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Abstract

In this paper we survey the recent literature on encoding problems arising from logic synthesis of
combinational and synchronous sequential circuits. Encoding problems consist of assigning Boolean
codes to input and output symbolic variables, so that a cost function measuring the optimality of a
two-level or multi-level implementation is minimized. A successful paradigm involves optimizing
the symbolic representation (symbolic minimization), and then transforming the optimized symbolic
description into a compatible two-valued representation, by satisfying encoding constraints (bit-wise
logic relations) imposed on the binary codes that replace the symbols. The input encoding problem
is well understood. Efficient algorithms are available for two-level implementations and are under
development for multi-level implementations. The output encoding problem has seen important
contributions, but more work needs to be done and efficient algorithms developed.

1 Introduction

Descriptions of logic systems use variables that can take a finite number of values. They are called
symbolic variables, or, in logic jargon, multiple-valued variables. It is possible to define and optimize
multiple-valued logic functions and some optimization tools are available for that purpose [26]. However,
most logic circuits implementations are restricted to binary values. Therefore, symbolic (multiple-valued)
descriptions of logic functions at the structural level must be transformed into Boolean (two-valued)
representations by replacing each symbolic entry by Boolean vectors. An assignment of Boolean vectors
to symbolic entries is called an encoding.

The optimization of logic functions performed on the Boolean representation depends heavily on the
encoding chosen to represent the symbolic variables.

The cost function that estimates the optimality of an encoding depends on the target implementation:
two-level or multi-level. Two-level implementations optimize the number of product-terms or the area
of a programmable logic array (PLA). Multi-level implementations optimize the number of literals of
a technology-independent representation of the logic. Optimality may be based on more complex cost
functions that take into account other criteria, like testability. It may even be the case that area becomes a
secondary optimization objective as in the case of state assignment for asynchronous sequential circuits,
where the main concern is the correctness of the behavior of the encoded circuit.



In this paper we concentrate on encoding problem arising from implementation of combinational and
synchronous sequential circuits. Some of the solutions presented may be extendible to handle encoding
problems of asynchronous sequential design.

The following optimal encoding problems may be defined.

(A) Optimal encoding of inputs of a logic function. A problem in class A is the optimal assignment
of opcodes for a microprocessor.

(B) Optimal encoding of outputs of a logic function.

(C) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic
function.

(D) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic
function, where the encoding of the inputs (or some inputs) is the same as the encoding of the outputs
(or some outputs). Encoding the states of a finite state machine (FSM) is a problem in class D since the
state variables appear both as input (present state) and output (next state) variables. Another problem in
class D is the encoding of the signals connecting two (or more) combinational circuits.

Some approaches to the encoding problem, such as those in [1] and [9], use heuristics to direct
the encoding, but they cannot predict the relation between the symbolic description and the encoded
optimized logic.

Another paradigm, [7], involves optimizing the symbolic representation (symbolic minimization),

‘and then transforming the optimized symbolic description into a compatible two-valued representation,
by satisfying encoding constraints (bit-wise logic relations) imposed on the binary codes that replace the
symbols. This approach guarantees an upper bound on the size of the implemented machine provided all
the encoding constraints are satisfied.

Encoding via symbolic minimization may be considered a three step process. The first phase consists
of multiple-valued optimization. The second step is to extract constraints on the codes of the symbolic
variables, which, if satisfied, guarantee the existence of a compatible Boolean implementation. The third
step is assigning to the symbols codes of minimum length that satisfy these constraints, if the latter imply
a set of non-contradictory bit-wise logic relations.

When the target implementation is two-level logic, the first step may consist of one or more calls [7, 6]
to a multiple-valued minimizer [26], after the symbolic variables have been denoted using the positional
cube notation [35, 26]. An exact algorithm to handle symbolic input and output variables was recently
provided in [10]. Then constraints are extracted and a constraints satisfaction problem is set up. In the
case of a multi-level logic implementation constraints are generated after performing multiple-valued
algebraic factoring [21].

A variety of other applications may also generate similar constraints satisfaction problems, as in the
case of synthesis for sequential testability [8], and optimal re-encoding and decomposition of PLA’s [27,
11, 42, 31]. Given a PLA, it is possible to group the inputs into pairs and replace the input buffers with
two-bit decoders to yield a bit-paired PLA with the same number of columns and no more product-terms
than the original PLA [30] In the more general case, a single PLA is decomposed into two levels of
cascaded PLA’s. A subset of inputs is selected such that the cardinality of the multiple-valued cover,
produced by representing all combinations of these inputs as different values of a single multiple-valued
variable, is smaller than the cardinality of the original binary cover. The encoding problem consists of
finding the codes of the signals between the PLA’s, so that the constraints imposed by the multiple-valued
cover are satisfied.

Using the paradigm of symbolic minimization followed by constraints satisfaction, the most common
types of constraints that may be generated [7, 6, 10, 29, 28] are three. The first type, generated by the
input variables, are face-embedding constraints. The two types generated by the output variables are



dominance and disjunctive constraints. Each face-embedding constraint specifies that a set of symbols
is to be assigned to one face of a binary n-dimensional cube and no other symbol should be in that same
face. Dominance constraints require that the code of a state must bit-wise cover the code of another state.
Disjunctive constraints specify that the code of a state be expressed as the bit-wise disjunction (oring) of
two or more other symbols.

In this paper we will survey important ideas and algorithms that marked the recent progress in this
area, with emphasis towards the contributions made by our research group. When the target logic is
two-level, the achievements have been noticeable. In that case, the input encoding problem has been
completely understood [7] and efficient algorithms for satisfaction of input constraints are available [38,
28]. Important contributions have been made for the input and output encoding problem [6, 38, 10].
Exact solutions [10] are still very expensive for non-trivial examples and more work to find efficiently
high-quality solutions is coming [29]. Efficient algorithms for satisfaction of input and output constraints
are being developed [28].

When the target logic is multi-level the problem is much harder [9, 19, 14]. An important theoretical
contribution for input encoding has been made by [21], but more needs to be done to model the different
optimization operators available in a multi-level environment, and to take into account the presence of
symbolic output variables.

The organization of this paper is as follows. In Section 2 we introduce some basic definitions. In
Section 3 we present the encoding problem for optimal two-level implementations. In Section 4 we
introduce the encoding problem for optimal multi-level implementations. In Sections 5 and 6 algorithms
for the solutions of only input and mixed input-output constraints, respectively, are presented. In Section 7
some experimental results of programs implementing successful approaches are given, while conclusions
are drawn in Section 8.

2 Definitions

2.1 Finite state machines

For definitions of two-level logic minimization we refer to [3]. Here we describe the connection between
a FSM tabular description and its interpretation as a multiple-valued logic function.

A logic function may have multiple-valued (called also symbolic) input variables and symbolic output
variables. A symbolic input or output variable takes on symbolic values. FSM’s can be represented by
state transition tables. State transitions tables have as many rows as transitions in the FSM. The rows of
the table are divided into four fields corresponding to the primary inputs, present states, next states and
primary outputs of the FSM. Each field is a string of characters. The primary inputs may be in boolean or
symbolic form. Note that the input and output patterns may contain don’t care entries. A state transition
table defines a symbolic cover of the combinational component of a FSM. The rows of the state transition
table are called symbolic implicants of the symbolic cover. The symbolic cover representation may be
seen as a multiple-valued logic representation, where each present state mnemonic is one of the possible
values of a present-state multiple-valued variable. A similar identification holds for the next states (and
the proper inputs and outputs, if they are symbolic).

2.2 Boolean networks

For definitions of multi-level logic minimization we refer to [4]. Here we repeat the most basic ones.
A boolean network is a directed acyclic graph, where each node n; is associated with:
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1. avariable y; and
2. arepresentation of a logic function f;.

An arc connects node j with node ¢ if the representatlon of f; depends on y; (e.g. in f3 = yo + y172, there
are arcs from ng, n; and n; to n3).

Each node function can either be represented in sum-of-products form or in factored form. A factored
form is recursively defined as:

1. aliteral (i.e. a boolean variable or its complement),
2. a sum of factored forms,
3. a product of factored forms.

Eg. f = ab(c+d)+ cdand f = abc + (ab+ c)d are both factored forms of the function whose
sum-of-products can be f = abc + abd + cd. Neither factored forms nor sum-of-product forms are a
canonical representation of boolean functions.

The cost of a boolean network is typically estimated as the sum over all nodes of the number of
literals in a minimum (i.e. one with a least number of literals) factored form of the node function. This
cost estimation has a good correlation with the cost of an implementation of the network in various
technologies, e.g. standard cells or CMOS gate matrix.

3 Encoding for two-level implementations

3.1 Early work

Among the first to define input and output encoding problems for combinational networks were [5]
and [24]. The former based his theory of input encoding on partitions and set systems. The latter tried
to minimize the variable dependency of the output functions and studied the problem of the minimum
number of variables required for a good encoding.

There is a rich early literature on the state assignment of FSM’s, although it has been rarely cast as a
general encoding problem. In [1], the state assignment problem was formulated as a graph embedding
problem, where a graph represents adjacency relations between the codes of the states, to be preserved
by a subgraph isomorphism on the encoding cube. The objective was to minimize the number of gates
of the final implementation. Others, as [15, 34, 16, 12], proposed algebraic methods based on the
algebra of partitions and on the criterion of reduced dependency. These approaches suffered from a weak
connection with the logic optimization steps after the encoding. More recent approaches [32, 33] rely
on local optimization rules defined on a control flowgraph. There rules are expressed as constraints on
the codes of the internal variables and an encoding algorithm tries to satisfy most of these constraints.
Unate state assignments to guarantee testability by construction were proposed first in [36]. The logic to
compute the outputs and the encoding of the next state is said to be unate in a given state variable, if the
output and next state functions can be expressed as sums of products where the given variable appears
either uncomplemented or complemented, but not both. In [25] a case was made for a variation of unate
encoding called half-hot encoding that may allow sometimes savings in the number of columns of the
encoded PLA. Half-hot encodings have exactly half the total number of state variables equal 1. The
penalty on the number of necessary product terms was not addressed..



3.2 Multiple-valued minimization

Advances in the state assignment problem, reported in [23, 3, 7], made a key connection to multiple-
valued logic minimization, by representing the states of a FSM as the set of possible values of a single
multiple-valued variable. A multiple-valued minimizer, such as [26], can be invoked on the symbolic
representation of the FSM. This can be done by representing the symbolic variables using the positional
cube notation [35, 26]). The effect of multiple-valued logic minimization is to group together the states
that are mapped by some input into the same next-state and assert the same output. To get a compatible
boolean representation, one must assign each of the groups of states obtained by MV minimization,
(called face or input constraints) to subcubes of a boolean k-cube, for a minimum £, in a way that each
subcube contains all and only all the codes of the states included in the face constraint. This problem is
called face embedding problem. The state table of a FSM and its 1-hot encoded representation is shown
in Figure 1.

It is worth mentioning that the face constraints obtained through straightforward symbolic minimiza-
tion are sufficient, but not necessary to find a two-valued implementation matching the upper bound of
the multi-valued minimized cover. As it was already pointed out in [6], for each implicant of a minimal
(or minimum) multi-valued cover, one can compute an expanded implicant, whose literals have maximal
(maximum) cardinality and a reduced implicant whose literals have minimal (minimum) cardinality. By
bit-wise comparing the corresponding expanded and reduced implicant, one gets don’t cares in the input
constraint, namely, in the bit positions where the expanded implicant has a 1 and the reduced implicant
has a 0. The face embedding problem with don’t cares becomes one of finding a cube of minimum
dimension k, where, for every face constraint, one can assign the states asserted to vertices of a subcube
that does not include any state not asserted, whereas the don’t care states can be put inside or outside
of that subcube. One can build examples where the presence of don’t cares allows to satisfy the input
constraints in a cube of smaller dimension, than it would be possible otherwise. In Figure 2 the expanded
and reduced minimized multi-valued covers of the FSM of Figure 1 are shown. Figure 3 shows the

expanded and reduced implicants of the same FSM and the generation of the implied don’t care face
constraints.

3.3 Symbolic minimization

Any encoding problem, where the symbolic variables only appear in the input part, can be solved
by setting up a multiple-valued minimization followed by satisfaction of the induced face constraints.
However, the problem of state assignment of FMS’s is only partially solved by this scheme, because the
encoding of the symbolic output variables is not taken into account (e.g. the next state variable). Simple
multiple-valued minimization disjointly minimizes each of the on-sets of the symbolic output functions,
and therefore disregards the sharing among the different output functions taking often place when they
are implemented by two-valued logic. We will see now more powerful schemes to deal with both input
and output encoding.

In [6, 38] a new scheme was proposed, called symbolic minimization. Symbolic minimization
was introduced to exploit bit-wise dominance relations between the binary codes assigned to different
values of a symbolic output variable. The fact is that the input cubes of a dominating code can be
used as don’t cares for covering the input cubes of a dominated code. The core of the approach is a
procedure to find useful dominance (called also covering) constraints between the codes of output states.
The translation of a cover obtained by symbolic minimization into a compatible boolean representation
defines simultaneously a face embedding problem and an output dominance satisfaction problem.
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Figure 1: Initial and 1-hot encoded covers of FSM-1
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Figure 2: Expanded and reduced minimized covers of FSM-1



01010111011 00010001000 0-010--10--
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10001011111 10000001111 1000-0-1111

Figure 3: Expanded and reduced implicants and don’t care face constraints of FSM-1
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Figure 4: Covers of FSM-2 before and after symbolic minimization

Notice that any output encoding problem can be solved by symbolic minimization. Symbolic
minimization was applied also in [27], where a particular form of PLA partitioning is examined, by
which the outputs are encoded to create a reduced PLA that is cascaded with a decoder. However,
to mimic the full power of two-valued logic minimization, another fact must be taken into account.
When the code of a symbolic output is the bit-wise disjunction of the codes of two or more other
symbolic outputs, the on-set of the former can be minimized by using the on-sets of the latter outputs,
by redistributing some cubes. An extended scheme of symbolic minimization can therefore be defined
to find useful dominance and disjunctive relations between the codes of the symbolic outputs. This is
currently investigated in [29]. The translation of a cover obtained by extended symbolic minimization into
a compatible boolean representation induces a face embedding, output dominance and output disjunction
satisfaction problem.

In Figure 4, we show the initial description of a FSM and an equivalent symbolic cover returned by
an extended symbolic minimization procedure.

The reduced cover is equivalent to the original one if we impose the following constraints on the
codes of the states.
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Figure 5: Encoded cover of FSM-2

Product terms (1°), (3°) and (4°) are consistent with the original product terms (5) and (7) if we impose
code(stl) > code(st2). In a similar way, product terms (2°) and (5°) are consistent with the original
product term (8) if we impose code(st0) > code(st2). The product terms (1°) and (2°) yield also the face
constraints face(stl,st2) and face(st2, st3), meaning that the codes of st1 and st2 (st2 and st3) span
a face of a cube, to which the code of no other state can be assigned. The previous face and dominance
constraints together allow to represent the four original transitions (1), (2), (3), (4) by two product terms
(1’) and (2°).

Product term (3’) is equivalent to the original transitions (5) and (6) and yields the face constraint
face(st2, st3). This saving is due to a pure input encoding join effect.

Finally the product terms (6’), (7°) represent the original transitions (9), (10) and (11). The next
state of (11) is st0, that does not appear in (6’) and (7°). But, if we impose the disjunctive constraint
code(st0) = code(st1)Vcode(st3), i.e. we force the code of st0 to be the bit-wise or of the codes of
st1 and st3, we can redistribute the transition (11) between the product terms (6°) and (7°). The product
terms (6°) and (7’) yield has also the face constraints face(stl, st0) and face(st0, st3); together with
the previous disjunctive constraint they allow the redistribution of transition (11).

We point out that if we perform a simple MV minimization on the original description we save only
one product term, by the join effect taking place in transition (3°).

An encoding satisfying all constraints can be found and the minimum code length is two. A solution
is given by st = 11, st; = 01, st; = 00, st3 = 10. If we replace the states by the codes in the minimized
symbolic cover, we obtain an equivalent Boolean representation that can be implemented with a PLA, as
shown in Figure 5. Note that we replace the groups of states in the present state field with the unique face
assigned to them and that product term (2") is not needed, because it asserts only zero outputs. Therefore
the final cover has only six product terms.

3.4 Exact encoding with generalized prime implicants

Another procedure for output encoding has been reported in [10]. It guarantees an exact solution and
it is based upon a frame different from that used in symbolic minimization and its natural extensions.
A notion of generalized prime implicants (GPI’s), as an extension of prime implicants defined in [22],
is introduced, and appropriate rules of cancellation are given. Each GPI carries a tag with some output
symbols. If a GPI is accepted in a cover, it asserts as output the intersection (bit-wise and) of the codes
of the symbols in the tag. To maintain functionality, the coded output asserted by each minterm must
be equal to the bit-wise or of the outputs asserted by each selected GPI covering that minterm. Given a
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Figure 6: Initial cover, GPI’s, encodable selection of GPI’s and encoded cover of OUT-1

selection of GPI’s, each minterm yields a boolean equation constraining the codes of the symbolic values.
If an encoding can be found that satisfies the system of boolean equations, then the selection of GPI’s
is encodable. We will explain with some more detail in Section 6.2 the notion of encodability of GPI’s.
Given all the GPI’s, one must select a minimum subset of them that covers all the minterms and forms
an encodable cover. This can be achieved by solving repeated covering problems that return minimum
covers of increasing cardinality, until an encodable cover is found, i.e. the minimum cover that is also
encodable. An encodable cover yields a compatible set of face, dominance and disjunctive constraints
on the codes of the symbols. In order to minimize the area of a two-level implementation, one must find
an encoding satisfying all relations with a minimum number of bits. In this way the problem is reduced
to the familiar paradigm of constraints satisfaction. Figure 6 shows output encoding based on GPI’s with
a simple example taken from [10].

4 Encoding for multi-level implementation

Automatic multi-level logic synthesis programs are now available to the IC designer ([13], [4], [2]), and
sometimes a PLA implementation of the circuit does not satisfy the area/timing specifications.

A two-level encoding program, such as those described in the previous sections, can often give a very
good result when multi-level realization is required, but in order to get the maximum advantages from
multi-level logic synthesis we need a specialized approach.

This section describes such approaches, giving some information on the relative strengths and weak-
nesses.

There are two main classes of multi-level encoding algorithms:

1. estimation-based algorithms, that define a distance measure between symbols, such that if "close"
symbols are assigned "close" (in terms of Hamming distance) codes it is likely that multi-level
synthesis will give good results. Programs such as mustang [9] and jedi [19] belong to this class.

2. synthesis-based algorithms, that use the result of a multi-level optimization on the unencoded or
one-hot encoded symbolic cover to drive the encoding process. Programs such as mis-MV [21, 17]
and muse [14] belong to this class.

4.1 Mustang

Mustang uses the state transition graph to assign a weight to each pair of symbols. This weight measures
the desirability of giving the two symbols codes that are "as close as possible".



Mustang has two distinct algorithms to assign the weights, one of them ("fanout oriented") takes into
account the next state symbols, while the other one ("fanin oriented") takes into account the present state

symbols. Such a pair of algorithms is common to most multi-level encoding programs, namely mustang,
Jjedi and muse.

The fanout oriented algorithm is as follows:

1. For each output o build a set O° of the present states where o can be asserted. Each state p in the
set has a weight OW}? that is equal to the number of times that o is asserted in p.

2. For each next state n build a set N™ of the present states that have n as next state. Again each
state p in the set has a weight N W' that is equal to the number of times that n is a next state of p
(each cube under which a transition can happen appears as a separate edge in the state transition
graph) multiplied by the number of state bits (the number of output bits that the next state symbol
generates).

3. For each pair of states k, ! let the weight of the edge joining them in the weight graph be
Ynes NWI x NWP + 3 ,c0 OW? x OWY.

This algorithm gives a high weight to present state pairs that have a high degree of similarity, if
similarity is measured as the number of common outputs asserted by the pair.
The fanin oriented algorithm (almost symmetric with the previous one) is as follows:

1. For each input : build a set ON’ of the next states that can be reached when i is 1, and a set OF F*
of the next states that can be reached when i is 0. Each state » in ON* has a weight ONW;: that
is equal to the number of times that » can be reached when i is 1, and each state n in OF F" has a
weight OF FW that is equal to the number of times that n can be reached when i is 0.

2. For each present state p build a set P? of the next states that have p as present state. Again each
state n in the set has a weight PW? that is equal to the number of times that » is a next state of p
multiplied by the number of state bits.

3. For each pair of states k, ! let the weight of the edge joining them in the weight graph be
Ypes PWE x PW} + T ONWE x ONW} + OF FW} x OF FWj}.

This algorithm tries to maximize the number of common cubes in the next state function, since next
states that have similar functions will be assigned close codes.

The embedding algorithm identifies clusters of nodes (states) that are joined by maximal weight
edges, and greedily assigns to them minimally distant codes. It tries to minimize the sum over all pairs
of symbols of the product of the weighted distance among the codes.

The major limitation of mustang is that its heuristics are only distantly related with the final min-
imization objective. It also models only common cube extraction, among all possible multiple-level
optimization operations ([4]).

4.2 Jedi

Jedi is aimed at generic symbol encoding rather than at state assignment, and it applies a set of heuristics
that is similar to mustang’s to define a set of weights among pairs of symbols. Then it uses either a
simulated annealing algorithm or a greedy assignment algorithm to perform the embedding.
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The proximity of two cubes in a symbolic cover is defined as the number of non-empty literals in the
intersection of the cubes. Itis the "opposite" of the Hamming distance between two cubes, defined as the
number of empty literals in their intersection. For example, cubes abc and cde have proximity 4, because
their intersection has four non-empty literals (a, b, d and €), and distance 1, because their intersection has
an empty literal (c N ).

Each pair of symbols (s;, s;) has a weight that is the sum over all pairs of cubes in the two-level
symbolic cover where s; appears in one cube and s; appears in the second one of the proximity between
the two cubes.

The cost function of the simulated annealing algorithm is the sum over all symbol pairs of the weighted
distance among the codes.

The greedy embedding algorithm chooses at each step the symbol that has the strongest weight
connection with already assigned symbols, and assigns to it a code that minimizes the above cost
function.

4.3 Muse

Muse uses a multi-level representation of the finite state machine to derive the set of weights that are
used in the encoding problem.
Its algorithm is as follows:

1. encode symbolic inputs and outputs with one-hot codes.

2. use mislI ([4]) to generate an optimized boolean network.
3. compute a weight for each symbol pair (see below).
4

. use a greedy embedding algorithm trying to minimize the sum over all state pairs of the weighted
distance among the codes.

5. encode the symbolic cover, and run misIl again.

The weight assignment algorithm examines each node function (in sum-of-product form) to see if any
of the following cases applies (S; denotes a state symbol, s; denotes the corresponding one-hot present
state variable, other variables denote primary inputs):

1. s1ab+ s2ab+ .. .: if S) and S, are assigned adjacent codes, then the cubes can be simplified to a
single cube, and we obtain a saving in the encoded network cost.

2. s1ab+szabc+.. .. if Sy and S, are assigned adjacent codes, then the cubes can be simplified (even
though they will remain distinct cubes, due to the appearance of c only in the second one) and a
common cube (the common state bits and ab) can be extracted. For example, if S is encoded as
cocic; and S; is encoded as cocicy, the expression above can be simplified as coerab + corcabe.

3. sjabc + szabd + . . .: same as above, but only a common cube (the common state bits and ab) can
be extracted.

For each occurrence of the above cases the weight of the state pair is increased by an amount that is
proportional to the estimated gain if the two states are assigned adjacent codes. For example, if abc is
extracted from f = abcd, g = abce, (cost 8 literals) then we obtain f = hd, g = he, h = abc (cost 7
literals), and the gain obtained extracting h is 1.

11



Each gain is also multiplied by the number of distinct paths from the node to a network output. This
heuristic gives a higher gain to common subexpressions that are used in many places in the network,
so that their extraction gives a high reduction in the network cost. If the codes in the pair are assigned
adjacent codes, then hopefully mis/I will be able to extract again useful subexpressions after the encoding.

The algorithm described above takes into account only present state symbols. Another heuristic
algorithm is used to estimate the "similarity" among the next state functions. This "next-state oriented"
algorithm adds to the weight of each pair of states the gain of common subexpressions that can be
extracted from the functions generating that pair of next states in the one-hot encoded network. For
example, if n; denotes a one-hot next state variable and N; the corresponding state symbol, n; = abed
and n; = abce have a common subexpression abc of gain 1 (see above), so the weight of the (N}, N,)
pair is incremented by 1 due to this subexpression.

The embedding algorithm, using the weights computed above, chooses the unencoded state that has
a maximum weight connection with the already encoded states and assigns to it a code that has the
minimum weighted distance from the already encoded states.

Muse uses a cost function that is a closer representation of reality with respect to mustang and jedi,
but there is no guarantee that the optimizations performed on the one-hot encoded network are the best
ones for all possible encodings, and that mislI will choose to perform the same optimizations when it is
run on the encoded network.

44 Mis-MV

In order to have a satisfactory solution of the multi-level encoding problem we must have a closer view
of the real cost function, the number of literals in the encoded network. The weight matrix is rather far
from giving a complete picture of what happens to this cost function whenever an encoding decision is
made.

Following the pattern outlined in the previous sections for the two-level case, we should perform a
multi-level symbolic minimization, and derive constraints that, if satisfied, can guarantee some degree of
minimality of the encoded network.

Mis-MV, unlike the previous programs, performs a full multi-level multiple-valued minimization of
a network with a symbolic input. Its algorithms are an extension to the multiple-valued case of those
used by misl] (the interested reader is referred to [21, 17] for a detailed explanation of these algorithms).

Its overall strategy is as follows:

1. read the symbolic cover. The symbolic output is encoded one-hot, the symbolic input is left as a
multiple-valued variable.

2. perform multi-level optimization (simplification, common subexpression extraction, decomposi-
tion) of the multiple-valued network.

3. encode the symbolic input so that the total number of literals in the encoded network is minimal
(simulated annealing is used for this purpose, while extensions of constrained embedding algorithms
from the two level case are being studied).

A set of theorems, proved in [21], guarantees that step 2 of the above algorithm is complete, i.e. that
all possible optimizations in all possible encodings can be performed in multiple-valued mode provided
that the appropriate cost function is available.

The last observation is a key to understand both strengths and limits of this approach: the cost
function that mis-MV minimizes is only an approximate lower bound on the number of literals that the
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encoded network will have (much in the same spirit as what happens in the two-level case with symbolic
minimization). This lower bound can be reached if and only if all the face constraints from all the nodes
in the multiple-valued network can be simultaneously satisfied in a minimum length encoding, which is
not possible in general (each node has a multiple-valued function, so the constraints can be extracted as
described in Section 3). This lower bound is approximate because further optimizations on the encoded
network can still reduce the number of literals.

In order to take this limitation into account, mis-MV computes at each step the currently optimal
encoding, and uses it as an estimate of the cost of each multiple-valued node.

For example, if one denotes by S{1234} a multiple-valued literal representing the boolean function
that is true when variable S has value 1, 2, 3 or 4, the estimated cost of S{122} with the codes:
e(s{l}) =166 8(5{2}) = GC 3(5{3}) =606 3(5{4}) =G0 6(5{5}) =566 6(5{6}) = Ges
would be 1, since the minimum sum of products expression for €76;¢6; + €163 + T1C2 T + Ticzcs with the
don’t cares (unused codes) ¢; @ + ¢1cacs is ¢y

Currently mis-MV does not handle the output encoding problem. Its approach, though, can be
extended to handle a symbolic minimization procedure similar to what is explained in section 3, and
therefore to obtain a solution also to this problem.

4.5 Comparison of different methods

Programs such as mustang and jedi rely only on the two-level representation of the symbolic cover to
extract a similarity measure between the context in which each pair of symbols appear. This measure is
used todrive a greedy embedding algorithm that tries to keep similar symbols close in the encoded boolean
space. This has clearly only a weak relation with the final objective (minimum cost implementation of a
boolean network), and it makes an exact analysis of the algorithm performance on benchmark examples
hard.

Some improvement can be seen in muse, that uses a one-hot encoding for both input and output
symbols, and then performs a multi-level optimization. In this way at least some of the actual potential
optimizations can be evaluated, and their gain can be used to guide the embeddin g, but there is no guarantee
of optimality in this approach, and the output encoding problem is again solved with a similarity measure.

Full multi-level multiple-valued optimization (mis-MV') brings us closer to our final objective, because
all potential optimizations can in principle be evaluated. The complexity of the problem, though, limits
this potentiality to an almost greedy search, as in mislI.

Still we do not have a complete solution to the encoding problem for multi-level implementation
because:

1. we need to improve our estimate of the final cost to be used in multi-level multiple-valued opti-
mization.

2. the problem of optimal output encoding must be addressed directly.

The algorithms described in this section, though, can and have been successfully used, and the path
towards an optimal solution is at least clearer than before.

5 Satisfaction of input constraints

Many heuristic algorithms for heuristic satisfaction of input constraints.have been published [7, 6, 11,
38, 20]. In [38] an exact solution, based on a branch-and-bound strategy, is also described. An exact
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solution provides an encoding that satisfies all face constraints within a minimum code-len gth. A heuristic
solution satisfies all constraints, but does not guarantee that the code-length is minimum. Obviously,
1-hot encoding provides always a solution, although at the price of a code-length equal to the number of
symbols to encode.

In [7] the face constraints become the rows of a matrix M. The goal is finding a code matrix A,
whose rows are the codes of the states. The number of columns of A is the code-length. It is observed
that trivial constraints and constraints which are the bit-wise intersection of two or more constraints can
be discarded (compaction criteria) and that the transpose of M is a solution to the constraint problem,
ie. M' = A. In [7] a row-based encoding method was presented, where A is computed row by row,
i.e. by computing the encoding of the symbols one at a time. This method fails to be effective for large
examples. In [6], a column-based encoding scheme was proposed, where A is constructed column by
column. The constraint matrix is compacted using the previous compaction criteria and A is constructed
incrementally as transpose of the constraint matrix.

In [11] the main compaction criterion is extended to constraints obtained by bit-wise intersection of
two or more rows or their bit-wise complements. Since checking for relationships between all constraints
is too time- consuming, a procedure of constraint ordering is proposed. Given a particular ordering of
rows of M, the code matrix A is constructed incrementally, column by column. Constraints which are
already satisfied are discarded. The cost of a particular ordering is the number of columns of A. Then,
the ordering of rows of the constraint matrix M is changed and A is recomputed. It is possible that a
different code-length is found. An optimization problem is defined, whose objective is to find an ordering
that minimizes the number of encoding bits required. A constructive heuristic algorithm and a simulated-
annealing-based algorithms are proposed. The authors state that their algorithm can be generalized to
the case of given code-length and the objective to optimize a weighted sum of the face constraints. Since
one may not be able to satisfy all face constraints within a given code-length, a weight for each constraint
quantifies the gain or loss for satisfying it or not. The weights are suggested by the cost function of the
specific logic synthesis problem.

In [38] an exact solution to the face embedding problem is described and implemented. It is based on
reducing the problem to embedding partially ordered sets (posets). A set of input constraints induces a
poset, by ordering all the constraints according to the set inclusion relation. Also the hypercube in which
the embedding takes place is represented by its underlying face-poset, by ordering all faces of all available
dimensions according to the boolean inclusion relation. Satisfying the input constraints thus reduces to
the problem of finding the minimum cube dimension, so that in the cube there is a poset equivalent to
the one induced by the given set of input constraints. Equivalence of posets is based on the preservation
of the inclusion and intersection operations between the elements of the posets. A branch-and-bound
procedure for solving poset embedding is described. Counting arguments are used to cut the search
space. Although not always computationally feasible, this exact solution, which was the first published,
allowed the collection of a set of exact results against which to compare heuristic solutions. Moreover, a
computationally efficient version of it, with heuristics to reduce the search space, is the core of a heuristic
algorithm, ihybrid, also described in [38). The algorithm ikybrid maximizes, for a given code-length, a
weighted sum of the face constraints. It has performed very well under intensive experimentations.

In [37] it was proposed an algorithm to find correct (i.e. with no critical races) unicode (i.e. each
state is coded with a minterm) single transition time (STT, i.e. all variables that must change during a
transition are allowed to change simultaneously) state assignments of asynchronous sequential circuits.
The problem is reduced to generating sets of disjoint 2-block partitions of the set of states (dichotomies),
defining and computing maximal compatibles among them and covering the original dichotomies with
a minimum number of maximal compatible dichotomies. In [43] it was noticed that a face constraint
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is equivalent to a collection of dichotomies (called seed-dichotomies), one for each state that is 0 in the
input constraint. Each dichotomy has in one block all states that are 1 in the input constraint, and in the
other block one of the states that are 0 in the input constraint. Once we have all seed-dichotomies, we
have reduced the face-embedding problem to solving a covering problem, as outlined by [37].

In [28] a formulation is provided starting from the approach of [37, 43]. Results of a prototype
implementation indicate that, for almost all of the standard FSM benchmark examples, the input encoding
problem can be solved exactly. This new approach can be easily extended to a weighted covering problem.
An extension of the algorithm is also under investigation to handle a different cost function such as that
required in multi-level input encoding, as seen in Section 4. In that case a minimum code length solution
is desired where those constraints are satisfied which yield the best savings in factored form literals
instead of product terms.

6 Satisfaction of input and output constraint

6.1 The problem of mixed input and output constraints

In [6] the proposed column-based heuristics handles not only face constraints, as already said, but also
dominance output constraints. In [10] a column-based heuristics is presented to include also disjunctive
constraints. When there are both input and output constraints, it is not possible to guarantee that
an encoding always exists, In [6, 10], the algorithms that build the solution are applied only after a
satisfiability check determines that the given mixed constraints are mutually compatible. The conditions
of satisfiability of a set of mixed constraints given in [10] are:

1. The set of dominance constraints should not imply of two codes that each dominate the other. E.g.
code(stl) > code(st2), code(st2) > code(st3), code(st3) > code(st1).

2. For every disjunctive constraint, the set of dominance constraints should not imply of two orred
codes, that one dominate the other. E.g. code(stl) = code(st2) V code(st3), code(st2) >
code(st3), which implies code(st1) = code(st2).

3. There should be no pair of disjunctive constraints, with the same orred codes and different resulting
codes. E.g. code(stl) = code(st2) V code(st3), code(st4) = code(st2) V code(st3).

4. For every disjunctive constraint, the set of dominance constraints should not imply that the resulting
code of the disjunction dominate a code that dominates all the orred codes. E.g. code(stl) =
code(st2) V code(st3), code(stl) > code(std), code(std) > code(st2), code(std) > code(st3),
which implies code(st1) > code(st2) V code(st3).

5. For every triple s1, s2, s3 such that code(s1) > code(s2) and code(s2) > code(s3), no face
constraint should require s1 and s3 in one face and s2 not in that face.

6. For every disjunctive constraint, no face constraint should require the orred codes in one face and
the resulting code not in that face. E.g. given code(s1) = code(s2) V code(s3), no face constraint
should require s2 and s3 in one face and s1 not in that face.

A proof that they are necessary and sufficient is not given in the paper. It is easy to show that these
conditions are necessary, while one can show that, stated as they are, they are not sufficient. It is not easy
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to determine the minimum superset of rules that make them sufficient. For a discussion and a complete
algorithm that checks satisfiability efficiently, the reader is referred to [28].

We give an overview of the constructive algorithm sketched in [10], for a set of (already shown)
satisfiable mixed constraints. Face constraints are compacted and an encoding equal to the transpose of
the face constraint matrix is built. Sets of unsatisfied dominance relations are satisfied by adding one bit
at a time to the codes, in a greedy fashion. An unsatisfied disjunctive relation is satisfied by raising bits
in the codes of the orred symbols. This may introduce violations of face constraints and decrease the
satisfied dominance relations, so bits are appended again to satisfy the violated face constraints. Then
one goes back to the dominance constraints that became unsatisfied and iterates the loop as many times
as needed to satisfy all constraints. It is claimed that the procedure always converges. No experiments
are available to show the efficiency and quality of the solutions.

In [38] it is described also an algorithm, iohybrid, that maximizes, for a given code-length, a weighted
sum of clusters of face and dominance constraints, obtained by a variant of symbolic minimization. It
is based on an extension of ikybrid, to handle also output constraints. Its performance is good, but not
of consistent quality. It compares favorably to the published results of the output encoding algorithm
implemented in [6], although different twists of the two algorithms do not make comparisons easy.

In [28] a uniform framework for the efficient satisfaction of input and output constraints is provided.
This approach allows exact solutions as well as trade-off schemes between code-length and maximum
constraints satisfaction.

6.2 The encodability problem of GPI’s

In Section 3 we reviewed exact encoding based on GPI’s. Here we highlight the encodability problem of
GPT’s, to see how it relates to the problem of input and output constraints satisfaction. The selection of a
cover of GPI’s induces a set of boolean equations, one for each minterm, stating that, for all GPI’s that
include it, bit-wise oring the intersections of the codes of symbols in the tags yields the output asserted by
that minterm. If the collection of boolean equations has a solution, the cover of GPI’s is called encodable.
The solution to the boolean equations is a set of compatible face, dominance and disjunctive constraints
on the codes of the symbols. The solution to the set of boolean equations is a two-step process. The
first step requires choosing for each boolean equation a dominance or disjunctive constraint that makes
it true. In the worst case one has to try all possible selections. The second step requires checking the
compatibility of the chosen output constraints among themselves and with the face constraints of the
cover. This can be done efficiently by checking the polynomial-complexity compatibility conditions of
a set of mixed constraints, already given in the Section 6.1.

A formulation to both steps that finds also an encoding within a certain code-length via general
boolean satisfiability is proposed, even though its computational complexity is very high.

Once a cover of GPI's has been found encodable, i.e. a set of satisfiable input and output relations
has been determined, one must find an encoding satisfying all given relations with a minimum number of
bits. In this way the problem is reduced to the familiar paradigm of mixed input and output constraints
satisfaction, as defined in the previous subsection.

For example, the encodable selection of Figure 6 yields the following non-trivial boolean equations
(generated, in order, by the minterms 1101, 1100, 1111):

(code(outl) A code(out2)) V (code(outl) A code(out3)) = code(outl) 1)
code(outl) A code(out2) = code(out2) (V)
code(outl) A code(out3) = code(out3). 3)
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To satisfy the first equation one can choose one of the three constraints:

code(out2) > code(outl)
code(out3) > code(outl)
code(outl) < code(out2) V code(out3).

The second equation has only one possible choice:
code(outl) > code(out2).
The third equation has only one possible choice:
code(outl) > code(out3).

If one chooses the disjunctive constraint to satisfy the first equation, one can verify that one gets the
following compatible collection of mixed constraints:

code(outl) < code(out2) V code(out3)

code(outl) > code(out2)
code(outl) > code(out3).

The encoded cover of Figure 6 shows a minimum-length encoding that satisfies the previous set of
constraints.

7 Experimental results

We report some comparisons among available state assignment programs based on the techniques dis-
cussed in the previous sections. For the experiments we used the MCNC ’89 set of benchmark FSM’s.

7.1 The two-level case

We report one set of experiments that compare programs for two-level state assignments.

Table 1 summarizes the results obtained running the algorithms of NOVA ([38]), KISS ([7]) and
random state assignments. The results of NOVA were obtained running espresso ([26]) to obtain the input
constraints and the symbolic minimizer of NOVA built on top of espresso to obtain the mixed input/output

 constraints, NOVA to satisfy the constraints on the codes of the states and of the symbolic inputs (if any),
and espresso again to obtain the final area of the encoded FSM. The best result of the different options of
NOVA was shown in the Table. The results of KISS were obtained running espresso to obtain the input
constraints, KISS to satisfy the constraints on the codes of the states and of the symbolic inputs (if any),
and espresso again to obtain the final area of the encoded FSM. The areas under random assignments are
the best and the average of a statistical average of a number of different (number of states of the FSM +
number of symbolic inputs, if any) random state assignments on each example. The final areas obtained
by the best solution of NOVA average 20% less than those obtained by KISS, and 30% less than the best
of a number of random state assignments. NOVA can use any number of encoding bits greater than or
equal to the minimum. The best results of NOVA on the benchmark of Table 1 have been obtained with
a minimum encoding length, but this is not always the case. KISS uses a code-length sufficient to satisfy
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all input constraints. Since it satisfies the constraints by an heuristic algorithm it does not always achieve
the minimum necessary code-length.

Notice that the lower bound provided by symbolic minimization is often larger than the best upper
bound achieved by encoding the FSM’s, even though the available programs model only partially the
effects of output encoding. This means that output encoding is more important than input encoding on
the quality of final results.

Comparisons for some of the approaches mentioned above [32, 10] have not been carried out for the
lack of an available implementation.

7.2 The multi-level case

We report a set of experiments that correlate good two-level state assignment to the corresponding multi-
level logic implementation, comparing against an estimation-based multi-level encoding algorithm.

Table 2 reports the number of literals after running through the standard boolean optimization script
in the multi-level logic synthesis system mis/I ([4]) with encodings obtained by NOVA, MUSTANG ([9)),
JEDI ([19]) and random state assignments. In the case of NOVA only the best minimum code-length
two-level result was given to misll . MUSTANG was run with -p, -n, -pt, -nt options and minimum code-
length. JEDI was run with all available options and minimum code-length [18]. In all cases espresso
was run before mis/I. The final literal counts in a factored form of the logic encoded by NOVA average
30% less than the literal counts of the best of a number of random state assignments. The best (minimum
code-length) two-level results of MUSTANG, and JEDI versus the best (minimum code-length) two-level
results of NOVA are also reported. Notice that in the case of MUSTANG and JEDI the run that achieved
the minimum number of cubes is not necessarily the same that achieved the minimum number of literals.
In the case of NOVA only the best two-level result was fed into mislI, so the data reported refer to the
same minimized cover. Even though NOVA was not designed as a multi-level state-assignment program,
its performances compare successfully with MUSTANG. Among the three programs, the best literal
counts are often given by JEDI. These data show that a state assignment that gives a good two-level
implementation also gives a good multi-level implementation. This is consistent with the experiments
reported in [40, 41, 39].

We report two kinds of experiments to verify the validity of mis-MV as input encoder:

e compare the relative importance of the various multi-valued optimization steps.

e compare mis-MV with some existing stare assignment programs, such as JEDI ([19]), MUSE
([14]), MUSTANG ([9]) and NOVA ([38]). Notice that we want to compare only the input encoding
algorithms of these programs and so we need to "shut off" all effects due to the encoding of the
output part, captured by purpose (these programs embody also heuristics for the output encoding
problem) or by chance. Therefore we replaced the codes returned by each program in the present
state only, while the next state was simply replaced by one-hot codes.

The experiments were conducted as follows:

e a single simplified boolean script (using simplify only once) was used both for multi-valued and
binary valued optimization.

e the script was run twice in all cases.

o mis-MV:
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example random kiss nova
b-area | a-area || #bits | #cubes | area || #bits | #cubes area
bbara 616 649 5 26 650 4 24 528
bbsse 1089 | 1144 6 27| 1053 4 29 957
bbtas 165 215 3 13 195 3 8 120
beecount 285 293 4 11 242 3 10 190
cse 1947 | 2087 6 45| 1756 4 45| 1485
dk14 720 809 9 24 550 6 25 500
dk15 357 376 6 17 391 5 17 289
dk16 1826 | 1994 12 55| 2035 7 54| 1188
dk17 320 368 6 19 361 5 17 272
dk27 143 143 4 9 117 4 7 91
dk512 374 418 7 18 414 5 17 289
donfile 1200 | 1360 12 24 984 5 28 560
exl 3120 | 3317 7 42| 2436 6 371 2035
ex2 798 912 6 31 744 5 27 567 ||
ex3 342 387 6 18 432 4 17 306
ex5 324 358 5 15 315 4 14 252
ex6 810 850 5 24 792 3 25 675
iofsm 560 579 4 16 448 4 15 420
keyb 3069 | 3416 8 47 | 1880 5 48 | 1488
mark1 760 782 5 19 779 4 17 646
physrec 1677 | 1741 5 34| 1564 4 33| 1419
planet 4896 | 5249 6 89 | 4539 6 86| 4386
sl 3441 | 3733 5 81| 2997 5 63 | 2331
sand 4278 | 4933 6 95| 4655 6 89 | 4361
scf 19650 | 21278 8 140 | 18760 7 137 | 17947
scud 2262 | 2533 6 71| 2698 3 62| 1798
shiftreg 132 132 3 6 72 3 4 48
styr 5031 | 5591 6 91| 4186 5 94 | 4042
tbk 5040 | 6114 na na na 5 571 1710
trainll 221 241 6 10 230 4 9 153
[ TOTAL | 65453 | 72002 na 51053 |
| % 100 110 na 77 ||

Table 1: Comparison of FSM’s encoding for two-level implementation
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example jedi | mustang | nova || jedi | mustang | nova || random
#icubes | #cubes | #cubes || #lit #lit | #ie #lit
bbara 24 25 24 57 64 61 84
bbsse 30 31 29 111 106 | 132 149
bbtas 9 10 8 21 25 21 31
beecount 12 12 10 39 45 40 59
cse 52 48 45 || 200 206 | 190 274
dk14x 29 32 26| 106 117 98 164
dk15x 19 19 17 67 69 65 I 73
dkl6x 64 71 52 || 225 259 | 246 402
donfile 33 49 28 76 160 88 193
exl 48 55 44 | 250 280 | 215 313
ex2 35 36 27 | 122 119 96 162
ex3 19 19 17 66 71 76 83
keyb 52 58 48 || 140 167 | 200 256
mark1 17 19 17 66 76 86 116
physrec 39 37 33 132 159 | 150 178
planet 93 97 86 || 547 544 | 560 576
sl 57 69 63| 152 183 | 265 444
sand 105 108 96 || 549 535 533 462
scf 147 148 137 || 812 791 839 890
scud 57 83 62 || 127 286 | 182 222
shiftreg 4 4 4 0 2 0 16
styr 100 112 94 [ 508 546 | 511 591
tbk 57 136 57| 278 547 | 289 625
| train11 1| 10| o 2| m;m| s3] 4
[TOTAL " 1113 | 1288 ] 1033 [ 4678 | 5394 | 4986 ] 6407 |
(% 107] 124] 100] 93] 108] 100] 130

Table 2: Experiments on FSM’s encoding for two and multi-level implementation
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1. espresso was run on the unencoded machine.

2. all or part of the first script was run in mis-MV’s multi-valued mode.

3. the inputs were encoded, using the simulated annealing algorithm.

4. the remaining part of the first script and the second script were run in binary-valued mode.

e JEDI, MUSE, MUSTANG and NOVA:

1. each program was run in input oriented mode ("-e i" for JEDI, "-¢ p" for MUSE, "-pc" for
MUSTANG and "-e ih" for NOVA) to generate the codes.

2. the symbolic input was encoded.
3. espresso was run again, using the invalid states as don’t cares.
4. the script was executed twice.

We performed seven experiments on each machine, four using JEDI, MUSE, MUSTANG and NOVA,
and three using mis-MV . The experiments on mis-MV differed in the point of the script where the symbolic
inputs were encoded (mis-MV can carry on the multi-level optimizing operations on a multiple-valued
network or on the encoded binary-valued network):

1. at the beginning. At this point, both mis-MV and NOVA extract the same face constraints by
multiple-valued minimization. The two programs get different results because of the different face
constraints satisfaction strategies. mis-MV satisfies the face constraints with a simulated annealing
algorithm that minimizes the literal count of a two-level implementation. The cost function is
computed by calling espresso and counting the literals. NOVA satisfies the input constraints with
a heuristic deterministic algorithm that minimizes the number of product-terms of a two-level
implementation.

2. after simplify, to verify multiple-valued boolean resubstitution.
3. after algebraic optimization (gkx, gcx, . . .), to verify the full power of mis-MV .

Table 3 contains the results, expressed as factored form literals.

8 Conclusions

The input encoding problem for two-level implementations has been completely understood [7] and
efficient algorithms for satisfaction of input constraints are available [38, 28]. Important contributions
have been made for the input and output encoding problem for two-level implementations [6, 38, 10].
Exact solutions [10] are still very expensive for non-trivial examples and more work is needed to find
efficiently high-quality solutions [29]. Efficient algorithms for satisfaction of input and output constraints
are currently investigated [28].

When the target logic is multi-level the problem is much harder. Several heuristic approaches have
been proposed [9, 19, 14]. An important theoretical contribution for input encoding has been made
by [21], but more needs to be done, especially to take into account the presence of symbolic output
variables.

“It is interesting to notice that the problems of input and output encoding for logic synthesis, both
those already understood, as input encoding, or still subject of active research, as output encoding,
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example jedi [ muse | mustang | nova best || beginning | simplify algebraic
mis-MV optimization

bbara 96 99 9 | 106 84 84 84 85
bbsse 125 | 126 148 | 151 131 130 132 131
bbtas 34 36 37| 32 31 35 31 31
beecount 56 60 65| 170 56 62 56 58
cse 189 | 192 208 | 214 195 191 199 195
| k14 96 | 102 108 | 98 79 97 79 81
dk15 65 65 65| 65 68 65 68 69
dk16 254 244 314 | 351 247 225 247 261
dk17 63 58 69 58 62 58 62 64
dk27 30 29 34 38 27 27 27 27
dk512 73 73 78| 93 68 70 68 69
donfile 132 | 131 195 | 186 123 127 123 123
exl 256 | 239 252 | 246 232 240 232 237
ex2 176 | 169 197 | 167 144 143 144 154
ex3 87 96 98| 98 82 82 86 82
ex4 71 72 73| 84 72 90 74 72
ex5 79 79 80| 83 69 67 69 69
ex6 93 92 9] 98 84 85 85 84
ex7 87 84 100 94 78 89 79 78
keyb 186 | 180 203 | 195 146 186 172 146
lion 16 16 14| 16 16 16 16 16
lion9 55 55 61| 43 38 40 38 38
mark1 94 92 89| 105 92 90 94 92
mc 32 30 30 32 30 35 30 30
modulo12 58 72 77| 7N 71 71 71 71
opus 83 70 88| 90 70 87 70 74
planet 453 | 511 538 | 551 466 512 466 473
sl 339 291 377 | 345 249 335 253 251
sla 262 | 195 264 | 253 214 217 214 225
s8 50 52 471 48 48 52 48 48
sand 556 | 498 519 | 542 509 523 509 529
shiftreg 24 25 34 35 24 24 24 24
styr 427 | 418 460 | 501 438 442 438 473
tav 27 27 27 27| 27 27 27 27

[TOTAL [ 47244578 5135 [ 5186 4370 | 4624 | 4415 | 4487 ||

Table 3: Multi-level input encoding comparison
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all generate collections of face-embedding, dominance and disjunctive constraints, that must be either
satisfied or shown unfeasible. If satisfiable, an encoding must be found of minimum code-length.
Alternatively, one can optimize an area cost function, trading-off between encoding length and gain
obtained from maximum satisfaction of constraints within the given code-length. Efficient solutions to
these combinatorial optimization problems are a key to high-quality encoding programs.
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