
 

 

 

 

 

 

 

 

 

Copyright © 1995, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



ADVANCES IN ENCODING FOR LOGIC SYNTHESIS

by

Tiziano Villa, Luciano Lavagno, and
Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/19

22 March 1995



ADVANCES IN ENCODING FOR LOGIC SYNTHESIS

by

Tiziano Villa, Luciano Lavagno, and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/19

22 March 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Advances in encoding for logic synthesis

Tiziano Villa LucianoLavagno Alberto L. Sangiovanni-Vincentelli

Dept. of EECS
University of California, Berkeley

To appear in Digital Logic Analysis and Design
Ablex PubL Co., 1995

Abstract

In thispaper we survey the recent literature onencoding problems arising from logicsynthesis of
combinational and synchronous sequential circuits. Encoding problems consist ofassigning Boolean
codes to inputand outputsymbolic variables, so thata cost function measuring the optimality of a
two-level or multi-level implementation is minimized. A successful paradigm involves optimizing
thesymbolicrepresentation (symbolic minimization), and thentransforming theoptimizedsymbolic
description intoacompatible two-valued representation, by satisfying encoding constraints (bit-wise
logic relations) imposed on the binary codes that replace the symbols. The inputencoding problem
is well understood. Efficient algorithms are available for two-level implementations and are under
development for multi-level implementations. The output encoding problem has seen important
contributions, butmoreworkneeds to be done and efficient algorithms developed.

1 Introduction

Descriptions of logic systems use variables that can take a finite number of values. They are called
symbolic variables, or, in logic jargon, multiple-valued variables. It is possible to define and optimize
multiple-valued logic functions and some optimization tools are available for that purpose [26]. However,
most logic circuits implementations are restricted tobinary values. Therefore, symbolic (multiple-valued)
descriptions of logic functions at the structural level must be transformed into Boolean (two-valued)
representations by replacing each symbolic entry by Boolean vectors. An assignment ofBoolean vectors
to symbolic entries is called an encoding.

Theoptimization of logic functions performed onthe Boolean representation depends heavily onthe
encoding chosen to represent the symbolic variables.

The cost function that estimates theoptimality of an encoding depends onthetarget implementation:
two-level or multi-level. 1\vo-level implementations optimize the number of product-terms or the area
of a programmable logic array (PLA). Multi-level implementations optimizethe number of literals of
a technology-independent representation of the logic. Optimality may be based on more complex cost
functions that takeintoaccount other criteria, liketestability. Itmayevenbethecase thatarea becomes a
secondary optimization objective asin thecase of state assignment for asynchronous sequential circuits,
where the main concern is the correctness of the behavior of the encoded circuit.



Inthis paper we concentrate on encoding problem arising from implementation ofcombinational and
synchronous sequential circuits. Some of the solutions presented may be extendible to handle encoding
problems of asynchronous sequential design.

The following optimal encoding problemsmay be defined.
(A) Optimal encoding of inputs of a logic function. A problemin class A is the optimal assignment

of opcodes for a microprocessor.
(B) Optimal encoding of outputs of a logic function.
(C) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic

function.

(D) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic
function, where the encoding of the inputs (or some inputs) is the same as the encoding of the outputs
(or some outputs). Encodingthe states of a finite state machine (FSM) is a problemin classD sincethe
statevariables appear both as input (present state) andoutput (next state) variables. Another problemin
classD is the encoding of the signals connecting two (ormore)combinational circuits.

Some approaches to the encoding problem, such as those in [1] and [9], use heuristics to direct
the encoding, but they cannot predict the relation between the symbolic description andthe encoded
optimized logic.

Another paradigm, [7], involves optimizing the symbolic representation (symbolic minimization),
and then transformingthe optimized symbolic description into a compatible two-valued representation,
by satisfyingencodingconstraints (bit-wiselogicrelations) imposedon the binarycodes thatreplace the
symbols. This approach guarantees anupperbound on the sizeof the implementedmachineprovided all
the encoding constraints are satisfied.

Encodingvia symbolic minimization may beconsidered athree step process. The first phaseconsists
of multiple-valued optimization. The second step is to extract constraints on the codes of the symbolic
variables, which, if satisfied, guarantee the existence ofacompatible Boolean implementation. The third
stepis assigningto the symbols codes ofminimum lengththat satisfy these constraints, if the latterimply
a set of non-contradictory bit-wise logic relations.

When the target implementationis two-levellogic,the first stepmay consistofoneormore calls [7,6]
to amultiple-valued minimizer [26], afterthe symbolic variables havebeen denotedusing the positional
cube notation [35,26]. An exact algorithm to handle symbolic input and output variables was recently
provided in [10]. Then constraints are extracted and a constraints satisfaction problem is set up. In the
case of a multi-level logic implementation constraints are generated after performing multiple-valued
algebraic factoring [21].

A variety of other applications may also generate similarconstraints satisfaction problems,as in the
caseof synthesis for sequential testability [8], andoptimalre-encoding anddecompositionof PLA's [27,
11,42,31]. Given a PLA, it is possible to group the inputsinto pairs andreplace the input bufferswith
two-bit decoders to yield a bit-paired PLA with the samenumberofcolumns and no more product-terms
than the original PLA [30] In the more general case, a single PLA is decomposed into two levels of
cascaded PLA's. A subset of inputs is selected such that the cardinality of the multiple-valued cover,
produced by representing all combinations of these inputsasdifferentvaluesof a singlemultiple-valued
variable, is smaller than the cardinality of the original binary cover. The encoding problemconsists of
finding thecodesofthe signals betweenthePLA's, so thattheconstraints imposedby themultiple-valued
cover are satisfied.

Using the paradigm of symbolic minimizationfollowed by constraints satisfaction, the most common
types of constraints that may be generated [7,6,10, 29,28] are three. The first type, generated by the
input variables, areface-embedding constraints. The two types generated by the output variables are



dominance and disjunctive constraints. Each face-embedding constraint specifies that a set of symbols
is to be assigned tooneface of abinary n-dimensional cube and noother symbol should be in that same
face. Dominanceconstraints require that the codeofa statemust bit-wise cover the code ofanother state.
Disjunctive constraints specify that thecode of astate beexpressed as thebit-wise disjunction (oring) of
two or more other symbols.

In this paper we will survey important ideas and algorithms that marked therecent progress in this
area, with emphasis towards the contributions made by our research group. When the target logic is
two-level, the achievements have been noticeable. In that case, the input encoding problem has been
completelyunderstood [7] andefficientalgorithms for satisfaction of input constraints areavailable [38,
28]. Important contributions have been made for the input and output encoding problem [6, 38, 10].
Exact solutions [10] are still very expensive for non-trivial examples andmorework to find efficiently
high-quality solutions is coming [29]. Efficient algorithms for satisfaction ofinputand output constraints
are being developed [28].

When the target logic is multi-levelthe problem is much harder [9,19,14]. An important theoretical
contribution for input encoding has been made by [21], but more needs to be done to model the different
optimization operators available in a multi-level environment, and to take into account the presence of
symbolic output variables.

The organization of this paper is as follows. In Section 2 we introduce some basic definitions. In
Section 3 we present the encoding problem for optimal two-level implementations. In Section 4 we
introduce theencoding problem for optimal multi-level implementations. In Sections 5 and 6 algorithms
for thesolutions ofonlyinputand mixedinput-outputconstraints, respectively, are presented. InSection 7
someexperimental resultsof programs implementing successful approaches aregiven,while conclusions
are drawn in Section 8.

2 Definitions

2.1 Finite state machines

Fordefinitions of two-level logic minimization we refer to [3]. Here we describe the connection between
a FSM tabular description and its interpretation asa multiple-valued logic function.

A logic function may havemultiple-valued (called also symbolic)inputvariables andsymbolicoutput
variables. A symbolic inputor outputvariable takes on symbolic values. FSM's can be represented by
statetransition tables. State transitions tableshaveas many rows as transitionsin the FSM. The rows of
the table are divided into four fields corresponding to the primary inputs, present states, next states and
primary outputs of theFSM. Each field is a string of characters. The primary inputsmay be in boolean or
symbolic form. Note that the input andoutput patterns may containdon't careentries. A statetransition
tabledefines a symbolic cover of the combinational componentofa FSM. The rows of the statetransition
table are called symbolic implicants of the symbolic cover. The symbolic cover representation may be
seen asa multiple-valued logicrepresentation, where each present state mnemonicis one of the possible
valuesof a present-state multiple-valued variable. A similar identification holds for the next states (and
the proper inputs andoutputs, if they are symbolic).

2.2 Boolean networks

For definitions of multi-level logicminimization we refer to [4]. Here we repeat the most basic ones.
A boolean network is a directed acyclic graph, whereeach node n, is associated with:



1. a variable y, and

2. a representation of a logic function /,.

An arc connects node j withnode i if therepresentation of /, depends on yj (e.g. in f$ = yo + y\yi, there
are arcs from no, n\ and n-i to 713).

Eachnode functioncaneitherbe represented in sum-of-products form orinfactoredform. A factored
form is recursively defined as:

1. a literal (i.e. a booleanvariable or its complement),

2. a sum of factored forms,

3. a product of factored forms.

E.g. / = ab(c + d) + cd and / = abc + (ab + c)d are both factored forms of the function whose
sum-of-products can be / = abc+ abd+ cd. Neither factored forms nor sum-of-product forms are a
canonical representation of boolean functions.

The cost of a boolean network is typically estimated as the sum over all nodes of the number of
literals in a minimum (i.e. one with a least number of literals) factored form of the node function. This
cost estimation has a good correlation with the cost of an implementation of the network in various
technologies, e.g. standard cells or CMOS gatematrix.

3 Encoding for two-level implementations

3.1 Early work

Among the first to define input and output encoding problems for combinational networks were [5]
and [24]. The former based his theoryof inputencoding on partitions and set systems. The latter tried
to minimize the variable dependency of the output functions and studied the problem of the minimum
number of variablesrequired for a good encoding.

There is arichearly literature on the state assignment ofFSM's, although it hasbeenrarely castasa
general encoding problem. In [1], the state assignment problem was formulated as a graph embedding
problem, where a graph represents adjacency relations between the codesof the states, to be preserved
by a subgraph isomorphism on the encoding cube. The objective was to minimize the numberof gates
of the final implementation. Others, as [15, 34, 16, 12], proposed algebraic methods based on the
algebra of partitions andon the criterion ofreduced dependency. These approaches sufferedfromaweak
connection with the logic optimization steps after the encoding. More recent approaches [32, 33] rely
on local optimization rulesdefinedon a control flowgraph. Thererules are expressed as constraints on
the codes of the internal variables and an encoding algorithm tries to satisfy most of these constraints.
Unate state assignments to guarantee testability by construction wereproposed first in [36]. The logic to
compute the outputsandthe encodingof the next state is said to be unatein a given state variable, if the
output and next state functions can be expressed as sums of products where the given variable appears
eitheruncomplemented or complemented, but not both. In [25] a case was made for a variation of unate
encoding called half-hotencoding that may allow sometimes savings in the number of columns of the
encoded PLA. Half-hot encodings have exactly half the total number of state variables equal 1. The
penalty on the number of necessary productterms was not addressed.



3.2 Multiple-valued minimization

Advances in the state assignment problem, reported in [23, 3, 7], made a key connection to multiple-
valued logic minimization, by representing the states of a FSM as the set of possible values of a single
multiple-valued variable. A multiple-valued minimizer, such as [26], can be invoked on the symbolic
representation of the FSM. This can be done by representing the symbolic variables using the positional
cube notation [35,26]. The effect of multiple-valued logic minimization is to group together the states
that are mapped by some input into the same next-state and assert the same output. To get a compatible
boolean representation, one must assign each of the groups of states obtained by MV minimization,
(called face or input constraints) to subcubes of a boolean fc-cube, for a minimum k, in a way that each
subcube contains all andonly all the codesof the states included in the face constraint. This problem is
called face embedding problem. The state table of aFSM andits 1-hotencodedrepresentation is shown
in Figure 1.

It is worth mentioning thatthe face constraints obtained through straightforward symbolicminimiza
tion are sufficient, butnotnecessary to find a two-valued implementation matching the upper bound of
themulti-valued minimized cover. As it was already pointed out in [6], for each implicant of a minimal
(orminimum) multi-valued cover, one can compute anexpanded implicant, whose literals havemaximal
(maximum) cardinality and areduced implicant whose literals have minimal (minimum) cardinality. By
bit-wise comparing the corresponding expanded and reduced implicant, one gets don't cares inthe input
constraint, namely, inthe bitpositions where the expanded implicant has a 1and the reduced implicant
has a 0. The face embedding problem with don't cares becomes one of finding a cube of minimum
dimension k, where, for every face constraint, onecan assign the states asserted to vertices of a subcube
that does not include any state not asserted, whereas the don't care states can be put inside oroutside
of that subcube. One can build examples where the presence of don't cares allows to satisfy the input
constraints inacube of smaller dimension, than itwould be possible otherwise. In Figure 2the expanded
and reduced minimized multi-valued covers of the FSM of Figure 1 are shown. Figure 3 shows the
expanded and reduced implicants of the same FSM and the generation of the implied don't care face
constraints.

3.3 Symbolic minimization

Any encoding problem, where the symbolic variables only appear in the input part, can be solved
by setting up a multiple-valued minimization followed by satisfaction of the induced face constraints.
However, the problem of state assignment of FMS's isonly partially solved by this scheme, because the
encoding of the symbolic output variables isnot taken into account (e.g. the next state variable). Simple
multiple-valued minimization disjointly minimizes each of the on-sets of the symbolic output functions,
and therefore disregards the sharing among the different output functions taking often place when they
are implemented by two-valued logic. We will see now more powerful schemes to deal with both input
and output encoding.

In [6, 38] a new scheme was proposed, called symbolic minimization. Symbolic minimization
was introduced toexploit bit-wise dominance relations between the binary codes assigned to different
values of a symbolic output variable. The fact is that the input cubes of a dominating code can be
used as don't cares for covering the input cubes of adominated code. The core of the approach is a
procedure to find useful dominance (called also covering) constraints between the codes ofoutput states.
The translation ofacover obtained by symbolic minimization into acompatible boolean representation
defines simultaneously a face embedding problem and an output dominance satisfaction problem.
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Figure 1: Initial and 1-hot encoded covers of FSM-1
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Figure 2: Expanded and reduced minimized covers of FSM-1
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Figure3: Expanded andreducedimplicantsanddon't care face constraints of FSM-1

(1) 10 stl st2

(2) 00 st2 st2

(3) 01 st2 st2

(4) 00 st3 st2

(5) 10 st2 stl

(6) 10 st3 stl

(7) 00 stl stl

(8) 01 st3 stO

(9) 11 stl stl

(10) 11 st3 st3

(11) 11 stO stO

00

00

00

0

0

d') -0 stl,st2 st2 11

(2') 0- st2,st3 st2 00

(3') 10 st2,st3 stl 11

(4') 00 stl stl

(5') 01 st3 stO 00

(6') 11 stl,stO stl 10

(7') 11 st0,st3 st3 01

Figure 4: Covers of FSM-2 before and after symbolic minimization

Notice that any output encoding problem can be solved by symbolic minimization. Symbolic
minimization was applied also in [27], where a particular form of PLA partitioning is examined, by
which the outputs are encoded to create a reduced PLA that is cascaded with a decoder. However,
to rnimic the full power of two-valued logic minimization, another fact must be taken into account.
When the code of a symbolic output is the bit-wise disjunction of the codes of two or more other
symbolic outputs, the on-set of the former can be minimized by using the on-sets of the latter outputs,
by redistributing some cubes. An extended scheme of symbolic minimization can therefore bedefined
to find useful dominance and disjunctive relations between the codes of the symbolic outputs. This is
currently investigated in[29]. The translation ofacoverobtained byextended symbolic minimization into
acompatible boolean representation induces aface embedding, output dominance and output disjunction
satisfaction problem.

In Figure 4, we show the initial description ofaFSM and an equivalent symbolic cover returned by
anextended symbolic minimizationprocedure.

The reduced cover is equivalent to the original one if we impose the following constraints on the
codes of the states.



(1") -0 0- 00 11

(2") 0- -0 00 00

(3") 10 -0 01 11

(4") 00 01 01

(5") 01 10 11 00

(6") 11 -1 01 10

(7") 11 1- 10 01

Figure 5: Encoded cover of FSM-2

Product terms (1'), (3')and (4') are consistent with theoriginal product terms (5) and (7) if weimpose
code(stl) > code(st2). In a similar way, product terms (2') and (5') are consistent with the original
product term(8)ifwe imposecode(stO) > code(stl). The product terms(1') and (2') yieldalso the face
constraints face(stl, st2) and face(st2, st3), meaning that thecodes of stl and stl (stl and st3) span
a face of a cube, to which the code of no otherstate can be assigned. The previous face anddominance
constraints togetherallow to representthe fouroriginal transitions (1), (2), (3), (4) by two productterms
(l')and(2').

Product term (3') is equivalent to the original transitions (5) and (6) and yields the face constraint
face(stl, st3). This savingis due to a pureinput encodingjoin effect.

Finally the product terms (6'), (7') represent the original transitions (9), (10) and (11). The next
state of (11) is stO, that does not appear in (6') and (7'). But, if we impose the disjunctive constraint
code(stO) = code(stl)Vcode(st3), i.e. we force the code of stO to be the bit-wise or of the codes of
stl and st3> we canredistribute the transition (11)between the productterms (6') and (7'). The product
terms (6') and (7') yield has also the face constraints face(stl, stO) and face(st0,st3); together with
the previousdisjunctive constraintthey allowthe redistribution of transition (11).

We point out that if we perform a simple MV minimization on the originaldescription we saveonly
one product term, by the join effect taking place in transition (3').

An encoding satisfying all constraints can be found andthe minimum code length is two. A solution
is given by sto = 11, st\ = 01, s<2 = 00, s<3 = 10. If we replacethe statesby the codes in the minimized
symbolic cover,we obtainan equivalentBoolean representation thatcanbe implemented with a PLA, as
shownin Figure 5. Note thatwe replace the groups of states in the present state field with the unique face
assigned to them andthatproduct term (2") is notneeded, because it asserts only zerooutputs. Therefore
the final cover has only six product terms.

3.4 Exact encoding with generalized prime implicants

Another procedure for output encoding has been reported in [10]. It guarantees an exact solution and
it is based upon a frame different from that used in symbolic minimization and its natural extensions.
A notion of generalized prime implicants (GPI's), as an extension of prime implicants defined in [22],
is introduced,and appropriate rules of cancellation are given. Each GPI carries a tag with some output
symbols. If a GPI is accepted in a cover, it asserts as output the intersection (bit-wise and) of the codes
of the symbols in the tag. To maintain functionality, the coded output asserted by each minterm must
be equal to the bit-wise or of the outputs asserted by each selected GPI covering that minterm. Given a
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Figure 6: Initial cover, GPI's, encodable selection of GPI's and encoded cover of OUT-1

selectionofGPI's, each minterm yields abooleanequationconstrainingthe codes ofthe symbolic values.
If an encoding can be found that satisfies the system of boolean equations, then the selection of GPI's
is encodable. We will explain with some more detail in Section 6.2 the notion of encodability of GPI's.
Given all the GPI's, one must select a minimum subset of them that covers all the minterms and forms

an encodable cover. This can be achievedby solvingrepeated covering problems that return minimum
covers of increasing cardinality, until an encodable cover is found, i.e. the minimum cover that is also
encodable. An encodable cover yields a compatible set of face, dominance and disjunctive constraints
on the codesof the symbols. In order to minimize the area of a two-levelimplementation, one must find
an encoding satisfying allrelations with a minimumnumber of bits. In this way the problem is reduced
to the familiar paradigm ofconstraints satisfaction. Figure 6 shows output encoding based on GPI'swith
a simple example taken from [10].

4 Encoding for multi-level implementation

Automatic multi-level logic synthesis programs are nowavailable to the IC designer ([13], [4], [2]), and
sometimes a PLA implementation of thecircuit does notsatisfy thearea/timing specifications.

A two-level encoding program, such as those described inthe previous sections, can often give avery
good result when multi-level realization is required, butin order to get the maximum advantages from
multi-level logic synthesis we needa specialized approach.

This section describes such approaches, giving some information on therelative strengths and weak
nesses.

There are two mainclasses ofmulti-level encoding algorithms:

1. estimation-based algorithms, that define adistance measure between symbols, such that if "close"
symbols are assigned "close" (in terms of Hamming distance) codes it is likely that multi-level
synthesis will give good results. Programs such as mustang [9] and jedi [19] belong to thisclass.

2. synthesis-based algorithms, that use theresult of a multi-level optimization on the unencoded or
one-hot encoded symboliccover to drive theencoding process. Programs such asmis-MV [21,17]
and muse [14] belong to this class.

4.1 Mustang

Mustang uses thestate transition graph toassign aweight toeach pair of symbols. Thisweight measures
thedesirability of giving the two symbols codes that are "as close aspossible".



Mustang has two distinct algorithms toassign the weights, oneof them ("fanout oriented") takes into
account the next state symbols, while the other one ("fanin oriented") takes into account the present state
symbols. Such apair ofalgorithms iscommon to most multi-level encoding programs, namely mustang,
jedi and muse.

The fanout oriented algorithmis as follows:

1. For each output o build a set 0° of the present states where ocan beasserted. Each state p in the
sethas a weight OW£ that is equal to the number of times that o is asserted inp.

2. For each next state n build a set Nn of the present states that have n as next state. Again each
state p in the set has a weight NW£ that isequal tothe number of times that n is a next state ofp
(each cube under which a transition can happen appears as a separate edge in the state transition
graph) multiplied by thenumber of state bits (the number of output bitsthatthenext state symbol
generates).

3. Foreachpairof states k,I let theweight of theedge joining them in the weight graph be
£„<=* NW£ x NWr + Eoeo OW£ x OW?.

This algorithm gives a high weight to present state pairs that have a high degree of similarity, if
similarityis measured as the numberof commonoutputsasserted by the pair.

The fanin oriented algorithm (almost symmetric with the previousone) is as follows:

1. For each input i build a set ON* of the next states that can be reached when t is 1, and a set OFF*
of thenext states thatcan bereached when i is 0. Each state n in ON* has a weight ONW^ that
is equal to the number of times that n can be reached when i is 1, and each state n in OFF* has a
weight OFFW„ that is equal to the numberof times that n can be reached when i is 0.

2. For each present state p build a set Pp of the next states that have p as present state. Again each
state n in the set has a weight PW£ that is equal to the number of times that n is a next state of p
multiplied by the number of state bits.

3. For each pair of states &, / let the weight of the edge joining them in the weight graph be
£P€S PWl x PWf + £*/ ONWi x ONWi + OFFWi x OFFW}.

This algorithm tries to maximize the number of common cubes in the next state function, since next
states that have similar functions will be assigned close codes.

The embedding algorithm identifies clusters of nodes (states) that are joined by maximal weight
edges, and greedily assigns to them minimally distant codes. It tries to minimize the sum over all pairs
of symbols of the product of the weighteddistance among the codes.

The major limitation of mustang is that its heuristics are only distantly related with the final min
imization objective. It also models only common cube extraction, among all possible multiple-level
optimization operations ([4]).

4.2 Jedi

Jediis aimed at generic symbolencodingrather than at state assignment, and it appliesa set of heuristics
that is similar to mustang's to define a set of weights among pairs of symbols. Then it uses either a
simulatedannealing algorithmor a greedy assignment algorithmto perform the embedding.
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The proximity of two cubes in a symbolic cover is defined asthenumber of non-empty literals in the
intersection of thecubes. It is the "opposite" of theHamming distance betweentwo cubes,definedasthe
number ofempty literals in theirintersection. For example, cubes abc and cdehaveproximity4, because
theirintersection has four non-empty literals (a, 6,d and e), and distance 1, because their intersection has
an empty literal (c D c).

Each pair of symbols (s,-, Sj) has a weight that is the sum over all pairs of cubes in the two-level
symbolic cover where st- appears in onecube and Sj appears in the second oneof the proximity between
the two cubes.

Thecost function of thesimulated annealing algorithm isthesumoverallsymbolpairsoftheweighted
distance among the codes.

The greedy embedding algorithm chooses at each step the symbol that has the strongest weight
connection with already assigned symbols, and assigns to it a code that minimizes the above cost
function.

4.3 Muse

Muse uses a multi-level representation of the finite state machine to derive the set of weights that are
used in the encoding problem.

Its algorithm is as follows:

1. encode symbolic inputs and outputs with one-hot codes.

2. use misll ([4]) to generate an optimized boolean network.

3. compute a weight for each symbol pair(see below).

4. use a greedy embedding algorithm trying to minimizethe sum overall state pairs of the weighted
distance among the codes.

5. encode the symbolic cover, and run misll again.

The weightassignment algorithm examines each nodefunction (in sum-of-product form) to seeifany
of the following cases applies (S; denotes a state symbol, s, denotes the corresponding one-hot present
statevariable, other variablesdenote primaryinputs):

1. s\ab -f szab + ...: if S\ and 52 are assigned adjacent codes, then thecubes can be simplified to a
single cube, and we obtain a saving in the encoded network cost.

2. siab+S2abc+...: if Si and 52 are assigned adjacent codes, then thecubes can besimplified (even
though they will remain distinct cubes, due to the appearance of c only in the second one) and a
common cube (the common state bits and ab) can be extracted. Forexample, if S\ is encoded as
cqc\C2 and 52 is encoded as c&c7c2, theexpression above can be simplified as coc\ab + cociczabc.

3. s\abc+ siabd + ...: same as above, butonly acommon cube(the common state bits and ab) can
be extracted.

For each occurrence of the above cases theweight of the state pair is increased by an amount that is
proportional to the estimated gain if the two states are assigned adjacent codes. For example, if abc is
extracted from / = abed, g = abce, (cost 8 literals) then we obtain / = hd, g —he, h = abc (cost7
literals), and the gain obtained extracting his I.

11



Each gain is also multiplied by the number of distinct paths from the node toa network output. This
heuristic gives a higher gain to common subexpressions that are used in many places in the network,
sothat their extraction gives a high reduction in the network cost. If the codes in the pair are assigned
adjacent codes, then hopefullymisllwill beable toextract again useful subexpressions afterthe encoding.

The algorithm described above takes into account only present state symbols. Another heuristic
algorithm is used to estimate the "similarity" among the next state functions. This "next-state oriented"
algorithm adds to the weight of each pair of states the gain of common subexpressions that can be
extracted from the functions generating that pair of next states in the one-hot encoded network. For
example, if n, denotes a one-hot next state variable and JV, the corresponding state symbol, n\ = abed
and n2 = a6ce have a common subexpression abc of gain 1 (see above), so the weight of the (NUN2)
pair is incremented by 1 due to this subexpression.

The embedding algorithm, usingthe weights computed above, chooses the unencoded state that has
a maximum weight connection with the already encoded states and assigns to it a code that has the
minimumweighteddistance fromthe already encoded states.

Muse uses acost function that is acloser representation of reality with respect tomustang and jedi,
but there is no guarantee that the optimizations performed on the one-hotencodednetworkare the best
ones for all possible encodings, and that misllwillchoose to perform the same optimizations when it is
run on the encoded network.

4.4 Mis-MV

In order to have a satisfactory solution of themulti-level encoding problem we musthave acloser view
of the real cost function, the number of literals in the encoded network. The weight matrix is rather far
from giving acomplete picture of what happens to this cost function whenever an encoding decision is
made.

Following the pattern outlined in the previous sections for the two-level case, we should perform a
multi-level symbolic minimization, and derive constraints that, if satisfied, can guarantee some degree of
minimality of the encoded network.

Mis-MV, unlike the previous programs, performs a full multi-level multiple-valued minimization of
a network with a symbolic input. Its algorithms are an extension to the multiple-valued case of those
used bymisll (the interested reader isreferred to[21,17] for adetailed explanation of these algorithms).

Its overall strategy is as follows:

1. read the symbolic cover. The symbolic output is encoded one-hot, the symbolic input is left as a
multiple-valued variable.

2. perform multi-level optimization (simplification, common subexpression extraction, decomposi
tion) of the multiple-valued network.

3. encode the symbolic input so that the total number of literals in the encoded network is minimal
(simulated annealing isused for this purpose, whileextensions ofconstrained embedding algorithms
from the two level case arebeing studied).

A setof theorems, proved in [21], guarantees that step 2 of theabove algorithm is complete, i.e. that
all possible optimizations in all possible encodings can beperformed in multiple-valued mode provided
that the appropriate cost function is available.

The last observation is a key to understand both strengths and limits of this approach: the cost
function thatmis-MV minimizes is only an approximate lowerbound on the numberof literals thatthe
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encoded networkwillhave(much in the same spirit aswhathappens in the two-level case with symbolic
minimization). This lowerboundcan be reached if and only if all the faceconstraints from all the nodes
in the multiple-valuednetwork canbe simultaneously satisfied in a minimum lengthencoding, which is
not possible in general (eachnode has a multiple-valued function, so the constraintscan be extracted as
described in Section 3). This lowerboundis approximate because further optimizationson the encoded
network can still reduce the number of literals.

In order to take this limitation into account, mis-MV computes at each step the currently optimal
encoding,and uses it as an estimate of the cost of eachmultiple-valuednode.

For example, if one denotes by 5^*2>3'4^ amultiple-valued literal representing the boolean function
that is true when variable 5 has value 1,2,3 or 4, the estimatedcost of S*1,2,3,4* with the codes:
e(S<'>) =croc? e(S<2>) =cjc2c3 e(S<3>) =c^c* e(S<4>) =c^cs e(5<5>) =c,qq e(5<6>) =clC2C3
would be 1, sincethe minimum sum of products expression forcicjcj + cjczCi + c\c£ci -I- cTc2C3 with the
don't cares (unused codes) ciC2^ + C1C2C3 is c\.

Currently mis-MV does not handle the output encoding problem. Its approach, though, can be
extended to handle a symbolic minimization procedure similar to what is explained in section 3, and
therefore to obtain a solution alsoto this problem.

4.5 Comparison of different methods

Programs such as mustang and jedi rely only on the two-level representation of the symbolic cover to
extract asimilarity measure between the context in which each pair of symbols appear. This measure is
used todrive agreedy embedding algorithmthat tries tokeep similar symbols close inthe encoded boolean
space. This has clearly only aweak relation with the final objective (minimum cost implementation ofa
boolean network), and itmakes an exact analysis ofthe algorithm performance on benchmark examples
hard.

Some improvement can be seen in muse, that uses aone-hot encoding for both input and output
symbols, and then performs amulti-level optimization. In this way at least some of the actual potential
optimizationscan beevaluated, and their gain can be used to guide the embedding, but there isno guarantee
ofoptimality in this approach, and the output encoding problem is again solved with asimilarity measure.

Full multi-level multiple-valuedoptimization (mis-MV) brings us closer toour final objective, because
all potential optimizations can in principle be evaluated. The complexity of the problem, though, limits
thispotentiality to an almost greedy search, asin misll.

Still we do not have acomplete solution to the encoding problem for multi-level implementation
because:

1. we need to improve our estimate of the final cost to be used in multi-level multiple-valued opti
mization.

2. the problem of optimal output encoding must be addressed directly.

The algorithms described in this section, though, can and have been successfully used, and the path
towards an optimal solution is at least clearerthan before.

5 Satisfaction of input constraints

Many heuristic algorithms for heuristic satisfaction of input constraints have been published [7, 6, 11,
38, 20]. In [38] an exact solution, based on abranch-and-bound strategy, is also described. An exact
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solution provides an encoding that satisfies all face constraints within aminimumcode-length. Aheuristic
solution satisfies all constraints, but does not guarantee that the code-length is minimum. Obviously,
1-hot encoding provides always asolution, although at the price ofacode-length equal to the number of
symbols to encode.

In [7] the face constraints become the rows of amatrix M. The goal is finding a code matrix A,
whose rows are the codes of the states. The number ofcolumns of Ais the code-length. Itisobserved
thattrivial constraints andconstraints which are the bit-wise intersection of two or moreconstraints can
be discarded (compaction criteria) and that the transpose of M isasolution to the constraint problem,
i.e. M* = A. In [7] arow-based encoding method was presented, where A is computed row by row,
i.e. by computing the encoding of the symbols one at atime. This method fails to be effective for large
examples. In [6], acolumn-based encoding scheme was proposed, where A is constructed column by
column. The constraint matrix iscompacted using the previous compaction criteria and Aisconstructed
incrementally as transpose of the constraint matrix.

In [11] the main compaction criterion is extended toconstraints obtained by bit-wise intersection of
twoormorerows ortheir bit-wise complements. Since checking for relationships between all constraints
is too time- consuming, a procedure of constraint ordering is proposed. Given a particular ordering of
rows of M, thecode matrix A is constructed incrementally, column by column. Constraints which are
already satisfied are discarded. The cost of a particular ordering is the number of columns of A. Then,
the ordering of rows of the constraint matrix M is changed and A is recomputed. It is possible that a
different code-length is found. An optimization problem isdefined, whose objective is to find anordering
thatminimizes thenumberofencoding bitsrequired. A constructive heuristic algorithm anda simulated-
annealing-based algorithms are proposed. The authors state that their algorithm can be generalized to
the case of given code-length and theobjective to optimize aweighted sumof the face constraints. Since
one may not be ableto satisfy all faceconstraints within a givencode-length, a weight foreachconstraint
quantifies the gain or loss for satisfyingit or not. The weightsare suggested by the cost function of the
specific logic synthesis problem.

In [38] anexact solution to the face embedding problem is described andimplemented. It is based on
reducing the problem to embedding partially ordered sets (posets). A setof inputconstraints induces a
poset, by ordering all the constraints according to the setinclusion relation. Also the hypercubein which
theembedding takesplace is represented by its underlyingface-poset, by ordering all faces ofallavailable
dimensions according to the boolean inclusion relation. Satisfying the input constraints thus reduces to
the problem of finding the minimum cube dimension, so that in the cube there is a poset equivalent to
theone induced by the given setof inputconstraints. Equivalence ofposetsis based on the preservation
of the inclusion and intersection operations between the elements of the posets. A branch-and-bound
procedure for solving poset embedding is described. Counting arguments are used to cut the search
space. Although not alwayscomputationally feasible, this exactsolution, which was the first published,
allowed thecollection of a setofexactresults against which to compare heuristic solutions. Moreover, a
computationally efficientversion of it, with heuristics toreduce the search space, is thecoreof aheuristic
algorithm, ihybrid, also described in [38]. The algorithm ihybrid maximizes, fora given code-length, a
weighted sum of the face constraints. It hasperformed verywell under intensive experimentations.

In [37] it was proposed an algorithm to find correct (i.e. with no critical races) Unicode (i.e. each
state is coded with a minterm) single transition time (STT, i.e. all variables that must change during a
transition are allowed to change simultaneously) state assignments of asynchronous sequential circuits.
The problem is reduced to generating setsofdisjoint 2-block partitions of the setof states (dichotomies),
defining and computing maximal compatibles among them and covering the original dichotomies with
a minimum number of maximal compatible dichotomies. In [43] it was noticed that a face constraint
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is equivalent to a collectionof dichotomies (called seed-dichotomies), one for each state that is 0 in the
input constraint. Each dichotomy has in oneblock all states that are 1 in the inputconstraint, and in the
other block one of the states that are0 in the input constraint. Once we have all seed-dichotomies, we
have reduced the face-embedding problem to solving acovering problem, asoutlined by [37].

In [28] a formulation is provided starting from the approach of [37, 43]. Results of a prototype
implementation indicate that, for almost all of thestandard FSM benchmark examples, theinput encoding
problem can besolved exactly. Thisnewapproach can beeasily extended toaweighted covering problem.
An extensionof the algorithm is alsounderinvestigation to handle a different cost function such as that
required in multi-level inputencoding, asseen in Section 4. Inthat case aminimumcodelength solution
is desired where those constraints are satisfied which yield the best savings in factored form literals
instead of product terms.

6 Satisfaction of input and output constraint

6.1 The problem of mixed input and output constraints

In [6] the proposed column-based heuristics handles not only face constraints, as already said, but also
dominance output constraints. In [10] a column-based heuristics is presented to include also disjunctive
constraints. When there are both input and output constraints, it is not possible to guarantee that
an encoding always exists, In [6, 10], the algorithms that build the solution are applied only after a
satisfiability checkdetermines thatthe given mixedconstraints are mutually compatible. The conditions
of satisfiability of a set of mixed constraints givenin [10] are:

1. The setofdominance constraints should notimplyof twocodes that each dominate theother. E.g.
code(stl) > code(stl), code(stl) > code(st3), code(st3) > code(stl).

1. For every disjunctive constraint, the setof dominance constraints should not imply of two orred
codes, that one dominate the other. E.g. code(stl) = code(stl) V code(st3), code(stl) >
code(st3), whichimplies code(stl) = code(stl).

3. There should benopair of disjunctive constraints, with thesame orred codes and different resulting
codes. E.g. code(stl) = code(stl)V code(st3), code(st4) = code(stl) V code(st3).

4. For every disjunctive constraint, the setofdominance constraints should notimplythat theresulting
code of the disjunction dominate a code that dominates all the orred codes. E.g. code(st\) =
code(stl) V code(st3), code(st\) > code(stA), code(st4) > code(stl), code(st4) > code(st3),
which implies code(stl) > code(stl) V code(st3).

5. For every triple si, si, s3 such that code(s\) > code(sl) and code(sl) > code(s3), no face
constraint should require si and s3 in one face and s2 not in that face.

6. For every disjunctive constraint, no face constraint should require the orred codes in one face and
the resulting code notin that face. E.g. given code(s\) = code(sl) V code(s3), no face constraint
should require s2 and s3 in one face and si not in that face.

A proofthat they are necessary and sufficient is not given in the paper. It is easy to show that these
conditions are necessary, while onecan show that, stated as they are, they are notsufficient. It is noteasy
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todetermine theminimum superset of rules that make them sufficient. For a discussion and acomplete
algorithm thatchecks satisfiability efficiently, the reader is referred to [28].

We give an overview of the constructive algorithm sketched in [10], for a set of (already shown)
satisfiable mixed constraints. Face constraints are compacted and an encoding equal to the transpose of
the face constraint matrix is built. Sets of unsatisfied dominance relations are satisfied by adding onebit
ata timeto thecodes, in a greedy fashion. An unsatisfied disjunctive relation is satisfied by raising bits
in the codes of the orred symbols. This may introduce violations of face constraints and decrease the
satisfied dominance relations, so bits are appended again to satisfy the violated face constraints. Then
one goes back to thedominance constraints that became unsatisfied and iterates theloop as manytimes
as needed to satisfy all constraints. It is claimed that the procedure always converges. No experiments
are available to showthe efficiencyandquality of the solutions.

In[38] it isdescribed also an algorithm, iohybrid, that maximizes, for agiven code-length, aweighted
sum of clusters of face and dominance constraints, obtained by avariant of symbolic minimization. It
is based on an extension of ihybrid, to handle also output constraints. Its performance is good, but not
of consistent quality. It compares favorably to the published results of the output encoding algorithm
implemented in [6], although different twists of the two algorithms do not make comparisons easy.

In [28] auniform framework for the efficient satisfaction of input and output constraints is provided.
This approach allows exact solutions as well as trade-off schemes between code-length and maximum
constraints satisfaction.

6.2 The encodability problem of GPI's

InSection 3 wereviewed exact encoding based on GPFs. Here wehighlight the encodability problem of
GPFs, to seehowit relates to theproblem of input and output constraints satisfaction. The selection of a
cover of GPFs induces a setof boolean equations, one for each minterm, stating that, for all GPFs that
include it,bit-wise oring the intersections of the codes of symbols inthe tags yields the output asserted by
thatminterm. If thecollection ofboolean equations hasa solution, thecoverofGPFs is called encodable.
The solution to theboolean equations is a set of compatible face, dominance and disjunctive constraints
on the codes of the symbols. The solution to the setof boolean equations is a two-step process. The
first step requires choosing for each boolean equation adominance ordisjunctive constraint that makes
it true. In the worst case onehas to try all possible selections. The second step requires checking the
compatibility of the chosen outputconstraints among themselves and with the face constraints of the
cover. This can be done efficiendy by checking the polynomial-complexity compatibility conditions of
a setof mixed constraints, already given in the Section6.1.

A formulation to both steps that finds also an encoding within a certain code-length via general
boolean satisfiability is proposed, even though itscomputational complexity isveryhigh.

Once a cover of GPFs has been found encodable, i.e. a set of satisfiable input and output relations
has beendetermined, onemust find an encoding satisfying all given relations withaminimumnumber of
bits. In this way the problem is reduced to the familiar paradigm of mixed input and output constraints
satisfaction, as definedin the previous subsection.

For example, theencodable selection of Figure 6 yields the following non-trivial boolean equations
(generated, in order,by the minterms 1101,1100,1111):

(code(outl) Acode(outl)) V (code(outl) Acode(out3)) = code(outl) (1)
code(outl) A code(outl) = code(outl) (1)
code(outl) A code(out3) = code(out3). (3)
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To satisfy the firstequation one can choose one of the three constraints:

code(outl) > code(outl)
code(cmt3) > code(out\)

code(outl) < code(outl) V code(out3).

The secondequationhasonly one possiblechoice:

code(outl) > code(outl).

The third equation has only one possible choice:

code(put\) > code(out3).

If onechooses thedisjunctive constraint to satisfy the first equation, onecan verify that one gets the
following compatible collection of mixed constraints:

code(outl) < code(outl) V code(out3)

code(outl) > code(outl)

code(outl) > code(out3).

The encoded cover of Figure 6 shows a minimum-length encoding that satisfies the previous set of
constraints.

7 Experimental results

We report some comparisons among available state assignment programs based on the techniques dis
cussedin the previous sections. Forthe experimentswe used the MCNC '89 set of benchmark FSM's.

7.1 The two-level case

We report one setof experiments thatcompare programs for two-level state assignments.
Table 1 summarizes the results obtained running the algorithms of NOVA ([38]), KISS ([7]) and

random state assignments. Theresults of NOVA were obtained running espresso ([26]) toobtain theinput
constraints and thesymbolic minimizer of NOVA built ontop of espresso toobtain themixedinput/output
constraints, NOVA to satisfy theconstraints on thecodes of thestates and of thesymbolic inputs (if any),
and espresso again toobtain the final area of the encoded FSM. The best result of thedifferent options of
NOVA was shown in theTable. The results of KISS were obtained running espresso to obtain the input
constraints, KISS to satisfy theconstraints on the codes of the states and of thesymbolic inputs (if any),
and espresso again toobtain the final area of the encoded FSM. Theareas under random assignments are
the best and the average of a statistical average of a numberof different (number of statesof the FSM +
number of symbolic inputs, if any) random state assignments on each example. The final areas obtained
by the best solution of NOVA average 20%less than thoseobtained by KISS, and30%less thanthe best
of a number of random state assignments. NOVA can use any number of encoding bits greater than or
equal to the minimum. The best results of NOVA on the benchmark of Table 1 have been obtained with
aminimum encoding length, butthis is notalways thecase. KISS uses acode-length sufficient to satisfy
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all input constraints. Since it satisfies theconstraints by an heuristic algorithm it doesnotalways achieve
the minimum necessarycode-length.

Notice that the lower bound provided by symbolic minimization is often larger than the best upper
bound achieved by encoding the FSM's, even though the available programs model only partially the
effects of output encoding. This means that output encoding is more important than input encoding on
the quality of final results.

Comparisons for some of the approaches mentionedabove [32,10] have not been carried out forthe
lack of an available implementation.

7.2 The multi-level case

We report a setofexperiments that correlate good two-level state assignment to thecorresponding multi
level logic implementation, comparing against an estimation-based multi-level encoding algorithm.

Table 2 reports thenumber of literals after running through the standard boolean optimization script
in themulti-level logic synthesis system misll ([4]) withencodings obtained by NOVA, MUSTANG ([9]),
JEDI ([19]) and random state assignments. In the case of NOVA only the best minimum code-length
two-level result was given to misll. MUSTANG was runwith -p, -n, -pt, -ntoptions and minimumcode-
length. JEDI wasrun with all available options and minimum code-length [18]. In all cases espresso
wasrun before misll. The final literal counts in a factored form of the logic encoded by NOVA average
30% less than the literal counts of thebestof anumber ofrandom state assignments. The best(minimum
code-length) two-level results of MUSTANG, and JEDI versus thebest(minimum code-length) two-level
results ofNOVA are also reported. Notice that in the case of MUSTANG and JEDI the run that achieved
the minimum numberofcubes is not necessarily the samethatachieved the minimum numberof literals.
In the case of NOVA only the best two-level result was fed intomisll, so the data reported refer to the
same minimizedcover. Eventhough NOVA was notdesigned as amulti-level state-assignment program,
its performances compare successfully with MUSTANG. Among the three programs, the best literal
counts are often given by JEDI. These data show that a state assignment that gives a good two-level
implementation also gives a good multi-level implementation. This is consistent with the experiments
reported in [40,41,39].

We reporttwo kinds of experimentsto verify the validityof mis-MV as input encoder:

• compare the relative importance of the various multi-valued optimizationsteps.

• compare mis-MV with some existing state assignment programs, such as JEDI ([19]), MUSE
([14]), MUSTANG ([9]) and NOVA ([38]). Notice that we want tocompare onlytheinput encoding
algorithms of these programs and so we need to "shut off' all effects due to the encoding of the
output part, captured by purpose (these programs embody alsoheuristics for the outputencoding
problem) orby chance. Therefore we replaced thecodes returned by each program in the present
stateonly,while the next statewas simplyreplaced by one-hotcodes.

The experiments were conducted as follows:

• a single simplified boolean script (using simplify only once) was used both for multi-valued and
binary valued optimization.

• the script was run twice in all cases.

• mis-MV:
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example random kiss nova

b-area a-area #bits #cubes area #bits #cubes area

bbara 616 649 5 26 650 4 24 528

bbsse 1089 1144 6 27 1053 4 29 957

bbtas 165 215 3 13 195 3 8 120

beecount 285 293 4 11 242 3 10 190

cse 1947 2087 6 45 1756 4 45 1485

dkl4 720 809 9 24 550 6 25 500

dkl5 357 376 6 17 391 5 17 289

dkl6 1826 1994 12 55 2035 7 54 1188

dkl7 320 368 6 19 361 5 17 272

dk27 143 143 4 9 117 4 7 91

dk512 374 418 7 18 414 5 17 289

donfile 1200 1360 12 24 984 5 28 560

exl 3120 3317 7 42 2436 6 37 2035

ex2 798 912 6 31 744 5 27 567

ex3 342 387 6 18 432 4 17 306

ex5 324 358 5 15 315 4 14 252

ex6 810 850 5 24 792 3 25 675

iofsm 560 579 4 16 448 4 15 420

keyb 3069 3416 8 47 1880 5 48 1488

markl 760 782 5 19 779 4 17 646

physrec 1677 1741 5 34 1564 4 33 1419

planet 4896 5249 6 89 4539 6 86 4386

si 3441 3733 5 81 2997 5 63 2331

sand 4278 4933 6 95 4655 6 89 4361

scf 19650 21278 8 140 18760 7 137 17947

scud 2262 2533 6 71 2698 3 62 1798

shiftreg 132 132 3 6 72 3 4 48

styr 5031 5591 6 91 4186 5 94 4042

tbk 5040 6114 na na na 5 57 1710

train11 221 241 6 10 230 4 9 153

TOTAL 65453 72002 na 51053

% 100 110 na 77

Table 1: Comparison of FSM's encoding for two-level implementation
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example jedi mustang nova jedi mustang nova random

#cubes #cubes #cubes #lit #lit #lit #lit

bbara 24 25 24 57 64 61 84

bbsse 30 31 29 111 106 132 149

bbtas 9 10 8 21 25 21 31

beecount 12 12 10 39 45 40 59

cse 52 48 45 200 206 190 274

dkl4x 29 32 26 106 117 98 164

dkl5x 19 19 17 67 69 65 73
dkl6x 64 71 52 225 259 246 402

donfile 33 49 28 76 160 88 193
exl 48 55 44 250 280 215 313
ex2 35 36 27 122 119 96 162

ex3 19 19 17 66 71 76 83

keyb 52 58 48 140 167 200 256

markl 17 19 17 66 76 86 116

physrec 39 37 33 132 159 150 178

planet 93 97 86 547 544 560 576

si 57 69 63 152 183 265 444

sand 105 108 96 549 535 533 462

scf 147 148 137 812 791 839 890
scud 57 83 62 127 286 182 222

shiftreg 4 4 4 0 2 0 16

styr 100 112 94 508 546 511 591

tbk 57 136 57 278 547 289 625

trainll 11 10 9 27 37 43 44

TOTAL 1113 1288 1033 4678 5394 4986 6407

% 107 124 100 93 108 100 130

Table 2: Experiments on FSM's encoding for two and multi-levelimplementation
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1. espresso was run on the unencoded machine.

2. all or partof the first script was run in mis-MV'smulti-valued mode.

3. the inputs were encoded, using the simulated annealing algorithm.

4. the remaining partof the first scriptand the second scriptwere run in binary-valuedmode.

• JEDI, MUSE, MUSTANG and NOVA:

1. each program was run in input oriented mode ("-e i" for JEDI, H-e p" for MUSE, "-pc" for
MUSTANG and "-e ih" for NOVA) to generate the codes.

2. the symbolic input was encoded.

3. espresso was run again,using the invalid states as don't cares.

4. the script was executed twice.

We performed seven experiments on eachmachine, four using JEDI,MUSE, MUSTANG andNOVA,
andthreeusingmis-MV. The experimentson mis-MV differedin the pointofthe scriptwhere the symbolic
inputs were encoded (mis-MV can carryon the multi-level optimizing operationson a multiple-valued
network or on the encoded binary-valued network):

1. at the beginning. At this point, both mis-MV and NOVA extract the same face constraints by
multiple-valued minimization. The two programs get different results because of the different face
constraints satisfaction strategies. mis-MV satisfies the face constraints with a simulatedannealing
algorithm that minimizes the literal count of a two-level implementation. The cost function is
computed by calling espresso and counting the literals. NOVA satisfies the input constraints with
a heuristic deterministic algorithm that minimizes the number of product-terms of a two-level
implementation.

2. after simplify, to verify multiple-valued booleanresubstitution.

3. after algebraic optimization (gkx, gcx,...), to verify the full powerof mis-MV.

Table 3 contains the results, expressed as factored form literals.

8 Conclusions

The input encoding problem for two-level implementations has been completely understood [7] and
efficient algorithms for satisfaction of input constraints are available [38, 28]. Important contributions
havebeen made for the input and outputencoding problem for two-level implementations [6, 38, 10].
Exact solutions [10] are still very expensive for non-trivial examples and more work is needed to find
efficiendy high-quality solutions [29]. Efficient algorithms for satisfaction of inputand output constraints
are currentiy investigated [28].

When the target logic is multi-level the problem is much harder. Several heuristic approaches have
been proposed [9, 19, 14]. An important theoretical contribution for input encoding has been made
by [21], but more needs to be done, especially to take into account the presence of symbolic output
variables.

It is interesting to notice that the problems of input and output encoding for logic synthesis, both
those already understood, as input encoding, or still subject of active research, as output encoding,
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example jedi muse mustang nova best

mis-MV

beginning simplify algebraic
optimization

bbara 96 99 96 106 84 84 84 85

bbsse 125 126 148 151 131 130 132 131

bbtas 34 36 37 32 31 35 31 31

beecount 56 60 65 70 56 62 56 58

cse 189 192 208 214 195 191 199 195

dkl4 96 102 108 98 79 97 79 81

dkl5 65 65 65 65 68 65 68 69

dkl6 254 244 314 351 247 225 247 261

dkl7 63 58 69 58 62 58 62 64

dk27 30 29 34 38 27 27 27 27

dk512 73 73 78 93 68 70 68 69

donfile 132 131 195 186 123 127 123 123

exl 256 239 252 246 232 240 232 237

ex2 176 169 197 167 144 143 144 154

ex3 87 96 98 98 82 82 86 82

ex4 71 72 73 84 72 90 74 72

ex5 79 79 80 83 69 67 69 69

ex6 93 92 90 98 84 85 85 84

ex7 87 84 100 94 78 89 79 78

keyb 186 180 203 195 146 186 172 146

lion 16 16 14 16 16 16 16 16

lion9 55 55 61 43 38 40 38 38

markl 94 92 89 105 92 90 94 92

mc 32 30 30 32 30 35 30 30

modulo12 58 72 77 71 71 71 71 71

opus 83 70 88 90 70 87 70 74

planet 453 511 538 551 466 512 466 473

si 339 291 377 345 249 335 253 251

sla 262 195 264 253 214 217 214 225

s8 50 52 47 48 48 52 48 48

sand 556 498 519 542 509 523 509 529

shiftreg 24 25 34 35 24 24 24 24

styr 427 418 460 501 438 442 438 473

tav 27 27 27 27 27 27 27 27

TOTAL 4724 4578 5135 5186 4370 4624 4415 4487

Table 3: Multi-level input encoding comparison
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all generate collections of face-embedding, dominance and disjunctive constraints, that must be either
satisfied or shown unfeasible. If satisfiable, an encoding must be found of minimum code-length.
Alternatively, one can optimize an area cost function, trading-off between encoding length and gain
obtained from maximum satisfaction of constraints within the given code-length. Efficient solutions to
these combinatorial optimization problems are akey to high-quality encoding programs.
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