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Abstract

A Methodology for Modeling the Manufacturability of
Integrated Circuits

by
Eric David Boskin
Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Costas J. Spanos, Chair

This thesis presents a unified approach to Design for Manufacturability (DFM). A
methodology is introduced wherein the three technology organizations within a company,
process development, circuit design, and product engineering participate in the character-
ization, modeling and improvement of the manufacturability of IC products.

The methodology is based on an IC fabrication line description consisting of a small
set of measurable process parameters which describe the variation in performance seen on
a manufacturing line. These parameters are utilized in a physically based MOSFET
parameter extraction technique which accurately predicts transistor characteristics over a
wide range of process variation. The device models drive Monte Carlo circuit simulations
which, in conjunction with manufacturing data, are utilized to build applications which
improve product manufacturability.

Three specific applications are discussed. First, a performance prediction model was
developed which uses the process parameters as measured on the manufacturing floor to
predict the performance of fabricated integrated circuits before packaging and final test.
The second application uses the performance prediction model for statistical process con-
trol (SPC) on product performance. Finally, design engineers use circuit simulation to sys-

tematically improve the manufacturability of the EPROM product for low power



operation by decreasing the sensitivity of the circuit to process variation. The fabrication
line description, device models, and the three applications were developed and tested on a
1 Mbit EPROM produced with an industrial 1.2 um CMOS process.

The advantages of the DFM approach developed in this thesis are the focus on manu-
facturing applications and the high level integration of simulation models and manufactur-
ing data. The results of this thesis include production-ready applications, such as an IC
performance prediction model and an SPC procedure, which can be implemented on an IC
manufacturing line to improve efficiency and detect problems, thereby lowering costs.
Also, the use of common, measurable process parameters integrate the design énd manu-
facturing applications, providing additional, important cross-checks which verify the

models and applications before their use.
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Chapter 1

Introduction

In today’s competitive semiconductor manufacturing environment, it is important to
anticipate the effects of processing variation during the design of an integrated circuit (IC)
product, and then characterize and control this variation while producing it [1][2][3]. In
this work we present a methodology for characterizing process variation, enabling both
circuit design improvements and manufacturing control applications. Manufacturability
modeling includes not only techniques to improve the manufacturability of circuit designs,
such as improving circuit yield, but also tying these techniques directly to the manufactur-
ing line.

The organization of a corporation involved in the manufacture of semiconductor
products typically contains three business units. Commonly referred to as design, process
development and manufacturing, these three organizations have grown to be separate sec-
tors within the company. In fact, the success of the IC industry has in part been due to the
use of a design style, first formalized by Mead and Conway [4], which separates IC
designers from most considerations of the technology and the manufacturing process.
However, the increasing cost and complexity of a modern IC manufacturing line is neces-

sitating increased communication between designers, manufacturing and technology to
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Process Circuit
Design Design

Manufacturing

Figure 1-1 The Infrastructure of Design for Manufacturability

deliver profitable products in a timely fashion. Design for Manufacturability (DFM) tech-
niques strive to impact the design and manufacture of an IC product in light of specific
technology and manufacturing processes in order to improve the manufacturability of the
product. As shown in Figure 1-1, manufacturability implies the integration of process
design, circuit design and manufacturing activities. This integration will enhance the com-

munication between these sectors while improving manufacturing capability.

1.1 Motivation

The semiconductor manufacturing process is best described as a series of steps, up to
300 in a modern CMOS process, which turn a bare silicon wafer into packaged ICs. These
steps include the introduction and redistribution of impurities into the silicon, the growth
or deposition of layers on the wafer and the patterning of the these layers. Finally, the
wafer is tested and the die on the wafer are separated and put into packages. As with any
manufacturing process, there are uncontrolled variations in the process which cause prod-
uct quality to vary. DFM includes the techniques for characterization of this variation and

methods to predict and minimize its effect.
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Historically, the focus of DFM work has been yield prediction and optimization. Sim-
ply stated, the yield of an IC is the fraction of manufactured parts which can be sold to
customers. Yield can be further decomposed into the fractions of parts sold at different
performance levels, reflecting the distribution of product performance caused by uncon-
trolled process variation. Previous work in DFM analyzed the distribution of product per-
formance, and optimized the circuit design or fabrication process for maximum yield.
DFM for circuit or process optimization is motivated by the monetary reward of increased
yield, including both reduced scrap and having fewer products manufactured with low
performance which must be sold at a reduced price.

Recently, there has been increased focus on improving the learning curve, defined as
the amount of time from the introduction of a new process or circuit until an acceptable
level of yield is established. DFM activity, and in particular, improved communication
between process, design and manufacturing, can decrease the time required to reach high
yield levels. This brings both a monetary saving and a competitive advantage to an organi-
zation, justifying the DFM process.

In addition to these underlying motivations, the goal of this thesis is to develop a
DFM approach which allows the development of applications for use directly in IC manu-
facturing. Such applications will improve the efficiency and reduce the cost of IC manu-
facturing. Given the high cost of IC manufacturing lines and the product wafers
themselves, the potential monetary savings from manufacturing applications is quite large.
For example, the statistical process control (SPC) application developed in this thesis will
generate an alarm if a lot is incorrectly tested. If a lot contains several thousand parts
worth an additional $10 as fast parts, $20,000 can be gained by the successful retesting of

a single lot.
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1.2 Thesis Overview

The methodology presented in this work is based on an IC fabrication line description
consisting of a small set of measurable process parameters which describe the variation in
performance seen on a manufacturing line. The methodology models IC product perfor-
mance in terms of this simple set of process characterization data. These parameters are
utilized in a physically based MOSFET parameter extraction technique which combines
physical measurements, global optimization and regression modeling of key fitting param-
eters to accurately predict transistor characteristics over a wide range of process variation.
This straight-forward parameter extraction methodology is applied to a 1.2 um CMOS
EPROM process using a SPICE Level 3 MOSFET model with a resulting accuracy of bet-
ter than 10% across a large range of process and temperature variation.

The MOSFET model in conjunction with manufacturing data is used to develop DFM
applications. The first application is a model for use in manufacturing for predicting the
performance of products before final test. The same set of process parameters as is used in
the MOSFET model can be measured during production, both in-line and at electrical test,
and used to predict the performance, such as the operating frequency of a microprocessor,
of fabricated parts. A compact, product-specific performance prediction model is built
from a combination of simulation results and manufacturing data. The performance pre-
diction model developed for the access time of the EPROM achieved a standard deviation
of regression of less than 2% of the access time. This high level of accuracy is needed
because of the large expense of incorrect predictions.

The second application is a statistical control procedure for IC performance, which is
applied to EPROM production. Control charts based on the prediction model are devel-
oped for fabrication line statistical process control (SPC). These control charts can be used

to identify process shifts or the incorrect performance testing of EPROM product lots.
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The third, more traditional application utilizes the MOSFET model for statistical cir-
cuit simulation to test and improve the manufacturability of an IC product. As an example,
the manufacturability of a 1 Mbit CMOS EPROM intended for low voltage application is
investigated. Monte Carlo experiments using circuit simulation are used to find the sensi-

tivity of the EPROM to process variation.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 defines the manufacturability problem
and discusses previous work in this area. Chapters 3 and 4 present the theory underlying
manufacturability modeling. Chapter 3 discusses the fabrication line description, the
device modeling method, and Monte Carlo experiments using circuit simulation to model
circuit performance, and Chapter 4 presents the applications for improving IC manufactur-
ability. The next two chapters implement the methodology presented in Chapters 3 and 4.
In Chapter 5, the fabrication line description and device models are built for a production
1.2 pm CMOS EPROM process. Then, Chapter 6 uses the models from Chapter 5 to build
the three manufacturability applications for a commercial 1 Mbit EPROM. Finally, Chap-

ter 7 discusses conclusions and future work.
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Chapter 2

Problem Formulation and Previous Work

This chapter presents the formal problem definition and previous work in manufactur-
ability. An understanding of the problem and previous work toward solutions will set the
context for the direction and contribution of this research. The chapter begins by introduc-
ing notation and continues by formulating the yield problem. Previous work is presented
and discussed, including the limitations which motivate the methodology pursued in this

work.

2.1 Notation and Variable Definitions

The notation used in this report is as follows. For a variable x:

X lower-case, indicates a scalar,
X lower-case and bold, indicates a column vector with elements x;,

upper-case and bold, indicates a matrix with columns x; and ele-
ments Xij-

This report will develop relationships between process parameters and IC product
performance. An IC process is the specific series of steps used to manufacture a semicon-

ductor product, with each step requiring specific materials and settings on the manufactur-

ing equipment. Process parameters refer to measurable quantities which characterize the
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result of a small number of steps, for example, the sheet resistance or thickness of a layer
or the length and width of a feature. Examples of process parameters in an MOS process
include oxide thickness and polysilicon linewidth. The result of the IC fabrication process
are circuits, which must meet certain specifications to be sold by the manufacturer. These
specifications will be referred to as the circuit performances, and include the speed of a
microprocessor or memory device, and the gain and bandwidth of an amplifier.

Manufacturability models will explain the variation in IC product performance in
terms of a set of process parameters. The process parameters will be denoted with the vari-
able x. The vector containing each parameter will be denoted x, while X is the (n x p)
matrix containing »n samples of p process parameters. Similarly, the performance of the
circuit will be denoted by the variable y. The range of variation seen on the manufacturing
line across the group of process parameters or performances forms a multidimensional
region which will be referred to as a process or performance space, respectively.

The variation of both the process parameters and circuit performances depend on the
group which is sampled. There are several components to the variation, including die,
wafer, lot and total variation. The calculated variance of process parameters or perfor-
mances will increase as the sample is taken from within a wafer, within a lot or across sev-
eral lots. It is important to use the appropriate grouping for each application. Variance will
be denoted by o?, subscripted by either the variable name or the sampling group, as appro-
priate. When considering multiple variables, it is important to consider not only their vari-
ances, but also how strongly their variation is related to each other. This information is

contained in the variance-covariance matrix, denoted as V(x).

2.2 The Manufacturing Yield Problem Formulation
Manufacturability is commonly associated with increasing the yield of a circuit [1],
which is formalized as a problem of yield estimation [5] with a subsequent optimization.

Yield is defined as the fraction of manufactured parts which meet all product specifica-
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tions and can therefore be delivered to customers. The range of variation across the prod-
uct performances defines a performance space, R " In general, upper and lower bounds
are associated with each performance specification. Therefore, the region of acceptable IC

performance, A x is defined as:

Ay = {ye Ryleach y is within specification } 1)

The performances of a given IC design are determined by the values of the process
parameters for each manufactured lot. This leads to the concept of the acceptability
region, A_, which is the region within all process space, R » Which results in acceptable

IC performance, that is:

4, = (xeR|yed) ¥)

Given the definition of the acceptability region, the yield, Y, of a circuit can be calcu-

lated as:
Y= [f(x)ax (3)
Ax

where f_ is the joint probability density function for the process variables.

Up to this point we have considered a fixed circuit design, however, the circuit topol-
ogy and transistor sizes also effect yield. In fact, choosing the sizes of transistors for max-
imum yield under the given performance constraints is often the goal of manufacturability
optimization. Including the circuit design parameters, q, the overall manufacturability
optimization problem can be written as:

max {Y(x,q)= jj;(x)dx} 4

*4q A.(9)

Modifying the circuit design parameters impacts yield by changing the acceptability

region.
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It is commonly assumed that the process parameters can be decomposed into a nomi-
nal process, X, and the normally distributed random variation of each parameter, d, often

called the process disturbances, that is:

x =x,+d %)
d~ N( 0, 0'3) (6)
Therefore, the targets of optimization are the circuit design parameters, q, the nominal

process, X, and the process variability, d.

Circuit design optimization improves yield by altering the circuit given a fixed pro-
cess. The design parameters, q, include the length and width of transistors and the topol-
ogy of the circuit. This work will include the manufacturability application of circuit
design optimization.

Previous work in manufacturability optimization has adjusted the nominal process to
optimize yield through design centering. Design centering starts by finding the region of
acceptability for a process, and moves the process targets so that nominal conditions pro-
duces circuits centered in the region of acceptability, hence optimizing the yield [6]. This
work will use a fixed nominal process.

The process disturbances are mainly the result of equipment variation. Although
methods to reduce equipment variation are starting to be developed, manufacturability
work has generally assumed the disturbances are fixed. This work will develop methods to

understand and characterize process variability, but not reduce it.

2.2.1 Parametric versus Functional Yield

The yield problem is divided into two areas, functional and parametric yield. Func-
tional yield loss, defined as the fraction of manufactured parts which fail to operate at any
level of performance, is commonly associated with defects introduced during manufactur-

ing that cause circuit malfunction. Parametric yield loss is the fraction of functional parts
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which do not operate to the desired performance specifications, for example, circuits
which operate only at very low speeds contribute to parametric yield loss. Parametric
yield loss is usually caused by the process disturbances, that is, the small perturbations in
the manufacturing process such as a change in the critical dimension of the transistor
geometry [7].

Good examples of functional Design for Manufacturability (DFM) techniques are
redundancy and error correction. In these techniques, circuitry is added with the specific
goal of fixing potential functional defects. In fact, redundancy is being used in certain
applications, especially memories, to “repair” slow circuits. One design trade-off is that
the area of the IC is increased to add the circuitry which allows proper circuit operation in
the case of spot defects. Also, there is performance overhead associated with these tech-
niques, so that the performance of the circuit decreases. However, redundancy and error
correction greatly increase the yield of memory ICs and they are widely used techniques.

However, there is no technique with such success in improving the parametric yield
of integrated circuits such as microprocessors, PALs, etc. Despite widespread concern and
papers in the literature, there are few widely accepted DFM techniques. The methodology

presented in this report focuses on parametric yield improvement.

2.3 Previous Work

The field of statistical circuit design represents the first systematic efforts to model
and improve parametric yield [8]. The underlying concept is that perturbations in the man-
ufacturing process change the performance of the silicon devices and therefore cause the
performance yield fluctuations seen in final test. There are several important components
in statistical design, as shown in Figure 2-1. First, the manufacturing process must be
described in a way which characterizes the process perturbations responsible for yield
loss. Second, this manufacturing line variation must be mapped into the performance vari-

ation of the fabricated devices. Often, a combination of process and device simulation is
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Manufacturing Line Circuit
Description > Device Model » Simulation

Optimization Algorithms

Figure 2-1 Elements of Statistical Circuit Design

used to map process variation into the changes in transistor characteristics. Third, circuit
simulation provides the link between the transistor characteristics and the final circuit per-
formance. Last, an algorithm is used to optimize the yield.

~ Despite these efforts, DFM still has found limited use in the semiconductor industry.
However, Motorola [9], Philips [10], Texas Instruments [1] and Harris Corporation [11]
have developed statistical design tools which influenced this project. This research will
focus on the difficulties faced by the application of statistical design techniques. In the fol-
lowing subsections, each of the components in Figure 2-1 will be briefly examined. This
section will finish with a discussion of the important issue of manufacturing integration.

These issues will be revisited in greater detail as the methodology is presented in Chapter

3.

2.3.1 Manufacturing Line Description

Early work in statistical modeling relied heavily on the use of process simulation to
describe the fabrication process. This use of simulation brings the accompanying problem
of tuning the simulator to match the actual manufacturing line [12]. For example, the

mean and standard deviations of process simulation variables such as the time in a furnace
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step or the diffusivity of boron would be adjusted so that simulation results would match
the statistics of measurements such as the MOS transistor channel length and conse-
quently the device current. In other words, early statistical device models were verified by
matching actual device or circuit performance distributions [10][11]. Historical electrical
test data was used to determine the mean and standard deviation of device current, and
then the tuning process would match the distribution produced in simulation to the histori-
cal device current distribution.

There are several problems with this approach. First, tuning is often a time consuming
procedure. Second, there is no guarantee that the mapping of the process to the device
characteristics is correct simply because the distributions match. Third, this approach
assumes a stable production line which has attained a state of statistical control. Modern
fabrication lines, however, are constantly undergoing evolutionary improvements, and a
more accurate and timely verification strategy is needed. In other words, there is no mech-
anism to alarm when the statistical model is no longer valid, and if there were, it is not
convenient to re-tune the models. In short, the problem with previous DFM work centers
on the fact that these methods are not sufficiently integrated with the manufacturing line.

These problems are addressed in this work by avoiding the tuning problem entirely.
This work does not rely on process simulation, instead, it uses transistor characterization
data collected during production in conjunction with straightforward device physics. The
use of performance prediction models which are used on the manufacturing line in con-
junction with physically based device models improves the mapping from the process to
the device characteristics. Further, the performance prediction model will generate an
alarm when the simulation model no longer matches the manufacturing line output. In the
case of an alarm, the physical basis of the device model will allow for a simple mechanism
to align the models to the current manufacturing process. Another important feature of our

work is that the use of manufacturing data ensures that the parameters are measurable
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using production line capable techniques, and that they explain most of the variation seen
on an actual fab line. The manufacturing applications detailed in this paper show that this

method can be driven effectively by fabrication line data.

2.3.2 Device Modeling

A transistor, or any semiconductor device model, is used to calculate the response of
the device to the voltage and current conditions in a circuit. This response models the I-V
curve, which is the current versus voltage characteristic that defines the electrical proper-
ties of the device. In this work, the term device model refers to a compact model such as a
SPICE transistor model, as opposed to a numerical model which simulates the physics of
the device. The device model is comprised of a set of equations with coefficients that are
specified to fit the transistor I-V curves for a specific process. This set of coefficients is
referred to as the device model parameters, and the procedure for specifying them is
called parameter extraction.

Early work in statistical circuit design allowed the use of a different set of model
parameters for each value of the process parameters to be modeled. For each point in pro-
cess space, process and device simulation would produce an I-V curve. Parameter extrac-
tion was accomplished by simple optimization algorithms. One problem with this
approach is the large number of parameter sets required. The second, more important issue
is the loss of physical relationships between the process and the device. With a large num-
ber of optimized models, it can be difficult to extract the physical cause from changes in
device performance.

The work presented in this report is based on physically based parameter extraction
techniques. The physical basis allows a smaller number of parameters to cover the process
space and retains the relationship between the process and devices. The techniques used in
this work have been strongly influenced by industry research in this area. Motorola has

developed a physically based bipolar model [13] which has been utilized in a statistical
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design tool which includes designed experiments to study performance variation of IC
designs [9]. Similarly, Philips has developed an analytical parameter extraction technique

[14] which was used for sensitivity and process capability analysis [10].

2.3.3 Circuit Simulation and Optimization

The use of the SPICE circuit simulator to estimate circuit performance is common
practice and will be used in this work. Gradient and computer-based experimental design
methods have been used to increase yield by optimizing the transistor sizes or topology of
a circuit for a specific process. The gradient method is a standard non-linear optimization
technique which can be implemented within a circuit simulator for use in yield optimiza-
tion [15]. Experimental design software packages have focused on the use of Taguchi
Robust Design methods to select optimum transistor sizes [16][17][18].

In contrast, our work does not use formal optimization techniques to improve yield, as
the focus of this work is integration with manufacturing. Instead, graphical descriptions of
the process sensitivities combined with the insight of the circuit designer are used to mod-

ify a design.

2.3.4 Integration with the Manufacturing Line

In general, there has been insufficient focus in statistical design and DFM research on
integration with manufacturing. Two good examples of manufacturing applications of sta-
tistical modeling have focused on reducing the amount of testing done at final test. Brock-
man used statistical modeling to eliminate high and low temperature testing of ICs based
on room temperature results [19]. Milor optimized the ordering of final tests to minimize
the tester time required to identify failing parts [20]. However, the development of these
prior manufacturing applications were based solely on simulation results.

Although previous efforts in physically based statistical device modeling have devel-

oped MOS transistor models which are integrated with manufacturing data, they have pri-
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marily been applied to yield prediction and circuit optimization during the IC design
phase. However, there are important advantages to be obtained in implementing manufac-
turability solutions which further integrate with a specific manufacturing line.

To address this problem, this work shifts the focus of DFM activity from IC design to
the integration of design, process development and manufacturing. To this end, the basis
for this work is a single set of parameters, measurable on the manufacturing line which
support both design and manufacturing applications. The advantages of this approach
include the use of these parameters in the device model, which avoids the problems of
optimized parameters, and their routine measurement on the production line, supporting
the tracking and control of product performance. Importantly, these parameters have phys-
ical meaning to the process, design and manufacturing groups, fostering inter-group dis-
cussion of manufacturability issues.

This work developed a manufacturing application to include in the DFM methodol-
ogy, that is, a performance prediction model for IC binning. This application served to val-
idate the manufacturing line, transistor and circuit models, as well as contributing to the
manufacturing line itself. A design oriented application is also presented, which is used to

improve the manufacturability of a 1 Mbit EPROM.

2.4 Summary

This chapter discussed the formalism of the manufacturability problem and previous
work toward solutions. The limitations of statistical circuit design were presented, focus-
ing on the limited integration of manufacturing into the DFM process. Integration will be
the emphasis of the DFM methodology presented in Chapter 3, which discusses the theory
underlying manufacturability modeling. and specifically each block shown in Figure 2-1.
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Chapter 3

Manufacturability Modeling
Methodology

This chapter gives an overview of the techniques and theory used for manufacturabil-
ity modeling. The chapter begins with a brief presentation of a specific application devel-
oped during this research - performance prediction modeling - to give the context for the
discussion. Then, given the application, the technique for mapping process variation into
circuit variation is presented. The mapping is comprised of three sections, the fabrication

line description, the device model and the use of circuit simulation.

3.1 Overview of Performance Prediction Model Building

The application developed in this work is for the performance-binning! of manufac-
tured parts [21]. In-line measurements and electrical test results for a manufactured wafer
can be used to predict circuit performance before final wafer test or assembly. With “just

in time” manufacturing planning, only parts which meet performance requirements need

be assembled.

1. Commodity ICs, such as memories, microprocessors, EPLDs, etc., are performance tested and divided
into speed bins, and then priced accordingly.
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Figure 3-1 The Performance Prediction Method.

An overview of the manufacturing application of the performance prediction model is
shown in Figure 3-1. The manufacturing process is represented by a series of steps, such
as gate oxide growth, polysilicon gate definition, etc. The outcome of each step can be
measured in-line during processing, and can be used to continuously refine an estimate of
the performance of the produced ICs. After processing, a series of electrical tests are done
on each wafer. These measurements are commonly used to monitor the fabrication pro-
cess, and as a first test to assure the compliance of the manufactured goods.

There are important manufacturing uses for the performance prediction model. The
performance of the circuits on wafers can be estimated early in the manufacturing process;
first, from the in-line test data, and then from electrical test results, all before assembly of
the die into packages. In-line binning will improve manufacturing planning by providing
actual wafer and lot specific yield estimates instead of a priori estimates. This improve-
ment in manufacturing scheduling and planning is particularly important for fabrication
lines running at capacity with specific performance targets to produce, making it possible
to expedite higher performance wafers through the fabrication line, or scrap the lowest

performing ones [22]. After the early prediction based on in-line measurements, electrical
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Figure 3-2 Overview of Performance Model Development

test data can be used to produce a more accurate estimation of performance. This can fur-
ther aid in planning, particularly in the case where final performance testing can not occur
until after packaging. For example, fast parts can be directed to be packaged in higher per-
formance packages.

Figure 3-2 gives an overview of performance prediction model development. First, a
description of the fabrication line is needed to simulate the process. This description,
including the identification of the key process variables and their nominal values, range
and correlation, is created from measurements taken on the manufacturing line. Using this
description, instances of the process are generated for use in a Monte Carlo simulation.
The device model, discussed in Section 3.4, is used to map the process into a SPICE tran-
sistor model for use in circuit simulation. The results of the simulation give the circuit per-

formance at each point in the process. Using the process instances and the simulation
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Figure 3-3 Manufacturability Modeling Regimes (MOS process example)

results, a performance model is built which predicts the performance of manufactured

parts from in-line process measurements.

3.2 Modeling Hierarchy

Figure 3-3 illustrates the regimes in which manufacturability modeling can be accom-
plished [23]. In general, the variables listed at one level are used to model the variables at
the next level. Process simulation models usually work at the level of equipment settings,
such as the time and temperature settings for an oxidation step. These settings, also known
as the recipe, determine the junction depth, doping level, or layer thickness, etc., which
results from the process step. Process simulators model the complex physical mechanisms
governing diffusion, oxidation, efc., to calculate the physical device characteristics from
variables defining the chamber environment. After process simulation, a device simulator
uses the cross-section, profile and Poisson’s equation to calculate the device I-V character-

istics. The I-V characteristics are then used for device model parameter extraction. In
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terms of a MOS transistor model, the parameters in the model include oxide thickness and
threshold voltage, as well as mobility reduction and short channel effects.

The advantages of combined process and device simulation include the ability to
investigate device characteristics before the manufacturing process is complete, and study
details of the device structure. However, a modern IC process uses dozens of pieces of
equipment and hundreds of steps, making it difficult to accurately determine these charac-
teristics using simulation.

The manufacturability modeling methodology presented in this work finds the pro-
cess characterization parameters by measurement rather than through simulation. This
reduction in the level of complexity is possible because these few, measurable process
characteristics can accurately determine the device properties. Further, the physical basis
of the compact device simulation models is exploited, maintaining a strong relationship
between the device model parameters and the manufacturing process. These critically
important relationships [13][23] which enable the methodology can be summarized as:

1. There are a few measurable process characterization parameters which account for
the variability seen in product performance.

2. There is a straightforward, physical mapping between the measurable process charac-
terization parameters and the device model parameters.

Finally, the device model is used to determine the performance of the final circuit
product. A designed experiment is run to determine the circuit performance across the
space of process variability. In this work, the experiment was designed using a Monte
Carlo method, in order to get even coverage of the process space regardless of dimension-
ality. The Monte Carlo technique selects random points across the process space. At each
point, the process parameters are used to create a SPICE transistor model, which are used
in a circuit simulation to determine circuit performance at that point in the process. Thus,

circuit simulation is used to map the process space into the circuit performance space.
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The next three Sections of this chapter will look in detail at the theory behind each
level in this hierarchy: the fabrication line description, mapping the process to the device

model, and mapping the device model to circuit performance.

3.3 Fabrication Line Description

The objective of the fabrication line description is to help create a computer-based
experiment in order to fit response surface models that relate process measurements to
product performance. Given this, the description should capture the maximum possible
range of variation seen on the fabrication line. For experimental economy, the concept of
parameter correlation is used to eliminate simulations for unlikely combinations of param-
eter values.

The modern semiconductor manufacturing process, containing hundreds of steps, has
inherent variation which effects the performance of fabricated ICs. Despite the complexity
of semiconductor processing, a few measurable parameters can explain the bulk of the
variation in the performance of an IC. In other words, the process is not modeled on the
equipment settings, but rather on a small set of parameters which describe the results of
the process. These parameters can be divided into two sets, the parameters which are
important in explaining the variation for all ICs, and the set of parameters specific to each
design.

Parameter sets suitable for general characterization of a modern MOS [1] or bipolar
process [13] have been previously described. This work extends the description for an
MOS process to include analog circuit design considerations such as the transistor body
effect. The key to formulating the parameter set for a given process is to find the parame-
ters which are both measurable and explain the performance variation seen in the process.

Some product specific parameters must also be considered. For the EPROM example
presented in this work, the gate oxide used in the EPROM cell and the resistivity of the

wordline layer are included as additional parameters. In certain analog circuit designs,
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Figure 3-4 Process Parameter Distribution

there are components which need exact matching characteristics. Characterization of the
mismatch between adjacent structures on a die is another example of a product specific
parameter which may be considered. This work has not included the effect of mismatch,
because constraints on the test pattern used in this project did not allow the addition of a
structure to characterize mismatch in production. Good references on the subject include

[24] and [25].

3.3.1 Parameter Distribution

Statistical simulation of fabrication lines is based on using random number generators
to create instances of the process parameters drawn from their distributions. Previous
work in statistical circuit design has commonly modeled process variables using a normal
distribution. The model for the distribution of process parameters used in this work is
shown in Figure 3-4. Within each lot, the distribution of the parameters can be approxi-
mated by a normal distribution. However, the cause of the distribution is not random error,
rather, there are deterministic patterns caused by equipment variation [26]. For example,
fixed patterns across the field of a stepper [27] may appear as normally distributed varia-

tion. This deterministic pattern takes a random walk across the allowed range of the pro-
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cess, limited by the process specifications. Over time, the overall distribution of a
parameter within reasonable control resembles a normally distributed variable, and this
approximation allows an accurate calculation of the yield over long production cycles.

In this work, normal distributions are used for the process control application because
an approximation to the actual overall distribution is required. However, because there
will be periods of time where a manufacturing line is producing lots near the specification
limits, uniform distributions are used when the goal is to capture and model performance
dependencies over the entire process range. The range of the uniform distributions are

equivalent to the statistical process control range.

3.3.2 Parameter Correlation

The set of process parameters used to model the fabrication line forms a multidimen-
sional space bounded by the range seen in each of the parameters. The region can be fur-
ther limited by taking into account the fact that the process parameters, as is shown in the
left hand side of Figure 3-5, are usually dependent on each other. Limiting the range
allows for better coverage of process space with fewer experiments. The various parame-
ters measured in-line and at electrical test often show strong correlation to each other,
reflecting the physical limitations of the process, such as the sharing of specific process
steps. For example, the reductions in the channel length (critical dimension) of n- and p-
channel transistors are highly correlated because they share the common processing steps
which define polysilicon linewidth.

To generate instances for simulation of two correlated variables x; and x, with given

means () and standard deviations (o), the following empirical formulas were derived:

, 1
x| =0, ) (av+bw) +p @)

1
X, =64 T (cv+dz) +p , (8)
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where v, w, and z are normalized random numbers, and a, b, ¢ and d are determined by the

correlation (p), such that:

ac (9)
N (a2 +b2) (2 +d?)

Py1,x2

The values for p, , are chosen based on our experience with the process and to be consis-
tent with the objective to eliminate simulations for unlikely combinations of process

parameter values.

3.4 Device Modeling Method

To simulate the effect of process variation on a circuit, the connection between the
process parameters and the device model parameters must be established. Therefore,
given the fabrication line description, the next step is to map the process into the device
model parameters, creating transistor models for use in circuit simulation. One of the most
important activities in manufacturability modeling is to efficiently extract device model
parameters to cover the range of the process, without losing information in the mapping.
This section will review approaches for creating the device models, and further develop

the relationships stated in Section 3.2 which underlie this methodology.

3.4.1 Previous Approaches

Traditionally, circuit designers have used worst-case transistor models for simulation.
Such models are optimized to fit specific process “corners,” usually called “fast” and
“slow” cases. One problem with such “worst-case” models is that they overestimate the
range of the process, thereby increasing the design time, as designers create circuits which
operate under pessimistic process conditions. In addition, a modern IC process often does
not contain “corners,” as there is no single combination of process parameters which

results in the “slowest” transistor for every circuit topology.
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In statistical circuit design, the process to device mapping is normally done through
coupled process and device simulators, such as SUPREM [28], MINIMOS [29] or FAB-
RICS [3], however, these methods are often cumbersome. As previously described, pro-
cess simulators model variation using the physics of individual process steps, and the
resulting complexity and tuning problems make it difficult to apply this method in com-
mercial fabrication lines.

In both worst-case and statistical modeling, mapping from the process to the device is
closely tied to device parameter extraction. Parameter extraction refers to the method used
to find the values for the device model parameters. Given an I-V curve, which can be pro-
duced from either a process and device simulation or a worst-case process, mapping
essentially implies extracting the parameters for the given model. Another problem with
previous approaches is the use of optimization for parameter extraction. It is a common
approach to allow all the device parameters to vary during the extraction. Although this
achieves the best fit, all physical meaning can be lost.

Other prior work has used Principal Component Analysis? to perform this mapping
[30]. Briefly, this strategy develops statistical models for the device model parameters in
terms of the Principal Components of the process parameters. Principal Component tech-
niques have been shown to increase the goodness of fit of the device model over the range
of process variation. In fact, the methodology used in this work also uses statistical models
for this purpose, although without the complexity of Principal Components. However, the
use of Principal Components in the device model adds a level of difficulty in relating cir-

cuit simulation results to specific process variables [31].

2. Principal Component Analysis will be described in more detail in Chapter 4, when it is utilized in the development of
the performance prediction model.
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3.4.2 Physically Based Parameter Extraction

The approach taken in this work utilizes a physically based parameter extraction tech-
nique. This method, introduced in the work of Davis [13] and Tuinhout [14], bases the
device model parameters on the measured process characteristics. In this method, the pro-
cess characterization parameters and device model parameters have a straight-forward
mapping to measurements, allowing for easy and efficient mapping of the process to the
device model. Using this approach, a device model based on the Level 3 SPICE model
was developed for use in the simulation phase of this work.

As stated in Section 3.2, the first key point in this methodology is that the overwhelm-
ing percentage of IC performance variation is explained by the variation in a small set of
measurable parameters. Instead of using coupled process and device simulation, the meth-
odology begins with the small set of measurable process parameters. These parameters,
which characterize the range of variation seen in the process, are the basis of a statistical
transistor model. Varying these parameters across the process space allows circuit simula-
tion anywhere in the range of process variation. The physically based statistical transistor
models alleviate these difficulties or process and device simulation, yet still allow circuit
simulations to be run anywhere in the range of the process.

The second key to efficiently connecting the fabrication line and device models is to
have a simple mapping among the important parameters. In this case, the measurable pro-
cess parameters in the fabrication line model correspond directly to underlying device
model parameters. For example, in MOS processes, the gate oxide thickness is both a
measurable process characteristic and a specific device model parameter. This provides a
direct link between the process and device models.

The process parameters map not only to the directly corresponding device model
parameters, but also to other parameters through second order effects. For example, in an

MOS device the effective mobility is a function of the gate oxide thickness and must be
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modeled as such for accuracy over the entire range of oxide thickness variation. Prior
approaches to the second order mapping have included both physical and statistical meth-
ods. The most powerful, but complex method is to use physical models for fitting parame-
ters. Due to the complexity, simpler statistical techniques are used here to model key
device parameters, such as mobility reduction, in terms of the measured process parame-
ters [33]. It is advantageous to limit the complexity of the relationship between the physi-
cal and the device fitting parameters in obtaining a good fit, so that the communication
between manufacturing and design organizations is not lost. Importantly, the physically

correct process parameters are chosen as the variables for the statistical models.

3.5 Designed Monte Carlo Experiments using Circuit Simulation

Given a device model which describes the transistor characteristics at any point in the
process, a designed experiment can be run to investigate circuit performance over the pro-
cess space. Two dimensional examples of this experimental space are shown in Figure 3-
5. The plot on the left hand side of Figure 3-5 describes the variation in the effective chan-
nel length of n and p channel transistors. The rectangle represents “worst-case” corners for
these variables, ignoring their correlation. Each variable is described by a minimum and
maximum value, and a simulation would be run at each corner of the rectangle.

The striped area inside the rectangle is the region which accounts for the correlation
in the parameters3. The regions inside the striped area represent regions of increasing pro-
cess control. Modern IC fabrication lines occasionally run out of statistical control. There-
fore, the experiment must be run on region large enough so that the results are valid
whenever the process is within specifications, even when the process is out of statistical
control.

The plot on the right side of Figure 3-5 shows the performance of the manufactured

circuit, where the two dimensions used are delay and power. Depending on the perfor-

3. In the specific case of effective channel length, the correlation is caused by the sharing of the polysilicon etch step.
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Figure 3-5 Mapping the Process Space into the Performance Space

mance of the circuit determined at final test, the manufacturer assigns it to the appropriate
bin and prices the part accordingly. Although identical in design and manufacturing cost,
the highest performance parts are sold at a premium.

The goal of the designed experiment is to map the process space into the performance
space, that is, to determine what the corresponding performance will be for each point in
the process. The experiment involves selecting a set of points in process space. For each
point selected, a device model is created and a circuit simulation is run to find the circuit
performance. However, unlike the simple two dimensional example of Figure 3-5, more
parameters are required to generate a good description of a modern MOS process. There-
fore, Monte Carlo techniques are used to cover the process space with a reasonable num-
ber of experiments.

Experimental designs such as orthogonal arrays and latin hypercubes have previously

been used to reduce the number of simulations required to cover this space
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[91(16][17][18]. Often, a screening experiment is utilized to limit the number of parame-
ters considered in the experiment. These experimental design techniques are not utilized in
this work because, given the parameter correlation in the fabrication line description, the
process space is no longer orthogonal.

The Monte Carlo technique requires a large number of circuit simulations to converge
on accurate results for the experiment. Previous work has used macromodeling techniques
which develop regression models for performance from a limited number of circuit simu-
lations and then use the regression models for the larger number of simulations needed to
complete the mapping [2][34]. Although such techniques which optimize the Design for
Manufacturability (DFM) process are important, they were not considered in this work.
Creating accurate macromodels saves simulation time, but improves neither the robust-
ness of the DFM process nor the integration with the manufacturing line, which remain

the focus of this methodology.

3.6 Summary

This chapter developed the theory underlying manufacturability modeling. Specifi-
cally, the techniques for mapping the manufacturing process to the final circuit character-
istics were explored. Together, a fabrication line model, device models, and circuit
simulation enable IC DFM. Most importantly, a physically based parameter extraction
methodology for device modeling eliminates the difficulties of worst-case and simulation
based methods, and enables the use of more powerful DFM applications [9][32].

So far, model verification has mainly been between adjacent levels of the modeling
hierarchy. For example, the device model has been verified in that the simulated I-V curve
matches the curve which produced the model. Chapter 4 will focus on the applications of
the manufacturability models. Additional cross-checks at the process, device and circuit
levels verify and integrate the models, closing the loop between design and manufactur-

ing.
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Chapter 4

Design For Manufacturability
Applications

Chapter 3 discussed the development of a fabrication line description and device
models which give the circuit designer the ability to simulate a design across the range of
the process. Their purpose is to build applications for use in manufacturing and circuit
design. The particular manufacturing applications discussed here are driven by response
surface models which predict product performance before assembly. For the circuit
designer, the models presented in Chapter 3 enable advanced Design for Manufacturabil-
ity (DFM) techniques which improve the robustness of circuit performance in light of IC
manufacturing line variation. Importantly, these applications cross-check each other. Man-
ufacturing line measurements verify the design models, improving confidence in the
model predictions, and hence the design improvements, before the improved design is fab-
ricated. This chapter discusses the development of applications and the verification strat-
egy, as well as the CIM infrastructure necessary to implement the method.

Previous DFM work has mainly been focused on optimizing the circuit design of an
IC product to improve yield. However, it is important to include manufacturing data and

applications in DFM work to validate the models and to effectively bring the manufactur-
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ing organization into the DFM process. The first manufacturing application developed in
this work is a performance prediction model which predicts the performance of the fabri-
cated parts from in-line and electrical test measurements. The use of in-line measurements
will allow estimation of product performance early in the fabrication process, improving
manufacturing planning. Electrical test data will provide a more accurate performance
prediction, allowing fast parts to be directed into the highest performance packages.

The second application developed in this chapter utilizes the performance prediction
model as the basis of a statistical process control (SPC) procedure for the manufacturing
line. In today’s IC factory, SPC charts are maintained on low level parameters for specific
pieces of equipment, such as etch rate, deposition rate, uniformity and particle counts. The
performance prediction model raises the opportunity for a high level monitor on the entire
fabrication line. The setup and use of a control chart for product performance will be dis-
cussed.

The third and final application developed in Chapter 4 utilizes Monte Carlo tech-
niques which take advantage of the physically based device models to investigate the per-
formance of the circuit over the range of variation seen on the manufacturing line. This
stands in contrast to traditional worst-case design, where the designer only has models to
simulate at “fast” and “slow” corners of p- and n-channel device saturation currents. Sen-
sitivities of critical subcircuits to process variation will be identified, and design changes

will be tested to ensure the yield limiting sensitivities are decreased.

4.1 Statistical Methods

Before the first application is discussed, two statistical methods used in developing
the applications, Principal Component Analysis (PCA) and linear regression, will be
briefly reviewed, and the advantages of combining PCA and linear regression are pre-

sented.
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4.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique used to describe the
relationships within a set of variables. PCA accomplishes this by transforming the data set
into new, orthogonal variables. The new variables, called principal components, are linear
combinations of the original variables, each explaining the largest possible variation in the
original data [35]. In addition to producing uncorrelated variables, PCA can be used to
reduce the dimensionality of a problem without losing much information. Since typically
a small set of principal components explains most of the variance in a data set, the com-
plexity of the problem can be reduced by choosing only the first few principal components
for analysis. The “rule of thumb” for including principal components in further analysis is
to retain just enough principal components to explain 80 or 90% of the variance in the
original dataset.

The principal component scores, also called simply the principal components, are

given by:

Z = XGT (10)
where X (n x p) is the matrix containing n measurements of the p process parameters,
such as oxide thickness, G is the (p x p) matrix of principal component loads and Z is

the (7 x p) matrix of the principal components. The principal component loads are the

eigenvectors of the correlation matrix of the original data, X.

4.1.2 Linear Regression

In contrast to PCA, which describes the relationship within a set of variables, linear
regression is a technique to build a relationship between independent variables and one or
more dependent variables. In this case, the relationship will be constructed between the
process parameters, X (n x p) , and the product performance, y (n x 1) . Linear regres-

sion postulates a model of the form:
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y=Xp+e )
where B is the (p x 1) vector! of model coefficients and g is the value by which each
observation deviates from the model. A column of 1’s is often included in the X matrix to

produce a constant term in the model.

In statistical terminology, a linear regression implies that the model is linear in the
coefficients being estimated, that is, linear in [} . The models built in this work are linear in
this sense. Another common use of the term “linear” is to describe whether the model is
linear in the variables. Better referred to as the order of the model, this work does not
include non-linear terms such as quadratic or interaction terms in the matrix of indepen-
dent variables. This is not a limitation of the method, as significant results were achieved
using linear models. The use of nonlinear terms in the performance prediction model will
be discussed further in Chapter 6.

Using the method of least squares [37], which estimates the model coefficients by
minimizing the sum of squares of the errors in the model, the standard normal equations

calculate the estimates for the coefficients in the model, f’; as:

B = (xTx)~1xTy (12)

and the variance-covariance matrix for the estimates of the model coefficients is given by:

WB) = c2xmn! (13)

where o2 is the variance of the residuals.

4.1.3 Principal Component Regression

Instead of performing linear regression on the original process parameter data, X, the
regression can use the principal components of the data, Z, that is, the transformed data

can be used as the independent variable in the model. In this case, the principal compo-

1. Vectors assigned a Greek letters will have be denoted by a ‘~’ underneath the character rather than a bold character.
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nents are used as inputs to build a model for circuit performance. The form of the perfor-

mance prediction model built from the principal components is simply:

y=PBZ+g (14)
and the standard normal equations for linear regression are used, utilizing the principal
components, Z, of the original data set. The use of the principal components of a data set

for linear regression is commonly termed principal component regression (PCR).

There are several important advantages of PCR over linear regression on the original
data. First, the presence of correlation creates difficulties in using least squares regression
[37]. As was previously explained, the process parameter data is highly correlated. Corre-
lation between the independent variables increases the variance in the estimates of the
regression model coefficients, increasing the difficulty in finding a statistically significant
model. It can be shown that the variance of [} decreases as the eigenvalues of (XTX)'l
increase, that is, as the columns of X become mutually orthogonal [38].

It is insightful to look at the case where there are two independent variables, in which

case:

0)- () 2| e

inj

j=1
where i will be 1 or 2 to signify one of the two model coefficients, » is the number of
observations and p is the correlation coefficient between the two variables [39]. This
example shows how the variance of the model coefficients decreases as the correlation
decreases. Using the uncorrelated principal components instead of the original, highly cor-

related data, increases the likelihood of finding a significant model.

The second advantage arises from the fact that a few principal components explain

most of the variance in the data. Therefore, a linear regression using the principal compo-
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nents as the independent variables will likely require fewer variables in the model than if
the original data is used. The prediction error of the fitted model increases with p, the

number of independent variables in the model, as given by:

ely-x3]* = |E o) - (B )2+ o’ a6
where E denotes the expectation operator and [|lv|| denotes the norm of vector v [38]. This
shows that when the model is used for prediction, the expected value of the residuals,
E “y—X @“2 , tends to increase as the number of variables in the model increases, unless

adding the variable brings a significant reduction in the “bias” of the model.

4.2 Manufacturing Application - IC Performance-Binning

A detailed view of performance model building is shown in Figure 4-1, which
expands the overview shown in Figure 3-2. This section details the development of the
performance prediction model, discussing the Monte Carlo simulation, Principal Compo-

nent Analysis, linear regression and model verification.

4.2.1 Monte Carlo Simulation

Monte Carlo simulation is used to drive a computer-based experiment for building
performance prediction models. The process description begins with the identification of
the critical model parameters. The mean value, spread and correlation of the parameters
are found directly from measurements made on the process. The advantage of the Monte
Carlo technique is that unlike experimental design techniques such as factorial or Latin
Hypercube, the accuracy of the Monte Carlo convergence on an estimate of response is
independent of the dimensionality of the problem, depending only on the number of trials

run [36]. This is of great value due to the high dimensionality of the fabrication line

model.
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Figure 4-1 Detailed View of Performance Model Development
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A Monte Carlo simulation is run which covers the maximum operational range of
process variation. The process parameters are mapped into transistor models, as was
explained in Section 3.4, and then circuit simulations are run to predict circuit perfor-

mance over this range of variation.

4.2.2 Principal Component Transformation

Using the generated process parameters as the independent variables and the access
time predicted by simulation as the dependent performance variable, a linear regression
model can be built to predict the circuit performance from the measured parameters. PCA
was used to transform the data set in this application to produce important advantages.
First, PCA produces orthogonal variables for regression from the original, highly corre-
lated dataset. Second, PCA reduces the dimensionality of the problem, as a few principal
components will likely be sufficient to capture most of the variation in the original dataset,
and reduces the prediction error of the fitted model. Together, these advantages will
decrease the complexity of the linear regression and increase the likelihood of finding a

significant regression model.

4.2.3 Linear Regression on Simulation Results

The principal components are used as inputs to the linear regression to build a model
for circuit performance. The issue of which principal components are used in the regres-
sion equation will be discussed in more detail in Chapter 6, when a regression model is

built from production data.

4.2.4 Manufacturing Verification and Final Adjustment
When a statistical model is built from a set of data, it is important to verify the model
using data that was not used to generate the model. In this case, the regression model built

from simulation data will be tested and verified using data from the manufacturing line.



Chapter 4: Design For Manufacturability Applications 38

This not only verifies the model itself, but forces agreement between the simulation mod-
els and manufacturing data.

The inputs to the performance prediction model are the measurable process parame-
ters, such as oxide thickness and effective channel length for an MOS process. These
parameters and the performance of fabricated circuits can be measured on manufactured
products. The measured process parameters are used in the model to generate a perfor-
mance prediction, which can be compared to the measured performance for that circuit.

Due to inaccuracies in the device model, circuit model and measurements, there may
be a difference between the predicted and measured performance for the verification data.
Therefore, the manufacturing data is used to estimate and correct the nominal performance
value of the model by adjusting the constant term in the model. When the performance
model prediction is in statistical agreement with the final test results, the process, device
and performance binning models are all verified to be correct, closing the loop between

design and manufacturing.

4.3 Statistical Process Control for Product Performance

The next application is a control procedure based on the performance prediction
model. A control chart for product performance would add high level monitoring capabil-
ity by signaling an alarm if the process was drifting away from the predictions of the
model. The control chart would be a first step towards reducing the variability associated
with the manufacturing process, as the alarms generated could be used to invoke high
level process control algorithms to correct process drifts. Since this chart will be driven by
prediction data, necessary corrections will be signalled early. It would also allow the cal-
culation of the capability of the entire manufacturing line.

Current work in the industry focuses on equipment level control of lithography, thin
film deposition and removal, erc. [40][41]. New research in factory level control will

examine propagating specifications up and down the factory, as shown in Figure 4-2. This



Chapter 4: Design For Manufacturability Applications 39

ASASA

Lithography Performance

control | control [ control |- control
design »| €quipment equipment > test

Figure 4-2 Process Control and Manufacturability

propagation must be based on the relationships between equipment, process parameters
and product performance. The performance prediction model is a vehicle for propagating
specifications up into the factory based on the most important metric - final product per-
formance. The control chart is a step towards factory level control, as it generates an alarm
which initiates corrective action.

There are two types of control procedures which could be used to monitor product
performance. The first, utilizing the performance prediction model, compares the actual
performance distribution of each lot with the model prediction. This control chart would
signal an alarm when there is a shift in the characteristics of the manufacturing line or

when a lot has been incorrectly tested. The control procedure would not raise an alarm



Chapter 4: Design For Manufacturability Applications 40

with the production of fast or slow parts, rather, when the in-line and electrical test mea-
surements no longer accurately predict the performance of the fabricated product.

The second control procedure would assume an overall distribution of output perfor-
mance for a given product and signal an alarm when actual performance falls outside of
this desired distribution. The control limits could be set from the distribution, as in an X
chart, or if the capability of the process is high, the performance specifications could be
used, as in an acceptance chart to control fraction non-conforming [42]. Corrective action
taken in response to the alarms generated by this control chart would move product perfor-
mance back towards the target.

This section will first present some background in the distribution and testing of prod-

uct performance, before discussing the details of these two control procedures.

4.3.1 Performance Distribution

The distribution of product performance must be specified to establish statistical pro-
cess control strategies. Assuming a stationary, normal performance distribution for a man-
ufacturing line is somewhat incorrect, as was the assumption of a normal distribution of
the process parameters. The main reason, as discussed in Chapter 3, is that performance
variance is not caused by random error, rather, our experience in this project showed that
the variance of performance within each lot was mostly caused by deterministic spatial
patterns in the manufacturing equipment [26].

However, the control procedures detailed in this work will generate control limits
assuming a normal distribution of performance at both the lot and product levels. The
assumption of normality greatly simplified the setup of the control chart and still allowed
good results to be achieved. Future work on control charts for performance will want to

revisit and improve upon this assumption.
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Figure 4-3 Detailed Histogram of Product Performance for Two Wafers

Histograms for two wafers with different average performance are shown in Figure 4-
3. The performance specification shown is the access time, or speed of a memory IC. The
shape and range of the histograms are similar, despite a 15% difference in average access
time, because of deterministic equipment variation. A normal distribution is a good
approximation for the shape of each histogram. Importantly, the determinism in the spread
implies that the accurate prediction of the mean value of performance of the lot allows the
number of parts in each bin to be calculated.

The setup of the control limits will utilize the normal distribution, which defines the

probability of a variable x being less than or equal to a as:

P{x<a} = }Glznexp—;(’%‘)zdxarp(“—;ﬂ) an



Chapter 4: Design For Manufacturability Applications 42

f(x) A

®(a)

N -

H a X

Figure 4-4 Calculating Probabilities using the Normal Distribution

where x has a mean p and standard deviation . This is illustrated graphically in Figure 4-
4,

4.3.2 Impact of Product Binning

Control procedures for product performance must account for the fact that actual per-
formance is not recorded exactly at final test, rather, parts are usually sorted into bins
which contain a specific range of performance. For example, consumers can purchase only
33 or 50 MHz microprocessors, and this greatly simplifies the testing and marketing of the
part. Therefore, the fraction of parts in a lot sorted into each bin will be utilized in the con-
trol procedure to determine whether the process is out of control. Unfortunately, recording
only the fraction in each bin rather than the absolute performance of each part, makes it
impossible to calculate the variance of the lot and therefore a control chart on the range of
performance in each lot cannot be maintained.

For example, suppose that the product shown in Figure 4-3 is sold with 120 ns? and
150 ns specifications on access time performance. In this case, all the parts from wafer 1
and approximately half of the parts from wafer 2 should be sold as 150 ns parts, with the

other half of wafer 2 sold as 120 ns parts. The control procedures developed in this section

2. The symbol ns stands for nanoseconds, or billionths of a second, the common time unit in digital electronics.
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will assure that the fractions from actual testing agree with either the fractions predicted

by the performance prediction model or the overall distribution of product performance.

4.3.3 Setup of a Model Based SPC Procedure for Product Performance

A model based control procedure for product performance would compare the frac-
tion of parts in a lot which fell into each performance bin against the fraction predicted by
the performance prediction model. It would detect process shifts which cause actual per-
formance to deviate from the prediction of the model, including incorrectly tested lots. To
generate a prediction of the bin fractions from the performance prediction model, the elec-
trical test results for each manufactured lot are used to predict the average performance of
the lot. Given this mean value, the fraction of parts which should occur within each bin
can be calculated by assuming a known variance for the performance of the lot.

The control limits will be calculated for each lot, because the expected fraction in
each bin will depend on the distance between the mean performance for the lot and the
edge of a bin. The limits are set by shifting the mean value for the lot and calculating the
number of parts in each bin, as shown in Figure 4-4. The control procedure will issue an
alarm if the actual fraction of parts in any bin is outside of the control limits. To calculate
the limits, both the error of the model prediction and the Type I error must be accounted
for. The Type I error, or false alarm rate, is the probability of generating an alarm even
though the process is in control. A Type I error rate of a is obtained from a control limit
shifted by Z,c from the mean, where Z,, is the upper a percentage point of the standard
normal. |

To account for model prediction error, the mean is shifted relative to the standard
deviation of regression of the performance prediction model, 6,,,4,}, and to ensure a low
Type I error, the mean is shifted relative to the standard deviation of the performance of
the lot, 5,,. Assuming these sources of error are independent, a standard error for the con-

trol procedure, o, can be calculated as:
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= / 2 2
cjspc Simodel + Slot (18)

In the case of two bins separated by a performance specification b, the control limits

are given by:
b+ (J+Z o))
LCL = q{ U* Za%pc) (19)
ot /
b+ (y—-Z o )
UCL = cb[ O Za%pc) (20)
Slot /

where j is the performance predicted by the model and Z , is set to give an a-level sensi-

tivity and false alarm rate.

In the case where the performance distribution covers two bins, the control limits on
the second bin are simply the complementary fractions from the first bin. It is a straight
forward extension to calculate the limits for the case where the performance distribution
spans more than two bins. However, some care must be taken in calculating the limits for
the bin containing the peak of the distribution. The limits for that bin are best obtained by

subtracting the minimum (or maximum) amounts from the other bins from the total num-

ber or fraction.

4.3.4 Setup of a Control Procedure for Overall Product Performance

The control procedure for overall product performance will signal an alarm if the pro-
cess is drifting to produce mostly low or high performance products. The model for this
chart is a fab producing a product whose performance is normally distributed with mean
W, and total variance czpmduct. This procedure will count the number of parts in the fast
and slow bins, generating an alarm when the fraction is over the control limit. This control

chart has a fixed control limit for each bin. For example, with a bin specifications of b, as
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Figure 4-6 Control Procedure for Overall Product Performance

shown in Figure 4-6, the fraction of parts which should be found in the highest perfor-
mance bin should be less than:

b—p+Zao

CL = 1—<p[ "“’""’) 1)

oproduct

where, again, Z , is set to give an a-level sensitivity and false alarm rate.

Several lots should be averaged for each point on the control chart to maintain a low
false alarm rate. A single lot may contain a large fraction in the fast bin even with the pro-
cess in control. Western Electric rules should be applied to this control chart to catch

trends or drifts in product performance.
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This control chart has a Type II error of:

= of b ) @2)

c’product

where f is the probability of not detecting the shift on the first sample and ' is the shifted
mean. For example, the probability of not detecting a shift in the mean from p to b is 0.5.
The probability of detecting the shift decreases as the size of the shift in the mean to detect

decreases.

4.3.5 Process Capability

Process capability is an increasingly important metric for establishing how suitable a

manufacturing process is for production. Process capability, Cp, is defined as:

Cp _ USL6; LSL 23)
where USL and LSL are the upper and lower specification limits and o is the standard
deviation of the process. Current industry practice is to calculate capability at the level of
a piece of equipment or process step. However, there would be a great advantage to calcu-
lating the capability of the overall process. For example, after making a change in the pro-
cess flow or a piece of equipment, it could be verified that the capability of the process had

actually improved.

The control limits and Groqyct used in the control chart for overall product perfor-
mance could be used for the USL, LSL and o in a calculation of Cp for a process. If bin-
ning is used in normal production performance testing, occasional detailed testing to
estimate Gpro4,ct Would be required. Motorola [9] and Philips [10] have implemented a O

metric for performance using this concept in their DFM tool algorithms.
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Figure 4-7 DFM Methodology

4.4 Circuit Manufacturability Improvement Method

This section will describe the activities outlined in Figure 4-7, which shows an over-

view of the DFM methodology as applied to the improvement in the manufacturability of

an IC product. Remember, the goal of DFM is to improve a circuit design to decrease its

sensitivity to manufacturing variation. Note the parallel, coordinated activities in the man-

ufacturing, process and design engineering sectors. Figure 4-7 shows the methodology

applied in the situation where both a new process and a new circuit design are being devel-

oped. If an existing product design or process is used, some of the necessary data and

models have already been generated.



Chapter 4: Design For Manufacturability Applications 49

4.4.1 Fabrication Line Description and Device Modeling

The process engineering organization creates the fabrication line description and
device models. The objective is to support computer-based experiments which relate pro-
cess parameters to product performance. These experiments will be used to identify the
sensitivity of IC designs to process parameter variation. The fabrication line description

and the device modeling methodology have been discussed in Chapter 3.

4.4.2 Circuit Model

The circuit design engineer generates the model of the circuit for use in simulation.
This model contains the transistors and any other devices comprising the circuit, as well as
the connectivity. In addition, the circuit model must include descriptions of the parasitic
loading in the circuit and any special structures in the product. The descriptions for these
structures must include models which reflect their parametric variation over the process
range. For example, in a memory circuit, the models of the word and bit lines must include
the changes in their resistive and capacitive load caused by variation in linewidth and

oxide thickness.

4.4.3 Manufacturing Data Collection

Simple integration with manufacturing is the key to this DFM methodology. Manu-
facturing data forms the basis for the fabrication line description. Electrical and final test
data allow the cross-checks which verify all the models and the simulation results. The
manufacturing engineering organization collects in-line and electrical test data from the
manufacturing floor and performance data after packaging and final test. This data con-
tains the mean value and range of the key process parameters which describe the fabrica-
tion line, measured transistor currents to validate the device models, and performance data

which validates both the performance prediction models and the circuit sensitivities.
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4.4.4 Verification

The verification of the models and circuit improvements occurs at the device, circuit
and product levels. At the device level, the Monte Carlo simulation results are used to
compare the mean value, range and sensitivity of transistor currents with the manufactur-
ing data. At the circuit level, sensitivities to the variation of a specific process parameter
should appear in both simulated and manufacturing data. Finally, manufacturing data are
used in the performance prediction model built from simulation to verify the correctness at
the product level [43].

Note that the device model is verified by checking the range and sensitivity rather
than distributions or yield. For example, when examining circuit sensitivity, plots of per-
formance versus a process parameter for manufacturing and simulation results should
show the same slope rather than the same correlation coefficient. In a process commonly
referred to as “tuning,” previous work in the area of statistical circuit design devoted time
and energy to adjusting the mean and variance of the input process parameters to match
the distributions of the output parameters from simulation and manufacturing [44].
Although tuning matches a snapshot of the process, a modern IC process is constantly
undergoing evolutionary changes making the snapshot obsolete. Further, matching output
distributions does not guarantee that the mapping between the process and performance
spaces is correct. By looking at sensitivities across a broad range of the process using
physically based device models, instead of adjusting input parameter distributions, the
correct relationships between the process parameters, the device characteristics and the
circuit performance must be pursued.

When a design improvement is made to increase circuit manufacturability, an experi-
ment should be run to verify the results before putting the new design into production.
Typically, a fractional factorial experiment [39] will be used, where a few of the critical

process parameters are varied at two or three levels. A fractional factorial is the appropri-
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ate experimental design in this case because it covers enough of the process space to ver-
ify the improvement, yet is small enough to be run using a single lot split, reducing the

cost of the verification run.

4.5 CIM Infrastructure for DFM

A factory-wide Computer Integrated Manufacturing (CIM) infrastructure is critical to
the success of this DFM methodology [11]. An overview of such a system is shown in Fig-
ure 4-8. The CIM system® provides the in-line data, such as linewidth and oxide thickness
for a CMOS process. Similarly, the electrical test database provides the electrical test data,
such as device currents and threshold voltages. The performance data comes from the
results of final test. In the most advanced factory-wide CIM systems, the in-line, electrical
test and final test data are all stored in a single relational database. DFM software provides
an interface with the circuit designer to run the Monte Carlo simulations. To support the
statistical characterization of the manufacturing data, the building of response surface
models and the analysis of the Monte Carlo simulation, statistical analysis software is
required.

This work used the Workstream [45] CIM System and the RS/1 [46] statistical analy-
sis package. Both the in-line and electrical test databases were managed by custom soft-
ware, including the interface into RS/1 for analysis [47][48]. The software to run the DFM
simulations was automated through custom software written by the author. The HSPICE

[49] circuit simulation software was used for circuit simulation.

4.6 Summary

This chapter presented the theory behind the DFM applications. Three applications

were presented, including a performance prediction model, a control chart for product per-

3. Specifically, the CIM system is responsible for running the factory, including scheduling the equipment, recipe con-
trol, in-line metrology management, etc. In general, the concept of a CIM system is extended to include the functions
shown in Figure 4-8.
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Figure 4-8 CIM Infrastructure for DFM

formance, and IC DFM. These applications were built on a common set of models which
described the fabrication line and the devices. Most importantly, all three applications
strive to integrate the process, manufacturing and design activities in the company.
Chapter 4 concludes the theory behind manufacturability modeling. Next, in Chapter
5, process and device models will be built for a production 1.2um CMOS process, and
then, Chapter 6 will present the results from developing these applications for the manu-

facturing line.
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Chapter 5

Fabrication Line and Device Models for a
Production CMOS Process

This chapter applies the methodology, developed in Chapter 3, for building a fabrica-
tion line description and extracting transistor device model parameters for circuit simula-
tion to a production 1.2 pm CMOS EPROM process. This chapter first develops the
fabrication line description, focusing on the set of process parameters which describes the
spread of performances seen on the fabrication line. Next, the process characterization
techniques are summarized, as a key element of this methodology is that all of the param-
eters are measurable using production line capable techniques. The chapter then presents
the device model parameter extraction for a SPICE Level 3 MOS transistor model.

Finally, the product specific EPROM cell model is discussed.

5.1 Symbols

The symbols used in this chapter are listed in Table 5-1, except for the SPICE model

parameters, which are listed in Table 5-4.
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Table 5-1 List of Symbols Used in Chapter 5

Symbol Description Units
Cgs gate to source capacitance F/em?
Cpoly EPROM cell inter-poly capacitance F/cm?
Cox channel capacitance F/cm?
Ip drain current A
L2 channel length cm
Nsub surface doping level cm™
q electronic charge C
Tox gate oxide thickness cm
Tpoly EPROM cell inter-poly oxide thickness cm
Vp drain voltage \Y%

Vg gate voltage A"

Vsp source to body voltage A%

Vr threshold voltage v

Vro threshold voltage without body bias v

wb channe] width cm

€ox oxide permittivity F/cm
& silicon permittivity F/cm

Y body effect parameter V12

Vs surface potential \Y%

Heff effective mobility cm?/V-s
Ho low field mobility cm?/V-s

a. The variations AL, Lgrawn, Lef; Lpoly and XL are explained in the text.
b. The variations AW, Wegrand Wy ienq are explained in the text.
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5.2 Fabrication Line Description

As explained in Chapter 3, the fabrication line description consists of several compo-
nents. First, the set of process parameters which explain the performance variation seen on
the manufacturing line are identified. Second, the means, variances and correlation matrix

(or equivalently, the means and the variance-covariance matrix) of the parameters are

determined.

5.2.1 The Process Parameters

For this CMOS process, the key process parameters which effect transistor perfor-
mance are the variations in channel lengthl (AL), channel width (AW), gate oxide thick-
ness (T,,), threshold voltage (V1) and channel surface doping level (Ng,;,). Although this
parameter set is similar to previous process models for statistical design [1], these parame-
ters differ in the use of V instead of the flatband voltage, and the inclusion of Ny, to
model body effect, which is important for analog design. These parameters are meaningful
to the process, circuit and manufacturing engineering groups and support both the manu-
facturing applications and the physical device modeling methodology employed in this
work. '

Four of the parameters, AL, AW, V1 and Ng,;,, are specified for each transistor type
(i.e. n-channel, p-channel, EPROM cell, etc.)?. There are three important gate oxide thick-
nesses in this EPROM process, two separate gate oxides and the inter-poly oxide in the
EPROM cell. Polysilicon line resistance is included as a product specific parameter
because polysilicon is used as the wordline of the memory and its resistance is important
to EPROM performance. Thus, a total of 28 parameters were included in the fabrication

line description, specifically, AL, AW, V1 and Ng,;, for each of the six transistor types,

1. The variation in channel length (and similarly, width) is best described and incorporated into the SPICE transistor
model by varying AL, which is the difference between the drawn and effective channel length. This will be described in
detail in Section 5.3.2.

2. In addition to the 3 devices listed, there are 3 additional devices which have adjustments to the threshold voltage
implant.
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three oxide thicknesses and the polysilicon line resistance. The mean value, operational
spread (variance) and correlation structure of these parameters was found from a combina-
tion of several months of historical characterization data for the process and detailed char-
acterization of a few samples. The variance-covariance matrix was extended slightly to
cover the process even when it is not in control. The techniques used for characterization

will be discussed in Section 5.3.

5.2.2 Process Correlation Structure

An important component of the fabrication line description is the process parameter
correlation structure. Table 5-2 shows the correlation structure among the 5 process
parameters for each of the n- and p-channel devices. Table 5-2 only includes non-zero cor-
relations which are expected from first principles. Although other correlations were signif-
icant in certain data sets, they were not included in the fabrication line description to

simplify and generalize the description.

Table 5-2 Correlation Structure for a 1.2 um CMOS EPROM Process2

ALn | AWn | Toxn | Vp, | Nsubn | ALp | AWp | Toxp V1p | Nsubp
ALn 1 0.75

AWn 1 0.8

Toxp 1 -0.8
[Tow |

Tp 1
Nsubp 1

a. The lower left half of this matrix is not shown due to symmetry.
b. Blank entries are not significantly different from 0.
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Note that the significance of an estimated correlation coefficient, p, can be found by

transforming it using:

=1 ﬂ")
z=3 ln( =5 24
where z is approximately normally distributed around:
=1 “_P)
m=z ln( T—p (25)
with variance:
y=_1_ (26)
n-3

where n is the number of samples [50]. To test if a correlation coefficient is significant, the
null hypothesis is Hy: p = 0, in which case m = 0. For example, if p is calculated from 100
data points, the variance of the estimate is 0.01, or a standard deviation 0.1, so that any

correlation coefficient less than 0.3 is equivalent to 0 at the 3 sigma level of significance.

5.3 Process Characterization Techniques

As this work is oriented towards the development of manufacturing applications, it is
important that the parameters used in characterizing the process can be measured on the -
manufacturing line. The techniques to characterize the underlying process parameters
described in Section 5.2 will be summarized here. The extraction of the parameters to
complete the device model, such as mobility reduction, will require additional structures
and measurements, which will be described in Section 5.4. The process characterization

software used in this work is a modification of MOSTCAP [51].

5.3.1 Test Pattern for Process Characterization

A simple test pattern capable of electrically measuring the necessary parameters in
high volume production is shown in Table 5-3. The electrical measurements to character-

ize the process are done after the processing is complete. The algorithms used to charac-



Chapter 5: Fabrication Line and Device Models for a Production CMOS Process 58

terize the process using this set of structures will be described in the subsections below.
For each transistor type, the six transistor parameters AL, AW, V and Ngyup can be mea-

sured electrically using three transistors: one long, one short and one narrow channel.

Table 5-3 Test Pattern for EPROM Process Characterization.

Parameter Measured Test Structure
AL, ETVT, Ngub . Three sizes for each transistor type:
(W/L =20/20, 20/2, 2/20)
Gate and Inter-poly Oxides 70 x 70 pm MOS Capacitors
Wordline Resistivity 800 x 2 pm Poly Line

The characterization techniques rely on the basic equations underlying transistor
operation. In general, the measurements bias the device in the linear region. The SPICE

Level 3 model for the drain current, Ip, in the linear region is given by:

2
Ip = kyory ] (Vg7 Vp- 2] @
eff
where g is the effective mobility, C,, is the channel capacitance, W is the effective
channel width, L is the effective channel length, V7 is the threshold voltage, Vg is the
voltage applied at the gate and Vy is the voltage applied at the drain. The effective mobil-
ity is defined as:

- Ho
ey = T+ 0 (77

(28)

where L is the low field mobility and 0 is the mobility reduction coefficient.

The characterization techniques presented here bias the transistor at very low Vp (in

the 50 - 100 mV range) so that the Vg term in equation (27) can be ignored.
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5.3.2 MOS Channel Length and Width Characterization

Variation in channel length is the single most important variable in explaining product
performance variation. This variation in channel length is caused by changes in the pat-
terning resist, the polysilicon etch and the diffusion of the source and drain underneath the
gate. In this characterization of channel length, the source and drain diffusion under the
gate, LD, is held constant, and changes in effective channel length are attributed to

changes in the polysilicon gate dimension, XL, that is:

Leff = Ldrawn—AL (29)
AL = XL+2LD 30
Lpoly = Lej_'f+ 2LD (€)))

where L, is the final size of the polysilicon gate, also known as the critical dimension,
CD. These relationships are illustrated in Figure 5-2. Note that for a given Ly, Changes
in Legr from wafer to wafer are physically described as change in XL, and hence AL

through the SPICE transistor model. Equivalent definitions hold for the channel width, W.

The channel length shrink is extracted using Chern’s method [52], which calculates

AL and the external channel resistance from a large and short channel transistor. The chan-
nel resistance of a MOSFET from equation (27) under low drain voltage is given by:

Vb L

R, =-2= o (32)
chan Ip peﬁC ox Weff Ve=V7)

When measuring the channel resistance, the source and drain resistance as well as the

probe resistance are also measured, that is:

R =R __+R

m ext chan = Rext+B(‘L AL) (33)

drawn~

where:

B = [koyCo Wy (Vo= VD1 (34)
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Therefore, if B is held constant (that is, for a specific value of Vg - V), a plot of L gun
vs. Ry, for transistors with different Lgp,,p Will result in a straight line. If lines are plotted
for several gate voltages, the lines intersect at the point (R.,,, AL), generating the desired

result.

Chern’s method is an industry standard approach and was used successfully in this
project. However, there are several problems with the method. First, p.¢ is function of
Vg, causing the relationship between L,y and Ry, to be non-linear. In addition, espe-
cially for Lightly Doped Drain (LDD) devices, the source and drain resistance are strong
functions of Vg, causing that component of R,,, to vary. Newer methods address these
issues, but the accurate measurement of AL for small devices is still an active subject of
research [53][54].

The channel width shrink is extracted using an approach analogous to channel length,
based on the relationship between conductance and channel width. A newer, more accu-
rate approach to measuring channel width is given in [55]. Channel width is especially
important in circuits such as memories which use a large number of minimum width tran-

sistors.

5.3.3 Threshold Voltage and Doping Profile

The linear extrapolation approach was used to measure the threshold voltage. This
method extrapolates the maximum slope of the drain current vs. gate voltage curve to the
intercept of the gate voltage axis [56]. The maximum slope is used because mobility
reduction increases with Vg, creating a non-linear relationship between I and Vg. A
common technique for finding the point of maximum slope is to plot the transconductance

(gm) against Vg, and then use the value of V; at the point of maximum transconductance

[57).
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The surface doping level, Ny, is calculated through measurement of the body effect.

The body effect, v, describes the change in threshold voltage with applied substrate bias,
Vgp, that is:

Vi=V0o*t1)Vsp* Vs : (33)

where Vg is the unbiased threshold voltage, W is the surface potential under strong

esinsub
Yy = ’—— (36)
Cox

[56]. To calculate Ny, Vy is measured for several values of Vgg, and Nsub is calculated

inversion, and y is given by:

from the value of y.

Alternative techniques for calculating doping levels often involve the addition of an
operational amplifier in the test setup [58]. Although more accurate and detailed profile
information is obtained, the additional hardware increases the complexity for use in high

volume production.

5.3.4 Oxide Thickness Measurement

There are three critical oxide thicknesses in the EPROM, including the two separate
gate oxides and the inter-poly oxide in the EPROM cell. The thickness of the oxide layers
can be measured on large MOS devices (capacitors) using capacitance-voltage (CV) tech-
niques, wherein a DC voltage is applied to the gate of the device to bias it in accumulation
and the small-signal capacitance is measured [56]. A large device is used so that fringing
fields and changes in the dimensions of the device can be ignored. The oxide thickness is

calculated using:

T - ox (37)

where A is the area of the device.
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5.3.5 Extension to Simulation of Interconnect Variation

Previous work in the field of statistical circuit design has focused on transistor param-
eters as the cause of performance variation [1][2][19]. Performance in current IC technol-
ogies, however, is also strongly affected by the interconnect parasitics. In fact, accurate
modeling of interconnect parasitics is critical for the high speed operation of ICs and is an
increasingly active field of research. The wordline resistance plays a key role in the per-
formance of the EPROM circuit discussed here. Therefore, this resistance is measured by
a polysilicon line in the test structure and its variation is included in the process model.

Although one interconnect test structure is sufficient for this EPROM circuit, in gen-
eral, the performance of analog and logic circuits will be sensitive to changes in the resis-
tances and capacitances associated with routing on all the polysilicon and metal

interconnect layers. A test structure capable of determining these parasitics is described in

[59].

5.3.6 In-line Measurements

In-line measurements refer to process characterization completed during the IC man-
ufacturing process. Although this section has focused on electrical characterization com-
pleted after processing, it is desirable to make measurements as early as possible in the
manufacturing process, for both early prediction of the performance of the fabricated cir-
cuits and early detection of process variation. As it is difficult to make electrical contact
with test structures before the deposition of the metal layers, in-line measurements tend to
depend upon optical techniques, which are less accurate than electrical techniques. Optical
techniques can be used for the measurement of linewidths and thicknesses. In particular,
the polysilicon linewidth and gate oxide thickness can be measured in-line.

In-line linewidth measurements are made by scanning a light or laser bean across a
line and measuring the intensity of the reflected light. The difference in reflected intensity

between the interconnect layer and the underlying layer can be detected and used to calcu-
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late the width of the drawn line. The accuracy of this technique is limited by the sensitivity
of the detection algorithm to the slope and smoothness of the transition in the reflected
intensity of the two layers at the edge of the line [57].

The gate oxide thickness can be measured using ellipsometry. An ellipsometer shines
a beam of monochromatic, polarized light at a wafer and calculates the thickness of the
top layer from the angles of minimum and maximum reflection intensity [57]. Ellipsome-
try requires a fairly large area sample. In the case of a thermally grown gate oxide, a blank
wafer is included in the furnace for characterization. The monitor wafer has a different
doping profile than the actual products, and therefore will have a different oxide thickness.
However, the monitor wafer thickness will be highly correlated with the gate oxide in the
product wafers, making these measurements suitable for performance prediction and Sta-

tistical Process Control.

5.4 Device Models
In this section, the physically based statistical SPICE level 3 MOSFET model param-

eter extraction is described, which completes the mapping of the fabrication line parame-
ters to device characteristics. The model parameters are separated into three groups, as
shown in Table 5-4 [13]. The first group contains physical constants. The second group
includes the measurable process parameters, such as gate oxide thickness. It is this second
group which has been described up to this point in Chapter S. The third group consists of
the fitting parameters, which will be either extracted or globally optimized, and possibly

modeled on the measurable process parameters.
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Table 5-4 SPICE Mode] Parameters

64

l Category Parameter Description Units
Constants Ko T low field mobility cm?/V-s
(from the process) Xj junction depth cm

NFS number of fast surface states cm2v'!
LD source/drain diffusion under gate | cm
m)ﬂ. poly gate length shrink cm
g:g:g :tl el:: ocess Naub surface doping cm™
Tox gate oxide thickness cm
Vr large device threshold voltage A%
XwW channel width shrink cm
Fitt;;g Paramt,ters Theta mobility degrjdation vl
gclli‘llxﬁiﬁ);otgtnfe:- Eta short channel effect
surements) Delta narrow channel effect
Kappa channel length modulation vl
Vmax saturation velocity cm/s

5.4.1 Overview of the Parameter Extraction Method

The physically based parameter extraction requires I-V curves measured on devices
covering a wide range of the variability seen for the process. The following steps are taken
to complete the extraction.

1. The parameters representing the constants of the process are assigned their measured
values.

2. The physical process parameters were measured on these devices, and the correspond-
ing model parameters were set accordingly. This is a key step in physically based
parameter extraction, as actual measured values are used in the corresponding SPICE

model parameter, for example, the T, parameter would be set equal to the measured
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oxide thickness. These values are not allowed to vary during subsequent optimization
phases.
3. The extracted fitting parameters are assigned their measured values. Regression mod-
els are built for any fitting parameters which are a function of the process parameters.
4. The remaining fitting parameters are determined by a global optimization.
5. The results are checked against the original I-V curves to verify the extraction process.
To subsequently determine parameter values for a transistor at any point in the pro-
cess space, the process parameters must be measured. Then, the corresponding model
parameters are set accordingly, and values for fitting parameters dependent on the process
are calculated. The constants and optimized fitting parameters are set to their global value.
The remainder of this section will describe the techniques for characterizing the con-
stants of the process and determining the fitting parameters. Also, extraction of the capac-
itance related parameters is discussed. The characterization of the directly measured

physical process parameters has already been described in Section 5.3.

5.4.2 Constants of the Process

The constants of the process include the junction depth, source and drain diffusion
under the gate and low field mobility. The junction depth is found by taking a cross-sec-
tion of a device and staining the junction [57]. The extraction of mobility will be
explained later in this section along with the fitting parameter mobility reduction. The
source and drain diffusion under the gate, LD, is calculated from the overlap capacitance,
Cga, On a large device with a known width and oxide thickness, using:

cC.,T
LD = __;i ox (38)
ox

The measurement of Cgq will include both the parallel plate and fringing field capacitance,
and therefore this calculation will overestimate LD. The correction factor to compensate

for the fringing field, which is dependent on the oxide thickness, is derived in [60].
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5.4.3 Fitting Parameters

Given values for the constants of the process and the physical process parameters, the
values for the fitting parameters are determined next. Fitting parameters can be found
through extraction or optimization, and they may be a function of the physical process
parameters. This subsection will focus on the extraction of mobility and the mobility deg-
radation coefficient. Mobility degradation is both extracted and functionally dependent on
the oxide thickness, so it is a good illustration of the physically based extraction method-
ology. The proper modeling of mobility and mobility degradation is also critical for
achieving a good fit across the process space. Low field mobility is extracted from the

same data, so it is also discussed here.

5.4.3.1 Extraction of Mobility and the Mobility Degradation Coefficient

Figure 5-1 shows the data curves used to extract low field mobility, py, and mobility
degradation, 0. This data, taken from the large 20/20 n-channel device, plots the reciprocal
of effective mobility against V - V for small V,, where the effective mobility is calcu-

lated, using Equation (27), as:

p (39)

The y-intercept is the reciprocal of low field mobility and the slope of the line is 6/uy,

which can be seen by rewriting Equation (28) as:

1 1 0
—_— = L+ 2 (V.—V,) (40)
Her Mo Mo ¢ r

Although in this case the data shows little deviation from a straight line, mobility degrada-
tion will often increase with increasing gate voltage. SPICE Level 3 models only have a
linear mobility reduction term and cannot account for this effect. Improved models such as

BSIM3 model are needed to correctly account for mobility degradation [61].
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Figure 5-1 Extraction of Mobility and Mobility Degradation

There are several imporrtant advantages to extracting g and 0 in this manner. The use
of a large device for extraction correctly separates the bulk MOS mobility properties from
any geometric effects. In addition, the physically correct extraction of these terms from
actual device measurements, as opposed to simply optimized parameter values, allows the
physics in the device model to calculate geometry and temperature effects correctly. Oth-
erwise, if geometric effects are confounded with bulk properties or optimized parameters
are used, the model prediction will show much greater deviation from actual device char-

acteristics when geometry and temperature are varied.

5.4.3.2 The Dependence of Mobility Degradation on Oxide Thickness

Using the physical parameters in conjunction with single values for the fitting param-

eters across the process space is not sufficient for accurate modeling across the entire
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range of variation. Therefore, to obtain a SPICE model which fits across the process, the
device fitting parameters must have a functional dependence on the physical parameters.
As was previously explained in Chapter 3, the functional dependence can be derived from
device physics or statistical regression techniques. Here, regression models for the device
fitting parameters in terms of the measured process parameters were used.

The most important effect is that as the oxide thickness decreases, the saturation cur-
rent decreases from that predicted by the Level 3 model due to velocity saturation effects
[62]. Therefore, the mobility reduction parameter, 0, was made a function of the oxide
thickness. A statistical linear regression equation was developed for 6 in terms of the
oxide thickness. For one device in this process, with oxide thickness Tox (in Angstroms), 8

is given by:

0 = 0.25—-0.0005 x Tox (41)
5.4.3.3 Global Optimization
Using the I-V curves collected from across the process space, global optimization was

used to find a single value for the other fitting parameters. A numerical optimizer [49] pro-

duced a value for each fitting parameter to obtain the best fit across the process range.

5.4.4 Capacitance Device Model

The parameterized Modified Meyer gate capacitance model was used [49]3. The gate
to channel capacitance (C,,), and the drain and source overlap capacitances (CGSO,
CGDO) were the appropriate function of Tox. The effect of transistor width variation on
the capacitances is handled internally by HSPICE [49]. Note that CGSO and CGDO had

no variation due to overlap distance because LD is a constant for the process.

3. In HSPICE, set CAPOP=2,
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Junction capacitance is modeled as an abrupt junction and the sidewall capacitance as
a linear graded junction. The junction and sidewall diffusion capacitances were held con-

stant, consistent with the view that the source and drain diffusions show little variation.

5.4.5 Final Comments

There are several advantages to the physically based modeling method. First, this
model allows accurate circuit simulation at any point in process space, not just at process
corners. The resulting SPICE model had a worst case drain current fit of about 8% across
geometry and the 3 sigma process range of the key parameters. Second, the method uti-
lizes measured data directly in the compact transistor model, without the need of a device
and process simulator. This makes the method particularly attractive to foundry users.
These advantages give the user the ability to select a wafer from the fab, measure the nec-
essary parameters, and produce the SPICE model for that wafer. As was explained in
Chapter 3, the physically based models connect manufactured wafers and simulation mod-

els, enabling the manufacturing applications.

5.5 Product Specific Models

There are two product specific models, the EPROM cell model and the interconnect
models. The important point is not these particular models, as many designs will include
unique structures which require a product specific model. Rather, the author contends that
any structure can be handled using a physically based model, defined at the appropriate

level of abstraction. It is important to emphasize that the structure be defined in terms of
measurable parameters.
5.5.1 EPROM Cell Model

An extension of the device model is used to describe the EPROM cell. The extension

is based on the capacitive coupling of the four MOSFET terminals to the floating gate, as
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Figure 5-2 EPROM Cross-Section and Floating Gate Capacitance Model

shown in Figure 5-2. The EPROM cell is modeled as an n-channel device, with the float-

ing gate (Polyl) acting as the gate terminal of the device. The voltage on the floating gate

is determined from the voltages on the gate and drain, and the capacitive coupling ratios,

which act as a capacitive voltage divider [63]:

GateCoupling

DrainCoupling

Cpoly (42)
ng-l» Cgs - Cox + Cpo[y

Coa (43)
ng ¥ Cgs * Cox & Cpojy

The capacitance values are calculated from the device dimensions and oxide thicknesses,

as simple parallel plate capacitors:

€
L ox
Cpoly - (Weff+2Wex!end)LpolyT (44)
poly
C e EOI (45)
ox = Wephepr
ox
C =C, =W LD (46)
2t = Cos = Wegl D7
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The dimensions of the plates are functions of L, Lpolys LD (all shown in Figure 5-2),
Wesr and Weyenq (the extension of the floating gate beyond the electrical width). Cur-
rently, Le¢r and W are measured electrically, while LD and Wyenq are assumed con-
stant. Future models will be based on the in-line measurement of the polysilicon
dimensions. Again, a small set of measurable parameters allows the creation of a simula-
tion model over the range of the process for the EPROM cell with similar accuracy to the

n- and p-channel device types.

5.5.2 Interconnect Models

The word and bit lines of the EPROM require detailed models due to their large con-
tribution to the memory access time. The resistance of the wordline is significant, and
therefore it is measured in the test structure. The capacitance of the wordline is dominated
by the large number of EPROM gates connected to it. This gate capacitance is accounted
for by the measurement of the two EPROM oxide thicknesses. Therefore, a lumped RC
parameter model is used for the word lines, whose resistance values are based on the mea-
sured resistivity and capacitance values are functions of the oxide thicknesses.

The resistance of the metal bit line is small. The capacitance of the bit line has com-
ponents from both the EPROM cell drain junctions attached to it and the metal line.
Therefore, the bit line is modeled as a combination of a large fixed capacitor and diodes

which represent the junctions.

5.6 Temperature Effects

Accuracy over temperature is a very important feature of a transistor model, as cir-
cuits are specified to operate over a wide temperature range. Given the proper physical
specification of the bulk silicon properties, the SPICE Level 3 model will account for tem-
perature changes through default parameter temperature dependencies. The most impor-

tant temperature dependent parameters are the low field mobility, threshold voltage and
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Figure 5-3 Low Temperature Cell Characterization

the saturation velocity. However, the adjustment of the saturation velocity is based on the
VMAX parameter, whose value was strictly optimized for the room temperature I-V
curves in this work.

The device model was evaluated at 85 °C and -40 °C. The simulated and measured
waveforms for -40 °C are shown in Figure 5-3. The model, using parameters extracted at
room temperature, gives results with only 2% additional inaccuracy over temperature.
Again, there were no adjustments to any parameters other than the Level 3 internal tem-
perature dependencies, and there were no temperature related fitting parameters specified.
The physical modeling method along with the straightforward approach to temperature

modeling in the Level 3 model is very accurate.



Chapter 5: Fabrication Line and Device Models for a Production CMOS Process 73

More complex SPICE models force the user to tune temperature related fitting param-
eters to achieve this level of fit. Although this tuning will improve the fit over temperature,
it does require additional work. In [64], physical and statistical models for the SPICE tem-

perature parameters are combined to achieve an accurate fit over temperature.

5.7 Summary

This chapter presented the fabrication line description for a CMOS EPROM process
and completed the parameter extraction for a SPICE Level 3 transistor model. The focus
of the chapter was the techniques used to measure or characterize the model parameters. In
particular, mobility and mobility degradation, and the EPROM cell model, were used as
examples of the physically based modeling methodology. Next, Chapter 6 will discuss

building the manufacturability applications from the models developed in this chapter.
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Chapter 6

Design For Manufacturability
Application Examples

Chapter 5 completed the discussion of the fabrication line description and device
models which underlie manufacturability applications. This chapter now reports on the
development of the applications presented in Chapter 4, a performance prediction model,
a control procedure for performance, and an IC Design For Manufacturability (DFM)
study. The statistical device models, the ’parameter distributions from the fabrication line
characterization and the circuit simulation model were used together, often in designed
experiments, to build the applications. These applications are all developed on a 1 Mbit
EPROM product. The applications were built on several generations of a CMOS process,

but each generation was characterized using the methodology shown in Chapter 5.

6.1 EPROM Architecture and Circuit Sensitivity
Before developing the applications, the EPROM used as the example circuit will be
described. First, the architecture of the 1 Mbit EPROM circuit will be discussed. Second,

Monte Carlo results are presented which show the sensitivity of EPROM circuit perfor-

mance to process variation.
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Figure 6-1 Schematic Overview of an EPROM

6.1.1 EPROM Architecture

An overview of the EPROM architecture is shown in Figure 6-1.! The incoming
memory address is split to control the two decoder blocks. The x-decoder selects one of
the wordlines, and each EPROM cell on the wordline puts a “1” or a “0” onto a bitline,
depending on whether the cell is programmed or unprogrammed. The y-decoder selects
one of the bit lines, and that value is sensed by the sense amplifier and driven off chip by

the output driver.

1. Figure 6-1 shows the read path for the memory, because the read access time is the focus of the DFM work. Writing
the non-volatile EPROM cell is a slow, one time operation.
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Figure 6-2 Monte Carlo Result: Address Access Time versus Effective Channel
Length for 1 Mbit EPROM

The circuit performance modeled in this chapter is the address access time (denoted
“tacc”) of the EPROM, which is defined as the time between a valid address at the
EPROM inputs and the data becoming valid at the DATA OUT pin. Typically, EPROMs
are binned based on access time, which varies with the process, with the other perfor-
- mance specifications, such as the input and output DC levels, being fixed. Therefore, the

access time was chosen as the performance metric to model in the EPROM circuit.

6.1.2 EPROM Sensitivity to Process Variation

The first step to understanding the manufacturability of a circuit is to establish the

sensitivity of circuit performance to process parameters variation. Figure 6-2 shows a scat-
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terplot of address access time versus the effective channel length of the EPROM cell for a
50 point Monte Carlo simulation of the EPROM. The Monte Carlo shown in Figure 6-2
includes the variation of all process parameters, but the results are plotted against one spe-
cific parameter, the effective channel length of the EPROM cell. As the value of effective
channel length increases, the EPROM gets slower and starts to fail.2 In other words, per-
formance yield decreases when the process is producing longer channels. However, there
is a lot of variance in the access time even at shorter channel lengths, due to the effects of
other process parameters, specifically, the oxide thicknesses and hence the threshold volt-
ages of the transistors.

To more clearly show the effect of the different process parameters in the results of
Figure 6-2, a Monte Carlo simulation was run varying only the effective channel length
parameters. Figure 6-3 shows the results of the second Monte Carlo. Note that the address
access time varies at a given value for the channel length of the EPROM cell because of
the variation in the channel lengths of the other transistor types, which are highly, but not
perfectly correlated with the channel length of the cell. Figure 6-3 clearly illustrates the
strong dependence of performance on channel length variation. Also note that the variance
in performance is greatly reduced, showing how the variation of the other process parame-
ters, such as oxide thickness and threshold voltage, also effect circuit performance.

In light of these results, the goal of the performance prediction model is to predict
product perfqrmance across the range of the process from the measurement of the process
parameters. In contrast, the goal of the DFM changes is to reduce the sensitivity of perfor-

mance to these variations in the process.

2. Parts with a 400 ns access time in Figure 6-2 are either very slow parts or parts which fail to switch.
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Figure 6-3 Monte Carlo Result Varying only Channel Length: Address Access
Time versus Effective Channel Length for 1 Mbit EPROM

6.2 Development of a Performance Prediction Model for
Manufacturing

The first application is a model that predicts the performance of manufactured cir-
cuits, as was shown in Figure 4-1. A Monte Carlo experiment was used as a computer-

based experiment to develop a model for performance in terms of the measurable process

parameters. A manufacturing line experiment was run to verify the results.

6.2.1 Monte Carlo Simulation

To cover the range of process variation seen in the manufacturing line, a100 point

Monte Carlo simulation experiment was run on the 1 Mbit EPROM. Uniform distributions
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were used for the process parameters, and parameter correlation was included to limit the
process space of the model. For each of the 100 points, correlated process parameters were
generated for each of the six transistor types (n channel, p channel, EPROM cell, etc.) in
the circuit. SPICE Level 3 transistor models were generated from the process parameters,
as described in Section 5.4. Combining the device models with the circuit netlist for the
EPROM, 100 circuit simulations were run and then the access times were extracted from
the results.

The simulations were run on a SUN SPARCstation 690 server with four processors.
Two simulations, rather than four, were run simultaneously, to allow other users access to
CPU time. Each simulation took approximately four minutes, so the Monte Carlo required
an elapsed time of 3 hours and 20 minutes. Many circuit designers have even more proces-
sors available for running circuit simulation, which will linearly decrease the elapsed time
required. Monte Carlo simulation is an excellent application to parallelize, as each simula-

tion can run on an individual processor.

6.2.2 Principal Component Transformation and Regression on Simulation

Using the process parameters generated for the Monte Carlo as the independent vari-
ables and the access time predicted by HSPICE as the dependent variable, a linear regres-
sion model was built to predict the access time of the EPROM from the measured
parameters. To aid in the model building, a Principal Component rotation of the correlated
input parameters was employed. The 28 correlated process parameters required seven

Principal Components to explain 80% of their variance, as shown in Table 6-1.
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Table 6-1 Table of Principal Component Variance

80

PC 1 2 3 4 5 6 7

% Variance 222 20.8 17.6 7.3 4.7 4.0 3.8
Explained

Cumulative 222 43.0 60.6 67.9 72.6 76.6 80.4
Variance

Explained

Using step-wise regression, three Principal Components (numbered 1, 2 and 4 in

Table 6-1) were chosen to obtain a highly significant model for the address access time of

the EPROM. The fact that a significant model was achieved with only 50% of the variance

of the process parameters shows the importance of effective channel length in determining

circuit performance. It also shows that large portions of the observed variance did not cor-

relate with the product performance. However, as each Principal Component is a linear

combination of the 28 process parameters, this model encompasses all the original vari-

ables.

The ANOVA table is summarized in Table 6-2. The model explains the variation in

performance, as is shown by its high significance. The model has an excellent R-squared

of 0.95 and a standard deviation of regression of 1.6 ns, or just over 1% of the 120 ns

access time of the part.

Table 6-2 ANOVA Table for Performance Prediction Model.

Error Source Sum of Sq. DF F Sig.
‘Regression 42494 3 s6l7 00|
Residual 242.1 96
‘R-Squared 005 —
Std Dev of Regression 1.6 ns
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Figure 6-4 Factorial Design for Model Verification

6.2.3 Manufacturing Verification

So far, we have described the statistical circuit model, and how we used a computer-
based Monte Carlo experiment to build the performance prediction model from simula-
tion. To complete the integration with manufacturing, an experiment was designed and
executed on the manufacturing line. The experiment explicitly varied the process parame-
ters on production wafers. After manufacturing, the process parameters were measured
and used as inputs to the performance prediction model developed from simulation. The
correct prediction of manufactured product performance verified the manufacturability
models and the methodology.

The experimental design, as shown in Figure 6-4, was a full factorial experiment with
center point replication in the four most important parameters: AL, AW, and two of the

oxide thicknesses [21]>. The process flow accounts for the fact that only two out of the

3. In fact, the experiment originally sought to build such a performance prediction model directly from manufacturing
data. Combining simulation and manufacturing data is clearly more effective.
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three gate oxide thicknesses are independently varied. The minimum and maximum val-
ues used in the factorial design were chosen to represent the true excursions of the process
over an extended length of production, thus verifying the model over a wide range of con-
ditions.

After the experiment was run through the manufacturing line, the 28 process parame-
ters were measured at electrical test at four sites on each of the wafers. Measurement out-
liers, including bad data, were replaced by the appropriate average, that is, single points on
a wafer were replaced by the average for that wafer and a missing wafer average was
replaced by the split or global mean. Rather than the usual performance testing, where the
die are placed into a bin based on their performance, detailed histograms of the address
access time of the EPROMs from each wafer were recorded after packaging.

The performance test results showed that each wafer has a deterministic spread in
speed of approximately 8 ns, independent of the absolute performance of the wafer. There-
fore, it must be caused by equipment specific, non-random radial variation on the wafers
[26]. As this deterministic spread is consistent, it does not affect the prediction capability
of the model, which predicts the average performance of the wafer. The average perfor-
mance for each wafer is a function of the non-deterministic, but measurable variation of
the key process parameters in manufacturing.

The measured parameters were put through the Principal Component transformation
determined in the development of the model from simulation. Recall that the Principal
Component transformation is based on the correlation structure of the data, as was dis-
cussed in Chapter 4. Since the simulated data is based on the correlations found in manu-
facturing, applying the same transformation to the manufacturing data is appropriate. The
principal components were then used in the model built from simulation data. The perfor-
mance model was used to predict the average access time for each wafer from its average

electrical test values.
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Figure 6-5 Predicted vs. Measured Access Time, Simulation and Manufacturing Data

To account for the cumulative inaccuracy of the simulator, the tester, etc., we allow a
change in the constant term of the model in predicting the performances of the manufac-
tured wafers. In this case, the shift in the constant term was 15 ns. A significant portion of
this shift was attributed to the redundancy circuits, which are not included in the circuit
simulation model but are active in the manufactured parts. Future work on performance
prediction for memories will require improvements to correctly handle the implications of
redundancy circuits.

To graphically display the goodness of fit, the predicted performance versus the actual

average performance for these wafers is shown against the simulation results in Figure 6-
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5. Figure 6-5 shows the access time predicted by the linear model plotted against the
“measured” access time for these wafers. The “measured” access time is extracted from
SPICE for the 100 Monte Carlo points, and is measured at performance test on the manu-
factured wafers. Again, the manufacturing data points represent the mean access time for
the die on that wafer. The predicted access time is the prediction of the model from the
process parameters, using different constant terms for the simulation and manufacturing
data. A good fit can be seen over the entire range of performance. It is important to empha-
size that the manufacturing data was not used to build the model (except the constant
term), and therefore the good fit is an indication of both the accurate predictive capability
of the model and that the statistical device model and the performance prediction model

are valid across the range of process variation.

6.2.4 Analysis of Residuals

The regression residuals are often good indications of relationships between the
dependent and independent variables which have not been properly included in the model
[65]. Figure 6-6 plots the residuals from the model for both the simulation and manufac-
turing data against the predicted access time*. Although the residuals from the simulation
data appear to be identically, independently and normally distributed (IIND), the residuals
from the manufacturing data show a decreasing trend as the predicted access time
increases.

From a statistical modeling point of view, trends in residuals are most likely indica-
tions that additional terms should be added to the model. Although adding non-linear
terms would improve the distribution of the residuals, this is not the root cause, because
this model results from both simulation and a statistical regression model building proce-

dure. In fact, this trend in the residuals was more pronounced in the early stages of this

4. Residual plots against the dependent variable should always plot against the fitted results, rather than the actual
results, as there is an expected relationship between the residuals and the actual results used to build the model.
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Figure 6-6 Performance Model Residuals versus Fitted Access Time

project, and also showed in a plot of residuals against oxide thickness. The problem was
reduced by improving the handling of mobility degradation (0) in the device model. The

residual trend in Figure 6-6 is most likely an indication that further improvements to the

mobility degradation model are needed.

In general, the addition of non-linear effects to improve the model was not pursued in
this project. This project focused on the issues related to applying manufacturability mod-
eling to an actual fabrication line. The author believes that other issues, such as measure-
ment capability, device modeling and CIM infrastructure, need further consideration

before the lack of fit of the model becomes a priority issue. In addition, non-linear terms
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can potentially amplify measurement noise, rendering the predictions meaningless. Work
in this area which has included nonlinear effects can be found in [6] and [66], however,

these works make limited use of actual manufacturing data.

6.3 Statistical Process Control for Product Performance

The second application developed was a model based control chart for product perfor-
mance, which utilized a performance prediction model to predict the fraction of a lot
which should occur in each bin. The model used in this application was based simply on
device currents, rather than the process parameters, as the currents for each lot were more
readily available through the CIM system. Table 6-3 shows the bin specifications for the
access time of the 1 Mbit EPROM.

Table 6-3 Bin Specifications for the 1 Mbit EPROM

Bin Access Time
(in ns)
1 — 120 |
2 150
3 170

A total of 7 lots were put through the control procedure. Table 6-4 shows the actual
test results and the upper and lower limits for the fraction occurring in each bin, as calcu-
lated by equations (19) and (20) with Z  =2.

Table 6-4 Control Procedure Results?

Lot Lower Control Limit || Actual Bin Fractions || Upper Control Limit
Binl [Bin2 | Bin3 ||Binl | Bin2 | Bin3 ||Binl | Bin2 | Bin3
00 | 04 | 00 | 0.02 | 094 | 0.04 || 0.6 1.0 | 00
00 [ 00 [ 0.0 [[ 0.0 | 096 | 0.04 || 1.0 1.0 | 0.0
0.0 10 | 00 |[ 0.0 [ 098 | 0.02 || 0.4 1.0 | 0.0
0.0 1.0 | 0.0 || 0.0 | 002 | 098 |[ 1.0 1.0 | 00

Sl W] -
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Table 6-4 Control Procedure Results?

Lot Lower Control Limit || Actual Bin Fractions || Upper Control Limit
Binl |Bin2 [ Bin3|[Bin1 [ Bin2 [ Bin3||Bin1 | Bin2 | Bin 3
[ 5 ] 00| 04| 0000 0900106 o] o0
6 00 | 04 | 00 || 0.0 | 095 | 0.05 |[ 0.6 1.0 0.0
7 00 [ 00 | 00 | 00 | 097 | 0.03 |[ 1.0 1.0 0.0

a. All entries in this table denote fractions of the lot in a bin.

Lot 4 generated an alarm because the actual test result was slower than the prediction
of the model. As these lots were all shipped immediately to customers, the assignable
cause of the alarm could not be determined. Lot 4 had the smallest CD and the largest cur-
rents of all the lots in the control chart, therefore, it is likely that the lot was incorrectly
tested. However, it is possible that noise induced by high current switching actually
reduced the performance of this lot.

The other lots all had small fractions of product in Bin 3. Although the control chart
limit for Bin 3 was always 0 because the process was producing faster parts during this
time, the small fraction for Bin 3 found in actual testing should not generate an alarm.
There is often a long tail on the actual performance distribution, because a small number -
of cells in a lot will have low currents and produce slow parts. This is not a symptom that
the process is out of control.

These results illustrate the value of instituting a model based control procedure for
product performance. On most final test floors, although severe drops in yield will gener-
ate an alarm, there is generally no mechanism for detecting when a lot has been incor-
rectly tested. However, given a model between electrical test and product performance,
final test results can easily be verified by the CIM system. Increased sensitivity to test

problems and process shifts represents the important benefits of process control.
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6.4 DFM Application for Low Voltage EPROM

The final application to be discussed is an improvement to the manufacturability of an
IC product. The circuit chosen to demonstrate DFM was a commercial 1 Mbit EPROM.
This product was designed to operate with a 5V supply, however, market demand for ICs
which operate at lower voltages is increasing, driven by the need for portable, battery
powered devices [67]. The goal of this project was to improve the manufacturability when
the EPROM was operated from a 3V supply. Currently, the EPROM design operates at 3V
over a certain range of the process, and a subset of production selected by an appropriate
performance prediction model can be shipped to customers for operation at 3V. However,
the product performance at this lower supply voltage is sensitive to process variation.
Therefore, the 1 Mbit EPROM was selected to test the DFM methodology developed in
this work.

This situation is typical of a common industrial decision - given the demand for a
product to operate at a lower supply voltage or higher performance level, can the design
be modified to meet this need, or is a re-design required? A complete re-design will result
in a longer time to market for the product, however, making only minor modifications to
the design brings the risk of only slightly increasing the performance yield. The DFM
methodology presented here is intended to address theses concerns by improving the re-
design process. DFM will allow the circuit designer to complete the task faster and more
effectively, lowering the risk of the re-design.

Memory circuit performance is critically dependent on the characteristics of the mem-
ory cell. However, it is very expensive to change the fabrication process to alter the cell
characteristics and then verify reliable product operation. Therefore, the DFM effort
focused on the circuits surrounding the cell, including the wordline driver and the sense

amplifier, as was shown in Figure 6-1. Limited circuit details will be presented due to the
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proprietary nature of these production circuits, however, the results of the methodology
are independent of the circuit details.

This section will present a circuit overview, the DFM analysis, circuit modifications
and verification results for the wordline driver and sense amplifier circuits. This section

will conclude with a discussion of this DFM methodology.

6.4.1 Wordline Driver Circuit

Given the architecture and sensitivities of the EPROM, the first circuit chosen for
analysis was the wordline driver. The wordline driver circuit is shown in Figure 6-7. The
wordline is driven through an n-channel device with a lower threshold device, which acts

as the final stage of decoding. The gates of the EPROM cells are connected to the word-

line.



Chapter 6: Design For Manufacturability Application Examples 90

6.4.1.1 Word Line Driver Circuit Analysis

The voltage on the word line is applied directly to the gate of the EPROM cell. There-
fore, the wordline voltage should be as close to the supply voltage as possible. For prod-
ucts specified to operate at 3V with +/- 10% operating margins, the worst-case supply
voltage for simulation and testing is 2.7V. The cell has a high threshold voltage to protect
against breakdown during high voltage programming, and the EPROM model showed that
the threshold voltage for the cell was over 2V under the worst-case process conditions.
The Monte Carlo simulations showed circuit failures, as small Vg - V1 values for the cell
were causing low cell currents. The goal of the circuit change to the wordline driver is to
increase the voltage on the gate of the EPROM cells, and thereby increase the cell current

and improve the circuit performance for all process conditions.

6.4.1.2 Word Line Driver Circuit Modifications

Examining the circuitry driving the word line, the voltage on the word line is limited
to the supply voltage minus the threshold voltage drop required to turn on transistor M1 in
Figure 6-7. Although this threshold voltage drop is not a problem with a 5V supply, this
voltage drop becomes critical for low voltage operation. To improve the word line voltage
level, the threshold voltage of device M1 was lowered. However, lowering the device
threshold voltage results in excessive leakage in the case where the output of the word line
driver is high and the final decoding stage is not selected (SELECT is low and SELECT is
high). This leakagé caused the power to exceed the specification. The leakage problem

was solved by inserting an additional transistor between the n-channel device and ground.

6.4.1.3 Word Line Driver Verification Results

A single split lot experiment was run through the fabrication line to verify the design
change. One half of the wafers contained the original design, and the other half contained

the design improvement, including the lower threshold voltage on device M1. The wafers
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Figure 6-8 EPROM Sense Amplifier

with the new design had an improvement in the lowest power supply level for fully func-
tional operation equal to the threshold voltage difference of the two designs. This increase

in the power supply margin will improve the yield of lots across a wide process range for

3V operation.

6.4.2 Sense Amplifier Circuit

The next circuit to be discussed is the sense amplifier, shown in Figure 6-8. This is a

current sensing circuit, wherein the presence of cell current (an unprogrammed cell) pulls
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the node labeled “INPUT” to a low voltage level and the absence of cell current (a pro-
grammed cell) allows the current source and transistor M1 to pull the node “INPUT” to a
high voltage level. The amplifier is made differential and compensated for changes in cell
current across the array through the use of an unprogrammed reference cell, whose current
is multiplied to provide a reference current to the sense amplifier.

The sense amplifier is characterized by three voltages, all related to the node labeled
“INPUT” in Figure 6-8. These voltages are the low and high DC levels and the level
which switches the amplifier stage. The levels are called the lower window, the upper win-
dow and the trip point, respectively. The final amplifier stage is designed to set the trip
point in the middle of the window voltages.

Monte Carlo simulations were run, including all process parameters across the range
of process variation, to determine the lower window, trip point, upper window and access
time for the sense amplifier. The results for the window and trip point levels for the origi-
nal design are shown in Figure 6-9. Each vertical column of three points represents the
results from a set of simulations run at a specific point in the process. For improved visual-
ization, the results are sorted in the order of increasing cell current. There is a decreasing
trend in the level of the upper window and trip point, showing that these levels are set by
circuits sensitive to overall current levels. The lower window is flat over the process, with
fluctuations caused by changes in the threshold voltage of the n-channel transistors. Fi gure
6-9 also shows a reduction in margins at lower cell currents.

Section 6.4.2 and its subsections, which cover the modification, analysis and verifica-
tion of the sense amplifier, compare two circuit implementations of the sense amplifier.
The first implementation, which has already been presented, is the original design. The
second is a minor modification which will be named the new design. At the time the new
design was proposed, a problem with the DFM software made it appear that the new

design would improve the performance yield of the circuit. In fact, this was not the case.
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Figure 6-9 Monte Carlo: Window Levels for Sense Amplifier - Original Design

All the simulation results reflect the corrected software. This problem with the DFM soft-

ware will be discussed in Section 6.4.3.

6.4.2.1 Sense Amplifier Circuit Modifications

The EPROM product under consideration is a high volume, low cost product. To limit
the cost involved in the design improvement, circuit changes were allowed only in the pol-
ysilicon mask, which limited changes to the drawn length and width of the transistors. The
circuit designer selected 4 transistors in the sense amplifier for size modification, includ-
ing the zero threshold devices labeled M1 in Figure 6-8 and 3 transistors in the voltage

generator. The goal of the design changes were to modify the DC voltage levels of the
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windows depicted in Figure 6-9. The exact sizes were chosen with the aid of the optimizer
in HSPICE.

To explain the circuit changes in the reference voltage generator, a simplified equiva-
lent circuit is shown in Figure 6-10. The voltage bias levels at the gates of transistors M1
and M2 are set by the voltage drops across controlled impedances, shown schematically as
R1 and R2. The amplifier is part of a circuit which clamps the voltage on the bit line, as
any voltage swing on the bit line would slow down the access time due to the large capac-
itance on the bit line. The circuit changes in the reference voltage generator were to
decrease the resistance of R1 and R2 and lower the current flowing through them. This
reduces the effect on the reference voltage levels of the small changes in the output volt-
age of the amplifier caused by variation in the threshold voltage of the transistors. Another

effect of these changes was to raise the DC level of the upper and lower windows.
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Figure 6-11 Monte Carlo: Window Levels for Sense Amplifier - New Design

The other circuit change was to reduce the size of the load transistor M1. As can be
seen in Figure 6-8, the current source and transistor M1 are both supplying current to the
INPUT node for the case when the EPROM cell is unprogrammed (i.e. the cell transistor
is on). In the case of low cell currents, the low impedance of the load slows the pulldown
of the INPUT node, so the impedance of M1 was raised to increase the switching speed.

The Monte Carlo results for the windows and trip point of the new design are shown
in Figure 6-11. The circuit changes raised the upper window level by about 250mV and
the lower window raised by about 125 mV, with the trip point unchanged. Further, the

variability of the upper window has been reduced. This design change has moved the trip
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Figure 6-12 Monte Carlo: Read Access Time versus Cell Current - Original and
New Designs

point off of center, which will have the effect of slowing the transition from the upper to
the lower window with respect to the transition from the lower to the upper window, that

is, the transition from the lower to the upper window will reach the trip point faster.

6.4.2.2 Sense Amplifier AC Analysis

To further analyze the sensitivity of the original and new circuit designs, Monte Carlo
simulations were run, again over all process parameters, to determine the address access
time of the original and new designs. The results are shown in Figure 6-12, which plots the
address access time of the EPROM against the cell current. Cell current is used as the x-

axis in this graph, instead of effective channel length as was used in Figure 6-2 and Figure
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6-3, because cell current represents the combined effect of all process parameters. Figure
6-12 shows that the average value and the variance of the EPROM access time increase as
the cell current decreases. Figure 6-12 does not indicate that there is a significant differ-
ence in the performance of the original and the new designs.

However, Figure 6-13 gives additional insight into the new design. Figure 6-13 plots
the address access time against cell current for the new and original designs, for a Monte
Carlo simulation which varied only the channel length of the transistors. Figure 6-13
shows that the new design actually has an increased sensitivity to channel length variation.

For EPROM circuits having cell currents with scaled values between 0.55 and 0.65, there
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is a group of 8 simulations which operate at approximately a 275 ns access time for the
original circuit design, but these simulations are either slow or fail completely for the new

design.

6.4.2.3 Sense Amplifier Verification Results

To verify the simulation results for the original and new sense amplifier circuit
designs, a fractional factorial experiment was run on the manufacturing line. The experi-
ment, summarized in Table 6-5, varied the polysilicon linewidth at three levels to produce
samples with slightly longer, nominal and slightly shorter channel lengths. These three
levels produced transistors with low, medium and high device currents. Both the original
and new designs were fabricated, resulting in a total of six splits, which were processed
within a single lot. The access time for approximately 80 samples® from each range of cell
current was characterized through detailed performance testing to examine the sensitivity

of the two designs to process variation.

Table 6-5 Sense Amplifier Verification Experiment

Number of Description of Level
Factor Levels ) 2 3
Design | 2 | onigmal | mew |
Cell Current? 3 high | nominal low

a. The cell current was varied by process changes which effected the
polysilicon linewidth. This change effected all transistor types.
The results of the verification experiment are summarized in Table 6-6. The average
address access time for the original design increases from 108 ns to 135 ns, and its stan-
dard deviation increases, over the range of cell current. The shows good agreement with

the simulation results shown in Figure 6-12, as the range of cell current variation seen in

5. The entire lot was not performance tested due to a mixing of the splits during packaging. Instead, the cell currents in
the packaged EPROMs were measured and separated into ranges for testing,
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the experiment corresponds to the scaled range from 0.7 to 0.9 in Figure 6-12. However,

the access times for the new design are 15 ns slower than the original design.

Table 6-6 Sense Amplifier Verification Results

Cell Current Performance Mean (in ns) Standard Deviation (in ns)
Range Original Design | New Design | Original Design | New Pjsign
High | 1080 | 1223 " o4 12.6
Nominal 118.6 129.3 9.6 113
Low 135.1 151.3 16.1 16.6

The increase in access time for the new design is explained by the simulation shown
in Figure 6-13. The Monte Carlo simulation shown in Figure 6-13 represents the process
space of the experiment, as channel length was varied over a broad range with no variation
in oxide thickness or threshold voltage. Because there is a distribution of cell currents in a
1 Mbit memory, manufactured parts in the higher cell current ranges still have some cells
with lower cell current [68]. Therefore, even higher cell current parts have cells which
enter the region of high performance sensitivity, producing the lower performance shown
in Figure 6-13. In other words, performance is dominated at all current ranges by the low-
est current memory cells in the part.

Table 6-6 also shows that the standard deviation of the new design increased with
respect to the original. The change in variance can be tested for statistical significance by

calculating the ratio of the variances, which follows the F distribution. Therefore, for the

high cell current case:

'.2 5
C%new _ (12.6)4 _ _

2
O current

Based on this we conclude that the variance has indeed increased. We cannot reach this

conclusion for the cases of medium and low currents.
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6.4.3 Discussion

The analysis of the EPROM circuit, experimental verification and the explanation of
the results was completed over the course of one year. There were important insights
gained into the EPROM circuit and the DFM process as a result of this project. This sec-
tion will discuss three issues surrounding the DFM method, including issues with the ver-
ification experiment, the process model, the effect of mismatch, and interactions between

the DFM tool and the circuit designer.

6.4.3.1 The Verification Experiment

The verification experiment was designed to vary only the channel length parameter
and the circuit topology. The oxide thickness was kept constant to keep the cost of the
experiment low. In light of the effect of oxide thickness on performance, the experiment
should have been extended to include oxide thickness variation, as was done in the exper-
iment to build the performance prediction model. Since the oxide thicknesses in a given
has little variation, additional variation should have been introduced to study the design

change.

6.4.3.2 The Process Model

The process model used in this work extends to cover the range of variation seen in
production, and uniform distributions were used to ensure even coverage over this entire
space. The issues with this model focus on how well it represents unlikely combinations
of process parameters.

During the initial Monte Carlo simulation of the EPROM, the results showed a larger
percentage of failures than were seen on the manufacturing line. The failures in the simu-
lation were traced to instances where there was a large mismatch between the cell and the
n-channel device currents. Further, as these device types have highly correlated channel

lengths, this mismatch occurred when the two independent oxide thicknesses were at their
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opposite extremes. Comparing the variance in the oxide layer thicknesses used in simula-
tion with manufacturing data, it became clear that the range specified by the fabrication
line model was larger than what was currently being produced by the manufacturing line.
The process and design engineers involved resolved the issue by decreasing the specified
variation in the oxide thickness, and the failure rate seen in simulation was reduced to
more closely match manufacturing data.

This ease with which this problem was solved illustrates two advantages of our DFM
methodology. First, the use of process parameters with physical meaning allowed the pro-
cess and design engineers to identify and solve the problem. In contrast, many industrial
modeling schemes use oxide thickness as a fitting parameter, which would have made it
impossible to identify the problem or communicate so effectively between groups. Also,
the integration of the CIM system which made manufacturing data readily available was
critical to the rapid identification and solution of this problem.

In addition, this problem is important in light of the failure in the DFM experiment.
This incident showed the importance of oxide thickness mismatch in causing the sense
amplifier to fail. DFM algorithms must account for how frequently the process exhibits a
condition, as there is little value in improving 'a circuit failure based on a very infrequent
process condition. The use of uniform, rather than gaussian distributions, increases the
visibility of unlikely process parameter combinations. Although uniform distributions
worked well in developing the performance prediction model and were successful in find-
ing circuit sensitivities, they over-emphasize potentially infrequent process conditions.
This was seen in the increased failure rate for the EPROM for the potentially infrequent
case of oxide thickness mismatch. Gaussian distributions must also be used in the DFM
tool, afier a sensitivity is identified, to gauge its importance through the use of yield pre-

diction.
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One way to solve the problem with these distributions is to use bootstraping methods.
To bootstrap the simulation, samples would be drawn from the empirical distribution
rather than using a random number generator and a theoretical distribution. In other
words, actual samples from the characterized process would be used in the simulation. As
long as enough historical data was available, using the bootstrap would cover the process
space of the manufacturing line and add importance to each sample because it could be a
potential yield limiting point. Further work in this area should explore the trade-offs in the
distributions used by the DFM tool.

6.4.3.3 Transistor Mismatch

The problem with the initial simulations of the sense amplifier, mentioned in Section
6.4.2, was a problem with the Monte Carlo software which mistakenly introduced a mis-
match between the memory cell being accessed and the reference cell. Recall that the
sense amplifier has a current source based on a reference cell which compensates for cell
current variation across the array. The circuit requires that the cell being accessed and the
reference cell be closely matched in their characteristics.

The Monte Carlo software incorrectly introduced a difference between the reference
cell and the accessed memory cell transistor models in a given simulation. Figure 6-14
shows the Monte Carlo simulation result for the sense amplifier window including mis-
match. It can be seen that the level of the lower window is sensitive to the mismatch caus-
ing the window to collapse at low cell current. Although the mismatch in the simulation of
these transistors was larger than what would be seen on the manufacturing line, a problem
with mismatch has since been identified in manufacturing, confirming the simulation
result.

It was noted in Chapter 3 that this work did not include the mismatch between transis-
tors. Clearly, in light of the problems with mismatch, it is important to characterize mis-

match and include its effect in future simulations of the EPROM circuit. Future work
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Figure 6-14 Monte Carlo Simulation Including Mismatch: Window Levels for Sense
Amplifier - Original Design

should include a characterization of mismatch and an exploration of circuit changes to

minimize its impact.

6.4.3.4 Interactions Between the DFM Tool and the Circuit Designer

This section will discuss two problems related to the interaction between the DFM

software and the circuit designer. The first problem was that the designer created a new

transistor model for the reference cell. This model was identical to the existing cell model

but had a new name. As the DFM software keys on the name of the model, the reference

cell was not correctly modifying, contributing to the mismatch problem in the software.
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Although the physically based DFM methodology presented in this work encourages the
circuit designer to understand and vary the SPICE transistor models, this problem indi-
cates that limits should be imposed on the designer. For example, changes to the transistor
models should be communicated to the DFM tool support personnel, and the software
should warn the user of the presence of an unrecognized model.

The second interaction between the DFM tool and the designer involved the new
design changing the correlation structure between the different transitions. Often, after
working with a design, the circuit designer establishes a subset of possible transitions
which represent the worst-case transitions of the circuit. These transitions become the
focus for improving the design. Especially when running Monte Carlo simulations, the
number of cases must be limited to decrease the simulation time. In this experiment, the
improved design slowed down a transition which was not being analyzed. The complexity
surrounding the DFM software prevented the designer from seeing the assumptions under-
lying the tool, and therefore this problem was not detected until after the verification

experiment. This issue needs to be addressed in future work.

6.5 Summary

This chapter developed three manufacturability applications - a performance predic-
tion model, a control chart for product performance and a circuit DFM analysis. The first
two applications can be used to improve the capability of the manufacturing line. The
DFM analysis contributed to a greater understanding of the effect of the EPROM cell
characteristics on low voltage operation, leading to a circuit improvement in the word line
driver. Although this particular change might have been obtained through the use of worst
case models, the methodology presented here led us directly to the problem. However, the
insight into the sense amplifier could not have been achieved without the Monte Carlo
simulation. The circuit sensitivity to oxide variation would never have been seen with

only “fast” and “slow” simulations.
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The initial analysis of the circuits took approximately three months and the manufac-
turing of the experiment required another three months. While the experiment was being
fabricated, the circuit designer started work on a complete re-design of the EPROM for
low voltage operation. After testing the circuit change, it was clear that the DFM modifi-
cations would not bring enough performance yield improvement. Even though this was a
negative result, there was a large amount of experience gained in the DFM process which
was applied to the new design. In addition, it was important to verify the limits of
improvements which could be made in small modifications of the sense amplifier, justify-

ing the time required for the re-design process.
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Chapter 7

Conclusions and Future Work

This research has developed a methodology for modeling the manufacturability of IC
products. The method utilizes a fabrication line description based on a few key measur-
able process parameters to explain the performance variation seen in IC manufacturing.
These process parameters are used for a physically based device model parameter extrac-
tion, which describes transistor performance over the range of the process. The combina-
tion of the fabrication line description and device model enables circuit simulation which
maps the process space into the performance space, supporting the construction of DFM
applications. This fabrication line and device modeling methodology was applied to a
high volume 1.2 pm CMOS EPROM process, and results were presented.

Given these underlying models, three applications were developed. First a perfor-
mance prediction model was presented which uses electrical test measurements to predict
the performance of manufactured parts. The model built for the access time of the 1 Mbit
EPROM had a standard deviation of regression of less than 2% of the access time of the
product. The model can use manufacturing line measurements to predict performance

early in the manufacturing cycle.
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This model was utilized in a second application, a model-based Statistical Process
Control for product performance. This control chart can detect shifts in the process or
problems with the testing of the final product.

The third application addressed the manufacturability of the EPROM under low volt-
age operation. The product suffered from low parametric yield over a range of the process
space. The circuit design was investigated and two critical subcircuits were identified, the
wordline driver and the sense amplifier. The product was redesigned and experiments
were run to test the new circuits. The design change to the wordline driver resulted in
improved margins.

This chapter will discuss several important directions for future work. These areas are
improvements in fabrication line measurement and characterization capability, device

modeling, and the software infrastructure for DFM.

7.1 Process Characterization

Measurement capability, both in-line and at electrical test, is an area of ongoing
research. Accurate in-line measurement capability will allow the performance prediction
model to be used much earlier in the production cycle. Today, optical thickness measure-
ments suitable for gate oxides are available. However, optical linewidth measurements are
either imprecise or expensive. Given the high correlation between polysilicon linewidth
and effective channel length, an accurate in-line measurement for polysilicon would be
highly advantageous for in-line binning estimation, allowing early prediction of product
performance for fabrication line scheduling and packaging decisions.

At electrical test, further investigation is needed into the measurement of the effective
channel length and the source and drain resistance of submicron LDD devices. In particu-
lar, improved methods must be able to work through a probe card on a production line and
correlate well with device currents. The accurate measurement of channel length is impor-

tant for effective physical device models.



Chapter 7: Conclusions and Future Work 108

Another important area for continuing research is the characterization of mismatch.
The final analysis of the sense amplifier clearly shows the importance of mismatch in ana-
log circuits. Memory arrays are particularly sensitive to mismatch because reference
devices are located at relatively large distances from the matched device. In general, the
methods for characterizing mismatch have required detailed characterization which is not
suitable for production line monitoring. Future work in the area of mismatch characteriza-
tion should focus on test patterns and analysis techniques capable of monitoring mismatch

on the manufacturing line.

7.2 Device Modeling

There are currently inaccuracies in the SPICE MOSFET models which must be
addressed. One issue of primary concern to analog designers is accurate small signal
parameters [69], such as transconductance (g,,) and output resistance (rp). These prob-
lems have started to be addressed in the new BSIM3 model [61]. In addition, current
research on a methodology for BSIM3 model parameter extraction is addressing the phys-
ical mapping of process parameters to the device fitting parameters such as mobility
reduction and channel length modulation [70]. The addition of physically based parameter
extraction methods to widely used device modeling tools is critical for the applicability of
this DFM methodology.

Although the characterization described in this chapter was sufficient for this process,
a submicron process with LDD MOSFETS will require additional parameters to ade-
quately account for the variation in performance of products built using those processes.
First, due to the shrinking of the device size and the addition of the resistive LDD region,
the resistance of the source and drain regions requires improved characterization. The low
doping level in the LDD regions implies not only higher resistance, but also that this resis-

tance is a strong function of the applied gate voltage as the region accumulates charge.
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The changes in source and drain resistance with VG are best described within the device
model. In addition, their statistical variation must be measured and accounted for.

Another problem is related to the fact that current SPICE transistor models do not
accurately model subthreshold current. In an effort to maintain current capability with low
gate voltage, IC manufacturers will be pushed to lower V, hence increasing the impor-
tance of subthreshold current. Accurate subthreshold modeling is required for two rea-
sons. First, circuit designers are biasing MOS devices in this region to take advantage of
the higher gain in this region. Second, subthreshold current describes one important com-
ponent of leakage current, which must be properly accounted for to maintain low power
consumption in an IC.

An extension of the statistical characterization pursued in this work would be to
develop statistical macromodeling for subcircuits. The IC industry is making increased
use of standard subcircuits, such as standard cells for digital applications and pre-defined
operational amplifiers, comparators, etc., for analog applications. These subcircuits are
combined, often times in automatic synthesis tools, to produce specific functionality
[71][72]. It would very useful to statistically characterize and verify the performance of
these subcircuits. First, this would improve simulation time, as the subcircuits would not
require detailed simulation. More importantly, manufacturing verification of subcircuit
performance would potentially reduce worst-case performances which result from

unlikely combinations of process parameters.

7.3 Software Infrastructure for DFM

This project utilized several manufacturing databases, relied on schematics generated
from the circuit CAD tools, used the HSPICE circuit simulator and RS/1 statistical pack-
age and spanned several computer systems. The DFM software developed in this project
interfaced with all the necessary packages. However, the DFM system required user famil-

iarity with several subsystems, each with its own interface. Further integration is neces-
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sary to provide a user friendly system, including providing common interfaces and
moving the algorithms inside the existing applications. Software integration and ease of

use is the most important area for improvement in future research.

7.3.1 Process Simulation for DFM

Process simulation was not applied because of the difficulty in tuning the simulator to
the specific manufacturing process used in this work. However, the potential advantages
of process simulation include allowing the manufacturability modeling to begin before the
process is running on the fabrication line, and a large reduction in cost by reducing the
number of wafers manufactured to characterize the process and verify DFM results.

Simulation and analysis tools, such as PDFAB [73], are beginning to address the
problems with the process and device simulation described in Chapter 2. For example,
these tools integrates process and device simulation results with manufacturing data, mak-
ing it easier to match an actual process. These analysis tools also perform physically based
parameter extraction. The so-called “virtual wafer fabrication line” allows a user to easily
simulate a process across a wide of parameter variation and extract transistor models for
use in circuit simulation.

In addition, process simulation frameworks are starting to emphasize manufacturing
applications and support statistical methods such as Principal Component Analysis and
linear regression. Examples of the applications include support for the development of
performance prediction models and producing diagnostic information from the analysis of
electrical test data [73]. These applications will extend the use of process simulators into

product engineering, in addition to their use in process development and device modeling

groups.
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7.3.2 Infrastructure for Performance Prediction Modeling

Performance prediction modeling could also be further integrated with statistical
analysis software. Integrating such software with manufacturing databases would provide
the user with simple but powerful commands to combine in-line, electrical test and perfor-
mance data for a set of lots. The resulting datasets could then be analyzed using statistical
techniques such as Principal Component Analysis and linear regression. Also, rather than
separate design and manufacturing interfaces, a single interface would most directly pro-

vide the ease of use necessary to support both the manufacturing and design communities.

7.3.3 Software Tools for Circuit DFM

There were several problems with the software tools developed for this project.
Firstly, the software was difficult to use, requiring the user to be an expert in both the pro-
grams utilized to perform DFM and the algorithms inside the DFM software. Secondly,
the tool requires intelligent input from the circuit designer to interpret the Monte Carlo
results, find the process sensitivities, identify critical transistors or subcircuits, and finally
modify the design and verify the changes. Thirdly, unless the user has established SPC to
automatically verify the mapping from process space to performance space, these complex
relationships must be verified by other, manual methods.

To alleviate these problems, the DFM software algorithms should be implemented
inside a circuit CAD software system. An integrated CAD/DFM system should support
the fabrication line description and transistor models, run Monte Carlo simulations and
allow the user to view the results. This integration must include intelligent validation steps
to separate the designer from the algorithms and methods inside the DFM tool.

In addition, the tools must bring a better interface with the circuit designer. The soft-
ware developed in this work suffered from a complex user interface, and did not give the
user enough feedback on which process parameters or transistors were causing the perfor-

mance sensitivities. Daoud [16] presents an improved interface for DFM, and Hocevar
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[74] presents a good example of an improved user interface for a circuit optimizer. A sim-
ple, usable interface for these complex tools is critical for user acceptance of DFM. The
designer should be able to easily specify circuit performance metrics to examine, and the
tool automatically extract the performance from the simulation output.

Given a sensitivity in circuit performance, the DFM software tool should automati-
cally identify the process parameters and the transistors or subcircuits which underlie this
sensitivity. Research continuing from this project intends to use the Monte Carlo circuit
simulation results to accept or reject hypotheses about the design. For example, the
designer could hypothesize that a certain process parameters was the cause of a circuit
sensitivity, or that a specific transistor should be modified for improved manufacturability,
and the DFM software would accept or reject this hypothesis. The goal is for the DFM
tool to automatically find the important process parameters and circuit elements, rather

than rely on the expertise of the circuit designer.
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Appendix A

Monte Carlo Software Manual

MC - the Monte Carlo Circuit Simulation Package

Version 2.0

A.1 Introduction

MC is a UNIX software package, written in shell scripts and the C programming lan-
guage, which generates, runs, and analyzes the results for a Monte Carlo circuit simula-
tion. The Monte Carlo simulation varies the process parameters in the transistor models,
allowing the user to see the change in the performance of the circuit over the fabrication
line variation seen during manufacturing. MC must be customized to account for the spe-
cifics of a given circuit. This document will describe both use and the customization of the
MC software package.

MC utilizes HSPICE, and therefore must be run on a computer with an HSPICE
license. The transistor models must be physically based transistor models, so that chang-
ing the values of the physical parameters will accurately represent the changes in the
device characteristics. In general, MC will be run on a circuit towards the end of the

design phase, to ensure it behaves properly over range of variation it will see in the fab.
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Monte Carlo simulation is not meant to be used early in the design phase, when many dif-

ferent signals must be examined.

The general flow of the Monte Carlo software system is shown in Figure A-1. First,

the specified number of HSPICE input files are generated from the template file. Specific

items such as the device models and specific circuit elements are modified to simulate pro-

cess variation. Next, the simulations are run, generating performance results. Finally, the

results of the simulation are summarized from the HSPICE output. After running MC, the

results can be analyzed graphically or using a statistical package.

A.2 User Manual for the MC Software Package

This section will describe how to run the MC software package.
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A.2.1 Preparing to run the Simulation

MC should be run with a separate directory for each run. As MC uses fixed filenames
for the large number of simulation files, separate directories are necessary. Monte Carlo
simulations can use up a large amount of disk space, so the user should delete simulations
after they have been superceded or are no longer needed.

MC requires an input file named “SPICEdeck.” This file must be a “flat” representa-
tion of the circuit including all subcircuits and models. A flat representation implies only
that there are no “included” files. It does NOT imply that there are no subcircuits, which
are acceptable. If the circuit is normally split among several files, simply combine all the
files into one file and comment out the include statements. The transistor models must be
in this single file, and not be brought in with a “.1ib” command in HSPICE. It does not
matter which model (i.e. slow, fast, nominal) is brought into the deck, as the MC program
will alter the model parameters.

Before running the Monte Carlo, the SPICEdeck should be edited to set the tempera-
ture desired for the simulations. Statements which generate large output files should be
commented out, for example, “.option post=1”" statements, which generate the graphical
output files. If graphics are desired, a few of the Monte Carlo simulations which represent
interesting cases should be run with this option enabled, in order to get a detailed look at
signals. Whenever possible, “.measure” statements should be used to produce the specific
desired result, and make it easy to obtain the desired specification from the simulation.

In addition, it will often be appropriate to modify the input signal transitions and
length of a transient analysis, in order to produce only the worst case specification or tran-
sition, rather than all the transitions normally examined during design. The key thing to
remember is that many simulations will be run which generate a lot of data - try and make

it manageable.
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A.2.2 Running the Monte Carlo

The Monte Carlo is run using the MC command. MC calls a series of programs which
generate the spice decks for simulation, run the HSPICE simulations, and then post-pro-
cess the results. The command line format is:

mc <-s sample count> <-i id> <-m max jobs> <-p post processor (pp) string>

MC can be run with any combination, or none of the options. Below are the arguments to

MC.

-s sample count
Specifies the sample count, that is, how many simulations to run in the Monte
Carlo. Sample count should be an integer. As rules of thumb, 20 is a small num-
ber, 100 is a large number. The default is 50.

-iid
Specifies the id, which is the seed for the random number generator. The ability
to specify the seed will allow you to run several simulations at exactly the same
points in the process, so you can directly compare the results. If no id is specified,
MC will pick one for you. Typically, the first simulation will be run with no id
specified and MC will generate and print the id chosen. Further simulations will
be run with the id specified as the value printed in the first simulation. The id
should be an integer between 1 and 30000.

-m maxjobs
Specifies the maximum number of jobs to run in parallel on the HSPICE server.
The default is 2. If MC is running on a multiple processor machine, it is not
advisable to run more jobs than the number of processors at a time. Running less
than that is advisable to be courteous to your fellow HSPICE users.

-p post-processor string
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Specifies the post-processor to extract results from the simulation output file. MC
expects the custom post-processor to have the name ppstring, i.e. ppl, pp2,

ppfalltime, etc., it is this number which is specified here.

A.3 Customization of the Package

MC was created to be flexible, however, most circuits will require customization of
the code to properly simulate the effect of process variation on your circuit.

Important Note: Rather than customize the MC package, the reader should con-

sider utilizing the Monte Carlo features within HSPICE. The “.param” statement

can be used to both create samples of process parameters from gaussian or uni-

form distribution, and also to specify other variables, such as coupling ratios or

fitting parameters, as functions of those parameters. The outputs from “.measure”

statements can then be graphed in HSPLOT.

There are four main categories of changes which may be required. Each category will be

discussed in detail in the subsections below.

1. Process variation - MC requires the means and standard deviations of the critical pro-
cess parameters to generate the Monte Carlo simulation files.

2. Transistor model names - MC modifies the transistor models based on the model
names. Currently, MC uses six transistor names from an EPROM process.

3. Circuit elements - In addition to varying the transistor models, there are other circuit
elements which need to vary to reflect process variation. Examples include the coupling
ratios used to model the EPROM cell, and lumped capacitors which model the effect of
many MOS gate capacitors on an address, bitline, wordline or data line.

4. Performance extraction - After the Monte Carlo simulations are completed, the circuit

performance of interest, for example access time or D.C. operating point, will be con-
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tained within the HSPICE output files. The user must customize a simple shell script

which extracts the performance metric from the output file.

A.3.1 Process Variation

The default process parameters (and the corresponding HSPICE MOS Level 3 model
parameter names) varied by MC are change in channel length (x1), change in channel
width (xw), threshold voltage (vt0) and oxide thickness (tox). The mean and standard
deviation of each of these parameters for each transistor type is specified in a file. The MC
software simulates +/- 3 sigma from the mean, covering the process space with a linear
distribution of these parameters. The process variation file is currently named “fab-
param.18!” and is included in the source file inputs.c. The program inputs.c contains an

include statement which must be modified to refer to the proper filename.

A.3.2 Transistor Models and Circuit Elements

This is the most difficult part of the package to customize. Again, the user should
investigate the use of “.param” statements to include this variation in the HSPICE circuit
or device models, which may simplify this customization.

The names of the transistor models are declared in the file “gendecks.c.” The source
code must be modified to recognize the models used in the circuit simulation input file and
be consistent with the names in the process description file.

To handle the variation of circuit elements, C language code must be written. Exam-
ples of circuit elements which are functions of the process parameters are lumped resistors
and capacitors, like word or bit line models, and coupling ratios in floating gate subcir-
cuits. The basic algorithm behind changing circuit elements is that the program recognizes

these elements, and replaces the value, such a resistance, with a number that the program

1. The “18"” is meant to be an abbreviation for the process, for example, fabparam.18 specifies the ATMEL 18000 pro-
cess. This is just notation, any filename will work.



Appendix A: Monte Carlo Software Manual 125

calculates. In order for the user to customize MC, the user must write a segment of code
which performs this function.

As a historical note, the coupling ratios in the EPROM cell model used to be circuit
elements calculated in the program, as described above. However, in the current cell mod-
els?, the coupling ratios are automatically calculated within the HSPICE file through the
use of “.param” statements. In fact, the “.param” statements are powerful enough to cap-
ture more of the modeling functions. The user should consider using this method to calcu-

late other circuit element values directly in the SPICE deck.

A.3.3 Performance Extraction

After running HSPICE, the performance parameter of interest, such as access time or
the DC sense amp window levels, are contained in the HSPICE output files. Usually, the
best way to convey the manufacturability information is through plots graphing the perfor-
mance of interest against a process or circuit parameter, such as oxide thickness or cell
current. Therefore, a simple script should be written which extracts the parameter from the
HSPICE output file.

This script will most likely be written using the UNIX utilities awk, grep and sed,
rather than the C programming language. This script is run as a post-processor to the
HSPICE runs, and hence the existing performance extraction routines are called “ppn,”
where n is a number. This naming convention also simplifies running the post-processor,
as the -p switch to MC specifies the number, n, of the post-processor to run. The existing
post-processors in should serve as sufficient examples for writing new performance

extraction scripts.

2. The models were produced by T. Randazzo.
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A.3.4 Compiling the Software

During the customization of the MC software, the C language files “inputs.c” and
“gendecks.c,” and the include file “fabparam.xx” were likely modified, and therefore the
software must be re-compiled. The “fabparam.XX” and “inputs.c” are in one directory and
“gendecks.c” in a second. There are “Makefiles” in each directory, therefore, type “make”
in the “inputs.c” directory, then type “make” in the “gendecks.c” to re-compile. Even if
“gendecks.c” was not modified, you must also type “make” in the gendecks directory to
rebuild the high level executable. Finally, copy the “gendecks” executable into the “bin”
directory. The rest of the MC software package consists of UNIX scripts which do not

require compilation.

A4 MC Utilities

There are several utilities available which perform support functions for the Monte
Carlo analysis.

graphmaker
Graphmaker takes columns from several files and combines them into a single
file of columnar data for plotting. Graphmaker prompts the user for the name of
the file, and then the column to take from the file. If the filename given is
“inputs,” the program assumes it is the file of process parameters produced by
MC, and the user is prompted for device type and/or process parameter name,
and maps the name to the appropriate column in the file. Graphmaker terminates
when an empty filename is given (just hit return), or when the limit of four col-
umns is reached. The output is in the file named “plot.out.”

Known bug: all files must be in the current directory.

xvgr

xvgr is free software which plots columnar data files.
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A.5 Site Specific Details

The program source, executable programs and example are contained on olympus
under the directory ~eboskin/spice/code. In this directory, there are four subdirectories:
bin, doc, gendecks, and inputs. The bin directory contains the executable programs and
should be added to your unix path. The doc directory contains documentation, such as this
file. The gendecks and inputs directories contain the source code.

The directory ~eboskin/spice/code/bin also contains the other shell scripts which
from the MC software package, and example post-processors. The directory ~glen/bin4

contains the xvgr plotting utility, and many other useful packages.
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Appendix B

Performance Modeling Software Manual

Electrical Test, In-Line and Performance Data Collection and Analysis

Version 2.1

B.1 Introduction to the Performance Analysis System

A set of programs has been developed to tabulate and analyze in-line, electrical test
and performance data collected during the manufacturing of products. The main purpose
of the analysis is to generate models which predict the performance of manufactured parts
from the in-line and electrical test data collected during the manufacture of the product.
The software system utilizes the RS/1 statistical package and programs which access the
manufacturing databases. The databases required for performance analysis include the
electrical test, in-line data and final test databases.

This manual describes the important software modules needed, and includes the step-
by-step procedure for creating a performance prediction model from in-line and electrical
test data. In general, the user will be generating tables of data in RS/1, and then using RS/
1 to analyze the data and build the performance prediction model. This manual, after sev-
eral introductory sections, will discuss how to build a table of in-line data, how to build a

table of electrical test data, how to then combine the tables with performance data and use
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RS/1 to build the model. There are several sections at the end of this Appendix which

briefly summarize some useful VMS (the VAX operating system) and RS/1 commands.

B.2 Computer Access at ATMEL

This manual is specific to the software and hardware used in the ATMEL CIM system
and is being included as an Appendix to this thesis for completeness. The general reader
can use this Appendix to get an idea of the implementation of a performance analysis sys-
tem, but few specific details will apply outside of ATMEL.

At ATMEL, the performance modeling software runs on the VAX named “CEDAR”
in Colorado springs. The program used to access the electrical test database is the Keithly
Database Extractor (KDE), which extracts data from the Keithly Electrical Test Database.
The Engineering Database Extractor (EDE) allows users to access the database produced
by the Workstream software system running in the fab, which contains the in-line data.
Both KDE and EDE were written and supported by Nelson Ingersoll. The manuals for
these programs should be obtained before using the programs.

The performance prediction model is created using data and programs on the VAX.
To access the data and run the programs, one must have an account on the VAX and access
to the SJ_ENG, KDE and EDE RS/1 group homes.! Mary Zawacki is the person to contact
to obtain an account and the group home access privileges. A manager’s approval is
required to obtain the account.

To access CEDAR, you can use a lat port on a PC (there is a “public” lat port in the
PC area using the PC Print Station 2), or, you can connect to CEDAR from a window on a
UNIX workstation. To get to the VAX from the lat port, use the program ST240 to “con-
nect” to RS/1. (Connecting to RS/1 through the lat port logs tﬁé user onto CEDAR.) From
UNIX, you can rlogin to CEDAR. Enter your user name an&}asswbrd at the CEDAR

LOGIN prompt, and you’ll enter a list of menu choices to access the utilities on CEDAR.

1. The group home is a collection of RS/1 procedures and tables that can be accessed by members of the?foup.
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Type VMS at the list of commands to get to VMS, where you can run all the necessary

software.

B.3 Conventions Used in this Manual

In the command summaries given in this Appendix, commands following a “$” are
entered at the VMS prompt, while commands beginning with “#” are entered in RS/1.
Within RS/1, group home procedures begin with the ‘#’ character. Commands beginning
with “>” are entered in KDE or EDE. Capital letters will be used to denote computer pro-

grams, files and keywords.

B.4 Collecting In-Line Data

In-line data is collected periodically from Workstream and entered into RS/1 tables.
To access this data and supporting software, you need the VMS privileges to access the
EDC group home. The in-line data is accessed through an RS/1 procedure called autopilot.
Autopilot uses a template to pull the in-line data from the engineering database, by calling
EDE. Finally, you will use the RS/1 procedure AP2TABLE, which will convert the output
of autopilot to the form needed for building the prediction model. You will collect 5 key
in-line parameters: the two polysilicon CDs, the active CD and two gate oxide thick-
nesses.

The step by step instructions are given below.

1. Select the EDE group home and enter RS/1.

Command Summary:  $ setrs edc
$ sl

2. In order to collect in-line data, you must create an autopilot template. This template
must be created only once, and then can be copied or modified for all subsequent use.
Given an autopilot template, the autopilot procedure can be run. First, the lot numbers

must be specified, and then autopilot will be started to collect the in-line measurements for



Appendix B: Performance Modeling Software Manual 131

those lots. Within autopilot, use “Modify Entry” (command 3) to specify the desired lots.
Select the row of the autopilot template file (if there is only 1 template, it will be row 1)
and then modify the lot number (line 7), specifying the desired lots separated by commas.
Finally, EXIT back to the autopilot main menu, and Start the Autochart (command 6).

Command Summary:  # call #autopilot
Follow the menu within autopilot.

3. Autopilot produces a file with the averages of the in-line data for the specified lots.
Next, the averages must be pulled from the autopilot output, and converted to a table
which can be easily combined with electrical and performance data. The procedure to gen-
erate the table is called AP2TABLE, and it resides in the SI_ENG group home. To access
the procedure, use the following commands within RS/1:

Command Summary:  # call $setrs(“SJ_ENG”)
# call #ap2table

This procedure is hard-wired to produce a file called “inline_avg”. This file must be

renamed or deleted to run AP2TABLE - AP2TABLE will refuse to overwrite this file.

B.5 Collecting Electrical Test Data

Electrical test data, collected at the end of wafer processing, is contained in the Kei-
thly Electrical Test Database. Similar to EDE, the program KDB extracts specific electri-
cal test results for the desired lots from the database. The step by step instructions are

listed below.

1. Electrical test data is available in the Keithly Database using KDE. First, obtain the
file FOURMEG.KDB. This file will be used to set up KDE with most of the correct
defaults. To obtain the file, copy it from Eric Boskin’s home directory.

Command Summary:  $ copy [eboskin]fourmeg.kdb fourmeg.kdb

2. KDE is run to extract the data. Within KDE the user must read in the defaults from the

file FOURMEG.KDB using the “@fourmeg” command. You will need to change the dates
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to include the time when your lots were processed. Although this may be done by editing
the file FOURMEG.KDB, it is simpler to use the BEFORE command once in KDE. Also,
the required lots to be extracted must be selected using the LOT command and the date
set. Alternatively, use COUNT DAYS n, to look back n days from today. Use the LIST
command to make sure all data is entered correctly. LIST should print out the lots you
entered, with the dates of the lots. Finally, extract the data using the EXTR command. This
produces a file names KDBEXTRACT.TMP as a default.

Command summary:  $ kde
> @fourmeg
> before 1/20/95
> lot 233012,233056,...
> list
> extr
> exit

3. Set the RS/1 group home to KDB, and start up RS/1.

Command Summary:  $ setrs kdb
$rsl

4. Next, read the data into RS/1. The program KDBREAD defaults to a VMS input file
called KDBEXTRACT.TMP, and produces an output table (within RS/1) called
KDBTABLE. Use the default answers to the questions by hitting return after the question.

Command Summary:  # call #kdbread

Note: you may get a warning that your table contains EMPTY values. This usually means

that not all electrical test values were taken at all sites on all wafers and can be ignored.

5. Change to the S]_ENG RS/1 group home, which will allow you to access a program to
average the electrical test data. The program #kdb2rs1 is hard-wired to read an input table
called KDBTABLE (the output of KDBREAD) and output a file called AVERAGES.

Command Summary:  # call $setrs(“sj_eng”)
# call #kdb2rs1
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At this point, you have created a file called AVERAGES, which is the average of each

electrical test parameter for each lot.

6. To exit RS/1, type LOGOUT.

B.6 Collecting Performance Data

Next, the performance data from final test should be collected. Currently, the perfor-
mance file must be entered manually. The file should be created in RS/1 with the MAKE
TABLE command and the editor (answer E to create the table using the editor) and must
be called PERFORM. Simply, the arrow keys move you around the table, and at any table
cell just type in a value to put that value in the table. See the RS/1 manuals for details.
Save your table and exit by typing /EXIT.

Important: you must put the lot number in column 1 (not column 0). You must not
have any empty rows in this file. (If you do create a blank row during the creation of the
table, perhaps the last row will be blank, delete it by positioning the cursor anywhere in
the blank row and type /DELETE, then answer ROW and confirm.)

Command Summary:  # make table perform

B.7 Combining the Data Files for Analysis

At this point, the performance, in-line, and electrical test data for each lot must be
combined into one file. Run the procedure JOINALL in the SJ_ENG group home. This
procedure uses the fixed filenames INLINES, AVERAGES and PERFORM, and produces
a file named JOINDATA. The tables also have specific columns for the lot number (PER-
FORM in column 1, INLINES in column 0, and AVERAGES in column 1).

Command Summary:  # call #joinall

B.8 RS/1 Analysis

This section will briefly describe five applications which are run within RS/1. See the

RS/1 user manual for more details on the use of these commands.
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1. To examine the data before regression, it is interesting to look at the correlation struc-
ture of the data. RS/1 will calculate the multivariate correlation structure of the table

JOINDATA with the $mvcorr procedure.

Command Summary:  # call $mvcorr

2. The in-line and electrical test data is a highly correlated data set. Therefore, the user
may desire to perform a Principal Component Transformation on the data. The user must
specify to write the transformed data into a table (the RS/1 default is to not save the trans-
formed data).

Command Summary:  # call $princo

To build a performance prediction model, a stepwise regression should be run. The
user will enter variables until the program suggests stopping. After a regression, examin-
ing the residuals is usually quite useful.

Command Summary:  # fit multiple

The “fit multiple” command will ask you for the table portions for the independent
and dependent variables. The independent variables are the electrical test and in-line
parameters, the dependent variable is the performance. A model can only be created for
one performance at a time. To select table portions, responses should look something like:

independent: cols 4 to 21 of joindata
dependent: col 2 of joindata

The exact column numbers will depend on how many variables you have (that is, the num-
ber of performances in the PERFORM table and the number of in-line and electrical test
parameters). If a Principal Component transformation has been done, the table with the

Principal Component scores should be used instead of JOINDATA.

3. Another useful feature is the ability to make graphs. The easiest way to make a graph

is to enter the menu mode, and follow the hierarchy of commands to make a graph. Type
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Summary: # delete tablename

7. A table can be edited with the EDIT command. This will allow the user to modify
entries in the table, or add rows or columns. In the editor use the arrow keys to move
around in the table. The command /HELP will list the other available commands, such as

deleting rows or columns and exiting the editor.

B.11 Printing Tables

To print out a table or graph from within RS/1, create a file and then transfer the file to
California using kermit or ftp. There are two ways to create a file. To create an ascii file,
use the command $ez_writefile. Answer the questions as you see fit. The author usually
uses the defaults except:

a. Include row 0 in the printout (column headings).
b. Write using only spaces, not tabs, spaces and commas.

Command Summary:  # call $ez_writefile

To retain the format of the table, use $printout, that is, $printout will keep the col-
umns of your tables aligned.

Command Summary:  # call $printout

Good choices for printers are postscript, Ipt72, Ipt80 or Ipt132. Postscript generates a
postscript file and the Ipt printers are generic ascii files of width 72,80 or 132 (for land-
scape). Do not give a system command or your file will print in Colorado. A file called

PRINT.TXT will be produced which you can send transfer to California and then print.

B.12 Transferring files to California
Files on the VAX may be transferred locally in two ways. They can be transferred to
UNIX using FTP, or they can be transferred to the PC using KERMIT.

To use FTP, the user must PUT the file. This puts the file onto unix, where you can use

Ipr to print the file.
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Command summary:  $ ftp olympus (it will ask for a password)
ftp> put filename

ftp> bye
To use kermit, type kermit, then type server. After typing server, type ALT-Y, which

will bring up a kermit menu. Use the GET command, then type finish followed by an ALT-

Y when the transfer is compete.

B.13 Customizing for another Product Line

This software is customized for use on an EPROM in the AT18000 family. There is
no configuration file to drive the software, rather, the programs must be edited to work on
another product. In general, the specific process numbers and steps must be modified for
each product. However, these changes are relatively minor, and all the table forming, aver-

aging and joining will work on any dataset. Specifics are given below.

1. Electrical test data: The file FOURMEG.KDB contains the process type and front end.
For the EPROM, it is AT18000. These lines must be changed for another process. Also,
the specific electricai test parameters are listed. These could be changed to be any of the
over 100 electrical test measurements.

2. In-line data: The autopilot template must be changed to list the proper process and pro-
cess front end. If other in-line measurements are desired, you must find out the appropriate

step name and number.
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