknown T. The total number of panels in all four

quadrants was P = 236 and the number of multipole coefficients was M = 36. This

calculation required 175 GMRES iterations to achieve an error tolerance of 10"4,

and the total CPU time was 6.0 hours. Of the 6 hours of CPU time, it was found

that approximately 1.4 hours were spent in computing the rotation matrices in Eqs.
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(4.20) and (4.22), and 0.2 hour in computing the summation over p in Eq. (4.21).

Thus, for problems of the present size, whether the latter summation is computed

in advance or not has little impact on CPU time. Had FMM not been used, the

CPU time for this calculation would have been 14 hours. Our computed reflection

coefficient of T = —0.0697 + 0.0614J is in reasonable agreement with the measured

results of [47], rmeasured ^ —0.049 + 0.049j. Our computed radiation patterns shown

in Fig. 4.9 are also in reasonable agreement with the measured results of [47]. The

small discrepancies observed in the H plane results of this figure are believed to be

due to the use of an insufficient density of nodes near the sharp edges.

4.9 The Long-Wavelength Limit

The examples we used in Section 4.7 to illustrate the efficiency of our FMM-GMRES

algorithm are those in which the size of the scatterer is of the order of a wavelength

or larger. Besides problems such as these in the intermediate-wavelength (resonance)

to short-wavelength region of the electromagnetic spectrum, there is also much cur

rent interest in applying FMM to long-wavelength problems such as the modeling of

parasitics in high-speed integrated circuits. The size of a typical scatterer within a

high-speed integrated circuit may be of the order of Al = 10pm or less, while the

frequency components of the voltage waveforms may range from / = 500 MHz to

/ = 5 GHz. Thus, the quantity kRo appearing in the argument of the spherical

Hankel function in the distant-to-local transformation Eq. (4.18) may range from

(2irf/c)Al = 0.0001 to 0.001 radian. In this long-wavelength limit, we expect Eq.

(4.18) to reduce to the transformation formula for multipoles in electrostatics. Indeed,

from the small-argument limit of the spherical Hankel function,

Itaj^W =-i^#, (4.66)
we see that, as kRo becomes very small, successive terms in the summation over

p in Eq. (4.18) grow as l/(kRo)p+l, so that in the long-wavelength Umit, we may

ignore all the terms in the summation over p except the one with p = v + n. Then,
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using Eq. (4.66) and Eq. (1.11) with p replaced by —p, Eq. (4.18) becomes in the

long-wavelength limit

•"> ~ kj^J ' ( ' (2n +2u-l)\\ (n-m)Hv + n)\

*l •" (feB0)n+"+l n+" ^COSf'0^ D"nm
(4.67)

Using Eq. (4.66) and the small-argument limit of the spherical bessel function,

£»*« = osr+ijii- (4.68)

we can rewrite the distant and local multipole expansions Eqs. (4.13) and (4.17) as

(4.69)

l i I A~AAJ(r) = £ £ ^d^yrVi,<h), (4-70)
1=0 m=—I *

47T
AAf(r) = E E&!.±'1rl+1V2i + l 1T(«.#).

1=0 m=-l

where the spherical harmonics Ytm(9, <p) are defined in terms of the associated Legen

dre polynomials by

YTV**) = (-1)'
21 + 1 (Z —m)\

^ 4tt (Z +m)!

and the new multipole coefficients fj^ and gfm are related to the old coefficients bfm

and c?m by

,(2/-l)!!

jm<f>PF(cos9)e (4.71)

fl» = -i(-i)1
(f + ro)!

kl+l \(l- ro)! bL, (4.72)

(4.73)gL = (-1)'

^-EE (-i)n+M
n=0 m=—n \

fc< (J+ ro)!
(21 +1)!!^ (i-ro)! fm'

Substituting Eqs. (4.71) to (4.73) into Eq. (4.67), weobtain the transformation equa

tion for the new multipole coefficients,

(n + v + m- p)\(n + i/ —m + p)\
(n+ m)\(n - m)\(u -f- p)\(v - p)\

x ^T^'^W^r- <474)
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Eq. (4.74) is precisely the distant-to-local transformation formula in the electro

statics limit [48, 49]. This shows that the FMM formalism discussed in Section 4.4 is

numerically stable in the long-wavelength limit, in that it goes over smoothly into the

electrostatics result as the wavelength is increased. As such, our FMM formalism is

suitable for application to on-chip interconnect and other long-wavelength problems.

4.10 Comparison with the Standard FMM

Recently, Coifman, Rokhlin and Wandzura [15] developed a three-dimensional FMM

for the EFIE of electromagnetic scattering. We shall refer to their algorithm as the

standard FMM algorithm. The operation count of the standard FMM algorithm is

0(Nzl2) per iteration, which is more efficient than our 0(Nblz) algorithm discussed

in Section 4.4. The question arises as to what advantage our FMM algorithm has over

the standard FMM algorithm. The answer is that our FMM algorithm is numerically

stable in the long-wavelength limit, as shown in the last section, whereas the standard

algorithm is not. To see this, we first review the latter algorithm.

In our FMM algorithm discussed in Section 4.4, the radiation field in the far zone

due to the current sources in a panel q is represented by a sum of multipole waves of

the form Eq. (4.13). In the standard FMM algorithm, however, the same radiation

field is represented by a sum of plane waves propagating in various directions. This

is made possible by using a alternative series expansion for the Green function tp

equivalent to Eq. (3.49). Let Xpq be the displacement vector from the origin of a

distant coordinate system Kq to the origin of the coordinate system Kp centered at

the field panel p. Then, we write r —r' = Xp9 + d, where r and r; lie on panels p and

q, respectively. This defines a vector d as

d = r-r'-Xp,. (4.75)

Noting that d < Xpq for well separated panels p and q, the series expansion for the

Green function is given by
g;*:|Xp,+d| oo
,y . H, = Ei*(-l)l(2/ +l)ii(feOM1)(*^)fi[coBZ(d,X„)]. (4.76)
1-^9 "+" al 1=0
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Eq. (4.76) is a series of multipole waves of the type ^(A;d)P/[cosZ(d,Xpg)]. These

multipole waves can be transformed into plane waves by means of the following rela

tionship [39],

ii(ibd)fi[co8Z(d,XM)] = -^JdQk^PilcosLfcXp,)], (4.77)
where d£lk is an element of solid angle traced out by the vector k of constant length

k, and the integral is over all directions ofk. Substituting Eq. (4.77) into Eq. (4.76),

we obtain

tfe'Xp't?| = ^/^^k-d£y(2Z+l)^1)(fcXM)P,[cosZ(k,XP9)], (4.78)
\Xpq + d\ Am J £J

where wehave truncated the summation over Zto (Z+l) terms andhave interchanged

the order of summation andintegration, even thoughit is mathematically illegitimate

to do so. Defining a quantity %q(k) as

T„(k) =7^j;j*Vl+l)tfHkXrt)I\l*»l(k,-X^], (4.79)
V47lJ 1=0

Eq. (4.78) may be rewritten as

Now, the vector potential due to the electric current sources in panel q is given by

in analogy with Eq. (3.47). Substituting Eq. (4.75) into Eq. (4.80) and then the
resulting expression into Eq. (4.81), we obtain the desired plane-wave representation

of the field in the far zone due to the sources in panel q,

AAJ(r) = JdQke*-T\Jq(k), (4.82)

where

U,(k) = je-*-x«7^(k) / J(r')e-jkr,<iS'. (4.83)

114



Note that the quantity U9(k) is independent of the field point r. Hence, in summing

the contributions from all the distant panels q, we can carry out the summation over

q in Eq. (4.82) prior to evaluating the integral over all directions of k for different

field points r in panel p. This leads to an 0(N3/2) FMM algorithm as discussed in

[15].

The standard FMM algorithm discussed above is suitable for intermediate- and

short-wavelength problems. This is because, as pointed out in [15], the quantity

Tpq(k) defined by Eq. (4.79) diverges in the limit L —> oo. For intermediate- and

short-wavelength problems, where the argument kXpq of the spherical Hankel function

is of the order of unity or larger, the difficulty associated with the divergence of the

sum over I in Eq. (4.79) does not become apparent until L is much larger than what

one normally needs to obtain good accuracy. However, for long-wavelength problems,

where kXpq is much smaller than unity, the series in Eq. (4.79) diverges so rapidly

that numerical instability sets in even for small values of L. This can be seen in more

detail as follows. If Eq. (4.79) is substituted into Eq. (4.80) and the integration over

the solid angle is performed, we expect to get back Eq. (4.76) but with the sum over

I truncated to (L + 1) terms. To check this, we employ the following series expansion

of a plane wave ejkr [39]:

gik-d = f;jn(27l +1)in(A.d)Pn[cosZ(kd)] (484)
n=0

Substituting Eqs. (4.84) and (4.79) into the RHS of Eq. (4.80), we obtain

47T7 / dnke>k-dTpq(k) = j~ £ j1 (21 +l)h[l) (kXpq) £ jn(2n +1)jn(kd)
J 47r 1=0 n=0

xJdQkPn[cos Z(k, d)]Pz[cos Z(k, Xpq)].(4.85)
In exact arithmetic, we have the following orthogonality property of the Legendre

polynomials,

/47TdSlkPnlcoslfcdyPilcoslfcXp,)] = y-^SntPilcosL&Xp,,)]. (4.86)

In this case, Eq. (4.85) is seen indeed to reduce to Eq. (4.76). In numerical integration,

however, orthogonality of the Legendre polynomials is only approximately true. Thus,
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instead of Eq. (4.86), we have

/47TcKlkPn[cos Z(k, d)]P,[cos Z(k, X,,)] = -^-jS„iPi[cos Z(d, X„)] +e* ,
(4.87)

where Sni is some small quantity which depends on the machine precision as well as

on the accuracy of the numerical quadrature routine. Substituting Eq. (4.87) into

Eq. (4.85), we see that the error eni in the integration over the solid angle leads to an

error A^ in the computed Green function of amount

** = ££^+n+1(2/+l)(2n +l)jn(A:d)/iS1)(A;XM)en/. (4.88)
/=0 n=0 4""

In the long-wavelength, both kd and kXpq are much smaller than unity, with d <

Xpq. Thus, we may use the small-argument limit of the spherical Bessel and Hankel

functions,

i (kd)h^(kX ) ~ J(2*-1)!! {kdr (4.89)3n(kd)hl (kXp<> ~ 3(2n+l)\\(kXpqY^' K '
Since both kd and kXpq are much smaller than unity, the RHS ofEq. (4.89) is largest

for the smallest possible value of n and the largest possible value of I, namely, n = 0

and I= L. Keeping only this largest term in Eq. (4.88), we obtain an estimate of the

error in the computed Green function,

AiP « -^jL(2£+l)" J°* (4.90)AnJ ^^*>~ (kXpq)

On the other hand, ip itself is of the order of |X^+d| « ^. Hence, the relative error
in the computed Green function is estimated to be

Af

Let us apply this result to the parasitics-modeling problem mentioned at the

beginning of Section 4.9, where kXpq ranges from 0.0001 to 0.001. Suppose our

numerical quadrature routine is exact, so that e0L is of the order of the machine

epsilon. Then, for double precision arithmetic, s0l « 10"15- Furthermore, if we
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desire the relative error in the computed Green function to be one percent or less,

Eq. (4.91) gives

The inequality Eq. (4.92) has the solution L < 3 for kXpq = 0.0001 to 0.001. Thus,

in this parasitics-modeling problem, we are limited by numerical instability of the

standard FMM algorithm to four multipole terms, even in double precision arithmetic.

The situation is, of course, worse if our numerical quadrature routine is inexact, or if

we use single precision arithmetic.

Actually, Coifman et al. [15] gave a criterion for the applicability of the standard

FMM which is more pessimistic than our above estimate. According to these authors,

the upper limit L of the summation in Eq. (4.79) should be chosen according to the

following rule:

r _ \ kD + §m(kD +tt) , single precision ,. Qfy,
~ \ kD +10\n(kD +it) , double precision ' *' '

where D is the diameter of the smallest sphere enclosing the largest panel. Fur

thermore, these authors state that, in order to avoid numerical instability, the stan

dard FMM should only be used on sufficiently separated panel pairs (p, q) such that

kXpq > L. Applying these results to the above parasitics-modeling problem, we

have kD = 0.0001 to 0.001, so that L « 6 in single precision. Hence, in order to

apply the standard FMM, the panel pairs (p, q) should be separated by a distance

Xpq > L/k = Lc/(2nf) > 6 cm. Since a typical chip is not much larger than 2 cm x

2 cm, this would mean that the standard FMM should not be used anywhere inside a

chip! Of course, this estimate of [15] is too pessimistic. On the contrary, the estimate

we gave in the last paragraph indicates that one can still apply the standard FMM

inside a chip, but with loss of accuracy in the computed Green function and in the

multipole approximation, in which one is limited to L = 3.

Concerning the speed of the standard FMM algorithm, we find in the literature

[50] that the total CPU time required to achieve an error tolerance of 10~4 in the

solution of the RCS problem for a square metallic plate involving approximately
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2000 unknowns was about 2000 seconds. The calculation was performed on a SUN-

SPARC-2 workstation with 64 megabytes of storage. This may be compared with our

results shown in Table 4.1, where it can be seen that the RCS problem for a thick

square plate involving approximately 2000 unknowns required a total CPU time of

34 x 21.0 = 714 seconds on an IBM RS/6000 Model 530 workstation with the same

amount of storage. Assuming that the SUN-SPARC-2 workstation in question was a

40 MHz variety with a benchmark of approximately 4 MFlops, while the benchmark

of our IBM RS/6000 workstation was approximately 11 MFlops, we find that the

performance of the standard FMM algorithm is actually about the same as that of

our FMM algorithm, after adjusting for processor speed, for problems of the present

size.

4.11 Conclusions

In this chapter, we have discussed a 3-D FMM formalism which differs from the

standard FMM formalism in that the radiation field due to the sources in a distant

panel is represented by a sum of multipole waves, rather than by a sum of plane waves.

The accuracy of our algorithm was demonstrated by excellent agreement between

our computed results and the published data on radar cross sections of perfectly

conducting thick plates and cubes. We have also extended the boundary conditions

to deal with problems with guided mode excitation. The accuracy of these extended

boundary conditions was demonstrated by good agreement with published data on

the radiation patterns of a pyramidal horn antenna.

The CPU cost of our FMM algorithm is0(iV5/3), compared with 0(N3^2) for the

standard FMM algorithm. However, for problemsizeof a fewthousand unknowns, our

benchmark indicated that the two FMM algorithms are approximately equally fast.

This shows that the overhead burden due to the use of more complicate transformation

formulas in our FMM algorithm is quite insignificant for problems of the above size.

More significant is the fact that the standard FMM algorithm is numericallyunstable

in the long-wavelength limit, whereas ours is numerically stable in this limit. Thus,
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our algorithm is more suitable for application to long-wavelength problems such as

the modeling of parasitics inside a chip.

Although the discussion in this chapter has been limited to perfectly conducting

objects, it can be generalized to the case of dielectric objects by introducing a second

vector potential to treat the fields radiated by equivalent magnetic surface currents.

Also, the algorithm discussed in this chapter is based on a one-level grouping of the

surface nodes into panels. More sophisticated, multi-level grouping schemes can be

developed to reduce the CPU cost to O(iVlogiV) in the limit of very large N. One

such scheme developed for the standard FMM algorithm was recently proposed by

Dembart and Yip [51].
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Table 4.1: Computed Results for RCS of Perfectly Conducting Plates of

Thickness 0.0317A

Side length
(A)

No. of complex
unknowns

No. of iterations

(err = 10"4)
CPU per iteration

(seconds)
RCS

(A2)
0.1 48 10 0.2 0.000698

0.2 120 12 0.4 0.0344

0.3 224 15 0.9 0.410

0.4 368 16 1.0 1.43

0.5 544 18 4.4 2.47

0.6 736 19 5.6 3.59

0.7 976 22 7.4 5.06

0.8 1116 26 14.5 6.90

0.9 1536 30 17.6 9.16

1.0 2052 34 21.0 12.0

1.1 2624 37 42.1 17.3

Table 4.2: Computed Results for RCS of Perfectly Conducting Cubes

Side length

(A)
No. of complex

unknowns

No. of iterations

(err = 10"4)
CPU per iteration

(seconds)
RCS

(A2)
0.1 48 9 0.2 0.00335

0.2 192 11 0.8 0.151

0.3 432 13 2.5 0.268

0.4 736 14 5.5 0.0877

0.5 1200 15 17.3 2.23

0.6 1728 16 19.8 3.86

0.7 2464 24 27.2 3.34

0.8 2700 22 79.4 4.27

0.9 3888 22 83.4 7.63
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Figure 4.1: Electromagnetic scattering from a perfectly conducting object.
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Figure 4.2: A scattering problem with symmetry in the x-y and y-z planes.
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Figure 4.3: Broadside RCS of perfectly conducting square plates 0.0317 A
thick. Solid line: multipole results. Dots: measured by Kouyoumjian [45].
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Figure 4.9: Radiation patterns of the horn antenna.
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Chapter 5

Conclusions

Two specific problems on the interaction of the electromagnetic field with material

media have been discussed in this thesis. In Chapter 2, the rate of spontaneous emis

sion by an excited atom near a lossy mirror was calculated from an exact solution of

a microscopic Hamiltonian model, which included the effects of dispersion, local field

correction and instantaneous Coulomb interaction near the surface. Numerical results

for the total decay rate were found to be in excellent agreement with those based on

classical electromagnetic theory and to reduce to the well-known result for the rate

of nonradiative energy transfer in the limit of very small distance from the surface.

Since our calculation was based on a fully canonical quantum theory, it provided the

first fundamental demonstration of the validity of the classical electromagnetic theory

of the rate of spontaneous emission near a lossy mirror.

Having thus established the validityof classical electromagnetic theory in a special

ized situation of current interest in quantum optics, we proceeded to develop numeri

cal techniques to solve the equations of electromagnetic theory in practical situations

of interest to integrated-ciruit process simulation. In Chapter 3, an approximate tech

nique based on the physical-optics method was presented. This technique is suitable

for the multilayer, piecewise-linear topography often encountered in 3-D photolithog

raphy simulation. The formalism of generalized Sommerfeld integrals was used to

treat multiple scattering within a given surface in the physical-optics approximation.

To speed up the computation of the physical-optics multiply scattered fields in 3-D,
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we used the technique of multipole acceleration which resulted in an 0(N3/2) algo

rithm, where N is the number of surface unknowns. A complete photoresist-exposure

simulation program based on this multipole accelerated physical-optics technique was

written. It has enabled us to perform reflective-notching simulation of large 3-D struc

tures on a workstation in reasonable CPU time.

In order to overcome the limitations of the approximate physical-optics method,

we presented a rigorous technique based on FMM in Chapter 4. The present im

plementation of this technique is suitable for arbitrary, perfectly conducting objects.

Our FMM algorithm differs from the standard FMM algorithm of [15] in that we use

multipole waves rather than plane waves to represent the radiation field due to the

sources in a distant panel. As a result, our distant-to-local transformation formu

las are more complicated than those of the standard FMM algorithm. A three-step

transformation procedure consisting of a rotation, a translation and another rotation

was developed to achieve an 0(N5/3) algorithm, which is still somewhat slower than

the standard FMM algorithm which is 0(N3/2). Nevertheless, our benchmarks have

indicated that the difference in speed between the two algorithms is insignificant for

problem size of a few thousand unknowns. Our FMM algorithm does have one im

portant advantage over the standard FMM algorithm, namely, that our algorithm is

numerically stable in the long-wavelength limit, whereas the standard algorithm is

not. As such, our algorithm is more suitable for application to low-frequency problems

such as on-chip interconnect modeling.

Compared with the time-domain finite-difference method (TDFD), the FMM al

gorithm presented in Section 4.4, as well as the standard FMM algorithm of [15], is

more advantageous with repect to storage cost for 3-D problems involving more than

104 surface unknowns. This is because FMM uses a surface, rather than a volume,

representation of the unknowns and because no matrix storage is needed in FMM.

Furthermore, the storage advantage of FMM increases with problem size. For ex

ample, a 3-D problem involving 105 surface unknowns would require approximately

256 megabytes of storage with FMM and approximately one gigabytes with TDFD.
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Thus, FMM will be far superior to TDFD in terms of storage cost for very large 3-D

problems such as the simulation of photoresist exposure over magnetic disk heads.

Besides generalizing our FMM algorithm to the case of dielectric objects and to

periodic topography, future work is needed to extend the guided-mode boundary

conditions discussed in Section 4.8 for metallic waveguides to the case of dielectric

waveguides. This will make FMM applicable to a wider class of problems such as

the simulation of optical proximity probes. Also, research is needed to develop multi

level grouping schemes for our FMM algorithm in order to reduce its CPU cost to

O(JVlogiV). One such grouping scheme has recently been proposed by others for the

standard FMM algorithm [51].
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Appendix A

Expansion Coefficients for B UJ

In this appendix, the system of equations Eqs. (2.42) to (2.45) are solved to obtain

the coefficients olo(uj), Po(u), oli(uj,uj') and Pi(uj,uj'). Our discussion follows closely

that of Huttner et al. [7] but contains more algebraic details.

From Eqs. (2.42) and (2.43) we obtain

UJ — Uq
Po(uj) = —-r-aoM

UJ + UJq

Substituting this into Eq. (2.45) we obtain

A(w,wO =
uj-\-uj'

(Jo

UJ + &0
-V(uj')a0(uj).

(A.1)

(A.2)

For Eq. (2.44) we have to be more careful, since the quantity 1/(uj —uj') is singular

at uj = uj'. We write this singularity as

(A.1) and (2.44) give

1

zrkr-r +x(u})5(u-u')
uj — uj — ie

Hence, Eqs.

ai(u,u)') =
uj — uj' — ie

UJq+ x(uj)6(uj-uj') -^^-V(uj')ao(uj). (A.3)
UJ+UJq

To obtain the function x(u), we substitute Eqs. (A.2) and (A.3) into Eq. (2.42),

UJ — UJq

UJ

°° J , G)qV2(lj')
2(uj + d>0)

= f duj
Jo

+ x(uj)S(uj —oj') —
La; —uj' — ze uj + uj'.

Rrom the definition V(uj) =^-^uj/uo, we see that V2(uj) is an odd function of uj.
Hence, the first and third terms inside the brackets in Eq. (A.4) can be combined into

a single integral from —oo to oo,

uoV2(uj) _, N, Qo f°° Jm j V2(uj')UJOV^UJ) ( , , UJQ f°° , ; V*{W
—uJo = it, ^r^x(w) + iTr =-r / dw —2(uj + uj0) 2(uj + UJq) J-oo uj-uj' - %e
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from which we may solve for x(uj),

_ 2(a,2 - flg) 1 f
X(<J) ~ uoVHw) V*(w)J-

x(uj)5(uj - i/) x*(uj')5(uj' - i/)
uj — v — ie

" *,. W>
ujoV2(uj) V2(u) J-oo uj-uj'-ie' v ' }

To solve for a0(uj), we substitute Eq. (2.38) into Eq. (2.40) and evaluate the

commutator with the help of Eqs. (2.35) and (2.36). This gives

5(uj-uj') = ao(uj)al(uj') - Po(uj)PI(uj')

+ f°° du[ai(uj, v)*1(uj', v) - Pi(uj, v)P{(uj', i/)]. (A.6)
Jo

Substituting Eqs. (A.1) to (A.3) into Eq. (A.6) we obtain

+7—^—^ f° dvV2(v) \x(uj)x*(uj')6(uj - v)8(uj' - v)
(uj + ujo)\uj' +uJo) Jo L

uj' — v H- ie

+( 1—) ( 1 ) - (-M (^-)1} • (A.7)
\uj' - v + ie) \uj-v- ie) W + v) \uj + v) J J

Using the fact that V2(uj) is an odd function of uj, the last two terms inside the

brackets in Eq. (A.7) can be combined into a single integral from -oo to oo. Also,

the integral of the first three terms inside the brackets in Eq. (A.7) can be evaluated.

After rearranging terms, we obtain

8(uj-uj') =
a0(uj)ai(u') u>20V2(v)

(uj + u0)(u' + Uo)
+Q2V(uj)V(u')x(uj)x*(uj')8(uj - uj')

u2V2(uj)x(uj) t u>IV2(uj')x*(uj')

2u0(uj + uj) + I dv-. uw /—
wv ' J-oo (uj —v —ie)(uj' —v + ie)

+ » - ; ; * . (A.8)
uj' — uj + ie uj — uj — ie

The last two terms inside the brackets in Eq. (A.8) can be rewritten using Eq. (A.5),

2u0(uj2 - UJ12)lj2V2(uj)x(uj) Q2V2(uj')x*(uj')
uj' — uj + ie — ,.i' —uj — uj ie uj' — uj + ie

&1 /oo

dv
uj' —u + ie J-oo

V2(v) V2(v)
i/ — uj + ie v — uj' — ie

r°° &gV2(z/)
= -2u)0(uJ + uj')- / dv-. ^m T7aJ-oo (uj —v —%e)(uj' —v + ie)
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which is seen to cancel the first two terms inside the brackets in Eq. (A.8). Hence,

Eq. (A.8) becomes

\uj + ujo)\UJ -rUJo)

cto (uj)u0V(uj)x(uj)
UJ + UJQ

The solution of Eq. (A.9) is, up to a phase factor,

UJ + &0

6(uj —uj') ,

Oio(uj) = -uqV(uj)x(uj)

This may be rewritten using Eq. (A.5) as

, . [uj+ Q0\ V((
aoH = ( ~ 1-2 =

\ 2 J M* — UJ

where z(uj) is defined by

&qz(uj) '

1 roo v2(u')
2u0 J-oo uj' —uj + ie

Substituting Eq. (A.11) into Eqs. (A.1) and (A.2) we obtain

'uj —u>o\ V(w)A(w) = (SLza») /H
V 2 / or —Wqz(o,)

oio f V(hQ \ V(w)

Finally, substituting Eqs. (A.5) and (A.IO) into Eq. (A.3) we obtain

ai(uj,uj) = o(uj —uj) + —-
2 \uj—uj' —ie) uj2 —ujoz(uj)
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Appendix B

Derivation of Eq. (2.101)

In this appendix the integral over r in Eq. (2.99) is performed explicitly to give Eq.

(2.101).

Consider the first term of the integral in Eq. (2.99),

Fi(uj) = j°°dTe^Vm](Ta,Ta,T) . (B.l)
«/o

Let {|$s)> s = 0,1,...} be a complete set of eigenstates of the system described by

the the Hamiltonian density % of Eq. (2.16), with eigenvalues Es. From the definition

of the photon Green function Eq. (2.74), we have, for r > 0,

^Wlfl(r«,ra;r) = ~(Am(Ta,T)A^(va,Qi))

= ~<e*ifrilM(p.,0)e-*^ilM(ra,0)>

="f E<«**r4fl(*. 0)e-iHT\$3)($s\AU](ra, 0)>
i

h

where A[j]i0s = A^3Q is the matrix element of A[j](ra,0) between the eigenstates
0 and s, H is the Hamiltonian corresponding to the Hamiltonian density H, and

fta = (Es - E0)/h. Note that fia > 0. Similarly, for r < 0, we have

5

= 4EI4iJVia*T'forT>0- (B-2)

©lflM(r.,r.;T) = «£|Ab],os|Vn-T , forr <0. (B.3)

Substituting Eqs. (B.2) into Eq. (B.l) and performing the integration over r for
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r > 0, we obtain

FlUj) = ly \AW>0s\2 . (B.4)
u ; h^fuj-Qs + ie y }

When we take the imaginary part of Eq. (B.4) as in Eq. (2.99), we obtain

7TImFjMU,. = --Y,\A^\25{wa-Qa), (B.5)

where uja, the atomic transition frequency, is positive.

On the other hand, the Fourier transform with respect to r of ©yjyj is given by

/oo

**TWw(r.,r.;T), (B.6)
•OO

which differs from Eq. (B.l) only in the lower limit of the integration. Substituting

Eqs. (B.2) and (B.3) for r > and r < 0, respectively, into Eq. (B.6) and performing

the integration, we obtain a result similar to Eq. (B.4),

When we take the imaginary part of Eq. (B.7) and evaluate it at uj = uja > 0, we

obtain

ImF?^ = -jEl^],o«|2[%a-na)+5(a;a +a)]. (B.8)

The second delta function in Eq. (B.8) does not contribute, since its argument (ua +

Cls) is always positive. Hence we have

ImFTU,. = -j£l4fl,o.|a*(«k-n.), (B.9)

which is exactly the same as Eq. (B.5). Thus, we conclude that the imaginary part

of the integral over r of the first term in Eq. (2.99) is equal to the imaginary part of

the Fourier transform of ©yjyj evaluated at uj = uja. This establishes the first term in

Eq. (2.101).

Next, consider the second term of the integral in Eq. (2.99),

F2(uj) = f°°dTeiu,TM(T), (B.10)
Jo
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where

M(T) = -T1 I f dWr^]>a-r)emn(ry;T)Fnb](r'-r0). (B.ll)
e£uj£ Jz<o Jz'<o

Using Eq. (2.87) and following the steps leading from Eq. (B.l) to Eq. (B.2), we have,

for r > 0,

M<T) = -i(-ri)[ i, d3rd3r'Fy]m(ra-r)Fn{j](r'-Ta)
n \eluji) Jz<o Jz'<o

x £<*m(r,0)|«.X«.|X.(i',0)>e"in'T , for r >0. (B.12)
3

From Eq. (2.24), we see that 2*y(ri -r2) = Fjifa-ri). Also, X is Hermitian. Hence,

Eq. (B.12) may be rewritten as

M(r) = ~El%os|Vifl'T,forr>0,
h

(B.13)

where

%o* = — / d3rFy]m(Ta-r)(Xm(r,0)\^s). (B.14)
Wi* euja Jz<o UJ

Similarly, for r < 0, we have

M(t) = -^El%os|2e^,forr<0
h

Substituting Eq. (B.13) into Eq. (B.10), we obtain

p(..\ - 1V l%o«l2

(B.15)

(B.16)

On the other hand, using Eqs. (B.13) and (B.15), the Fourier transform with respect

to r of M(t) is

F% = f°° dre^M^)
J—oo

= tEI%n
031
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Eqs. (B.16) and (B.17) differ from Eq. (B.4) and (B.7) only ininterchanging Ay],0a and

yjj])0s. Hence, exactly the same type ofargument as the above leads us to conclude
that the imaginary part of the integral over r ofthe second term in Eq. (2.99) is equal



to the imaginary part of the Fourier transform of M(r) evaluated at uj = uja. This

establishes the second term in Eq. (2.101).

Lastly, consider the third term of the integral in Eq. (2.99),

where

F3(uj) = / dTeitJTN(r), (B.18)
Jo

N(t) = ^J^d3rFd]m(Ta-v)Cmm(T,Ta,T). (B.19)
Using Eq. (2.100) and following the steps leading from Eq. (B.l) to Eq. (B.2), we

have, for r > 0,

N(t) =\ (-^) l<o d'rF^Ura - r) £ [(Xm(r,0)\*.H*.\4a<.*«0))
- ^(ra.OJIS^IJ'Ur.O))] e-'a* , forr >0. (B.20)

The second term inside the brackets in Eq. (B.20) is seen to be the complex conjugate

of the first term,

N(?) = ~££ose-in'T,forr>0, (B.21)
ft s

where

Bo, =^-Im [(Abl(ra,0)|*s>(*s|^m(r,0)>] , (B.22)
is a real quantity. Similarly, for r < 0, we have

^(r) = ~EB0ae^T,forr<0. (B.23)
ft s

Substituting Eq. (B.21) into Eq. (B.18), we obtain

*<"> =i?;dkfc- <B-24)
On the other hand, using Eqs. (B.21) and (B.23), the Fourier transform with respect

to t of N(t) is

F? = r dreitOTN(T)
J—oo

= lE4 f i : i -I . (B.25)
ft*? U3 [uj-ns + ie uj + Qs -ie\ v '

137



The similarity of Eqs. (B.24) and (B.25) to Eqs. (B.4) and (B.7) allows us to conclude,

using exactly the same type of argument as before, that the imaginary part of the

integral over r of the third term in Eq. (2.99) is equal to the imaginary part of the

Fourier transform of N(r) evaluated at uj = uja. This establishes the third term in

Eq. (2.101).
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Appendix C

Green Function for the Matter

Field

In this appendix, the Dyson equation Eq. (2.131) for the matter Green function Q\j'u
for the system described by the Hamiltonian density of Eq. (2.103) is solved exactly

using an extension of the Wiener-Hopf technique. Before solving Eq. (2.131) for the

dielectric half-space, we first consider the case of an infinite dielectric. In that case,

the Dyson equation Eq. (2.131) is modified to read

«bWM) -1]^(ri.rj)" M(ri " rj) +/ d3r3Fjm(n - r3) fi^fo, ra) ,
«/oo

(C.l)

where the integral on the RHS ranges over all of space. As such, this integral is a

convolution whose Fourier transform is a product of Fourier transforms. Taking the

three-dimensional Fourier transform of Eq. (C.l) with respect to ri, we obtain

»(oo)Gj°°'(k) = -MM)-i] l^+fy-^l^w]'
(C.2)

where we have used the fact that the Fourier transform of the quantity .Rj(ri —ra)

given by Eq. (2.24) is

-tk-(n-rs) = _Jd3riFij(ri-TZ)e
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Rearranging terms in Eq. (C.2), we obtain

\sim (1 - i[«(M) -1]) +MM) -1] K{Kf

k2

G(oo)(k) = _6o[6(H)-l](;jje_ik,ra

which can be rewritten as

6im + B(•
where

fc2
G%\k) = -§B^.e-*^,

B =
€(M) - 1

1- i[e(M) -1]

= «i(M)-L

(C.4)

(C.5)

(C.6)

where we have used Eq. (2.133). Now, the inverse of (<$*„ +B*^) is (<Sim - 1%Bk,&t)
as can beverified by direct multiplication. Hence we can solve Eq. (C.5) for Gy (k),

Ga W - e2B\i,3 1+B k2 je

The inverse Fourier transform of Eq. (C.7) is

M<x>)"/„ . \ _ eofa(M) ~!] x c/ ^g> (ri,r2) = -j oyo(ri-r2J

(C.7)

«t(e£(H) - IF * ( 1 ) , (C.8)
5«ftB^ \lrl-r2|/47T€£,(|a;|)e2 dx]

where we have used Eq. (C.6).

Next, we proceed to solve Eq. (2.131) for the dielectric half-space. Inspection

of this equation shows that the second argument r2 of the Green function is fixed

throughout the equation. Hence, we may fix r2 and regard Q^ as a function of only

one coordinate vector rx. Since the dielectric half-space is translationally invariant in

the x and y directions, we may further eliminate the xi and yi variables by taking

the Fourier transform of Eq. (2.131) with respect to these two variables,

^tj^i) -3 6ije-iik*X2+k*y2)6(zi - z2)

+/ dzzFim(zi - zz)Gmj(zz)
Jzs<0
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where a tilde denotes Fourier transform with respect to xi and yi and we have

suppressed the dependence of the Fourier transforms on the transverse momentum

(kx, ky) for simplicity. The two-dimensional Fourier tranform Fij can be found by

taking the inverse Fourier transform of Eq. (C.3) with respect to kz,

dk-e*

^(Z1-Z3) = J 2^ IP" ~ rij
,ikz(zi-z3) (CIO)

The integral over kz can be evaluated by contour integration, by noting that the

integrand has poles at kz = ±iK, where K = Jk2 + k2. The result is

' gjfe-Jrfc.-*) _^(zi - H), for zi >zz ,

where r and r' are vectors with the components

7"t = \jZx,Ky,1i\),

r'{ = (kx,ky,-iK)

Fij(zi -z3) = —x -( ;r, - (en)
€° I $;eK{zi~Z3) ~fo6fa - z^ ' for Zl <z*'

(C.12)

(C.13)

To solve Eq. (C.9) using the Wiener-Hopf technique, we write G^(zx) as a sum

of two functions &^\zi) and G^(zi), the first of which vanishes for z\ > 0and the
second of which vanishes for zx < 0. Substituting this into Eq. (C.9), we obtain

<-),G%>(Zl) + G£>(zi) = - $ije-W**2+kvy*)6(zi - z2)

+ I" dZsFim(zi - 2&)G$(*3)1 , (C14)
J—oo

where the integral is now along the entire z3-axis. As such, this integral is a convolu

tion, whose Fourier transform is a product of Fourier transforms. Taking the Fourier

tranform of Eq. (C.14) with respect to zx, we obtain

<#>(*,) +Gfr'fc.) =-MM) -1] [jv-*"2 +fjjr -f*~) O*.)] ,
(C.15)

where we have used Eq. (C.3).
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It is necessary to identify the regions of analyticity of G\j(kz) and G\j(kz) in
the complex fc2-plane. Taking the limit zi —• +00 of both sides of Eq. (C.14) and

using Eq. (C.ll), we have

J&A'M =-MMJ-ll^-^jf^e^O*)]. (°-16)
using the fact that G^(zi) vanishes for z\ >0. Eq. (C.16) shows that the asymptotic
behavior of G[j\zi) as z\ -* +00 is G\j\zi) ~ e~Kzi, up to amultiplicative factor.
Now, by definition, G\j\kz) = /0°° dzie-ik'ZlG\j)(zi). Since the behavior of the
integrand at large, positive Zi is e~ik*Xl~K*11 this integral converges whenever lmkz <

K. Thus, we conclude that G\j\kz) is analytic everywhere in the complex half-plane
T,. = {kz\lmkz<K}.

Next, we assume that the asymptotic behavior of G^\zi) as zx -> —00 is eMZl,
where \i > 0 in order that (Qpfa) remains finite as zx -¥ —00. By definition,
G{^)(kz) =SlOQdzie-ik'Zl&ij)(zi). Since the behavior of the integrand at large, neg
ative zi is e~ikzZl+flZl, this integral converges whenever Jmkz > —\x. Thus, we conclude

that Gij~\kz) is analytic everywhere in the complex half-plane S'+ = {kz\lmkz > —/j}.
Lastly, we determine the region of analyticity of the first term on the RHS of Eq.

(C.15), considered as a function of kz. This term is proportional to e~ikzZ2. We are

primarily interested in the solution for z2 < 0. In this case, the first term on the

RHS of Eq. (C.15) is analytic everywhere in the upper half of the complex fc2-plane,

S+ = {kz IImkz > 0}. Since E+ C S'+, we see that G{ij)(kz) is also analytic in E+.
Also, because S+nE_ ^ 0, there is a common domain of analyticity of the three

functions G[p(kz),G(-J)(kz), and e~ik*z*.
Rearranging terms in Eq. (C.15), we obtain

[*m (l - |[e(H) -1]) +[e(M) -1] A?t&m

k2
Mn, \ _i_/c?(-)asjik.)+<%>&) =

e0[f(H)-l]v_ik,r,; (c 1?)

which can be rewritten as

8im +B^)G%(k,) +CG<ij\kz) = _f»BV*-. (°-18)

142



where B is given by Eq. (C.6) and

° = i-fr(H)-ir (ai9)
To apply the Wiener-Hopf technique, we must write each side of Eq. (C.18) as a

sum of two terms, one of which is analytic in E+ and the other of which is analytic

in E_. Although G{lj\kz) is analytic in E+, the first term on the LHS of Eq. (C.18)
is not, because the quantity 1/k2 has poles at k = ±iK. Hence, it is necessary to

subtract the pole of this term at k = +iK from both sides of the equation,

(** +B&f) [G#(Jk.) -G%(iK)] +CG<7>(fcz) =-JiWye-*-r»
-^im +B^JG^J(iK). (C.20)

The first term on the LHS of Eq. (C.20) is now analytic in E+ while the second term

is analytic in E_. Next, we decompose the RHS of this equation into a sum of two

terms Q^\kz) and Qij\kz) which are analytic in E+ and E_, respectively. This is
accomplished by using the identity

1 = I = (-L M —• (C21)k2 (kz-iK)(kz + iK) \kz-iK kz + iK) 2iK v ;

Thus,

_ n(+)(ir \_L.n(-)RHS of Eq. (C.20) = Q\J}(kz) + Q\J}(kz), (C.22)

where

Substituting Eq. (C.22) into Eq. (C.20) and rearranging terms, we obtain

(*»• +B^r) K](kz) -G%(iK)] -Q<ip(kz) = -GG^(kz) +Qtf(kz).
(C.25)
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The LHS of Eq. (C.25) is analytic in E+ and the RHS in E_. Because E+ n E_ # 0,

we conclude, based on a theorem in complex analysis [23], that both sides of Eq.

(C.25) must be an entire function, which we denote by Pij(kz). Setting each side of

Eq. (C.25) equal to Pij(kz), we obtain

G^(kz) = G^(iK)+[Sim- 1+B k2 [Q%(kz) +Pmj(kz)} , (C.26)

(C.27)

Substituting Eqs. (C.23) and (C.24) intoEqs. (C.26) and (C.27), weobtain the formal

solution

- n(°°)iG^(kz) = G^(k) + <5im + 2iK(l + B)kz + iK

o K{k(sim--
\(x , B hkm \
\dim+2iKkz-iKj

t(-)G^(kz) = -- [6im +
C

+ B k2

B ki

Pmj\kz) i

G%(iK) + Pij(kz)

G^jiiK)

(C.28)

(C.29)

where we have used Eq. (C.7).

Eqs. (C.28) and (C.29) still contain the unknown quantities G^}(iK) and Pmj(kz).
To solve for these quantities, we first recall that G\f\kz) must be analytic in E+,
whereas there appears to be a pole at k = +iK € E+ due to the factor 1/k2 in the

first and third terms on the RHS of Eq. (C.28). The resolution of this paradox lies

in demanding that the residue of the RHS of Eq. (C.28) at the pole k = %K must be

zero. Substituting Eq. (C.7) into Eq. (C.28) and extracting the residue of the pole at

k —%K, we obtain the condition

B rirT0 = %JL;lfLe-i
e2l + B 2iK

Canceling common factors, we obtain

tr-r2 _

l+B2iK
Pmj(iK)

eormPmj(iK) = -jBrje-tr-r2

(C.30)

(C.31)

Next, we use the fact that the Green function G$)(ri, r2) represents apolarization
wave originating from a point r2, where z2 < 0. This function is expected to have
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a singularity at ri = r2, but not on the surface of the dielectric zi = 0. For this

to be true, the inverse Fourier transforms of Eqs. (C.28) and (C.29) evaluated at

zi = 0 must be finite. Since G\f(zi) = J^e*-*1*?^*,), its value at zx = 0 is
/ %-Gif\kz), and this must be finite. This is so ifG^\kz) -> 0as kz ->• ±oo, or if
G\j(kz) approaches an exponential phase factor ~ e~tkzZ2 askz -± ±oo. Examination
of Eq. (C.28) shows that, in the limit kz -> ±co, the first term, which is given by Eq.

(C.7), approaches an exponential phase factor ~ e~tkzZ2. The remaining terms in Eq.

(C.28), therefore, must approach zero as kz -> ±oo,

J^{h+5S^^]^^+(^-TT5^)p--M =°-
(C.32)

Similarly, the RHS of Eq. (C.29) must approach zero as kz -> ±oo,

We define amatrix a^ =lim^^-too ^ which appears in Eqs. (C.32) and (C.33).
The elements of this matrix are

/ 0 0 kx
,. KiKj

an = hm -=-*• =
J fc*-»±oo k,

0 0 ky I , (C.34)
y KX Ky fcz

where we have neglected terms of order (l/kz). From Eq. (C.34) we obtain

at
lim ¥• = 0 0 0, (C.35)

/ o\ i / KXKX KxKy KXKZ
lim . J = lim 7- kykx kyky kykz

fcs->±oo kz fcs->±oo kz I , , , , ,2
\ f»z"'X r*iz""y ™

0 0 *x \
0 0 ^ = ay. (C.36)

a»x "*y "*« /

Using Eq. (C.34), we may rewrite Eq. (C.33) as

Pijih) = - (Sim +JLo,.) G%(iK) +O(i-) . (C.37)
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Since Pij(kz) is an entire function, it must be a polynomial in kz. Eq. (C.34) shows

that aim is a polynomial of the first degree in kz, but the 0(l/kz) term in Eq. (C.37)

is not a polynomial. Hence the latter must be zero and we obtain the solution

BPij(kz) = -(6im +—oHm)Gm-}(iK) (C.38)

which is valid for all kz. When we substitute Eq. (C.38) into Eq. (C.32), the second

term on the LHS of the latter equation becomes

2iK t |(tT5)^^+ lim ^ +
fc*-»±oo I Kz

dim , B (a2)i

Sim +
B

-ohm2iK(l + B)

where we have used Eqs. (C.35) and (C.36). When Eq. (C.39) is substituted into Eq.

(C.32), the first term on the RHS of the former equation cancels the first term on the

LHS of the latter equation. Thus, we are left with the condition

G%{iK) +{iTb) ^vW ' (a39)

G$\iK) = 0. (C.40)

To solve for the remaining components of G^\iK), we substitute Eq. (C.38) into
Eq. (C.31),

B
—Bre~iTT2
e2 3 =-(r-+2&^)UG-?W- (C41)

The quantity riaim\kz=iK = bm is a vector with the components

02 ] = ( kx ky iK J
( 0 0 kx\

0 0 kv
\kx ky iK J

where we have used Eqs. (C.12) and (C.34). Substituting Eq. (C.42) into Eq. (C.41)

and using Eq. (C.40), we obtain

^Brje-**' =- (l +1) [n<%\iK) +r2G%\iK)} . (C.43)
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Since the dielectric half-space has no preferred direction in the x-y plane we expect

G^(iK) = G22 (iK). Hence, we obtain one possible solution to Eq. (C.43),

c®W = <£>«*) =-e2(1gfB/2)^"
G$\iK) = G&\iK) = 0

<*'«*> =-fe^rbf-*"12- (a44)
Eqs. (C.40) and (C.44) may be combined into a single equation,

<$>«*) =-(j,-^)-^^-- . (C.45)
We now have all the quantities we need in the solutions Eqs. (C.28) and (C.29).

Since we are primarily interested in the solution for zi and z2 both < 0, as shown

in Eq. (2.162), we only need to compute the inverse Fourier transform of Eq. (C.28).

Substituting Eq. (C.38) into the latter equation, we obtain

(aim - ifslF^) G%{iK)' (a46)2iK

The inverse Fourier transform of the first term on the RHS of Eq. (C.46) is given by

Eq. (C.8). For the remaining terms in Eq. (C.46), we first find the inverse Fourier

transform with respect to kz,

G£'(Zl) - G\fM =J"^e*-»[G$\kz)-G\?(k)], (C.47)
where z\ < 0. Since the quantity in brackets in Eq. (C.47) approaches zero as

\kz\ —>• 00, as expressed by Eq. (C.32), we may close the contour in the lower half of

the complex A;2-plane. In doing so, only the pole at kz = —iK due to the 1/k2 term

on the second line of Eq. (C.46) contributes. The result is

G|t)(Zl)-G(r)(Zl) =—^—^e^G^iK), (C.48)
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where a'lm is the matrix a/m of Eq. (C.34) evaluated at kz = -iK. Using Eqs. (C.34)

and (C.40), the summation over m in Eq. (C.48) is seen to range over 1 and 2 only,

and the summation over I reduces to I = 3. Hence,

G%\zi)-G^(zi) =2.K*+ B)rffi> [a3iGV(iK) +a32G$\iK)) e*« •
(C.49)

The quantity in brackets in Eq. (C.49) can be computed using Eqs. (C.34) and (C.45),

e0B[a3iG^(iK) +a32G^(iK)) =-^^2)
e0B

e2(l + B/2)

Substituting Eq. (C.50) into (C.49), we obtain

e-™2 x

e~tT'T2r
3 '

r i

rirj rK(zi+z2)
2Ke

M+)t »(<»), e0B3
Gij (zi) G^ (zi) - 2e2(l +£)(l +J3/2)

The quantity in brackets in Eq. (C.51) can be written as

2K J-oo 2?r

t-i(kxX2+kyy2)

KiKj

Ik2"'

(C.50)

(C.51)

(C.52)

where kj = (kx, ky, —kz) is the image ofthe vector kj = (kx, ky, kz) in the plane z = 0.
Eq. (C.52) can beverified by closing thecontour ofintegration in the lower halfofthe

fc2-plane, since (z\ + z2) < 0, andnoting that onlythe pole at kz = -iK contributes.

The Green function 0J°)w(ri,r2) is obtained by taking the inverse Fourier trans

form of Eq. (C.51) with respect to kx and ky. Using Eq. (C.52), we obtain

;(0)Wi r(oo)w. e0B*gij^TurJ-gf^Ti,^) = 2e2(1 +jB)(1 +B/2)
d3kf a"K rikaS(xi-x2)-Hkv(y1-y2)+ikz(zi+Z2)kiki

J (27T)3
Bl / ^ * cikx(xi-x2)+ikv(y1-y2)+iks(z1+z2)j^
udx2j J (2tt)3

e0Bz
2e2(l + B)(l + B/2)

epBz
2e2(l + B)(l + B/2)

&

dx

dzk

»
dzk& f d'k ik,ri_f,, 1•

dxudx2j J (2?r)3 k2\ '
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where f2 = (x2,y2, —z2) is the image of r2 = (x2,y2,z2) in the plane z = 0. Using

the fact that the three-dimensional inverse Fourier transform of 1/k2 evaluated at r

is l/47r|r|, we obtain

,(0)uj. .(oo)u, „ x _ CqMM) ~ 1]; d2

Gij (ri,r2) Gij fa.r*) 47re2eL(|a;|)[eL(|^|) +l] [^^2i (,|ri - f2L
(C.54)

where we have used Eq. (C.6). Finally, when Eq. (C.8) is substituted into Eq. (C.54),

we obtain Eq. (2.132).
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Appendix D

Integral of £(u)

In this appendix, the integral I defined by

I = f°° duj£(uj)
Jo

r°° , ujoUjV2(uj)
= / duj-

JofO \UJ2 - U)%z(uj)\2

is shown to be unity. Our discussion follows closely that of Huttner et al. [7] but

contains more algebraic details.

We start with the equality

1 1 uj2[z(^)-z*(uj))
UJ2 —LJqZ(uj) UJ2 —WoZ*(uj)

From Eq. (A.12) we find

z(uj) - z*(uj) = --^- f0 duj'V2(uj')
2UJr\ J-oo

|w*-fflg*(w)P •

uj' — uj + ie uj' — uj — ie

~ r duj'V2(uj')[-2m5(uj' - uj)]
2uJq J—oo

TTl

= ^V2(w)

Substituting Eq. (D.3) into Eq. (D.2), we see that Eq. (D.l) may be written as

1 1

(D.l)

(D.2)

(D.3)

7TZ JO
du U —? -2 ( \ 2 ~2^*( \ ' (D*4^UJ2 - uJoz(uj) UJ2 - UJoZ* (UJ) J

Using the fact that V2(u) is an odd function of u, it can be seen from Eq. (A. 12)

that z*(uj) = z(-uj). Hence, the two terms in Eq. (D.4) may be combined,

= ~fm J- oo UJ2 —UJoz(u)
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The integrand in Eq. (D.5) can be shown to be analytic in the lower half of the

complex uj plane [7]. Hence, the integration path can be deformed into a semicircle

in the lower half plane with radius R -» oo,

6=2ir Q

^w^mD' (D-6)
_L f9='
7TZ J9=ir

where Q = Ret9. In the limit R —> oo, we find

''=2* ._ M „ Reie1 r9=2ir
I = ± iRet9dO-

m Je=n R2e2i9

= 1. (D.7)
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Appendix E

Green Function for the Transverse

Photons

In this appendix, the Dyson equation Eq. (2.164) for the photon Green function Vfj

for the dielectric half-space described by the Hamiltonian density % of Eq. (2.102)

is solved exactly using an extension of the Wiener-Hopf technique. Our approach

is similar to that used in Appendix C, but the algebra here is considerably more

complicated. As in AppendixC, we fix r2 in Eq. (2.164) and regard £>g as a function

of onlyone coordinate vector r^ Then we eliminate the xi and yi variables by taking

the Fourier transform of Eq. (2.164) with respect to (xx - x2) and (yi - y2),

figfcO = D\fu(zi)-u2eQ[eL(\uj\)-l][ dzzD^(zx - zz +Z2)D^(zz)
a;2eo[eL(M) - Ipffofr/ + jlft (0) (E>1)

+ [eL(M) +l] ,3 {Zl^Z2,K 3jV;' V }
where bf^u(zi) is the two-dimensional Fourier transform of the free-space photon
Green function Eq. (2.112) with respect to (xi - x2) and (yi - y2),

n(°WZl\ - 1 fdkz (frj--fc^) ikz(Zl-z2) (E2)
Dii [Zl) " e0J 2Truj2-k2<? +iee ' K }

In Eq. (E.l) and (E.2) we have omitted writing the dependence of the Fourier trans

forms D%(zi) and D{^u(zi) on z2, kx and ky. The integral over kz in Eq. (E.2) can be
evaluated by contour integration, by noting that the integrand has poles at kz = ±iK

and kz = ±iS/c, where

S = S(K) = y/K2c2-uj2-ie. (E.3)
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The branch of the square root in Eq. (E.3) is chosen so that the real part of S is

always positive. Thus, Eq. (E.2) becomes

_iJl__JlZp-S(*i-«)/c _ 7"v7\

^33c ^R+li)e ' Zl>22'S^M = 7 *<
to

2^T^e 2K(uj* + ie)e Z\ < z2 •

(E.4)

where r^ and r\ are given by Eqs. (C.12) and (C.13), and

Qi = \kx,ky, I ,

Qi — [kx,Ky, J .

To solve Eq. (E.l) using the Wiener-Hopf technique, we write Dfj(zi) as a sum of

two functions D\j(zi) and L>\j'(zi), the first of which vanishes for z\ > 0 and the
second of which vanishes for zi < 0. Eq. (E.l) then becomes

4t>(Zl) +b\j\Zl) = bf(Zl) - <A„[eL(M) - 1] r d*JC(*. -z3 +z2)
J —OO

(E.5)

(E.6)

»(+)/. \ j_ ^oMM) - I]2 fM* 1 ^

*D*{Z*] + [S+l| C(21 +^)^(O), (E.7)
where the integral is now over the entire 2?3-axis. As such, this integral is a convolution.

Taking the Fourier transform of Eq. (E.7) with respect to z\, we obtain

D^\kz)+D^\kz) = D^k^-^eoleUl^-llD^k^e^D^)
q)2e0^(H)-l]2 (0)„ rt J_-„

+ [«L(M) +i] * {z) kdv{0)' (R8)
where the Fourier transform with D\yw(kz) with respect to zi can be obtained from
Eq. (E.2),

>(0)wDT(kz) = f_ 1 (fr-») _-«-
€0 u2 —k2& + ie

To determine the regions of analyticity of D\j (kz), we proceed as in Eq. (C.16)
and take the limit zx —>• H-oo of both sides of Eq. (E.7). The LHS of this equation
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then becomes \imzl^+coDlj\zi). When Eq. (E.4) for zx > z2 is substituted into the
RHS of Eq. (E.7), we see that, because of the D\fu factor in each of the terms on
the RHS of Eq. (E.7), the latter RHS can be written as a sum of a term proportional

to e~5zi/c and a term proportional to e~Kzi. Examination of Eq. (E.3) shows that,

for K # 0, the real part of S/c is always smaller than K. Hence, in the limit

zi -+ +00, e~Szi/c » e~Kzi. The asymptotic behavior of D\j\z{) as zi -> +00 is
therefore b\j\zi) ~ e"5zi/c, up to amultiplicative factor. By definition, D\j'(kz) =
JQ00dzie~ikzZ1D\j\zi). Since the behavior of the integrand at large, positive zx is
^ Q-ikzzt-Szi/c^ tnjs integral converges whenever Im kz < Re S/c. Thus, we conclude

that Di~\kz) is analytic everywhere in the complex half-plane E(_) = {kz | Im kz <

Re S/c}.

Next, we assume that the asymptotic behavior ofD\j }(z{) as z\ -» —00 is r^f ef

where \i\ > 0 in order that D\p(zi) remains finite at zx -¥ —00. By definition,
D\p(kz) = jlQOdz1e-ikzZ1D\f(z1). Since the behavior of the integrand at large,
negative z\ is ~ e-***i+vizii this integral converges whenever Im kz > —fix. Thus,

we conclude that D^\kz) is analytic everywhere in the complex half-plane S(+) =
{kz IIm kz > -fii}.

From Eq. (E.9), the first term on the RHS of Eq. (E.8), D^(kz), has poles at kz =
±%K and kz —±iS/c, since the denominator (uj2 - k2<? + ie) = (iS + kzc)(iS - kzc).

Hence, this quantity is analytic in the strip A = {kz \ - ReS/c < Im kz < Re S/c}.

Since E(+) PI E(-) n A ^ 0, we conclude that there is a common domain of analyticity

of the three functions D\f(kz),D\~)(kz) and D\fu(kz).
We now proceed to solve Eq. (E.8). Rearranging terms in this equation, we obtain

{[^ -n(w) -fcV +ie] sim+nM^}^i£\ fe +D^(kz) =D<t(k,)

where U(uj) and E(cj, K) are the bulk and surface photon self-energies divided by e0,

U(uj) = -o;2[eL(H) - 1], (E.ll)

154



S(oj,K) = w'MM) -1]2

Ideally, we would like to factorize the 3x3 matrix in braces on the LHS of Eq.

(E.IO) into aproduct M^M^ such that M^ is analytic in E(+) and the inverse
of M.\j is analytic in E*~). However, this was found to be difficult. Instead, we
factorize the 3x3 matrix in braces into the following factors,

M& =(iL - hc^ +i(S - i)Mi,
M^ =(iL +kzc)S{j +i(S - L)Z&,

where S is given by Eq. (E.3) and

L = L(K) = yjK2c? +U(u) -uj2-ie.

(E.12)

(E.13)

(E.14)

(E.15)

The branch of the square root in Eq. (E.15) is chosen so that the real part of L is

always positive. The inverse matrices are

1
M)(-)-i _

%3

<+)-! _M%

iL — kzc

iL + kzc

i(S - L) kjkj
lij — KZC K

i(S - L) kjkj
ij iS + kzc k2

(E.16)

(E.17)

Eq. (E.14) shows that M.\j is analytic in E<+) except for a pole at kz = +iK.
Similarly, Eq. (E.16) shows that M\j is analytic in E<~) except for a pole at
kz = —iK. As a result of these unwanted poles at kz = ±iK, the standard Wiener-

Hopf technique must be extended to deal with these singularities. This consists of

subtracting the unwanted poles from Eq. (E.IO). After multiplying this equation

throughout by (iS —kzc)M^~l and rearranging terms, we obtain

(+)M
D$(kz)roj (+)_ /1V1-J

iS + kzC
+M'-'-1 [D$(kz)(iS - kzc) - A%]

D%(kz) + Z(u,K) a,2_fc2c2+i£I)«(0)
l(+) /)(+) (-)-l A-)-M%A% - Mr'-'A^j,
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where we have subtracted quantities M^A^J and M^}'lA^] from both sides of
the equation so as to make the residues of the poles at kz = iK and kz = —iK due

to Mim and M^_1 in the first and second terms, respectively, on the LHS ofEq.
(E.18) vanish. As a result, the first and second terms on the LHS of this equation are

analytic in E(+) and E("\ respectively.

The RHS of Eq. (E.18) can be simplified by using the fact that km (6mj - ^r1) =
0. Using Eqs. (E.9) and (E.16), the RHS of Eq. (E.18) is simplified to:

RHs°f(B-18) =aL -icnT}^ ii*-*^+w>****w\
-M^A^-mX-1^. (E.19)

We now have todecompose the expression Eq. (E.19) into asum of two terms P}j(kz)
and Pij~\kz) analytic in E(+) and E(_), respectively.

Consider the first term inside the brackets in Eq. (E.19) proportional to e~lkzZ2.

Depending on whether z2 is positive or negative, this term has an essential singularity

at Im kz ->• +00 or Im kz ->• -00, respectively. We are primarily interested in the

solution for z2 > 0. Hence, we assume in the following that z2 > 0. In that case, the

quantity in brackets in Eq. (E.19) must be associated with 2*}'(fo), since it has an

essential singularity in E(+). However, the factor in front of the quantity in brackets

in Eq. (E.19) has poles in E(-) at kz = -iS/c and kz = -iK. Hence, before we may

assign the first term on the LHS of Eq. (E.19) to Pif\kx), we must subtract these
unwanted poles in E(-) from this term. The subtracted poles, since they are in E(~\
can then be added back as part of PJ?\kz). For the unwanted pole at kz = -iS/c,
the quantity F}j\kz) that must be subtracted is l/(iS+kzc) times the residue of the
first term on the RHS of Eq. (E.19) at this pole,

*a w - (L + s)(iS+ kzc) -e-Sz2/c5mj +E(w, K)Sm3D^(0)] . (E.20)
€0 J

Similarly, for the unwanted pole at kz = -iK, the quantity F$p(kz) that must be
subtracted is l/(iK + kz) times theresidue ofthe first term on the RHS ofEq. (E.19)
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at this pole,

FW(kz)
2K(L + Kc)(S - Kc)(iK + kz)

-e-Kz26mj +E(uj,K)8msf^j(0)

(E.21)

Next, we have to decide whether the last two terms on the RHS of Eq. (E.19)

should be assigned to E^+^ or E*-). Examination of Eq. (E.16) shows that the inverse

matrix M-ij has three poles in YS+\ namely, kz = iL/c, kz = iS/c and kz = iK, but

only one in E^~^ at kz =—iK. Hence, it is simplest to assign the term [—M\m J^n]}
in Eq. (E.19) to Pif\kz) and to remove the unwanted pole at kz = —iK from this
term, by subtracting the quantity F^' (kz) from it,

(s-Ly^jt]
*§"(*.) = 2K(L + Kc)(S + Kc)(iK + kz) '

The remaining term [-JWJ^A^] in Eq. (E.19) can be assigned to p£\kz), after
we have removed the unwanted pole at kz = +iK from it by subtracting the quantity

F^(kz) from it,

fW/** _ (S-L)nrmA^j
*V {Kz) ~ 2K(kz-iK)

(E.22)

(E.23)

Summarizing, we have decomposed the RHS of Eq. (E.18) into a sum of two terms

P^(kz)^P^\kz),

(+)M

»(-) {^-k-¥)
*$•'(*.) = (iL —kzc)(iS + kzc)

-e-ik'Z28mj + H(uj, K^msD^O)
.€o J

-M^~lAt] - F^(kz) - F™(kz) - F$>(kz) +F$(kz), (E.24)

Pj*\k.) = -M£^)+41)(*0 +^

where FJp(kz) to F$\kM) are given by Eqs. (E.20) to (E.23).
Replacing the RHS of Eq. (E.18) by P\p(kz) +PJf\kz) and rearranging terms,

we obtain

iS+ kzc ^nj
P£\kz) = -M^-l[D^(kz)(iS-kzc)-J^]

+P£\kz). (E.26)
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The LHS of Eq. (E.26) is analytic in E<+> andthe RHS in E<~>. Because E<+> nE<"> /

0, we conclude that both sides of Eq. (E.26) must be an entire function, which we

denote by Rij(kz). Setting each side of Eq. (E.26) equal to Rij(kz), we obtain

£><t>(fc2) = (iS +kzc){Af +M^-x[P^(kz) +Rmi(kz)}}, (E.27)

D\j\kz) = ^^{4-) +̂-)[Pil)(fc2)-iJmJ(^)]}. (E.28)
Substituting Eqs. (E.24) and (E.25) into Eqs. (E.27) and (E.28), we obtain the formal

solution

z><;>(*2) = (iS+m*i&m [*#(*.)+*S(*o+*$(**) - *$(*,)
+-Rn^(*r)] , (E.29)

><-)/!. \ - £*» *ii(fen -
Jvft-) = ^cl^^SA^ re'ifc"2^+s^^)^^(°)

i

(iS-fczc)(iS-l-A;2c)

"Js^*^ '̂(M+*S(*J+*®(W "^)(W+**(*J]' (R30)
where we have used Eqs. (E.13), (E.9) and the fact that km (6mj - *=£•) =0in Eq.
(E.30).

Eqs. (E.29) and (E.30) still contain the unknown quantities rmA£j, r'mA£j, Rij(kz)
and D%j(0). To solve for these quantities, we first use the fact that the photon Green

function V?j(ri,r2) represents the radiation field due to a point source at r2- For a

point source in air, 22 > 0, this Green function is expected to have the same singularity

at ri =r2 as the free-space photon Green function Vifw(ri —r2). Hence, we expect
D\P(Z1) and [d£\zi) -D^)uJ(z1)] to be finite at zx =0. Now, b\f(Zl)\z^ =
!^D^(kz) and [fW-fl^W]^ =J£ W(kz)-D^(kz)\ ^"hese
quantities are finite if

lim D$\kz) = 0, (E.31)
ks-*±oo J

lim [Lf\k.) - D<V"(kz)} = 0. (E.32)
fcz->±CO
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Examination of Eqs. (E.17) and (E.13) shows that \imkz^±oo(iS + kzc)M^~l =

rimfc^j-oo £!lkMc = ^im' ^so' exai»ination of Eqs. (E.20) to (E.23) shows that
hm^±00jF$°(A;z) =0 for n=1to 4. Using these results in Eqs. (E.29) and (E.30),
we obtain

lim D\?(kz) = lim Rij(kz), (E.33)
ks—>±oo kz—+dboo

Jb^fc,)-!$>»(*.)] = J&..-JW*.). (E.34)

Substituting Eqs. (E.33) and (E.34) into Eqs. (E.31) and (E.32), we conclude that

Rij(kz) = 0. (E.35)

Next, we use the fact that D\j (kz) must be analytic in E^, respectively. How
ever, Eqs. (E.27) and (E.28) show that D^\kz) contain terms proportional to 1/&2
due to the matrices Mim and M.\m\ The resolution ofthis paradox lies indemand

ing that the residues of the RHS of Eqs. (E.27) and (E.28) at the poles kz = ±iK,

respectively, must be zero. The latter poles come from the terms proportional to

^Pmffa) in Ec*s- (E.27) and (E.28), respectively, since Rmj(kz) = 0. Canceling
common factors, we obtain the conditions

rmP$(iK) = 0, (E.36)

rmP^(-iK) = 0. (E.37)

According to Eq. (E.36), we have to evaluate PJ^(kz) given by Eq. (E.25) at kz =iK.
Evaluating Ftj\kz) to Fij(kz) at kz = iK is straightforward, since these functions
are finite at kz = iK according to Eqs. (E.20) to (E.22). However, Eq. (E.23) shows

that FJj (kz) is singular at kz = iK. In fact, this singularity was chosen to cancel a
similar singularity in the first term of Eq. (E.25). Hence, we should take the limit of

the latter term and Fij(kz) together,

k\\mK[-Mt)^-F^(kz)} = -i(L +Kc)A%

kx-*iK kz —%K
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k2 + iK 2iK
4#, (E.38)



where we have used Eqs. (E.14) and (E.23). The quantity in brackets in Eq. (E.38)

can be expanded in a Taylor series about kz = iK. The zeroth order term vanishes, as

expected for the above-mentioned cancellation of singularities. The first order term

leads to a finite result, and we have

i(+)\\mK[-Mt)A^-F^(kz)} = -i(L +Kc)A%
O I fciKm

kz^iK

-i(S - L)
dkz \kz + iK

<+)= -i(L + Kc)A\j}-i(S-L) kz + iKldkz \kz + iK
kr

kz-xK

ks=iK

(E.39)

When we multiply both sides of Eq. (E.39) by r{ and sum over i as in Eq. (E.36), the

second term inside the brackets in Eq. (E.39) is seen to be proportional to riki\ks=iK =

r{r{ =0, by Eq. (C.12). Hence, using the fact that (fc^fe)^ =iK =1/2, we obtain

Urn ri[-Mt^-F^(kz)} = -i\L+Kc+\(S - L)
Substituting Eq. (E.40) in Eq. (E.36) and using Eqs. (E.20) to (E.22), we obtain the

condition

i(S-L)

r 4(+)

(+)0 = ~(L + S + 2Kc)rmAZ!-
2(L + Kc)(S + Kc)

(-)
7*mi^mj

rt^m ^ \-e-Sz2Nmj +E(u,,i^%0)
(L + S)(S + Kc) Le0

' 2(L+ Kc)(S-Kc)

where we have used the fact that nr'i = 2K2. Eq. (E.41) is the first of two algebraic

equations for the unknowns rmA^j and r'^A^J.
Next, according to the second condition Eq. (E.37), we have to evaluate Pm/ (kz)

given by Eq. (E.24) at kz = -iK. According to the discussion preceding Eq. (E.21),

the term -F^\kz) in Eq. (E.24) is used to cancel the singularity at kz = -iK in the
first term of this equation. Hence, wemusttake the limitof these two termstogether,

-e~Kz25mj + T,(uj, K)6naD%(0)
L€q
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(S- —kikr\\otm kT-J
lim

ks-*-iK I (iL —kzc)(iS + kzc)
1

,—ikzZ2

eo
•5mi +E(a;,ii:)(Jm3^(0) (2),-W(kz)

dk. \(iL-

(L + Kc)(S-Kc)
kiKm

kzc)(iS + kzc)(kz - iK)

eo
e-Kz28ij + i:(u,K)8iZD^(Q)

-e-ik'Z2Smj +E(w, iiT)(5m3^(0)
ks=-iK

(E.42)

by expanding (kz + iK) times the first term on the RHS of Eq. (E.24) in a Taylor

series about kz = —iK. When the partial derivative in Eq. (E.42) is expanded, it can

be written as the sum of a term proportional to 8& and one proportional to ki, as in

Eq. (E.39). When we multiply both sides of Eq. (E.42) by r[ and sum over i as in

Eq. (E.37), the term proportional to ki evaluates to zero, since riki\kz--iK —f'i^'i —0

by Eq. (C.13). Hence, Eq. (E.42) gives

(g. _ kjkm \[Oim k2 j >—ikzZ2

lim rf
kz-*-iK % (iL —kzc)(iS + kzc) [ e0

•4* + E(w,Ji04rtl%(o) -n?(kz)

(L + Kc)(S - Kc)

(-iK)r'm
(L + Kc)(S - Kc)(-2iK)

2(L + Kc)(S-Kc)

Next, according to the discussion preceding Eq. (E.22), the term —Fij(kz) in Eq.

(E.24) is used to cancel the singularity at kz = —iK in the second term of this

equation. Hence, we must take the limit of these two terms together,

-<TK'Hmj + 2(<j, K^DSfl)
£0

-e-K*>6mj + E(w, WSnaD&Qi)
«o

-e~KzHmj + S(w, KfrJ^Q)

_ iAtf
L + Kc

i(S - L)kikmA{-]

(E.43)

hmK[-Mt)-lA^]-FJP(kz)} =

+
dk2

(-)
mj

(iL - kzc)(iS - kzc)(kz - iK)
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kz=-iK

by expanding (kz + iK) times the second term on the RHS of Eq. (E.24) in a Taylor

series about kz = —iK. As before, when we multiply both sides of Eq. (E.44) by



r\ and sum over i, only the term proportional to 8iz in the expansion of the partial

derivative in Eq. (E.44) contributes,

lim r'l-M^-'A^-FWik)] = ^42 i(S - L)(-iK)r'mA%
,2?«M ,M"» ^ ** {Kz)l L+Kc (L +Kc)(S +Kc)(-2iK)

L + S + 2Kc , (_)

0 =

= i- •rmA\
2(L + Kc)(S + Kc) m mj '

The remaining terms —F$j\kz) and F$\kz) in Eq. (E.24) are finite at kz = —iK.
Substituting Eqs. (E.43) and (E.45) into Eq. (E.37) and using Eqs. (E.20) and (E.23),

we obtain the second condition

2(L + Kc)(S-Kc)
L + S + 2Kc

-e-Kz28mj +E(w, IQSnatyiO)
Co

! A(~) _ i(S-L) (+)
+i

2(L + Kc)(S + Kc)

Ti{8im-^) ri

(E.45)

e-^'^j + ZfaK^DUO) . (E.46)
(L + S)(S-Kc) Le0

Eqs. (E.41) and (E.46) are two algebraic equations for the two unknowns rmA^J
and r^4tf • The solution can be obtained by applying Cramer's rule,

fL + Kc (S +Kc)(L + Kc)(L + S+ 2Kc) ,\
\S-Lri+ (S-L)2(S-Kc) Ti}

where

(-) _
rm-™mj

2i

(S- —3i£ai\ M

.CoL + S

2i(S + Kc)2
A0(S - L)2(S - Kc) m

lAnj' " Ao\(S-L)(S-

eo
e-^Smj+ ZfaKtfrrxD^O) , (E.47)

L + S + 2Kc
•Ti —

Kc) l (S-L)2(S + Kc)

L=—±± \±e-s»/°smj +E(Wj jcw^o)
LCq

«}
L + S

2s

A0(S - L)2(S - Kc)
^e-x^Smj + XfaK^DUO) , (E.48)

Le0

A0 = 1 +
L + S + 2KC

S-L
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The solutions Eqs. (E.47) and (E.48) still contain the unknown D%j(0), which,

as pointed out at the beginning of this Appendix, is the Fourier transform of the

photon Green function V%j with respect to (x\—x2) and (2/1—2/2) evaluated at z\ = 0.

To solve for D^(0), we must substitute Eqs. (E.47) and (E.48) into Eqs. (E.22) and

(E.23) and the latter two equations into Eq. (E.30). Then we take the inverse Fourier

transform of Eq. (E.30) with respect to kz to obtain Dfj(zi) and set i = 3 and z\ = 0.

This will yield an algebraic equation for the unknown 5^(0).
The inverse Fourier transform of Eq. (E.30) with respect to kz is defined by,

mzi) = j~J^e**ZlDv\k*)- (E-50)
When z\ < 0, the contour of integration is closed in the lower half of the &z-plane.

The result is zero, since D\j\kz) is analytic in E^-). Hence, we only need to consider
the case z\ > 0. In that case, the contour of integration is closed in the upper half

plane. We consider each of the terms in Eq. (E.30) separately.

The inverse Fourier transform of the first term D^(kz) is Lr^w(zi) given by Eq.
(E.4). Since we assumed in the above discussion that Z2 > 0 and are going to take

the limit z\ —• 0, we should use the formula for z\ < z2 in Eq. (E.4).

The second term on the RHS of Eq. (E.30) contains the denominator (uj2 —k2c? +

ie) = (iS + kzc)(iS —kzc). Hence, there is a pole at kz = iS/c in the upper half plane

due to this denominator, as well as a pole at kz = iK due to the kj^- term in the

numerator. Thus, the inverse Fourier transform of the second term in Eq. (E.30) for

z\ > 0 is

+2K(S/Kl)(S-KcfK']^K)^0)- (E-51)
Eqs. (E.20) to (E.22) show that F$\kz) to FJp(kz) are analytic in the upper half

plane. Hence, the terms involving F^fe) to F^\kz) on the RHS of Eq. (E.30) have
simple poles at kz = iS/c and kz = iK in the upper half plane due to the denominator
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(iS - kzc) and the ^ term in M\J. Thus, the inverse Fourier transform of the
F$j\kz) to FJp(kM) terms in Eq. (E.30) for zx >0is

£ f^* fe^y ^ [^w+#<*>+^m
=̂ ^ (&. -^f) a"*"* [j$(iS/c) +F%(iSlc) +F^(i5/C)]

-Jf5"_^e)nrme-^ [f*/(«0 +f«(aO +1^(00] - (E.52)
Eq. (E.23) shows that F}f(kz) has a pole at kz = iK in the upper half plane.

Hence, the term involving F^(kz) on the RHS of Eq. (E.30) has an additional double
pole at kz = iK due to an extra l/(kz —iK) factor from the kjj^- term in M\^. Thus,
the inverse Fourier transform of the Flj(kz) term in Eq. (E.30) for zx > 0is

rdkz^MtiF$(kz) _ (S-L)( _^\-szl/CF(*)(iS/c)
J-oo 2ire iS- kzc " c V 92 Je *mi(«6/c)

z(L-*c)(S-L) g w+)
2ff(S-irc) ,rwi^

dfc2 \ 2JRT(i5' - kzc)(kz +iJQr'rm/i"v J . (E.53)
ks=iK

In expanding the partial derivative in Eq. (E.53), only the term involving J^ = Sis
contributes, since otherwise the factor (kiri)\kz=iK = nri — 0. Hence, Eq. (E.53)

becomes

i(L-Kc)(S-L) K (+) _ i(S-LY K A+)
2K(S-Kc) r'r"^ 4K(S-Kc) r'TmJimi

i(S +L-2Kc)(S-L) K A+)

The inverse Fourier transform bij(zx) ofEq. (E.50) for zx > 0is now given by the
sum of Eqs. (E.4), (E.51), (E.52) and (E.54). Using Eqs. (E.20) to (E.23), we obtain,

for zx > 0,
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sgfo) =fifw -[^ («, -sa) e^/-+^e-*-] S(«, *)S (0)

S-L

2Sc(L + 5)
fo - QiQi

S-L

2K(L + S)u2
S-L

5lm _ «fet e-^/c

(x iidi\''e>-szx
2K(L+lCc)u72 \dil " If) TlT™&

S-L

-e~Sz2lc8mj + X(uj,K)8m3D%j(0)
€o

-e-Kz28mj +E(w, jRr)4»s£&(0)
Co

un (8lm-^)e-Kz> l^e-^Srnj +n^KVrnsDUO)
€0

4K(L + Kc)(S-Kc)
2rirme-Kzi -e-Kz28mj + E(w, JOfa*6&(0)

Le0

i(5 - L)2 S-±^e-^- <hK& + *)]_-s»,c\j ,(-)1r A(_)r TmJ±mj

e-s*ArmA£] , (E.55)
2K(L + !Tc)(S + tfc)2 [ 2(5 - A"c)

i(S-L)2 {S + L-2Kc Kz
2K(S-Kc)\ 2(S-L) l

fc*(* - f)
r«-

where we have used the fact that (5 + Kc)(S —Kc) = —a;2.

The RHS of Eq. (E.55) still contains the unknown 1^(0). To obtain an algebraic
equation for this unknown, we set %—3 and z\ —0 on both sides of Eq. (E.55). Since

the unknown 1^(0) appears also in the quantities r'mA^j and rmA£j on the RHS
of Eq. (E.55), we rewrite the latter quantities by separating out the terms containing

d%(0),

rmA% = a^ +V^O), (E.56)

rmA# = aJ+) +Wk£g(0), (E.57)

From Eqs. (E.47) and (E.48), we obtain

VI =
2i jL + Kc

\ S-Ln +
(S + Kc)(L + Kc)(L + 5 + 2ifc)

•;}
x

2i
Wi = --r-

(*»-y)
L + S

(S - L)2(S - Kc)

2K(S + Kc)2
V(uj,K)-

A0(S - L)2(S - Kc)
L + S + 2Kc

T,(uj,K), (E.58)

+Jfc)rfJu-A0 1 (S-L)(S -Kc) f (5- L)2(S

x
(fa - y)

X + 5
£(",#)-
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A0(5 - X)2(5' - JRTc)
E(w,jr). (E.59)



Also, ofj *and a^ are obtained from Eqs. (E.47) and (E.48), respectively, by setting
.D3-(0) in these equations to zero. The resulting quantities can be written in the form

where

«P =An(«„-MJ+Ar;^-^+Ar;
= A Ti-

K(K + S/c)gj
+ &

K(K - S/c)qj

a?> =<v;(^-M)+a*r4(*,-2&)+«»r;
= «i ri~

K(K-S/c)qj
+ a2 ri -

K(K + S/c)qj

_ 2z(L + ifc) 1 Wc
Pl " A0(S-L)(L + S)e0

2i(S + ATc)(L + Kc)(L + 5 + 2ifc) 1 _5zjsA
^2 A0(S-L)2(5-i«:c)(L+S) e0e

2z(S + irc)2 1
P3 =

a2 =

a3 =

,-1^2

A0(S - L)2(S - Kc) e0
2t 2.

AQ(S-L)(S-Kc)(L + S)eo
-Sz2/c

2i(L + S + 2Kc) -Sz2/c

A0(S-L)2(S + Kc)(L + S)e0
U 1 0~KZ2

S$(0) = D{$u(0)-(cnW1 +a2V1-U1)D%j(0)

+ /33r'j, (E.60)

+a»rj, (E.61)

(E.62)

(E.63)

(E.64)

(E.65)

(E.66)

(E.67)
A0(S-L)2(S-tfc)e0 V

Setting i = 3 and zx = 0 onbothsides ofEq. (E.55) and using Eqs. (E.56), (E.57),

(E.60) and (E.61), we obtain an algebraic equation for 1^(0),

S-L

2Sc(L + S)
S-L

831 —
Qtfi )(<»-?)? -Sz2/c

2K(L + Kc)
S-L

uj2 V 0 / €o
,-^22

2tf(Z, + S)a;2
S-L

7*3^ Oij - —y

r$r
4K(L + Kc)(S-Kc)2 * 3 eo
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-Sz2/c

e0

' ±e~Kz2 - aia^ - a2a\ ), (E.68)



where

(7! =

a2 =

Ui =

(S-L)2 (S + L-2Kc
2(S-Kc)\ 2(5-L) +

(S-L)2 / S + Kc

1-
s(# - f)

}•
2(L+ Kc)(S+ Kc)2 \ 2(5 - life)

1_ / JP_\ if
2Scl g2c2J + 2o;2

+

g2c

1 +
S{K + &)

c

q2c ]}•

(E.69)

(E.70)

S-L ' 2S2 S2(K2 + f)
1 + -^7 + " C +

(S - L)iT
2(L + ii:c)a;2 _'

(S - L)JST
4(L + #c)(S-ifc)2'

1 +
S(K + *)

2Sc(L + S)

(S - L)K
+2(L +S)w2 _

q2c2 <?(?

1+S^±i)"
g2c

Expanding out the products in Eq. (E.68), we obtain

(i + (7lwk + <r2vi-r7i)55(o) = Sg^o)
S-L

2Sc(L + S)

i(S - L)

zS(g; - gj) , iS(K2 + f )gj-
fa s + 7~c>V q2c

1 +2(L+ Kc)uj2 _

i(S - L)

S\l
S(* + f)

g2c

, 1
r7—e
Je0

-.KZ2

r-s -
K(K + Z)qj ±e-Sz2/c

eo2(L + S)o;2LJ
i(S - L) , 1

q2c

(E.71)

1-Szi/c
eo

•Xi —e Kz2 —criay —a2a3(-)

4(L +tfc)(S-li:c)2''eo" ~L~> ~'~J ' (E'72)
When Eqs. (E.4), (E.60) and (E.61) are substituted into Eq. (E.72) and the fact that

(q'j -~ Qj) = (2iS/c)8zj is used, we obtain the solution -Djy(O) which can be written in
the form

^3j(°) = 71^ + 72^ + 73^ + 74^,

where

* = AT
S-L

2Sc 2Sc(L + S)
1 +

2S2 J_e-5z2/c
q^c2 )\ e0

S(K + f)
72

i i(S - L)= ±(l
Ax \{2uj2 2(L + Kc)uj2

i(S - L)
4(L + Kc)(S-Kc)2

1 +
q2c

(E.73)

(E.74)

I1'J e0
-JCz2 _ ax(ax + a8) - <r2(p2 + ft) , (E.75)
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73 =
Ax

^ = AT

i(S - L) 1
2(L + S)w2 e0

i

-esz2/c _ aiQi2 _ G2px

2(L + S)u2q2
i(S-L)(K2 + %) i(S - L)K(K + f)

2g2c2 2(L + S)q4c2 2{L + S)uj*q* J e0

^fh('-f)^('+l)]+'v[A(J,r+f)+A('-?)
(E.77)

and Ax = (1 + (TXWi + a2Vx - Ux).

This completes our determination of all the unknown parameters in the quantity

Df(zi) given by Eq. (E.55). Finally, the photon Green function £>g(rx,r2) is calcu

lated by evaluating the inverse Fourier transform of .fig(21) with respect to kx and ky

numerically,

l$(ri,i4) = j l^e^-^^-^D?^). (E.78)
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Appendix F

Derivation of Eq. (2.191)

In this Appendix, the integrals over r and r' in Eq. (2.190) are evaluated to give Eq.

(2.191). First, we consider an integral of the form

d2 i v^(ri'F2) =Lo^Gxx^lrx-rsl)!;

+4tt / d3r3 (-r—1 r) -—8(r3 - r2),
Jz3<o \oxii \Ti —r3|y ox2j

dxSmdx2j \Tz-r2\)
where z2 > 0. Integrating by parts and using the fact that the Laplacian of 1/r is

—4l7t8(t), we obtain

d2 1

(F.2)

where d?ss = dx$dyz. Since z3 < 0 and z2 > 0, the delta function on the second line

of Eq. (F.2) does not contribute. Hence,

32

^(rijr2) = ^^/^Llri-ral V^3 |r3 - r2|
d2 ( d r£c 1 1

dxudx2j \ dz2J 3|rx - s3| |s3 - r2|
where s3 is an integration point on the plane z = 0.

We now have to consider the integral

X = [d2ssr^- 1
J Iri -

Using the representation

rx - s3 |s3 - r2|

rf3fc **Jkr(T-I>)_1 = r d'l
-r'l J (2?r(2tt)3 k2
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Eq. (F.4) becomes

r d*k [6W_ r » (4tt)2 ik.ri-ik>.r2-iac.-^).s3
M" J (27cyJ (2n)* J* S*Vk12*

=/(^/^^k;'-^^2^-fc^-^
/d^k r i eikzZl~iksZ2+ikx(xl~X2)+iky(yi~y2)

W Jdk* *(*j +*g +*?) • (F-6)
Since 22 > 0, the contour of integration over k'z maybe closed in the lower half-plane,

and we obtain a contribution from the pole at k'z = —iK,

X = f dk S7C cJkzZl-Kz2+ikx(xi-X2)+ikv(yi-y2) (p J\
J (27r)3 Kk2

The integral over kz in Eq. (F.7) can be evaluated by closingthe contour in the upper

(lower) half-plane for zx > 0 (zx < 0),

_ r dkxdky 4ir -K\z1\-Kz2+ikx(x1-x2)+ikv(yi-y2) /p q\
L - $ (2tt)2 K2& ' K }

Thus,

d_r _ f ^fcg^y47T2 -K\zi\-Kz2+ikas(xi-x2)+ikv(yi-y2)
dz2 J (2tt)2 JiT

_ fmdJ^_^_eikx(xi-X2)+ikv(yl-y2)-Hkz(\zi\+Z2) ? /pg)
7 (27r)3 A;2

where we have used the fact that ! ^(l/k2)eikzZ = e~K^/(2K) and noting that

(\zx\ +z2) is always positive. Comparing Eq. (F.9) with Eq. (F.5), we see that, when

zx>0,

3 X = r-^r-7, zx>0, (F.10)
dz2 \rx —f 2

where f2 is the image of r2 in the plane z = 0. When zx < 0, we have

d I = r-^-r. *<0. (P.11)dz2 |rx-r2

Substituting Eqs. (F.10) and (F.ll) into Eq. (F.3), we obtain, for z2 > 0,

d2
iij(ri,r2) =

2^, zx>0,

dxXidx2j
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We are now ready to evaluate the integrals in Eq. (2.190). First, we perform the

integration over r'. The delta function term in Fn\j)(rr —ra) given by Eq. (2.24) does

not contribute, since z' < 0 and za > 0. Hence, using Eqs. (2.132) and (2.24), we

obtain

Jjt(M) -1]
(4

«l(M) -1 &

*)»«t(|w|) L.
3„/

dV
^

<o [dxmdx'n \|r-r1,
52 /

cL(M) + l dxmdxn Vlr-^l/J &c»^aW \k'-r

Using Eq. (F.l), Eq. (F.13) may be written as

MM) -1] &/ <2V^(r,r')Fn[iJ(r'-ra)
Jz'<0 47T &Cm&&a|>]

MM) ~ I]2 Tr /- _ x . fr(M) " 1r /r«\l /F14\
(4*)'eL(M) [J^(r'Fa) +eTMTl/m^(r'Fa)J ' (F'14)

U-r.i

where jy is similar to iy except for a tilde over the first r3 variable,

d2 1

(F.13)

7*(ri'r2) =/3<od3r3Ukm|rx-f3|)(;dx3mdx2j |r3 - r2|

From the steps leading from Eq. (F.l) to (F.3), it is seen that, when z% is set equal

to zero in the latter equation, the tilde over the first r3 variable has no effect. Hence,

. (F.15)

4(rx,r2) = iy(rx,r2).

Substituting Eq. (F.16) and Eq. (F.12) for zx < 0 into Eq. (F.14), we obtain

MM) -1] d2

(F.16)

/^^flarfr.OftM^-r.) - ^ dxmdxa{j]
[eL(\uj\)-l]2 d2 f 1

47r[eL(|o;|) + 1] dxmdxa]j] \Jr -
[eL(\uj\) -1] d2 ( 1 \

flU-'J

2Tr[eL(\u)\) + l]dxmdxa\j] \Jr-ra|,/

When Eq. (F.17) is multiplied by Fyjm(ra - r) and the resulting expression in

tegrated over r, we see that the delta function term in F\j]m(ra —r) again does not
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contribute, since za > 0 and z < 0. Hence,

/ / diTdzr,Fmm(va-v)g^(v,v')F^](^-va)
Jz<0 Jz'<0

e'MM) - 1]
8**eo[eL(\u\) + i\ u,=u,0 •/z<0 V^abl^m |r« - r| J \

e2[eL(uja)-l} T ( v
87T2eo[eL(a;a) +l]J^(ra'ra)

&

dxmdxa{j] |r - rc

(F.18)

This time, we have to substitute Eq. (F.12) for zx > 0 into Eq. (F.18). This leads at

once to Eq. (2.191).
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Appendix G

Physical-Optics Induced Fields

In this appendix, the complete expressions for the induced tangential fields in the

physical-optics approximation are derived.

G.l Distant-Panel Contributions

Consider first the magnetic vector potential Am(r) due to the distant magnetic multi-

poles. According to Eqs. (3.12) and (3.13), the fields are given in terms of this vector

potential by

E(p) = VxAm, (G.l)

H(r) = -^-VxVxAn,. (G.2)
UJfJL

For the contribution due to all the distant vertical magnetic multipoles, A™(r) =

A(2)(r) = zxAM(r), where A^(r) is given by Eq. (3.85). Since the latter equation

is expressed in terms of cylindrical polar coordinates (px,zx, <j>x) of the field point r,

it is convenient to evaluate Eqs. (G.l) and (G.2) in cylindrical polar coordinates and

then transform the results into Cartesian components. We only need the tangential

(p, <j>) components,

H Pi o<Pi

^W - -l^T' (G-4)
d2A&

8A«

dpx

^J)(r) = rar« (G-5)
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jujuHP(t) = -£4i-. (G.6)
J * * W /9x 0*1^1

The Cartesian components are then obtained from the cylindrical components by

Eiz\r) = E^cos^-E^sin^, (G.7)

EyzHr) = E^sin^x +^cos^i, (G.8)

and similarly for the magnetic field components. Substituting Eq. (3.85) into Eqs.

(G.3) and (G.4) and the latter into Eqs. (G.7) and (G.8), we obtain for the total

induced tangential electric field on panel p due to distant vertically polarized magnetic

multipoles

'̂tol^o = j dX[l +R3(X)]jxJ^d0^^c°s(0-Msin0^(X,0)
+/ d\ [1 +Ra(X)] jX £ e>'A» «"«*-*> sin dt j[z)(X, i)

JTa+Te i=X

E^(r)\ = -J dX[l +Ra(X)]jxJ^d0e^^c^0-McosPI^(X,P)
- f dX{l +R,(X)]jX'£eiX'"'M)i"l'l)^s9iJi,)^i)

JTa+Tc j=X

+ / dAll +H^AJlJAVe-^^^-^cos^^^z). (G.10)
•/r«+rk i=i

The corresponding tangential magnetic field on panel p is

ja,M#<z)(r)|zl=0 =/ dA[l-^(A)]A^x2-A2jr dj3e?x»cosV-^cosf3lM(\,l3)

+/ dA [1 - Rs(\)] Xjkl-X2^^1'08^'^ cos9i JiZ)(A»')

- / dX[l-Ra(\)]\M^Ee~JXpiC^9i~^ (G.11)
JTa+Tb i=x

jw/i^Wl = / dA[l-i?s(A)]AVfe?-A2jT dp^^-MsmPlt'KX,?)

+ f dX [1 - R,(X)] xJk2x - A* £ e***""f*"*1' sin «, jf>(A, i)

- / dA[l-it(A)]AV«^Ec"i^^*^)8i,l**)(A»»>- (G*12)
«/r«+r6 i=1
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Forthe contribution due to all the distant horizontalmagnetic multipoles, Am(r) =

A^>(r) = (ePl ±je<f>1)A£l(r)±jzxAg)(r), where 42 and Ag> are given by Eqs.
(3.88) and (3.89). Again, we only need the (p, <j>) components. First, we consider

the contribution due to the horizontal component 4J(r) of the magnetic vector

potential,

E^Ur) =Tj^jj*. (G.13)

pxopx v ' px d<px

(G.16)juj»Hhor,p(r) - ±^_^_rj-;?_r-_r
0M& . 5juj^Ur) = ^^^-^(Mffi)1 5

+
#Pi \Pi %

(G.17)

In deriving Eqs. (G.16) and (G.17), we have used the fact that A^rje1^1, rather
than a£ot (r) itself, satisfies the scalar wave equation. This is because the Cartesian
components of the vector potential A^^(r), rather than the cylindrical components,

satisfy the scalar wave equation. From Eqs. (3.86) and (3.87), the Cartesian compo

nents of A^(r) are

A<*»(r) = (xi±jyi)^S(r)*«*'±i«ii4W(r). (G.18)

4or(r) itself satisfies a different equation,

PidPx [Pl dp, )+pi[ d<f>\ t2j % A^) + dz2 +Ml- -°'
(G.19)

Substituting Eq. (3.88) into Eqs. (G.13) and (G.14) and the latter into Eqs. (G.7)

and (G.8), we obtain for the contribution to the induced tangential electric field on

panel p due to the horizontal component A^l(r) ofthe magnetic vector potential
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4o,Ur)L1=0 = ¥£ dX [1 -RP(X)] Jkl -XJjdfie»' «"<"-« /<*' (A, 0)
T / dA[1 -i?p(A)] Jk\ - A* £e?Xncos<*-*>> Jf*'(A,i)

T ( dX[l-R,{\)\M-XY,*-******-**4±](X,i), (G.20)
Jt.+Ti, i=1

The corresponding tangential magnetic field on panel p is

M<fl£Ur)Li=0 =/r/A[l +iyA)]jf%(fc2-A2cos/?e±>'<') e>»> «»"-*'>
xJ*±>(A, /?) +/ <JA [1 +Rp(X)} £ (fc2 - A2cosfte**) e*»««»<*-«/^(A,z)

«/r0+rc j=x

+/ dA [1 +̂ (A)] £ (fc2 - A2 cos fte**) «-'*« -<«>-*•>J*« (A, t), (G.22)
•/ra+rj, j_x

i^ifW»WL1=„ =^rfAIl +̂AMjf*»(*»«?-A88to/fe*") ^-W-*)
x/W(A, /5) +/ dX [1 +J^(A)] £ (±jfc? - A2sinfte*^) e»»<"<*-« jf>(A, t)

«/ra+re ^=x

+/ dA[l +i?p(A)]f:(±ifc2-A2sinfte±^)e-^Ma(9i-«ji:t)(A,i). (G.23)
•/ra+r& ^_x

Next, we consider the contribution due to the vertical component A!^(r) ofthe

magnetic vector potential,

>dA® (G.24)&*> (r) = ±^-^2.

*£» =Ti^, (G-25)
*,,*«« =±igf, (G-26)
***&« =^SS- (a27)

Substituting Eq. (3.89) into Eqs. (G.24) and (G.25) and the latter into Eqs. (G.7)
and (G.8), we obtain for the contribution to the induced tangential electric field on
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panel p due to the vertical component A^)(t) of the magnetic vector potential

E<£M = if dXS(X),/% - A* [2W dp e '̂ cosW-*'> sin jfc*»/W(A, /?)
+j / dXS(X)Jk\ - X2f2^XplCOs(9i-<t,l)smeie±jeiJx:±)(X,i)

JTa+Te XA

+j f dXS(X) jk\ - A2 £ c"^1 cos^-^) sin fte***jf*(A, i), (G.28)
«/ra+r6 i=x

^s(r)|ji=0 =-Jjf dXS(X)y/kl-X*£*dp^^V-McosPeVeiM^IS)
-j j dXS(X)jk\ - A2£e''A',lcos(<'i-*')cos^e±^iJl(:t)(A,i)

•Te+rc j=x

-j / dXS(X)yJk\ - X2^~JXpiC^9i~^)cosdie±j9iJ2:±)(X,i). (G.29)
JTa+Ts ^=1

The corresponding tangential magnetic field on panel p is

jujp,H^]x(T)\g^o =-J dXS(X)(k2-X2)J2ndpe^x^^0-^cospe^I^^X^)
- f dXS(X) (k2 - A2) jy**""**-*) cosfte^Jx(±)(A,i)

•Ta+rc ^_x

- / dXS(X) (k2 - A2) £ e"^1 cos^-^) cos eie±j9i4±)(X, i), (G.30)
JTa+Ti, i=x

jufLH^M =-/ dA5(A)(fc2-A2)/2"^^«~8«'-*>)sin/8e=t^/<±)(A^)

- / dAS(A) (k2 - X2) f2e?xnc^9i-+ihmOie±j9iji±)(Ki)
JTa+Tc v ' T^k'r«+rc v y iz[

n

- f dXS(X) (k2 - A2) ^e-^^^-^^sin^e^^^CA^). (G.31)
JTa+Ti, ^_x

We have now given the complete expressions for the tangential field components

on panel p induced by all the distant magnetic multipoles of arbitrary polarization.

The corresponding expressions for the distant electric multipoles can be obtained by

duality. According to Eqs. (3.12) and (3.13), the fields are given in terms of the

electric vector potential Ac(r) by

E(r) = -^-VxVxAe, (G.32)
uex

H(r) = VxAe. (G.33)
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Comparing Eqs. (G.32) and (G.33) with Eqs. (G.l) and (G.2), we see that the new

field expressions can be obtained from the old field expressions given in the above

paragraphs by: (i) replacing Am by Ae, (ii) replacing p by ex, (iii) replacing the old

E by H, and (iv) replacing the old H by -E. Furthermore, step (i) amounts to

replacing the magnetic multipole coefficients afm by the electric multipole coefficients

bfm in Eqs. (3.80) to (3.82) and corresponding expressions for J^(X,%), J2 (X,i)
andI^(X,P).

G.2 Neighboring-Panel Contributions

The expressions for the tangential fields on panel p induced by each neighboring sur

face element dS' are derived from the vector potentials given in Eqs. (3.39), (3.40),

(3.44) and (3.45). Here, there is no advantage to transforming from cylindrical coor

dinates (p2, fa, 22) centered at the neighboring dipole, in the coordinate system shown

in Fig. 3.3, to cylindrical coordinates (p\,<j>i,zx) centered at the field panel p. Thus,

the tangential fields contributed by each neighboring surface element are expressed in

the coordinates (p2, fc, Z2) centered at that element. The final results can be obtained

from those given above for the distant-panel contributions by making the following

changes:

1. Change (px, <j>x) to (p2, <fa) on the RHS of the above field expressions, namely,

Eqs. (G.9) to (G.12), (G.20) to (G.23) and (G.28) to (G.31). Also, change the

subscript zx = 0 on the LHS of these expressions to z^ = —d.

2. Set 0i on the RHS of the above field expressions equal to fa (= <£i). Then, omit

the summation over the index i in the resulting field expressions.

3. Replace I{z)(X,p),j[z)(X,i) and 4z)(A,i) in the above field expressions by the

quantities !&>,(*), J<eL,i(A) and J^L,2(A), respectively,

41i(A) = )[^^+iV]^dMzhoW, (G.34)
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J™*W ={^/*+jV^"d(aoo)-Ao(A), (G.35)
tfir(A) = ^v^<<(a00)2/0|0(A), (G.36)

where aoo =-jkx(ri xE')^- [or - jkx(ri x H')~], for tangential fields (n' x
E') [or (n' x H')] existing on the source element dS'.

4. Change the paths of integration on the RHS of the field expressions given in

the last section as follows:

L -* L • (G37)
/ and / -> / . (G.38)

JTa+Tc JTa+Tb ^Anear

Here, Anear is determined by the requirement that the asymptotic approximation

— [*d8ejj\P2cos(i3-<j>2) w /_i_ [ei(Ap2-f) + e-i(Ap2-f)1 (G>39)
y 27rAp2 *• *

be valid for A > Anear- This is the case when Xneaxp2 » 1. In practice, a value

of Anear «* IO//O2 was found to be adequate. Also, the upper limit Ama* of the A

integral on the RHS ofEq. (G.38) is chosen so that the factor e^V*?-*2* -> e_Ad
in Eqs. (G.34) to (G.36) becomes small enough to guarantee convergence of

the integral. Now, from the discussion at the end of Section 3.5, there is a

minimum d = dmin for interacting pairs of neighboring elements, where doon

is determined by the discretization of the surface Sj. In the photolithography

simulation problems we have studied, fcidmin > 0.15. In such case, a value of

Amax = 40fcx, for which e~Xmaxdtaia = e-40*015 = 2.5 x 10"3, was found to be

adequate.
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Appendix H

Rotation Matrices

In this appendix, the numerical evaluation of the matrix elements ViJml(a,/3,'y) of
the irreducible representations of the rotation group is discussed. The theory of

group representations was developed byWigner [41] in connection with the symmetry

properties of atomic wave functions under coordinate rotations. A concise but rather

advanced treatment of the theory is given in the monograph by Edmonds [40], whose

notation is used in the following discussion.

The matrix elements V®m, (a, /?, 7) relate the spherical harmonics Yim(6, <f>) in one
coordinate system K to the spherical harmonics Ylm(6',<j>') in another coordinate

system K' obtained by rotating the axes ofK through the Euler angles (a, f3, 7), as

defined in Fig. H.l. Using the defining relationship between the spherical harmonics

and associated Legendre polynomials,

iwm) =(-ir^f^^cosey"*, (h.i)
we can write the transformation of the latter polynomials under coordinate rotation

as

1 (l-m')\(l + m)\Pr(cose)eT* = £ (-ir'-mJT'(cos9')^m,^m(".ft7)^ n+J^-Jy. •
m'=—I 1

(H.2)

Substituting Eq. (H.2) into Eq. (3.47), we obtain
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AAJ,(r) * £ £ aL^MiHcos*)^
1=0 m=-l

= EE a?rofc<1>(fc1r')ir(cos0')e*n*\ (H.3)

where afm is givenby Eq. (3.71) andwehave usedthe fact that r1 =r under coordinate

rotation.

The matrix V\^m,(a, P, 7), which represents the successive rotations by the Euler

angles a, P and 7 with respect to the z, y and z axes, respectively, of a coordinate

system carried along by the rotations, is equal to the product of the matrices repre

senting the individual rotations written in the order from right to left. In the usual

convention, the matrix representing a rotation by an angle 0 about the z axis is just

eJTne times the unit matrix. Hence,

Z><L,(a,/?,7) = ^dZ-WJ"1'*. (H.4)

where c^wn' (P) *s *ne matrix representing a rotation by angle p about the y axis. A
closed-form expression exists for computing the latter matrix elements [40],

d%m'(0) =
N

i)l(t-m)l ^ >,_„,_„/ l+ m' \(l-m'\
/)!(i-m')!V ^J-m-ff^ <r J

cos|J (an|J . (H.5)

Instead ofcomputing oi^m, (P) for the different values ofp encountered in a prob

lem, it is sufficient to compute this quantity for P = ^ only. This is because the

result for a general value of P can be expressed in terms of the result for p = | by

means of a similarity transformation. Indeed, a rotation of the axes of a coordinate

system by p about the y axis is equivalent to the following sequence of five successive

rotations: (1) rotation about the z axis by £, (2) rotation about the new y axis by

|, (3) rotation about the new z axis by p, (4) rotation about the new y axis by —§,

and (5) rotation about the new z axis by ~. Multiplication of the corresponding
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matrices written in the order from right to left then gives

<€*(/*) = £e-^A&me^A£,m,e^f, (H.6)
m"

where A$,m, =d®,m,(f> and we have used the fact that d$,m(-P) = d^m,(P). Thus,
we only need to compute the quantities Aj$,m and then use Eq. (H.6) to compute

^mmf (P) *°r genera-l values ofp.
The quantities A^m, may be computed directly by using Eq. (H.5) specialized to

P=|, or recursively by means of arecurrence relationship for <4i„,(/?). Edmonds
[40] gave such a recurrence relationship which, however, is incorrect. This can be seen

by setting j = \ in his Eq. (4.4.1) and showing that the resulting matrix elements

disagree with those given in his Eq. (4.1.13), taking into account a$(p) =1. Instead,
the correct recurrence relationship is

«&.(« =Ti («*§) (-i)2'-'- [C^,_m4(/V«- m'W~™)
+&X .m+M\/(l+m')(l +m)

2»~"*T2

+i (sin |)(-1)"'-" [/^w.(/V(<-™')(*+m)
-d(%,_m.^W(l +m-)(l-m)] . (H.7)

Eq. (H.7) gives the matrix elements d$m(/?) of the l-th representation in terms of
those of the (l - |)-th representation. Thus, starting with the / = 0 representa
tion, d$(P) = 1, we can compute the matrix elements of all the higher dimensional

representations d$tm(P) byrepeated use ofEq. (H.7).
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1) A rotation OC about the z-axis brings the frame of axes S into S'.

2) A rotation P about the /-axis brings the frame of axes S' into 5".
3) A rotation Y about the z"-axis brings the frame of axes S" into

S'".

Figure H.1: Euler angles
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Appendix I

Translation Coefficients

In this appendix, the computation of the coefficients a(p, m\p, v, n) used in the trans

lation additiontheorem Eq. (4.15) is discussed. These coefficients aredefined through

areduction formula for the product oftwo rotation matrices ofthe type V^m(a, P, 7).

Specifically, V^,m(a, P, 7) is the matrix element ofthe rotation operator D(a, P, 7)
between angular momentum eigenstates \lm) and \lm') [40],

*$«(«. A 7) = <JmM«,A7)|ta»>, (1-1)

while the product of two such quantities with the same Euler angles is the ma

trix element of the rotation operator between product eigenstates \l\mx)\l2m2) and

|Zira'i) \krrQ,

^(^AT^U^^T) = (*i*nil«2fni|A(a,A7)Kimi>lbm2>. (L2)

From the theory of the coupling of angular momenta, we havethe following reduction

formula for the product of two angular momentum eigenstates,

\lxmx)\l2m2) = ]£)(fiy, wii +rri2\lxrnxl2m2)\l,mx +m2), (1.3)

where (IM, mx+m2\lxmxl2rn2) are the Clebsch-Gordon coefficients, which are related

to the Wigner 3-7 symbols ( l 2 1byto J J \mx m2 m J

(1.4)
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The summation in Eq. (1.3) ranges from I = \lx —l2\ to I = lx +12. Substituting Eq.

(1.3) into Eq. (1.2) and using the orthonormality property of the angular momentum

eigenstates, we obtain

2>$n,(<*. A7)<>m2(<*< A7) = £(-l)-«+".+^« +m, mi+mj(a, /J, 7)

x(2l +l)( k, k, ,' , )( h h l ) • (L5)v \mx m'2 —mx —m2 J \mx m2 —mx —ma J

Setting mi = m^ = 0 in Eq. (1.5) and using the fact that

vH(a,P,j) = (-1) (I ^'pjn^ym^ (I6)
\(l + m)\

we obtain the following reduction formula for the product of two associated Legendre

polynomials,

*(o s i)(ii^)^w- (L7)
Comparing Eq. (1.7) with Eq. (4.16), we obtained the desired result for the coefficients

a(p, m\p, v, n) in terms of Wigner 3-j symbols,

a(p,m\p,v,n) = (-ir+"(2p + l)
(n + m)\(v + p)].(p —m —p)\
(n —m)\(v —p)\(p + 771 + ^)1

v p\( n v p \ n~\
0 0)\m p -m-pJ' K }

Direct computation of the coefficients a(p, m\p, v, n) using Eq. (1.8) is cumbersome

owing to the fact that the Wigner 3-j symbols needed in this expression are quite

difficult to compute. Instead, it is more efficient to compute these coefficients by

recurrence relationships. Furthermore, it is desirable to have a recurrence relation

ship in which only one of the indices in a(p, m\p, v, n) changes. Since in FMM the

summation over p in Eq. (4.16) is to be computed in advance, it is convenient that

only the index p cycles in the desired recurrence relationship. Cruzan [52] listed a

number of recurrence relationships for the a(p, m\p, v, n)s. However, these recurrence
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relationships all involve the simultaneous cycling of two or more indices. Bruning and

Lo [53] later succeeded in reducing the recurrence relationships of Cruzan, by a te

dious process of algebraic elimination, to a pairof three-term recurrence relationships

in the two indices v and p. However, one of their equations contains a sign error.

Hence, it is appropriate for us to list the correct recurrence relationships here:

0 = (2p + l)(2p-3)(v- p + l)[(m- p)p(p-l)-m3(n-v)(n + i/ + l)]

xa(p, m\p —1,v + 1,n)

+(2p + l)(p - m3 - l)(-n + v + p-l)(n + i> + p)[p(p - v - 1) - m(v+ 1)]

xa(p,m\p —2, v,n)

+(2p - 3)(p+ ra3)(n + v - p+ \)(n - v + p)[/x(p + v) + m(v + 1)]

x a(p, m\p,v, n) , (1.9)

0 = (2p+\)(2p-Z)(v + p)[(m-p)p{p-l)-mz(n-v)(n + v + l]\

xa(p, m\p —1,v —1,n)

+(2p + l)(p - m3 - l)(n + v - p+ 2)(n - v +p - l)[p(p + v) + mv]

xa(p,m\p —2, v,n)

+(2p - 3)(p + m3)(n + v + p -V l)(-n +1/ + p)[p(p - v - 1) - mv]

xa(p, m\p,v, n), (1.10)

where mz = m+p. Eqs. (1.9) and (1.10) can be further reduced to a single three-term

recurrence relationship in the index p alone. To start the calculations, it is necessary

to know the values of a(p,m\p, v,n)ioip = n + v and p —n-\-v-2. These starting

values can be found in [53]. Again, one of their formulas is in error and so we give

here the correct starting values of the coefficients:

(2n-l)!!(2i/-l)!! (n + v-mz)\ Qn)
an+" " (2n +2z/-l)!! (n - m)\(v - p)\ ' V'

(2n +2i/-3) /(n +I/_i\
an+u-2 - (2n-i)(2I/-l)(n +i/-m3)(n +i/-m3-l)Un V ]

x[nu +mp(2n + 2v- 1)] - mz[vm(2v - 1) +np(2n - l)]}a„+I/, (1.12)

where aq = a(p, m\q,v,n).
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For translation along the ±z-axis, Eq. (4.21), we only need the a(p, m\p, v,n)s for

p = —m. In this case, Eqs. (1.9) and (1.10) can be readily combined to give a single

three-term recurrence relationship [54]:

Qjp_3Op_4 —(ojp_2 + ap_x —4m2)op-2 + Cipap = 0 , (1-13)

where aq = a(—m, m\q,v, n) and

_ {(n + v+ lY-pV-(n-v)*\
a> - 47T1 • d-14)

The starting values are

(2r»-l)ll(2i>-l)l! (n + u)\
^+" (2n + 2i/-l)H (n-m)\(u + m)\' K '

a"+"-2 = (2n - l)(2u- l)(n +u)[vn ~"^+2v~ 1)K+"' (L16)
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Appendix J

Fields of the Multipole Waves

In this appendix, complete expressions for the electric and magnetic fields due to the

distant and neighboring panels are given.

J.l Distant-Panel Contributions

The local expansion for the electric vector potential in a panelp due to all the distant

panels is given by the sum over the distant-panel index q of Eq. (4.17). Consider the

(I, m)th term of this local expansion which has the form

Ac(r) = clm3\l)(kr)Fr(cos9)e>™*, (J.l)

where for simplicity we have written (r,0,<j>) instead of (rx,Ox,<j>x) for the spherical

polar coordinates in the local system Kp. It is convenient to resolve the polariza

tion vector clm in Eq. (J.l) into a vertical component and two circularly polarized

components in the horizontal plane,

Cim = clmtZz + c<£(x + jy) + cti(x-jy), (3.2)

where (x,y,z), rather than (xx,yx,zx), are the Cartesian coordinates in the local

system Kp, and

Although in MFIE we only need to compute the magnetic field, both the mag

netic and electric fields would be needed in a combined-field-integral-equation (CFIE)
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formulation for dielectric bodies. For completeness, therefore, we give below the ex

pressions for both the magnetic and electric fields. We refer to the modes associated

with the electric vector potential as the TM modes. The fields of these modes are

given by

H(r) = VxAe, (J.4)

E(r) = ^-VxVxAe, (J.5)
uje

where e is the permittivity of the medium outside the perfectly conducting body.

J.l.l Vertically Polarized TM Mode

The electric vector potential for this mode is

A<*>(r) = z^(r,9,<j>), (J.6)

where

^!(r,d,<t>) = ^(k^P^cose)^. (J.7)

The fields of this mode were derived by Chang [38]. We include them here for com

pleteness. First, we express the unit vector z in terms of the spherical unit vectors

er and e$,

z = e,. cos0 —egsin6 . (J.8)

Then we substitute Eq. (J.6) into Eqs. (J.4) and (J.5) to obtain the spherical polar

components of the fields:

HM = £lvt (J.9)
r

sj-) , 2= :-: », (J-io)-fi
rr(z\ . ,,/ 9 COS^ 9 \ T / , , -, \

dr r dcosQ

-jujeE^ = cos0
28_ 1(1 +1)
r dr r2 •+-«• (\wr-h )a£b' (J-12)
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-jweEP = sinS _k2 +<(< +1) _I±
2 rQT

r

m2 T cos0 sin0 d2#
r2 sin 0 r drd cos 0 '

(J.13)

. r^(z) jm fcos6\ dty jm . n d^f /t-,a\-jujeE$> = J— l-r-z •3- +iTsin^ 3. (J.14)
9 r \sin0/ dr r2 acos0

The tangential field components can be computed from the above spherical com

ponents by taking the vector dot product of each of two tangential unit vectors

e^, p = 1,2, with the above magnetic or electric field.

J.1.2 Horizontally Polarized TM Modes

The electric vector potential for these modes are

A?>(r) = (x±jy)*(r,M)

= (ep±je*)$(r,e,4>), (J.15)

where

$(r,M) = e^(r,0,<«, (J-16)

and ep and e^ are cylindrical unit vectors in the local system Kp. Eq. (J.15) is similar

to the horizontally rotating, or BTM, modes introduced by Chang and Mei [12],

Ag#(r) = (x±jy)Affi-i(*r)iKf(oo8«)e*'<-1'*. (J.17)

The fields derived from these iETM vector potentials turn out to be exactly the same

as the well-known spherical vector wave functions [55] with I = m, up to a factor

k/[(2m - l)m]. The latter wave functions are derived from the vector potential

Aj3(r) = pfc,(1)(*r)Jfr(ooBtf)c^, (J.18)

where r is the radius vector from the origin of Kp to the field point r. This is

because the vector potentials Eqs. (J.17) and (J.18) are in fact related by a gauge

transformation, up to a factor k/[(2m —l)m]:

AffT(r) - (2m *1)mAS.(r) =^V [rsin<%« ^^{(cose)*"*} ,
(J.19)
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as can be verified by direct calculation. It is a well-known fact that the electric and

magnetic fields are invariant under a gauge transformation.

For general values of I and m, the field expressions derived from the vector po

tential A£^(r) given by Eq. (J.15) differ from the spherical vector wave functions.

First, we express the cylindrical unit vectors ep and e^ in terms of the spherical unit

vectors er, e$ and e^,

ep ± je<(, = er sin 0 + e$cos0 ± je<f,, (J.20)

Then, we substitute Eq. (J.15) into Eqs. (J.4) and (J.5) to obtain the spherical polar

components of the fields:

(±) _ jsin0 d$ jm (cos 6
r d cos 0

& = fe=+^«.dr r J

sin20 d

sin 6

*P ={™6i+ r dcosO
*,

*,

-jujeE^ =
sin0

COS0
m

+ /(/ + !) $
dcos0 sin20

sin0
=F

m

sin20
-2-cos0

dcos0 ) dr '

(J.21)

(J.22)

(J.23)

(J.24)

-jujeE™ =lj±(m±l)
dcosO

+
m(m± l)cos0

sin20

j dr '

+[k2r2-l(l +l)]coso\$
1 ( « . 2» &+- cos 0-sin2 0- -
r \ ocosv

<±)-jujeE™ = -2 ..,22 jm(m±l) ., , „x . d±jk2r2 =f \_2/l -j(m±l) cos0
sinJ0 0COS0

$ +

(J.25)

j(m±l)d$
r dr

(J.26)

Again, the tangential field components can be computed from the above spherical

components by taking the vector dot product of each of two tangential unit vectors

eM,p=l,2, with the above magnetic or electric field.

We have now given the complete expressions for the fields of the TM modes

associated with the electric vector potentials. Corresponding expressions for the TE
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modes associated with the magnetic vector potentials canbe obtained from Eqs. (J.9)

to (J.14) and Eqs. (J.21) to (J.26) by duality: (i) replace e by p, (ii) replace the old

E by —H, and (iii) replace the old H by E.

J.2 Neighboring-Panel Contributions

For sources in the neighboring panels, the multipole approximation cannot be used.

Instead, the contributions from such sources must be computed individually. The

magnetic field scattered from a neighboring surface element 6S" centered at r/; to

the field point at r is obtained from the second term on the RHS of Eq. (4.7) by

restricting the integration to the surface element 6S",

OT(r) = V x / J(r')f-j T4S'
v ' Jss" 47r|r-r|

= / J(r')xV^, (J-27)
JSS" 47T

where we have used the fact that V=-V when acting on ip =^-t1] '•^ien lr~"r1
is large, the rectanglar rule may be used for the integration in Eq. (J.27),

*H(r) * J(r") x(VV)U,» ^ • (J-»)

When |r —r'| is small, however, VV is nearly singular and the rectanglar rule is

inaccurate. In that case, four-point or higher-order Gaussian quadrature rule must

be used. In all the examples discussed in Chapter 4, we used four-point Gaussian

quadrature when |r —r'| is less than approximately twice the Unear dimension of a

typical surface element SS".

J.2.1 Gaussian Quadrature

The examples we tested all used quadrilateral, planar surface elements. Consider

a typical element 8S" lying on the xf-y' plane of a local coordinate system. The

coordinates of its four corners are (xi,yi),i = 1 to 4, numbered clockwise. It may be

considered as the result of an isoparametric mapping from a master element in a f-77
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plane, as shown in Fig. J.l. This mapping is described mathematically by

*'(?,*?) = E^ivfd,*?),

y'(i,v) = I>^?(f,*?),
i=l

(J.29)

(J.30)

where iVf(f, rj) are the finite-element interpolation functions for a four-node linear

element,

W(,i) = J(i+0(i +«?).
^Jtt,»j) = l(i+«)(i-*i).

(J.31)

(J.32)

(J.33)

(J.34)

The four-point Gaussian quadrature rule provides us with four integration points

(€hVi),i = 1 to 4, and the associated weights Wi. An integral of some function

F(x', yf) overthe element 5S" in the x'-y' plane is then approximated by a summation

over the four Gauss points (&, rji) within the master element, weighed by the weights

Wi and the Jacobian of the mapping,

4 d(x',y')jssiF(x',y')dx'dy' « ^F[x\^,m),y\ii,r)i)]wi-g^
where d(x', y')/d(£, rj) is the Jacobian,

"dx> S£

dx' d±
. ~drf orj _

Substituting Eqs. (J.29) to (J.34) into Eq. (J.36), we obtain

%&£. - det

&>Vi

|^4 =^[(D+F0(A +EV)-(B +E0(C +FV)],
where

A = —xx —X2+X3 + X4
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-1

*1
i L

1

-1

B = —xx +X2-\-xz —x±, (J.39)

C = -2/1-2/2 + 2/3 + 2/4, (J.40)

D = -2/1 + 2/2 + 2/3 - 2/4 , (J.41)

E = a?i —X2 + £3 —£4 , (J.42)

F = 2/1 - 2/2 + 2/3 - 2/4 • (J.43)

(x2,y2)
(x3,y3)

'6
(x^yj

Master element

(x4, y4)

Four-node element

Figure J.l: Isoparametric mapping.
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Appendix K

Integration over Singularities

In this appendix, the evaluation of the quantityn x Hs0(r0) on the RHS of Eq. (4.60)

is discussed. Substituting Eq. (4.56) into Eq. (4.55) and setting r = r0, we obtain

nxH5o(r0) = (l +I^nx/^
..(1 _ r)~n x f (n'x H<°>) xVty dS', (K.l)

47T JSo

where i/j =^=pp We first consider the term depending on H<°> on the RHS of Eq.
(K.l). This has the same form as the second termon the RHS ofEq. (4.1). Prom the

discussion leading to Eq. (4.3), we conclude that, since So is planar, each element of

area dS' on So contributes an amount proportional to the solid angle aXl' subtended

by that area element at the center r0 of So- Since So is planar, dD! is zero when dS'

does not contain ro and dQ! = 2n when dS' does contain r0. Hence, following the

discussion leading to Eq. (4.4), the term depending on H(0) on the RHS of Eq. (K.l)

evaluates to:

I = _(i _r)i-n x f (n'x H(0)) xVty dS'
47T JSQ

= i(l-r)nxH<0>(r0)

= -xi(l-Dflf>(0), (K.2)

where we have used the fact that n = -y on So, in the coordinate system shown in

Fig. 4.7.
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Next, we consider the first term depending on E<°) on the RHS of Eq. (K.l). Since

So is planar, n' = n = —y. Also, from Eq. (4.59), E<°) has only an x component.

Hence, nx[n'x E<°>] = -xEJp(J). Hence, the first termonthe RHS of Eq. (K.l) is

I2 = (1 +T)-!-n x / juje(n' xE(0))^ dS'
47T JSo

= -x(l +r)-l/ jueE^z'WdS'. (K.3)
47T JSo

The integral over So in Eq. (K.3) must be evaluated numerically. The rectangular

cross section So lying on the x-z plane is divided into a number of rectangular area

elements. For area elements not containing the center ro of So, the rectanglar rule

is used to compute the contributions of these area elements to I2. As for the area

element AxAz containing ro, the integral of ip over this area element is computed by

using the Fourier expansion of ip:
gjfclro-r'l

ro - ri J (2n

a*q e7q-(r0-r')

,0-^=0+ J (2*Yq2-k2-i£
n roo roo eJqx(x0-x')+jqz(zo-z')

= 7T- / / <%*<%* 1 > (K'4)27T J-oJ-oo Jtf —q2 —q2

where the second line is obtained from the first by performing the integral over qy

using the technique of contour integration. The integral of ip over the area element

AxAz containing ro can then be computed:
xo+Ai/2 rzo+Az/2 eJfrlro-^l

Jxa—Ax/2 Jza—
dz1

xo-Ax/2 JzQ-Az/2 |ro —r'| 1^0-2^=0+

=2j roo roo dqxdqz sin (^) sin (^)
7r 7-oo J-oo Jk2 -q2-q2 qx Qz

=^£r^r^?sinc(^co^)sinc(£rsin^) ,(k-5)
where sine a; = sinx/x. The integrand in Eq. (K.5) is still singular at q2 = k2. This

singularity can be avoided by changing the variable of integration from q to v.

i/ = -jy/k2-q2,Rei>>0. (K.6)

In the complex i/-plane, there is no longer any singularity at q2 —k2, since

-^ = -jdu. (K.7)
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The integrals over <p and q in Eq. (K.5) can then be performed using the rectanglar

rule by substituting Eq. (K.7) into the integrand in Eq. (K.5). The upper limit of the

^-integration must, of course, be approximated by some finite value.

Lastly, we consider the second term depending on E^0^ on the RHS of Eq. (K.l),

I3 = (n.r)Inx/l(n'xE^).V'(VV)d5'
47T JSoUJp

= (1 +r)-^n x / n' •(E<°> xV')(ViP)dS'. (K.8)
47T UJp JSo

Consider the jth component of the integral over So,

+/sJn'-(V'xE(°))]g<i5'

where To is the boundary of the surface So and d\ is the line element along this

boundary. The direction of dl is taken to be counterclockwise when the surface So

is viewed from the side facing the horn. Now, since So is bounded by the perfectly

conducting walls of the waveguide, the quantity E*0) •dl in the integrand of the first

term on the RHS of Eq. (K.9) is proportional to the component of the electric field

E(°) of the TEXo mode tangential to the perfectly conducting walls, which must be

zero. Hence, the first term on the RHS of Eq. (K.9) is zero. Substituting the resulting

Eq. (K.9) into Eq. (K.8), we obtain

I3 = -(1 +r)-^n x / (n' •K^)V'iPdS'. (K.10)
47T JSo

Using the fact that n = n' = —y on So, Eq. (K.10) becomes

* =-(^Uw("£-•£)*• (K11)
Examination of Eq. (4.57) shows that H^(-zt) = -H^(z'). Hence, H^(zt) is an
odd function of zf. Also, since ip is evaluated at the center r0 of So, which coincides

with the origin of the coordinate system shown in Fig. 4.7, dip/dz! is an odd function
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of z1 while dip/dx' is an even function of z'. Hence, the second term in the integrand

of Eq. (K.ll), which is a product of an odd and an even function of z!, integrates to

zero, and we are left with

l3 _ _x(1+r)^/soW)gd5,

=-x(1+r)i{/ro^0>W]^-/s/^^}. (K.12)
In the integral over the boundary T0 in the first term on the RHS of Eq. (K.12),

r = r0 is at the center of S0 while r' is on the boundary of S0. Hence, ip in this

integral is never singular and the rectanglar rule suffices. In the integral over S0 in

Eq. (K.12), however, ip is singular at the point r' = r0. Fortunately, this integral is

of the same form as that in Eq. (K.3) and so can be evaluated by exactly the same

method used to evaluate the latter integral.

Summarizing,

nxH5o(r0) = I1+I2 + I3, (K.13)

where Ii, I2 and I3 are given by Eqs. (K.2), (K.3) and (K.12), respectively.
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