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Abstract
Validity of the Classical Theory of Spontaneous Emission and the
Fast Multipole Method for Electromagnetic Scattering
by
Si Chuen Michael Yeung '
Doctor of Philosophy in Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Andrew R. Neureuther, Chair

The interaction of the electromagnetic field with material boundaries has long been
a subject of intense investigation. On the theoretical side are problems concerning the
quantum-mechanical properties of the electromagnetic ﬁéld near material boundaries.
Such problems are of interest to physicists in the field of quantum optics near surfaces.
On the practical side are problems concerning the nume;ica.l techniques used to solve
the equations of classical electrodynamics in various practical situations involving
boundaries. Such problems are of interest to engineers in the field of electromagnetic
scattering. This thesis provides quantitative solutions to specific theoretical and
practical problems in the subject of the interaction between the electromagnetic field
and material boundaries.

First, the lifetime of an excited atom near a lossy dielectric surface is calculated
from an exact solution of a microscopic Hamiltonian model, which includes the effects
of dispersion, local field correction and near-field Coulomb interaction. Results for
the total decay rate are shown to be in excellent agreement with those based on
classical electromagnetic theory and to yield the well-known result for the rate of
nonradiative energy transfer in the limit of very small distance from the surface.
Because our calculation is based on a fully canonical quantum theory, it provides the
first fundamental demonstration of the validity of the classical electromagnetic theory
of the rate of spontaneous emission near a lossy dielectric surface.

Next, two new numerical techniques for three-diménsional electromagnetic scat-

tering are proposed. The first technique is based on the physical-optics approximation
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and is suitable for piecewise-linear topography. The formalism of generalized Som-
merfeld integrals is used to treat the effects of intra-surface multiple scattering in
the physical-optics approximation. The technique of multipole acceleration is used
to reduce the CPU cost of intra-surface multiple-scattering computation to O(N%?),
where N is the number of surface unknowns. This approximate numerical technique
is suitable for use in the simulation of photoresist exposure over large, piecewise-linear
3-D topography.

The second technique is a rigorous numerical technique based on an alternative for-
mulation of the Fast Multipole Method (FMM) and is suitable for arbitrarily shaped,
perfectly conducting objects. Our FMM algorithm differs from the standard FMM
algorithm in that we represent the field in the far zone due to a localized group of
sources by a sum of multipole waves, rather than by a sum of plane waves. A proce-
dure involving a combination of coordinate rotations and translation was developed
to speed up the transformation of the multipole expansions. The CPU cost of our
algorithm is O(N%/3) compared to O(N®/2) for the standard FMM algorithm. How-
ever, our algorithm is numerically stable in the long-wavelength limit whereas the
standard FMM algorithm is not. This rigorous numerical technique can be extended_
for use in many important 3-D problems such as the modeling of optical proximity

probes and on-chip interconnects.
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Professor Andrew R. Neureuther

Thesis Committee Chairman
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Chapter 1

Introduction

The interaction of the electromagnetic field with material boundaries has long been
a subject of intense investigation. On the theoretical side are problems concerning
the quantum-mechanical properties of the electromagnetic field near material bound-
aries. Such problems are of interest to physicists in the ;ﬁeld of quantum optics near
surfaces. On the practical side are problems concerning the numerical techniques
used to solve the equations of classical electrodynamics in various practical situations
involving boundaries. Such problems are of interest to gngineers in the field of elec-
tromagnetic scattering. This thesis is aimed at providing quantitative solutions to
specific theoretical and practical problems in the subject of the interaction between

the electromagnetic field and material boundaries.

1.1 Spontaneous Emission near a Lossy Mirror
I

The effects of material boundaries on the quantum mechanical properties of atoms
interacting with the electromagnetic field have been observed in many experiments.
Among these are the modification of the lifetime of an excited atom near a mirror (1],
the microlaser [2] and the level shifts of atoms in small cavities [3]. Such effects are
investigated not only for their scientific value, but also for their potential technological
application, such as the possible construction of low-threshold semiconductor lasers
through controlled spontaneous emission. In Chapter 2 of this thesis, we shall be

concerned with the first of the above-mentioned effects, namely, the lifetime of an



excited atom near a mirror.

Different techniques have been used by others to calculate the lifetime of excited
atoms near boundaries. These techniques can be grouped into two main approaches,
the classical approach and the macroscopic quantum-mechanical approach. In the
classical approach, the excited atom is modeled by an oscillating classical dipole and
the radiation field produced by the dipole in the presence of material boundaries is
found by solving Maxwell’s equations. Such an approach is suitable for both lossy and
lossless materials, and it has been shown to give good agreement with experimental
data for the lifetime of an excited atom near a lossy mirror [4].

In the macroscopic quantum-mechanical approach, the radiation field is expanded
in a complete, orthogonal set of spatial modes and the rate of spontaneous emis-
sion is found by applying Fermi’s Golden Rule. These spatial modes are solutions
of the macroscopic Maxwell equations satisfying the usual boundary conditions at
the material interfaces. A complete set of such spatial modes can in general be
constructed when the materials involved are lossless. In that case, the macroscopic
quantum-mechanical approach has been shown to give good qualitative agreement
with experimental data for the spontaneous-emission characteristics of microscopic
optical cavities [5]. An important situation in which a complete set of spatial modes
cannot be constructed is the case of a lossy dielectric half-space. This is because,
in order for the spatial modes to form a complete set, they must represent waves
incident from both sides of the interface between the two half-spaces [6]. When one
of the half-spaces is filled with a lossy material, waves incident from infinity in that
material toward the interface are not well defined, since their amplitudes would have
decayed to zero by the time they reached the interface. Thus, it is not possible to
expand the radiation field in a lossy dielectric half-space in a complete set of spatial
modes. As such, the macroscopic quantum-mechanical approach cannot be used to
calculate the lifetime of an excited atom near a lossy mirror.

The above discussion indicates that, whereas the problem of the lifetime of an

excited atom near a lossless mirror has been analyzed by both the classical and the



macroscopic quantum-mechanical approach, the case of a lossy mirror has up to now
only been analyzed by the classical approach. Although the results of the classical
theory are in good agreement with experimental data, it is desirable to have an
independent check on the validity of the classical theory, by performing an analysis
of the problem based on a fully canonical quantum thedry.

A fully canonical quantum theory is one derived from a Lagrangian density, by
imposing equal-time commutation relations between the field operators and their
conjugate momenta. In the case of lossless materials, one can use an effective La-
grangian density whose Euler-Lagrange equations reproduce the macroscopic Maxwell
equations in the materials. The constitutive relation D(r,t) = ¢(r)E(r, t) in this case
is local in time, thus allowing the use of the canonical quantization method. When
losses are present, however, the constitutive relation bécomes a convolution in time
and so the canonical quantization method cannot be used. Thus, an effective La-
grangian density cannot be used to model lossy ma.tel;'ials. Instead, a Lagrangian
density based on a microscopic model of the loss mecha;lism must be used.

A microscopic model of a lossy dielectric was recently proposed by Huttner and
Barnett [7]. In this model, the bare (lossless) dielectric i§ represented by a harmonic-
oscillator field and the losses are modeled by an interaction between the bare dielectric
and a reservoir field. The model including the interaction with the electromagnetic
field has been shown to be exactly solvable in the case of an infinite lossy dielectric
[7]. The resulting solution has been used in the study of spontaneous emission in an
infinite lossy dielectric [8].

In Chapter 2 of this thesis, the microscopic model o)f [7] is extended to included
the effects of local field correction and applied to the case of a lossy dielectric half-
space. Although exact diagonalization of the Hamiltonian is not feasible for the
half-space problem, we have nevertheless been able to qbtain ezact solutions for the
Green function for the transverse photons and the Green function for the harmonic-
oscillator field in the half-space. These Green functions are used in Section 2.6 to

compute the lifetime of an excited atom near the dielectric surface. Numerical results



of our theory are in excellent agreement with those of classical electromagnetic theory.
In particular, the decay rate of an excited atom near a lossy mirror is shown to follow

an inverse-cubed law in the limit of very small distance from the surface.

1.2 Three-Dimensional Topography Scattering

As the technology of integrated-circuit fabrication evolves, lithographers are faced
with the ever increasing challenge of printing smaller and smaller features over non-
planar wafer topography. Topography scattering has long been a problem for optical
lithographers. Such scattering gives rise to critical-dimension (CD) variations due to
standing-wave effects and the redirection of light into otherwise unexposed regions
of the photoresist. Computer simulation of topography-scattering effects in pho-
tolithography can be a valuable tool for predicting the complex interaction between
the projected aerial image and the wafer topography.

A new class of photolithography simulators based on classical electromagnetic
theory have emerged to take on the challenge of topography-scattering simulation.
Several of the numerical techniques used in these simulators are listed in Table 1.1,
together with their storage and CPU costs in two and three dimensions. From this
table, it can be seen that, while most of the rigorous techniques work well for 2-
D problems, they cannot easily be generalized to 3-D because of storage and speed
limitations. For example, the waveguide, differential and integral methods all have
the same storage requirement as the time-domain method in 2-D. However, in 3-D,
the former three methods are all far more expensive than the time-domain method in
both storage and operation count. At present, the time-domain method is the most
commonly used technique for 3-D problems. However, because its storage cost scales
as n3, where n is the number of nodes in each dimension, it is restricted to use on

supercomputers for all but very small 3-D problems.



1.2.1 The Physical-Optics Method

One way to reduce the storage and CPU costs in 3-D is to use an approximate rather
than a rigorous technique. Approximate techniques based on the Geometrical Theory
of Diffraction [9] and the physical-optics approximatioh [10] have been developed
for 2-D problems. The latter technique has been shown to give good results for
multilayer, piecewise-linear topography in 2-D. In Chapter 3 of this thesis, we present
a generalization of the physical-optics technique of [10] to 3-D.

To take into account multiple scattering between adjacent surfaces in a multilayer
structure, we use an iterative scheme developed by Pai and Awada [13] for the waveg-
uide model. This scheme allows us to treat each surface one at a time and to include
the interaction between adjacent surfaces by iteration. In the treatment of multiple
scattering within a given surface, we consider each element of the surface as a source
of scattered waves illuminating every other point on the same surface. Then, we apply
the physical-optics approximation to determine the fields induced by these scattered
waves on the same surface. Specifically, the scattered waves incident at a given point
on the surface are assumed to interact with the surface in the same way that they
would interact with the tangent plane at that point of the surface. Thus, the problem
becomes one of the reflection of the scattered waves from the tangent planes. In 3-D,
the waves incident on the tangent planes are spherical rather than plane. To treat
the reflection of such spherical waves from the tangent planes, it is necessary to use
the formalism of generalized Sommerfeld integrals developed by Chang and Mei [12],
as discussed in Section 3.8, instead of the usual Fresnel laws.

In contrast to the 2-D case, direct evaluation of the above physical-optics induced
fields over the surface of the topography is impractical in 3-D, since this would require
O(N?) floating-point operations, where N ~ n? is the number of unknowns on the sur-
face. Thus, we have adopted the technique of multipole abceleration used in Rokhlin’s
Fast Multipole Method (FMM) [11] to speed up the evaluation of the physical-optics
induced fields. This results in a CPU cost of O(N%?) in 3-D. Using this muitipole

accelerated physical-optics technique, we are able to perform reflective-notching sim-



ulation of large 3-D structures on an ordinary workstation with reasonable CPU time.

1.2.2 The Fast Multipole Method

Instead of using the technique of multipole acceleration in the context of the physical-
optics approximation, as we do in Chapter 3, the Fast Multipole Method (FMM)
[11] can also be used directly in the iterative solution of the integral equations of
electromagnetic scattering. Direct solution of these integral equations, as employed
in the standard Method of Moments (MOM), is impractical in 3-D (see Table 1.1).
There are two key ideas in FMM that render iterative solution of the integral equations
practical in 3-D. The first idea lies in the choice of an iterative algorithm based on
the technique of approximations from Krylov subspaces. In this class of algorithms,
one has to perform a matrix-vector multiplication at each iteration step. The matrix
itself is not needed, but only the result of the matrix-vector multiplication, which
is another vector. Hence, it is not necessary to store the matrix itself, which would
require O(N?) bytes of storage in 3-D. Instead, one only has to store vectors, which
require O(N) bytes of storage. The second idea lies in the use of multipole acceleration
to speed up the evaluation of the matrix-vector product. Thus, in FMM, both the
storage and CPU costs are rendered practical in 3-D.

FMM was first develop by Rokhlin for the efficient solution of the integral equa-
tions of 2-D acoustic scattering [11]. Later, it was generalized to 2-D [14] and 3-D [15]
electromagnetic scattering. In Chapter 4 of this thesis, we present a new, alternative
formulation of FMM for 3-D electromagnetic scattering. Our algorithm differs from
the standard FMM algorithm of [15] in that we represent the radiation field in the far
zone due to the sources in a given panel by a sum of multipole waves, whereas in the
standard FMM algorithm the same radiation field is represented by a sum of plane
waves propagating in various directions. As a result, our FMM algorithm is numer-
ically stable in the long-wavelength limit, whereas the standard FMM algorithm is
not. However, this numerical stability is achieved at the expense of a slight increase in

CPU cost, namely, O(N®/3) for our algorithm compared to O(IN%/Z) for the standard



FMM algorithm. The reason for this increase in CPU cost is that the transformation
formulas for the multipole waves used in our algorithm are more complicated than
those for the plane waves used in the standard FMM algorithm. Indeed, it was neces-
sary for us to develop a three-step transformation procedure consisting of a rotation,
a translation and another rotation, as discussed in Secti;ion 4.4, in order to achieve a
lower than O(N2) CPU cost. Fortunately, the benchmarks discussed in Sections 4.7
and 4.10 indicate that, for problem size of a few thousand unknowns, the difference in

CPU cost between our algorithm and the standard FMM algorithm is insignificant.

1.3 Summary

This thesis addresses two specific problems in the subject of the interaction of the
electromagnetic field with material media. The first concerns the validity of the clas-
sical theory of the lifetime of an excited atom near a loséy mirror. In Chapter 2 of this
thesis, we present a fully canonical quantum theory of i:he lifetime of such an excited
atom and show that the results of this theory are in excellent agreement with those
of the classical theory. The second problems concerns the development of numerical
techniques of topography scattering useful for integrated-circuit process simulation.
Two such techniques are presented in this thesis. An aﬁproximate technique based on
the physical-optics method is presented in Chapter 3 and a rigorous technique based
on the Fast Multipole Method is presented in Chapter 4.

There are eleven appendices in this thesis. As théy contain important though
often lengthly mathematical derivations and formulaé, they constitute an integral
part of the thesis.

Throughout this thesis, we use ¢ and j interchangeably for the unit imaginary

number /—1. T



Table 1.1: Comparison of techniques of topography scattering in two and three dimensions
(assuming n grid points in each dimension)

Storage CPU S
Method Features co st¥ costl:2 Availability
#
Time-domain finite | Absorbing boundary TEMPEST (UC Berke-
difference ﬁnd{ﬁoils. el n xS %D) i
AssIvery paraTe ) | (n2x9) Assoc(;:w(zlgtD) =

Waveguide Rigorous. METRO (Camegie-

Suitable for small refrac- n n Mellon, 2-D)

tive-index changes. ( n2) ( n3)
Differential Rigorous. iPHOTO (Intel, 2-D)

Suitable for smooth nt n®

topography. (nz) n%)
Integral (Method Rigorous. (NIST, 2-D)
of Moments) Direct solution. nt n®

@ | @)

Frequency-domain | Periodic boundary con- (Phillips/Signetics,
finite element ditions. n n’ 2-D)

Sparse matrix. 3 4

Direct solution. () ()
Physical-optics + Approximate. (UC Betkeley, 3-D)
Fast Multipole Suitable for piecewise- n? n

linear topography. ) ( nl.S)
Integral + Fast Rigorous. (UC Berkeley, 3-D,
Multipole Iterative solution. n? n333 % x | under development)

m | (n¥xR)

1Costs for 2-D are enclosed in parentheses.
23 is the number of iterations in the time-domain method. X is the number of iterations in the
frequency-domain method.




Chapter 2

Spontaneous Emission Near a
Lossy Mirror

2.1 Introduction

The lifetime of an excited molecule has been known for a long time to be signifi-
cantly affected by a partially reflecting mirror in its vicinity [1]. Early attempts to
explain the experimental results using classical electromagnetic theory [16, 17] have
been quite successful. Nevertheless, the accuracy of these theoretical results has so
far not been verified by calculation based on a fully canonical quantum theory. Re-
cently, spontaneous emission by an excited atom near a lossless dielectric surface was
analyzed from the viewpoint of quantization of macroscopic spatial modes [18]. How-
ever, such an approach cannot easily be extended to include the effects of losses in
the dielectric. Thus, up to now, an analysis of the lifetime of an excited atom near
an absorbing dielectric surface based on a fully canonical quantum theory has been
lacking. In this chapter, we present one such analysis based on an exact solution of a
microscopic Hamiltonian model.

After discussing the Hamiltonian formulation in Section 2.2, we diagonalize the
matter part of the Hamilitonian density to obtain the dressed matter field in Section
2.3. In Section 2.4, the self-energy of an excited atom near the dielectric surface is
obtained to second order of perturbation theory by considering the Green function

of the excited atom to this order. The decay rate of the excited atom, which is pro-



portional to the imaginary part of the atom self-energy, is then expressed in terms of
the instantaneous Coulomb interaction, the Green function for the transverse photons
and the Green function for the harmonic-oscillator field. In Section 2.5, the latter two
Green functions are obtained by solving the corresponding Dyson equations ezactly.
This involves a three-step procedure. First, the Green function for the harmonic-
oscillator field is solved exactly by ignoring the coupling to the transverse photons.
Then, the Green function for the transverse photons is solved exactly by including
both the bulk and the surface contributions to the photon self-energy. Finally, the
Green function for the harmonic-oscillator field is corrected by including the coupling
to the transverse photons. Numerical results for the decay rate of the excited atom
obtained from the above theory are compared with those obtained from the classical

theory in Section 2.6.

2.2 The Microscopic Hamiltonian Model

Our microscopic model of the absorbing dielectric is the Hopfield model extended
to include coupling to a continuum [7]. This model has been used in the study of
spontaneous emission in an infinite absorbing dielectric medium [8]. Here, we apply
it instead to an absorbing dielectric occupying the half-space z < 0.

In the absence of the excited atom, the Lagrangian density of the system consisting

of the lossy dielectric half-space and the radiation field is
L = Lem~+ Lmat+ Lres + Lig; + L3t + Lioca - (2.1)
The various parts of this Lagrangian density are:

1. L.q is the Lagrangian density of the free radiation field,

€02 1 2
= — —_—— 2.2

where E and B are the electric and magnetic fields which are related to the
vector and scalar potentials by E= —A —~ VU and B=V x A.

10



. Lnat is the Lagrangian density of the bare dielectric occupying the half-space

z < 0, modeled by a harmonic-oscillator field,

. 2
Lmas = 6(—2) (gxz—ﬂz“—)e), (2.3)

where X is the bare matter field operator.

. Lres is the Lagrangian density of the reservoir associated with the dielectric,

modeled by a continuum of harmonic oscillators,

Lres = 6(—2) /0 ” dw (ng,—”“’Tng) . (2.4)

. Li% is the coupling between the bare dielectric and the reservoir leading to

losses in the dielectric,

res

= = —0(-2) [ dwr(w)X- Yo, (25)

where v(w) is a square-integrable function with the following properties: (i) the
analytic continuation of v(w)? to negative frequencies is an even function and

(ii) v(w) # 0 for all nonzero frequencies.

. Lgx is the interaction between the bare dielectric and the radiation field,

m — eA-XO(—z)+eUV-[X0(-2)]. (2.6)

. Liocal is a term modeling the effects of local field correction,

2
Lioca = —X20(—z). (2.7)
660

For simplicity, we have omitted the dependence of the fields A,U,X and Y, in the

above expressions on (r,t). Also, we have attached a Heaviside unit function 6(.) to

each occurence of X and Y, to indicate that the dielectric is confined to the half-space

z<0.

Since the time derivative of U does not appear in the above Lagrangian density,

the momentum conjugate to U vanishes identically. Thﬁs, it is impossible to quantize

11



U by applying the canonical quantization procedure to the above Lagrangian density.
One solution to this difficulty is to treat U not as an independent field and to eliminate

it from the Lagrangian density by means of its Euler-Lagrange equation of motion,

8 oL oL
dz; 8 (0U/0xz;) 98U
= V-(A+VU)-eV-[X0(-2)]. (2.8)

0 =

Eq. (2.8) can be simplified if we choose the Coulomb gauge, in which the vector
potential is purely transverse, V - A = 0. In what follows, we shall use the Coulomb

gauge, so that Eq. (2.8) becomes

vy = & [);9("2)] . (2.9)

The solution of Eq. (2.9) is the instantaneous Coulomb potential for the charge density
—eV - [X0(—2)]:

—eV' - [X(', 2)0(—2")]

2.10
dmegr — | ’ (2.10)

Ur,t) = / d3r'
o0
in which the same value of time ¢ appears on both sides of the equation.

To obtain the Hamiltonian density of the system described by Eq. (2.1), we first

find the momenta conjugate to the fields A,X and Y,:
oL

Py = a = éo(A + VU) . (2.11)
Px = g—fz = 0(—2)(pX + eA), (2.12)
P, = é—i = 0(=2)[pY, — v(w)X], (2.13)

The Hamiltonian density is then obtained from
H = PA~A+PX-X+/0°°dew-Yw—[,. (2.14)
Substituting Egs. (2.1) to (2.7) and (2.12) to (2.11) into Eq. (2.14), we obtain
H = 52‘1(451)2 + %m(v x A)?
+8(~2) (gxz + %’ﬁxz) +6(—2) fo ” dw (gYZ, + przYZ,)
—eUV - [X6(-2)] — %"(VU)2 - 66—;X29(—z) , (2.15)
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We now use Egs. (2.12) and (2.13) to eliminate the velocities X and Y,, from Eq.

(2.15). After rearranging terms, we obtain

H = Hﬁ;n+7{m+7i,es+%§§:+7iﬁ,t+%gt, (2.16)
where
A _ €,iv2, 1 2
Haw = F(A) +2M(VxA) , (2.17)
= o= [Lp2 4 P2
Heae = 6(—2) (2pr+ =X*) (2.18)
= ooen) [Paw (Lp2 4 2y
Hes = 0(—2) /0 dw (2pr+ vz, (2.19)
s _ o [P W)
e _ g(—2) /0 =X P, (2.20)
A € e 2
HE = 6(-2) —;A-Px+§;A (2.21)
]
HY, = —eUV-[XG(—z)]—%O(VU)z-éee—Xze(—z), (2.22)
0

and &3 = Wi+ [5° dwﬂp%ﬁx2 is the renormalized resonance frequency of the dielectric.

The Hamiltonian of the system is obtained by integraiting the Hamiltonian density
H over all space. For the Coulomb interaction HJ,, we can substitute Eq. (2.10).
After integration by parts, we obtain the part of the Hamiltonian corresponding to

U
7'lint ’

Uy = 1 3 X (A F(r — 1
HL®) = ;[ [ ErérXanx e oFe-r),  (22)
where
2
oy & L & (1) g
Fiji{r-1x") = - [47r3x,-8x§(|r—r’|) 36,,5(r r)] (2.24)

The fields are quantized in the usual way by imposing equal-time commutation
relations between the field operators A, X and Y, and their conjugate momenta Egs.

(2.11) to (2.13):

(440,00, A5,0] = Tgbe ), (225)
0

[Xi(x,t), Px,;(x',t)] = ihdi0(r — r), (2.26)

[Yoi(r,t), Py i(r',t)] = ihéi;j0(w —w)é(r —1'), (2.27)
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where we have used the fact that A commutes with VU.

2.3 Diagonalization of the Matter Part

Ideally, one would like to diagonalize the Hamiltonian H = [ d3r# by means of a
canonical transformation from the field operators A, X and Y, to some other set of
operators. This proved to be too ambitious a task. Instead, we seek an exact solution
of the our Hamiltonian model using diagrammatic perturbation theory.

We first diagonalize the Hamiltonian density of the subsystem consisting of the

bare matter field, the reservoir and the coupling between the two,
HE = Huas + Hres + HIZ . (2.28)

Our approach follows closely that of Huttner et al. [7]. Whereas the latter authors
performed the diagonalization in reciprocal space, as is appropriate for an infinite
dielectric medium, we perform the diagonalization in real space instead, since we are
dealing with a dielectric half-space. The annihilation operators b(r,t) and b, (r, t) for
the bare matter and reservoir fields are defined in terms of X, Y, and their conjugate

momenta by

p&)o ,Px
— gt} il S 2.2
b = o (X+z -0> , (2.29)
127 P,
b, = o (-{Yw+—) , (2.30)

where, for simplicity, we have omitted the dependence of the operators on (r, ). Egs.
(2.29) and (2.30) may be inverted, using the fact that X,Y, and their conjugate

momenta are Hermitian,

X = 2:;0 (bt +b), (2.31)
Py = i h"z‘% (b -b), (2.32)
Y, = —i 5% (bl - b.) , (2.33)
P, = %’9 (bl +b,) , (2.34)



Using Egs. (2.29), (2.30), (2.26) and (2.27) we readily obtain

[b:(r,2), 8, 8)] = dyo(r—1'), (2.35)
[bui(x, £), b, 5", 8)] = Gfw—uw)i(r -1, (2.36)

while all other commutators between b, b, and their Hermitian adjoints vanish. Egs.
(2.35) and (2.36) show that b and b, are the annihilation operators for the bare
matter and reservoir fields, respectively.

Substituting Egs. (2.31) to (2.34) into Eq. (2.28) and using Egs. (2.18) to (2.20),

we obtain
HO, = 0(—z)[ﬁaob"-b+/owdwhwb1,-bw

+g /o " dwV(w) (b +b) - (bf, + bw)] ; (2:37)

where V(w) = ﬂ;i)- w /@y and we have omitted an infinite zero-point energy term.
Next, we diagonalize the Hamiltonian density Eq. (2.37) by defining the annihila-

tion operator B, (r,t) for the dressed matter field,
B, = ao(w)b+ fe(w)bl + /0 " 4 [0y (w, )by + Ar(w,w)bL] ,  (2.38)

the dependence of the operators on (r,t) being understood. The coefficients ap(w),

Bo(w), a1 (w,w’) and B (w,w’) are to be chosen so that %ﬁ,‘,’,{t is diagonalized,
HO\(x,8) = 6(—2) /0 ~ dwhwBL(r, 1) - Bu(r,?) (2.39)
and furthermore that the transformation Eq. (2.38) is canonical,
[Bui(r, ), BL ;(r', )] = 846w —w)o(x—1). (2.40)
Egs. (2.39) and (2.40) together imply that
[Bu(r, ), HOk(r',t)] = AwBy(r,1)d(x —r)8(—2) . (2.41)

Egs. (2.37) and (2.38) are substituted into Eq. (2.41) and the commutation bracket
on the LHS of the resulting equation evaluated with the help of Egs. (2.35) and
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(2.36). Then, by equating the coefficients of b, bf, b, and b}, on the two sides of the
equation, we obtain the following set of relations among the coefficients:
(o]
aw@)w=a) = 3 [ Wlmw)VE) - flw,)VW), (242
- 1 [
) w+in) = 3 [ dla@d)VW) - AV, (249
1
o (w,)(w—-w') = §[ao(w) - Bo(w)V (o), (2.44)
1
Biw,)w+w) = Floo(w) = hoW)IV(). (2.45)
These relations, together with the commutation relation Eq. (2.40), allow us to solve
for the coefficients ap(w), fo(w), o1 (w,w’) and By (w,w’), as shown in Appendix A.
Assuming that the set of dressed operators B,, and B!,0 < w < o0, is complete, it

should be possible to invert Eq. (2.38) to obtain b and b,, as functions of the dressed

operators. Writing b as
00
b = /o dw'[r(w")By + s(w)B,], (2.46)

we can determine the coefficients r(w) and s(w) by evaluating the commutators of
both sides of Eq. (2.46) with B,, and B},. Using Eqs. (2.35), (2.36), (2.38) and (2.40),
we find 7(w) = af(w) and s(w) = —fFp(w). Hence,

b = /0 dw'[e(w)B., — Bo(w)Bl] . (2.47)
Similarly, we obtain
o0
by = [ dw'[o}(,w)Bu - AW, w)BLI. (2.48)

The results Egs. (2.47) and (2.48) are consistent with the commutation relations Egs.

(2.35) and (2.36) if and only if V?(w) satisfies the inequality

00 2
/ Wl < g (2.49)
0 w

The proof of this statement can be found in [7].
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Substituting Eq. (2.47) into Egs. (2.31) and (2.32), we can express the bare matter

field operator and its conjugate momentum in terms of the dressed operators,

X = 1/5’%0- /0 °° dw[h(w)B}, +h.c], (2.50)
Px = 4 @ /o * dw[g(w)B}, + hc], (2.51)

where

hw) = aw) - bWw), (2.52)
9w) = don(w) + fo(w)], (2.53) -

and h.c. denotes the Hermitian conjugate of the immediately preceding term.

2.4 Spontaneous Decay Rate

Up to now, we have only considered the system consisting of the lossy dielectric half-
space and the radiation field with which it interacts, as described by the Hamiltonian

density H defined by Eqs. (2.16) to (2.22). When an excited atom is introduced into

the system, there is an additional interaction Hamiltonian of the form
H, = f Pr(=jo - A+ paU) (2.54)
e |

where j, and p, are the current and charge densities of the atom. For simplicity, we
assume the atom to be made up of a single electron of mass m and charge e in orbit
around a fixed nucleus of charge —e at a point r, on the air side of the dielectric

surface, z, > 0. Then the current and charge densities of the atom are given by

Jamt) = 52 (e, V(e 2) — (Vo (e, )
2
—5- A U (1), (2.55)
pale,t) = (e, 00(r,1) = eb(r — x2), (256)

where (r, ) is the field operator of the electron. For a two-level atom, 9(r,t) may be
expanded in annihilation operators ¢y(t) and ¢;(t) for the ground and excited states,
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respectively,
P(r,t) = co(t)uo(r) +alt)ulr), (2.57)

where u(r) and u;(r) are the ground and excited state wave functions of the atom,
respectively, which are assumed to have opposite parities. The annihilation operators

co(t) and ¢;(t) obey the equal-time anti-commutation relation,

{a@®),d®)} = 6. (2.58)

The integral over r in Eq. (2.54) can be performed if we make the dipole approxi-
mation for the atom. This means that the atomic wave functions uo(r) and u, (r) are
assumed to be localized to within a small neighborhood of the nucleus at r,. In that
case, the vector potential appearing in Egs. (2.54) and (2.55) may be replaced by its
value at r,. Using Egs. (2.55) and (2.57), the first term in Eq. (2.54), responsible for

the radiative decay of the excited atom, can be evaluated:
m@) € - [ dri.-A
= —Z [d@®a®Ara1) P + (@)t} Alra 1) - Pu)
A t) [ o) + a9 (2:59)
where pg; = p}p is the matrix element of the operator (—ihV) between the ground
and excited state wave functions.

For the second term in Eq. (2.54), we first expand the instantaneous Coulomb

potential U(r, %) given by Eq. (2.10) about r,,

L eV X082 [ 1 o)
U(l‘, t) - /cod T dmeg Ira - l"l * (xJ an)azaj |l'a - rll '
(2.60)

Using Egs. (2.60), (2.56) and (2.57), the second term in Eq. (2.54), responsible for

the nonradiative decay of the excited atom, can be evaluated,

H=() ¥ / d3rpU
i o V[ €V X0 8 1
= [A®e@rons +lheo(Oruas] [ d*r Tre o a1’
(2.61)
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where rg; = rjy is the matrix element of (r — r,) between the ground and excited
state wave functions. Using the relationship pgy = —#muw,rg;, where w, is the atomic
transition frequency, and performing an integration by parts, Eq. (2.61) becomes
ie? [ch ()1 (t)por,j — ¢l (t)co(t)pro] 2 1

3, Y (!
dregmuw, ~/z'<0 drXi(r'1) 02,07} [ra — 1’|
(2.62)

H'(t) =

The radiative and nonradiative perturbation Hamiltonians, Eqs. (2.59) and (2.62),
may now be used to compute the total decay rate of the excited atom in first-order
perturbation theory. This may be accomplished by applying Fermi’s Golden Rule
and then expressing the resulting decay rate in terms of Green functions by means
of the fluctuation-dissipation theorem. This was the af)proa,ch taken by Barnett et
al. [8] in their treatment of the radiative decay rate of an excited atom in an infinite
homogeneous dielectric medium. Instead, we shall obtain the total decay rate of the
excited atom directly in terms of Green functions by considering the self-energy of
the excited atom due the the perturbations Eqs. (2.59) and (2.62).

The self-energy of the excited atom enters into the computation of the Green
function of the atom by diagrammatic perturbation technique. This Green function
is defined by |

genrsti—t) = —x(TWOE PN ), (269

where the superscipt (*) denotes exact quantities in the combined system of the half-
space dielectric and the excited atom. Also, the angle brackets denote averaging
over the exact ground state of this combined system and T denotes time order-
ing. Using Eq. (2.57), we see that the Green function is a sum of terms involving
—%(T[c&“) (t1)ci(¢,))) and —l,;(T[c,(,“) (t)ct(t,)]). Since we are only interested in
the self-energy of the ezcited state, we consider the term involving the excited-state

operators,

g —t) = —(T TGN, (264
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where we have omitted the dependence on r; and r; which is irrelevant to the following
discussion. Since ¢{(t;) in Eq. (2.64) is an exact operator for the combined system in
the Heisenberg picture, its time dependence is in general unknown. Hence, Eq. (2.64)
must be evaluated by diagrammatic perturbation technique. The general result of

the diagrammatic technique is:
1
gt —t2) = —ﬁ(T[Cl(tl)S(ooa “oo)cl(t2)])conn ’ (2.65)

where quantities without the superscript () are unperturbed quantities, that is, those
associated with the Hamiltonian density # of Eq. (2.16) without the perturbation

H,. Also, S(00,—00) is an infinite series of operators,

S(co,—00) = 1+ g:l > (-‘F})" [ e Tl B,
(2.66)

and the symbol ‘conn’ in Eq. (2.65) indicates that only connected diagrams are to be
included in the calculation. The derivation of the fundamental result Eq. (2.65) can
be found in most textbooks on many-body physics [19, 20].

Substituting Eq. (2.66) into Eq. (2.65), we see that the Green function can be
written as an infinite series, g(t; — t2) = g (¢, — t2) + gV (81 — t2) + 9P (81 — £2) + ...,
where the nth term of this series corresponds to the nth term of the series in Eq.
(2.66).

Since co(t) and ¢, (t) in Eq. (2.65) are unperturbed operators, their time depen-

dence is simple-harmonic,
cot) = coe™™*, (2.67)
alt) = ce ™t (2.68)

where wp and w; are the energies of the ground and excited states of the atom,
respectively, divided by %. Using Eq. (2.68), we can compute the zeroth-order, or

unperturbed, Green function,
1
Ot —t) = —3{Tla (t1)el (82)])

= _%e-iwl(‘l-'z)e(tl — 1), (2.69)
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where we have used Eq. (2.58) and the fact that ¢; acting on the unperturbed ground
state gives zero. It is more useful to consider the Fourier transform with respect to

time of the Green function:

m .
Ow) = /_ - d(ty — t2)e 1O 1) — ¢,)
1 [ .
= y A d(t, — tz)e"(“"“’l)(tl"tz)
- (2.70)
T hw— hw, +1€ '
Next, we compute the first-order correction to the Green function,
() )\? [ t
Ot-t) = (-3) [ daTlatBt)dtDom, @)

by substituting the n = 1 term in Eq. (2.66) into Eq. (2.65). In order to have
a non-vanishing expectation value, there must be the same number of annihilation
and creation operators for the ground or excited state in the time-ordered product
in Eq. (2.71). Upon examination of Egs. (2.59) and (2.62), we find that the only
term in H,(¢3) which contributes to the expectation value in Eq. (2.71) is the term
proportional to A? in Eq. (2.59). Furthermore, the term c}(t)co(t) in Eq. (2.59) does
not contribute, since we can commute the operator cy(t) to the right of all other
operators in the time-ordered product in Eq. (2.71) to annihilate the ground state.

Hence, we are left with

e?

" omh?

Ot~ 1) = [ dta(Tler(t) A (ras ta)el ta)ea(ta)el (t2)Doma -

(2.72)

We can now apply Wick’s Theorem to evaluate the time-ordered product in Eq. (2.72).
This theorem says that the expectation value in the ground state of a time-ordered
product of operators is equal to the sum of all possible products of expectation values
of the time-ordered products of pairs of the operators [19, 20]. Since only connected
diagrams are counted, we see that there is only one possible pairing of the operators
in Eq. (2.72),

§0(0 1) = —5om [ (Tl (TIAGar ) - Al )]
X (Tley (ta)el (£2))) - (2.73)
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Using Eq. (2.69), we find that the integrand in Eq. (2.73) is non-zero only when
t, > t3 > t. Then, introducing the transverse photon Green function for the dielectric

half-space
Dig(r, w23t — t2) & —=(TlAi(rs, 1) A (2, )] (274)

we may rewrite Eq. (2.73) as

2 t

g0t —t) = _é:_h [ 1 dt3D;i(re, Ta; B3 — ty)e~wrlti-tstta=ta) (4, _ 1))
2
. 2 )
= —-—;::m ii(Ta, Tas O)C—WI(tl—tZ)(tl —t)0(t, — t2) . (2.75)

Taking the Fourier transform with respect to (¢, — t), we obtain

2

W) = - 2i;;m’D,-,-(ra, r,;0) /0 = d(ty — tp)eil—w)t—ta) (¢, — ¢,)
= -%Dﬁ(raara;o) (—25%) (5_;631—*-2?)
T hw-— nlwl A hlwl +ie’ (2.76)
where
=W = %Dﬁ(ra, r.;0), (2.77)

is the self-energy of the excited atom due to the term proportional to A?in Eq. (2.59).
The reason why this is called the self-energy is as follows. Suppose the A? terms in
Eq. (2.59) were the only perturbation. Then, when we include the higher-order terms
of Eq. (2.66) in Eq. (2.65), we would obtain

9W) = TR R Ty T i Fuo—han e
1 1 1
O (1) (1)
Y TR he— s tics Fo—fartie
1

. 2.
P~ Than + 50+ 4¢ (2.78)

Here, &) appears as a correction to the energy fiw, of the excited state. Hence the

term self-energy.
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It should be noted that () given by Eq. (2.77) is purely real. Substituting Eq.
(2.74) into Eq. (2.77), we obtain

oM = %(T[Ai(ra,ta)Ai(rmta)])

62
= -2-77—1(A2(ra,t3)) , (2.79)

which is purely real since A is Hermitian. Thus, ©() contributes only to a level-shift
of the excited state, but not to its lifetime. Hence, for the purpose of computing the
lifetime of the excited atom, we may neglect X(1). |

Next, we consider the second-order contribution to tﬁe atom Green function. This

is obtained by substituting the n = 2 term in Eq. (2.66) into Eq. (2.65),

Pt —t2) = % (—‘%)3 /_ : dts /_ : dta(Tlcr (t1) Ha(ts) Ha(ta)c} (22)])conn -

(2.80)

When Eqgs. (2.54), (2.59) and (2.62) are substituted into Eq. (2.80) and the product
of the two Hamiltonians expanded, we find that there are terms proportional to €2, €3
and e?. It will be seen below that one of the factors of e in H2® given by Eq. (2.62) is
absorbed in the definition of the dielectric function [cf. Eq. (2.121)], which is of order
unity. Hence, H™ should be counted as a term of order e rather than e?. Now, since
we are only interested in the decay rate of the excited atom to the same approximation
as in Fermi’s Golden Rule, we retain only the terms proportional to €? in Eq. (2.80).
This amounts to omitting the A2 term in Eq. (2.59). Thus, we are left with four
terms contributing to the self-energy of the excited atom to order e?: one due to Hj
acting twice, one to H™ acting twice, and the two cross terms. We consider each of
these cases separately.

Consider first the effect of H} acting twice. Substituting the first term in Eq.
(2.59) into Eq. (2.80), we obtain |
gﬂ(tl —1) = —51!- (i—h)z /O:o dts /_: dt4D;j(rs, Ta;t3 — t4)

X (T {01(751) [Cg(ta)ﬁ(ts)iﬂm,i +h~C-] [C$(t4)01(t4)1701,j‘+ h-C-] CI(tz)}>com , (2.81)
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where we have paired the two A operators to form the photon Green function D;;,
since these two operators must be paired together to give a non-vanishing result.
When the time-ordered product in Eq. (2.81) is expanded using Wick’s Theorem,
we find that there are two equal pairings of the operators which together cancel the
factor (1/2!),

(2) aa(ti—t2) = (%) : /_ o:o dts [_ : dt4D;;j(xq, Ta; t3 — t4)P10,iPo1,j
x (Tler(t1)} (ta) ) (Tleo(ta) bt Tlar(ta)el (82)]) - (2.82)
Using Eq. (2.69), Eq. (2.82) becomes

2
At —t) = - (;:'ﬁ) D10,iP01,5 / diz / dtse~ i (1t)g(3; — ¢5)
X Di;(Fay Taj b3 — tg)e w0t 8g(2, — ty)e~#n(M~t)g(2, — ¢,) . (2.83)

The integrals over 3 and ¢4, in Eq. (2.83) are the convolutions of the functions
e~1t9(t), Dij(ra,To;t)e *0t9(t) and e *1%9(t). Upon taking the Fourier transform
of Eq. (2.83) with respect to t; — t,, these convolutions become the product of the

Fourier transforms of the individual terms:

@ _ 1 e pm,,pm,J i(w—wo)r 1
M) = e ( / d7Dij{ra, Tai T)e ) P — By + 1€
1 $2) 1
= — (2.84
et V) oy vt (2.84)

which allows us to identify the contribution to the self-energy of the excited atom to

order e? due to the first term in Eq. (2.59) acting twice as

SAWw) = ( ) P10,4P01, / d7D;;(Tq, oy 7)eH™90)T (2.85)

Next, we consider the contribution to the self-energy of the excited atom due to

HX acting twice. Substituting Eq. (2.62) into Eq. (2.80), we obtain

1 —i 3 z‘e2 2 {oe] (2]
_ i T dt / / By / d3r"
GGt —t2) = 9! ( h) (47reomwa) [—oo 3 —<>odt4 z'<od " Jncd® T

82 1 2 1 , )
" (3%'33?2 Ira — r'I) (6xa,.am1' Ira — r”l) (T[X(x', ta) Xalr" ta)))
X <T {61 (t1)[por.ic} (ta)er (t3) — h.cJ[pornch(ta)er (ta) — h.c.]c’{(tﬁ})com . (2.86)
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where we have paired the two X operators, since these two operators must be paired
together to give a non-vanishing result. When the time-ordered product in Eq. (2.86)
is expanded using Wick’s Theorem, we find that there two equal pairings of the oper-
ators which together cancel the factor (1/2!). Then, introducing the Green function
for the matter field X

Gij(r1,vo5ty — 1) & —-%(T[Xi(rl, 1) X;(r2£2)]) (2.87)

Eq. (2.86) becomes

-1

2 i
Be-t) = () (o) [t [ ataf, o [, v
g0 (t1 — t2) 5 ( pr a) 3 f 4 J.co s ® T 'P10,;Po1n

82 1 . 82 1
X (axajaxé T l"|) Gau(r',x";t3 — t4) (63:,,,,6:1: T r"I)
x(T[ex (t1)ch (£3)]) (Tleo(ts)ch(ta)]) (Tlea (ta)el (2)]) - (2.88)

Following the steps leading from Eq. (2.82) through (2.83) to (2.84), we can substitute
Eq. (2.69) into Eq. (2.88) and then take the Fourier transform with respect to (¢, —t,).

The result is

2) _ 1 =@ 1
guu(w) = f’uu—hw1+ze ()hw hwy + i€’

(2.89)

2 2 .
(2) = € . / dreiw—wo)T / d3r' / d3r"
EUU(w) (41reomwa) P1ojPo1n 0 re 2!<0 21<0

& 1 ', d? 1
g (3""413“’5 Ir,,—r'l) Gule',57) (3 an0z{ |re — r”|) - (290

In terms of the function F;; defined by Eq. (2.24), we can rewrite Eq. (2.90) as

2 5
(2) 1 ) ) / d3 ! / d3rﬂ / dTei(w—wo)‘r
W) = (mwa ProPoin |, 0T Juco 0
X Fji(ra — ')Gu(r',x"; 7) Fin (x" — 12) , (2.91)

since d(r, — r') and &(r" — r,) are zero for z, > 0 and 2/, 2" < 0.
Lastly, we consider the contribution to the self-energy of the excited atom due

to HT and HX each acting once. Whether we take H,(t3) in Eq. (2.80) to be Hj
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and H,(t4) to be H™ or vice versa, we get the same result. Hence these two choices

together cancel the factor (1/2!), and we obtain

_i\3 —ip3 o) oo
Q-1 = (2) () [t [ ] [,
gAU( 1 2) A 47r€0m2wa -oodt3 —co 4 z'<0 T z”<0d7~

x( g 1 )<T[A1-(ra,t3>xz(r',t4)]>

040z v, — 1|
X <T {Cl(tl)[PoLiCB(ts)Cl(ta) + h.c.][poy,scb(ta)en (ta) — h.c.]c‘;(tz)}>mm ,» (2.92)

where we have paired the A and X operators, since these two operators must be
paired together to give a non-vanishing result. When the time-ordered product in
Eq. (2.92) is expanded using Wick’s Theorem, there are two non-vanishing pairings

of the operators,

3 . 3

@ _ (") —te /oo foo s '/ S
ti—t) = (—) [ ——— dt d d

gAu( 1 2) 7 (47('60’!7’2«2(4)0 . 3 _oodt4 <o r <o T

x( g__1 )(T[Ad(ra,ta)xz(l",h)])

0%,;0z) |ra — r'|
X {Plo,ipou (Tlea(t1)e] (t)])(Tleo(ts)ch (£a)]) (Tlex (ba) el (£2)))
—porp10,5{Tler (b1)e] (2] (Tleo(ta)ch () Tlea (ta)el (&) } - (2.93)
Again, following the steps leading from Eq. (2.82) through (2.83) to (2.84), we can

substitute Eq. (2.69) into Eq. (2.93) and then take the Fourier transform with respect
to (t; — t3). The result is

@) = L @) 1 4
gAU(w) hw _ hwl + iszU(w)hw _ mul + i€ ? (2‘9 )
where
@) = £ / & i(w—wo)r 3,/ / BN (e
T (w) 2 Jo dre <o d’r z”<0d " Fji(re — ')

X {Pm,ipm,j(T[Ai(l‘mT)Xl(l"a 0)]) — poy,ip10,5(T[Ai(ra, 0)Xi(r', 7D} (2.95)

where we have used Eq. (2.24).
The spontaneous decay rate of the excited atom is proportional to the imaginary

part of its self-energy in the excited state,

Wepont = —2 Img(:—) , (2.96)

W=
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where the self-energy ¥(w) of the atom in the excited state is given to order e? by
S(w) = ZV(w) + =, (W) + = (@) + =@ () . (2.97)

We now assume that the transition dipole moment of the atom is parallel to one of

the coordinate axes, say, the j-axis. Its decay rate in free-space is given by

Wa e\?
stlfim = 3nheo 63( ) D10,[5]Po1,[5] » (2.98)

where the brackets around the index j means that this index is nof summed. Then,
normalizing the decay rate Eq. (2.96) near the dielectric surface to this free-space
value and using Egs. (2.85), (2.91) and (2.95), we obtain

V;i:éé:j — _ 6nc’e Im / dreT [Db]b] (FayTa; 7)
ezt,czl /z <0 oo d*r d*r' Fijjm(ra — T) Gmn (r, ¥ 7) Fopj) (v — r4)
eia /z < 37! Fljim (e — ©')Conj) (2, xa; 'r)] — (2.99)
where
(e i) & L(TIX(e0, )4 (e2,0) = Xilen, O As(en ) . (2:200)

The integration over 7 in Eq. (2.99) can be performed explicitly by making use
of the analytic properties of the Green functions. This is discussed in Appendix B,
where it is shown that Eq. (2.99) reduces to

_W \¥] 67(C360 w
I"j!zg]; - = - Im[D[J'][J'](rM To)
spont
1 L L
32“’3 -/z<o z'<0 d'rd T'F[j]m(l‘a - l‘) gmn(r7 r,)FnU] (rl - l'a.)
1 3
+ewa ,/;,<0 d T'F[j]m(ra - r’)cfu:t[]] (rf, ra)] e ’ (2,101)

where the superscript “ denotes Fourier transform with respect to 7.
Eq. (2.101) shows that the spontaneous decay rate of the excited atom near the

dielectric surface is given, to the same order of approximation as in Fermi’s Golden
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Rule, in terms of the Fourier transforms with respect to (¢ — 2) of the photon
Green function Eq. (2.74), the matter Green function Eq. (2.87) and the function
Cij(r1,ro;t1 — t2) defined by Eq. (2.100). The latter three functions are defined with
respect to the Hamiltonian density # for the dielectric half-space defined by Egs.
(2.16) to (2.22), without the perturbation #, due to the excited atom. In contrast to
the atom Green function Eq. (2.63), the functions Dy}, G}; and Cf; cannot be approx-
imated by the first few terms of their perturbation expansions, since the cumulative
effect of the electrons in the dielectric can be large. Instead, these functions are ob-
tained as exact solutions of the Dyson equations which they satisfy. This is discussed

in the next section.

2.5 Green Functions for the Half-Space

The Hamiltonian density # for the dielectric half-space can be rewritten according
to Egs. (2.16) and (2.28) as

H o= HA+HO +HE, +HA, . (2.102)

To obtain the exact Green functions for this Hamiltonian density, we first separate

the latter into an unperturbed part,
Ho = HA, +HG+HD,, (2.103)

and a perturbation #f,. First, we consider the photon Green function in the subsys-
tem described by the Hamiltonian density of Eq. (2.103),

Dz(.?) (r17r2;t1 - t2) = _%<T[A$O)(r1’tl)A§'0) (r27t2)])(o) ’ (2-104)

where the superscipt () denotes quantities associated with the Hamiltonian density
Ho. From Egs. (2.17), (2.37), (2.22) and (2.10), we see that, in the subsystem de-
scribed by #,, the transverse radiation field A® is completely decoupled from the

matter field X and the instantaneous Coulomb potential U. Hence, in this subsystem,
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A is just the free-space radiation field, which can be expanded in a complete set of

transverse, monochromatic plane waves,

AO(r,t) = (27{)3,2\/ oo 2 12[a,\(k)e)\(k)e"(k"'“’"t)+h.c.] , (2.105)

where w; = |k|c and h.c. denotes the Hermitian conjugate of the immediately pre-

ceding term. Also, e, (k), A = 1,2, are unit vectors such that (e, (k), e;(k), TET] form

an orthonormal right-handed triad. Eq. (2.105) can be inverted to give
= ok 0) L A (0) ] —i(k-T—wyt)
ak) = |2k / (271')3 (k) [A (1) + A0 1)) . (2.106)
Using Egs. (2.106) and (2.25), we readily obtain
[ar(K), a, (k)] = & xd(k ~ K) , (2.107)

while the commutator between a,(k) and ay (k'), or between a} (k) and al,(k’), van-
ishes. Eq. (2.107) shows that a (k) and a, (k) are the creation and annihilation oper-
ators of a transverse photon of wavevector k and polarization A. It should be noted
that the expansion Eq. (2.105) would not be possible if we had included the term
HA, as in Eq. (2.102), since then the time dependence of the annihilation operators
ay(k,t) would not be simple-harmonic.

The free-space photon Green function can be computed by substituting Eq. (2.105)
into Eq. (2.104),

d3k d3k' 1

(2m)3/2 J (27)3/2 2€/wiwi ’\;1’2 ,\,=21'2
x (T { [a,\(k)exi(k)e‘("”"“”“l) +he] [an (1) (K)e® w2t 4 he]})

Dg'))(rl,l‘z;tl —t) =

ik- (11 —T2)—twg (81 ~t2)

€ ) t1:>t21
/ (27!')3 2600} 5 2€A,i(k)6AJ(k) X { e—ik-(r1-—-rz)+iwk(t1—tz) , tl < t2 . (2'108)
From the completeness of the triad [e1 (k), ez(k), Tllz_l] for each k, we have

> exilklers(l) + 2 = 4. (2.109)

A=1,2
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Substituting Eq. (2.109) into Eq. (2.108), we obtain
ek (65— 55) { glem-ra-ti—t) 4 >4,

(0) .
Dij (1‘1, ro;t; — tz) (27!')3 2eowr e—ik:(F1-T2)+iwe (t1~t2) , 1 <ta.

(2.110)

Eq. (2.110) can be written in a more compact form,

k:k;
.ds_k d_w (5ij _ Tz.L) ik (r1-r2)—iw(t1—t2)
(2n)3 J 27 w? — k2¢% + de ’

D§?)(r1, r2;ty — t2)

(2.111)

as can be verified by contour integration in the complex w-plane. From Eq. (2.111),

we immediately obtain the Fourier transform of Dg-’) with respect to (¢; — t2),

(O)M

(rh 1'2)

ki
1 / 3k u 'l?f') gtk (r1-r2) (2.112)
(27)3 w? — k%2 +de

Next, we consider the Green function for the matter field X for the unperturbed

Hamiltonian density of Eq. (2.103). To do so, it is necessary to partition H, further

into a part without the Coulomb interaction,
Ho = HA +HO,, (2.113)

and the Coulomb interaction term HJ,. We first obtain the Green function for X in

the subsystem described by Hgo,
')
0P st —ts) = — (XL )X ()™, (2119)

where the superscipt (°® denotes quantities associated with the Hamiltonian density
Eq. (2.113). For this purpose, the first term in Eq. (2.113) has no effect, since there
is no coupling between the radiation field and matter in this subsystem. Next, since
the term %f,‘,’},t given by Eq. (2.39) is diagonal in the dressed matter operators, the
time dependence of the latter operators in this subsystem is simple-harmonic. Hence,

substituting Eq. (2.50) into Eq. (2.114) and using the commutation relation Eq. (2.40),

30



we obtain
00
gi(j )(l‘l,l‘z;h —t) = 2pr/ / du’
% (T {[@)BLr)e +hoJh(w)BY s(ra)e™™ +he]})™

(1—t2), th>t,
—n0) [P Sy B2E . a1y

2 Y 11 <tis.
Taking the Fourier transform with respect to (¢, — t2), we obtain
(Oo)w — ——z;-—é--é _ /°° T 2[ 1 _ ) ]
(x1,72) 200 (1 —r2) 0 du/Jh(w)] w—w +ic w+tw —iel’
(2.116)
Using Egs. (2.52), (A.11) and (A.13), we obtain
w
W) = =€), (2.117)
where
(o) o G VW) (2.118)

o7 = G

Eq. (2.118) shows that £(w) is an even function of w, since V?(w) is odd and 2(-w) =

2*(w). Furthermore, £(w) is analytic on the real w axis. This follows from the fact

that the denominator on the RHS of Eq. (2.118) is non-zero on the real o' axis [7].
The integral over ' in Eq. (2.116) can be rewritten as

@) & [T W e - o)

w+ie wHw —1ie

_ *° I_‘D_O ! 2w
- /o du w’f(w )w2 — (W' —1€)?

_ Wo [ 2w

- w/o dwe() w? — (w i€)2

_ 92 ! ' 1 ]

= wfo dw'é(w )[w w,w+w+w,_i‘E . (2.119)

Using the fact that £(w) is an even function of w, the principal parts of the two terms
inside the brackets in Eq. (2.119) can be combined,

J(w) wo{ / dw' 6( ) —'m/ dw'€(W[0(w — ') — 6(w+w')]}

- % [P /_ _ dw’wi(__z_' —i7r€(w)0(w)+i7r£(—w)0(—w)] . (2.120)
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Following Huttner et al. [7], we define the dielectric function of the dielectric as

e(w) 1— £ / * dw’——g(wl)

2peow w—w + 1€

1- / dw ’E ') zwf(w)] (2.121)

2peow [
This function satisfies the Kramers-Kronig relations, since the first form of the func-
tion given in Eq. (2.121) shows that e(w) is analytic in the upper half of the complex
plane. Comparing the quantities inside the brackets in Egs. (2.120) and (2.121) and
using the fact that £(w) is an even function, we see that, when w > 0, the two quan-
tities in brackets are identical, whereas when w < 0, they are complex conjugates of

each other. Then, using the fact that e(—w) = €*(w), we conclude that

2pepw
Jw) = -F2e(lwl) - 1] (2.122)
Substituting Eq. (2.122) into Eq. (2.116), we obtain
w 1
G (ry,ry) = €°[e(|“’|) ol = g 5ry —xs) . (2.123)

When the Coulomb interaction Eq. (2.23) is added, the matter Green function
gg?) can be expressed in terms of quantities without the Coulomb interaction using

the general result of the diagrammatic technique,

G (ry,rasts —t5) = —%(T[X,-(oo)(n,tl)SU(oo, —00) X (2, )}, ,  (2124)
where
S¥(00,~00) = 14+ 3" = ("’) /°° /°° dty ... dt, THO (2, ... HO(1,)].
n=1 1 —oo =<0
(2.125)

Substituting Eq. (2.125) into Eq. (2.124) and using Eq. (2.23), we obtain an infinite

series

1 /—i\? [
g,(?)(rl,rz;tl—tz) gt(J )(rlsr2,t1_t2)+ ( Z) / dts d3r' d3r"

h -0 z'<0 zI"'<0
X Fim(r' — P} (T[X O (01, 8) X (r ,ts)Xf(nm)(l'”,ts)XJ(-oo)(l‘z,tz)])c(;gg)n+
(2.126)
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Expanding the time-ordered product in the second term on the RHS of Eq. (2.126) by
means of Wick’s Theorem, we find two equal pairings of the operators which together
cancel the factor (1/2),

@ T — (%0 _ 3,/ 3,1
gz_) (l‘1, ra;t t2) g.; (rl, ro;ty tz) + ( ) / dts ‘/;,<0 d°r L"<o d3r
*(TIXO (1, 1) X, 1)) Py (' = r"W(TIXEO (", 1) X1 (12, 82)]) ) + .

(2.127)
Using Eq. (2.114), this may be rewritten as
0
9,‘}” (ri, vt —t2) = gﬁ,‘-’(’)(rl,rz; t1 —t2) + / dis d3r’ / <0 d*r"
(0 )(l‘l,l‘ t — t3)Fzm(l‘ ”) (00) (l‘ , 9, i3 — tz) +.... (2128)

Taking the Fourier transform of Eq. (2.128) with respect to (t; — ¢2), we obtain

G (x1,r5) = GYV(r1,12)

+ <o d3r' /z veo dar”g,(fo)“(rl,r')ﬂm(r' - r")g,(,?_?)“’(r" ,T2)+....  (2.129)

The infinite series in Eq. (2.129) can be summed to give a closed-form integral equation
for g‘°’“’,

G (r1,ry) = ( X (£1,72)

+ /[, & / Fr'GY (11, ) B — )G ("), (2:130)

as can be seen by repeatedly substituting gg? It given by the RHS of Eq. (2.130) into
the RHS of the same equation. Using Eq. (2.123), we obtain

g(o)W( 1,T2) = -ﬂl:’?———ll [51:]’5(1'1 —r2) + /;3<0 d3r3Fyn(ry — 13) g,‘,?}“’(r3, 1‘2)] .
(2.131)

Eq. (2.131) is the Dyson equation for the matter Green function g,-(,‘?"" for the
system described by the Hamiltonian density of Eq. (2.103). This equation can be

solved exactly for g‘°"" using an extension of the Wiener-Hopf technique, as discussed

33



in Appendix C. The solution is

eolex (jw]) — 12
drmer(|w|)e?

o2 1 e(w)—-1 &2 ( 1 )]
X + — , (2.132
[32?1,'6372_1' (Il‘l - l‘zl) GL(|W|) + 1 6161,'6.’1?23' Il‘1 - l‘2| ( )

where s is the image of r; in the plane z =0 and

GO%(xy,r) = _soler(w]) 1]

= 8ij0(ry — r2) +

€(lw]) ~1
1-3le(lwl) - 1]

is the dielectric function including local field effects. It is straightforward to check,

er(lwl) =1+ (2.133)

using the integrals described in Appendix F, that Qg-’)“’(rl, r;) given by Eq. (2.132)
with e, (Jw|) given by Eq. (2.133) does indeed satisfy the Dyson equation Eq. (2.131).

So far, we have obtained the Green functions for photons and matter, Egs. (2.112)
and (2.132), for the system described by the Hamiltonian density #, of Eq. (2.103).
Next, we calculate the Green functions for the complete Hamiltonian density # given
by Eq. (2.102). First, we consider the photon Green function Eq. (2.74) which, by

the diagrammatic technique, can be written as
)
Dy(ruraiti—t) = —=(TIALP(ry, )54 (00, ~00) AP (12, )Nk »  (2:139)
where

©0 1 —2\ D 00 00
S*(00,~00) = 1+ = (—h—z) / / _dti. Lt THOA (1) ... HOA(t,)] -
n=1"'% - -
(2.135)

Here, Hi(not)A () is the Hamiltonian corresponding to the Hamiltonian density #{,(r,t)
of Eq. (2.21),

2
HOMN) = [ & |-2A001 - PRE )+ A0 ) - A0y . (2136)
2<0 p 2p

As we have mentioned, D;; cannot be approximated by the first few terms of its
perturbation expansion. Instead, the entire infinite series in Eq. (2.135) must be
substituted into Eq. (2.134). However, we shall see shortly that the resulting infinite
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series of terms in D;; can be summed ezactly to give a closed-form Dyson equation
for the photon Green function.

The zeroth-order term in Eq. (2.135) gives just the free-space photon Green func-
tion Dg-)) of Eq. (2.104), whose Fourier transform is given by Eq. (2.112).

The n = 1 term in Eq. (2.135) gives a first-order correction to the free-space
photon Green function. Since there must be an even number of A operators in the
time-ordered product to give a non-vanishing expectation value, we see that only the

second term in Eq. (2.136) contributes in this order,

e? [—i\? [
Df;l) (1’1, Ia; tl - t2) = '2— (—) / dta / d37'3 (T[A.Eo) (1'1, tl)AS:) (1'3, t3)
p\h —o0 23<0

X A (r3, 1) A (2, 1)) Q. (2.137)

Expanding the time-ordered product in Eq. (2.137) by Wick’s Theorem, we find two
equal pairings of the operators which cancel the factor (1 /2),

M e [ 3,750 (0)
Dij (l‘l,rz;tl - tg) = -;/oodtsf <0d 1’3Dim(l‘1,l‘3;t1 - t3)ij(l‘3,l‘2; i3 — tg) s
(2.138)

where we have used Eq. (2.104). Taking the Fourier transform with respect to (¢, —12),

we obtain
62 w w
Dﬁ}’“ (ry,r2) = ) / 0 d3r3D§2 (rq, r3)Df,‘3. (r3,rs) . (2.139)
z3
Next, we consider the contribution from the n = 2 term in Eq. (2.135),

1 /—i\3 oo 0
D (ry,raits —tg) = 3 (g) /_ - dts /_ - dta(TIAL (x1, 1) H (ta) Hi (24)
x AP (rg, t2)) Qs . (2:140)

When Eq. (2.136) is substituted into Eq. (2.140) and the product of the two Hamil-
tonians expanded, there are a total of four terms: one due to the first term in Eq.
(2.136) acting twice, one to the second term in Eq. (2.136) acting twice, and the two
cross terms. The latter cross terms contribute nothing, since they each contain an

odd number of A operators.
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Consider first the contribution due to the first term in Eq. (2.136) acting twice,

1 —q 3 —e 2 00 00
D(2) . - = — (—) — / s ?
4 (T1, T3ty — t2) A\ R P) oo dts /_wdt“ z3<od "3 z4<od 4
X(TIA® (11, 1) A (x3, ) - P (13, 1) AO (v, 1) - PP (x4, £0) AL (12, 1)) Sl
(2.141)

Expanding the time-ordered product in Eq. (2.141) using Wick’s Theorem, we find
two equal pairings of the operators which together cancel the factor (1/2!). Using the
definition Eq. (2.104), we obtain

-— 2 00
Dg)(l'hl'z;h —ty) = (__e_) / * dtz f dty d®rs f d3ry
P -0 —co 23<0 24<0
XD§? ) (r1,Ta5t — ta)Qg),Z (r3,rq;t3 — t4)Dm (rg,ro5ts —t2), (2.142)

where
QD (rr, ity —t2) ¥ —-<T[P< )(e1,01) P (r2, 22)])@ (2.143)

is the Green function for the operator Px in the subsystem described by H, of Eq.
(2.103). The Fourier transform of Eq. (2.142) with respect to (t; —t2) is

2
—e
D (ry,rs) = (-;—) <o d®rs /z <o d3r4D§?)“’(r1,r3)Q(o)"’(r3,r4)’D,(,?;-“’(r4, r2),
(2.144)

where Q(o)“’ is the Fourier transform of Q@ To compute this quantity, we follow the
same procedure as used in computing G(o) by partitioning #, into a sum of #go and
HY., where Hyp is given by Eq. (2.113). The Green function for Px in the system
described by g is given by an expression similar to Eq. (2.114) but with X replaced
by Px. Comparing Eqgs. (2.50) and (2.51), we see that Px is obtained from X by
replacing h(w) by ping(w). Hence, following the steps leading from Eq. (2.114) to Eq.
(2.116), we obtain for g;m)w a result similar to Eq. (2.116) but with h(w) replaced
by piog(w),
i 1

O™ (x1,x2) = L5560 —xz) [ dw'lg)P | - - -] -

w—w+ie wHw —1e
(2.145)
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Using Egs. (2.53), (A.11) and (A.13), we obtain

!
9P = =€), (2.146)
Wo
where £(w') is given by Eq. (2.118). The integral over «' in Eq. (2.145) can be
rewritten as
K@ ¥ [ o) | - |
@) /o lg ()l w—w+ie wH+w —ie
= /mcku'g(.wl) [ 1l —1]
0 Wy lw—uw' +1e w+w —ie
- 2w (2)
= 5 /0 dw'é(w') + 5 J(w), (2.147)

where we have used Eq. (2.119). Now, it is shown in Appendix D that

/om dw'é(w) = 1. (2.148)
Substituting Eq. (2.147) into Eq. (2.145) and using Eq. (2.122), we obtain
2
Q,%-)O)W(l‘l,l‘z) = —pd;;0(ry —ry) {1 + PG;):’ [e(|w]) — 1]} } (2.149)

When the Coulomb interaction Eq. (2.23) is added, the Green function for Py is

given by an infinite series similar to Eq. (2.124),

1
QP (r1,rait —12) = —3(TIPLP (r1,11)S% (00, ~00) P) (e, )00, (2:150)

where SU(oco0, —00) is given by Eq. (2.125). When the latter equation is substituted
into Eq. (2.150), we obtain an infinite series similar to Eq. (2.127),

o\ 2
0 . — ol . —\" [
ng) (rl, ra;t — tz) = Q,-j (1'1, ro;t; — tz) + (—;i_) [—oo dts L’<o d3r' L"<o d3r"
x(T[PE (r1,0) X" (x', 1)) Fim (x’ — " /(TIX SO (&, 1) PR (v2,2)])
+.... (2.151)

We now have to compute the quantities (T[P{?X*”])®) and (T[X{*?PEI]).
Using Egs. (2.50) and (2.51), we obtain

¢ 00 00 i [oo oo
— (PR (e, ) X (2, )™ = —2 [T dw [ dwr

x (T {lg(w)Bl 4(r1)e® + h.c][h(w")B), ;(r2)e™* +h.c]})™
__ts - o gw)h(w)e Wt | 4 >y,
= '2‘5136(1'1 r2)/(; dw { W (W)ew't—t) |t <ty (2.152)
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Taking the Fourier transform with respect to (¢, — t2), we obtain

_: (T[ P(oo) (r1,21) X(OO) (ra, tz)])(OO) = %éijé (r, —r2) /0 S du’

M FC/LCH R CALATs) PR

w—uw 41 wHw -

Using Egs. (2.52) and (2.53), we calculate
g (W) = —ilog(w) + G5 w)anw’) — Fo(w)]
= —i{lao(@)l? ~ [Bo(e)? + 2 m [aa(@)B5 )]} - (2154)
From Egs. (A.11) and (A.13), we see that [ap(w')B3(w")] is purely real. Hence,
g (Wh(W) = =i [lao(w)]? - 1Bo(w)I?]
where we have used Eq. (2.118). Substituting Eq. (2.155) into Eq. (2.153), we obtain

(TIPS (1, ) X2, )| = —588(e1 — 1) [ dw'e(@)

1
X[w—w’+ie+w+w'—ie]
ipeqwle(lw]) — 1
PEo [(el I) ]553’5(1‘1—1'2)

= —ipwgy " (r,12) (2.156)

where we have used Egs. (2.119), (2.122) and (2.123).
For (T[X,goo)P,(gg-)])(oo), we obtain an expression similar to Eq. (2.153) but with
g(w') and h(w') interchanged. According to Eq. (2.155), this amounts to an extra

minus sign. Hence,
_n< Xy, t) PO (e, D@ = G (ry,x0) . (2157)

We now take the Fourier transform of Eq. (2.151) with respect to (¢, — t2) and
then use Eqgs. (2.156) and (2.157),
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—3\ 2
Qg;?)“’(n, r;) = Qg?o)w (r1,r2) + (W) » B /z”<0 d37‘”Flm(r' — 1)
x (TIPER (v, t) X" (', )| (TIX SO (", 86) PLD (x2, )| + .
(90 (r1,15)

+p%w? <o d3r’ eo B8 (1), ') Fi(r' — r”)g,(,?;)“(r” ,T2)+.... (2.158)

Comparing Eqgs. (2.129) and (2.158), we see that the infinite series in the two equa-
tions, represented by the second and higher-order terms on the RHS of each of the two
equations, are identical except for a factor p®w?. This holds because each term of the
series in Eq. (2.158) differs from the corresponding term of the series in Eq. (2.129)
only in replacing, in the latter series, a factor g"’”)“’ by (—i/h) (T[P}(gg)X,(OO)])(m’) Iw
and a factor g‘“")“’ by (—i/EK) (T[P Q?,),XJ(OO)]) . According to Egs. (2.156) and
(2.157), this amounts to multiplication by a factor (—ipw)(ipw) = p?w?. Hence, we

conclude
QP (r1,m2) — Q™ (r1,m0) = P[99 (r1, 1) — G5 (r1,m2)] - (2.159)
Substituting Eqgs. (2.123) and (2.149) into Eq. (2.159), we obtain
QP (r1,ma) = —pbiyd(ry — 1) + PWGH (r1,12) (2.160)

where Qg-) ) is given by Eq. (2.132). Eq. (2.160) is used in Eq. (2.144) to give D(z)“'.
We still have to consider the contribution from the second term in Eq. (2.136)

acting twice, as well as the contributions of the higher order terms in Eq. (2.135).

These contributions can be taken into account by using diagrammatic analysis.

The perturbation series Eq. (2.134) can be represented by an infinite series of dia-
grams as shown in Fig. 2.1. Here, the complete photon Green function is represented
by a heavy dashed line and the free-space photon Green function by a thin dashed
line. The contribution Eq. (2.139) due to the second term in Eq. (2.136) acting once
is represented by the second diagram on the RHS of Fig. 2.1a, the contribution Eq.
(2.144) due the the first term in Eq. (2.136) acting twice by the third diagram, the
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contribution due to the second term in Eq. (2.136) acting twice by the fourth dia-
gram, etc. It can be seen that any one of the higher-order diagrams in Fig. 2.la
is constructed from just two types of building blocks, known as self-energy parts,
represented by a cross and a vertical dumbell, which correspond to the second term
in Eq. (2.136) acting once and the first term in Eq. (2.136) acting twice, respectively.
We can separate the higher-order diagrams into two groups: those containing a self-
energy part of the first type at the bottom and those containing a self-energy part of
the second type at the bottom, as shown in Fig. 2.1b. The infinite series connected
to either one of these factors consists of all possible diagrams constructed from an
arbitrary number of self-energy parts of either type strung together in any order by
free-space photon Green functions. Such a series is just the complete photon Green
function. Hence we obtain the equivalent representation shown in Fig. 2.1c. This
means that the higher-order diagrams are all included in just two diagrams obtained
from the second and third diagrams on the RHS of Fig. 2.1a by replacing the thin
dotted lines at the top of the latter diagrams by heavy dotted lines. Mathematically,
the complete photon Green function is given by the sum of the free-space photon
Green function and the two terms derived from Egs. (2.139) and (2.144) by replacing

the factor ’Df,?;-“’ in these equations by Dy,

2
Dij(ry,r2) = D,‘}’)“’(rl —r3) + ) / w BrsDO¥(r, — r3)Dp;(rs, r2)
z3

2

—e w

+ (—p ) w0 d®rs / < d3r4'D§?)“'(r1 —r3) Qﬁ’,{ (rs,rg)Dipj(ra,v2) . (2.161)
3 24

Substituting Eq. (2.160) into Eq. (2.161), we obtain
D:;-(l'l, 1‘2) = Dg))w (1‘1 - l.‘2)
+e?w? d®rs BraD (v, — r3)G 0 (rs, r4)Dii(ra,r2) . (2.162)

z3<0 z3<0

We may now substitute Eq. (2.132) into Eq. (2.162). For the second term in Eq.
(2.132), we perform integration by parts twice and make use of the transversality of

the photon Green function,

d

a
—Dx " = —Dx. N=90. .
. Dij(r,r') 52 Di(r,x') =0 (2.163)
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The result is

'ij(rhrz) = Dg’)‘”(rl —ry) — w260[5L(|w|) - 1] / <0 d*r 3'D§o)w(1‘1 —r3)D% (1‘3, 1‘2)
23

weler(|w]) — 1]

1
+ d2 d2 D(O)w _ _ 1w .
2 fer(|w]) + 1] / / s3d*s4 Dy, (r1 — s3) 59— 54|Dz1 (sspr2), (2.164)

where s; and s, are integration points on the plane z = 0.

Eq. (2.164) is the ezact Dyson equation for the transverse photon Green function
for the complete Hamiltonian density # of Eq. (2.16). This equation can be solved
exactly for Dj; using an extension of the Wiener-Hopf technique, as discussed in
Appendix E.

Before continuing to calculate the other functions G} and C}} needed in Eq.
(2.101), it is instructive to consider the photon Green function for an infinite di-

electric medium. In that case, the Dyson equation Eq. (2.164) is modified to read
Dij(r1,r2) = Dﬁ}’""(rl — 12) — wreoles(|w]) — 1] /oo d*rsDip (ry — r3)D;,;(r3, T2) ,
(2.165)

where the integral over r; extends over all of space and the surface term in Eq. (2.164)

is absent. Eq. (2.165) is easily solved by taking the Fourier transform with respect to

(r1 —r2),
kik; kikm
ny_(6s-%) (0 — )
w = (X - - k 2.
D50 = (2) g g~ Wleall) — Ut D (0 . (2166)
To solve Eq. (2.166), we assume a solution of the form
kik;
Dyj(k) = Ad;+B—2 Ic2 . (2.167)
Substituting Eq. (2.167) into Eq. (2.166) and using the fact that (6,-,,, - &,ﬁm) km =0,
we obtain
kik; 1\ (6 — 53) 2
= (=) =2 KB/ n- - 1
A6+ BE (60) L1 Al () — 10} . (2168)
Equating the coefficients of d;; and %J- on both sides of Eq. (2.168), we obtain
1 1
= (= 2.169
A (eo) w? + w?er(Jw]) — 1] — k2c? + ie ( )
B = —-A. (2.170)
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Hence, for an infinite dielectric medium,

. 1 (65 - %)
Dylk) = (Q) o Y (2171)

The dispersion relationship for the photons is given by the singularity of the photon
Green function,

2 w?
K = -cqeL(le) ) (2.172)

which shows that €7 (.) is indeed the dielectric function of the medium.
Next, we calculate the matter Green function G for the complete Hamiltonian

density #. This is given according to the diagrammatic technique by

conn ?

Gij(r1,xo5t1 —t2) = —%(T[Xi(o) (r1,t1)S* (oo, —oo)XJ(o) (r2,12)]) 9 (2.173)

where S4 (00, —00) is given by Eq. (2.135). The zeroth-order term in Eq. (2.173) is
g,‘,‘” whose Fourier transform is given by Eq. (2.132). The n =1 term is

-\ 2 o0
0Pt —t) = (=3) [ dta(TXO(ro, ) BQA ) X[ (r2, ) Q-
(2.174)

The first term in Eq. (2.136) does not contribute, since it has an odd number of A

operator. Substituting the second term in Eq. (2.136) into Eq. (2.174), we obtain

02 7.2\ oo
1) . — ( z) € / 3
(ry, w05t —ta) = dt d
Gi;’(r1,r2;t — t2) % (Zp s f 4T

X (T[X (r1, 1) AO (r3, t3) - A (r3,25) XS (2, t2)) D - (2:175)

conn °

When the time-ordered product in Eq. (2.175) is expanded using Wick’s Theorem,
the two A operators must be paired together and so must the two X operators, since,
in the subsystem described by the Hamiltonian density #o of Eq. (2.103), there is
no coupling between the transverse radiation field A and X. But this results in a

disconnected diagram, which we do not count. Hence,
g,‘}’ (r1,r25t1 — %) = 0. (2.176)
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Next, consider the contribution from the nth term in Eq. (2.173), where n > 2,

1 3 n+1l
G (1, et~ 1) = ;(—ﬁ) [ [t (Tx O, 1)
s HOME) ... HOME)XO (g, 2))O . (2.177)

conn

The X,go) or X](o) operator in Eq. (2.177) cannot be paired with an A(® operator in
the expansion of the time-ordered product using Wick’s Theorem. Hence, X,-(o) must
be paired with a ng) operator from one of the Hamiltonian factors Hi(:t)““ ,and X Jgo)
must be paired with a ng) operator from another Hamiltonian factor. There are
altogether n(n — 1) distinct, ordered pairs of these Hamiltonian factors, all of which
contribute equally. Hence, we need only consider one particular pair of Hamiltonian
factors, namely, HO4(¢,,_,), and H®*(¢.) and multiply the result by n(n—1). Using
Eq. (2.136) we obtain

) nln —1 n+l
ngj)(rhl‘z;tl‘ﬁ) = ( nl ) ( ) ( ) / / %
X/ darn—l_/ ds'[‘n(T[Xz( )(rl, tl) (0)(r‘n—17 ln- 1)]>(0)<T[A(0)(r"'—1’ n—l)
2n-1<0 2 <0

‘°)A(t1) é&"‘( n_z)As,‘P(rm D (TP, (vn, £,) X2 (x2, 25)]) @

_ __f'_ :E ! ! 3 3
X(T[-Xi(O)(rhtl) (D)(rn—la n-l)])(O)D(n 2)(rﬂ-17rn;t:u—1 - t:;)
X (TP (Tn, 1) X (r2, 1))@ (2.178)

where D(” 2 is the (n — 2)th term of the perturbation series given by Eq. (2.134).
When Eq. (2.178) is summed from n = 2 to oo, the summation of the ’D("_z)

factor simply gives the complete photon Green function D;;. Hence, summing g‘“)

from n = 0 to oo, taking into account Eq. (2.176) and going over to frequency space,

we obtain

.2 2
g _ 0 ) —€ 3 3
Gi(r,r2) = Gy “(r1,r2) + (_7{) (_p') z3<od T3 24<0 a'ra

x (TIXO (x1,81) PO (3, t2)) @ D, (v, 74)
x (TIPE (04, t) X (r2, &) . (2179)
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We now have to compute the quantities (T[P{IX{"])® and (T[X® PO,
These are obtained in terms of the quantities (TP X{°”])(®) and (T[X{*" P])©®

by the diagrammatic technique with the Coulomb interaction Hi(noto)v as perturbation,

)
(TP, )X (e 2O = (TP (x1,)5% (00, —00)
x X (x5, 1)), (2.180)

where SU(oo, —00) is given by Eq. (2.125). Comparing the two infinite series Egs.
(2.124) and (2.180), we see that each term of the-latter series differs from the cor-
responding term of the former series only in replacing, in the former series, a factor
(—3/B)(T[X; (00) 5 (00)1(00) by (—4/K)(T[P (OO)X (00)])(00) Thus, after taking the Fourier
transform of the series Eq. (2.180) with respect to ({1 — t3), we obtain a series that
differs only from that in Eq. (2.129) by replacing, in each term of the latter series, a
factor G by (—i/R) (TP X{*))) |w. By Eq. (2.156), this amounts to multi-
plying each term of the series in Eq. (2.129) by —ipw. Thus, we conclude

—% (T[P, (0)(r11t1)X (0)(r2,t2)])(°)| = —ipwg§}””(r1,r2) . (2.181)
Similarly, using Eq. (2.157),

—;i— (TIXO (01, 8) P (r2, )OO = $pw0G (x1,72) - (2.182)
Substituting Eqs. (2.181) and (2.182) into Eq. (2.179), we obtain

Gi(ry,rg) = ( ¥ (pq, T2) + €20? d3rs dry
23<0 z4<0

X Gy (1, T3) Dipn (3, 1‘4)g(°3~°’(r3, ra) . (2.183)

Eq. (2.183) is an explicit expression for the complete matter Green function Gy}, since
g‘°)‘" is known from Eq. (2.132) and the complete photon Green function D} is known
from Appendix E.

Lastly, we calculate the function C;; given by Eq. (2.100). We consider each of the

two terms in the latter equation separately. By the diagrammatic technique, we have
1 1
H{T[Xilrr, ) Al O) = (TX (11, 7)5% (00, ~00) A (r2, O, (2189
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where S4 (0o, —00) is given by Eq. (2.135). The zeroth-order term of the series Eq.
~ (2.184) vanishes, since in the subsystem described by #o of Eq. (2.103) there is no
coupling between A and X. Hence, consider the nth term in Eq. (2.184), where
n>1,

1 WL
Lix, (oo = L (% ©
(T, DA N = = (=2) [ [ df b (10X (e, 7)

xH () ... HOA () AP (12, 0)) D . (2.185)

Following the steps leading from Eq. (2.177) to (2.178), we see that X,-(O) must be
paired with a P&?) operator from one of the n Hamiltonian factors. Choosing Hi‘,,‘?*‘ (t.)

to pair with Xi(o) and multiplying the result by n, we obtain

n!
0 ©0 ! 1 !
x [~ [ by dtn(TIXO (11, 7) PO, )
—0c0 —o00
X(T(A]" (£, 2,) x HZ" (1) - - Hind (fp-1) 45" (2, Q)

conn

e o, , . ’
w () [ [ T P e £ OB 2,
(2.186)

Z(TX(e1, ) A2, O = - (h%) " (-1 [

where Dg-'_l) is the (n — 1)th term of the series in Eq. (2.134). When Eq. (2.186)

is summed from n = 1 to oo, the summation over the DD

i;  factor simply gives

the complete photon Green function D;;. Then, taking the Fourier transform with

respect to 7 and using Eq. (2.182), we obtain
1 w w
% (T[Xi(r1, 7)Aj(r2, 0))* = ew /z 0 drag" (r1,v3)Di(r3,T2) - (2.187)
3
Similarly, we obtain

= (T, 0 Ao DI = 3 (T1Xi(e2, ) Ay, O™

= e(—w) / da?‘ag,gzo )_w(rl,l‘s)pz;w(l‘a,l‘z)- (2-188)
z3<0

It can be seen from Eq. (2.132) and Appendix E that the Green functions g,g‘.’ ) and

Dy; are even functions of w, since w enters into these Green functions only in the form
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|w| or w?. Hence, the RHS of Eq. (2.188) is equal and opposite to the RHS of Eq.
| (2.187). Taking into account the minus sign between the two terms in Eq. (2.100),
we see that Eqs. (2.187) and (2.188) contribute equally to the Fourier transform with
respect to 7 of Eq. (2.100). Thus,

Cii(r1,r2) = 2ew / <0d3,.3 ()w(l'ul‘s)%(rs,rz) (2.189)
23

We now have all the quantities we need, namely, D§j, G;; and Cjj, to compute the

‘l]’
spontaneous decay rate of the excited atom using Eq. (2.101).

2.6 Comparison with the Classical Theory

Results for the total decay rate calculated from Eq. (2.101) using the exact functions

D¢, Gy and Cy; are in excellent agreemment with those of classical electromagnetic
theory [16]. These are shown in Fig. 2.2 for a gold mirror with refractive index
n = 0.505 + 3.66i. The total decay rate contains a nonradiative component due
to energy transfer from the excited atom to the absorbing mirror via the near-field
Coulomb interaction. The contribution due to the instantaneous Coulomb interaction

U alone may be obtained from Eq. (2.101) by setting D;; equal to zero,

we 6mce 1
V;Izg;t L= - We : Im62w2 / <0 Jz'<0 dsrdsr,FU]m(ra - r)gf(re‘r)lwa (rv l")F n{j] (rl - ra) .
spont a V% 2z

(2.190)
In Appendix F, the integrals over r and r’ are evaluated to give

/;<° 2'<0 d3r d’r'Fy [j]m(ra - l‘) g,(,gz,""’ (l‘, r')Fn[j] (r' - ra)

B e [er(ws)—1 02 1
dmeg |ep(wa) + 1] [0%a[j10Tsy5) \ |ra — 1ol

where T, is the image of r, in the plane z = 0. Substituting Eq. (2.191) into Eq.

. (2.191)

r5=f¢

(2.190) and evaluating the partial derivatives, we obtain

w2 30; [ -1 ]
—Spontyj  _ I Im , 2.192
Ws(ggnt 8uwlz3 er(ws) +1 ( )
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where 6; = 2 for j = z and 6; = 1 for j = z or y. Eq. (2.192) agrees with the
classical result [16] for the rate of nonradiative energy transfer in the limit z, — 0.
At distances z, greater than a fraction of a wavelength, however, Eq. (2.192) differs
considerably from the classical result, suggesting that the latter includes partially the
effects of the transverse photons.

Nonradiative decay is absent for a perfect dielectric. In this case, our results for
the decay rate W; are in excellent agreement not only with the results of classical
electromagnetic theory, but also with those based on quantization of macroscopic
spatial modes [18]. These are shown in Fig. 2.3 for a dielectric half-space with

refractive index n = 3.

2.7 Conclusions

In this chapter, we have presented an exact solution of a microscopic Hamiltonian
model of an absorbing dielectric half-space and used it to calculate the spontaneous
emission rate to order e? of an excited atom near the surface. Because our calcu-
lation is based on a fully canonical quantization scheme, it provides a fundamental
demonstration of the validity of the classical electromagnetic theory of the rate of
spontaneous emission near an absorbing dielectric surface. This serves to increase
our confidence in the results of recent work on spontaneous lifetime based on classical
electromagnetic theory [21]. Also, the exact photon Green function for the half-space
given in Appendix E can be used to treat other quantum mechanical interaction phe-
nomena between charged particles and the electromagnetic field near an absorbing
plane surface, such as the level shift of an electron undergoing cyclotron motion near
such a surface [22]. In the above discussion, we have only considered the case for
which the excited atom is on the air side of the surface. However, our approach can

be extended to treat the other case also.
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Figure 2.1: Perturbation series for photon Green function. A heavy dashed line
represents the complete photon Green function. A light dashed line represents the
free-space photon Green function. A cross represents an interaction vertex due

to the A-A term in Eq. (2.136) acting once. A vertical dumbell consists of two
interaction vertices due to the A*P term in Eq. (2.136) acting twice.
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Figure 2.2: Lifetime of an excited atom near a gold mirror. Solid lines are the results
of classical electromagnetic theory. Dots are the results of our quantum theory. ko is
the wavevector in air. z, is the distance of the atom above the mirror.
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Figure 2.3: Lifetime of an excited atom near a lossless dielectric surface. Solid lines
are the results of the spatial-mode quantization theory. Dots are the results of our
quantum theory.

50



Chapter 3

Three-Dimensional Topography
Scattering Part I: Multipole

Accelerated Physical-Optics
Method

3.1 Introduction

In the past few years, electromagnetic simulation of photolithography has received
much attention. This is because, as the design rule of integrated circuits shrinks, it
becomes necessary to control CD variations due to topography scattering and other
effects within tighter and tighter limits. Accurate simulation of topography scatter-
ing using electromagnetic theory can be a valuable tool for predicting CD variations
over wafer topography. A related problem arises in mask design. As the aspect ra-
tio of the mask topography increases, due to design-rule shrinkage or to the use of
phase-shifting-mask structures, electromagnetic-diffraction effects in mask transmis-
sion become increasingly more important and thus need to be simulated accurately.

Various rigorous techniques of computational electromagnetics have been applied
successfully to topography scattering problems in 2-D. These include the time-domain
finite-difference [24, 25, 26, 27], waveguide [28], differential [29], finite-element [30, 31
and spectral-element [32] methods. Already in 2-D, such techniques are very CPU
and memory intensive. Their extensions to 3-D would certainly be much more so.

In an attempt to reduce the CPU cost of topography-scattering simulation, approxi-

51



mate techniques based on the Geometrical Theory of Diffraction (GTD) [9] and the
physical-optics approximation [10] have been developed for 2-D problems. In this
chapter, we discuss an extension of the physical-optics approach in [10] to 3-D topog-
raphy scattering. The resulting technique is suitable for piecewise-linear topography
and allows reflective-notching simulation of large 3-D structures to be performed on
an ordinary workstation with reasonable CPU time.

We begin the discussion of our multipole accelerated physical-optics technique
with a review of the diffraction integrals of electromagnetic theory in Section 3.2
and an outline of the physical-optics approximation in Section 3.3. To simplify the
treatment of multilayer structures, we use an iterative scheme developed by Pai and
Awada [13] to take into account multiple scattering between adjacent surfaces in the
structure. This is discussed in Section 3.4, where the special case of a pair of non-
interlacing adjacent surfaces is discussed in detail. The problem of multiple scattering
within a given surface is discussed in Section 3.5, while the problem of the reflection
of multiply scattered dipole waves from the tangent planes on the same surface is
discussed in Section 3.6. Next, the multipole approximation is introduced in Section
3.7 to speed up the computation of the multiply scattered waves. The discussion
for dipole waves in Section 3.6 is then generalized to the case of multipole waves in
Section 3.8. The technique of multipole acceleration is discussed in Section 3.9, while
the approximation methods used to evaluate the resulting integrals are discussed in
Section 3.10. In Section 3.11, the operation count of our algorithm is estimated.

Then, the results of 3-D reflective-notching simulation are presented in Section 3.12.

3.2 Problem Statement

Fig. 3.1 shows the type of topography of interest in photolithography simulation. It
consists of a number of homogeneous media of permittivity ¢; separated by surfaces
S;. The structure is assumed to be periodic in the horizontal (z and y) directions
with periods d; and dy. A set of plane waves representing an aerial image is incident

on the uppermost, photoresist surface. The incident field on a horizontal reference
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plane above the photoresist surface is in the form of a superposition of a finite number

of spatial harmonics e/(@»Z+6~¥) where

2

om = KO+ ;"z’” (3.1)
2

B = KO+ ;ryn (3.2)

Here, m and n are integers and k(") and k(") are components of the incident wavevector
of the (0,0)-th harmonic. Our goal is to simulate the intensity distribution within
the photoresist layer.

According to the Kirchhoff-Huygens principle [33], the electric and magnetic fields
at any point r within a homogeneous volume can be computed from the values of the

tangential field components over a surface completely enclosing the volume,

E(r) = % /. :- jwu(n’ x H)p — wiel(n' x H) - V/(V'9) - (of x B) x Vg aS',
(3.3)

H(r) = 417r / Jwel(n x E)¢ += (n x E) -V (V'y) — (0 x H') x V’zp] ds’,
(3.4)

where S is the enclosing surface, €; and p are the permittivity and permeability of
the enclosed volume V, and % is the Green function for the Helmholtz equation in V,
gikalr—r'|
=]

k, being the wavevector in V. Also, in Egs. (3.3) and (3.4), n’ is the outward unit

v = (3.5)

normal at a point r’ on S, a prime on E or H indicates that the corresponding quantity

is to be evaluated at r’, and our time convention is e~7“*.

Egs. (3.3) and (3.4) are equivalent to the standard form of the Kirchhoff-Huygens
principle [34],

E(r) = ﬁ [ (jontel x HYS — (af - B)V' - (a x E) x V'y]dS’, (36)

H(r) = Zl; /s [jwe (0’ x By — (0’ - H)V'y — (0’ x H) x V'9]dS’. (3.7)
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This can be seen by performing an integration by parts on the second term on the
RHS of each of Egs. (3.6) and (3.7). For example, using the Maxwell’s equation
—jwe;E = V x H, the ith component of the second term on the RHS of Eq. (3.6)

becomes
1 ’ ! 31/1 ' 1 _ ! ! 1 7
ir /s —("-E )6:1:} a5’ = ar /.; wel [ (VixH )] dS
_ 1 _ J . ' , 0P 1 , Oy '
= E/s oo [v x (H—ax;) +H x (v ax,)]ds (3.8)

Using Stokes’ Theorem, the first term on the RHS of Eq. (3.8) is transformed into
a line integral along the boundary of S, which is zero since S is closed. Hence, Eq.
(3.8) becomes

1_1.1%1_i___j_/./ a"/’ '
Z;/s (= E)ax',-ds - 41r/s wer X 3:1:, a3

_ 1 J ' 1O
= 4“/3 == (n' xH)- V' 3% (3.9)

we,
which is the same as the ith component of the second term on the RHS of Eq. (3.3).
Similarly, the second terms on the RHS of Egs. (3.7) and (3.4) can be shown to be
equivalent.

There is an advantage to using the amended form Egs. (3.3) and (3.4), rather than
the standard form Eqgs. (3.6) and (3.7), in that the former has a simple interpretation
in terms of vector potentials. If we regard the tangential fields (n’ X E’) and (—n' xH')
on S as equivalent to magnetic and electric surface current densities, respectively, then
the magnetic and electric vector potentials A,,(r) and A.(r) at any point r within V

due to these equivalent sources on S are

_ i ! ! !
An(r) = = /s (o' x E')ydS', (3.10)

_ i ! 1 !
AL = o /S (o' x H')p dS' . (3.11)

The electric and magnetic fields are then given by
E(r) = VxAn+-—VxVxA,, (3.12)
wey

H(r) = Ver—wL“VxVxAm. (3.13)
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When Eqgs. (3.10) and (3.11) are substituted into Egs. (3.12) and the V operators

allowed to act on 9 with the substitution V = —V’, we obtain

E(r) = % /S { —(n' X E') x V' — wiel [0 x B) - V'(V'y) — (n' x H')V?2y| } ds’.
(3.14)

Eq. (3.14) is seen to be the same as Eq. (3.3) when we use the fact that V29 =
—k?1) = —(w?pe1)y when r # r'. Similarly, Eq. (3.13) can be shown to be equivalent
to Eq. (3.4).

From the above discussions, it is clear that the main problem in topography-
scattering simulation is to determine the values of the tangential fields on the surface
S = S; + S, enclosing the photoresist region whose permittivity is ¢; (see Fig. 3.1).
The rigorous approach would be to set up integral equations for the tangential fields
on S and S, using outgoing-wave boundary conditions in the region above S; (air)
and the region below S, (substrate). In this chapter, however, we use instead an

approximate approach based on the physical-optics approximation.

3.3 The Physical-Optics Approximation

The basic idea of the physical-optics approximation is that the tangential fields at
each point on the surface of a scatterer may be approximated by those that would be
present on the tangent plane at that point, i.e., by the sum of the incident and reflected
fields on the tangent plane. A condition of validity of this approximation is that the
local radius of curvature r, of the surface be large compared with the wavelength A of
light in the incidence medium. In the simplest implementation of the physical-optics
approximation, multiple scattering between opposing elements of the same surface is
ignored. We shall refer to this as the zeroth-order physical-optics approximation. The
condition of validity of this zeroth-order approximation is r.cos@ >> \/4m, where 6
is the local angle of incidence [35]. This is satisfied for gently undulating topography
in which the surface slope is everywhere small, so that cosd = 1, and no sharp edges

are present, so that 7. >> X. A number of structures of interest in photolithography
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simulation are of this type, e.g., bird’s beaks and planarizing dielectric layers. In
order to extend the class of topography to which the physical-optics approximation
is applicable to include piecewise-linear topography with large surface slopes, it is
necessary to go beyond the zeroth-order approximation by including the effects of

multiple scattering within each surface.

3.4 Multiple Scattering between Surfaces

In a multilayer structure such as the one shown in Fig. 3.1, multiple scattering between
adjacent surfaces such as S; and S, can give rise to important standing-wave effects.
When doing topography-scattering calculations, It is convenient to treat each surface
one at a time and to include the effects of neighboring surfaces by iteration. A
suitable iterative scheme for this purpose is the one-way multiple-reflection-series
method developed by Pai and Awada [13] to improve the numerical stability of the
waveguide model. In this scheme, the field throughout the multilayer structure is

represented by a series of multiply reflected waves,
E(r) = E@)+EP@+ET @) +..., (3.15)

where the subscript on each term on the RHS indicates the number of reflections
undergone by the corresponding wave, and the superscipt indicates whether the wave
is downgoing (—) or upgoing (+). This is illustrated in Fig. 3.2. The zeroth-reflection
wave Ef)_)(r) is obtained by propagating the incident wave down through the entire
structure, using the transmitted field generated at each surface as incident field for
the surface below. The one-reflection wave E§+) (r) is obtained by propagating the
reflected fields generated at the various surfaces during the preceding downgoing
step up through the entire structure. The two-reflection wave Eg') (r) is obtained by
propagating the reflected fields generated at the various surfaces during the preceding
upgoing step down through the structure, and so on.

The propagation of each of the above multiply reflected waves from one surface to

the next can be treated by diffraction theory. The interaction of the waves with each

56



surface can then be treated either approximately by the physical-optics method, or
rigorously by the integral method (Method of Moments).

Consider the propagation of waves from a surface S; to an adjacent surface S;
in a multilayer structure such as the one shown in Fig. 3.1. The permittivity of
the intervening medium is assumed to be ¢;. The fields incident on S; due to the
tangential fields on S; are given by expressions similar to Eqgs. (3.3) and (3.4), except
that the integrations are now restricted to the surface S;. Each surface element 4.5’
on S;, centered at r’, contributes an amount SE(r) to the electric field incident at a
point r on S; given by

1 . ! ! ] 1 ' ! ! I ! ! !
SE(r) = Z;[—-Jw,u,(n xH)w—;‘l—l(n x H') - V'(V'%) — (n xE)sz/)]JS.

(3.16)

From the form of the Green function v given by Eq. (3.5), we see that Eq. (3.16)
represents a spherical wave originating from the source point r' on S;. We are then
faced with the problem of how to treat the interaction of such spherical waves from
S; with the adjacent surface S;.

In the physical-optics approximation, we assume that the spherical waves repre-
sented by Eq. (3.16) interact with the tangent plane at each point of S; independently
of the rest of S;. Because these waves are spherical, the treatment of their reflection
from the tangent planes on S; is based on Sommerfeld’s solution, which is much
more complicated than the Fresnel laws for plane waves. We defer discussion of
Sommerfeld’s solution to Section 3.6. For the present, we note that a considerable
simplification occurs when the adjacent surfaces S; and S; under consideration do not
interlace, i.e., the lowest point of the upper surface is higher than the highest point of
the lower surface. In that case, it is possible to draw a horizontal reference plane S
between S; and S; which does not intersect either surface. The spherical waves from
S; can then be decomposed into a sum of plane waves. To do so, we first evaluate the
fields on the reference plane S; using Egs. (3.3) and (3.4) but with the integrations

restricted to S;. By Floquet’s theorem, the fields on the reference plane S may be
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written as a sum of spatial harmonics,

E2,9) = Y [Amnel) + Bnne)| eflen=tht) (3.17)
\/gl-H(x, Y) = Y [Amabl) + Bpah)] et (3.18)
m,n

where o, and 3, are given by Egs. (3.1) and (3.2). Also, in Egs. (3.17) and (3.18),
els®)} and his®) are unit vectors of the (m,n)-th harmonic for s (p) polarization.
The form of these polarization vectors depends on whether they represent upgoing or
downgoing spatial harmonics. When S; is above S;, only downgoing spatial harmonics
are present on the intervening reference plane Srr, and conversely when S; is below

S;. For upgoing spatial harmonics,

) _ —PnX+omy (
) — ZPoXtomy 3.19)
" Voi, + B2
- - 2 2
Bp = ZomlmeX = fudmy + (o + fo)e (3.20)
k V aZ, + p2
e,(f,’,':') = —h.ﬁ;‘:;',') , (3.21)
h(n};:) = el8t) , 3.22
mn
where
B—at -
v, = . , Im >0, 3.23
'mn { j \/m Ymn ( )

and x,y and z are the Cartesian unit vectors with z pointing upwards. For downgoing

spatial harmonics,

el = ebt), (3:24)

h,(,iZ) — OmYmnX+ BaYmny + (02, + B2)z , (3.25)
ky \/ o2, + 2

e®) = -h§), (3.26)

b = o). (3.27)
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With the help of these polarization vectors, we can invert Egs. (3.17) and (3.18) to
find the coefficients A,,, and By,

+k de rdy [ 7
A = =0 (%) _ (s)|
@ = smar [ B < B - [ EHE) x| -2
xe J<°m’+ﬁﬂy)dzdy, (3.28)

+k d: pd
m-'ly_/o /OVE(:cy)x )—‘/ H(:z:y)xe(’"i) -z
z0yYmn
Xe-J(amz‘i'ﬁny)dxdy . (3.29)

B

where the superscript ¥) indicates an upgoing or downgoing spatial harmonic.
Knowing the expansion coefficients on the reference plane Si.f, the fields incident

on S; are easily obtained,

Br) = 3 [A%)eld) + Bleld)] eflamzthnyinaz) (3.30)

\EH(’) = Z[Anﬂ (s::).{_ B(i) 'f)] i (@mT+BnayEymnz) (3.31)

where 2 is measured from the reference plane. The interaction of the spatial harmonics
contained in Egs. (3.30) and (3.31) with S; can now be treated readily within the
physical-optics approximation, by applying the Fresnel laws of optics.

Specifically, consider the interaction of the (m,n)-th spatial harmonic contained
in Egs. (3.30) and (3.31) with the tangent plane P at a particular point r on Sj.
In general, P is not horizontal. Let the normal to P point in a direction described
by polar coordinates (5, q~5) with respect to the global coordinate system shown in
Fig. 3.1. Then, we can define a local coordinate system (z”,y",2") in which the z"

axis is normal to P by the following coordinate transformation:

T’ cosfcosd cosf sin é —sind T
y' ] = —sing cos @ 0 y |. (3.32)
2" sinfcos$ sinfsing cosd z

The wavevector (Qm, Bn, £¥mn) Of the (m,n)-th spatial harmonic is similarly trans-

formed into components (o, 82, vh,) With respect to the local coordinate system,

o cosBcosd cosfsing —sind Om
B = —sing cos ¢ 0 Bn . (3.33)
mn sinfcosd sinfsing cosf £Ymn
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Next, we construct polarization vectors els®)” and hls®)" associated with the direc-
tion of incidence (o, 8",7",) in the local system, using Eqgs. (3.19) to (3.22) with
(Qm, Bn, Ymn) replaced by (ofr, By, Yms). With the help of these polarization vectors,
we can resolve the amplitudes of the (m,n)-th spatial harmonic in Egs. (3.30) and

(3.31) into components A” and B” along the directions of these vectors,

[A22662) + BRler®)] = arel + BUel), (339
[ABhED) + BENEH| = A"R() + B"bE) (3.35)

where

1 " "
4 = o {[Aek + BEeg] x L — (AR + B o} 2
(3.36)

and B" is obtained from Eq. (3.36) by replacing h®)' and e{)’ by h®)' and eff),
respectively. Also, in Eq. (3.36), C = [e{)’ x h{¢)']-2". This way, the (m, n)-th spatial
harmonic incident on the tangent plane P is resolved into an s-polarized incident plane
wave with amplitude A” and a p-polarized incident plane wave with amplitide B”.
The reflected waves can now be found by applying the laws of optics. In particular, the
amplitude of the reflected s-polarized wave is equal to A” times the Fresnel reflection
coefficient for s-polarization, and similarly for the reflected p-polarized wave.
Having thus found a way to deal with multiple scattering between adjacent surfaces
iteratively, we can now concentrate on the multiple scattering taking place within each

surface.

3.5 Multiple Scattering within a Surface

This type of multiple scattering is important in topography with large surface slopes,
or in which the inclined surfaces are closely spaced. The crudest way to take into
account multiple scattering within a surface is to use geometrical optics to trace
the rays reflected multiple times within the surface. However, this technique neglects

near-field diffraction and thus leads to unphysical discontinuities in the reflected fields
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at the geometrical-optics shadow boundaries 10]. Bischoff et al. [9] overcame this
difficulty in the 2-D case by the addition of an edge diffracted field in accordance
with the rules of GTD. We, however, use a different technique to take into account
near-field diffraction, namely, by considering each element d.S’ of the surface S; under
consideration as a source of spherical waves illuminating every other point on the
same surface. Thus, the tangential fields (n' x E') and (—n' x H') induced by some
incident field on an element dS’ at r' may be regarded as dipole sources producing

magnetic and electric vector potentials dA,,(r) and dA.(r), respectively,

Our terminology for the vector potentials follows that of Stratton [36]. Strictly speak-
ing, there are two such sets of vector potentials to consider, one for the medium above
S; and the other for the medium below S;. These correspond to the reflected and
transmitted waves produced by the incident wave. Both sets of vector potentials
have the form of Eqgs. (3.37) and (3.38), provided that n’ is interpreted as the unit
surface normal pointing out of the medium under consideration and the appropriate
wavevector k; for that medium is used.

We now have to consider the interaction of the spherical waves scattered by each
surface element dS’ of S; with all other parts of the same surface. In general, the
source element dS’ at a given point ¥ on S; may or may not be directly visible from
the field point r on the same surface. In our physical-optics technique, we ignore the
interaction between any pair of points which do not lie on each other’s direct line-of-
sight, or when the source point lies on the tangent plane of the field point. The latter
condition means that, as a result of discretization of the surface S;, we only consider
source elements dS’ lying at some finite distance d away from the tangent plane at
the field point. In general, the direct line-of-sight between a pair of interacting points
may lie in the medium above or below S;. In each case, we must use the set of vector

potentials Eqgs. (3.37) and (3.38) appropriate to that medium, as mentioned in the
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last paragraph. It frequently happens in photolithography simulation that one of the
media on the two sides of S;, for example, silicon, is highly lossy. In such case, it
is a good approximation to neglect the interaction between any pair of points on S;
whose direct line-of-sight lies in the highly lossy medium. This is because the waves
Egs. (3.37) and (3.38) scattered into the latter medium are expected to be heavily

attenuated in that medium before they could interact with the same surface again.

3.6 Sommerfeld’s Solution

In the physical-optics approximation, we have to consider the reflection of spherical
waves of the form Egs. (3.37) and (3.38), due to each surface element dS’ on S;,
from the tangent plane at every other point on S;. The spherical waves represented
by Egs. (3.37) and (3.38) are the simplest of a type of waves known as multipole
waves. The problem of the reflection of such simplest, or dipole waves, from a lossy
plane surface was first solved by Sommerfeld [37]. The geometry of the problem is
shown in Fig. 3.3, in which a point dipole is situated a distance d from a lossy plane
surface representing the tangent plane at the field point r on S;. Without loss of
generality, we assume d > 0. The permittivities of the media above and below the
plane surface are €, and ¢, respectively, while the permeability everywhere is u. It
is convenient to resolve the dipole direction, (n' x E') or (n' x H'), into a linearly
polarized vertical direction and left- and right-hand circularly polarized horizontal
directions with respect to the lossy plane surface. We separately consider the cases
when the dipole is of the magnetic [Eq. (3.37)] or electric [Eq. (3.38)] type, and when
it is polarized vertically or horizontally.

For a unit, vertically polarized dipole source of the magnetic type, the incident

and reflected vector potentials are given by

(2)inc ejk1|r—r'|
A = =
= 5 [ IV (3.39)

ki k2 — 22’

62



AdA

APRE) = 2, [ Ry(N)Jo(Ap)efVEIN @) :
0 by — X2

(3.40)

where (p2, @2, 22) are cylindrical polar coordinates of the field point r with respect
to a coordinate system centered at the dipole, as shown in Fig. 3.3. Also, R,()) is
the Fresnel reflection coefficient for an s-polarized incident plane wave at an angle of

incidence 8 = sin~'(\/k;),

V= X2 — [k — 22
VB =2+ g -2
where k, and k, are wavevectors in the media above and below the lossy plane surface,
respectively. The branches of the quantities \/Ia:%--i)\2 and \/ﬂ in Egs. (3.39) to
(3.41) are chosen so that

m = —j\yk§—X%, Rey 20, (3.42)

pr = —j\Jk3 =22, Rep, >0. (3.43)

For a unit dipole source of the magnetic type circularly polarized in the horizontal

R,()) = (3.41)

direction, the incident and reflected vector potentials are given by
jki|r—r'|
(H)inc(p) = + iy
A(r) (%2 £ 5y2) ATy
AdA

kiR — 22

Ag:)l‘eﬂ(r) = (X2 :I:]yz) /co R‘p(A)Jo()\pz)ej‘/kf—Az(2d+zz)_@_—
0 kyy[k2 — N2

+jzpeti® /0 "R + BN (Mer)e?V *f-*’@“*‘”% ,  (3.45)
1

= (xZ j:jyz) /oco Jo()\pz)ej‘/k¥—"2lzzl (344)

where R,()) is the Fresnel reflection coefficient for a p-polarized incident plane wave

at an angle of incidence 6 = sin™'(\/ky),
R(\) = eg\/kf — X2 — e[k — X2
62\”5% -2 +€1\/k% — )2 .

Corresponding expressions for the incident and reflected vector potentials for a

(3.46)

unit dipole source of the electric type polarized vertically or horizontally are obtained
from Egs. (3.39), (3.40), (3.44) and (3.45) by interchanging R,(A) and R,(}).
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The first-order vector potentials induced at r on S; by the surface element dS’ are
obtained by adding the incident and reflected vector potentials, Egs. (3.39) and (3.40),
or (3.44) and (3.45), appropriately weighed by the dipole amplitudes —(n' x E’)"T‘fri
and —(n' x H')4E. The corresponding first-order induced fields are computed from
Egs. (3.12) and (3.13). These must be repeated for each source point r' # r on S;
and the results added together to give the total first-order induced fields at r. In
principle, this procedure can be applied repeatedly to a given surface S; to obtain
physical-optics approximations to the successively higher order multiply scattered
waves within the same surface. In the photolithography simulation problems we have
studied, in which the inclined faces of the topography were sufficiently far apart, the
effects of waves reflected more than twice from the same surface were found to be
quite negligible.

If this procedure were used, the operation count per multiple-scattering calculation
would be proportional to N2, where N is the number of surface elements on S;. This
would be prohibitively expensive for large 3-D problems. Instead, we use the multipole

approximation to speed up the computation of the first-order induced fields.

3.7 The Multipole Approximation

Instead of treating the surface elements dS’ on S; as independent sources of radiation,
it is more efficient, for the purpose of computing the multiply scattered fields, to group
the N surface elements, or nodes, on S; into P panels, each of which contains roughly
the same number, = N/P, of nodes. For a piecewise-linear surface S;, the panels can
be chosen to be planar. The radiation field produced in the far zone by the magnetic
current sources in a panel g consisting of the portion AS, of S; may be approximated
by that of a collection of M multipoles located at the center of that panel,
gikalr—r’|

q — ! n C o
AAZ (r) /A X B) S

L l
~ 3 % al.h) (kir) P (cos8)e’™? (3.47)

=0 m=-1
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where AAY, is the magnetic vector potential produced by the sources in panel ¢ and
aj, are the corresponding multipole coefficients with respect to a coordinate system
K, centered at that panel,

k(2 + 1)(1 — m)!

4n(l + m)! jilky") P (cos 8')e= ™ dS" .

(3.48)

ay, = ./AS —(n' x E)
q

In Egs. (3.47) and (3.48), (r,60,¢) and (r',6',¢") are spherical polar coordinates of
the points r and r', respectively, relative to the distant coordinate system K,. These

equations follow from the series expansion for the Green function,

eiklr-r’| o jki (2l +1)(I = m)! . N (1) - .
I S Y I

xe~I™#'=¢)  (3.49)

where we have assumed that r > r'. Similarly, for the electric vector potential
produced by panel ¢, we have
L 1
AAYx) = Y 3 bl (ki) P(cos6)e™, (3.50)
=0 m=-!
where b}, are the electric multipole coefficients of panel g with respect to the coor-

dinate system K|,

204+ 1)(l — m)!
4r(l + m)!

" o
bl, = / —(n’ xH')J 1 Ji(kar") P™(cos 8')e 9™ dS' .
AS,

(3.51)

The multipole expansions Egs. (3.47) and (3.50) converge rapidly when the field
point r is more than a wavelength away from the smallest sphere enclosing all the
elements of the panel g. As a rule of thumb, the number of multipole coefficients
M = Y F (21 +1) = (L + 1)? needed to represent the field due to a panel g in the
far zone accurately is on the order of the number of nodes in that panel, M ~ N/P.
This assumes a fixed discretization rate on the order of 27 nodes per wavelength.
Depending on the accuracy desired, fewer multipole coefficients than this may be used

to reduce computation time. For sources in the panel p containing the field point r
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itself, or in the panels adjacent to panel p, the multipole approximation cannot be
used. Instead, the individual contributions from the sources in these neighboring
panels, Egs. (3.37) and (3.38), must be used directly.

We may now use the physical-optics approximation to treat the interaction of the
waves scattered from the distant panels, Egs. (3.47) and (3.50), with the tangent
plane at any point r on S;. Since the waves represented by Egs. (3.47) and (3.50)
are multipole waves of arbitrary orders, we need to generalize our earlier treatment
of the reflection of dipole waves from a lossy plane surface to the case of higher-order

multipole waves.

3.8 Generalized Sommerfeld Integrals

The problem of the reflection of a general multipole wave from a lossy plane surface
was first solved by Chang and Mei [12, 38]. The geometry of the problem is the
same as in Fig. 3.3, except that the point dipole is replaced by a collection of M
point multipoles. The basic idea of Chang and Mei’s approach is to express the
incident multipole wave as a superposition of cylindrical waves propagating in various

directions,
B (kar) P(eos )™ = 6™ [7 (N Im(A)e VIV AN (3.52)

Chang and Mei gave a closed-form expression for fpm(}),

frm) = (ki)m+-£'"'n—“’)— (359)

and derived a recurrence relationship for computing fm(}) for [ > m,

(-m+1) (1 +m)
@ mn) = —iyf1 = N2/ R fma(N) + GBIy m ) (@50

Actually, the coefficients f,,;()) are proportional to the associated Legendre poly-

nomials P™(z). This can be seen from the following textbook relationships for the

associated Legendre polynomials,
Pr(z) = (VI=2)" PR(0), (3.55)

66



(l-m+1)

A (L4m) pm (. (3.56)

Pt(z) = 33P¢m($)—m =1

If we let z = /1 — X2/k%, Eqgs. (3.55) and (3.56) may be rewritten as

P2 = (2] B2, (357
B - (g efp

Comparing Eq. (3.53) with Eq. (3.57) and Eq. (3.54) with Eq. (3.58), we find that
the quantities fm()) and [P™(z)/j""™] are proportional to each other, and the pro-
portionality constant is (A/k.)/y/k% — A2. Hence,

fmi) =GB (V12 R) Z_;c%\/ﬁ (359

Eq. (3.59) is correct only when cos 6 > 0 in Eq. (3.52). When cos8 < 0, the argument
of the associated Legendre polynomial in Eq. (3.59) should have a minus sign.

An integral representation equivalent to Eq. (3.52) with f,, (()) given by Eq. (3.59)
was known as early as 1954 [44]. In this sense, Chang and Mei rediscovered the result
more than twenty years later.

We may now describe the reflection of the multipole waves from the lossy plane
surface. The results are similar to those for the dipole waves discussed previously.
For a unit, vertically polarized multipole source of the magnetic type, the incident

and reflected vector potentials are given by

AGNmC(r) = g, gimé2 /0°° fm,,(A)Jm()\Pz)ej‘/kg-'\zlz’Id)‘ , (3.60)
A1) = 26 [7 By fmi(N)Im(Apr)e? VIR 2N, (361)

where (73,0:, ¢2) and (p2, @2, 22) are the spherical and cylindrical polar coordinates,
respectively, of the field point r with respect to a coordinate system centered at the

multipole source, as shown in Fig. 3.3, and R,()) is given by Eq. (3.41).
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For a unit multipole source of the magnetic type circularly polarized in the hori-

zontal direction, the incident and reflected vector potentials are given by

AFC(r) = (xp % jys) e/ fo i) Im(Apa)et VRl g, | (3.62)
AGRE) = (xp%2) ™ [ Bp(N) fma()Im(Apa)e VB2

52 D[Ry (3) + Ry(N)] i (N I (Apa) PV H 042

/K2 — AZ% . (369)

where Rp()) is given by Eq. (3.46).

Corresponding expressions for the incident and reflected vector potentials for a
unit multipole source of the electric type polarized vertically or horizontally are ob-
tained from Eqs. (3.60) to (3.63) by interchanging Rs()) and R,(A).

The first-order vector potentials induced at r on S; by the distant panel g are
obtained adding the incident and reflected vector potentials, Eqs. (3.60) and (3.61),
or (3.62) and (3.63), appropriately weighed by the multipole coefficients aj, and
bZ,, and summing over the multipole indices ({,m). The corresponding first-order
induced fields are computed from Eqs. (3.12) and (3.13). These must be repeated
for each distant panel g and the results added together. To these we must add the
direct contributions from the neighboring panels using Sommerfeld’s results for the
individual dipole sources discussed in Section 3.6. If this procedure were used to
compute the distant-panel contributions to the first-order induced fields at the IV
nodes of S;, the operation count would be proportional to NMP ~ N(N/P)P =
N2, since each node would require the evaluation of M multipole terms for each of
approximately P distant panels. This would again be prohibitively expensive for
large 3-D problems. Instead, we compute the distant-panel contributions using the

technique of multipole acceleration.
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3.9 Multipole Acceleration

The Fast Multipole Method (FMM) was developed by Rokhlin for the rapid iter-
ative solution of the integral equations arising in acoustic [11] and electromagnetic
[14] scattering. The technique can be adapted for use in our case to accelerate the
computation of the distant-panel contributions to the physical-optics induced fields
discussed in the last section. The key idea of FMM is that, for each pair of sufficiently
separated panels p and g, the fields on panel p due to the M multipoles centered at
panel g can be approximated by the first M terms of a multipole expansion about
a local coordinate system K, centered at panel p, instead of the first M terms of a
multipole expansion about the distant coordinate system K.

Consider the total magnetic vector potential induced on panel p by vertically
polarized magnetic multipoles in the distant panel g. This is obtained by adding
the incident and reflected vector potentials, Egs. (3.60) and (3.61), appropriately
weighed by the zp-components (a} ), of the multipole coefficients and summing over

the multipole indices (I, m),
A(z)q(r) = 2 Z(a;zm)z eImé2 / i [e—j\/kf—kzzz + Ry( ,\)ei\/kf-hz(2d+zz)] Fma(N)
Im 0
me()\pg) d\ ’ (364)

where (p2, z2, ¢2) are cylindrical polar coordinates of the field point r on panel p with
respect to the distant coordinate system K, and we have used the fact that z; < 0in
the geometry of Fig. 3.3. In order to transform Eq. (3.64) into a multipole expansion
about the local coordinate system K, we first rewrite this equation using the integral

representation of the Bessel function,

2 , . "
Im(Ap2) = 517-; /0 "dﬁe""’msﬁ*’m(ﬂ"f). (3.65)

Substituting Eq. (3.65) into Eq. (3.64) and changing the variable of integration 3 into
(B + ¢2), we obtain

2 00 . )
Lm 27 Jo 0
X fma(A)e7 P2 cos(B—g2)+im(f-3) (3.66)
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Assume for the moment that the axes of K, are parallel to those of K, and that the
origin of K has the coordinates (pg, 2, §) With respect to coordinate system Kp, as
shown in Fig. 3.4. From this figure and Fig. 3.3, it can be seen that the coordinates

of the field point r in the two coordinate systems are related by

22 = 512, (3.67)
pacos(B— ¢2) = prcos(B— 1) — pycos(B — &) , (3.68)

where (py,21,¢1) are the coordinates of the field point r with respect to the local
system K,. Substituting Egs. (3.67) to (3.68) into Eq. (3.66) and rearranging terms,
we obtain the desired local expansion for the total vector potential due to vertically

polarized magnetic multipoles in panel g,

27 O . . .
A®(r) = z1§1; [ ap [7 dx emeosto-en [e"\/ Hoxa Rs()\)e’\/’“%"‘zzl]
XGq()‘, ﬁ) pqa zq‘; ¢q) ? (369)

where

Go(Ms B gy 20:Ba) = (0 fma (N Pr bmtrtimB-Di VK- ¥e - (3.70)

Lm

and we have used the fact that z, = d. Note that the quantity G, is independent of
the coordinates (py,z1,¢;) of the field point. Hence, in summing the contributions
from all the distant panels g, we can carry out the summation over ¢ in Eq. (3.69)
prior to evaluating the integrals over B and ) for the different field points (py, 21, 1)
on panel p. This results in substantial saving in computation time for large 3-D
problems, as will be shown in a later section.

It should be noted that the integral over ) in Eq. (3.69) is convergent when 2; < d.
This is due to the factor ¢/V*¥—*# in Eq. (3.70). From Eq. (3.42) this factor can be
rewritten as e~#1% = e~#1¢_ which approaches e~*¢ as A — oo, since Re p; > 0.

In general, the axes of the coordinate system K, are not parallel to those of
K. The reason is that the expressions Eqgs. (3.61) and (3.63) for the physical-optics

reflected waves are valid only in a coordinate system in which the z-axis is normal to
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the tangent plane under consideration. Hence, K, and K, are generally chosen so that
their z-axes are normal to their respective panels p and g, which, however, may be
arbitrarily oriented. The multipole coefficients aff,z and b§,q,2 appearing in the distant
expansions Egs. (3.47) and (3.50) with respect to K, must first be transformed into
multipole coefficients with respect to the local coordinate system K, before they may
be used in Eq. (3.70). Suppose (a, 8, ) are Euler angles characterizing the rotation
of the axes of K, into those of K,. Then, the magnetic multipole coefficients af, of
panel g with respect to the local system K, are obtained from the magnetic multipole

coefficients af | with respect to the distant system K, by

{ - ’
s = 3 (_1)m-m'\'8+:;;g”_f:,§: PO (o, 8,7)a,,  (3.71)

m'=~l

where Df;),,,, (o, B,v) are matrix elements of the irreducible representations of the
rotation group [40]. A similar transformation holds for the electric multipole coeffi-
cients b{ .. The computation of the matrix elements D,(Qm, by means of recurrence

relationship is discussed in Appendix H.

3.10 Numerical Evaluation of the Integrals

The integrand in Eq. (3.69) contains the functions R,()A) and fp1(A) which, according
to Eqgs. (3.41) and (3.59), depend on quantities \/k%—_)\z and \/k_g—_)\? which have
branch cuts in the complex A-plane. Following Chang [38], we choose these branch
cuts to be vertical, as shown in Fig. 3.5. From this figure, it is clear that when k;
is real or has a very small imaginary part, the path of integration along the positive
real axis will pass very close to the branch point at A = k. Since fm()) given by Eq.
(3.59) contains the denominator \/Im, the integrand in Eq. (3.69) will be large
and rapidly changing near A = k;. Chang [38] avoided this difficulty by deforming
the path of integration to go around the branch point at a sufficiently large distance.
This, however, means increasing the total length of the integration path and hence the

amount of computation labor. We instead chose to avoid the singularity by changing
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the variable of integration from A to y;, where, as in Eq. (3.42),

P = —j\/k%—')\z, R.G[.LZO.

In the complex pu;-plane, there is no longer any singularity at A = k;, since the
offending denominator /kZ — A? is transformed away,

-——_k;d:\ = = —jdu. (3.72)
Next, we discuss the integration over 8 in Eq. (3.69). Since the quantity G, given
by Eq. (3.70) contains the phase factor e=i*ses(~¢)+im8 in order to sample the
phase of G, correctly, the discretization of the range [0, 2] of the 3 integration should
be no coarser than AB < min [53- oo 21], Since p, is the horizontal distance between
a pair of sufficiently separately panels, it can be equal to many wavelengths for large
3-D problems. Hence, over the range of values of A for which the integrand of Eq.
(3.69) is significant, the quantity 1/(Ap,) can be very small. This would necessitate
the use of a very fine grid for the § integration. In order to avoid this problem, we
employ the technique of asymptotic integration for the 3 integration for large values
of A.
When )p, is greater than some parameter Ay to be discussed later, the integral

over 3 in Eq. (3.69) may be approximated by its asymptotic value,

_1_ /2ﬂ' dﬁ ejAPl cos(B—¢1)—3)pq COS(ﬁ-¢q)+jm(ﬂ—-’2£)
0

~ 1 [ ejAm cos(pg—¢1)—i(Mpg—Z)+im(pe—5
21 Apq

+e—j)\p1coS(¢q—¢1)+J‘(qu—§)+J'm(¢q+%)] . (3.73)

To show this, we call the phase of the integrand on the LHS of Eq. (3.73) ¥(8) and

expand it about its stationary point,

e = wa)+ S -+, @1y
B=8o
where £, is a stationary point determined by
0= i‘%(?ﬂl = —Apsin(Bo — 1) + Apgsin(Bo — @) + m . (3.75)
=fo
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In the limit Ap, >> 1, Eq. (3.75) may be approximated by the simpler condition
0 = Apgsin(Bo — @y). This has two solutions, By = @, or fo = @, + 7, each of which
contributes a term to the integral on the LHS of Eq. (3.73). For (5 = ¢,, Eq. (3.74)
gives

U(B) m Aor cos(dy — 81) = Mg +m (9= 3) + 25— 4,7, (376)

while for By = ¢4 + 7, we have

A
U(B) ~ =My cos(dy — 1) + gy +m (8 +3) = BB = b= TP (37
Hence, the integral on the LHS of Eq. (3.73) becomes

1 / *" 4§ i1 cos(B—sr)=Apq cos(B—b)+im(B~5)
2w Jo

~ i / " ag [3‘7 201 08(6g— 1)~ Apg-+im(Bg—F ) +i 252 (B—q)?
2

+ e= 3201 c08(bg—01)+idpg+im(de+3 )—J—’-(ﬂ-%—")z] . (3.78)

The integration over § in Eq. (3.78) may be performed in the limit Ap, >> 1,

/ ” ciﬁe*-iﬂ;'?'(‘e'""’)2 ~ et 2m (3.79)
0 /\pq
Substituting Eq. (3.79) into Eq. (3.78) then gives Eq. (3.73).

We now discuss the choice of the parameter Ag. From the discussion following
Eq. (3.75), it is clear that our result for the asymptotic integration, Eq. (3.73), is
valid when Ay >> max[l,m] and p, >> p;. The latter condition is valid when panels
p and g are well separated, which is usually the case, since p; must be at least a
few times p; in order for the multipole approximation to be usable. Next, in the
photolithography simulation problems we have studied using the present technique,
the maximum multipole order used was usually 5 or smaller. Hence, the condition
Ao >> m is satisfied when Ay = 50. In practice, a value of Ay = 40 was found to be
adequate.

In Eq. (3.73), we seem to have lost the advantage of FMM in being able to carry

out the summation over the distant-panel index g before evaluating the integral over
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)\ for different field points (p1,21,1). This is because the terms on the RHS of Eq.
(3.73) contain the factor et71¢s(¢a—91) which cannot be factorized into a product of
two terms one of which depends only on (p1,21,¢:1) and the other of which depends
only on (p,, 2, &) The solution to this difficulty is to discretize the range [0, 27] into
a number n > 2L of intervals, where L is the maximum multipole order used. Then

one defines quantities J(),1) and J{?(),1), i = 1 to n, as follows,

FOO0) = S [smer i DVET S (0 ). £ (N ™D (3.80)
q 2mApq Lm '

Jéz)(A,i) — le ___l_e)'(z\pq-{-)-l-j\/k?—wd Z(a?m)zfml(A)ejm(oﬂ-%) , (381)
7 2mwAp, i ’

where 0; = 3"—(%@ is the center of the ith interval and the double prime on the sum-
mation over g means that only those distant panels g are included whose coordinates
(Pgs 2, bg) With respect to the local panel p satisfy the following two conditions: (1)
Apg > Ao, and (2) 2—’":7'11 < ¢y < . The first condition means that we use the
technique of asymptotic integration for the 3 integration whenever the product Ap,
exceeds the parameter Ag. The second condition means that we sort the ¢, coor-
dinates of the distant panels ¢ into n bins of width 2;” centered at 6;,2 = 1 to n.
Subsequent summation over the index 7 then takes the place of the 3 integration.
The quantities J&(),4) and J{?(),i), i = 1 to n, account for the contribution
to the ) integration at each point A from those distant panels g for which Ap, > Ao.
There can also be combinations of values of A and p, for which Ao, < Ao. For such

combinations of A and p,, we accumulate the summation over ¢ in another quantity
19X, B),

I(")( A\ B8) = 51;1: Z 1 g=ipg cos(B—dq)+i/k{—N2d Z(a?m)z Fma( )\)ejm(ﬁ-%) , (3.82)
q I,m

where the prime on the summation over ¢ means that only those distant panels ¢
are included for which Ap, < Ag. Since there is a minimum p, = p;”"" for which the
multipole approximation is valid, I(), 8) is non-vanishing only for A < Ao/ pgni“ = Ap-

The total contribution from the vertically polarized magnetic multipoles in all the

distant panels to the local expansion for the vector potential is obtained by summing
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Eq. (3.69) over the distant-panel index g,
A(z)(r) = Z A(z)q(r)
q
= z /o * [e-i\/kf-—”z: + Rs(A)ei\/kf—_Vn] /o o dB i cslB-1) [(5) (), )
oy [ d) [ IVER R (N)e!VA] 3 [errencosi=d 1O, 5)

=1

+e—in 008(95"¢1)J§z) (A, z)] . (3.83)

The first ) integral in Eq. (3.83) has finite limits, since J(*)(), 8) is non-zero only
for A < Xp. The second ) integral in Eq. (3.83) has an infinite limit. To accelerate
convergence of this integral, the path of integration is deformed in the complex A-
plane as shown in Fig. 3.5. The term containing J{* (), 1) in Eq. (3.83) is integrated
along the path I, + I', since along I, the e~#*#¢ factor in J{")()\, i) is exponentially
decaying. Similarly, the term containing J5* (), 1) is integrated along the path [q+T',
since along Iy, the e/ factor in J{? (), ) is exponentially decaying. Writing the total
contribution from the vertically polarized magnetic multipoles in all the distant panels

to the vector potential in the form
AB(r) = 2 A4(r), (3.84)
we obtain the final result

AB(x) = /r d)\ [e—i\/kf-k"zl.,. Rs()\)ef\/"'f—”zx] /02" dB ePercoslb-e1) [(2) () B)

+ dX [e-f\/k?-*’a + R,(N)eV "f'*”“] Zn: eirercos®i=91) 7)) )

Ta+Te¢ i=1

+ dA [e-i\/k?-*’zl + Rs(,\)ef\/@-*’zx] znj eI cos@i=¢1) 7= () 7). (3.85)

Ta+T% i=1
A similar result is obtained for the total magnetic vector potential induced on
panel p by horizontally polarized magnetic multipoles in all the distant panels, starting

from Eqs. (3.62) and (3.63). We write this total magnetic vector potential as

AB(r) = (e, % jeg )ALe(r) £ j2 AR(r) (3.86)
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where the cylindrical unit vectors e,, and ey, are related to the Cartesian unit vectors

X; and y; by

(x1£jy1) = (e, Ejes,)er . (3.87)

The horizontal component AS)(r) is then given by

A1) = ¢tinn /r d\ [e—j\/kf—vzx + Rp(,\)ej\/kf—ﬂn] /o z“dﬂ eiro1cos(B-91) [(2) () )

hor

+etitn /r LA [e—j\/kf—z\zn + RP(A)ej\/kf—Azn] zn:ejxmcos(oe—m) JH (), 4)
C+ <

i=1

+etit [ da [e-f\/k%—w + &(A)éka‘*”’] > e costbioo) 123 4) , (3.88)

Ta+T i=1
where I®(), B), JH)(\,i) and J$(),4) are obtained from Egs. (3.80) to (3.82)
by replacing the multipole component (a,). in these equations by the component

2 [(af)= F j(af,)]. Similarly, the vertical component A@)(r) is given by
A‘(f;) r) = / d) S())+——— V é\/kz-h’zx / dp ei* cos(B—¢1) o x5 (8—3) () (), B)
+ /r . dx S( A)______Vl/\_e:‘\/kf-x’zl Zeg»\m cos(@i=41)£3(6:=5) JE) () 5)

2
+ / dx S()Y——— V eJ\/k’—Azn z —jAp1 cos(8i—¢1) o3 (0:+%) J(i)( 2i), (3.89)

i=l
where S(X) = R,()) + Rp(A).
What we actually need are the tangential fields rather than the vector potentials.
The former can be computed from the latter by Egs. (3.12) and (3.13). The resulting

expressions for the tangential fields are given in full in Appendix G.

3.11 Operation Count

The number of floating-point operations required for each computation of multiple
scattering within a surface, using the multipole accelerated physical-optics technique
discussed above, can be estimated as follows:

Step 1: The 2M multipole coefficients for each of the P panels are computed using
Egs. (3.48) and (3.51). Since there are on the average N/P nodes per panel, each
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evaluation of the integral in Eq. (3.48) or (3.51) requires O(NN/P) operations. Hence,
the total operation count for this step is ¢; M(IN/P)P = ¢; M N for some constant c;.

Step 2: For each pair of sufficiently separated panels, the multipole coefficients
with respect to the local system are computed from those with respect to the distant
system using Eq. (3.71). For each [, the quantities 4]  may be regarded as a column
vector of length (2! + 1). Hence, the matrix-vector multiplication represented by Eq.
(3.71) requires O[(2!+1)?] operations. To do this for all { from 0 to L therefore requires
0] [2{110(21 + 1)2] ~ O(L3®) ~ O(M?®?) operations. Since there are approximately
P2 pairs of sufficiently separately panels, the total operation count for this step is
c2M3/2P? for some constant c;.

Step 3: For each panel, the quantities JZ®I(), 7), JF@N(), §) and IE®I(), B) are
computed using Egs. (3.80) to (3.82) and similar equations for the (*¥) quantities. The
summation over (/,m) in these equations is an O(M) process, while the summation
over g is an O(P) process, since there are approximately P distant panels for each
of the P panels. Hence, the total operation count for this step is c3 M P? for some
constant c3. Notice that ¢ >> 1, since the quantities VJl[z(i)] (A, 9), etc. must be
computed for each A,7 and .

Step 4: For each panel, the distant-panel contributions to the tangential fields
given by Egs. (G.9) to (G.12), (G.20) to (G.23) and (G.28) to (G.31), are evaluated
at each of the N/P nodes of that panel. The total operation count for this step is
c4(N/P)P = ¢4N. Again, ¢; >> 1, since each of these field expressions involves an
integration over A and an integration over § or a summation over z.

Step 5: For each panel, the neighboring-panel contributions to the tangential fields
are evaluated at each of the N/P nodes of that panel, as discussed in Section G.2 of
Appendix G. For each node, we have to add the contributions from all ~ N/P nodes
in the neighboring panels. The total operation count for this step is ¢s(IN/P)?P =
csN2/P for some constant cs. Again, ¢s >> 1, since the contribution from each
neighboring node involves integrations over A and S.

Adding the operation counts for the above five steps, the total operation count T°
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for computing the first-order physical-optics induced fields on S is estimated to be

2
T = c;MN + coM3?P? + cgMP? + ¢4N + csivp—

~ (gq+ cs)g + caN32\/P + ¢sNP + 4N (3.90)

where we have used the fact that M ~ N/P. In practice, the most time consuming
steps in our algorithm are those involving generalized Sommerfeld integrals, namely,
Steps 3 to 5. This was found to be the case for all the photolithography simulation
problems we have studied, with IV as large as tens of thousands. Counting only Steps

3 to 5, we obtain a simpler estimate for T,

N2
T =~ 5 +c3NP +cyN . (3.91)
Minimizing this expression with respect to P, we obtain for the optimum operation

count of our algorithm
Topt X 21/C3¢5 N2 + ¢4 N . (3.92)

On the other hand, if multipole acceleration were not used, the operation count would

be ¢s N2, which would be significantly greater than Tgy; for large N.

3.12 Application to Reflective Notching

As we do not have a Method-of-Moments (MOM) computer code capable of handling
3-D dielectric substrates, we tested our physical-optics results by comparison with
the results of a 2-D MOM code. The test structure was a 0.4-um deep cavity in
silicon with sloping sidewalls, as shown in Fig. 3.6. For simplicity, we refer to such
a structure as a 3-D Matzusawa step. In this example, the medium above the step
was air. From the 2-D MOM results for the tangential magnetic fields Hrg(y) and
Hrm(z) in TE and TM polarizations, we extrapolated the results to 3-D using the

heuristic formula
1
H(z,y) = §HTM($)HTE(?J) . (3.93)
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Eq. (3.93) is expected to be a reasonable estimate of the correct fields not too close
to the edges and corners of the topography. The extrapolated results are shown
in Fig. 3.7a, while the physical-optics results for a normally incident plane wave
polarized in the z-direction are shown in Fig. 3.7b. Induced fields up to the first
order were included in the physical-optics calculation. It is seen from these figures
that the physical-optics results are in reasonable agreement with the extrapolated
results based on Eq. (3.93).

Next, we applied our multipole accelerated physical-optics technique to reflective-
notching simulation, using 3-D Matzusawa steps with different slope angles. The
calculations were done on an IBM RS/6000 Model 530 workstation with 64 megabytes
of storage. In all cases, the upper surface of the photoresist was taken to be planar
and its refractive index was assumed to be constant at n = 1.70+0.015. The incident
light was assumed to be coherent but with the intensity distribution of a partially
coherent aerial image, and the wavelength was 0.365um. Also, to take into account
multiple scattering between the topography and the upper photoresist surface, a total
of eight terms in the one-way multiple-reflection series were used, which corresponded
to four successive reflections of the scattered light from the photoresist surface back
onto the substrate.

Our first example is a 0.7 ym photoresist line going over the 0.4-pm high step of
Fig. 3.6. The surface of this topography was divided into 613 panels containing a total
of 22,753 nodes. Physical-optics induced fields up to the first order were included in
the intra-surface multiple-scattering calculation, which took a total of 17 hours. The
simulator SAMPLE was used to develop a series of 2-D cross sections of the exposed
photoresist and the resulting 2-D profiles were assembled to produce a 3-D photoresist
profile. The results for z- and y-polarized incident light are shown separately in
Figs. 3.8a and 3.8b. In the former case, the foot of photoresist line at the bottom of
the step shows noticeable undercutting. This was caused by light reflected twice from
the substrate, first from sidewall A and then from the bottom of the step, as depicted
in the ray diagram shown in Fig. 3.8c. In the y-polarized result of Fig. 3.8b, this
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undercutting is less noticeable. This was because the angle of incidence on sidewall
A, 0inc = 58°, was near the Brewster angle for this inclined surface, Oprewster = 74.6°.
Instead, the photoresist sidewall in Fig. 3.8b shows pronounced standing wave effects
along its length. This was because the light incident on sidewalls C' and D was
s-polarized and thus strongly reflected. Furthermore, the resulting reflected light
traveling parallel to the photoresist sidewall had the same polarization as the incident
light and thus interfered strongly with the latter. One should expect to find a similar
region of strong standing waves, too, in Fig. 3.8a, but rotated by 90 degrees about
the z-axis. Indeed, the remnants of such a region of strong interference are visible in
Fig. 3.8a in the form of ripples on the top of the photoresist line near its middle.

Our next example is a 0.35 um photoresist line going over a 0.128-um high step
with a slope angle of 22.8°. The 19,820 nodes on the surface of this topography were
divided into 542 panels. Only the zeroth-order physical-optics induced fields were
included in the calculation, which took only 1.2 hours. The simulated photoresist
profile for unpolarized incident light is shown in Fig. 3.9a. The most prominant
features in this figure are the two notches at the top of the photoresist line near the
middle. These notches can also be understood with the help of ray diagrams. Fig. 3.9b
shows the bundles of rays reflected from sidewalls A and B intersecting the upper
photoresist surface in two trapezoidal areas u and v. Fig. 3.9c shows the bundles
of rays reflected from sidewalls C and D intersecting the upper photoresist surface
in four trapezoidal areas p to s. A 0.35-um wide region representing the volume
occupied by the photoresist line is devoid of incident light. From Figs. 3.9b and
3.9c, we see that the six trapezoidal areas overlap in four small regions on the upper
surface of the photoresist, two on each side of the photoresist line near its middle. It
is expected that the photoresist initially developed most rapidly downwards through
these overlap regions of increased exposure dose. This, together with the subsequent
undercutting caused by the light reflected from sidewalls A and B, gave rise to the
notches seen in Fig. 3.9a.

Our last example is a 0.35 pm photoresist line going over a 0.2-um high step with
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a slope angle of 32.0°. There were 20,490 nodes on the surface of this topography
divided into 544 panels. Again, only the zeroth-order physical-optics induced fields
were included in the calculation, which took 1.7 hours. The simulated photoresist
profile for unpolarized incident light is shown in Fig. 3.10a. This time, the lower
half of the photoresist profile facing the topography sidewalls A and B shows a small
amount of notching. With the help of the ray diagram shown in Fig. 3.10b, we can
understand this notching as being caused by the light reflected from sidewalls A and
B of the topography. This effect was enhanced by the light reflected from sidewalls
C and D, which happened to overlap the light reflected from sidewalls A and B near
the notched parts of the photoresist profile.

3.13 Conclusions

In this chapter, we have discussed a three-dimensional topography-scattering tech-
nique based on the physical-optics approximation suitable for piecewise-linear to-
pography. It makes use of the Fast Multipole idea to accelerate the computation
of multiple scattering within a surface. Its storage and CPU costs scale as N and
N3/2_ respectively, where N is the number of nodes on the surface of the topography.
This allows reflective-notching simulation of large (N = 20,000) 3-D structures to
be done on an ordinary workstation with reasonable CPU time (< 20 hours). The
technique was tested on 3-D cavities in silicon with sloping sidewalls having different
slope angles. The simulated reflective-notching effects were found to be in qualitative
agreement with a ray-optics model. Although the Fast Multipole algorithm discussed
in this chapter was used in the context of the physical-optics approximation, it can
be extended for use in a rigorous integral-equation approach suitable for arbitrary

topography. This is discussed in the next chapter.
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Figure 3.1: Multilayer piecewise-linear topography.

A~
s g ot i r’

EO(_) El(+) EZ(—)

Figure 3.2: Multiple-reflection series for multiple scattering between adjacent
surfaces. EO(’) is the incident field for E1(+) , and E1(+) is the incident

field for Ez(') , etc.
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Figure 3.3: Dipole above a lossy plane surface.
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Figure 3.4: Transformation from distant to local coordinate system.
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Figure 3.5: Branch cuts and integration paths in the complex A-plane.

Figure 3.6: Three-dimensional Matzusawa step divided into panels.
Wavelength = 0.365 pwm. Substrate refractive index = 6.18 + 2.45j .
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Figure 3.7: Tangential magnetic field amplitude on bottom of step, for z-polarized,
normally incident plane wave. (a) 2-D MOM results extrapolated to 3-D using
Eq. (3.93). (b) Physical-optics results including zero- and first-order induced fields.
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Figure 3.8: 0.7 m line over 0.4 |4 m high step. Dose = 120 mJ cm™2.

Develop time = 60 s. (a) x-polarized incident light. (b) y-polarized incident
light. (c) Doubly reflected rays from sidewalls A and B causing undercutting.
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Figure 3.9: (a) 0.35 pLm line over 0.128 L m high step. Dose = 100 mJ cm2.

Develop time = 60 s. (b) Beams reflected from sidewalls A and B intersecting
the resist surface at u and v. (c) Beams reflected from sidewalls C and D

intersecting the resist surface at p, q, r and s.
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Figure 3.10: (a) 0.35 wm line over 0.2 i m high step. Dose = 95 mJ cm .
Develop time =55 s. (b) Singly reflected rays from topography sidewalls
A and B causing dents on resist sidewalls.
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Chapter 4

Three-Dimensional Topography
Scattering Part II: Fast Multipole
Solution of Integral Equation

4.1 Introduction

The physical-optics technique discussed in the Chapter 3 is suitable only for piecewise-
linear topography consisting of planar fragments whose dimensions are at least a
wavelength in each direction. This assures the validity of the tangent-plane approxi-
mation used in the treatment of the interaction of the incident and multiply scattered
waves with the topography. Also, the number of sharp edges per period should be
small. This renders negligible the contributions to the integrated field distribution
throughout the photoresist due to non-physical-optics edge currents. In order to han-
dle curved topography in which the local radii of curvature are of the order of a
wavelength or smaller, or piecewise-linear topography containing a large number of
sharp edges per period, one has to go beyond the physical-optics approximation and
use a rigorous technique based on an integral formulation of the scattering problem.

An integral formulation of the scattering problem can be based on either the
electric-field integral equation (EFIE) or the magnetic-field integral equation (MFIE).
The kernel of EFIE is more singular than that of MFIE and so requires more sophis-
ticated integration technique and choice of basis functions. For simplicity, therefore,

we use the MFIE in this chapter. Direct solution of the MFIE using the standard
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Method of Moments is not practical in 3-D, as Table 1.1 shows. Thus, it is necessary
to use the Fast Multipole Method (FMM) developed by Rokhlin [11] to accelerate
the solution of the MFIE.

We begin the discussion of our FMM algorithm with a derivation of the MFIE for
perfectly conducting objects in Section 4.2 and an outline of the GMRES iteration
algorithm in Section 4.3. The FMM algorithm is then discussed in Section 4.4. The
novelty of our algorithm lies in the use of a three-step distant-to-local transformation
procedure consisting of a rotation, a translation and another rotation. This leads to
an O(N®/3) algorithm as discussed in Section 4.5. When a problem has reflection
symmetry in some coordinate plane, the symmetry can be exploited to reduce the
number of unknowns. This is discussed in Section 4.6 for reflection symmetry in two of
the coordinate planes. Numerical results and performance benchmarks for scattering
from perfectly conducting plates and cubes are discussed in Section 4.7. In Section
4.8, boundary conditions appropriate to problems with guided mode excitation are
formulated. These are applied to the problems of a shorted waveguide section and
a pyramidal horn antenna. Our FMM algorithm is shown to reduce correctly to the
electrostatics results in the long-wavelength limit in Section 4.9. Then, in Section 4.10,
the standard FMM algorithm is reviewed and the question of numerical instability in

the long-wavelength limit is discussed.

4.2 Problem Formulation

The scattering problem is illustrated in Fig. 4.1. The region outside the perfectly
conducting body is bounded by the surface Soy; of the body and the surface S
at infinity. The magnetic field H(r) in this region is given by Eq. (3.4) with S =
Sobj + Seo- The integral over Sy, simply gives the incident magnetic field Hinc(r)-
In the remaining integral over Sgy;, the terms containing (n' x E’) are absent since
the tangential electric field on the surface of a perfect conductor vanishes. By letting
the field point r approach the surface of the body from the outside and taking the

cross product of the outward surface normal n at r with both sides of the resulting
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equation, we obtain the MFIE,
nx H(r) = nx Hg(r)— 4—17rn X '/Sobj(nl x H') x V'ydS’, (4.1)

jRT-r| | L : .
where ¥ = -e’l';'f—r,l' is the Green function in the external medium with wavevector k.

The integral over Sep; in Eq. (4.1) includes the field point r on this surface where
¥ is singular. Hence, the integration over an infinitesimal area centered at r must
be done analytically. To do this, we choose a local coordinate system with origin
just below r and z-axis coinciding with the normal n pointing into the body, as
shown in the insert of Fig. 4.1. As r' approaches r, n’ approaches n = z. Therefore,
n x [(n' x H') x V'9] approaches z x [(z x H') x V9] = (z x H')(8¢/82'). We can
write the z-derivative of ¢ as

o F) etk (@—2' P Hy-y')2+(z—2")?
% = | \Jo-apr-vrt- z’)?]
etk (2= )2+ (y—y' )2 +(z—2')?
(z—2P+@y-y)+(z-2)
+ ndd ] . (a2)
V-2 +y—vy)+ (2 - 2)2

In the limit as r’ approaches r, the second term inside the brackets in Eq. (4.2)

[— ik(z — 2')

dominates over the first term. Hence, setting the exponential factor equal to unity in
this limit and multiplying both sides of Eq. (4.2) by dS’, we obtain
Wis ~ il 57745’
0z [(z — 22+ (y—y)? + (2 — 2)]
= —dY, (4.3)

where d§)' is the solid angle subtended by the element of area dS’ at the field point
r. In the limit as r' approaches r, dS’ becomes essentially a half-plane as seen from
r, and so dQ)’ = 27. Hence, the contribution from the infinitesimal area dS’ centered

at r' = r to the integral in Eq. (4.1) is

. __1_ ! 1 ' ' _i 6_"/) '
}'15}_ PR (@' x H') x V'¢]dS' = % H(r)az,dS
- %n x H(r). (4.4)
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Hence, Eq. (4.1) becomes

1 1 /
snx H@E) = nxHr) - -nx /s (X H) X V'pds',  (45)

where the prime on the integral sign means that the singular point of the integrand
is omitted. For a perfect conductor, the tangential magnetic field is related to the
surface current density J(r) by

Jr) = —nxH(r), (4.6)
since n points into the conductor in our convention. Using the fact that V¢ = -V,
we may rewrite Eq. (4.5) as
i) = @) —nx |Vx / ' J(r’)ilr_il—dS’ (4.7)
2 - Sobj drr — | ’ .

where J¢(r) = —n X Hjp(r). Eq. (4.7) is the integral equation that we wish to solve
for J(r).

The simplest way to solve Eq. (4.7) is to divide Sqp; into N surface elements over
each of which the surface current density is assumed to be constant with unknown
amplitudes J(r,,) for the mth surface element. By enforcing the integral equation
to be satisfied at the center of each surface element, or node, a system of 2NV linear
algebraic equations for the 2N unknowns J,(r,,) is obtained, where p =1 or 2 is a
label for two orthogonal directions within the tangent plane at ry,,

1 N 2 )

§J,,(rm) + nglll;lBum,mJu(rn) = J;;nc(rm) ’ (4.8)
for some matrix Bym,n, Which is dense. Also, the prime on the summation sign in
Eq. (4.8) means that the term n = m is omitted. For small problems in which N is
a thousand or less, the system of equations (4.8) can be solved directly by Gaussian
elimination, which requires O(IN3) operations. For larger problems, it is usually more
efficient to solve Eq. (4.8) iteratively. Now, the matrix Bym.s in this equation is
complex and non-symmetric. Although it can be transformed into a real matrix

by separately writing the real and imaginary parts of Eq. (4.8), the non-symmetry
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nevertheless remains. The reason for the non-symmetry can be seen by examining

the following form of the matrix elements,

Bumyn = €4- [n X (Vzp X €] d_S’)] , (4.9)

v
4 I=Cm,I'=Tn

where e, and €], are unit vectors on the tangent planes at r,, and r,, respectively.
Since the surface of the body is arbitrary, there is in general no relationship between
the tangent vectors e, and e, or the surface normals n and n’, at different points
rn and r, on the surface. Hence, the matrix B,m . is in general non-symmetric.
As a result, the conjugate gradient method cannot be used for the iterative solution
of the system Eq. (4.8). One possibility is to convert Eq. (4.8) into a symmetric
system by multiplying both sides of the equation by the transpose of the matrix
(%6,,,,,6,,,,,. + B,‘m,,,n). The resulting normal equation can then be solved by the conju-
gate gradient method. The disadvantage of this method is that the condition number
of the original matrix is squared. The alternative is to use an algorithm suitable for
general, non-symmetric matrices, such as the generalized minimum residual, GMRES,
algorithm [42).

4.3 GMRES

Eq. (4.8) can be written in the more general form
Ay = b, (4.10)

where A is a 2N x 2N matrix, y is a column vector of unknowns and b is a known
column vector. Given an initial guess solution y,, for example, y, = 0, we compute
the initial residual ro = b — Ay, and use this to construct Krylov subspaces of
increasing dimensionality. Specifically, at the jth iteration step, we construct a j-
dimensional Krylov subspace K’ consisting of all linear combinations of the j column

vectors ry, Arg, A%ry, ..., A7 Iry, that is,
K? = Span{ry,Aro, A’ro,..., A ro} . (411)
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The jth iterate y; is chosen to be that vector in X7 which minimizes the norm of the

residual r; = b — Ayj;,
y; €K7 such that ||b—Ay;|z < ||b—Ax||z Vxek’. (4.12)

The iteration continues until the norm of the residual becomes less than a desired
fraction of the norm of b.

It is assumed in the above discussion that the vectors ro, Arg, A%ry, ... are lin-
early independeht. This is generally true, although as j increases, the sequence of
vectors become increasingly parallel to each other. As such, they are not a good
basis for K7. In actual implementation of GMRES, an orthonormal basis for K7 is
constructed at each iteration step j, by applying the Gram-Schmidt orthogonaliza-
tion procedure to the vectors ry, Arg, A%ry, . .., A7 'ry. To avoid possible numerical
instability in the Gram-Schmidt procedure, the Arnoldi algorithm is used to ensure
mutually orthogonality of the resulting basis vectors {qi, qs, . ..,q;} for K.

As the iteration number increases, one has to store an increasing number of the
basis vectors q; in the computer. For large 3-D problems, where IV can be of the order
of tens of thousands, this could impose a limit on the number of iterations allowed
before memory capacity is exceeded on a small computer. When the latter does
occurs, one is forced to restart the GMRES algorithm, using the most recent iterate
y; as the initial guess and rebuilding the Krylov subspaces from scratch. In discarding
the old Krylov subspaces, one also throws away important information required for
convergence. Thus, restarting GMRES due to memory limitations usually results in
a drastic decrease in the rate of convergence. Because of this, we have chosen to run
all our examples on workstations with sufficient memory to avoid restarting.

GMRES is one of several iterative algorithms based on the idea of approximations
from Krylov subspaces. Others in this class of algorithms include conjugate gradient
(CG) for symmetric matrices and bi-conjugate gradient (BiCG) for non-symmetric
matrices. These and other related algorithms are available in the public domain [43].

For this reason, we do not go into the details of implementation here.
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From the above discussion, it is clear that at each iteration step one has to perform
a matrix-vector multiplication involving the matrix A. This is usually the most time
consuming part of the algorithm. Ordinary matrix-vector multiplication requires
O(N?) operations, which becomes prohibitively expensive for large 3-D problems.
This operation count can be reduced to O(/N%/3) by using the Fast Multipole algorithm

discussed in the next section.

4.4 The FMM Algorithm

The Fast Multipole Method (FMM) discussed below is similar to that of Chapter 3
in that local, rather than distant, multipole expansions are used to compute distant-
panel contributions to the scattered field. However, in the present discussion, there
is no need to use the formalism of generalized Sommerfeld integrals given in Section
3.8, since we do not use the physical-optics approximation here. Instead, we are here
concerned with the rapid evaluation of the matrix-vector product represented by the
second term on the LHS of Eq. (4.8). From the discussion leading from Eq. (4.7)
to Eq. (4.8), it is clear that the matrix-vector product under discussion represents
the tangential magnetic field scattered to a node m from all other nodes n # m.
To compute this scattered field efficiently, we again use the multipole approximation
discussed in Section 3.7, by grouping the N elements of S,,; into P panels, each of
which contains roughly the same number (= N/P) of nodes. For a perfect conductor,
there are only electric current sources, —n x H(r), on the surface. The electric vector
potential produced in the far zone by the electric current sources in a panel g is
approximated by a truncated multipole expansion as given by Eq. (3.50), which we

reproduce here for convenience,

AAY(r) = zj Z b_h{) (kr) P™(cos §)e™? (4.13)

=0 m=~1

where b | are the electric multipole coefficients of panel g with respect to a coordinate

system K, centered at that panel,

= T U .
bim Pmqu(r) (i +m) Ji(kr")P™(cos§')e ds'. (4.14)
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In Egs. (4.13) and (4.14), (r,0,¢) and (1,6, ¢’) are spherical polar coordinates of
the field and source points r and r', respectively, relative to the distant coordinate
system K,. By truncating the summation over [ in Eq. (4.13) after (L + 1) terms,
we are approximating the sources in panel ¢ by a collection of M multipoles located
at the center of this panel, where M = Y (2] + 1) = (L + 1)2. The magnetic
field due to the sources in the distant panel g is obtained by taking the curl of the
electric vector potential AAJ(r). For sources in the neighboring panels, however, the
multipole approximation cannot be used. Instead, the contributions from the nodes
in the neighboring panels must be added individually.

If Eq. (4.13) were used to compute the distant-panel contributions to the scattered
magnetic field at each of the NV nodes of Sgy;, the operation count would be propor-
tional to NMP ~ N(N/P)P = N2, since each node would require the evaluation of
M multipole terms for each of approximately P distant panels. Here, we have used
the fact that the number M of multipole terms needed to represent accurately the
field in the far zone due to a given panel is on the order of the number of nodes in
that panel, M ~ N/P. This would again be prohibitively expensive for large 3-D
problems. Instead, we compute the distant-panel contributions by transforming the
distant multipole expansion given by Eq. (4.13) into a local multipole expansion. This
is accomplished by means of the appropriate addition theorem for spherical waves [39].
Let K, be a coordinate system centered at the panel p over which we wish to evaluate
the distant expansion Eq. (4.13). Without loss of generality, we assume that the axes
of K, are parallel to those of K,. Suppose the spherical polar coordinates of the ori-
gin of the distant coordinate system K, with respect to the local coordinate system
K, are (Ry, 0, o). Note that this is opposite to the convention used in [39]. Then,
the addition theorem says that the spherical waves in the two coordinate systems are

related by

[o o] v v+n
WP (kr)PM(cos8)e™ = 3 35 > jTERE(-1)P(2v + La(—p, mip, v,n)

v=0 p=—V p=|v-n|

xhg) (kRo) P *(cos bp)e’ (m=w)go j, (kri)P¥(cos 6;)e’** , (4.15)
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where (1, 61, ¢1) are spherical coordinates of the field point with respect to the local
system K, and the coefficients a(—u, m|p, v, n) are defined through the relationship
vin
Pi(cos@)Prt(cos8) = Y alp,mlp,v,n)Pyt¥(cosb). (4.16)
=lv—n|
The computation of the coefficients a(m, —u|p, n, v) by means of recurrence relation-
ship is discussed in Appendix I. Substituting Eq. (4.15) into Eq. (4.13) and renaming
indices, we obtain the desired local expansion,
L 1
AALr) = X3 chui (ki) Pl (cosfy )™ (4.17)
1=0 m=-1
where the new multipole coefficients cf,, are related to the old coefficients b, by
v4n

L n
o= 3 3 D T+ 1)a(—p,mip, v, ) (kRo) B (cos 6o)

n=0 m=-n p=|y—n|

xefm=Hrdopa (4.18)

In Eq. (4.17) we have truncated the summation over ! after (L + 1) terms. This is
valid because Eq. (4.17) is to be evaluated only over the local panel p, within which
the field can be adequately approximated by the first M terms of the local expansion.

The summation over p in Eq. (4.18) can be computed in advance, since the terms
depending on p in this equation, h{"(kR,) and P/ #(cos6,), involve only the fixed
coordinates Ry and 6y of panel g in the local system K,. In each subsequent iteration
step, according to Eq. (4.18), we still have to perform two summations, namely, those
over n and m, for each pair of multipole indices (v,u). This would result in an
O(N?) algorithm as in ordinary matrix-vector multiplication. In order to obtain a
faster algorithm, we need to develop a more efficient distant-to-local transformation
procedure than the one represented by Eq. (4.18). The key to this development lies
in the observation that Eq. (4.18) becomes simplified for translation along the +z
axis of the local coordinate system K,. In that case, cosfy = £1 and the associated

Legendre polynomial takes on the special value
PP HEl) = (£1)P0myp - (4.19)
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This means that the summation over m in Eq. (4.18) reduces to a single term m = p,
and we are left with only one summation over n in each iteration step. The translation
along the 2z axis can be achieved by performing the distant-to-local transformation

in three steps:

1. Rotate the distant coordinate system K, so that its z-axis becomes parallel to

the radius vector Ry pointing from the origin of K, to that of K.

2. Translate along the new z-axis of K, in the negative direction until its origin

coincides with that of K.
3. Rotate the translated system into the orientation of K.

The above three-step procedure corresponds to the successive computation of the

following three sets of multipole coefficients:

R0+ Y D), (80,00, O B, (420)

blm = 2 (=™ (n + m)l(n — m')! mm’

m'=-n
L vin ~
&, = > 3 A9y 4 1)a(—m, mip, v, n)h{Y (kRo) b, ,(4.21)

n=0 p=|v—n|

.~

o = 3 (_1)m-m'\j§Z;Z§§EZfZ;§ DL, (0, ~80, ~60) &, (422)

m/=-n

where Df,':,)n, (o, B,7) is the rotation matrix discussed in Appendix H. The use of Egs.
(4.20) to (4.22) for the distant-to-local transformation leads to an O(IV 5/3) algorithm
as shown in the next section.

For sources in the panel p containing the field point r itself and sources in the
panels adjacent to panel p, the multipole approximation cannot be used. Instead, the
individual contributions from the sources in the local and neighboring panels must
be computed directly.

What we actually need are the fields rather than the vector potential. Complete

expressions for the magnetic and electric fields are given in Appendix J.
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4.5 Operation Count

As in Section 3.11, we can estimate the number of floating-point operations required
for each matrix-vector multiplication using the above FMM algorithm.

Step 1: The multipole coefficients of each panel are computed using Eq. (4.14).
As in Step 1 of Section 3.11, the total operation count for this step is c; M N for some
constant c;.

Step 2: For each pair of sufficiently separated panels, the multipole coefficients
of the local expansion are computed from those of the distant expansion using Egs.
(4.20) to (4.22). To compute all M coefficients b?_, using Eq. (4.20) requires O(M?/?)
operations, as explained in Step 2 of Section 3.11. The same is true of computing all
M coefficients c?,, using Eq. (4.22). Since the separation R, of each pair of panels
is fixed, the summation over p in Eq. (4.21) can be computed in advance. Hence, to
compute all M coefficients ¢, using Eq. (4.21) during each iteration requires only
O(ML) ~ O(M?3?) operations. Thus, the combined operation count of Eq. (4.20)
to (4.22) is O(M?/2) per pair of panels. Since there are approximately P? pairs of
sufficiently separated panels, the total operation count for this step is c,M3/2P? for
some constant c;.

Step 8: For each panel, the M multipole coefficents cZ . are each summed over the
index g of the distant panels. Since there are approximately P distant panel for each
of the P panels, the total operation count for this step is c3M P2 for some constant
cs.

Step 4: For each panel, the local expansion Eq. (4.17), with c,, replaced by its
sum over the index g of the distant panels, is evaluated at all & N/P nodes of that
panel, using the formulas given in Section J.1 of Appendix J. The total operation
count for this step is c4M(N/P)P = ¢y, M N for some constant cy.

Step 5: For each panel, the direct contribution to the vector potential at each
of its &~ N/P nodes due to all other nodes in the neighboring panels is computed,
using the quadrature rule discussed in Section J.2 of Appendix J. Since each panel

has only a small number of neighboring panels, there are on the order of N/P other
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nodes in the neighboring panels. Hgnce, the total operation count for this step is
¢s(N/P)?P = csN?/ P for some constant cs.

Adding the operation counts for the above five steps, the total operation count T’
for each computation of the matrix-vector product represented by the second term
on the LHS of Eq. (4.8) is estimated to be

2

T = (¢, + ¢4) MN + coM®2P? + c; M P? + 05-1;[7 ) (4.23)

Using the fact that the number M of multipoles is typically chosen to be of the order
the number of nodes in each panel, M ~ N/P, Eq. (4.23) becomes

2
T = (01 +cy+ 05)']—;;' + 02N3/2\/ﬁ+ C3NP . (424)

We would like to choose P so that T is minimized. Differentiating Eq. (4.24) with

respect to P and setting the result to zero, we obtain for the optimum value of P

N? N
0 = —(01 +c4+ 05)'—"5'5 + ‘CZW + 63N . (425)

Instead of solving Eq. (4.25) for P, we can always choose P to satisfy a simpler
equation obtained from Eq. (4.25) by omitting the third term on the RHS. This

simpler equation has the solution
P =[2(c; + ¢4 + cs) /AN (4.26)
Substituting this value of P into Eq. (4.24) gives
T= %[2(c1 + ¢4 + ¢5)E)M3AN® 4 c3[2(cy + ¢y + ¢s5) /e ]ENY3 . (4.27)

This means that the optimum operation count of our FMM algorithm will be no

worse than O(N®/3) per iteration.

4.6 Use of Symmetry

The geometry of a typical scattering problem is shown in Fig. 4.2. A plane wave

polarized in the z direction is incident in the y direction on a perfectly conducting
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square plate whose broad faces are perpendicular to the incidence direction. Clearly,
this problem has reflection symmetry in the z-y and y-z planes. Such symmetry can
be exploited to reduce the number of unknowns in the problem fourfold. To do so,
we need to know how the electric and magnetic fields transform under reflection in
the z-y and y-z planes.

To determine how the fields transform under reflection in a coordinate plane, we

write the Cartesian components of the Maxwell equation V x H = —jweE out in full,

O0H, 0H, .
By 5 jweE, , (4.28)
0H, OH, _ .
aaz - aa‘” = —jweE,, (4.29)
Hy Hz — _ .
% Oy - jwekE; . (4.30)

Let K’ be a left-handed coordinate system obtained by inverting the z axis of the
original right-handed coordinate system K of Fig. 4.2, that is, by reflecting about the

z-y plane. The relationship between vector quantities in the two coordinate systems

are

(z’ Y, z) = (xl7 yla _z,) ) (4'31)

[ E.(2,y,2) | [ Ey(z',y,2) |
Ey(xy Y, Z) = E;(.’D’, y', zl) ? (432)

L Ez(:l:, y’z) i L —E;(:D,’ yl,zl) §

Hizy,2)] [ H@.) ]
Hy(m’ Y, Z) = H;(:B', yl’ Z’) . (4'33)

L H;(:'D, Y, Z) i . '-H;(SB', y', zl) |

Substituting Egs. (4.31) to (4.33) into Eqgs. (4.28) to (4.30), we obtain
o(-H;) _9(-H,)

oy = —jweE, , (4.34)
o(—H, o(—H! )
( 3 z) _ & 5 2) = —jweE,, (4.35)
—H' I
3(ax,y) - a(ajfz) = —jweE.. (4.36)

Egs. (4.34) to (4.36) show that the set of functions (B, E,, E}) and [(—H,), (—H,),
(—H!)] satisfy the Maxwell equation V X H = —jweE in the variables (z, ', ').
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Now, the incident fields in the original coordinate system K are Ei*® = Ey and
Hix¢ = —H,, the other components of the incident fields being zero. In the re-
flected coordinate system K’, the incident fields are Ei* = E¢ and (—HP) =
—Hy. Thus, the incident excitation for (E,, E,, E;) has the same form as that for
(E;, B, E}), while the incident excitation for (Hz, Hy, H;) has the same form as
that for [(—HL.), (—H}), (—H.)]. Because the Maxwell equations Egs. (4.28) to (4.30)
and (4.34) to (4.36) with the same boundary conditions and the same incident ex-
citation must have the same solution, we conclude that the functions (E;, Ey, E;)
and [(—H.),(—H,),(—H})] are in fact identical to the functions (E;, Ey, E;) and

(Hz, Hy, H,) in the same variables:

E,(z,y,2) = Eu(z,9,2), (4.37)
H,(z,y,2) = —Hu(z,9,2), (4.38)

where p = z,y or z. Eqs. (4.37) and (4.38) may be used to determine the fields in
the half-space z < 0 from a knowledge of only the fields in the half-space z > 0.
For example, suppose we know the fields Ei(z, y, z) and H;(z,y, 2) at a point (z, ¥, 2)
with z > 0. The image point reflected in the z-y plane has the coordinates (z, v, —2z)
in the original system K and the coordinates (z',7,2) = (z,y,+2) in the reflected
system K’. Hence, Egs. (4.32) to (4.33) can be rewritten for the image point as

[ Ez(zv Y, —Z) ] [ E;(:B, Y, z) ]

Ey(-’”: Y, —Z) = E;(:B, Y, Z) ’ (439)
L Ez(xa Y, —Z) i L —E;(.’B, Y, Z) i
[ Hz(x7 Y, _z) ] [ H;(:B, Y, Z) W

Hy(xa Y, —Z) = H;(ZB, Y, Z) . (440)
L Hz(z’ Y, —Z) i L —H;(xvy’ Z) i

Substituting Eqgs. (4.37) and (4.38) into the RHS of Eqs. (4.39) and (4.40), respec-
tively, we obtain the desired field components with respect to the original system K
at the image point (z,y, —2),

Ez (IB, Y, —Z)

Ey (z,9, —2) =

E, (.'E, Y, _z)

Ey(z’ Y, z) (4'41)

E,(a:, Y, z)
—Ez(d:, Y z)
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Hz(a;, Y, _z) —H.‘t(x, Y, z)

Hy(z,y,—z) | = | —Hy(z,y,2) | . (4.42)
HZ("B? Y, —z) Hz (.’17, Y, z)

By an exactly similar procedure, we can obtain the transformation of the field

under reflection in the y-z plane,

] E;;(—.’B, Y, Z) ] [ —Ex(.'L', Y, Z) ]

E‘.‘l(-m, Y, Z) = Ey(fl}, Y, Z) ’ (443)
| E.(-z,y,2) | | —E,(z,y,2) |
[ Hz(—:l}, Y, z) ] I Hz(x, Y, z) ]

Hy(—za Y, z) = —Hy(.’.l:, Y, 2) | - (4.44)
B Hz(—xa Y, Z) i | Hz(l', Y, z) J

By successive application of the transformation equations (4.41) to (4.44), we can
obtain the fields in the regions (z > 0,z < 0),(z < 0,z > 0) and (z < 0,2 < 0) from
the fields in the region (z > 0,z > 0). This way, the number of unknowns is reduced

to one-forth.

4.7 Scattering from Plates and Cubes

To illustrate the accuracy of the multipole approximation and the efficiency of the
GMRES algorithm, we computed the radar cross sections (RCS) of perfectly conduct-
ing thick plates and cubes. The calculations were done on an IBM RS/6000 Model
530 workstation with 64 megabytes of storage. In order to conserve storage, we did
not compute the summation over p in Eq. (4.21) in advance, nor did we compute the
rotation matrices D™, (e, 8,7) in Egs. (4.20) and (4.22) in advance. Hence, the CPU
times given below are not the optimum values expected from the algorithm.

The plates used in our examples are square plates with a thickness of 0.0317A. In
order to sample accurately the sharp increase of induced currents near the edges, we
used approximately 40 nodes per A on the front and back faces and 60 nodes per A on
the side faces of the plates. For the cubes, we used approximately 40 nodes per A on all
the faces. Symmetry was used to reduce the number of unknowns to one-forth. The

number of multipole coefficients was chosen in all cases to be M = 36 = 0.8 times the

average number of nodes per panel. Figs. 4.3 and 4.4 show the computed broadside
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RCS of the plates and cubes, respectively, as functions of the side length W. Also
shown in these figures are the measured results reported in the literature [44, 45]. It
can be seen from these figures that our computed results are in good agreement with
those of measurement. The number of iterations in the GMRES algorithm required
to achieve an error tolerance of 10~* and the CPU time per iteration are shown in
Tables 4.1 and 4.2 as functions of the number of complex unknowns n = 2N. It can
be seen that the number of iterations required, Nj.,, increased rather slowly with
problem size. For example, in the case of the plates, as n increased from 120 to 2624,
Njser increased only three times.

The speedup achieved with FMM is illustrated in Fig. 4.5, where the CPU time
per iteration using FMM-GMRES is compared with that using standard GMRES.
In the case of standard GMRES, the method discussed in Section J.2 of Appendix J
for neighboring-panel contributions was used for both the distant- and neighboring-
panel contributions to the scattered field. This is equivalent to ordinary matrix-vector
multiplication whose CPU time per iteration is expect to scale as O(N?). This was
indeed found to be the case, as can be seen from Fig. 4.5. On the other hand, the
CPU time per iteration using FMM-GMRES is seen to follow roughly the O(N%/3)
curve, but rather erratically. This was because, in order to achieve the O(N3/3)
performance, the number of panels P would have to be chosen in accordance with
the formula Eq. (4.26). For simplicity, however, we did not optimize P in this way
in our examples. Still, Fig. 4.5 shows that our FMM-GMRES algorithm outperforms
the standard GMRES algorithm for N greater than a few hundreds, with increasing
speedup as N increases.

The storage cost of FMM-GMRES is compared in Fig. 4.6 with those of standard
GMRES and the time-domain-finite-difference (TDFD) method. As stated near the
beginning of Section 4.4, the matrix-vector product of the form .Ax required at each
step of the GMRES algorithm represents the field scattered to each node m from all
other nodes n # m. In standard GMRES, ordinary matrix-vector multiplication is

used, in which both the matrix A and the vector x must be supplied to the multiplica-
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tion routine. Since A is a 2N x 2N dense matrix, the storage requirement for A alone
is O(N?). This is shown in Fig. 4.6, where the quantity 16n? bytes is plotted against
n = 2N, where n is the number of complex unknowns, each of which requires 16 bytes
of storage in double precision. In FMM-GMRES, however, the scattered field itself,
which is equivalent to the matrix-vector product, is computed. This eliminates the
need to set up and store the matrix A itself. Thus, the storage cost of FMM-GMRES
scales as O(N). In practice, as mentioned in Section 4.3, one usually stores as many
basis vectors of the Krylov subspaces as are needed for convergence, in order to avoid
restarting GMRES. Hence, the storage cost of FMM-GMRES is usually at least mn,
where m is the number of iterations required for convergence. In all our examples
discussed below, m < 200. Hence, in Fig. 4.6, we plot the quantity 16 x 200n as being
representative of the storage cost of FMM-GMRES. Lastly, in TDFD, one has to store
all six components of the electric and magnetic fields at each node of the simulation
volume. Furthermore, one has to store the field components at two successive times.
Roughly speaking, the number of nodes in the simulation volume is N3/2 = (n/2)%?,
where N is the number of nodes on a two-dimensional surface in the integral-equation
method. Hence, in Fig. 4.6, we plot the quantity 8 x 6 x 2 x (n/2)*/? for TDFD, since
8 bytes are required for each real field component in double precision. Frbm Fig. 4.6,
it can be seen that FMM-GMRES outperforms standard GMRES in storage cost for
n greater than a few hundreds, and that it outperforms TDFD for n greater than
about 104.

4.8 Problems with Guided Mode Excitation

The integral equation formulation discussed in Section 4.2 can be extended to treat
problems with guided mode excitation, such as waveguide sections and horn antennas.
Consider the horn model shown in Fig. 4.7. The horn is excited by a generator
connected to a rectangular waveguide supporting only the lowest-order, or T Eo,
mode. We assume that the generator is well shielded so that it radiates only into

the rectangular waveguide. The problem is to compute the radiation pattern in the
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external region V of Fig. 4.7 where the permittivity is e. This external region is
bounded by the surfaces Sy to S, shown in Fig. 4.7 and the surface at infinity. Since
there are no waves incident from infinity, the integral over the surface at infinity in
the Kirchhoff-Huygens principle Eq. (3.4) gives zero. Hence, we are left with only
the integral over the surfaces Sy to S;. Since the generator is well-shielded, the
only surface currents that exist on the exterior parts of these surfaces are those that
pass out of the mouth of the horn and around the flange. These exterior surface
currents are expected to be weaker the farther away they are from the mouth of the
horn. Hence, for simplicity, we can discard the exterior part S, which is assumed
to be sufficiently far from the mouth of the horn that the surface currents on S, are
negligible. The integral in Eq. (3.4) is therefore confined to the surfaces Sp and S,
where Sy is a rectangular cross section of the waveguide, which we refer to as the
input terminal, and S, consists of the inner walls of the waveguide and the inner and
outer walls of the horn. We assume that the walls of the waveguide and horn are
perfectly conducting. Hence, in the integral over S;, the terms involving (n' x E') are

absent, and Eq. (3.4) becomes
H(r) = Hg(r)— — [ x ) x V'gas’ (4.45)
0 47 Js, ’
where H,(r) represents the contribution from the input terminal So,

Hs,(r) = 74}_1r ./so ljwe(n’ x E'Y + z}'%(n’ xE)-V'(Vy) — (o' x H') x V"c,b] ds'.
(4.46)

By letting the field point r in Eq. (4.45) approach the perfectly conducting surface
S, and taking the cross product with the outward surface normal n at r, we obtain

the MFIE

nxH(r) = nxHg(r)- %n x [ xH)x Vgds',  (447)
1

Since the integrand in Eq. (4.47) is singular at r' = r, we must integrate over the

singularity analytically. Following the steps leading from Eq. (4.1) to Eq. (4.7), we
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can remove the singular point from the integral by rewriting the MFIE as

2
In order to evaluate the quantity Hs,(r) defined by Eq. (4.46), it is necessary to

l — __1_ ' ! y ' '
nx H(r) = nxHgy(r) 47I_n></SI(n x H') x V'4dS' . (4.48)

know the tangential fields (n’ x E’) and (n' x H') over the input terminal S, of the
waveguide. In general, the waves inside the waveguide consist of an incident TE;g
wave and a number of reflected waves belonging to various waveguide modes. Since
the waveguide supports only the TF;y, mode, we expect that the only reflected wave
with significant amplitude at the input terminal is the TE;y reflected wave. This
can be seen by considering the attenuation constants of the higher-order modes. The

attenuation constant o of a cutoff mode in a rectangular waveguide is

BT e

where a and b are the transverse dimensions of the waveguide, m and n are integers

and ) is the free-space wavelength. In our example, ¢ = 3.485 cm, b = 1.58 cm and
A =5 cm. Hence, the cutoff waveguide mode with the smallest real value of « is the
one with m = 2 and n = 0, for which @ = 1.2928 cm™}. In propagating over the
15-cm distance between the waveguide-horn junction, where this cutoff mode could
have been produced, and the input terminal Sy, the amplitude of this cutoff mode
would be attenuated by a factor of e7®*1%¢® = 3 8 x 10~° ! Cutoff modes with larger
values of a would, of course, be attenuated even more. This justifies neglecting the
effects of all the reflected cutoff modes at the input terminal. The waves on the input
terminal Sp then consist of an incident T'F;p wave with unit amplitude and a reflected
TE,, wave with an unknown amplitude I'. With respect to the coordinate system
shown in Fig. 4.7, the tangential fields H' = H(x') and E' = E(r') on Sy are thus
given by [46]

Hy(#) = (1+T)cosT (z'+g) , (4.50)
' .20 . T ( , a,)

= — ) e — —_— _ . 1

H,() JAg(l F)sma z+2 , (4.51)

E.(7) = j—22ZH(1 +7T) sin = (z' + 2) , (4.52)
Ag a 2
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where

Ay = e, 4.53)
9 - (%)2 (

Zy = _yule . (4.54)

2

1-(%)
We may now evaluate the quantity Hg,(r) by substituting Eqs. (4.50) to (4.52) into
Eq. (4.46). The result may be written in the form

nxHs,(r) = nxHE (0)+T [nxHE ()] , (4.55)
where
1 .
B,() = o [, [jwela’ x EO)
+-:—u(n’ x E®). V(V'y) ¥ (o' x H?) x V’¢] ds', (4.56)
and
HO(Z) = cos = (z’ +92-) , (4.57)
2a
Oy = —;i2%
HY () j " sin — (z’ + 2) (4.58)
.20 T a
O = ;2 1, 2
BO() = 33,78 sma( + 2) . (4.59)

When Eq. (4.55) is substituted into the RHS of Eq. (4.48), we obtain the MFIE for
the tangential magnetic field n x H(r) on the perfectly conducting surface S; and for
the reflection coefficient I'. It should be pointed out, from the steps leading from Eq.
(4.46) to Eq. (4.48), that Eq. (4.48) is valid only when the field point r approaches
S, rather than Sp. To solve Eq. (4.48), we discretize S; into N surface elements,
or nodes, over each of which the tangential magnetic field has a constant, unknown
value (n x H), for the mth node. By letting r range over all the nodes on S; (point
collocation), we obtain as many equations as there are unknown field values (n x H)m

on S;. However, we need one more equation because we have an extra unknown I'.
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This extra equation may be obtained by letting r in Eq. (4.47) approach the center

ro of the input terminal Sy, rather than S;,
1
nx H(ro) = nxHg(r)- 50X /S (0" x H') X V'elrerodS'.  (4.60)
1

The quantity H(ro) on the LHS of Eq. (4.60) is the magnetic field on Sp. From Eqgs.
(4.50) and (4.51), H(xro) has only the y and z components. Also, in the coordinate
system of Fig. 4.7, the outward unit normal on Sp is n = —y. Hence, the LHS of Eq.
(4.60) is
nxHr) = —(yx2)H(0)

= —x(1-D)H®(0), (4.61)
where we have used Egs. (4.51) and (4.58). In the integral over S; in Eq. (4.60), the
integrand has no singularity, since ry is at the center of Sy while r’ lies on S;, so that
the denominator |rp — r'| in 9 never vanishes. However, the integral over Sy occuring
in Hg, (rp) now includes the point ry on Sy where the integrand is singular. Hence, the
evaluation of the term n x Hg,(ro) on the RHS of Eq. (4.60) must be done carefully.
This is discussed in Appendix K. When Eq. (K.13) of Appendix K and Eq. (4.61) are

substituted into Eq. (4.60) and the = component of the resulting equation is taken,

we obtain the extra equation needed to solve for the unknown reflection coefficent I'.

4.8.1 Shorted Waveguide

The accuracy of the formulation discussed above was tested on the trivial example of
a shorted waveguide section, for which closed-form solution is available. The phase
constant of the T'E,o mode of the rectangular waveguide used in the horn problem of
Fig. 4.7 is

2T 22
= —4|1-{=—] . .62
B 3 1 ( Za) (4.62)
The reflection coefficient at the input terminal Sy for a waveguide section of length

L shorted at the other end is given by
I = —e¥fL, (4.63)
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In our example, a = 3.485 cm, A =5 cm and L = 7.5 or 15.0 cm. Hence,

—0.84397 — 0.53640j, L="7.5cm
r = , (4.64)
—0.42455 — 0.905405 , L =15.0cm
The computed reflection coefficients using FMM-GMRES were
r _ —0.81598 — 0.51777j, L="T7.5cm (4.65)
computed —0.41672 — 0.85894j, L =15.0cm '

The density of nodes used in the above calculations was approximately 30 nodes per
wavelength. The number of GMRES iterations required to achieve an error tolerance
of 10~* was 28 for L = 7.5 cm and 41 for L = 15.0 cm. The agreement between
the computed and theoretical reflection coefficients is seen to be quite good. The
small discrepancies observed are believed to be due to (i) an insufficient density of
nodes near the sharp edges, (ii) inaccuracy of the four-point Gaussian quadrature
method used to compute neighboring-panel contributions, and (iii) inaccuracy of the

rectanglar rule used in the same-cell integration method discussed in Appendix K.

4.8.2 Horn Antenna

The horn geometry is shown in Fig. 4.8, which is similar to the geometry of the C36
horn antenna studied by Ratajczak et al. [47] except for the detailed shape of the
flange. In our calculation, the density of nodes used was approximately 10 nodes per
wavelength in regions of low current level and 15 nodes per wavelength in regions
of high current level and near the sharp edges. Symmetry was used to reduced the
number of unknowns to one-forth. Thus, although the total number of nodes in all
four quadrants of the horn was 10,240, the total number of complex unknowns was
only [(10,240/4) x 2 + 1] = 5121, since there are two tangential field components
at each node and one extra unknown I'. The total number of panels in all four
quadrants was P = 236 and the number of multipole coefficients was M = 36. This
calculation required 175 GMRES iterations to achieve an error tolerance of 104,
and the total CPU time was 6.0 hours. Of the 6 hours of CPU time, it was found

that approximately 1.4 hours were spent in computing the rotation matrices in Eqgs.
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(4.20) and (4.22), and 0.2 hour in computing the summation over p in Eq. (4.21).
Thus, for problems of the present size, whether the latter summation is computed
in advance or not has little impact on CPU time. Had FMM not been used, the
CPU time for this calculation would have been 14 hours. Our computed reflection
coefficient of I' = —0.0697 + 0.0614; is in reasonable agreement with the measured
results of [47], T yeasurea & —0.049 + 0.0495. Our computed radiation patterns shown
in Fig. 4.9 are also in reasonable agreement with the measured results of [47]. The
small discrepancies observed in the H plane results of this figure are believed to be

due to the use of an insufficient density of nodes near the sharp edges.

4.9 The Long-Wavelength Limit

The examples we used in Section 4.7 to illustrate the efficiency of our FMM-GMRES
algorithm are those in which the size of the scatterer is of the order of a wavelength
or larger. Besides problems such as these in the intermediate-wavelength (resonance)
to short-wavelength region of the electromagnetic spectrum, there is also much cur-
rent interest in applying FMM to long-wavelength problems such as the modeling of
parasitics in high-speed integrated circuits. The size of a typical scatterer within a
high-speed integrated circuit may be of the order of Al = 10um or less, while the
frequency components of the voltage waveforms may range from f = 500 MHz to
f = 5 GHz. Thus, the quantity kR, appearing in the argument of the spherical
Hankel function in the distant-to-local transformation Eq. (4.18) may range from
(27 f/c)Al = 0.0001 to 0.001 radian. In this long-wavelength limit, we expect Eq.
(4.18) to reduce to the transformation formula for multipoles in electrostatics. Indeed,
from the small-argument limit of the spherical Hankel function,

. (2p— 1M
lim h(z) = -](_zp_ﬂi, (4.66)

we see that, as kRp becomes very small, successive terms in the summation over
p in Eq. (4.18) grow as 1/(kRp)P*1, so that in the long-wavelength limit, we may

ignore all the terms in the summation over p except the one with p = v + n. Then,
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using Eq. (4.66) and Eq. (I.11) with p replaced by —pu, Eq. (4.18) becomes in the

long-wavelength limit

ZL: i (—1)™(2w +1) 2n-DN2v -1 (n+v —m+ p)!

cd =
== Cn+2zv—DN (n—m)(v+p)
~Cn+20-1)I o
x(—7) ( AL +1) " P F(cos )™M be (4.67)
Using Eq. (4.66) and the small-argument limit of the spherical bessel function,
. 2"
ll_l)%.?n(z) = m ) (4.68)

we can rewrite the distant and local multipole expansions Egs. (4.13) and (4.17) as

9 = m .
AAL() gmzl Y 6,9), (4:69)
4
AAl(r) = z z R Y™(61,41) 5 (4.70)
prr ol V 20+1

where the spherical harmonics Y;™(0, ¢) are defined in terms of the associated Legen-
dre polynomials by

},l (01 ¢) - ( 1) \‘ 4T (l + m)|-Pl (COSO)C ? (471)

and the new multipole coefficients f1_ and gf. are related to the old coefficients b{,

and cf, by
- @ -1 |+ m)
fgfn - ( 1)m ki+1 (l _ m)| blm ’ (472)

]
Bim = (-—1)"‘(2li1)!,wlgfz)i Clom - (4.73)

Substituting Egs. (4.71) to (4.73) into Eq. (4.67), we obtain the transformation equa-

tion for the new multipole coefficients,

R . nip | (v +m—p)ln+v—m+p)
g = 2 2 (=)™ J (n+m)!(n—m)!(l/+ﬂ)!(l’—#)!

47r
2A+1

n=0m=-n

n+; (901 ¢0) +y+1 (474)
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Eq. (4.74) is precisely the distant-to-local transformation formula in the electro-
statics limit [48, 49]. This shows that the FMM formalism discussed in Section 4.4 is
numerically stable in the long-wavelength limit, in that it goes over smoothly into the
electrostatics result as the wavelength is increased. As such, our FMM formalism is

suitable for application to on-chip interconnect and other long-wavelength problems.

4.10 Comparison with the Standard FMM

Recently, Coifman, Rokhlin and Wandzura [15] developed a three-dimensional FMM
for the EFIE of electromagnetic scattering. We shall refer to their algorithm as the
standard FMM algorithm. The operation count of the standard FMM algorithm is
O(IN®/2) per iteration, which is more efficient than our O(N%/3) algorithm discussed
in Section 4.4. The question arises as to what advantage our FMM algorithm has over
the standard FMM algorithm. The answer is that our FMM algorithm is numerically
stable in the long-wavelength limit, as shown in the last section, whereas the standard
algorithm is not. To see this, we first review the latter algorithm.

In our FMM algorithm discussed in Section 4.4, the radiation field in the far zone
due to the current sources in a panel g is represented by a sum of multipole waves of
the form Eq. (4.13). In the standard FMM algorithm, however, the same radiation
field is represented by a sum of plane waves propagating in various directions. This
is made possible by using a alternative series expansion for the Green function 7
equivalent to Eq. (3.49). Let X,, be the displacement vector from the origin of a
distant coordinate system K, to the origin of the coordinate system K, centered at
the field panel p. Then, we write r —r’ = X, +d, where r and r' lie on panels p and

g, respectively. This defines a vector d as
d =r-r-X,. (4.75)

Noting that d < X, for well separated panels p and g, the series expansion for the

Green function is given by

eIk Xpqet+d| o . . @
Kord gﬂc(—l) (2 + 1)5y(kd) ) (kX ,g) Pifcos £(d, X,,)] . (4.76)
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Eq. (4.76) is a series of multipole waves of the type ji(kd)FP[cos £(d,X,,)]. These
multipole waves can be transformed into plane waves by means of the following rela-

tionship [39],
Gi(kd)Bifcos £(d, X,,)] = 4—;1,—, / dQe’™9P[cos £(k, Xp0)] » (4.77)

where dQ, is an element of solid angle traced out by the vector k of constant length
k, and the integral is over all directions of k. Substituting Eq. (4.77) into Eq. (4.76),
we obtain

%{% = % [ duei? g (2 + 1) (kXpq) Plcos £(k, Xpg)] , (4.78)
where we have truncated the summation over [ to (L+1) terms and have interchanged
the order of summation and integration, even though it is mathematically illegitimate
to do so. Defining a quantity Tp.(k) as

Tl = o L DA K Rloe 06 Kol (47)

Eq. (4.78) may be rewritten as
ik Xpe+d|

e jk-d .
ey Bl [ due™ a1 (4.80)

Now, the vector potential due to the electric current sources in panel g is given by

AA? 1) -2 s 4.81
i) = /As., (l‘)m ) (4.81)

in analogy with Eq. (3.47). Substituting Eq. (4.75) into Eq. (4.80) and then the
resulting expression into Eq. (4.81), we obtain the desired plane-wave representation

of the field in the far zone due to the sources in panel g,
AAY(r) = / de™TU,(K) , (4.82)
where
U,k) = je ™ XnT, (k) /A . I(r)e kT ds’ (4.83)
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Note that the quantity U,(k) is independent of the field point r. Hence, in summing
the contributions from all the distant panels g, we can carry out the summation over
g in Eq. (4.82) prior to evaluating the integral over all directions of k for different
field points r in panel p. This leads to an O(N%/2) FMM algorithm as discussed in
[15].

The standard FMM algorithm discussed above is suitable for intermediate- and
short-wavelength problems. This is because, as pointed out in [15], the quantity
Tpo(k) defined by Eq. (4.79) diverges in the limit L — oco. For intermediate- and
short-wavelength problems, where the argument kX, of the spherical Hankel function
is of the order of unity or larger, the difficulty associated with the divergence of the
sum over [ in Eq. (4.79) does not become apparent until L is much larger than what
one normally needs to obtain good accuracy. However, for long-wavelength problems,
where kX, is much smaller than unity, the series in Eq. (4.79) diverges so rapidly
that numerical instability sets in even for small values of L. This can be seen in more
detail as follows. If Eq. (4.79) is substituted into Eq. (4.80) and the integration over
the solid angle is performed, we expect to get back Eq. (4.76) but with the sum over
[ truncated to (L + 1) terms. To check this, we employ the following series expansion
of a plane wave e*T [39]:

egkd = ij"(2n+1)jn(kd)Pn[cos L(k,d)]. (4.84)

n=0

Substituting Eqgs. (4.84) and (4.79) into the RHS of Eq. (4.80), we obtain

. K. k& = :
4my _/ A% T (k) = I4x Y i@+ 1)h{" (kXpq) > 5 (2n+1)jn(kd)

=0 n=0

X / dQPy[cos L(k, d)] Pi[cos £(k, Xp,)] - (4.85)

In exact arithmetic, we have the following orthogonality property of the Legendre

polynomials,
4
/ dQ%Pa[cos £(k, d)] Pilcos £(k, X,pg)] = m7r—16n,1’¢[cosé(d, X,0)]. (4.86)

In this case, Eq. (4.85) is seen indeed to reduce to Eq. (4.76). In numerical integration,

however, orthogonality of the Legendre polynomials is only approximately true. Thus,
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instead of Eq. (4.86), we have

dr
20+1

/ Q% Pafcos £(k, d)] Pifcos £(k, X,)] = SuPcos £(d, Xpg)] + €n »

(4.87)

where €, is some small quantity which depends on the machine precision as well as
on the accuracy of the numerical quadrature routine. Substituting Eq. (4.87) into
Eq. (4.85), we see that the error €, in the integration over the solid angle leads to an
error A7 in the computed Green function of amount
L&k

Ay = 33 I+ 1) 20+ Dia(kd)h (6 Xpg) Emt - (488)
In the long-wavelength, both kd and kX, are much smaller than unity, with d <
X,q- Thus, we may use the small-argument limit of the spherical Bessel and Hankel
functions,

(@-1 (kd)
en + DN (X,

(kD (kXpg) = (4.89)

Since both kd and kX, are much smaller than unity, the RHS of Eq. (4.89) is largest
for the smallest possible value of n and the largest possible value of [, namely, n =0
and [ = L. Keeping only this largest term in Eq. (4.88), we obtain an estimate of the
error in the computed Green function,

k .L oL
N — Woooeo—— . .
Y % o L+ D (4.90)

1 1 1 1 1
On the other hand, 7 itself is of the order of X, rd ~ X Hence, the relative error
in the computed Green function is estimated to be

Ay QL+ ew

- A (kXpo)L

(4.91)

Let us apply this result to the parasitics-modeling problem mentioned at the
beginning of Section 4.9, where kX, ranges from 0.0001 to 0.001. Suppose our
numerical quadrature routine is exact, so that go is of the order of the machine

epsilon. Then, for double precision arithmetic, o = 10~15, Furthermore, if we
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desire the relative error in the computed Green function to be one percent or less,

Eq. (4.91) gives

(2L +1)" 1071
o xr <00 (4.92)

The inequality Eq. (4.92) has the solution L < 3 for kX, = 0.0001 to 0.001. Thus,
in this parasitics-modeling problem, we are limited by numerical instability of the
standard FMM algorithm to four multipole terms, even in double precision arithmetic.
The situation is, of course, worse if our numerical quadrature routine is inexact, or if
we use single precision arithmetic.

Actually, Coifman et al. [15] gave a criterion for the applicability of the standard
FMM which is more pessimistic than our above estimate. According to these authors,
the upper limit L of the summation in Eq. (4.79) should be chosen according to the
following rule:

kD + 10In(kD + w), double precision ’ (4.93)

I = { kD +5In(kD + ), single precision
where D is the diameter of the smallest sphere enclosing the largest panel. Fur-
thermore, these authors state that, in order to avoid numerical instability, the stan-
dard FMM should only be used on sufficiently separated panel pairs (p, g) such that
kXpq > L. Applying these results to the above parasitics-modeling problem, we
have kD = 0.0001 to 0.001, so that L ~ 6 in single precision. Hence, in order to
apply the standard FMM, the panel pairs (p,q) should be separated by a distance
Xpq > L/k = Lc/(27f) > 6 cm. Since a typical chip is not much larger than 2 cm X
2 cm, this would mean that the standard FMM should not be used anywhere inside a
chip! Of course, this estimate of [15] is too pessimistic. On the contrary, the estimate
we gave in the last paragraph indicates that one can still apply the standard FMM
inside a chip, but with loss of accuracy in the computed Green function and in the
multipole approximation, in which one is limited to L = 3.

Concerning the speed of the standard FMM algorithm, we find in the literature
[50] that the total CPU time required to achieve an error tolerance of 10~ in the

solution of the RCS problem for a square metallic plate involving approximately

117



2000 unknowns was about 2000 seconds. The calculation was performed on a SUN-
SPARC-2 workstation with 64 megabytes of storage. This may be compared with our
results shown in Table 4.1, where it can be seen that the RCS problem for a thick
square plate involving approximately 2000 unknowns required a total CPU time of
34 x 21.0 = 714 seconds on an IBM RS/6000 Model 530 workstation with the same
amount of storage. Assuming that the SUN-SPARC-2 workstation in question was a
40 MHz variety with a benchmark of approximately 4 MFlops, while the benchmark
of our IBM RS/6000 workstation was approximately 11 MFlops, we find that the
performance of the standard FMM algorithm is actually about the same as that of
our FMM algorithm, after adjusting for processor speed, for problems of the present

size.

4.11 Conclusions

In this chapter, we have discussed a 3-D FMM formalism which differs from the
standard FMM formalism in that the radiation field due to the sources in a distant
panel is represented by a sum of multipole waves, rather than by a sum of plane waves.
The accuracy of our algorithm was demonstrated by excellent agreement between
our computed results and the published data on radar cross sections of perfectly
conducting thick plates and cubes. We have also extended the boundary conditions
to deal with problems with guided mode excitation. The accuracy of these extended
boundary conditions was demonstrated by good agreement with published data on
the radiation patterns of a pyramidal horn antenna.

The CPU cost of our FMM algorithm is O(N%/3), compared with O(V*/2) for the
standard FMM algorithm. However, for problem size of a few thousand unknowns, our
benchmark indicated that the two FMM algorithms are approximately equally fast.
This shows that the overhead burden due to the use of more complicate transformation
formulas in our FMM algorithm is quite insignificant for problems of the above size.
More significant is the fact that the standard FMM algorithm is numerically unstable

in the long-wavelength limit, whereas ours is numerically stable in this limit. Thus,
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our algorithm is more suitable for application to long-wavelength problems such as
the modeling of parasitics inside a chip.

Although the discussion in this chapter has been limited to perfectly conducting
objects, it can be generalized to the case of dielectric objects by introducing a second
vector potential to treat the fields radiated by equivalent magnetic surface currents.
Also, the algorithm discussed in this chapter is based on a one-level grouping of the
surface nodes into panels. More sophisticated, multi-level grouping schemes can be
developed to reduce the CPU cost to O(/Nlog N) in the limit of very large N. One
such scheme developed for the standard FMM algorithm was recently proposed by
Dembart and Yip [51].
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Table 4.1: Computed Results for RCS of Perfectly Conducting Plates of
Thickness 0.0317A

Side length | No. of complex | No. of iterations | CPU per iteration RCS
(\) unknowns (err = 107%) (seconds) (2?)
0.1 48 10 0.2 0.000698
0.2 120 12 0.4 0.0344
0.3 224 15 0.9 0.410
04 368 16 1.0 1.43
0.5 544 18 4.4 2.47
0.6 736 19 5.6 3.59
0.7 976 22 7.4 5.06
0.8 1116 26 14.5 6.90
0.9 1536 30 17.6 9.16
1.0 2052 34 21.0 12.0
1.1 2624 37 42.1 17.3

Table 4.2: Computed Results for RCS of Perfectly Conducting Cubes

Side length | No. of complex | No. of iterations "CPU per iteration | RCS
(A) unknowns (err = 107%) (seconds) (22)
0.1 48 9 0.2 0.00335
0.2 192 11 0.8 0.151
0.3 432 13 2.5 0.268
0.4 736 14 5.5 0.0877
0.5 1200 15 17.3 2.23
0.6 1728 16 19.8 3.86
0.7 2464 24 27.2 3.34
0.8 2700 22 79.4 4.27
0.9 3888 22 83.4 7.63
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Figure 4.2: A scattering problem with symmetry in the x-y and y-z planes.
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Chapter 5

Conclusions

Two specific problems on the interaction of the electromagnetic field with material
media have been discussed in this thesis. In Chapter 2, the rate of spontaneous emis-
sion by an excited atom near a lossy mirror was calculated from an exact solution of
a microscopic Hamiltonian model, which included the effects of dispersion, local field
correction and instantaneous Coulomb interaction near the surface. Numerical results
for the total decay rate were found to be in excellent agreement with those based on
classical electromagnetic theory and to reduce to the well-known result for the rate
of nonradiative energy transfer in the limit of very small distance from the surface.
Since our calculation was based on a fully canonical quantum theory, it provided the
first fundamental demonstration of the validity of the classical electromagnetic theory
of the rate of spontaneous emission near a lossy mirror.

Having thus established the validity of classical electromagnetic theory in a special-
ized situation of current interest in quantum optics, we proceeded to develop numeri-
cal techniques to solve the equations of electromagnetic theory in practical situations
of interest to integrated-ciruit process simulation. In Chapter 3, an approximate tech-
nique based on the physical-optics method was presented. This technique is suitable
for the multilayer, piecewise-linear topography often encountered in 3-D photolithog-
raphy simulation. The formalism of generalized Sommerfeld integrals was used to
treat multiple scattering within a given surface in the physical-optics approximation.

To speed up the computation of the physical-optics multiply scattered fields in 3-D,
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we used the technique of multipole acceleration which resulted in an O(IN%/2) algo-
rithm, where IV is the number of surface unknowns. A complete photoresist-exposure
simulation program based on this multipole accelerated physical-optics technique was
written. It has enabled us to perform reflective-notching simulation of large 3-D struc-
tures on a workstation in reasonable CPU time.

In order to overcome the limitations of the approximate physical-optics method,
we presented a rigorous technique based on FMM in Chapter 4. The present im-
plementation of this technique is suitable for arbitrary, perfectly conducting objects.
Our FMM algorithm differs from the standard FMM algorithm of [15] in that we use
multipole waves rather than plane waves to represent the radiation field due to the
sources in a distant panel. As a result, our distant-to-local transformation formu-
las are more complicated than those of the standard FMM algorithm. A three-step
transformation procedure consisting of a rotation, a translation and another rotation
was developed to achieve an O(IN®/3) algorithm, which is still somewhat slower than
the standard FMM algorithm which is O(V3/2). Nevertheless, our benchmarks have
indicated that the difference in speed between the two algorithms is insignificant for
problem size of a few thousand unknowns. Our FMM algorithm does have one im-
portant advantage over the standard FMM algorithm, namely, that our algorithm is
numerically stable in the long-wavelength limit, whereas the standard algorithm is
not. As such, our algorithm is more suitable for application to low-frequency problems
such as on-chip interconnect modeling.

Compared with the time-domain finite-difference method (TDFD), the FMM al-
gorithm presented in Section 4.4, as well as the standard FMM algorithm of [15], is
more advantageous with repect to storage cost for 3-D problems involving more than
10* surface unknowns. This is because FMM uses a surface, rather than a volume,
representation of the unknowns and because no matrix storage is needed in FMM.
Furthermore, the storage advantage of FMM increases with problem size. For ex-
ample, a 3-D problem involving 10° surface unknowns would require approximately

256 megabytes of storage with FMM and approximately one gigabytes with TDFD.
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Thus, FMM will be far superior to TDFD in terms of storage cost for very large 3-D
problems such as the simulation of photoresist exposure over magnetic disk heads.

Besides generalizing our FMM algorithm to the case of dielectric objects and to
periodic topography, future work is needed to extend the guided-mode boundary
conditions discussed in Section 4.8 for metallic waveguides to the case of dielectric
waveguides. This will make FMM applicable to a wider class of problems such as
the simulation of optical proximity probes. Also, research is needed to develop multi-
level grouping schemes for our FMM algorithm in order to reduce its CPU cost to
O(Nlog N). One such grouping scheme has recently been proposed by others for the
standard FMM algorithm [51].
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Appendix A

Expansion Coefficients for B,

In this appendix, the system of equations Eqs. (2.42) to (2.45) are solved to obtain
the coefficients ap(w), Bo(w), on(w,w’) and fy(w,w'). Our discussion follows closely
" that of Huttner et al. [7] but contains more algebraic details.

From Egs. (2.42) and (2.43) we obtain

w—GJo

Bo(w) = T o ap(w) - (A1)
Substituting this into Eq. (2.45) we obtain
N 1 ] '
Brlw) = || T2V @) (A2)

For Eq. (2.44) we have to be more careful, since the quantity 1/(w — w') is singular

at w = w’. We write this singularity as [—ﬂl— + z(w)d(w — w')] . Hence, Eqgs.

w—w
(A.1) and (2.44) give

— + a(w)6(w w')] . iOEJOV(w’)ao(w) . (A3)

@) = [—0—

To obtain the function z(w), we substitute Egs. (A.2) and (A.3) into Eq. (2.42),

I A ,a"Jon(w')[ 1 , 1 ]
woke = /o W o T o) lw—w = T WP ) - T . (A4)

From the definition V(w) = ﬂ,‘,ﬁl w/@o, we see that VZ(w) is an odd function of w.

Hence, the first and third terms inside the brackets in Eq. (A.4) can be combined into

a single integral from —oo to oo,

. @&Vi(w) P T
Wb = 2(2)+ )() 2w +wo)/ w—w —ic’
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from which we may solve for z(w),

2(w? — @&3) 1 o Viw)
V2 (w) V2(w) /_oodw w—w —ie’

z(w) = (A.5)

To solve for ap(w), we substitute Eq. (2.38) into Eq. (2.40) and evaluate the
commutator with the help of Eqs. (2.35) and (2.36). This gives

S(w-u) = op(w)apw’) — Bo(w)Bs(w’)
+ /0 * dfon(w, V)W, ) - Bu(w, VB W V)] . (A6)

Substituting Eqgs. (A.1) to (A.3) into Eq. (A.6) we obtain

B —w) = oo(w)e(w) {1—(“”“”") (“"”‘7’0)

w+ wWp w' + Wo
Wo

+ (o T Go)(@ +50) /o dvV2(v) [a:(w):v*(w’)é'(w —v)6(w' —v)
z(w)d(w — v) + z* (W) (W' —v)

w —-v+ie w—V—1€

o) o) -ER) G @

Using the fact that V%(w) is an odd function of w, the last two terms inside the

=2

brackets in Eq. (A.7) can be combined into a single integral from —oo to co. Also,
the integral of the first three terms inside the brackets in Eq. (A.7) can be evaluated.
After rearranging terms, we obtain

@Vi(v)
— v —ie)(w' — v +i€)

o (w) g (w') - ' o0
(@ + @o) (W' + o) [2“"’(“’ +u)+ /_m W
+RV (w)V(W)z(w)z* (W')é(w — ')
, VA (w)z(w) + GgV3 (w)z* (w')] _

O(w— )

(A.8)

U W —wie w—w — i€
The last two terms inside the brackets in Eq. (A.8) can be rewritten using Eq. (A.5),

Vi w)r(w) @EVA(w)z(w) _ 2@p(w? —w?)
w —w+e w—w —1€ T W —wie
- Sy P B0 T
w—w-+1€ v—w-+i v-—w —1e
wgV2(v)
(w—v —ie)(w' — v +ie€)

—00

= ——2&)0(w+w’)—/m dv
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which is seen to cancel the first two terms inside the brackets in Eq. (A.8). Hence,

Eq. (A.8) becomes

N ao(w)aﬁ(w') ~2 1 *(, 1 !
fw-u') = (0 + o) +50) gV (w)V(w)z(w)z* (w')é(w — ')
_ |ae@)@V @)z w)[? 5w — )
w+ (;Jo ’

The solution of Eq. (A.9) is, up to a phase factor,

o (w) _ w+ (:Jo
N T GV (w)z(w)
This may be rewritten using Eq. (A.5) as

(w + cTJo) V(w)

2 Jw?—-@Ez(w)’

op(w) =

where z(w) is defined by

1 e, VW)
Z(w) B 1_2(:10[-oodww'—w+i€-

Substituting Eq. (A.11) into Eqgs. (A.1) and (A.2) we obtain

fol) = (252) =~ (.(Du.?)l(w) !
f(w,w') = % (r.(;.wg') w? Yggl(w) .

Finally, substituting Eqs. (A.5) and (A.10) into Eq. (A.3) we obtain

a(w,w') = a(w_w')+@( V(W) ) V(w)

2 \w—w'—1€
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Appendix B
Derivation of Eq. (2.101)

In this appendix the integral over 7 in Eq. (2.99) is performed explicitly to give Eq.
(2.101).
Consider the first term of the integral in Eq. (2.99),

o
Fw) = /0 dre” "Dy 5)(Ta, Ta; T) - (B.1)

Let {|®,),s = 0,1,...} be a complete set of eigenstates of the system described by
the the Hamiltonian density # of Eq. (2.16), with eigenvalues E,;. From the definition
of the photon Green function Eq. (2.74), we have, for 7 > 0,

i
Dy (FarFai7) = —% (A7) Ap(ra 0))
= _'fz%@%’”Am(rmO)e'%H’ALﬂ(rm0»
= —-% Z(C%HfA[j](l’a, 0)6_%HT|¢3)<¢8|AU](IM 0))

= - Syl forr > 0. (B.2)
8

where Apjjos = Afjj 0 iS the matrix element of Ay;j(rs,0) between the eigenstates
0 and s, H is the Hamiltonian corresponding to the Hamiltonian density H, and

Qg = (E, — Ey)/h. Note that Q, > 0. Similarly, for 7 < 0, we have
) ;
Dyj)(ferTai7) = —7 2 |Aj.0612€™ %7, forT < 0. (B.3)

Substituting Eqs. (B.2) into Eq. (B.1) and performing the integration over 7 for
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7 > 0, we obtain

Ajjl0s
Bw) = h Z wl [go-!- i€ (B-4)

When we take the imaginary part of Eq. (B.4) as in Eq. (2.99), we obtain

I F @) = —7 3 [Apioswe = Q) (B.5)

where w,, the atomic transition frequency, is positive.

On the other hand, the Fourier transform with respect to 7 of Dy;; is given by
= f dTeinD[j][j](ra, Fa;T), (B.6)
—00

which differs from Eq. (B.1) only in the lower limit of the integration. Substituting
Egs. (B.2) and (B.3) for 7 > and 7 < 0, respectively, into Eq. (B.6) and performing

the integration, we obtain a result similar to Eq. (B.4),

1 2 1 _ 1
B o= h zs: | 4g00] [w —Q,+ie w+Q— z'e] ) (B7)

When we take the imaginary part of Eq. (B.7) and evaluate it at w = w, > 0, we

obtain
™
Im .F{"'Ima”c = —ﬁ Z IAU],03|2 [J(wa - Qs) + J(Cda + Qs)] . (BS)

The second delta function in Eq. (B.8) does not contribute, since its argument (w, +

Q,) is always positive. Hence we have
T
s

which is exactly the same as Eq. (B.5). Thus, we conclude that the imaginary part
of the integral over 7 of the first term in Eq. (2.99) is equal to the imaginary part of
the Fourier transform of Dy;j; evaluated at w = w,. This establishes the first term in
Eq. (2.101).

Next, consider the second term of the integral in Eq. (2.99),

Rw) = /0 * drevTM(r) (B.10)
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1
32(4)‘2, 2<0 J2'<0

M(7) d*r &' Fijim(ta — 1) Gmn (v, ' 7) Fopjy (v — 1) . (B.11)

Using Eq. (2.87) and following the steps leading from Eq. (B.1) to Eq. (B.2), we have,

for 7 > 0,

1

- (1 3 &3 Fro (£, — 1) Fora (' —
M(r) = ki (esz) /z<0 z’<odrdrme(ra £) o (' =~ 7a)

X S (Xm(r, 0)|®s) (D] Xn(x',0))e™* 7, forr >0. (B.12)

From Eq. (2.24), we see that F;;(r, —rz) = Fji(r2—r,). Also, X is Hermitian. Hence,
Eq. (B.12) may be rewritten as

M(r) = —% Z |Y[_,-],o,|26"9" ,forr>0, (B.13)
where
1 3
Yoo = o= [ o @rFim(re = }Xn(r,0)12:) (B.14)

Similarly, for 7 < 0, we have

M(t) = —% 3 V062", forr < 0. (B.15)
8
Substituting Eq. (B.13) into Eq. (B.10), we obtain
Yool
Fw) = = Z T+ (B.16)

On the other hand, using Eqs. (B.13) and (B.15), the Fourier transform with respect
to 7 of M(7) is

Fy = /_ :drei“’TM(T)

1 .0 1 1
T h zs: Y00l [w —Q,+ie w+Q, - ie] ' (B.17)

Egs. (B.16) and (B.17) differ from Eq. (B.4) and (B.7) only in interchanging A; 0, and
Y}j.0s- Hence, exactly the same type of argument as the above leads us to conclude

that the imaginary part of the integral over 7 of the second term in Eq. (2.99) is equal
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to the imaginary part of the Fourier transform of M(7) evaluated at w = w,. This
establishes the second term in Eq. (2.101).
Lastly, consider the third term of the integral in Eq. (2.99),

AW = / * dré“TN(r), (B.18)
0
where
— 1 3 .
N(r) = v z<od T Fijjm(ra — 1) Cogj) (r, a3 7) (B.19)

Using Eq. (2.100) and following the steps leading from Eq. (B.1) to Eq. (B.2), we

have, for 7 > 0,
N = 5 (5) [ @rRomra = 5) 3 [(Xn(r, 0120 (@4l Ain(rer )
— (Ap)(Ta, 0|} (Bs| Xim(r, 0))] €7, forr > 0.  (B.20)

The second term inside the brackets in Eq. (B.20) is seen to be the complex conjugate

of the first term,

N(r) = —% ;Bme“m” ,forr >0, (B.21)
where
Bo = ——1Im [(Ag(ra, 0)18.)(@:|Xm(x, )] (8.2
is a real quantity. Similarly, for 7 < 0, we have
N(r) = —% ZS:BNem’T ,fort<0. (B.23)
Substituting Eq. (B.21) into Eq. (B.18), we obtain
Fyw) = %E %; . (B.24)

On the other hand, using Egs. (B.21) and (B.23), the Fourier transform with respect
to T of N(7) is

Fe = /_:dre*w’N(r)

1 1 1
= ﬁZB°’[w—Qs+ie'w+Qs-z'e] ’ (B.25)

8
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The similarity of Egs. (B.24) and (B.25) to Egs. (B.4) and (B.7) allows us to conclude,
using exactly the same type of argument as before, that the imaginary part of the
integral over 7 of the third term in Eq. (2.99) is equal to the imaginary part of the
Fourier transform of N(7) evaluated at w = w,. This establishes the third term in
Eq. (2.101).
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Appendix C

Green Function for the Matter
Field

In this appendix, the Dyson equation Eq. (2.131) for the matter Green function g§;’)“
for the system described by the Hamiltonian density of Eq. (2.103) is solved exactly
using an extension of the Wiener-Hopf technique. Before solving Eq. (2.131) for the
dielectric half-space, we first consider the case of an infinite dielectric. In that case,

the Dyson equation Eq. (2.131) is modified to read

ggg;O)w(rl, 1'2) = __fo[éi(:l_)__—_]i [5.'1'5(1‘1 - 1‘2) + /oo d3T3.Fim(l‘1 - 1‘3) g,(:;-’)“’(ra, 1'2)] ,
(C.1)

where the integral on the RHS ranges over all of space. As such, this integral is a
convolution whose Fourier transform is a product of Fourier transforms. Taking the

three-dimensional Fourier transform of Eq. (C.1) with respect to r;, we obtain
€ ik kikm 1
G5k) = ~[e(lwl) - 1] [e—;’&je ke 4 (—kz - -g&-m) Gfﬁi?’(w] ,
(C.2)

where we have used the fact that the Fourier transform of the quantity Fj;(ry — ra)
given by Eq. (2.24) is

- (r1— e? [kik; 1
/d3r117}j(r1 - r3)e—ik-(l’1 1'3) = e—o [% —_ —3- CJ] . (C.3)
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Rearranging terms in Eq. (C.2), we obtain

[5,-,,, (1- Sle(lo) = 1) + [e(wl) - )k ]Gf,‘:j)(k) eo[e(lwl) 5, ek
(C.4)

which can be rewritten as

(a,,,, + Bﬂ) Go(k) = -:%Ba,-,-e-*k-rz , (C.5)
where
B €(|W|) -1
T—3[e(ll) - 1]
= e(w)) -1, (C.6)

where we have used Eq. (2.133). Now, the inverse of (6,-,,, +B ’—‘*,:-‘211) is (6,-,,. - T_%;&,ﬁﬂ)
as can be verified by direct multiplication. Hence we can solve Eq. (C.5) for G'(°°) (k),

00 € B k,k e
G,(-j )(k) = —-e—gB (6,'3' - mk—;) [ ikr, . (07)

The inverse Fourier transform of Eq. (C.7) is

(Oo)w(r r ) 6O[el'a(le“";l) - 1] 6.'1'6(1'1 _ 1'2)

%GD[GL(|“J|)_1]2 & ( 1 ), (C.8)

47!'6];('(-0])62 6.1:1,-0:1:2,- Il‘l-—l‘gl

where we have used Eq. (C.6).

Next, we proceed to solve Eq. (2.131) for the dielectric half-space. Inspection
of this equation shows that the second argument ro of the Green function is fixed
throughout the equation. Hence, we may fix r; and regard Q’g’ ) as a function of only
one coordinate vector r;. Since the dielectric half-space is translationally invariant in
the z and y directions, we may further eliminate the z;, and y; variables by taking
the Fourier transform of Eq. (2.131) with respect to these two variables,

Gij(z1)

-1 .
_ eo[e(lc:l) ] [ Gy iherthat) 5z — 2,

+ L3<0 dz3ﬁ‘im(2'1 - Z3)émj(23)] , (Cg)
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where a tilde denotes Fourier transform with respect to z; and y; and we have
suppressed the dependence of the Fourier transforms on the transverse momentum
(kz, ky) for simplicity. The two-dimensional Fourier tranform F‘,-j can be found by

taking the inverse Fourier transform of Eq. (C.3) with respect to k.,

- dk, €2 [ k;k; -
.F%j(Zl - Z3) = o 'e—o l# - 36 ] ik (21 23) (CIO)

The integral over k, can be evaluated by contour integration, by noting that the

integrand has poles at k, = +iK, where K = ,/k2 + k2. The result is

TiTj o—K(z1~23) _ 155 - £
_ o2 ﬂg-e 500(21 — z3) , forz; > 23,
Fj(zy—z) = o X { . (C.11)
'7#6 1=%) — '36}:6(21 - Z3) forz; < z3,
where r and r’ are vectors with the components
i = (kg ky, 1K), (C.12)
'l”; = (kz, ky1 —ZK) . (013)

To solve Eq. (C.9) using the Wiener-Hopf technique, we write C:‘,-,—(zl) as a sum
of two functions G’f;") (z1) and C:‘fj_ )(21), the first of which vanishes for z, > 0 and the
second of which vanishes for z; < 0. Substituting this into Eq. (C.9), we obtain

G’S;") (z1) + @5;) (z) = — fﬁ%__].l emilkemathamn) 55 — 20

+f } dz;:,ﬁ}m(zl—zs)éf;'})(zs)] , (C.14)

where the integral is now along the entire z;-axis. As such, this integral is a convolu-
tion, whose Fourier transform is a product of Fourier transforms. Taking the Fourier

tranform of Eq. (C.14) with respect to z,, we obtain

G () + 6 k) = —lelo) 1 [Soyem+ (B - 25, ) 6Dk
(C.15)

where we have used Eq. (C.3).

141



It is necessary to identify the regions of analyticity of G’ (k,) and G{;’ (k) in
the complex k,-plane. Taking the limit 2, — +oo of both sides of Eq. (C.14) and
using Eq. (C.11), we have

im GO(n) = —[e(lw]) - 1] [“’"" ~K= / dzseX =Gz )], (C.16)

21400
using the fact that C:'S;') (21) vanishes for z; > 0. Eq. (C.16) shows that the asymptotic
behavior of G’f;) (%) as 2y = +o0 is é,(j')(zl) ~ e K% up to a multiplicative factor.
Now, by definition, Gf; Wk,) = e dzle“"“"lég)(zl). Since the behavior of the
integrand at large, positive z, is e~*:1"K2 this integral converges whenever Imk, <
K. Thus, we conclude that Gf]_ )(kz) is analytic everywhere in the complex half-plane
. ={k;|Imk, < K}.

Next, we assume that the asymptotic behavior of G’f;') (1) as zy = —o0 is et*,
where ¢ > 0 in order that G(+)(zl) remains finite as z; — —oo. By definition,
Gg-") (k) = [ dze == ij )(2,). Since the behavior of the integrand at large, neg-
ative z; is e"%=21+#21_ this integral converges whenever Imk, > —u. Thus, we conclude
that Gg-") (k,) is analytic everywhere in the complex half-plane &, = {k,|Imk, > —u}.

Lastly, we determine the region of analyticity of the first term on the RHS of Eq.
(C.15), considered as a function of k,. This term is proportional to e~t=22, We are
primarily interested in the solution for z, < 0. In this case, the first term on the
RHS of Eq. (C.15) is analytic everywhere in the upper half of the complex k.-plane,
%, = {k, |Im k, > 0}. Since =, C X, we see that GE;-") (k,) is also analytic in X.
Also, because ¥, N Z_ # 0, there is a common domain of analyticity of the three
functions Gg-”(kz), GSJ_ )(k,), and e~t==2,

Rearranging terms in Eq. (C.15), we obtain

i (3 = 311 = 1) + el - 58] G20 + 687k
)=l s (g1

which can be rewritten as

( - k; km) (+)(kz) + CG’ (kz) = -%B(sije—ik‘” , (C.18)
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where B is given by Eq. (C.6) and

1
¢ T -1 (€19

To apply the Wiener-Hopf technique, we must write each side of Eq. (C.18) as a
sum of two terms, one of which is analytic in £, and the other of which is analytic
in X_. Although Gsf)(kz) is analytic in X, the first term on the LHS of Eq. (C.18)
is not, because the quantity 1/k? has poles at ¥ = +:K. Hence, it is necessary to
subtract the pole of this term at £k = +¢K from both sides of the equation,

(6"” +B —kik—) [th;')(kz) - GS,':'j)(iK )] +CGY k) = —-E%Bdije“k"z

kikm :
(5,,,.+B % )Gﬁ,:;?(zK). (C.20)

The first term on the LHS of Eq. (C.20) is now analytic in ¥ while the second term
is analytic in ¥_. Next, we decompose the RHS of this equation into a sum of two
terms QE;) (k;) and ng_)(k,) which are analytic in £, and X_, respectively. This is
accomplished by using the identity

1 _ 1 =(1_1)1. (C.21)

k2 (k, — iK)(k; +iK) \k,—iK k,+iK/) %K
Thus,
RHS of Eq. (C.20) = Q) (k) + Q5 (k.), (C.22)
where
(+) _ _fps ke, B _Kikm )
P (k) By + o= P G K) (C.23)
(=) _ _ B _kikm +)
(k) = (6 S )G,,,, (iK) . (C.24)
Substituting Eq. (C.22) into Eq. (C.20) and rearranging terms, we obtain
(6im + B2 ) [6890) — 6K — QP (k) = ~CO (k) + @k
(C.25)
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The LHS of Eq. (C.25) is analytic in =, and the RHS in £_. Because ¥, NX_ #0,
we conclude, based on a theorem in complex analysis [23], that both sides of Eq.
(C.25) must be an entire function, which we denote by P;;(k.). Setting each side of
Eq. (C.25) equal to P;(k;), we obtain

. B  kikm
GPk) = GPGK)+ (Jim— H_BT) [Q5 (k) + Paj(ks)] , (C.26)
- 1 -

Gk = 5@ %) - Pylks)] - (C.27)
Substituting Eqs. (C.23) and (C.24) into Egs. (C.26) and (C.27), we obtain the formal
solution

oo B kikm .
Gg;)(k,) = G )(k) + [6.-,,, + 57 GT Bk 1iK G;;;J.) (iK)
B kikm\ ,
+ (& - 1_'*'—.8;_162_) PmJ (kz) ) (C.28)
(=) = L5 L B _Kkn \ o y
Gii'(ks) = C [(&m tor ik Gmj iK) + Pii(kz)| ,  (C.29)

where we have used Eq. (C.7).

Egs. (C.28) and (C.29) still contain the unknown quantities Gf,'fj) (iK) and Ppj(k:).
To solve for these quantities, we first recall that Gg-") (k;) must be analytic in X,
whereas there appears to be a pole at k = +iK € X, due to the factor 1 /k? in the
first and third terms on the RHS of Eq. (C.28). The resolution of this paradox lies
in demanding that the residue of the RHS of Eq. (C.28) at the pole k = iK must be
zero. Substituting Eq. (C.7) into Eq. (C.28) and extracting the residue of the pole at

k = iK, we obtain the condition

€0 B® it _icr, B ritm ) c
= 2 - -2 _THlmp (iK). 30
0 = 217B2K" 7 B 2ik i E) (C:30)
Canceling common factors, we obtain

TmPmiiK) = %‘;-Brje-*’r'rz . (C.31)

Next, we use the fact that the Green function Ggg)(rl, r;) represents a polarization

wave originating from a point rz, where z; < 0. This function is expected to have
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a singularity at r, = rz, but not on the surface of the dielectric z; = 0. For this
to be true, the inverse Fourier transforms of Eqs. (C.28) and (C.29) evaluated at
z1 = 0 must be finite. Since é (z )=/ ﬂie"""G(i)(kz), its value at z; = 0 is
J %Gﬁf)(kz), and this must be finite. This is so if G'g-h) (k;) — 0 as k, — o0, or if
GS‘) (k,) approaches an exponential phase factor ~ e~*:?2 as k, — +o00. Examination
of Eq. (C.28) shows that, in the limit &, — +o00, the first term, which is given by Eq.
(C.7), approaches an exponential phase factor ~ e~*+?2. The remaining terms in Eq.

(C.28), therefore, must approach zero as k, — o0,

. B kikm | ~(+) B kiknm '
kzg?t‘oo{[‘s 2K(1+ B) k. ]G (k) + | @ " 1+B k2 P (k)
(C.32)
Similarly, the RHS of Eq. (C.29) must approach zero as k, — *o0,
- — . B k k (+)
Jm Pk =t~ (6t e e ) OG0, (©3

We define a matrix a;; = limg, 400 -k,'c—':-?- which appears in Egs. (C.32) and (C.33).

The elements of this matrix are

k'k' 0 0 kz
Ai; = lim 2T = 0 0 ky ’ (034)
k.—oo k
= \k by K
where we have neglected terms of order (1/k;). From Eq. (C.34) we obtain
000
lim 22 = |00 0|, (C.35)
k:—oo k, 00 1
(@), koks koky kgk
T2 = 7{ kyky kyky Ky,
k,—):l:co —+o00 k k k ky k2
0 0 k;
=10 0k |=aq. (C.36)
ke ky k
Using Eq. (C.34), we may rewrite Eq. (C.33) as
Pylk) = — (dim+ 5pz0im) GSiK) +0 (3-) - (C.37)
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Since P;;(k;) is an entire function, it must be a polynomial in k,. Eq. (C.34) shows
that a;m, is a polynomial of the first degree in k;, but the O(1/k;) term in Eq. (C.37)

is not a polynomial. Hence the latter must be zero and we obtain the solution

Pylk) = ~ (bim+ 5z0im) GS(E) (C.38)

which is valid for all k,. When we substitute Eq. (C.38) into Eq. (C.32), the second

term on the LHS of the latter equation becomes

im (6, — B Kkm)p iy = B ny
k;ljil:xkloo (&m - 1 +B—k§—) Pm](kz) = - (611“ + % Kagm) ij (ZK)
: Gim B (az)im ( B ) (+) /.
+ k;l—lf:II}oo [ k, + 21K k, ] 1+ B ij (ZK )
B (+) ( B ) +)
=% %K(1+ B i .39
[&m + %K1+ B) &m] Gpj (iK) + 1T B 3Gy (1K),  (C.39)

where we have used Egs. (C.35) and (C.36). When Eq. (C.39) is substituted into Eq.
(C.32), the first term on the RHS of the former equation cancels the first term on the
LHS of the latter equation. Thus, we are left with the condition

GP(iK) = 0. (C.40)

To solve for the remaining components of Gs;-") (¢K), we substitute Eq. (C.38) into
Eq. (C.31),

GHK). (C.41)

k=i

€ . B
e—gBr:ie_u..r2 = —( % Krtazm)

The quantity 7iGim|k.=ix = bm is a vector with the components

by 0 0 k iK'k,
bo | = (ks by iK)[ 0 0 K | = | iKk |, (C.42)
b ke ky iK 0

where we have used Egs. (C.12) and (C.34). Substituting Eq. (C.42) into Eq. (C.41)
and using Eq. (C.40), we obtain

; B
-E%Brje“”? = - (1 + 3) [7’1G(+) (iK)+ rzG(+) (K )] . (C.43)
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Since the dielectric half-space has no preferred direction in the z-y plane we expect

G\P (iK) = G (iK). Hence, we obtain one possible solution to Eq. (C.43),

€ B -
(+) (ZK) — (+) (‘lK) (1 -"3- B/2) e—irT2
GH6K) = GHK) =0
_ i B —ip-
GIEK) = ~FamiEme
G _ _ir2__ @B _ _un
s (1K) K20+ B3)° (C.44)

Egs. (C.40) and (C.44) may be combined into a single equation,

(+) . — L Ti(53j GoB _—irTy
GH(K) = (5,, iK)62(1+ 5 (C.45)

We now have all the quantities we need in the solutions Eqgs. (C.28) and (C.29).
Since we are primarily interested in the solution for 2z, and z; both < 0, as shown

in Eq. (2.162), we only need to compute the inverse Fourier transform of Eq. (C.28).
Substituting Eq. (C.38) into the latter equation, we obtain

(+) ) B kikm G
(k) = Gy (k) + 2iK(1 + B) k, —iK ; (1K)
B B kik .
—o% ( e B—kz‘a,,,,) GHK).  (C.46)

The inverse Fourier transform of the first term on the RHS of Eq. (C.46) is given by
Eq. (C.8). For the remaining terms in Eq. (C.46), we first find the inverse Fourier
transform with respect to k.,

e A(oo dk eik:2 oo
P -CP @) = [ TGPk -6, (Can)

where z; < 0. Since the quantity in brackets in Eq. (C.47) approaches zero as
|kz] = o0, as expressed by Eq. (C.32), we may close the contour in the lower half of
the complex k,-plane. In doing so, only the pole at k, = —iK due to the 1/k? term
on the second line of Eq. (C.46) contributes. The result is

B2 ?"Tl ]

(%) = FRaTE R e Cnd (K)., (C.48)

GP(=) - G

147



where a,,, is the matrix aj, of Eq. (C.34) evaluated at k, = —iK. Using Eqgs. (C.34)
and (C.40), the summation over m in Eq. (C.48) is seen to range over 1 and 2 only,
and the summation over / reduces to [ = 3. Hence,

B?  r(—iK)

A(+) — ()
Gii (1) = Gy (21) %K1+ B) 2K

[ 31G(+) (zK) + a;ng;) (iK)] eKz1 .
(C.49)

The quantity in brackets in Eq. (C.49) can be computed using Egs. (C.34) and (C.45),

ks
') ") _ € B —ir-
[031G1j (1K) + a3 Gy (zK)] = AL 577 (1+B/2)e irTy o ( ZI;% )
GDB _—ir-rs
2(1+B/2)° (C-50)

Substituting Eq. (C.50) into (C.49), we obtain

x ~ € B® ' i(kaz TiTi Kzt
CP) -G @) = smrrmarEE [21,; ekt 2’]. (C.51)

The quantity in brackets in Eq. (C.51) can be written as

rﬁelf(zwn) = / dkz e (zl+22)k k (C.52)

2K —-00 27(' k2 ?

where k; = (kz, ky, —k) is the image of the vector k; = (ks, ky, k;) in the plane z = 0.
Eq. (C.52) can be verified by closing the contour of integration in the lower half of the
k.-plane, since (2; + z2) < 0, and noting that only the pole at k, = —iK contributes.

The Green function QS-))“' (r1,r2) is obtained by taking the inverse Fourier trans-
form of Eq. (C.51) with respect to k, and k,. Using Eq. (C.52), we obtain

(O)w )w _ € B®
(1‘1, 1'2) (1‘1,1'2) = 82(1 T B)(l + B/2)
« [ 2k BE ik o) iy s -saibaton b KRS
(2m)3 k2

= €B° & d°k etF=(@1—z2)Fiky (y1—y2)tikz(21+22) _ 1
2¢2(1 + B)(1 + B/2) | 8110155 J (27)3° k2

- &B° & [k il (C.53)
2e2(1 + B)(1 + B/2) | 8210z J (27)3 k2]’
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where T2 = (Z3,¥2, —2;) is the image of ro = (z2,y2, 22) in the plane z = 0. Using
the fact that the three-dimensional inverse Fourier transform of 1/k? evaluated at r
is 1/4x|r|, we obtain

G (x1,19) = G5W(r1,rp) = coleg (o)) ~ 1 [ il ( - )] )

47(62€L(IUJ|)[6L(ICU|) + 1] 32:1,-34:2,- ll’l - i"zl
(C.54)

where we have used Eq. (C.6). Finally, when Eq. (C.8) is substituted into Eq. (C.54),
we obtain Eq. (2.132).
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Appendix D

Integral of ¢(w)

In this appendix, the integral I defined by

I = /om dwé(w)

Y b GwV?3w)
=/ e T2 (D-1)

is shown to be unity. Our discussion follows closely that of Huttner et al. [7] but

contains more algebraic details.

We start with the equality

1 _ 1 = ‘Dg[z(w) -z (w)] (D 2)
w? —3z(w) w?— &gz (w) lw?2 —@&Bz(w)? - '
From Eq. (A.12) we find
W) = —— [T W'V [ 1 1 ]
2w) -7 w) = 2@0./_°°de(1.4)) Ww-w+ie W —w-—ie
— ___1_ e s2(, \[__ . I __
= o /_wde (W"[-276(w' — w))
= ZV2(w). (D.3)
Wy
Substituting Eq. (D.3) into Eq. (D.2), we see that Eq. (D.1) may be written as
1 foo 1 1
= — — . D4
I wi Jo dw & [wz - Rz(w) w?— gz (w)] (D-4)

Using the fact that V?(w) is an odd function of w, it can be seen from Eq. (A.12)
that 2*(w) = z(—w). Hence, the two terms in Eq. (D.4) may be combined,

;= L gp— Y (D.5)

i J-o w2 — @Rz(w)
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The integrand in Eq. (D.5) can be shown to be analytic in the lower half of the
complex w plane [7]. Hence, the integration path can be deformed into a semicircle

in the lower half plane with radius R — oo,

[ = L[ g8 D
T i Jo=x Q2 —o¢z(Q)’ (D-6)
where = Re®. In the limit R — oo, we find
1 po=2r " Ret?
= 5 0
- 1. (D.7)
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Appendix E

Green Function for the Transverse
Photons

In this appendix, the Dyson equation Eq. (2.164) for the photon Green function Dj;
for the dielectric half-space described by the Hamiltonian density # of Eq. (2.102)
is solved exactly using an extension of the Wiener-Hopf technique. Our approach
is similar to that used in Appendix C, but the algebra here is considerably more
complicated. As in Appendix C, we fix r, in Eq. (2.164) and regard Dj; as a function
of only one coordinate vector r;. Then we eliminate the £, and y, variables by taking

the Fourier transform of Eq. (2.164) with respect to (z; — z2) and (31 — ¥2),

DY(z) = D§(z1) - wieoler(wl) =1 [ deaDR (1 = 25+ 22) Dipy(29)
23

L

where Dg-’)“’(zl) is the two-dimensional Fourier transform of the free-space photon

Green function Eq. (2.112) with respect to (z; — z2) and (1 — %2),

kik;
PO%(z) = L ak, (85— 5%) gike(21-22)
i €0 J 2m w?— k22 +1e

In Eq. (E.1) and (E.2) we have omitted writing the dependence of the Fourier trans-
forms ﬁ;-‘;-(zl) and f)g-))“'(zl) on 23, k; and ky. The integral over k; in Eq. (E.2) can be

(E2)

evaluated by contour integration, by noting that the integrand has poles at k; = £iK
and k, = +iS/c, where

S = S(K) = VE?@ —w? —ic. (E.3)
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The branch of the square root in Eq. (E.3) is chosen so that the real part of S is
always positive. Thus, Eq. (E.2) becomes

5, — 42
_AY @) _Sz-z)fe _ TiTj -K(z1~22)
B (a) = e e W EET AT
ij
€o (5,_ — Y ™)
_\% S(z1-2z2)/c _ Ty K(z1~22)
53c e \i1T22 Me 1=%2), H<2z.
(E.4)
where r; and r; are given by Egs. (C.12) and (C.13), and
.S
G = (kz,k,, —3—) , (E5)
' S
¢ = (k,,ky,’ ) (E.6)

To solve Eq. (E.1) using the Wiener-Hopf technique, we write D¥, % (1) as a sum of
two functions D(+) (z) and 13,(; ) (z1), the first of which vanishes for z; > 0 and the

second of which vanishes for z; < 0. Eq. (E.1) then becomes

-~ ~(_ - w 00 - w
Dg")(zl) + D,gj )(zl) = Dg-)) (z1) — wzeo[ez,(lwl) —1] / dz;:,DSQ (21 — 23+ 22)

weoler (lwl) — 1]

lex(lw]) + 1]

where the integral is now over the entire z;3-axis. As such, this integral is a convolution.

(o)“’(z1+zz)-—D ©), (E7)

XD,(:j) (Zs) +

Taking the Fourier transform of Eq. (E.7) with respect to 2;, we obtain

D(k,) + DS(k) = DS (k) —w eo[eLuwn—11D‘°’“(kz)e"==zzu‘+-’<kz)

e *eoler (|w]) — 1J? (o),,, :kzzz
T e (W) + 1] (k)e*=2—Dg(0), (ES)

where the Fourier transform with Dg.’)“’(kz) with respect to z; can be obtained from

Eq. (E.2),

ksk
Ow 1 (5=' ~ ) PR
Dy (k) = € w? — k262+2€ ) (E9)

To determine the regions of analyticity of Dgf)(k,), we proceed as in Eq. (C.16)
and take the limit z; — +o0o of both sides of Eq. (E.7). The LHS of this equation
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then becomes lim,, , f),(; )(21). When Eq. (E.4) for z; > 2 is substituted into the
RHS of Eq. (E.7), we see that, because of the f)g?)"’ factor in each of the terms on
the RHS of Eq. (E.7), the latter RHS can be written as a sum of a term proportional
to e~5%1/¢ and a term proportional to e %*. Examination of Eq. (E.3) shows that,
for K # 0, the real part of S/c is always smaller than K. Hence, in the limit
2] = +00, e754/¢ >> e~Kx_ The asymptotic behavior of D,(J' )(zl) as z; — +oo is
therefore ﬁf; )(z1) ~ e=521/¢ up to a multiplicative factor. By definition, Df," Nk,) =
I dzle“"=’11~)fj-' )(21). Since the behavior of the integrand at large, positive z; is
~ e~k=z1-521/¢ this integral converges whenever Im k, < Re S/c. Thus, we conclude
that D,(_,' )(k,) is analytic everywhere in the complex half-plane () = {k, | Im &k, <
Re S/c}.

Next, we assume that the asymptotic behavior of fo ) (21) as z; = —o0 is ~ €%,
where y4; > 0 in order that ﬁ,(;' ) (21) remains finite at 2, — —oo. By definition,
D,(]"' Wky) = J° dzeiken D.ff ) (z1). Since the behavior of the integrand at large,
negative z is ~ e~#=a1+#121 this integral converges whenever Im k;, > —p. Thus,
we conclude that D,gf)(k,) is analytic everywhere in the complex half-plane () =
{k;|Imk, > —m}.

From Eq. (E.9), the first term on the RHS of Eq. (E.8), Dg?)” (k), has poles at k, =
+iK and k, = +iS/c, since the denominator (w? — k?c? + ic) = (iS + k) (iS — k).
Hence, this quantity is analytic in the strip A = {k;| — Re S/c < Imk, < Re S/c}.
Since T NZ() N A # 0, we conclude that there is a common domain of analyticity
of the three functions Df;' )(k,), Df; )(k,) and Dg-))“’(kz).

We now proceed to solve Eq. (E.8). Rearranging terms in this equation, we obtain

. (+)
{[w2 — I(w) — k2% + i€] 8im + TI(w) k’km} D (k2) +D (k) = DS?)“’(kz)

k2 | w?—k2c+1e
(61'3 — l_c"c!ci‘) Hw
+E(w1 K) wz _ k2C2 + i€ 3](0) ] (E‘lo)

where II(w) and Z(w, K) are the bulk and surface photon self-energies divided by eo,
Nw) = —w’ler(lwl) —1], (E.11)
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w?er(|w|) — 1)?

S(w,K) = K[[ei((llwll)) +i]] . (E.12)
Ideally, we would like to factorize the 3 x 3 matrix in braces on the LHS of Eq.
(E.10) into a product M M) such that M} is analytic in () and the inverse
of Mf; ) is analytic in £(-). However, this was found to be difficult. Instead, we

factorize the 3 x 3 matrix in braces into the following factors,

M) = (6L — k;€)655 + (S — L) k2 , (E.13)
M) = (L + k,c)o;5 + (S — L) k2 , (E.14)

where S is given by Eq. (E.3) and
L = L(K) = /K2 +T(w) — w? — e . (E.15)

The branch of the square root in Eq. (E.15) is chosen so that the real part of L is

always positive. The inverse matrices are

- 1 | US—L) kik

My™ = iL — ksc [‘5" iS—k,c k2 |’ (E.16)
@1 _ 1 (S —L) kik;

My™ o = iL + k,c [5’ iS+ke k|- (B.17)

Eq. (E.14) shows that M(+) is analytic in ©(*) ezcept for a pole at k, = +iK.
Similarly, Eq. (E.16) shows that Mﬁ;)—l is analytic in Z(7) ezcept for a pole at
k, = —iK. As a result of these unwanted poles at k, = +iK, the standard Wiener-
Hopf technique must be extended to deal with these singularities. This consists of
subtracting the unwanted poles from Eq. (E.10). After multiplying this equation
throughout by (iS — k,c)M)-1 and rearranging terms, we obtain

i) (ks ;
Mﬁ::)[ i) _ ‘”] + M D) (k2 38 — ) — AL

S + k¢
k
= M [ DO(E,) + S(w, K (6o - L%L) 0| (1S -k
- tm ( 2)+ (w ) — k2¢2 + ie 3j( ) (Z zc)
~ M AT — M AL (E.18)
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where we have subtracted quantities Mﬁ;)Af,':}) and ME;,)"IA,(;J-) from both sides of
the equation so as to make the residues of the poles at k; = K and k, = —iK due
to Mf,’,? and ME,;)'I in the first and second terms, respectively, on the LHS of Eq.
(E.18) vanish. As a result, the first and second terms on the LHS of this equation are
analytic in ©(*) and (), respectively.

The RHS of Eq. (E.18) can be simplified by using the fact that &k, (5,,,,- - "—'g{-“-’-) =
0. Using Egs. (E.9) and (E.16), the RHS of Eq. (E.18) is simplified to:

(6im — BE) 11, ~

— — "1ng2 . w'

RHSof (B18) = i rst ko) [eoe Omj + Z(w, K)bm3 D3; (0)]
—MD A - MG)AL) (E.19)

We now have to decompose the expression Eq. (E.19) into a sum of two terms P,-(j+) (kz)
and P;‘,-‘) (k.) analytic in =) and £(-), respectively.

Consider the first term inside the brackets in Eq. (E.19) proportional to e~%=%2,
Depending on whether 2; is positive or negative, this term has an essential singularity
at Im k, — +o0o or Im k, — —o0, respectively. We are primarily interested in the
solution for z; > 0. Hence, we assume in the following that z; > 0. In that case, the
quantity in brackets in Eq. (E.19) must be associated with H(J-')(k,), since it has an
essential singularity in ©(*). However, the factor in front of the quantity in brackets
in Eq. (E.19) has poles in () at k, = —iS/c and k, = —iK. Hence, before we may
assign the first term on the LHS of Eq. (E.19) to P,-(j—)(kz), we must subtract these
unwanted poles in £() from this term. The subtracted poles, since they are in (7,
can then be added back as part of P,-g-”(kz). For the unwanted pole at k, = —i5/c,
the quantity P}(J-l) (k,) that must be subtracted is 1/(iS + kc) times the residue of the
first term on the RHS of Eq. (E.19) at this pole,

( —_ 2(6‘ _l‘éﬂ) 1—zgc Hw
F (k) = (L +8)(iS +ks0) [Ee % + 2, K)onaD 31'(0)] - @)

Similarly, for the unwanted pole at k, = —iK, the quantity I*'}(jz)(kz) that must be
subtracted is 1/(iK +k,) times the residue of the first term on the RHS of Eq. (E.19)
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at this pole,

L1t
T

(k2) = 3 K(L + Kc)(S — Ko)(iK + k)

(2)
F ,

(E.21)

[ele-'“zam,- +S(w, K)a,,,sﬁg.m)] .
0

Next, we have to decide whether the last two terms on the RHS of Eq. (E.19)
should be assigned to (*) or £(-). Examination of Eq. (E.16) shows that the inverse
matrix Mf; )=1 has three poles in £, namely, k, = iL/c, k, = iS/c and k, = iK, but
only one in () at k, = —iK. Hence, it is simplest to assign the term [—M,(,;)—IAS,,']-) ]
in Eq. (E.19) to P,-(j_)(kz) and to remove the unwanted pole at kK, = —iK from this

term, by subtracting the quantity Fi(f) (k;) from it,

Fs'k) = Spi T RO+ KK TR (E.22)

The remaining term [—Mf-,*,',) ("'J-)] in Eq. (E.19) can be assigned to P,-(f)(kz), after

we have removed the unwanted pole at k, = +iK from it by subtracting the quantity
F{(k,) from it,

(S - L)T,"I'm (-*:.,)
2Kk, — iK) (E-23)

FPk,) =

Summarizing, we have decomposed the RHS of Eq. (E.18) into a sum of two terms
P§7(k;) and P(k),

Sm—S2) 11 _
(-) — ("n k [_ —ikazas w ]
Fittk) = GL-mos+ho et om 2 0D (0)
~MG)AS) — FP(k,) - FP(k,) — FP (k) + FP(k:) ,  (E.24)
PP(k) = —MPAY + FO(k,) + FP (k) + FO(k,) — FP (k) , (E-25)

where F}(jl)(k,) to E(]f‘)(kz) are given by Egs. (E.20) to (E.23).
Replacing the RHS of Eq. (E.18) by P,-(j'") (kz) + R-(j')(kz) and rearranging terms,

we obtain
D (k,) _
) | Dmika) () (+) A PO ENGT — ) — A
M [z’S+kzc_ )| - PP (k) = —MG)™[DS)(k:)(ES — ki) — AT)]

+P§(k,) - (E.26)
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The LHS of Eq. (E.26) is analytic in () and the RHS in X(-). Because Z(t)NT(-) #
0, we conclude that both sides of Eq. (E.26) must be an entire function, which we
denote by R;;(k.). Setting each side of Eq. (E.26) equal to R;;(k;), we obtain
DP(k:) = (i +kue) (A + M [P (k) + Rej(k)]} - (B27)
Di(ks) = 55 E = {45 + M [P (k) — R (k)] } - (E.28)
Substituting Eqs. (E.24) and (E.25) into Eqgs. (E.27) and (E.28), we obtain the formal

solution

DP(k) = (iS + k)M [FO)(k.) + FE(k.) + F)(k.) — FY) (k)
+Rmj(k:)] ,  (E.29)

D§(k (Gm — ) 11 e, + B(w, K)bms D30
i (k) = (zS k.c)(iS +k,c)[ i+ Z(W, K)oms ()]
—r5— k M) [F,S,‘,’(k,)+F‘2}(kz>+F,S,?(kz)—F,S:‘}<k,)+R.,.,-(k,)]
ik
_ (O)w ( i3 E"f)
—5= k M) [F,‘,.‘}(k,>+F,‘,.‘?(k)+F"";?<kz)—F,‘,:‘}(kz)+Rm,-<k,>], (E-30)

where we have used Eqs. (E.13), (E.9) and the fact that kn, (6,,;, - 5"‘—'-‘-’-) =0 in Eq.
(E.30).

Egs. (E.29) and (E.30) still contain the unknown quantities 7, ( T J , R,( k)
and D‘;j(O). To solve for these quantities, we first use the fact that the photon Green
function D;-‘;-(rl,rz) represents the radiation field due to a point source at rp. For a
point source in air, z; > 0, this Green function is expected to have the same singularity
at r; = ry as the free-space photon Green function D(o) (r; — r2). Hence, we expect
D,(f)(zl) and [D( Nz) — D(o)”(zl)] to be finite at z; = 0. Now, b,(;' (=) s1m0

%: DM (k) and [D§(z1) — DY = [ %= [D§(k.) — DP*(k.)|. These

quantities are finite if

Jim DP(k) = 0, (E:31)
GJim [P (k) - DF*(k)] = 0. (E:32)
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Examination of Egs. (E.17) and (E.13) shows that limy,_,4.(2S + kzc)ME;)‘l =
=)
limk,_,ioo:g’\i_ig-‘z-c = Jim. Also, examination of Egs. (E.20) to (E.23) shows that

limg_ 100 F,.g-“) (k;) =0 for n =1 to 4. Using these results in Egs. (E.29) and (E.30),

we obtain
kzl_i)xzrblooD§;)(k,) = kzgxilmmj(k,), (E.33)
i ) (Ow = I
Jim [P (k) - DP<(k.)] = | lim —Ryj(k.). (B34

Substituting Egs. (E.33) and (E.34) into Eqgs. (E.31) and (E.32), we conclude that
Ri(k;) = 0. (E.35)

Next, we use the fact that D,‘f)(kz) must be analytic in ©(*), respectively. How-
ever, Eqs. (E.27) and (E.28) show that D,g;-h)(kz) contain terms proportional to 1/k?
due to the matrices M{") ™! and M), The resolution of this paradox lies in demand-
ing that the residues of the RHS of Egs. (E.27) and (E.28) at the poles k, = +iK,
respectively, must be zero. The latter poles come from the terms proportional to
%‘ﬂP,S,’;) (k;) in Egs. (E.27) and (E.28), respectively, since R,;j(k,) = 0. Canceling

common factors, we obtain the conditions

raPSGK) = 0, (E.36)
r P (—iK) = 0. (E.37)

According to Eq. (E.36), we have to evaluate P,(,;;) (k;) given by Eq. (E.25) at k, = iK.
Evaluating F,-(jl) (k;) to F,-(f’)(kz) at k, = iK is straightforward, since these functions
are finite at k, = iK according to Egs. (E.20) to (E.22). However, Eq. (E.23) shows
that F,-(;) (k,) is singular at k, = iK. In fact, this singularity was chosen to cancel a
similar singularity in the first term of Eq. (E.25). Hence, we should take the limit of
the latter term and Fi(;) (k,) together,

Jim [~MEAR) - FP (k)] = —i(L+ KA
. (S—=L)| kikm TiTm | 4(+)
ok, —iK [kz+z'K 2z'K] Any > (B38)
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where we have used Egs. (E.14) and (E.23). The quantity in brackets in Eq. (E.38)
can be expanded in a Taylor series about k, = ¢K. The zeroth order term vanishes, as
expected for the above-mentioned cancellation of singularities. The first order term

leads to a finite result, and we have

Jim, [~MPAG) - FP(k)] = —i(L+ KAy
kikm +)
—S-1)3 (kz+zK) k,=§<1"'
= —i(L+K)AJ —i(S - L) Siskm_  p. a Fom ) (E.39)
k,+iK ok, \ks +iK ) ||, ™

When we multiply both sides of Eq. (E.39) by r; and sum over ¢ as in Eq. (E.36), the
second term inside the brackets in Eq. (E.39) is seen to be proportional to r:k;|r,=ix =

r;r; = 0, by Eq. (C.12). Hence, using the fact that (r_’&?-) lk,:ix = 1/2, we obtain

Jim i [-ME A - FP(R)] = —i [L+Kc+%(S—L)] rmdl) . (E.40)

Substituting Eq. (E.40) in Eq. (E.36) and using Egs. (E.20) to (E.22), we obtain the

condition

i(S - L)
T RIE K ™

0 = —%(L+S+2Kc)rm (";)

Ti (6 .‘quzg) 1 e=Salc
T+ oIEKa Sales,. 4 B(w, K)omaD2 (o)]

2(L+K3Zs & [_3"“5 + 2w, K)omsD5(0)] , (B41)

where we have used the fact that r;r; = 2K2. Eq. (E.41) is the first of two algebraic
equations for the unknowns rn, (+) and rmA,,lJ

Next, according to the second condmon Eq. (E.37), we have to evaluate P,‘,,}) (kz)
given by Eq. (E.24) at k, = —iK. According to the discussion preceding Eq. (E.21),
the term —F (k.) in Eq. (E.24) is used to cancel the singularity at k, = —iK in the

first term of this equation. Hence, we must take the limit of these two terms together,
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o ()
kz—r—iK

e—ikzzz - @
(ZL - kzc) ('I,S -+ kzc) [ €0 5""j + Z(UJ, K)6m3D3_1(0)] - F;Ij (kz)

1 1 _g, .
=TT+ K9S - Ko) [zo‘e Ko26,5 + S(w, K)6is DY (0)]
3 kz'km 1 —ik; 2y ' -,
Ok, { (iL — k;c)(iS + koc)(k, — iK) L‘OC Omj + Z(w, K )6m3D3,-(0)] } ]
(E.42)

by expanding (k, + 7K) times the first term on the RHS of Eq. (E.24) in a Taylor
series about k, = —iK. When the partial derivative in Eq. (E.42) is expanded, it can
be written as the sum of a term proportional to 4;3 and one proportional to k;, as in
Eq. (E.39). When we multiply both sides of Eq. (E.42) by r; and sum over i as in
Eq. (E.37), the term proportional to k; evaluates to zero, since 7;k;|,=—ix = 7:7; =0
by Eq. (C.13). Hence, Eq. (E.42) gives

, 62' — kikm —ik.z _
lim { (6~ H) [e ’amj+z(w,K)6m3D;’,-<0)]—E‘;"’ucz)}

kem—iK ' | (iL — k,c)(iS +k,¢) | €
= T+ ch%s o) [%e‘m’dmj + E(w,K)Jm3D§(0)]
tIT Kc)((';ff )IT{;';) T [:—oe-ffzzamj + 3w, K)6naD%(0)|
T KS'E e [e—loe-Kzza,,,j + Z(w, K)a,,,sf)gj(O)] : (E.43)

Next, according to the discussion preceding Eq. (E.22), the term —F}g?) (k) in Eq.
(E.24) is used to cancel the singularity at k, = —iK in the second term of this

equation. Hence, we must take the limit of these two terms together,

; 4(=)
i MO AE) _ O iAy;
k;l—lEPiK M"" A’"J ‘F‘;»J (kz)] I+ Ke
0 i(S — L)kikn AS)
+ Ok, | AL — k,c)(iS — kc)(k, — iK) . —-m’ (E.44)

by expanding (k, + K times the second term on the RHS of Eq. (E.24) in a Taylor
series about k, = —iK. As before, when we multiply both sides of Eq. (E.44) by
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r; and sum over i, only the term proportional to d;3 in the expansion of the partial
derivative in Eq. (E.44) contributes,

. (—) . . ’ =)
(-)-1 @) _ A a i(S — L)(—iK)r,Amj
WJm i [FMETAL - PP = TR - T R T RO ok
= 4 L+ S+2Kc¢ (=)
= TR F R ™A (E-45)

The remaining terms —F}; (k,) and F{(k,) in Eq. (E.24) are finite at k, = —iK.

Substituting Eqs. (E.43) and (E.45) into Eq. (E.37) and using Egs. (E.20) and (E.23),
we obtain the second condition

!

—_ _ Tm 1 —Kzz
0 = 3 Z+K)GE-Ko [ Smi + Z(w, K)ma J'(O)]
L+S+2Kc AS; ‘Z(S—L)T +)
‘2L + Ko)(S + Ke) ™'mI 2 ™M

!

() 1
"(L+5)(S - Kc) [

7558/ + B{w, K)6ms DY (0)] (E.46)
0

Egs. (E.41) and (E.46) are two algebraic equations for the two unknowns r,, “'j)
and r'mAf,fJ) The solution can be obtained by applying Cramer’s rule,

' - L+KC S+KC L+KC L+S+2KC '
o AG) = - { v )( )( )r,-}

S (S — L)*(S — Kc)
L =) 1L e 1 500, K)5usB50)]
L+S € ™ I

S e s somi0]

r A = __Zi 1 o L+S+2Kc .
mTmi (S—LY(S-Kco)' (S—-L*S+Ko)*

6im - ‘q*'qz&
X(_L-}-—Sql [61 —522/05 i+ E(w K)5m3D3](O)]
0
21 , l K
"~ Ao(S — L)2(S — Ko m[ e K6 + Z(w, K)Om3 D, (0)] (E.48)

where

2
A, = 1+[L+S+2Kc]

o (E.49)
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The solutions Egs. (E.47) and (E.48) still contain the unknown Dg;- (0), which,
as pointed out at the beginning of this Appendix, is the Fourier transform of the
photon Green function Dj; with respect to (z, —z2) and (y; —12) evaluated at z, = 0.
To solve for Dg’j (0), we must substitute Egs. (E.47) and (E.48) into Egs. (E.22) and
(E.23) and the latter two equations into Eq. (E.30). Then we take the inverse Fourier
transform of Eq. (E.30) with respect to k. to obtain 13:-"]-(21) and set i =3 and z; = 0.
This will yield an algebraic equation for the unknown ﬁ‘g’J(O)

The inverse Fourier transform of Eq. (E.30) with respect to &, is defined by,

_ © dhy 4.
D) = [ Gre DR k). (E.50)

When z; < 0, the contour of integration is closed in the lower half of the k.-plane.
The result is zero, since D,(J' )(kz) is analytic in =(-). Hence, we only need to consider
the case z; > 0. In that case, the contour of integration is closed in the upper half
plane. We consider each of the terms in Eq. (E.30) separately.

The inverse Fourier transform of the first term Dg-’ W (k) is ﬁg-))”(zl) given by Eq.
(E.4). Since we assumed in the above discussion that z; > 0 and are going to take
the limit 2; — 0, we should use the formula for z; < z; in Eq. (E.4).

The second term on the RHS of Eq. (E.30) contains the denominator (w?— k2c% +
i€) = (1S + k,c)(iS — k.c). Hence, there is a pole at k, = 2S/c in the upper half plane
due to this denominator, as well as a pole at k, = iK due to the 5;5& term in the
numerator. Thus, the inverse Fourier transform of the second term in Eq. (E.30) for

z;>0is

o0 ) b;3 — kiks - A
[2 e o) o, k) = - 55 (60 - L ) emsee

o0 2 w? — k2¢? + i€ J 2S¢ q?

€ TiT3 K=z ~ w
"2K(S+Kc)(S—Ko) ] (w, K)Dg(0) . (E51)

Egs. (E.20) to (E.22) show that F,-(jl) (k) to E-g?)(kz) are analytic in the upper half
plane. Hence, the terms involving F.)" (k;) to F;’ (k,) on the RHS of Eq. (E.30) have
simple poles at k, = 1S/c and k, = iK in the upper half plane due to the denominator

163



(45 — k.c) and the %% term in M), Thus, the inverse Fourier transform of the

Fi(jl) (k;) to F}(f’) (k;) terms in Eq. (E.30) for z; > 0 is

1) dkz . — -
[ % g (_1) MG [FS)(k.) + B2 (k2) + FS) (k)]

—c0 2 2.5 — sz
S—L '
= ( - ) (5,-,,, - -q-fz,ﬂ) e=Sa/c [F,(,,IJ) (zS/c) + F,ﬁ;‘?(z'S/c) + F,(,f'}(z‘S/c)]
__(5-1) _ k=a [Fu)(z-K) + FAGK) + FO K)] (E.52)
2K(S—Kc) '™ mj mj mj .

Eq. (E.23) shows that F;(;) (k;) has a pole at k, = iK in the upper half plane.
Hence, the term involving Fi(f) (k) on the RHS of Eq. (E.30) has an additional double
pole at k, = iK due to an extra 1/(k, —iK) factor from the £z term in M), Thus,
the inverse Fourier transform of the Fg(f)(lc,) term in Eq. (E.30) for z; > 0 is

© dky g MPFR(E) — (S=L) (i Gl s/,
./—oo o © iS—k,c c Oim — @ e Fmj(iS/c)
_UL=K)(S—L) gz, 4
2K (S — Kc) smtmg
9 (S — L*e*=akky (4
" Ok, {ZK(iS o) (kg + 1K) ™ me btk (E.53)

In expanding the partial derivative in Eq. (E.53), only the term involving %‘: = i3

contributes, since otherwise the factor (kir;)|x,=ix = mimi = 0. Hence, Eq. (E.53)

becomes
[ L MinFry(k) __(S=L) (5 _ G g-surep®is/0)
oo 27 iS — k¢ c ) q? ™
(L= K)S L) gey, g0y _ _US =L _gn 4e)
2K(S—KC) i'm 3 4K(S—KC) i‘m ]
S-1L G\ —Sa1/c 4)
=D (Jim—%)e sa/ep9)iS/c)
YS+L—-2Kc)(S—L) g, +)
_ e~Koap g AG) | E.54
1K(5 — Ko) TiTm{mg (E:54)

The inverse Fourier transform D;;. (z1) of Eq. (E.50) for z; > 0 is now given by the
sum of Egs. (E.4), (E.51), (E.52) and (E.54). Using Egs. (E.20) to (E.23), we obtain,

for z; > 0,
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~4%) 0)w q‘:q' =Sz /¢ 74T, - MW
Dyglz) = Dg*(an) = [2Sc( . _qi’-s) e +-27{_Z?e le] {w, K)D3;(0)

____gi. . qqu QIQm —521/c 1 —Sz/c =
2SC(L -+ S) (51[ q ) <6lm q [eoe 6MJ + 2(0)5 K)6m3D3](0)]

5L (5t q,q,) T e 5% [el ~Kazg i+ S(w, K)6ms DY (O)]
0

T 2K(L+ Kc)u? q?
___5-1L TiT (&m - -%-) e~ K= [i —Sz/e i + D(w, K)dms DY (0)]
2K(L + S)w? g €
T g{c) (’é T [ty + B K)oa D (0)]
Z(S L)2 S+ Kc —Kz,. _ |’ Q1K(K + S) ~Sz1/c\ ./ A(—)
YKL + K9S + Ko { 3S-Ko° [r‘ 7 ] } T

i(S—L)? (S+L-2Kc —Ka q;K(K - 5) _Sn /e )
2K(S — Kc) { 2(S - L) Tt |7 e e TmAmj (E.55)

where we have used the fact that (S + Kc¢)(S — K¢) = —w

The RHS of Eq. (E.55) still contains the unknown D, ;(0). To obtain an algebraic
equation for this unknown, we set ¢ = 3 and 2; = 0 on both sides of Eq. (E.55). Since
the unknown DY ;(0) appears also in the quantities 7',,,A,,,,J and 7, (""j) on the RHS

of Eq. (E.55), we rewrite the latter quantities by separating out the terms containing

Dy (0),

rmAS) = o7 +viDY(0), (E.56)
rmAS) = of? + W1DE(0), (E.57)

From Egs. (E.47) and (E.48), we obtain

Vi = L+Kc_ (S+ Kc)(L+ Kc)(L+ S+ 2Kc)
1 = AO{S AN (5= L)%(S —Ko) }
(6.3 — %) 2K (S + Kc)?
—L+S 2w K) - R e i - Koo K)o (B58)
S { K L+S+2Kc _.}
! (S - L)(S Kot (S—L*S+Ko)
(8 = )E(w K) - 2K S(w,K). (E.59)

T¥S Ao(S — L)2(S — Ko)

165



Also, a{™) and af") are obtained from Eqs. (E.47) and (E.48), respectively, by setting

ngj (0) in these equations to zero. The resulting quantities can be written in the form
brri (5ij q;q,) + for; ( q;q,) + ﬂs’r

K(K + S/c)q; ’ K K — S/c)g; ’
po [ry - KELII g |y KEII ], @o0)

" = ar (6,-,- q;q,) + 07 (5 q;q,) + agr;

= m [rj— ( 7 /c)q’]—i-az [Tj— ( 7 /c)qjl+a3rj, (E.61)

ag-—)

where

27,(L + KC) _1- —Sz3/c

h = RE-DZ+a" (£
n - M R e
R v s T e
M= TA(S— L)(S21 Kc)(L+5) ;e_sn/c ’ (B
@ = A .2_2(1,1’);258 : Iigz)b +5) eloe_s;,,/c ’ (E69
oy = 2 1 kn (E.67)

T Ao(S—L)¥S - Ko)
Setting i = 3 and z, = 0 on both sides of Eq. (E.55) and using Egs. (E.56), (E.57),
(E.60) and (E.61), we obtain an algebraic equation for Dg;(0),

Dg(0) = D (0) — (01W1 + 02V1 — Uy) D;(0)

S-L 93(11) ( qu,) 1 /e
2 i — 2
2Se(L + S) (53‘ ¢ ?)a

S-L AR

by — BLY) oy 2K
2K(L+Kc)w2(3' 2 )it

S—L 2495\ 1 -s2/c
T2KT+ D) (5" qz) )
S-L b1

- ror; —e K22

4K(L+ Kc)(S— Kc)?2 "7 e

- 01a§+) - 0'20,( ) , (E.68)
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where

__ (S—Lp [S+L-2Ke [ S(EK-$
= Tysmky | 25-0) |17 e ’ (E-69)
_ (S —-L)? S+ Kc S(K + 2)
% = TTRIE+EFEG-Ko |1 T T | (E-70)
1 S? K
T (“q—zf) t 2
— SY(K?+ 5 — S(K +£
L s-L [ 2 S¢e®)]  (-DK [, SE+D
2Sc¢(L + S) g*c? gic? 2(L+ Kc¢) w? g’c
(S—-L)K S(K+5)] (S—L)K
T WL+ Ko)(S — K (B71)
Expanding out the products in Eq. (E.68), we obtain
(1+ Wi+ 02Vh — Up) Dg;(0) = DE*(0)
_i. - zS(qJ qJ) ZS(K2 + %ﬁ)qj le"szzlc
2S¢(L + S) g% gic €o
i(S—L) S(K +£) oK
+2(L+Kc)w2 [1+ ’eo
__#s-L) [ _K (K + f )%i] 1 —sase
2(L+ S) w? q? €o
S — L) L —e K= _ alag-'” - crza( ) (E.72)

4L+ Kco)(S - Ke)? i €
When Egs. (E.4), (E.60) and (E.61) are substituted into Eq. (E.72) and the fact that
(q;- — g;j) = (2iS/c)ds; is used, we obtain the solution Dg’j(o) which can be written in

the form
Dg’j(O) = ’Yl5sj+'YzT}+'7srj+74qj, (E.73)
where
11 S-L 252\1 1 __s.,,
= A 17250 —e™ e E.74
" Al[ 2S¢~ 25¢(L + S) (H cz)] e (E-74)

T2 =

L (fi o, ss=D) [, 5K+
Ay ({2«)2_*-2(L+Kc)w2 [1+ g%c ]
i(S — L)

“4(L + Kc)(S - Kc)?

} = —e %% — g1(0n + 03) — 02(B2 + ﬂs)) (E.75)
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1 S—-L) 1
T3 = A, [ 2€£+ 5) 202 Eoe_szz/c — o102 — 02[31] ) (E.76)
_ 1 S L)(K2 + Z(s L)K(K + S) —Szz/c
"= A 2q2c2 2(L + .S')q“c2 2(L + S) w?q? &
K S K S S
+alp[a1<f<—->+az<f<+;>]+az;[m<f<+z>+ﬂz<f«—;>1},

(E.77)

and A; = (1 + o1Wh + 024 — Uh).

This completes our determination of all the unknown parameters in the quantity
15‘;’]- (z1) given by Eq. (E.55). Finally, the photon Green function Djj(r1,r2) is calcu-
lated by evaluating the inverse Fourier transform of f);"j (z1) with respect to k., and k,

numerically,

DY(ry,1s) = ‘i’é,ii’i” ghte(1—ml bk I Dl () (E.78)
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Appendix F
Derivation of Eq. (2.191)

In this Appendix, the integrals over r and r’ in Eq. (2.190) are evaluated to give Eq.
(2.191). First, we consider an integral of the form

0? 1 02 1
Lij(r,ry) = z3<0d37'3< )( ) , (F.1)

31:1,'31:3,-,, |r1 - l‘3| a.’l}sma:l:gj |r3 - r2|

where 2, > 0. Integrating by parts and using the fact that the Laplacian of 1/r is

—4mé(r), we obtain

o 1 ik 1
.o p—tg 2
Les) = [ () ()L

7] 1 bo)
3 —
+47r za<0d 3 (azli |r1 —_— r3|) a$2j 6(1‘3 l‘2) 3 (F.2)

where d?s3 = dzsdy;. Since 23 < 0 and 2; > 0, the delta function on the second line

of Eq. (F.2) does not contribute. Hence,

_ 52 ) 1 0 1
Lij(ry,r) = 021i0Z; /d % [lrl — 3 (323 |es — l‘zl)] 23=0

0? 0 1 1
- % (L0 e ) , F.3
021;0%Z; ( 22 / % |r1 — s3] |s3 — rof (£3)

where s3 is an integration point on the plane z = 0.

We now have to consider the integral

1 1
T = [ds . F4
3|1‘1 — s3] |s3 — 1o (4
Using the representation
1 d3k 4r ik
_* - am ik (r-r) _
|r — /| (2)3 k2 ¢ ’ (F-5)
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Eq. (F.4) becomes

dk [ &K (47)? ierrmilerpmiCheo—k
= ey (27r)3/ Posggpae " T
Bk [ K (4 an s
= | Gorl Gy e ok — K )6k ~ K)
43k /dk tk;zl—tk,zz+ikz(zx-zz)+iky(y1—y2)

(2m)3 k2(k2 + k2 + k2)

Since z; > 0, the contour of integration over k, may be closed in the lower half-plane,

(F.6)

and we obtain a contribution from the pole at k, = —iK,

I = d*k 8n? ST giksz1-Kzatiks(z1—22)+Hiky (11-y2) (F 7)

@) Kk?
The integral over k, in Eq. (F.7) can be evaluated by closing the contour in the upper
(lower) half-plane for z; > 0 (z, < 0),

dkrdky 4% (2, |- Kogbike(m1-22)+iky (r1-32)
= - z Rz (T . F_
T )’ %z° (F.8)
Thus,
_0 5 _ [dkdky 4_”23—K|z1|-Kzz+ek=(z1-xz)+iky(y1-yz)
0z (27)? K
d3k 87!’ ik
= the (21-22)+iky (U1 —92) +ikz (1211 +22) )
(27)3 k2 2 (£-9)

where we have used the fact that [ %z(1/k?)e*-* = ¢~¥I*|/(2K) and noting that
(|21 + 22) is always positive. Comparing Eq. (F.9) with Eq. (F.5), we see that, when
2 >0,

07} 2r
2= T a0, F.10
02y T . (E-10)

where T, is the image of r; in the plane z = 0. When 2; < 0, we have

0 2
- 7 = — . F.11
622I Il‘1 - l‘zl » A< 0 ( )
Substituting Eqgs. (F.10) and (F.11) into Eq. (¥.3), we obtain, for z; >0,
2T

5 m-n & >0,
I,’j(l‘l,rg) = az am - or (F12)

10525 T —Ta]’ 2 <0.
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We are now ready to evaluate the integrals in Eq. (2.190). First, we perform the
integration over r’. The delta function term in Fp;)(r' — ro) given by Eq. (2.24) does
not contribute, since z' < 0 and z, > 0. Hence, using Egs. (2.132) and (2.24), we
obtain

3, . (0w ’ A — — _[eL(le—l] o? 1
/z g & T G (r,x') Fy)(r’ — ra) r Gopdoag \[F—1d]

ler(lw]) = 12 d"‘r’{ o ( 1 )

(@) (w]) Je<o | OzmOz, \|r —r|

_|_€L(|wl) -1 62 1 62 1
-reL(|LU|) +1 O0zm0z, \|r —F|/]| 82,8%qp; \It' —ra|/ (F.13)

Using Eq. (F.1), Eq. (F.13) may be written as

3, (0)w ! N - _[GL(IWD - 1] ik 1
‘/;'<0 a’r gm,, (r7 r )Fnb](r ra) - axmazab] Il' — l'al
| ler(lw]) —1J2

= (47r)2eL(|w|) [Im[j](l', l'a) + :[I:_E:%B_-_I}%fmm(r’ l‘a)] , (F.14)

where fij is similar to I;; except for a tilde over the first r3 variable,

. 2 1 & 1
Ieur) = [ (5 ) ). @

8%1;0Z3m |11 — F3| ) \ OTam0z2; [r3 — 12

From the steps leading from Eq. (F.1) to (F.3), it is seen that, when z3 is set equal

to zero in the latter equation, the tilde over the first rj variable has no effect. Hence,
Lij(r1,r2) = Lj(ry,r2). (F.16)

Substituting Eq. (F.16) and Eq. (F.12) for z; < 0 into Eq. (F.14), we obtain

3,000 (v NI - (o _ lee(w]) =1 &2 ( 1 )
/z’<0 d’r gmn (l‘,l‘ )Fnb](r ra)

4z OZm0Zap) \ T — T4
[e(lw)) —12 & ( 1 )
drler(lw]) + 1] 80Zm0zqp) \ Ir — rl
C ol O (1)
 2rfer(jw]) + 1] 0ZmBZap) \Ir —xal ) (F.17)

When Eq. (F.17) is multiplied by Fjjjm(r, —r) and the resulting expression in-

tegrated over r, we see that the delta function term in me(ra —r) again does not
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contribute, since z, > 0 and 2 < 0. Hence,
L<o 2/<0 d31‘ dST'F [j]m(ra - l‘) g,(,e,),wa (l‘, l")Fn[j] (l" -Tr a)

eler(Jw|) — 1) / & o 1 & 1
e, J7<0 O%4jj0Zm |ra — x| ) \ OTmOTapj) [T — To

~ 7 Snegles(wl) + 1]
Tj)5)(¥as Fa) - (F.18)

- _ 62[6L(wa) _ 1]
87!’260[61,((.0‘;) + 1]

This time, we have to substitute Eq. (F.12) for 2; > 0 into Eq. (F.18). This leads at
once to Eq. (2.191).
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Appendix G
Physical-Optics Induced Fields

In this appendix, the complete expressions for the induced tangential fields in the

physical-optics approximation are derived.

G.1 Distant-Panel Contributions

Consider first the magnetic vector potential A,,(r) due to the distant magnetic multi-
poles. According to Egs. (3.12) and (3.13), the fields are given in terms of this vector
potential by

E(r) = VxAp, (G.1)
H(r) = -;j—”v XV X Ap . G2)
For the contribution due to all the distant vertical magnetic multipoles, A,,(r) =
AG)(r) = z,A@(r), where A®)(r) is given by Eq. (3.85). Since the latter equation
is expressed in terms of cylindrical polar coordinates (p;, z1, ¢;) of the field point r,
it is convenient to evaluate Egs. (G.1) and (G.2) in cylindrical polar coordinates and

then transform the results into Cartesian components. We only need the tangential

(p, ) components,

1 9A)
E® = = , G.3
> (r) p O (G3)
. 9A®)
B = —5—, (G-4)
PA®
@ () — ,
jwpH (r) 5200, (G.5)
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. (2) 1 82 A=)
juply ') = p1020¢,

The Cartesian components are then obtained from the cylindrical components by

(G.6)

EP(r) = EPcos¢, — E)singy, (G.7)
Ez(,’) (r) = E,(,’) sin ¢ + Eg‘) cos ¢y , (G.8)

and similarly for the magnetic field components. Substituting Eq. (3.85) into Egs.
(G.3) and (G.4) and the latter into Eqgs. (G.7) and (G.8), we obtain for the total
induced tangential electric field on panel p due to distant vertically polarized magnetic

multipoles
(2) = N jAp1 cos(B—¢1) o (2)
E} (r)lzl=o = /r dA[1+ Rs(N)] A /0 dg e sin 8 I'* (A, B)

+ /r o DL+ RQ]iAY P sing, T2 4)

i=1
n
-~ /r o, AL+ RN 3 emidercoslbi=dn) gin g; I (), 4) , (G.9)
a i=1
) [P 15 girer cos(B—g1) @
B, = - /r dA[1+ Re(N)] 52 /0 dp e cos BID(), B)

- /r op DL+ RN A ePeeas®i=tn) cos g, I (2, 4)

=1

+ /r L AL+ B3] A emrereoslio cos g, J(M,4) . (G.10)
o+ b

=1

The corresponding tangential magnetic field on panel p is
2 i
= /r A [1 = Ry(W)]) WkE — 22 fo dB &901°56-91) o5 § I)(A, B)

= 2 0;— . 7(2) 9
+ [r o L= RO MWHE — A2 3 i eostbi=d1) cos 6, I (), 6)

jwuHE) (r)

=1
— [r L dA[L— Bo(3)] Mg = x2S emirereos(®i=91) cos9; I (N, 1), (G-11)
a+1l'p i=1
27 . . .
jwpH(r) o = /r., dA[1— R,(\)] A/ KE — /\2/0 dB eiercosB=91) sin g 1) (), B)
+ /r LA [1-R)] MW — 22 i eost®i=tn) sin g, J) (), 4)
atle i=1
= ) oo AL = Bo()] k2 = x2S emirreosi=e) sin g, I (N,6) . (G.12)
oty i=1
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For the contribution due to all the distant horizontal magnetic multipoles, A, (r) =
A@D)(r) = (e,, + jeg, )AL (x) + j2,AB)(r), where AL and AE) are given by Egs.
(3.88) and (3.89). Again, we only need the (p,#) components. First, we consider

the contribution due to the horizontal component Aﬁ,) (r) of the magnetic vector

potential,
B, (x) = wagj‘?’) : (G.13)
Bigy(r) = agf,’ : (G.14)
Eioa(r) = i;)j:% (paler) - %Qg—%{, (G.15)
jwpHG)(r) = i;z 6?»1 (p aﬁi‘?) —-52;3—2{%‘(‘;; ~ %i‘(l;—f'), (G.16)
jwpHms(r) = Fj—3= 622%’2 :FJ% [; 6?7 (AL ]+ a‘; (pll 66;?) :

(G.17)

In deriving Egs. (G.16) and (G.17), we have used the fact that 4 f,fg (r)e¥7%1, rather
than Aﬁf} (r) itself, satisfies the scalar wave equation. This is because the Cartesian
components of the vector potential A®)(r), rather than the cylindrical components,
satisfy the scalar wave equation. From Eqs. (3.86) and (3.87), the Cartesian compo-

nents of A®)(r) are
AB(r) = (x; % jy1) AL (r)e™* £ jz, 4B (r) . (G.18)

AE)(r) itself satisfies a different equation,

(*) 2 A () (£)
1 i ( aAhor) +;12_ (a Apor F 2j—=hor OAr, _ A(ﬂ:)) azAhor + k2 A —

P00 \* "0pn o4 8¢, T T2 bor
(G.19)

Substituting Eq. (3.88) into Egs. (G.13) and (G.14) and the latter into Egs. (G.7)
and (G.8), we obtain for the contribution to the induced tangential electric field on

panel p due to the horizontal component A ho, (r) of the magnetic vector potential
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@),y = F [ AL- RO / dg e es=6) 1)), )
F [ D= RO VR - ; ePores(Gib0) 793 5)
%[ - RO e 00,0, (@20
oy O,y = H Bioa)], - (G.21)

The corresponding tangential magnetic field on panel p is

2m . )
jwpH, horz = /1" dA [1 + R.p(}\)]/o dg (k% — )2 cos ﬂe:i::lﬁ) i1 cos(B—¢1)

n , .
xI® (), B) + /r or A1+ R,(N)] Y (Icf — X% cos 6,-6*’0‘) g casli=0n) J(5) () 4)

i=1

+ / dA[1+ Ry(W] Y (K — X2 cos Be7%) =i cos@i=¢1) JE) () 4y (G.22)

=1

2=0 _/ d)\[1+Rp()\)]/ dﬁ ﬂ:ﬂc2 )\zsmﬁe"”ﬁ) (o1 cas(B—01)

j w” hor £ (l‘)

xI(i)()\, B) + /I‘ or d\[1+ Rp())] z (:l:jk% — Xsin 0,-3:1:.19,) gl cos(o,—¢1)J§d:)(A, )

i=1

+ / dA[L+ Rpy(N] Y (k2 — N2 sin 6,e*7%) e~irecosBi-¢1) JE) (3 ) (G.23)
rc+rb

i=1
Next, we consider the contribution due to the vertical component A{£)(r) of the

magnetic vector potential,

)

B, = mag‘;l (G.24)

0AE)

E®,x) = ggf, (G.25)
. PAE)
jwpHE (x) = £jz—>- Tp0n (G.26)
) _ L3 0%AR
JwpHg 4(xr) = :!:pl——a 5107 (G.27)

Substituting Eq. (3.89) into Egs. (G.24) and (G.25) and the latter into Egs. (G.7)

and (G.8), we obtain for the contribution to the induced tangential electric field on

176



panel p due to the vertical component A{E)(r) of the magnetic vector potential

2 , .
= j./r, dAS(A), /Ic'f’ - )‘2/0 dg e cw(ﬂ—m)sinﬂe:haﬂI(:t)()‘,ﬁ)
n
+j /P o AAS(A)/kE = A2 3 efder cosi=b1) sin g,6%3% J(E) () )
a+Te i=1

+ [ L DS)H R 3 e g g 3, ) G.28)
a b

=1

27 . .
= /r dAS(\)/k2 — 22 /0 dB e301<5(B=41) co5 BeIBIE) (), §)
=3 [ SO~ XY ettt o g% 193, )
¢+ [

i=1

] 2 _ )2 - —JAp1 cos(8:—¢1) 76 1 &)y
if. o AASC)VRE -2 > cos Be7% I (), ) . (G.29)

Ver,z

E(i)

The corresponding tangential magnetic field on panel p is
27 . ,
jwﬂﬂgfgx(rﬂ L= / dAS() (k} — »?) /o d e7*01©08(8=91) cog BeFIBI(E) (), B)
- / xS (k- %) 3 &9 cos0i=41) o 6,298 JE) (), )

i=1

- / dAS(/\) kz—Az)Ze""””“(o""") cos Gt % I () 4),  (G.30)

i=1
2w . )
jw“H\(:;)y(r)I o= / dAS()) (kz— )‘2 / dB ei*er0s(B-41) gin BeIBT(E) (), B)
SN CERY 3 eivncoslbi=4) i g S,
=1

- / dAS()\) (k3 - )\2)26""”1““("* #)sin6,et% I (N,5).  (G.31)

i=1

We have now given the complete expressions for the tangential field components
on panel p induced by all the distant megnetic multipoles of arbitrary polarization.
The corresponding expressions for the distant electric multipoles can be obtained by
duality. According to Egs. (3.12) and (3.13), the fields are given in terms of the

electric vector potential A.(r) by

Er) = —VxVxA,, (G.32)
wey
H(r) = VxA,. (G.33)
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Comparing Egs. (G.32) and (G.33) with Egs. (G.1) and (G.2), we see that the new
field expressions can be obtained from the old field expressions given in the above
paragraphs by: (i) replacing A, by A., (ii) replacing p by €, (iil) replacing the old
E by H, and (iv) replacing the old H by —E. Furthermore, step (i) amounts to
replacing the magnetic multipole coefficients aj,, by the electric multipole coefficients
bf, in Eqgs. (3.80) to (3.82) and corresponding expressions for JE(N,4), I, 4)
and I®) (), B).

G.2 Neighboring-Panel Contributions

The expressions for the tangential fields on panel p induced by each neighboring sur-
face element dS' are derived from the vector potentials given in Egs. (3.39), (3.40),
(3.44) and (3.45). Here, there is no advantage to transforming from cylindrical coor-
dinates (ps, @2, z2) centered at the neighboring dipole, in the coordinate system shown
in Fig. 3.3, to cylindrical coordinates (p,, ¢1,21) centered at the field panel p. Thus,
the tangential fields contributed by each neighboring surface element are expressed in
the coordinates (pz, ¢2, z2) centered at that element. The final results can be obtained
from those given above for the distant-panel contributions by making the following

changes:

1. Change (p1, $1) to (p2, $2) on the RHS of the above field expressions, namely,
Egs. (G.9) to (G.12), (G.20) to (G.23) and (G.28) to (G.31). Also, change the
subscript z; = 0 on the LHS of these expressions to z; = —d.

2. Set §; on the RHS of the above field expressions equal to ¢2 (= ¢1). Then, omit

the summation over the index 7 in the resulting field expressions.
3. Replace I®(), 8), J(),4) and J§?(),4) in the above field expressions by the
quantities I, (1), Jieh1 () and ISk 2(%), respectively,

1
2T \po

Je(0) = eI THVE=R4(g00), foo (M) s (G.34)
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z 1 iz /s

T2 = 4[5 TV ang), oo (), (G.35)
1 .

LM = gejVﬁ—Azd(aoo)zfo,o()\), (G.36)

where agy = —jk;(n’ x E’)‘z—f [or — jki(n' x H’)%S;'] , for tangential fields (n’ x

E') [or (n' x H')] existing on the source element dS'.

. Change the paths of integration on the RHS of the field expressions given in

the last section as follows:

/ 7 /OAW, (G.37)
/m+rc and Tetly A::x (G.38)

Here, Apear is determined by the requirement that the asymptotic approximation

1o jAp2cos(B—g2) 1 i(Ap2—%) —j(Mp2—%)
27r/(; g’ ~ V2 [e +e 4] (G.39)

be valid for A > Apear. This is the case when Apearp2 >> 1. In practice, a value

of Anear = 10/p2 was found to be adequate. Also, the upper limit Agax of the A
integral on the RHS of Eq. (G.38) is chosen so that the factor ! VF—2"d _ ¢~
in Egs. (G.34) to (G.36) becomes small enough to guarantee convergence of
the integral. Now, from the discussion at the end of Section 3.5, there is a
minimum d = dp;, for interacting pairs of neighboring elements, where dpyin
is determined by the discretization of the surface S;. In the photolithography
simulation problems we have studied, k1dmin > 0.15. In such case, a value of

Amax = 40k,, for which e *maxdmin = ¢=40%0.15 — 95 x 10~3, was found to be

adequate.

179



Appendix H

Rotation Matrices

In this appendix, the numerical evaluation of the matrix elements Dg‘)m,(a, B,7) of
the irreducible representations of the rotation group is discussed. The theory of
group representations was developed by Wigner [41] in connection with the symmetry
properties of atomic wave functions under coordinate rotations. A concise but rather
advanced treatment of the theory is given in the monograph by Edmonds [40], whose
notation is used in the following discussion.

The matrix elements Df,?,,,. (e, B, 7) relate the spherical harmonics Yim (6, ¢) in one
coordinate system K to the spherical harmonics Yim(#,¢') in another coordinate
system K’ obtained by rotating the axes of K through the Euler angles (a, 5, 7), as
defined in Fig. H.1. Using the defining relationship between the spherical harmonics

and associated Legendre polynomials,

Yin(0,6) = (—1)"'J et 2;3} PP (cos6)e™ (H1)

we can write the transformation of the latter polynomials under coordinate rotation

as

(I — m)(l + m)!
(I +m) (1 —m)
(H.2)

4
PP(cosf)e™ = 3 (-1)""-'"P;"'(cosa')ef""ﬂvs,‘,’,mm,ﬂ,fr)\J

m'=-1

Substituting Eq. (H.2) into Eq. (3.47), we obtain
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L 1
AAL(r) ~ S af h{Y(kyr) PP (cos §)ei™
=0 m=-!
L 1 o
= Y 3 LA (ki) Pr(cos 6)e™ (H3)

=0 m=-~|
where a7 , is given by Eq. (3.71) and we have used the fact that 7' = r under coordinate
rotation.

The matrix D ,(a, B,7), which represents the successive rotations by the Euler
angles o, 8 and - with respect to the z,y and z axes, respectively, of a coordinate
system carried along by the rotations, is equal to the product of the matrices repre-
senting the individual rotations written in the order from right to left. In the usual
convention, the matrix representing a rotation by an angle © about the 2 axis is just

e’™® times the unit matrix. Hence,

DY (a,8,7) = &™dD (8™, (H.4)

mm

where d) (B) is the matrix representing a rotation by angle 8 about the y axis. A

'mm’

closed-form expression exists for computing the latter matrix elements [40],

L+ m)(l — m)! meo | L+ I —m’
() = \Jéfﬁgsﬁl_ﬁ)é(-”‘ (l—-;?.—a)( o )

20+m+m' 2l-20—m—m’'
X (cos g) (sin g) . (H.5)

Instead of computing d(,,',)m, (B) for the different values of 8 encountered in a prob-
lem, it is sufficient to compute this quantity for 3 = F only. This is because the
result for a general value of B can be expressed in terms of the result for 8 = 7 by
means of a similarity transformation. Indeed, a rotation of the axes of a coordinate
system by 8 about the y axis is equivalent to the following sequence of five successive
rotations: (1) rotation about the z axis by %, (2) rotation about the new y axis by
%, (3) rotation about the new z axis by 8, (4) rotation about the new y axis by —Z,

and (5) rotation about the new z axis by —%. Multiplication of the corresponding
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matrices written in the order from right to left then gives

d0.8) = Y emAY, ™ PAY, ™ E, (H.6)

m'

where AY), , = f,?,,m,( Z) and we have used the fact that d_(-p8) = d®_,(B). Thus,
we only need to compute the quantities Am,,m and then use Eq. (H.6) to compute
d® . (8) for general values of 3.

The quantities A( ) )+ may be computed directly by using Eq. (H.5) specialized to
B = %, or recursively by means of a recurrence relationship for d® ,(8). Edmonds
[40] gave such a recurrence relationship which, however, is incorrect. This can be seen
by setting j = 1 in his Eq. (4.4.1) and showing that the resulting matrix elements
disagree with those given in his Eq. (4.1.13), taking into account d((,%) (B) = 1. Instead,

the correct recurrence relationship is

d¥ m(B) = 51]- (cos —'g—) (—1)2-m'-m [d(l—a)— _m_l(ﬂ)\/ l—m!)(l—m)
Dy OV m)|
+a (s08) o [0 g W=+ m)

-d“;‘fL s ey O+ mO (- m)] (")

Eq. (H.7) gives the matrix elements d®_(8) of the I-th representation in terms of
those of the (l - %)-th representation. Thus, starting with the [ = 0 representa-
tion, dQ(8) = 1, we can compute the matrix elements of all the higher dimensional

representations d' m(B) by repeated use of Eq. (H.7).
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1) A rotation O about the z-axis brings the frame of axes S into §'.
2) A rotation [3 about the y‘-axis brings the frame of axes S'into S"".

3) A rotation Y about the z'"-axis brings the frame of axes S'’ into
SIII.

Figure H.1: Euler angles
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Appendix I

Translation Coefficients

In this appendix, the computation of the coefficients a(y, m|p, v,n) used in the trans-
lation addition theorem Eq. (4.15) is discussed. These coefficients are defined through
a reduction formula for the product of two rotation matrices of the type Df,?,m(a, B,7)-
Specifically, fo),,,,(a, B,) is the matrix element of the rotation operator D(e, B,7)

between angular momentum eigenstates |lm) and |Im’) [40],
DQm(e,8,7) = (im'|D(a,B,7)lim), (L1)

while the product of two such quantities with the same Euler angles is the ma-

trix element of the rotation operator between product eigenstates |lym,)|lom;) and
i) lloms),

DY, (0, 8,7)DE, (@, 8,7) = (lmi|(lems| D, B, 7)llxma)llama) . (12)

From the theory of the coupling of angular momenta, we have the following reduction
formula for the product of two angular momentum eigenstates,
|lyma)|loms) = Z(hlzl, my + ma|llhmylama)|l, my + ma) (1.3)
1

where (llal, m1+m2|lym;lam,) are the Clebsch-Gordon coefficients, which are related

. . L Iy 1
to the Wigner 3-j symbols ( my mp m ) by

m; mz —mMy— M2
(L4)

(lll2l,m1 +m2|l1mllgm2) = (_1)11-12-!-m1+m2\/2l—+—i( L I l ) .
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The summation in Eq. (1.3) ranges from | = |l; — I2| to [ = [ + l>. Substituting Eq.
(1.3) into Eq. (I.2) and using the orthonormality property of the angular momentum

eigenstates, we obtain

1 I - - l
Dfnl)m: (e, B, ’Y)Dz('nz)mz (a, B, v) = Z(—l) m} mz+m1+'rnzD£‘,‘):‘_'.,.,_‘2’,,"1_‘."‘2 (e, B, 7)
l

l2 [ l1 lz [
(B B L (BB U Y

Setting m} = mj = 0 in Eq. (I.5) and using the fact that

Db = (| T O™, (16)

we obtain the following reduction formula for the product of two associated Legendre

polynomials,

I 3 e

l1 l2 [ ll 12 l m1+m:
x<0 0 0)(m1 mo —m1—m2)P'1 "(8) - @7

Comparing Eq. (1.7) with Eq. (4.16), we obtained the desired result for the coefficients
a(p, m|p,v,n) in terms of Wigner 3-j symbols,

R

(s (my r) @8

Direct computation of the coefficients a(u, m|p, v, n) using Eq. (1.8) is cumbersome

owing to the fact that the Wigner 3-j symbols needed in this expression are quite
difficult to compute. Instead, it is more efficient to compute these coefficients by
recurrence relationships. Furthermore, it is desirable to have a recurrence relation-
ship in which only one of the indices in a(u, m|p,v,n) changes. Since in FMM the
summation over p in Eq. (4.16) is to be computed in advance, it is convenient that
only the index p cycles in the desired recurrence relationship. Cruzan [52] listed a

number of recurrence relationships for the a{u, m|p, v, n)s. However, these recurrence
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relationships all involve the simultaneous cycling of two or more indices. Bruning and
Lo [53] later succeeded in reducing the recurrence relationships of Cruzan, by a te-
dious process of algebraic elimination, to a pair of three-term recurrence relationships
in the two indices v and p. However, one of their equations contains a sign error.

Hence, it is appropriate for us to list the correct recurrence relationships here:

0 = (2p+1)(2p—3)(v—u+1)[(m—pplp—1) —ms(n—v)(n+v+1)
xa(p, mlp—1,v+1,n)
+@2p+1)(p-mz—1)(-n+v+p-1)(n+v+p)up—v—1)—mv+1)
xa(p, mlp — 2,v,n)
+(2p - 3)(p+m3)(n+v—p+1)(n—v+p)ule+v)+m(y+1)]
xa(u, mlp,v,n), (1.9)
0 = (2p+1)(2p—3)(w+p)[(m - wpp—1) — ma(n —v)(n+v+1)]
xa(p,mlp—1,v—1,n)
+(2p+1)(p-mz3—-1)(n+v—-p+2)(n—v+p-1)[u(p+v)+m/
xa(p, m|p — 2,v,n)
+(2p - 3)(p+m3)(n+v+p+1)(—n+v+p)ul@—v—1) —my]

xa(p, mlp,v,n),  (1.10)

where ms = m+ . Egs. (1.9) and (1.10) can be further reduced to a single three-term
recurrence relationship in the index p alone. To start the calculations, it is necessary
to know the values of a(i, m|p,v,n) for p=n+v and p = n + v — 2. These starting
values can be found in [53]. Again, one of their formulas is in error and so we give
here the correct starting values of the coefficients:
(2n — )2y - ) (n+v —m3)!

Gtv = oo DN (—m)i - (11)
_ (2n+2v -3) _
Gntv—2 = (2n-1)(2v-1)(n+v—-m3z)(n+v —m3 — 1){(n+y 1

x[nv + mp(2n + 2v — 1)] = mglvm(2v — 1) + np(2n — V]}ans,  (112)
where a, = a(p, mlq, v, n).
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For translation along the +z-axis, Eq. (4.21), we only need the a(u, m|p, v,n)s for
g = —m. In this case, Eqs. (1.9) and (1.10) can be readily combined to give a single

three-term recurrence relationship [54]:
Qp-3ap—4 — (Op—2 + @p—1 — 4m3)a, 2+ pa, = 0, (1.13)

where a, = a(—m, m|g,v,n) and

_ [(n+v+1)?—p?p? — (n = v)?]
47— 1 '

(L14)

The starting values are

_ (@n-1)12v - 1) (n+v)!
Intv = "On+rw—DN (n—m)i(v+m)’
. (2n+2v - 3)
Intv=2 = On-1)(v-1)(n+v)

(L15)

[vn —m?(2n+2v — 1)]agy, . (L16)
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Appendix J
Fields of the Multipole Waves

In this appendix, complete expressions for the electric and magnetic fields due to the

distant and neighboring panels are given.

J.1 Distant-Panel Contributions

The local expansion for the electric vector potential in a panel p due to all the distant
panels is given by the sum over the distant-panel index g of Eq. (4.17). Consider the
(I, m)th term of this local expansion which has the form

Ar) = cimiM (kr)P™(cos8)e’™?, (J.1)

where for simplicity we have written (r,6, ¢) instead of (r1,6:,¢,) for the spherical
polar coordinates in the local system K,. It is convenient to resolve the polariza-
tion vector ¢, in Eq. (J.1) into a vertical component and two circularly polarized

components in the horizontal plane,
Cim = Cim,sZ + el (X +3¥) + ) (x = 3¥) , (32)

where (z,y, z), rather than (z;,%:,2), are the Cartesian coordinates in the local

system K, and

1 .
cg:l) = E[clm,x F*2 clm,y] . (J.3)

Although in MFIE we only need to compute the magnetic field, both the mag-

netic and electric fields would be needed in a combined-field-integral-equation (CFIE)
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formulation for dielectric bodies. For completeness, therefore, we give below the ex-
pressions for both the magnetic and electric fields. We refer to the modes associated
with the electric vector potential as the TM modes. The fields of these modes are
given by

H(r) = VxA,, (J4)
E(r) = wiev XV x A, (3.5)

where ¢ is the permittivity of the medium outside the perfectly conducting body.
J.1.1 Vertically Polarized TM Mode
The electric vector potential for this mode is
AP() = 2%(r,6,9), (J.6)
where
U(r,0,¢) = iV (kr)P™(cos)ei™ . (3.7)

The fields of this mode were derived by Chang [38]. We include them here for com-
pleteness. First, we express the unit vector z in terms of the spherical unit vectors

e, and €y,
z = e cosf —epsinf. (J.8)

Then we substitute Eq. (J.6) into Egs. (J.4) and (J.5) to obtain the spherical polar

components of the fields:

jm

HPY = =¥, (J.9)
HY = % (:ﬁ:g) v, (3.10)
HY = sinf ( ;T + °°:9 6c?)s 9) v, (J.11)
—jweE®) = cosf [—%53; + l(l:z' 1)] ¥ + sin® 6 G% - ;2-) a—i’% , (J.12)
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) ) l+1) 10 m? cosfsind ¥
—jweEy?) = sind |—k? - - -~
JwWeSe sin [ + T2 T 37‘] r2sin 6 v r  9rdcosh’
(J.13)

- ]LUGE = - S—l-l-l—é + (J . 14)

or 7z st

The tangential field components can be computed from the above spherical com-

@) j_m(cosa) ov  jm ., 0¥

ponents by taking the vector dot product of each of two tangential unit vectors

ey, 4 = 1,2, with the above magnetic or electric field.

J.1.2 Horizontally Polarized TM Modes

The electric vector potential for these modes are

AP(r) = (x*37y)¥(r.6,9¢)
= (e, £ jey)®(r,0,9), (J.15)

where
&(r,0,9) = €7U(r,0,9), (J.16)

and e, and e, are cylindrical unit vectors in the local system K. Eq. (J.15) is similar

to the horizontally rotating, or RTM, modes introduced by Chang and Mei [12],

AfZM(r) = (x=£jy)hGLi(kr)Pmol(cosf)etItm—12 . (3.17)

m—1
The fields derived from these RT M vector potentials turn out to be exactly the same

as the well-known spherical vector wave functions [55] with ! = m, up to a factor

k/[(2m — 1)m]. The latter wave functions are derived from the vector potential
AD(r) = rh{(kr)P™(cosf)e™?, (3.18)

where r is the radius vector from the origin of K, to the field point r. This is
because the vector potentials Eqgs. (J.17) and (J.18) are in fact related by a gauge

transformation, up to a factor k/[(2m — 1)m|:

ATEM (r) - (—-k—ﬁaAS,',Z,,(r) = 19 [rsinond), (br) Picos)e™]

(J.19)
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as can be verified by direct calculation. It is a well-known fact that the electric and
magnetic fields are invariant under a gauge transformation.

For general values of [ and m, the field expressions derived from the vector po-
tential A (r) given by Eq. (J.15) differ from the spherical vector wave functions.
First, we express the cylindrical unit vectors e, and ey in terms of the spherical unit

vectors e, ey and ey,
e,tje, = e sinf+egcosl+jey, (J.20)

Then, we substitute Eq. (J.15) into Eqs. (J.4) and (J.5) to obtain the spherical polar

components of the fields:

& _ jsind 9@  jm f(cosf
E; r Ocos® r \sinf ®, (J:21)
H® = (q:ji + Zﬁ) 3, (3.22)
or
@ 9  sin’d 0
H = (cosa pm + —3e0 ) ¥ (J.23)
i ) — sin@ a m
jwekE;, — [coseacose + prmc +Ii(l+1)| @
sin 6 m 0 0o
+ —9—cos8—2—_]22 24
T (;sinze 2= ool g s 0) or (3.24)
on) 1 0 m(m % 1) cos @ 2.2
jweEy ' = = {:I:(m + 1)8c086 + vy + [k*r* —I(l +1)]cos 8 ;
1 .2, 0 )02
+- (cose — sin 0acosg) 5 (J.25)
e ® = Y22 jm(m:l:l)_, 2 j(mil)_a_i
jweEg" = g [:i:]k ¥ jim=zx1) coseacose @+ ” 3
(J.26)

Again, the tangential field components can be computed from the above spherical
components by taking the vector dot product of each of two tangential unit vectors
e,, b = 1,2, with the above magnetic or electric field.

We have now given the complete expressions for the fields of the TM modes

associated with the electric vector potentials. Corresponding expressions for the TE
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modes associated with the magnetic vector potentials can be obtained from Egs. (J.9)
to (J.14) and Egs. (J.21) to (J.26) by duality: (i) replace € by g, (ii) replace the old
E by —H, and (iii) replace the old H by E.

J.2 Neighboring-Panel Contributions

For sources in the neighboring panels, the multipole approximation cannot be used.
Instead, the contributions from such sources must be computed individually. The
magnetic field scattered from a neighboring surface element 45” centered at r” to
the field point at r is obtained from the second term on the RHS of Eq. (4.7) by
restricting the integration to the surface element 4.5”,

eikir—r|

- n€" " o
SH(r) = V x /WJ(r) prer—

ds'’
- ! 1
= /;s" J(x') x V '¢v4ﬂ_ ) (J.27)

where we have used the fact that V = —V' when acting on ¢ = ﬁ:—':,—l;l. When |r—r'|

is large, the rectanglar rule may be used for the integration in Eq. (J.27),

5 SII

SH() ~ 30) X (V')lpomn - (3.28)

When |r — r/| is small, however, V'y is nearly singular and the rectanglar rule is
inaccurate. In that case, four-point or higher-order Gaussian quadrature rule must
be used. In all the examples discussed in Chapter 4, we used four-point Gaussian
quadrature when |r — r'| is less than approximately twice the linear dimension of a

typical surface element §5”.

J.2.1 Gaussian Quadrature

The examples we tested all used quadrilateral, planar surface elements. Consider
a typical element S” lying on the z’-y’ plane of a local coordinate system. The
coordinates of its four corners are (z;,¥;),i = 1 to 4, numbered clockwise. It may be

considered as the result of an isoparametric mapping from a master element in a -1
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plane, as shown in Fig. J.1. This mapping is described mathematically by

4

'(&mn = Y zNi(€n), (3.29)
i=1
4

y'(f,ﬂ) = ;%Nf(&ﬂ), (J30)

where Ng(€,7n) are the finite-element interpolation functions for a four-node linear

element,
Ni(gm) = F1-8a-n), (3.31)
NiEm) = F1-O+n), (3.32)
Ns(em) = FA+O0A+n), (1.33)
Nien) = F0+&a-n). N

The four-point Gaussian quadrature rule provides us with four integration points
(&,m),i = 1 to 4, and the associated weights w;. An integral of some function
F(z,y) over the element 5" in the z'-y plane is then approximated by a summation
over the four Gauss points (&;, 7;) within the master element, weighed by the weights

w; and the Jacobian of the mapping,

[ P@NEd ~ 3 FE ) vemluied] )
s BEN |,
where 8(z',y')/9(&, 1) is the Jacobian,
oz 0y
o', y') 3
FIY) et . (3.36)
a(¢, oz’ oy
(& m) & g
Substituting Egs. (J.29) to (J.34) into Eq. (J.36), we obtain
o,y) _ 1 _
where
A = —z1—2+23+124, (J38)
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B = —z1+z;+23—24, (J.39)
C = -nn—-p+yuty, (J.40)
D = —yp+ye+ys—vs, (3.41)
E = n1-z+33—-134, (J.42)
F = yn-ypt+ty—y. (J.43)

r—a»>‘:s

(X2, ¥

vy
A |

(XlaY]_)

-1

(X4, Y4 )

Master element
Four-node element

Figure J.1: Isoparametric mapping.
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Appendix K

Integration over Singularities

In this appendix, the evaluation of the quantity n x Hg,(rp) on the RHS of Eq. (4.60)
is discussed. Substituting Eq. (4.56) into Eq. (4.55) and setting r = rp, we obtain

nx Hg(ro) = (1+ I‘)Zl;n X /;o [jwe(n’ x By + -5;(11’ x E®). V'(V’z,b)] ds'

—(1- l")zl-_;n x [ (' < HO) x V' ds', (K.1)

where ¢ = e’li;':f;,l;l We first consider the term depending on H(® on the RHS of Eq.

(K.1). This has the same form as the second term on the RHS of Eq. (4.1). From the

discussion leading to Eq. (4.3), we conclude that, since Sp is planar, each element of

area dS' on Sp contributes an amount proportional to the solid angle d2' subtended
by that area element at the center ro of So. Since Sy is planar, d?' is zero when dS'’
does not contain ro and dY = 27 when dS’ does contain ro. Hence, following the
discussion leading to Eq. (4.4), the term depending on H® on the RHS of Eq. (K.1)

evaluates to:

bt
r
Il

_(1-mx ! HOY x V' dS'
(1 1‘)47rnx/50(nxl-l ) x V' dS
= %(1—r)an<°>(ro)

= —x—;-(l _D)HO(0), (K.2)

where we have used the fact that n = —y on Sy, in the coordinate system shown in

Fig. 4.7.
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Next, we consider the first term depending on E() on the RHS of Eq. (K.1). Since
Sy is planar, n' = n = —y. Also, from Eq. (4.59), E© has only an x component.
Hence, n x [0’ x E®] = —xE{®(2'). Hence, the first term on the RHS of Eq. (K.1) is

— 1 . ! (0) !
I, = (1+ I‘)—4ﬂ_n X -/S'o jwe(n’ x E™)y dS
1
= — — i (0) (! d
x(1+47T) ym /s ] jweE (2" )ydS' . (K.3)

The integral over Sp in Eq. (K.3) must be evaluated numerically. The rectangular
cross section Sp lying on the z-z plane is divided into a number of rectangular area
elements. For area elements not containing the center rp of Sy, the rectanglar rule
is used to compute the contributions of these area elements to Io. As for the area
element AzAz containing rp, the integral of v over this area element is computed by

using the Fourier expansion of :
eikiro-r'| - 4 / d3q eia(ro-r)
(2w)3 2 — k% —ie

equ(zo--'c’)ﬂqz(zo-z
T o ./ J ’ (K-4)
—® qz - Qz

where the second line is obtained from the first by performing the integral over gy

lro - rll yo—y'-_-O'l"

using the technique of contour integration. The integral of 1 over the area element
AzAz containing ry can then be computed:

Zo+Az/2 z0+A2/2 eiklro~r'|

foers @ o s ® Tome

z0—Az/2 ll‘o - l"I

To—Az/2

yo—y' =0+
L e e (E)an ()
- \/kz —2—¢? gz a:
_ _']A.’L‘AZ /‘211’ 000 k(Id_q- smc (g_A_ Ccos ¢) sinc (-q—gf Sln ) , (K.5)

where sinc z = sin :c/x. The integrand in Eq. (K.5) is still singular at g% = k?. This
singularity can be avoided by changing the variable of integration from g to v:

v=—j\/k2— g, Rev>0. (X.6)

In the complex v-plane, there is no longer any singularity at ¢> = k?, since
gdg
VF=¢
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The integrals over ¢ and ¢ in Eq. (K.5) can then be performed using the rectanglar
rule by substituting Eq. (K.7) into the integrand in Eq. (K.5). The upper limit of the
g-integration must, of course, be approximated by some finite value.

Lastly, we consider the second term depending on E©® on the RHS of Eq. (K.1),

I3

1+ I‘)ﬁn x [ o wiﬂ(n' « E®) . V/(V')dS'

= (1+r)11;;jﬁnx [ w89 x 9)(7)ds'. (K.8)

Consider the jth component of the integral over Sy,
o) oy

o EO VW as = — [ o v x [E®O%) | 45

/Son (E xV)axgdS /SOn [Vx(E az;_)]ds

!, ! (0) 3’¢ !

+/S°[n (V' x E )]_ax;-ds

oy . oY

_ ©9%) ' OILFT
/PO(E 3:1;’-) d1+/50n (ontO) 5 7S, (K.9)

j
where Iy is the boundary of the surface Sy and dl is the line element along this
boundary. The direction of dl is taken to be counterclockwise when the surface Sp
is viewed from the side facing the horn. Now, since Sp is bounded by the perfectly
conducting walls of the waveguide, the quantity E( . dl in the integrand of the first
term on the RHS of Eq. (K.9) is proportional to the component of the electric field
E© of the TEy mode tangential to the perfectly conducting walls, which must be
zero. Hence, the first term on the RHS of Eq. (K.9) is zero. Substituting the resulting
Eq. (K.9) into Eq. (K.8), we obtain

I = -1+ 1‘)4—17[n X /5 (o' - HOYWV'ydS' . (K.10)
0
Using the fact that n =n’' = —y on Sj, Eq. (K.10) becomes
1 o o
_ 1 0) oW _ %) 45 .
I (1+D)1 /S HO(Z) (x 2 63:’) ds' . (K.11)

Examination of Eq. (4.57) shows that H{¥(—2') = —H("(2'). Hence, H{"(') is an
odd function of z'. Also, since 1 is evaluated at the center ry of Sy, which coincides

with the origin of the coordinate system shown in Fig. 4.7, v¢/82 is an odd function
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of 2’ while 8v/07' is an even function of 2’. Hence, the second term in the integrand
of Eq. (K.11), which is a product of an odd and an even function of 2/, integrates to

zero, and we are left with

I = —x(1+T) / HO(z ')a‘”ds'
(0)
= =+ [ {2 - v as
(0)
= —x(1 +1‘)—{ / [H" ()] dl. — [ z,baH (zl)ds'} (K.12)

In the integral over the boundary Iy in the first term on the RHS of Eq. (K.12),
r = r, is at the center of Sy while r' is on the boundary of Sp. Hence, % in this
integral is never singular and the rectanglar rule suffices. In the integral over Sp in
Eq. (K.12), however, 9 is singular at the point r' = ro. Fortunately, this integral is
of the same form as that in Eq. (K.3) and so can be evaluated by exactly the same
method used to evaluate the latter integral.

Summarizing,
nx Hg(r)) = L+L+1;, (K.13)

where I, I, and I3 are given by Eqgs. (K.2), (K.3) and (K.12), respectively.
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