

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

AUTOMATIC SYNTHESIS OF CMOS

DIGITAL/ANALOG CONVERTERS

by

Robert McKinstry Robinson Neff

Memorandum No. UCB/ERL M95/28

21 April 1995

V-

AUTOMATIC SYNTHESIS OF CMOS

DIGITAUANALOG CONVERTERS

by

Robert McKinstry Robinson Neff

Memorandum No. UCB/ERL M95/28

21 April 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Automatic Synthesis ofCMOS Digital/
Analog Converters

Copyright© 1995

by

Robert McKinstry Robinson Neff •

Abstract

Automatic Synthesis of CMOS Digital/Analog Converters

by

Robert McKinstry Robinson Neff

Doctor of Philosophy in

Engineering —ElectricalEngineering and Computer Sciences

University of California at Berkeley

Professor Paul R. Gray, Chair

Synthesis of analog functional blocks in integrated circuits offers promise for improved

designer productivity. By developing module generators for commonly used analog circuit ele

ments, a synthesis methodology may be matched to a particular application, with approaches and

algorithms determined by the particular needs of target circuit type. An analog circuit designer

should be able to input design specifications andunderlying technology information, and a synthe

sis methodology should determine circuit parameter values and dimensions, creating the required

mask layouts. Slow, tedious design andredesign methods should be replacedby one in which the

computer finds minimum cost designs which meet performancerequirements. This work imple

ments synthesis methods for a widely used analog block, the digital/analog converter (DAC).

In practice, there area numberof difficult problems in synthesis methodologies. Accurate per

formance prediction is required, including effects of parasitic elements, and a mix of device level

and circuit block level analyses. A design sizing and selection process must be determined, and

methods for circuit layout must be selected.

This thesis focuses on approaches best suited to the digital/analog converter synthesis prob

lem. A mixed analysis/simulation model for DAC behavior is developed, including an explicit

inclusionof parasitic capacitive andspacing effects. A designoptimization approach is developed,

1

using asingle level optimization, mixing device sizing and architecture parameters in one step. A

mixed integer non-linear programming algorithm was adapted to the requirements ofthis optimi

zation. Layout approaches used previously in digital datapath applications were adapted to DAC

layout, producingdense layouts.

The module generation process was demonstrated through ahigh performance video DAC

prototype, with 8-bit linearity and 100 MSample/s performance. The prototype met most perfor

mance specifications, and discrepancies between expected and observed performance were traced

back to errors in the technology database input. Cell size was comparable to amanual design. The

module synthesis process, including development ofan initial design database, requires design

time comparable to amanual approach, but subsequent reuse of the database has resulted in imple

mentation times ofa few days or even hours, thus demonstrating the ability ofthis combination of

approaches to dramatically reduce the implementation time for high performance, digital/analog
converter designs.

Professor Paul R. Gray, Cha

Ill

Table of Contents

CHAPTER 1

Introduction 1

1.1 Analog Synthesis 4

1.1.1 The Analog Synthesis Tool User 5

1.1.2 Performance Standards for Analog Synthesis 6

1.2 Analog Synthesis Approaches 8

1.2.1 Design Estimation 8

1.2.2 Design Selection 10

1.2.3 Layout Automation 10

1.2.4 Design Complexity 12

1.3 Module Generation vs. General Analog Synthesis 13

1.4 Digital/Analog Converters (DACs) !.... 13

1.5 Design Qualities of Nyquist Rate DACS 14

1.6 Module generation for DACs 15

1.7 Previous work 16

1.8 Thesis Contribution 17

1.9 Thesis Organization 17

CHAPTER 2

DAC Architectures for Synthesis 19

2.1 Introduction 19

2.2 D/A Converter Specifications and Design Inputs 19
2.2.1 Specifications 19

2.2.2 Integrated CircuitTechnology 22

2.3 DAC Architectures and Implementations 23

2.3.1 Architectures 24

2.3.1.1 Unit Element Switching Architecture 24

2.3.1.2 Binary Weighted Architecture 27

2.3.1.3 Segmented Architecture 30

2.3.1.4 Interpolated Architecture 31

2.3.1.5 Oversampled Architecture 33

2.3.2 DAC Implementations 34

2.4 A DAC Architecture and Implementation for Synthesis 39

IV

2.5 D/A Converter Summary 41

CHAPTER 3

DSYN - A Compiler forCMOS Current Switched Digital/Analog Converters 46

3.1 Introduction 46

3.2 Synthesis Process 47

3.3 Accurate Performance Estimation and Verification 50

3.3.1 Performance Estimation Philosophy 50

3.3.2 Device Model Verification 51

3.3.3 Design Synthesis Verification 53

3.4 Views of the DSYN synthesis process 53
3.5 Summary 56

CHAPTER 4

DAC Analysis and Optimization for Synthesis 57

4.1 Introduction 57

4.2 Design Estimation Review 59

4.2.1 Circuit Simulation (SPICE) 59

4.2.2 Behavioral Simulation 60

4.2.3 Analytic Equations 60

4.3 Design Estimation for DACs 61

4.3.1 Inclusion of Parasitics 62

4.3.2 Device Model Inaccuracies 63

4.3.3 Process Variation 63

4.3.4 Estimationin Optimization 65

4.3.5 Design Estimation Implementation 65

4.3.6 Example: Estimation of Integral Non-linearity (INL) 67

4.3.6.1 INL due to OutputResistance 67

4.3.6.2 Computing INL dueto Threshold Voltage Mismatch 69
4.4 Design Selection by Optimization 69

4.4.1 Supporting Hyperplane Algorithm for Optimization 73
4.4.2 Algorithm Implementation and Discussion 74

4.4.2.1 Implementation 74

4.4.2.2 Algorithm Running Time and Simulation Requirements 76
4.4.2.3 Initial Feasible Point 77

4.4.2.4 Approximating the Objective Function 77

4.4.2.5 Optimality 78

v

4.4.3 Optimization Implementation 78

4.5 Hierarchy in Estimation and Selection 79

4.6 Summary 81

CHAPTER 5

Layout Synthesis for DACS 82

5.1 Introduction 82

5.2 Layout Synthesis Approaches 84

5.2.1 General Analog Place and Route 85

5.2.2 Layout Synthesis for Digital Circuit Modules 86

5.3 DAC Layout Synthesis with Cell Stretching andTiling 87

5.3.1 Inputs 87

5.3.2 Algorithm 89

5.3.3 Layout Synthesis Implementation 89

5.4 Layout Synthesis Conclusions 93

5.4.1 Disadvantages 93

5.4.2 Advantages 94

5.4.3 Summary 95

CHAPTER 6

DAC Module Synthesis Implementation and Results 96

6.1 Introduction 96

6.2 A Parametrized Current Switched DAC Module 97

6.2.1 DAC Module Circuits 97

6.2.2 Switched Segment Current Source 98

6.2.3 Switched LSB Current Source 100

6.2.4 Bias for Current Sources 100

6.2.5 Analog Bus 102

6.2.6 Row and Column Latch/Buffer Circuits 102

6.2.7 Other Layout Cells 103

6.3 Inputs for DSYN 104

6.3.1 Nominal Process 104

6.3.1.1 Nominal MOSFET Models 105

6.3.1.2 Nominal Parasitics andElectromigration Rules 105

6.3.2 Process Variation 105

6.3.3 Temperature Variation 106

6.3.4 Statistical Matching Effects 106

VI

6.3.4.1 Random mismatch 106

6.3.4.2 Mismatch due to Device Spacing 108
6.3.5 Design Inputs 108

6.4 DAC Implementation Techniques 109

6.4.1 Layout for Matching 109

6.4.2 Cell Switch Ordering for Improved Linearity 109
6.4.3 Row Splitting HI

6.4.4 CurrentCarryingBias lines 112

6.5 Design Estimation for a Current Switched DAC 113

6.5.1 Problem Setup 113

6.5.2 Simulation/Analysis for Static Performance 113

6.5.2.1 Design Feasibility 114

6.5.2.2 Deterministic Effects on Static Performance 115

6.5.2.3 Stochastic Effects on Static Performance 117

6.5.2.4 Addition of Stochastic and Deterministic Effects 119

6.5.3 Simulation/Analysis for Dynamic Effects 119

6.5.3.1 Output Settling 119

6.5.3.2 Glitch Energy 121

6.5.3.3 DigitalSignal Integrity 122

6.6 DAC Synthesis Limitations 123

6.7 Design Example 1: 8-bit, 100-MS/s Video DAC 124

6.7.1 Synthesis Setup 125

6.7.2 Synthesis Process 127

6.7.3 Results 128

6.8 Design Example 2:10-bit Instrumentation DAC 133

6.9 Module Generator Development and Synthesis lime 135

6.9.1 Module SynthesisDevelopment Time 135

6.9.2 Layout Cell Library DevelopmentTime 136

6.9.3 Technology Analysis andInputTime 136

6.9.4 Example Implementation Times 136

6.10 Chapter Summary 137

6A Appendix: Estimated and Actual Causes of Nonlinearity 139
6A.1 Nonlinearity Contributors 139

6A.2 Deterministic Effects 139

6A.3 Stochastic Effects 141

vu

CHAP1ER 7

Conclusion 144

7.1 Summary of Research Results 144

7.2 Barriers to Acceptanceof Analog Synthesis CAD tools 145

7.2.1 Where is analog CAD successful today? 145

7.2.2 Limitations to today's synthesis tools 146

7.2.3 Analog design culture works against synthesis acceptance 147
7.2.4 How can this change? 148

7.3 Future Directions 149

References 151

APPENDIX A

DSYN User's Manual 161

A.1 Introduction 161

A.2 DSYN Distribution Overview 161

A.2.1 DSYN Programs and Compilation Requirements 161
A.2.2 DSYN Environment requirements 163

A.3 Optimization Tools 164

A.3.1 spiceOptim Design Optimization Program 164
A.3.2 OptScript shell script 169
A.3.3 Other Optimization scripts 170
A.3.4 layoutCmd shell script 170

A.4 Layout Tools 271
A.4.1 DT (Dae Template) 172
A.4.2 TA (Tile Array) 172
A.4.3 STC (Stretch Cell) 173

A.5 Design Libraries 274
A.5.1 Optimization 274
A.5.2 Layout 27^
A.5.3 Technology 275

A.6 Example Design 275
A.6.1 Tiny Current Mirror example 175
A.6.2 DAC example 276

A.7 Common Problems and Solutions 177
A.7.1 Finding an Initial Feasible Point 177
A.7.2 Optimization stops when no improvement is seen 177

VUl

A.8 Finding theTAR ; 178
A.9 Compiling theCode 178
A.10Disclaimer 179

A.11 Acknowledgments 179

IX

Acknowledgments

This work would not have been possible without the unending support, encouragement, and

guidance of my research advisor, Dr. Paul R. Gray. His advice on this thesis work, as well as more

general research questions, havehelpedme understand a proper role for universitybasedresearch

in Electrical Engineering, and how it canmake animpactbeyondthe university. Dr. Alberto San-

giovanni-Vincentelli has also providedhelpful insights and advice.

I havebenefitted from encouragement from several generations of graduate students. Steve

Lewis, Bosco Leung, and Joey Durenburg helped methrough my Masters' work, have always

been encouraging when I have seen them at conferences. C.K. Wang has been an especially good

friend, helping me understand thevalue of thedoctoral degree when we worked together, and

encouraging me after I returned to UCB. He knew I would finish, even when I was not so sure.

Greg Uehara, Cormac Conroy, Gani Jusuf, KenNishimura, Tim Hu, and Ed Liu, all members of a

later generation, have helped give advice, sharenew ideas, and shown me how to succeed at Ber

keley. I am indebted to today's generation of students, including Dave Cline, Thomas Cho,

Edoardo Charbon, Eric Felt, Cynthia Keyes, and especially Henry Chang, who have helped with

detailed discussions ofcommoncircuit, CAD, and design issues.

When I discussed returning to Berkeley with my managers at IBM Corp, I was surprised at

how much they were willing to support my future plans. Fritz Weidmer, myimmediate manager

when I began myeducational leave, and Ed Clausell, who took over when Fritz retired, have kept

me well appraised of the changing situation there. Having the support of the educational leave of

absence hasbeen a comforting factor during my time in school.

My parents, Samuel and Ruth Neff, have shown mehow to get to this point by their encour

agement and their example, letting me find my goals, and helping metowards them. I'm sorry

mom, this is notsolar energy orwindmills I am working on, but I find it alotmore interesting.

Most of all, I am grateful to my wife, Nancy Robinson Neff, for her support and devotion,

throughout my years in this Ph. D. program. She has helped keep mefocused on the overall goal,

and not distracted bysetbacks along the way. As our lives continue together, Ihope to support her

goals with as much fortitude.

This research effort was funded by theSemiconductor Research Corporation under contract

SRC-94-DC-324, and I amgrateful for their support as well.

CHAPTER 1

Introduction

The rapid progressionof design automation for digital integrated circuits (ICs) has enabled

rapid synthesis of digital designs. Increasing IC areal densities and chipsizeshave allowed greater

functionality in digital ICs. Analog circuit design methodologies havenotkeptup with this pace.

Although the circuitdesign software used by today's analog IC design engineers is more user

friendly, and converges to solutions better than fifteen years ago, there hasnot been a parallel

explosion of design capability for analog circuit designers. Today's analog circuit designers often

use a combination ofhandanalysis andcircuitsimulation that was widely available in 1980. There

has been some improvement in efficiency and capability since that time, thanks to thedevelopment

of improved user interfaces for software tools, and newcapabilities for behavioral, high level, and

mixed signal simulation,but the task of circuitdesign is still reserved for experience circuit

designers using manual design and layout.

TTie general goal of Analog Computer Aided Design (ACAD) is to reduce the manual design

and layout time required for circuit design. Improving analytic tools is a first step, and creating in-

house celllibraries from previous designs is alow tech wayto speed circuit development through

designre-use, but more aggressive techniques whichresult in design information reuse andauto

mated design synthesis offer greater promise for reducing design time. These ACAD approaches

include analog standard cell libraries and analog synthesis approaches such as circuit synthesis,

layout synthesis, and module generation, and hierarchical design synthesis. For now, somework

ingdefinitions of these terms are needed. Analog standard cell approaches consist of alibrary of

well characterized circuit blocks, which thedesigner assembles into a full analog sub-system. In

general analog synthesis, aninputspecification is usedto drive a process whichcreates elements

for meeting the design specification. In circuit synthesis a setof circuit specifications are used to

drive asynthesis process which sizes thecircuit elements and devices. Inlayout synthesis an ana

logcircuit netlist, including additional information about parasitics, matching, and performance

constraints, creates an appropriate layout Modulegeneration will be used to describe the combina

tion of analog circuit and layout synthesis, with tools and libraries adapted to specific analog mod

ules such as opamps, filters, analog/digital, or digital/analog converters. Hierarchical design

synthesis takes an analog design for acomplex block oranalog subsystem, and decomposes this to

lower level sub-block specifications, which may then beeither pulled from acell library, orsynthe

sized using circuit synthesis techniques. Allof these techniques promise toincrease the productiv

ity of analog circuit designers, and in some cases eliminate theneed for expert designers! These

approaches will be explored in this chapter.

Design re-use is not new, of course. From the earliest days, the first task of an engineer facing

an newdesign problem has been to lookover olddesigns of hisown(or other engineers') to find a

circuit ortopology which may beapplied tohis problem. Often this is an informal process, but in

manycompanies libraries of previously designed analog blocks are cataloged for re-use in later

designs. Where little or no modification to the existing circuit is required, this may result inarapid

design process, but for large changes to acircuit design, the previous design may just beastarting

point for another manual design cycle, and design specific information is not efficiently re-used.

The notion ofan analog standard cell library [smit89,labe87,serh85] came from the obvious

success of digital designers' implementations of standard cell approaches to complex circuit prob

lems. By abstracting circuits intological functions, and predicting thedigital performance of these

blocks, naive digital designers were able to place and interconnect basic building blocks into com

plex digital functions, creating IC designs out of digital cells as they would have created digital

printed circuit boards out of the TIL building blocks of the previous generation. The promise of an

analog standard cell approach was that with the right setof predefined building blocks, asimilar

transition from board level to IC level design could take place for analog circuit designers, and a

small set of core cells could be reused across many application designs. The user base could rela

tively naive,andonly needto assemble analog building blocks asthey wouldhave in aboard level

design.

In the Micro-linear implementation [labe87]» alar8© interdependent library of cells was cre

ated for mis naiveuserbase, butin practice thestandard cellapproach didnot work for theseusers.

The complexities of analog block interaction madedesign too difficult for the standard cell build

ing block model. While this library failed at itsoriginal goal, this setof building blocks has pro

vided auseful library of cells which are routinely reused by expert designers to thisday.

IntheIBM approach [SMrr89]»me system depended upon application circuit designers to cre

ate the standard cells for the system, and supplied the tools and methodology to stitch these

together inlarge mixed-signal ICs. These standard cells tended tobeapplication specific, with bias

circuit cells designed to match functional cells (such as amplifiers or oscillators). When a new

design required circuits similar tothose already in the library, designers often redesigned existing

circuits, rather thanusing cells directly out of the library, due to smalldifferences betweenthe

application specifications and existing cell specs. This methodology has been used to successfully

design large, high performance mixed signal circuits[PHIL94], Dut has not shown as much promise

for design reuse.

Inboth cases analog standard cells do nothave the flexibility to adapt to specifications unfore

seen by the original cell designers, even if small variations to the cell design could meetauser

specification. Also, as process technology changed, the cell library had toberedesigned for the

new process. These problems with analog standard cells point toward an analog synthesis

approach.

Analog circuit synthesis is aprocess inwhich design specifications are used as an input which

are used to select appropriate circuit topologies and size devices. This method promises to solve

the limited applicability of standard cells by creating cells tomeet new specifications as they are

needed. Since the process technology isjust an input to the synthesis process, changing technology

1.1 Anabg Synthesis

is nomorecomplicated than changing thespecification. Ineither case the synthesis atool will cre

ate the best design for the input specification.

While an analog standard cell approach defines a library of cells, to be browsedand checked

out whenneeded, analog synthesis defines aprocess for creating adesign. This design process is a

combination of a set of design and technology inputs, and a methodology which transforms these

inputs to the final design specification. This is analogous to the analog circuit design process, in

which a setof tools are used by an expert designer to create acircuit design from asetof design

primitives such as transistors, resistors, and capacitors, lb date there has been no successful syn

thesis methodology which candesign circuits from first principles, so design specific knowledge

mustbe incorporated intothe methodology. We shall seethat thisis either through the encapsula

tionof knowledge in acircuit selection method, orthrough thedefinition of topologies and circuit

simulation measurements to beused in thesynthesis process. Because synthesis defines a process,

theinputdesign knowledge is broadly applied to aclass of circuits, across technologies, instead of

at the single solution point foundin a cell library.

1.1 Analog Synthesis

This chapter continues with alook attherequirements for ananalog synthesis methodology. In

particular, it is necessary to identify the potential users of the analog synthesis, the user require

ments, andthe elements of analog synthesis methodologies. There hasbeenongoing work in dif

ferent aspects of analog synthesis for more than 15 years, and some of these approaches will be

reviewed in lightof these user requirements. A distinction will be drawn between general analog

synthesis and module generation, motivating the choice of module generation. In this thesis the

synthesis of Digital-to-Analog Converters (DACs) is described, and the motivation and previous

work for this classofcircuitswill be discussed. The chapter concludes with discussionof the con

tributions of this work,and the organization of the following chapters.

Before looking further into specific approaches for analog synthesis methodologies, it is

important to take a stepbackto look atsome more general questions. Is the tool developed for a

specific application, or as a methodology whichincludes several interesting applications. Who is

going to use an analog synthesis tool? What arethe requirements for such a tool? What are the

1.1 Analog Synthesis

inputs, both for a circuit topology, and an individual design? How is performance measured, and

what performance is good enough (and what would be excellent)? We shall see that there are sev

eral synthesis performance factors which have limited the acceptance of tools developed to date.

The answerto the firstquestion is that any analog synthesis method must define a process, and

supply tools to support that process,ratherthan be limited to the solution of a single problem. This

is particularly true for analog circuits, where there are many different problems which can be

attacked with similar methods. An analog synthesis tool optimized for one problem, but which is

difficult to apply to similar problems will quickly become obsolete, while one which allows ease

of incorporation of new designs may succeed in the long run. This has an important implications

for the methodology. The process of applying the methodology to a new analog synthesis problem

must be a reasonable task for those who understand the circuit to be synthesized.

1.1.1 The Analog Synthesis Tool User

Tlie nextquestion is "Who is theuser?" Should onedevelop atool to improve theproductivity

of those already doing circuit design, and expect them tohave athorough, hands-on understanding

of thetool? Should arelative novice to be able to implement a state of the art design with this

methodology? Should a system designer, well versed in digital signal processing, be able to use

this designmethodology to create the analog gluecircuits which bind his DSP coreto the outside

world? In this section these three user classes - the system engineer, the circuit designer new to

this application, and thecircuit designer experienced withthis application - are considered.

The creation of turnkey analog synthesis tools for a system designer is along term goal for

analog CAD tools, but isunrealistic at this time. There are too many dependencies inthe design

process, including inaccurate models, chip level noise issues, and analog circuit interface issues

which require some circuit expertise tounderstand. Also, there is aresponsibility issue. Is the user

responsible for verification of the design, and its ultimate design success, or should the tool be

robust enough to ensure working designs for every input and condition. Historically CAD tool

vendors have not been held responsible for the application of their tools, but have depended upon

knowledgeable users which can understand the limits of the tools* application.

1.1 Analog Synthesis

The second class of user is an important one.TTus user may not have created the circuit mod

ule, butmay reuse it for anew application. Itis important that hecan understand thelimitations of

the analog synthesis tool.

Tlie user who is already doing this analog circuit design is most important. He is the circuit

designer who may implement new designs inthe analog synthesis methodology. He has the under

standing of the underlying circuit design which must be incorporated into the synthesis process.

Having developed the design module, he will be the user best able to exploit the analog synthesis
tool.

Tlie key point is that the initial users of the analog synthesis methodology are engineers who

are already doing circuit design, and will beable toimprove their productivity through use of the

analog synthesis tool. This has two implications. The first is that these are knowledgeable engi

neers, whocan understand theinputs and results from the module generator. The second implica

tionis thatthe engineers who are going to implement new designs are more likely to be familiar

and comfortable with circuit simulation language for describing adesign, rather than ahighlevel

programming language. If the tool uses a familiar input format it will be faster to incorporate new

designs [OCH094]-

1.1.2 Performance Standards for Analog Synthesis

There are several metrics for measuring performance of amodule generator. The mostimpor

tantare the tool's predictive accuracy, tool runtime, and design entrytime. The quality of the cre

ated designs is a more subjective measure, but is alsoimportant.

Adequate tool accuracy is the mostimportant performance standard. When creating a module

the user inputs a setof circuit performance specifications to be met. If the tool cannot accurately

predict all circuit performance measures, the user may nothave an assurance that the developed

circuit willmeet thespecification. Onemethod for circumventing thisis to over-specify thedesign,

but this will result in alowerquality result. Tool accuracy hasbeena particular problem for design

tools which use first order device models for short channel MOS transistors.

1.1 Analog Synthesis

Tool run time is probably an overused performance metric. Tliere are several module generator

tools which take only afew minutes to run, but in the time scale ofatypical analog circuit design,

speedy tools are not critical. A typical IC design will take days, if not weeks to specify, and weeks

(ifnot months) to fabricate. Having the analog synthesis step take several hours ofcompute time is

not significant inthis time scale. In this work, the run time requirement isthat the circuit synthesis

step take no more than an overnight run on amodern workstation for the most complex circuits.

Tool run time isstrongly impacted by the increase incomputer capability over time. Computa

tional problems which were considered overly long a few years ago are orders of magnitude faster

today. The increasing speed of CPUs and size of workstation main memory have allowed the

increase in simulation size from key subcircuits to full chip circuit simulations, running as over

night jobs on an engineering workstation. TWs gives today's analog CAD engineers an advantage

over our predecessors, allowing consideration of methodsof attackincomprehensible 15 years

ago, and too costly only 5 years ago.

A secondtime metric,often overlooked, is the time required to implement a new module gen

erator in thedesign methodology [OCH094]- ™s ^me» which is usually muchlonger than thetool

running time, dominates the man-hours spent creating the first implementation of the design. If the

design entry process is much longer than the time required to do a full custom design, or is beyond

the capabilities of the engineer who must understands the module, then the tool will not be used.

Qualityof a completedmoduleis difficult to measure. For automated analog layout programs,

it is typical to see a comparisonbetween a tool and a layout technician. For analog synthesis it is

more difficult to make a comparison, because the tool must first size all circuits, and then create

mask geometries. A high quality design shouldmatchthe predicted circuit performancein exhaus

tive simulation andin fabricated circuits. It alsoshouldbe comparable to custom layouts in circuit

area for the same technology and specifications.

There areother implementationrequirements as well. The final predicted design performance

must meet the specifications. The technology related inputs should be easy to change. Since

designs must work across a rangeof process and temperature conditions, there must be a way to

include the effects of processandtemperature variation on circuit performance.

1.2 Analog Synthesis Approaches.

1.2 Analog Synthesis Approaches.

There are four decisions to be made when specifying an analog synthesis methodology. The

methodology must choose an estimation approach, a design selection approach, and a layout

approach. The fourth decision is the whether to attackthe problem in a flator hierarchicalmanner.

In this section these decisions will be described, and some analog synthesis implementations will

be examined in this context. Fig. 1.1 illustrates a typical synthesis approach.

Performance Specifications. Technology Inputs. Supply andBiasInputs

r

C

I
Circuit Synthesis

Design
Selection

Performance
Estimation

Circuit Netlist and Sizes

Layout Synthesis

Layout

Database

Completed Layout

Figure 1.1 Typical Analog Synthesis Flow.

1.2.1 Design Estimation

The first decision is thedesign estimation approach. Whatmethods should be used to estimate

the performance of thecircuit for a setof design inputs. In general, there is atrade-off between

estimation accuracy and estimation computation time, though that does not hold universally. At

one extreme, circuit simulation (SPICE) may be used to estimate performance results. If underly

ing device models are accurate, and care is taken to include parasitics, this may yield very accurate

results for transient, DC, and AC measurements of device level circuits. A second full simulation

approach isAsymptotic Waveform Estimation (AWE), which performs AC and DC analysis ofthe

circuit at the device level. Behavioral simulation isthe third full simulation approach, in which

subcircuits are abstracted, and thentheir interaction is modelled with a behavioral simulation

engine. This has been used for both transient and statistical modelling [LOui94, UU93, JUSU93]-

1.2 Analog Synthesis Approaches.

Behavioral simulation approaches allow high level simulations which would be impossible with a

full simulation approach. System level performance such as Sigma Delta Data Converter linearity

can be modeled, which would take too long by full circuit simulation, and too complex for direct

analysis. The accuracy is limited by the limitations on the underlying subcircuit models. A last

approach is a purelyanalytic approach, in which designequations are derivedwhich predict circuit

performance for design inputs. This is an order of magnitude faster than the other simulation

approaches, but accuracy of this approach depends on the accuracy of the modelling which sup

ports it. Where this is used to replace linear behavioral models, there may be no loss of accuracy,

but analytic equations usingfirstorderdevice models cannotaccurately replacedevice level circuit

models for reasonably sized devices.1 Also, analysis ofacomplex circuit my be possible, but diffi

cult compared to a simulation approach. A set of analytic equations predicting opamp behavior

may take two weeks to code, while creating a circuit simulation to return the same information

may take an afternoon [KOH90,OCH093]- Fig 1-2 illustrates the application of these techniques

graphically. Onthehorizontal axis is the degree of design abstraction, and on the y axis is the esti

mation accuracy. The shaded areas indicate where the methods may be applied. Note that analytic

approaches become more accurate at higher levels of design abstraction.

High

Estimation
Accuracy

Low

Low

-.Circuit
Simulation

Analytic
Equations

Design Abstraction High

Figure 1.2 Application of Design Estimation Techniques

1. Kundert suggests that first order models are inaccurate for MOS device channel lengths below 10 urn. [KUND93]

1.2 Analog Synthesis Approaches. 10

1.2.2 Design Selection

Thedesign selection process is theprocess by which thedesign method determines the final

design. There are two main approaches. Optimization based approaches use some optimization

algorithms to reach a final solution. Several different optimization algorithms havebeenused,

ranging from steepest descent with asingle lumped cost function tononlinear constrained optimi

zation to simulated annealing. Besides simple device sizing, there have also beeneffortsto incor

porate topology selection within the optimization algorithm [MAUL92b,HARV92]- Several factors

affect thechoice of theoptimization algorithm, including thedesign estimation time and theexist

enceof local minimain the solution, In all cases the optimization algorithm is used as a "dumb"

numerical technique which attempts to find an optimal solution.rBRAY8i, NYE88, DEGR89, CHAN94

GIEL90, JUSU93, HOCE90, KOH89, MAUL93, OCH094, NING92, SHYU88]-

The second typeof design selection is aknowledge based approach, in which adesign method

whichmimicsthe steps anexpert designer may takeis usedto find a good design solution. The

ideais thatthe methodology cansavealot of time if it canmarch straight to the correct solution

using the same logical reasoning adesigner maychoose, rather than iterating through anoptimiza

tion algorithm many times. In practice theseapproaches do reach solutions quickly, but they do

can not guarantee any optimality for the result.Also, these design recipes areunique to eachtopol

ogy, and must bere-implemented, as part of every new module[ALLE85f DEGr87, BERK88, HARJ88,

MAKR92]- Some selection techniques use a combination of heuristic topology selection with low

level device optimization [FOto94, KOH89, ONOD90]-

1.2.3 Layout Automation

Analog layout synthesis is the process by which a circuit description is used to create the

actual mask geometries for the circuit Tlie circuitdescription must include not just the netlist and

the device sizes,but also additional information about device matching and layout related capaci-

tive and resistive parasitics. Some layout synthesis tools are implemented as stand-alone tools,

while others are tightly coupled to a circuit synthesis tool in a module generator. When a tool is

tightlycoupled to synthesis, thenetlist maybe predetermined, so it may makesense to provide the

layout tool with a circuit specific template.

1.2 Analog Synthesis Approaches. _

The first important issue for layout synthesis is the means of communicating analog layout
information to the tool from the circuit synthesis process. When the tools are loosely coupled, itis
typical for the input to include nedists with device sizes, and some additional rules indicating crit
ical device pairs and nets which should be matched. In aperformance constraint driven approach
[CHOU90,oirrs92.CHAR92]. the sensitivities of layout effects on analog circuit performance are
passed to the layout tools, and the layout process uses these sensitivities to limit the adverse affect
of layout parasitics on performance. When layout is tightly coupled to the synthesis process and
the layout is adeterministic process, it may be possible to predict layout parasitics without actually
going to the layout step, and compensate for layout parasitics in the circuit synthesis process, or
layouts may be generated as part ofthe synthesis process, for determination ofparasitics from

actual layouts during circuit synthesis [ONOD90]-

Layout synthesis techniques typically use opamp circuits as their model for atypical analog

layout In general opamps have relatively few devices, but large device sizes, and consist ofboth

individual transistors and transistors grouped into differential pairs and cascode configurations.

Typically the synthesis tool will size and place these subcells, and then route with area or channel

routers. The results tendto work(and look)bestwhenthe inputcircuit fits this opamp model of

relatively largedevices, with few interconnects.

Analog placement canbe separated intotwo general classes. Procedural approaches usedeter-

ministic algorithms to place devices, optimizing device sizes in a template [KOH89,

JUSU92,DEGR89]»or successively splitting the circuit into smaller parts until all devices have been

placedrBERK88, KAYA88, LIN91, CONW92, MEYE93, CHEN89, MOGA89, MEHR91, ONOD92] Routing

techniques seek to limit parasitics through controlling parasitic resistance and capacitive coupling

[HARA92, SMTT89, CHOU90]- Simulated annealing (SA) approaches usenonlinear SA optimization to

place devices, incorporatingmatching and parasitic rules into the move set and cost function parts

of theoptimization. Of approaches that donotusetemplates, the SA approaches haveproduced the

best looking automatically generated layouts lGARR88, COHN91, CHAR94]- Though the absolute
value of circuit parasitics cannot be predicted using aSA placement approach, they may be

bounded by using aconstraints in the SA process [ChaR92J- T^iese methods also have the longer
run times, but this is not asignificant problem when layout is astand-alone process.

1.2 Analog Synthesis Approaches
" . 12

While general analog place and route tools are oriented toward opamps, there are some mod-
u.e specific tools written for specific structures. CADICS and ADORE [YAGH88,JUSU93] tave tem.
plate based layout tools written specifically for switched capacitor A/D converters and filters.
Leme describes another tool for layout of capacitor arrays for CMOS A/D and D/A strnc-
t"KS[LEME9i]- Amodule specific tool may not have general application, but solve circuit specific
layout and parasitic problems which are not well addressed by tools written with opamp style cir-
cuits in mind.

1.2.4 Design Complexity

As example analog circuits have become more complex, the design synthesis problems have
become too difficult to attack as asingle non-hierarchical problem [JUSU93i CHAN94 DEGRg7]. ^
obvious direction is to cast the design problem into ahierarchical framework, and decompose the
high level specifications into subcell specifications, develop sub-module generators and create the
subcells to these specifications. Several analog synthesis approaches use ahigh degree of hierar
chical decomposition, using simple circuit elements such as differential pairs and current sources
and current mirrors [BERK88, HARJ88J- In adesign with significant interaction between the subcells,
the decomposition step is difficult. In aknowledge based framework, the top down decomposition
again follows adesigner recipe, with the limitations to preprogrammed topologies. In an optimiza
tion based framework, the process of creating subcell specifications is fraught with peril. To create
an "optimal" set of subcell specifications requires knowing the "cost" of any set of subcell specifi
cations. There are two approaches that have been used. In the first case, asubcell optimization is

run every time the cost ofaset ofsubcell specs is requested, resulting in frill optimizations within

optimization [jusu93]- In the second approach, estimator functions for circuit cost [PADm7] or sub-
circuit flexibility [CHAN94] replace the subcell optimization, allowing asimple optimization ateach

step in the hierarchy, but since the estimator functions are not exact, the final solution is not opti

mal. In both approaches the final solution will meet specifications. The advantage of using a hier

archical approach is that it allows attack of complex problems. The disadvantage is that either

simulation time is increased, or the solution not optimal, and natural places to break an architecture

into a. Werarchy must be found.

1.3 Module Generation vs. General Analog Synthesis. 13

1.3 Module Generation vs. General Analog Synthesis.

ModuleGeneration is the application of analog synthesistechniques to a particular class of

circuits. It usually includes both thecircuit synthesis and layout synthesis methodologies required

for the selected module. When implementing amodule generator there are usually special issues

for theparticular module which maynotbeadequately addressed in ageneral synthesis methodol

ogy. The choice of a particular typeof analog circuit strongly affects the subsequent choices for

design estimation, selection, and layout. Just as in other areas of analog circuit research, good

choices for examples tend to yield research results which will solve real problems. There is adan

ger that tools developed for aparticular analog module will not be useful beyond that application,

but if the tools developed for module generation can be kept separate from the design specific

information, thentheymaybe applied to similar problems in other circuits.

Td date, most general analog synthesis approaches have actually used opamp designs as exam

ples, and this choice has strongly affected the synthesis tools developed. We shall see that these

general synthesis approaches do not take the best approach for DAC module synthesis. For exam

ple, layout tools have been oriented toward opamp style designs consisting of ahandful of large

devices. In DAC modules, the design usually consists of alarge number of relatively small

devices, where matching and routing issues are significant for circuit performance and area. In

developing module generation tools for DACs newproblems mustbe solved which havenotbeen

addressed by other analog synthesis techniques.

1.4 Digital/Analog Converters (DACs)

Digital/Analog Converters (DACs) convert asignal from adigital representation to an analog

signal proportional to the digital input. The output signal may be inthe form ofvoltage, current, or

charge, lliey are one ofthe most common analog interface circuits, making the connection from a

digital system to the analog world around it. There are many application for DACs, ranging from

low speed, high resolution audio applications to high speed, low resolution video, and including a

broad band of general instrumentation and control applications inbetween. Figure 1.3 illustrates

these applications, with resolution and sample rate as the axes. Ofthese applications, the low sam

ple rate, high resolution architectures are dominated by oversampling architectures [ADI92, CRYS92

1.5 Design Qualities of Nyquist Rate DACS.

Resolution (bits)

t i

1<S _ _

14. _

12. _

10. _

8 _.

6 ..

General Purpose

Voltage Output

•

General Purpose

Current Output

Video

ADI Phil

IK 10K 100K 1M 10M 100M 1G

Clock Rate

(Hz)

14

Figure 1.3 Monolithic DAC implementations. Shaded areas represent commercial products.
Points are state ofthe art for high speed CMOS and bipolar. [adi92, REYN94, VORE94]

LERC91, KUP9i]»due t0 me inherentlinearity andsimplicity of the analogcircuitsin those architec

tures. Throughout the rest of the range nyquist rate DACsdominate. DACs which are designed to

drive an external load typically output either voltage or current. A current output DAC is easily

modified to a voltage output configuration through a resistiveload. From the figure it is apparent

that a current output DAC module generator, capable of resolution to 10 bits, andsample rates to

135 MS/s could have wide application.

1.5 Design Qualities of Nyquist Rate DACS.

There are several DAC implementations found inCMOS circuits [pelg90 YANG89 SHEN83

SCH088, and many others]- Although these designs havequite different topologies, they havecommon

properties which make their design and analysis processesdifferent from other analog functional

blocks, such as Opamps, and A/D Converters. First, they require two levels of analysis -- both a

low level circuit analysis, predicting device level bias conditions and mismatch, and high level

behavioral analysis of DAC statistical and global effects. Second, they tend to be constructed of a

large number of identical subcircuits.Third, these subcircuits tend to be fairly simple, with a hand

ful of devices per cell. Fourth, there is a close coupling between layout and performance. Finally,

like A/D converters, they have key design variables which must take on integer, andusually power

1.6 Module generation for DACs. 15

of 2, values. These qualities have implications for all parts of the module generation process:

design estimation, design selection, and layout

For design estimation, this means mat EXT and Transient analyses which require circuit simula

tion may be done at the full DAC level, using only a few devices to simulate the entire DAC. On

the otherhand,the interaction oflow level andhigh level circuitcharacteristics, with layout place

ment information, means that an accurate high level DAC estimation requiresaccurate prediction

of low level circuit conditions, and predictionof the module layout. For example, when consider

ing second order effects such as supply resistive drops, voltage coefficients, device mismatch, or

finite output impedanceof circuits, one must first find the bias conditionsand subcell layout spac

ing before the magnitude of these effects may be determined. This implies a need for design esti

mation at both a circuit level and a DAC system level.

For designselection, the requirement for integer valued results complicates the choiceof opti

mization or selection algorithm.

Tlie layout problem for DACs also different from that seen in other analog applications, lb

obtainthe best possible devicematching, it is important to maintain identical geometries andiden

tical spacing across thecircuitrpELG89t SCH088}-In order to keep circuit area down the DAC cell

mustbe tightly packed, because wasted space is multiplied by the number of cells. There is alarge

amount of digital circuitry in a DAC, as well as output signals which mayhavealarge swing and

fast rise time. Itis critical that these large signals not couple to sensitive bias signals through para

siticwiring capacitances in the layout. As noted above, cell layout area must be predicted as a

function of designinputs to accurately estimate high level parameters.

1.6 Module generation for DACs.

In the preceding sections therequirements for usable module generation havebeendiscussed,

as well as the some important aspects of DAC generation. This leads to the question"For DAC

module generation, what approaches can work?"

Tlie method requires accurate estimation. At thecircuit level, thismeans using SPICE circuit

simulation for DC and transient analysis. (AWE is not suitable, because it does not incorporate

1.7 Previous work 16

transient analysis.) Since there are high level layout and statistical effects, these are bestcomputed

using eitherbehavioral or analytic approaches. The analysis for DAC performance is relatively

easy, so a design equations approach is acceptable.

For design selection, a constrained, nonlinear optimization approach gives the possibility of

reaching an optimal solution.The simulatedannealing approach is not reasonable, since transient

SPICE simulations mustbe done within theoptimization loop. Tlieoptimization must find integer

solutions, in the context of long design estimation step. None of the previous work in gradient

based constrainedoptimization suggests a solutionto this problem which will complete in a rea

sonable time.

For layout, previously described layout techniques just do not match the problem. Although

the matching and parasitic capacitance issues have been dealt with in general analog placement

algorithms, the strongerareaminimization andpredictablecircuit arearequirements arenot met by

these tools.

The last question is that of a hierarchical approach. There is a natural break up of device level

and DAC level optimizations in these topologieS[CHAN94]» butusing ahierarchical approach has

its drawbacks if an optimum solution is desired. The method of optimization within optimization

will give an optimum, but it is impractical for DAC synthesis, because the inner loop optimization

is a SPICE based optimization which will explode the problem. If estimates of cost functions are

used for the high level optimization, then errorsin the cost functions may give non-optimal results.

By avoiding hierarchy, and including all relevant design variables, an optimal solution may be

found, but in this case design estimation must incorporate circuit and DAC analyses simulta

neously.

1.7 Previous work

Two DAC synthesis tools have been describedin the literature. Allen and Barton implemented

DAC functions in a standard cell based silicon compiler. This approach compiled modules using

procedural techniques [ALLE86]- ARDAC [CHAN94] synthesized current output CMOS D/A con

verters as a demonstration of a top-down constraint driven analog design methodology. Specifica-

1.8 Thesis Contribution 17

tions were limited to important static specifications, and the synthesis method used a hierarchical

approach which used flexibility functions. Analysis used DC SPICE simulations at the device

level, and behavioral simulation at the DAC level. Layout used custom layout generators to create

three subcircuits. Test chips were fabricated to verify performance. Dynamic performancewas not

included in the specifications, and some importantdesign variables were determined a priori,

rather than used in synthesis, limiting the optimality of the solution.

1.8 Thesis Contribution

Tliis thesis describes DSYN, a module generator for the synthesis of CMOS Digital/Analog

converters. In the course of this development there are several research contributions.

• Developmentofanaccurate DAC performance estimationmethod,using acombination of
circuit simulation and DAC architectureanalysis.

• Implementation of anoptimizationalgorithm for constrained, mixed integeroptimization,
adapted to this application.

• Applicationof cell stretching andtiling techniques, commonly seen in digital macro-cell
layout synthesis, for area efficient, predictable DAC circuit layout synthesis.

Incorporation ofthese stepstogether into aDAC modulegenerator, considering important
real world issues such as performance sensitivitiesto layout parasitics, device model inac
curacies, and process variation.

• Verification of this synthesis methodology through highperformance prototypes. A fabri
catedtest circuithasdemonstrated synthesis to commercial specifications for video DAC
applications. Othertest circuits havebeen synthesizedwith higherresolution or different
technology specifications.

1.9 Thesis Organization

Chapter 2 describes DAC architectures andimplementations in general, and discusses the

motivations which lead to the particular high speed currentsource CMOS DAC architecture cho

sen for this work.

Chapter 3 introduces DSYN, the DAC module generator program. It outlines the synthesis

process, inputs and outputs required for theprocess, and thealgorithms used for estimation, design

selection, and layoutin general terms. Verification issues for synthesis inputsandthe synthesis

process are considered.

1.9 Thesis Organization jg

Inchapter 4 both analysis and design selection processes are covered, because these two pro

cesses are tightly linked. This chapter includes a review of important approaches, and illustrates

how good choices for both analysis and optimization can lead toacircuit synthesis process which

rt meets the requirements described in this chapter.

t Chapter 5 discusses the layout process implemented for DSYN. A review of aspects of DAC

designmotivatesthe choiceof a template based approach forthese DACs.

Chapter 6is areview of the results obtained with DSYN. Two prototype DACs have been built

in a 1.2 micron technology, and the performance predicted from estimation and extracted spice

simulations is compared with fabricated results. Designs implemented inother technologies dem

onstrate the reuse of the design across technology.

Chapter 7 is the concluding chapter for this thesis, summarizing results, and discussing the

application of these to an industrial environment. The appendix describes the implementation

details for the DAC optimization, simulation, and layout libraries.

Tlie appendix summarizes thesoftware tools and design libraries developed in the course of

this work, andis users' manual for succeeding tool users.

19

CHAPTER 2

DAC Architectures for Synthesis

2.1 Introduction

litis chapter is adiscussion of the issues important for choosing a DAC architecture for mod

ulegeneration, and ultimately describes the choice made for DSYN. First the DAC designs are

described, including their specifications, architectural choices, and implementation choices. A set

ofdesirable properties for amodule generator isdiscussed, and aDAC architecture and implemen

tation choice is made based on those. TTiat architecture is then described in some detail, including

design inputs that may be used as variables during synthesis, performance estimates which may be

used as constraints, and some information about typical layout styles for this architecture. The

chapter closeswith a brief summary.

2.2 D/A Converter Specifications and Design Inputs

2.2.1 Specifications

As with any analog circuit, there are two classes ofD/A converter specifications, performance

specifications and operating environment specifications. For DACs the performance specifications

may be further divided into static and dynamic specifications. Static specifications define how

accurately theoutput matches theinput digital code under DC conditions, and describe theworst

2.2 D/A Converter Specifications and Design Inputs 20

case matching of output signal levels toan ideal DAC response. Dynamic specifications describe

how the DAC responds to transitions between levels, and to digital switching at the chip level.

Environmental specifications describe the conditions under which the circuit must operate, includ

ing power supply voltage range, circuit loading, temperature conditions, and compliance of the

output signal.

Tlietwo mostimportant static specifications are Integral Non-linearity (INL)and Differential

Non-linearity (DNL). INL is the difference of any pointon the transfer function from anideal

transfer function drawn between themaximum and minimum outputs. DNLis the error in thedif

ference between adjacent DAC levels. Both are expressed in units of aLeast Significant Bit (LSB).

It turns out thatthe INL atanyDAClevel is the sumof DNL up to thatlevel.Tliese errors canbe

written algebraically as follows, where N is the number of levels, and AFS is the full scale signal,

and Ao(i) is theDAC value for input i. Aa is defined as the ideal stepbetween levels. DAC output

levels are assumed to be unipolar, from 0 to AFS. Then:

FSAa =-^ (2.1)

DNL(O) = 0 (2.2)

A0(i)-A0(i-1)DNL(i) =-2 ^ 1 (2.3)

INL(i) =-^ 1 (2.4)
i

INL(i) =^JDNL(i) (2.5)
1

There are two other specifications based on the static transfer characteristic.Gain Error(GE) is

the errorin the full scale output relativeto the ideal. Absolute accuracy, or Total Unadjusted Error

(TUE) is the maximum deviation from the ideal transfer function for any code. GE andTUE may

be expressed in LSB, or as a percent of full scale. Static transfer function errors are summarized in

Fig. 2.4.

2.2 D/A Converter Specifications and Design Inputs

AFSH ,•
(fitted) /

a
o /
1 .•' INL=0

f DNL=0

0 /
0 Digital Code In

W
N-l

AFS- ,•
,*'

.*

A
5J A

o /•
bO

•8
I •/'* k INL<1

f/ ^-DNL^
f'

0 L' h
0 Digital Code In N-l

AFS-"

9

o

o

21

•/' *MNL=1
DNL<0.2

0*
0 Digital Code InCod

(b)

AFS+
(ideal)

O

TUE

o"
0 Digital Code In

df

N-l

GE

N-l

Figure 2.4 Static Errors inD/A Converters, a) Ideal DAC transfer function, b)
Transfer function with systematic non-linearity, b) Transfer function with step

non-linearityat a major transition, d) Transfer function with GE and TUE

measured with respect to ideal transfer curve.

Dynamic specifications describe the performance ofthe circuit at speed. Delay Time (TD) is

the time delay from aclock signal to the 50% point ofthe output signal transition. Settling Time

(TS) isthe time from that 50% point to settling to within some delta ofthe final value (the value of

delta is usually 1/2 LSB, but this is not standardized). Switching time (TSWIT) is the time required

to go from 10% to 90% ofthe transition. Glitch Energy (Glitch) isthe worst case spurious energy

produced for a 1LSB transition. These specifications are measured using the worst case transition,

so for the switching and settling specifications full scale transitions are considered worst, while for

glitch energy the worst case is usually the transition at the major carry at halfof full scale. These

2.2 D/A Converter Specifications and Design Inputs 22

specifications must bemet for all load conditions. Fig. 2.5 summarizes these dynamic performance

specifications.

Time Delay, Settling, and Glitch Output

Ap^j r-a

^ Tdelay k/ Tattle

n
L . Tf\—• *nse

•

SetUe to 1/2 LSB

• time

Ao(i)

A0(i-1)

t=0

t=0

Glitch Energy

-• time

Figure 2.5 Dynamic Errors in D/A Converters. Time Delay, Switching Time,

Settling Time, and Glitch Energy. Clock at t=0.

Other specifications cover the operating environment, including supply voltages, operating

temperatures, and conditions for the output signal. For a voltage output DAC, the impedance of the

load should be specified. For a current output DAC, there is a compliance range of voltages over

which the output current linearity will be in spec. The nominal output range should be specified,

and there may be specifications for any external bias signals as well. Table 2.1 lists a set of specifi

cations for a current output DAC [ADI92]

2.2.2 Integrated Circuit Technology

The technology to be used by a designer is another important input. The IC processing tech

nology must be characterized, and technology related information which is important to the design

must be quantified. This includes nominal device models, design rules, interconnect capacitance

parasitics, as well as important secondorder effects. For digital designs the second order process

variation effects are usually considered, but for a DAC, the designer must also know the random

2.3 DAC Architectures and Implementations 23

Table 2.1 Specifications for ADV 7120

Specifications Value Units Comment

STATIC PERFORMANCE

Resolution 8 bits

INL ±1 LSB max

DNL ±0.5 LSB max Guaranteed Monotonic.

Gain Error f % of full scale

DYNAMIC PERFORMANCE

Glitch Energy 50 pV sees typ.

Switching Time 3 nsmax

Settling Time 12 nsmax

Delay Time 20 nstyp

OTHER SPECIFICATIONS

f
xmax 80 MHz Clock Rate

Ifs (Full Scale Current) 15 mAmin

22 mAraax

Rout (Output Impedance) 100 kfttyp

Cout (Output Capacitance) 30 pFmax IouT = 0mA

Voc (Output Compliance) -1 Vmin

+1.4 Vmax

Vaa (Power Supply) 5 Vnom +/- 5%

PSRR 0.5 %/% f=lkHz

mismatch of devices, and thediscrepancies between the fitted device models and actual device I-V

curves, particularly ifthe design uses short channel devices in the weak inversion region [Tsrv94].

2.3 DAC Architectures and Implementations

InDAC design, there are two orthogonal parts to thedesign. DAC architecture describes how

circuit elements will be assembled to create the DAC output, but does not necessarily imply apar

ticular circuit design. Inthis discussion, theDAC implementation describes the setof low level

elements which will be assembled, but does not imply aparticular architecture. Any combination

2.3 DAC Architectures and Implementations 24

ofarchitecture and implementation ispossible, and itisdifficult tofind acombination that has not

been tried. In some cases hybrid approaches which use acombination ofcircuit implementations
for different parts of a DAC architectureare found.

2.3.1 Architectures

For nyquist rate DACs, the choice ofDAC implementation affects all performance measures,

while the architecture choice particularly effects the DNL and Glitch Energy performance. In the

following sections each of thepotential architectures will bediscussed, with first order predictions

of INL, DNL, andGlitch Energy performance using dueto random element mismatch and timing.

mismatches [graY90]- Tteoversampled architecture will bediscussed briefly, though it is difficult

to compare within the same firamework. Tlie switched current source implementation will be used

as an example to illustrate these architectures for an example 6 bit DAC implementation

2.3.1.1 Unit Element Switching Architecture

A Unit Element Switching architecture consists of a set of equal elements which are added to

the output one at a time as the DAC input is increased. For each DAC transition corresponds to a

particular unit element. Fig. 2.6 illustrates this architecture for a current source example, some

times referred to as a "sea of current sources." Another common implementation is as a tapped

resistor string.

Digital In (6 bits)

i
Digital Thermometer Encode (6 to 63)

I I I I I ... 63 Digital Select Signals Current
Signal

!• !• !• !• !• It !• lm 63 Switches

§ 0 0 8 0 § § "' 63 Unit Current Sources
/?7 /z7 /77 /?7 /77 /77 /s7

t

Figure 2.6 Unit Element DAC in a 6 bit switched current source implementation.

2.3 DAC Architectures andImplementations 25

Before predicting INL, DNL, and Glitch Energy, a few terms must be defined:

aj =1th analog element value. %is arandom variable, mean Aa, variance aAa2.
• AFS = Full Scale Value

N-l

AFS =Xa* +Aa (26)
i = 0

• Ao(n) =Output at n*output level:
n

A0(n)=^ai (2.7)
i = 0

• Normalized output relative to AFS:

AFS N-l

5>i+A
i = 0

Ideal output(^ =Aa,aAa=0):

A0(n) n • Aa n

Ace ('N-1)+Aa " N

(2.8)

(2.9)

Assume that aj are independent, identically distributed (iid), then compute variance for INL

and DNL at the worst case points. For INL, the worst point is at the midpoint, since by definition

INL =0 at the endpoints, and the function is symmetric. INL is found by computing the variance

ofthe signal at the midpoint (n=N/2), subtracting from the zero error value, and converting units to

LSBs. Assume the variation in aj, 8^is asmall compared to Aa and substitute Aa +8^ for aj in the
following:

N/2-1

E aiA0(N/2-1) _ ** N/2 5A(N/2-1)
afs "N^fi n^ N- +—a^— (210)

X ai+ Z Si +Aa
i = 0 i = N/2

Contributions to 8A(N/2-l) consist ofslightly different terms for i<N/2 and i>N/2. Cross prod

ucts in 8aj may beignored at this point because they are small. The factor of 1/2 comes about

2.3 DAC Architectures and Implementations 26

because for i<N/2, 8^ is partially cancelled by adenominator term, and for i>N/2, the 8aj error

only contributes through the denominator, with a factor of 1/2.

Fori<N/2, each ajcontributes:

A0(N/2).(i<N/2) (N/2).Aa +8ai \ x x 5a
2+2*N* (Aa)TS N-Aa + 6a:

For i>N/2, each aicontributes:

A0(N/2).(i>N/2) (N/2).Aa 11 1 M

LFS N.Aa +8aiss2 2"N."(Aa)
When these aresummed over all i, andthe error term is separated, the result is:

N/2-1

LFS
i = 0

8A(N/2) =J_* y Y^iV-l V (^
2N lu UaJ 2N 2u Ua

N-l

i = N/2

(2.11)

(2.12)

(2.13)

Since these 8a± variables are iid, the variance of this is the weighted sum of the variances, and

recall that INL is just this 8A error. Since8A hasmean0, VAR(8A) canexpress:

VAR (INL (N/2)) = E
8A (N/2) 2i

^ A '
AFS

^CTA(N/2)^
(AFS)2 4N \ Aa2

(2.14)

Usually the INL is expressed as the standard deviation, and converted to units of LSB, and the

computation is assumed to be made at the midpoint This gives:

'INL 2 Aa
(2.15)

For a unit element DAC, DNL and Glitch are easy to compute. Because only one element

switches at a time, the DNL variance at any step is the same as the variance for the unit element.

'DNL " Aa" (2.16)

2.3 DAC Architectures and Implementations 27

Fig. 2.7 shows typical INL and DNL plots for a unit element DAC.

2 Aa
^a
Aa

0 Code N 0 Code N

Figure 2.7 Qualitative INL and DNL curves for a unit element DAC.

In this discussion the model for Glitch Energy is that it is causedby chargeinjectionand tim

ing mismatches betweenelementsturning off and other element turning on. TTiere may be other

contributions to glitch, dependent on the implementation. With these assumptions, the glitch

energy for a unitelement DACis zero, because foranysingleleveltransition thereis onlyoneele

ment switching.

GlitchEnergy= 0 (2.17)

To summarize, unitelement architectures giveexcellent DNLand glitchenergy performance,

at the expense of a relatively complex digital encode circuit

2.3.1.2 Binary Weighted Architecture

A Binary Weighted architecture uses binary weighted elements, and sumsthese according to

the digital input. A 6-bitbinary weighted current source architecture is illustrated in Fig. 2.8.The

most significant bit controls a weight equal to half of full scale, the next bit half as much, down to

the lsb, which controls one unit Typical implementations include weighted current source and

weighted capacitor arrays. In bipolar implementations thin film resistors in R-2R ladder structures

are commonly used to create binary weighted currents.

Tbcompute INLandDNL for this architecture, usethe sameassumptions about element ran

dom variation as in the unit elementDACcase,but assume that the weighted elementsconsistof

groups of identical unit devices. Then for INL, the computation is identical to the unit element

case, with the worst case INL at the middleof the range.

2.3 DAC Architectures and Implementations

MSB

Digital In (6 bits)

LSB

Hi h: Hi Hi Hi Hi «Switches

32 16

%%%%%% 6 Binary Weighted
Current Sources

_^ Current
Signal

28

Figure 2.8 Binary Weighted DAC in a6-bit switched current source implementation.

GINL = T ' Ai <2'18>

For DNL,the situation is much worse. DNL occurs when onesetweights is turning off, while

another is turning on ata codetransition. TTie worst case is atmid scale, going from code011111

to 100000in a 6-bit example. At that step the DNL is:

N-l N/2-1

DNL (N/2) =AQ (N/2)-A0 (N/2-1) = £ «4~ X «4 (2-19)
i = N/2 i = 0

This is similar to theINLexpression, butwithout thedenominator term, making DNL a factor

of 2 worstthanthe INL expression. At the midpoint the standard deviation of DNL is:

<WN/2>-^-aI (2.20)

Other major carry codetransitions also havehighDNL, proportional to the number of ele

ments being switched on and off. Fig. 2.7 shows typical standard deviations due to random mis

match for INL and DNL in a binary weighted DAC. Note that worst case DNL is twice the worst

case INL.

A first order estimate of Glitch Energy can be computed asthe number of elements switching,

multiplied by the timing mismatch between elements switching off and elements switching on.

2.3 DACArchitecturesand Implementations

aINL

2 ' Aa

0 Code

_ aDNL

Aa

N 0

29

Code N

Figure 2.9 Qualitative INL and DNL curves for a binary weightedDAC.

The worst case glitch energy occurs at the major transition, when N/2 devices switch on, and N/2 -

1 switch off. Graphically this is shownin Fig. 2.7. Mathematically, if the timing differenceis

Glitch Energy

Turnon / Turn off timing mismatchATd

N/2-1 units turning off

•

Time

Figure 2.10 Timing mismatches leadto glitch energy. Solid line is output signal,
and area of the shaded region is the glitch energy.

expressed as ATd, andthe number of elements switching is Ns, Glitch Energy is expressed as:

ATd = Td (rise)-Td (fall)

Glitch Energy = AT. • N

For a binary weightedDAC, the worstcase is at mid-range, with the result:

Glitch Energy = AT, • (N/2 - 1)

(2.21)

(2.22)

(2.23)

2.3 DACArchitectures and Implementations 30

The binary weighted DAC architecture has theadvantage of a direct connection of a binary

coded digital inputto the DAC weight switches. It achieves INLcomparable to a unit element

switchedDAC,but DNLandGlitchEnergy are muchworse.

2.3.1.3 Segmented Architecture

Fromthesederivations of DNL and Glitch Energy, it is apparent that thesenon-idealities are

causedby the large number of devices switched simultaneously at major transitions. Whenthe

maximum number of switched devices is reduced, then the DNL and Glitch errors will be reduced

also. Thesegmented architecture is a compromise between unitelement switched and thebinary

weighted architectures, which partially splits uptheDAC into equally weighted segments. A com

bination of binary weighting forsmaller weights and segmentation for larger weights is used. Tlie

important parameter forsegmentation is M, thenumber ofelements persegment InFig. 2.8 a 6 bit

segmented current output DAC is illustrated, with7 equal current source segments (M=8), and 3

smaller binary weighted current sources. Like theunitelement architecture, thesegmented archi

tecture requires a digital thermometer encode circuit, but it only needs to encode N/M signals

instead of allN. Implementations using matched capacitors orcurrent sources arecommon.

Digital In (6 bits)

MSB LSB

3 to 8 Thermometer Encode

Hi Hi Hi Hi Mi Hi Hi Hi Hi Hi

©fffff §@i
/& /& /77 /77 /fr &7 /77 07 /77

Current
Signal

Switches

7 Segments, and 3 Binary
Weighted Current Sources

Figure 2.11 Segmented DAC in a 6-bit switched current source implementation with M=8.

2.3 DAC Architectures and Implementations 31

Looking at the INL, DNL, and Glitch energy, we first see that the INL computation does not

change as a function of segmentation. Once again, INL does not depend on the order that elements

are chosen in, and only on the numberof elementsand their variance. Tlie expression for oWL is

the same as in Eq. 2.18.

For DNL and glitch the number of elements being switched in the worst case transition is

important, and for a segmented architecture, this is M elements switched, instead of N/2 found in

the binaryweighted case.DNLandglitchenergy performance may be computedby simplesubsti

tution of Mfor N/2 inEq.2.20 and Eq. 2.23. Qualitative plots ofcmLandoDNL for a segmented

architecture are in Fig. 2.7.

aINL

2 'Aa

CDNL (EacnSegment) = JlM •-A
z\a

Glitch Energy = ATd • (M- 1)

CT aDNL

*• = +

Aa

(2.24)

(2.25)

Code N
I I I I I I I I I I I I I

0 Code N

Figure 2.12 Qualitative INL and DNL curves fora segmented DAC, N/M=8.

Itcan be seen that DNL and Glitch Energy can be arbitrarily reduced by decreasing M, the size

of the segments. When M=N/4, worst caseINL and DNL due to random effects are the same. In

low speed applications, where glitch energy isnot critical, M= N/4 or N/8 iscommon. In high

speed applications, where glitch energy is to beminimized, M=8, M=4, or unit element(M=l)

architectures are seen [MIKI92> u^^ SHEN85]-

2.3.1.4 Interpolated Architecture

Inboth ofthe previous cases the worst case DNL occurs at the major transitions, where ele

ments being turned off must match others being turned on. The interpolated architecture attacks

2.3 DACArchitectures and Implementations 32

this problem by never turning off elements as the digital code is increased. In acurrent switched

implementation this isdone by starting with aset segments which cover the DAC range, and
allowing athree way selection (to output, interpolator, or dump), based onthe code inthe MSBs of

the input TTie segment may beswitched on, off, or sent toaseparate sub-divider circuit The sub-

divider is controlled by the LSBs, and passes aportion of the next segment tobeselected tothe

output. As the digital code isincreased, the sub-divider increases the amount of asegment that is

passed to theoutput, until asegment transition is reached, when thecurrent segment is re-directed

to the output, and the next segment is directedto the sub-divider, litis architecture is illustratedin

Digital In (6 bits)

MSB

I

Two 3 to 8 Encoders for
Output and Interpolation (24 signals)

5 S nr nr nr

j %

m

LSB

IJIUIP
Current Splitter

*

Interp.

^Current
Out

Dump

rrr
—•-Dump

Switches to Output,
Interpolator, or Dump

I i 8 by M=8 Segment
Current Sources

Figure 2.13 Segmented DAC in a6-bit switchedcurrent sourceimplementationwith M=8.

Fig. 2.8[SCHo88]- Other implementations using resistor/capacitor structures to create segment

interpolation have also been used. INL, DNL, and glitch energy performance for interpolated

architectures are implementation dependent, so in this section a more qualitative discussion is

given than in the previous two.

2.3 DAC Architectures and Implementations 33

In the interpolated architecture, INL is dominated by mismatches in the main segments. If

non-linearity in the interpolation function can be ignored, then the INL due to the main segments

may be computed, for Ssegments, with variance as2, and MLSBs per segment:

INL 2 ' MAa
(2.26)

DNL tends to be dominated by gain errors and device mismatches in the subdivider. Device

mismatch may especially be a problem if the subdivider is implemented in a binary weighted fash

ion. If the subdivider is implemented as a unit elementarchitecture, and gain errors are negligible,

DNL variance should be the only the variance of one subdivider element.

The complicated switching scheme in an interpolated architecture makes Glitch Energy diffi

cult to estimate without knowing the implementation.

Interpolated architectures are often found high dynamic range and control applications, where

DNL is the most important specification, but absolute accuracy and linearity is not important.

2.3.1.5 Oversampled Architecture

Oversampled DAC architectures use time division instead ofcurrent orvoltage division to cre

ate analog signals proportional to a digital input. This architecture uses digital filtering and signal

processing to create abit-stream which ispassed to a 1-bit D/A. The signal from the D/A is analog

low pass filtered, removing high frequency components ofthe modulated signal, and leaving alow

frequency output. Theadvantage of this architecture is that a 1-bit D/A is inherently linear, and has

zero INL and DNL. This architecture has been successfully used for a number ofaudio frequency

designs, where a low frequency, high resolution baseband signal is required[KUP91 GROE89
LERC91]- F*S- 2.8 illustratesthis technique.

16 bits
44KS/S

Digital

Interpolator

Digital Analog Analog

Modulator 1-bDAC LP Filter

18 bits
352 KS/s

lbit

8.5 MS/s
Analog
HF Energy

Figure2.14 BlockDiagram for an Oversampled DAC.

High SNR
Analog

2.3 DAC Architectures and Implementations 34

2.3.2 DAC Implementations

Creating a setof matched elements, and using them to create an output signal are the most

important elements for any DAC implementation. There are some general rulesto follow when

building a set of matched devicesin anycircuit technology. In this sectionthe implementation

approaches andtheir compatibility with CMOS processing will be discussed. To startthis discus

sion, a brief descriptionoflayout issues for matchingis needed.

To create matched elements in an IC technology, there are a handful of layout rules that must

be followed, due to random device mismatches, edge effects, process and temperature gradients,

and orientation sensitive processing. Matched devices should be placed with identical orientation

and dimensions. Large devices may be broken into sub-elements, and placed in a common centroid

with other devices. When ratioed devices are needed, integer ratios are best and devices should be

built up of unit elements. When this cannot be done, ratios of perimeter to area should be matched

for all elements. In many cases the space surrounding matched elements is filled with identical

dummy elements to eliminate edgeof the array effects. [McCR8i, SHYU84, LAKS86, PELG89, NAKA91,

BAST91J Earlv DAC implementations inbipolar and hybrid technologies depended upon precision,

thin film resistors to implement matched devices, and these are still found in many products today.

These resistors are typically configured in an R-2R ladder, which creates binary weighted currents

if a constant voltage is applied across the ladder. Hie values of resistance required are only R and

2*R, so a small set of matched R valued resistors can create this ladder. Laser trimming may be

used to improve the matching of the resistors to 12 bits or more. Equal weighted segment currents

are created with single R valued resistors.

To create an output signal from an R-2R ladder, the output nodes of the ladder must be held at

constant voltage, and the current switched to the DAC output dependent on the code. Fig. 2.15

shows a set of current sources with bipolar transistors used to hold the voltage across the ladder. If

the size of the bipolar transistors are scaled with the current as shown, then first order Ib and V^

effects are cancelled. If a voltage output is required, the current output is directed to a load resistor.

Usually the load resistor uses the same technology as the R-2R ladder, to match process variation.

2.3 DACArchitecturesand Implementations

W2 V4

* It
Bias V V

t\2A kA

R 2R

/77

V8

V

VA/2

2R

R R

Ifs/16 V32

V

VA/4 \A/8

2R 2R

R

35

W64 ^ump

. t It
V V

\A/16kA/16

2R 2R

Figure 2.15 6-bitR-2R current source structure creates binary weighted currents.

Though this technology is not found in typical digital CMOS fabs, it is widely available in

bipolar technologies, and some specialized CMOS analog processes [ADI92]- When available,

MOS devices are ideal for the current steering function, because they have no gate current The

general R-2R structure has alsoseenuse as a current dividerusing MOS switches insteadof resis

tors. p3ULT92]

In technologies whichdonothaveprecision resistors, a set of DAC elements maybe created

from matched current sources. Bothbipolar and MOS current source arrays havebeenusedthis

way. Fig. 2.15 illustrates a setof cascoded MOS current sources for a 6-bit DAC. All weighted

Cascode
Bias—1

Bias

W2 Ifs/4 Ifs/8 Ifs/16 Ifs/32 Ifs/64 Ifs/128 Ifs/256

128A,l*l 64A,l*| 32A,U1 16A ,u1 8A

128A'n 64A,l*l 32A'n 16A ,l*| 8A

/7Z

Figure 2.16 8-bitweightedcurrent source structure using cascoded MOS transistors.

2.3 DAC Architecturesand Implementations 36

current sources areimplemented using multiple unit current sources. Note that the MSB source is

128 times as large as the LSB source.

In someimplementations the large ratio required to obtain binary weights is costlyin circuit

area, and may make matchingdifficult A coarse/fine approach, making use of a current divider,

may reduce the range ofrequired element weights [saul84, schossj- F*g- 2.15 implements another

V2 V4 Ifs/8 Ifs/16 Ifs/32 Ifs/64 Ifs/128 Ifs/256 Idump

Cascode
Bias

Bias

c C iC cxxxc
8A n 4A 2A

/77

Figure 2.17 8-bitweightedcurrent source structure using a current divider.

set of weights for an 8 bit DAC, using a current divider. In this circuitThe 4 MSB sources arecre

ated using multiple unit current sources, while the 4 LSB sources subdivide a one MSB source.

This reduces the number of main unit currents from 256 to 16.

Current output implementations have seen wide application across resolution and speed. When

combined withinterpolation oroversampling, these have been used for high resolution audio, and

when highly segmented these are used for high speed CMOS and bipolar video and signal synthe

sis applications [REYN94, VORE94, SCH088, SCH091J-

Thenexttwo implementations are commonly found onlyin MOS circuits, because they use

MOS devices as switches, ortake advantage of theinfinite gate impedance property of MOS tran

sistors

Tapped resistor structures usealong chain of resistors which is tapped by MOS switches. The

ends of the resistor are tiedto reference voltages, and by choosing which MOS switches to acti-

2.3 DAC Architectures and Implementations 37

vate, the correct voltage is tied to the output. The circuit implementation often uses a diffusion

identical to the MOS transistor source for the resistor, eliminating the explicit connection between

the resistor and the pass gates. This may yieldaverycompact layout Fig. 2.18illustrates atapped
VREF1

_ V DAC

Figure 2.18 A 3-bit Resistor String DAC,using MOS switches. C is MSB.

resistor DAC, with abinary decoding using pass gates. These DACs tend to have alarge series

resistance due to the pass gate decoding of the output, and may be slow if driving alarge capaci-

tive load directly. Since this is aunit element architecture, DAC monotonicity is guaranteed. The

diffused resistor technology iscompatible with standard digital CMOS processing. Resistor string

DACs are often integrated with digital controller ICs, and used as reference level generators for

flash ADC structures. This architecture has been demonstrated in some high speed applications,

requiring afast output buffer to drive external loads [pelg90]-

Capacitive DAC structures operate inthe charge domain, sampling areference voltage on

weighted capacitor arrays and then replicating this charge at the output of an opamp. Fig. 2.19

2.3 DACArchitectures and Implementations 38

illustrates acapacitive DAC. Their more common use is as part of successive approximation
2CI

MSB

C I C/21 Cttl C/8J X

11II"' J,
VREF

Figure 2.19 A Capacitive DAC samples acharge. TTie opamp and feedback capacitor

convert the charge to a voltage output.

capacitive A/D converters, wherethe samecapacitive array is used forboth the sampling andthe

DAC function, and the only other circuit isalow offset comparator [gray94]- Capacitive DACs

are also used in 1bitDACs found inoversampled architectures [KUP91]-

In medium accuracy DAC designs, nominal elementmatching without trimming or calibration

may be accurate enough. When higher accuracy is required, a number of techniques have been

applied to correct for elementmismatches. Thin film resistors often are laser trimmed at produc

tion time to achieve accurate matching [nayl83]- Laser trimming using fuses has been imple

mented in CMOS processes rpEWi93j- Autocalibration techniques, in which the circuit calibrates

itselfon power up,havealso beenimplemented. Lee measured theerrors for 6 MSB weights in a

binary weightedarray, stored the error digitally, andcompensated forthese errors with acorrection

DACs whenthe weights were used. All analog calibration techniques, using dynamic element

matching or current copying, havebeenimplemented to achieve 16bit matching for bipolar and

CMOS current source elements [scho86,groe89]«

Multistage implementations usingcombinations of thesetechniques are found in the literature.

In particular, the combinationof a capacitive DAC, using a resistor string for interpolation has

been used for acalibrated high resolution converter [lee84]- T^ opposite approach, with acoarse

resistor string followed byacapacitor array has also been used [yang89]-

Vdac

2.4 ADAC Architecture andImplementation for Synthesis 39

2.4 A DAC Architecture and Implementation for Synthesis

Now that the range of possible DAC architecture and implementation choices has been briefly

covered, a combination of architecture and implementation must be chosen for DAC module gen

eration. There are a number of issues to consider when making this choice. The DAC module

should be compatible with standardCMOS processing, widely usable across speed, supply, resolu

tion, and application, have a flexible layout aspect ratio, and suitable for some automatic layout

method. It should alsobe scalable foreitheron chip oroff chip loading. It is impossible to consider

either the architectureor the implementation independently, but for this discussion the motivation

for the implementation will be described first, and then the architectural choice.

It is bestif theDACmodule generator is applicable across all CMOS fabrication technologies.

Resistor string and MOS current source implementations are compatible withstandard CMOS dig

ital process technology (with one polysilicon layer). Capacitor implementations are compatible

with analog CMOS (double polysilicon) process technology, but are more difficult to build in a

single poly technology. Thin film resistors are seldom seen integrated with CMOS, and were not

seriously considered.

Capacitor and resistor/capacitor charge based DAC implementations are very common as ele

ments in switched capacitor Analog/Digital Converters, where thecharge outputis anatural choice

for the DAC, but in stand alone applications there aretwo drawbacks. The first is that creationof

the analog charge output is atwo phase process, and there is aclock phase onwhich the output is

not valid. The second is that thedesign for astand-alone DAC becomes two separate designs, one

for the switched capacitor DAC, and aseparate module generation for abuffer amplifier. At high

speedsthe buffer amplifier circuitis a difficultproblem by itself.

Resistor string implementations are more amenable to a stand-alone application than capaci-

tivedesigns, because they do not require two clock phases tocreate aDAC output They still have

relatively low driving capability, and require abuffer circuit in most applications. The fastest resis

tor string designs require both fast settling at the resistor string output and specialized output

buffer [PelgIoin].

2.4 ADAC Architecture and Implementation for Synthesis 40

The current source implementation waschosen for this work.Current source DACs haveseen

awide application from low to high speed and low to high resolution. In particular, the high vol

ume video DAC application for computer displays isdominated bycurrent output DACs driving

75 ohm transmission lines directly [ADI92]- While obviously applicable tocurrent output applica

tions, it isnot difficult toconvert acurrent output toavoltage through asimple resistor, or transim-

pedance buffer for voltage output applications. Furthermore, this technology is compatible with

the least complicatedCMOS processing.

Once theimplementation choice was made, an architecture decision was required.

Oversampled architectures were not considered for analog synthesis, because the analog cir

cuits are relatively simple, and most of the design is spent on the digital design of the upsampling

DSP and the analog anti-alias filter which follows the one bit DAC. Design synthesis techniques

have been appliedto oversampled ADC configurations, in which a standard cell was used for the

analogcircuit, and digital circuits were synthesized to match the resolution and bandwidth to the

specificationS[MAR93]. A similar approach, with an analog standard cell and a synthesized DSP

makes sense for oversampled DACsynthesis, meeting high resolution butrelatively low frequency

specifications.

Binary weighted architectures suffer from poor DNL and GlitchEnergy at the major transi

tions, andpointto the use of a segmented architecture to solve these problems.

Interpolated architectures do "guarantee" monotonicity, but at the cost of additional circuit

complexity. A low DNL specification may be met eitherthrough interpolation, a unit element

approach, or through a high degree of segmentation.

This leaves us with the segmented architecture, with the segment size design parameter M

strongly affecting DNL and Glitch. As seen above there areactually two flavors of this architec

ture, depending onhow critical the Glitch Energy performance is. Inlow speed applications, when

theGlitch specifications are relatively easy to meet, the segmentation size M is relatively large,

such as N/4orN/8. These segmented architecture circuits and layouts are verysimilar to standard

binary weighted architectures. The additional number of cell selection signals andthermometer

2.5 D/A Converter Summary 41

encoding logic is has minimal effect on the complexity, compared to a binary weighted DAC. In

high speed designs, where M < 16 to meet glitch energy performance specifications, there may be

64 or more segments to be controlled. The thermometer encoding for the segment select signals

becomes a significant problem, and the placement and routing problem for many segment cells is

difficult The best placement and routing strategy for a one level encoding of these signals is a sin

gle row placement, with digital encode cells aligned with single current sources and switches

[SCHO88]'Dut in fcis casethe aspect ratio of the DAC layoutcannot be controlled, andmatching of

devices across large distances is an important issue. The solution to this encoding and placement

problemis atwo level encoding, separating the encodeinto row andcolumn encoding,with alocal

digital encode circuit ateach cellfLETHgTj. In this layout stylethecomplexity atthecell level does

not scalewith the numberof segments, so going to smaller valuesof M does not make the layout

problem more difficult.

A segmented current source architecture which allows a high degree of segmentation in a 2

dimensional currentcell layout was selected.Tnis covers arangeofmedium resolution, medium to

high speed applications, includingthe video DAC application.

2.5 D/A Converter Summary

After the preceding sections, it is helpful to summarize the specific DAC architecture and cir

cuits chosen for this synthesis project. Besides describing the architecture, circuits, and layout

style, this section will also list key design variables for both an architectural and circuit level

description of the design.

A highly segmented current source architecture is selected for synthesis. The 2-dimensional

layout style, withrow/column encode circuits and local cell level encode logic is used. Ineach cell

is a digital selection circuit, an optional clocked latch, an inverter, a matched current source and a

current switch. A central analog I/O bus runs vertically through the array, analog signals and sup

plies are routed from the bottom center of the array to each row, and then across therows. Digital

rowand column select signals are latched atthetop and sides of the array, and buffered to drive the

large loads across the array. Row signals are driven from both sides, to prevent digital routing

across theanalog busin thecenter. All signals, analog and digital, and all supplies are routed hori-

2.5 D/A Converter Summary 42

zontally across the array, to prevent capacitive coupling between analog and digital lines. The lone

exception is the column select lines, which must run vertically. This line is mustbe shielded from

analog supplies andbias linesasit passes through thecell.

Bias cells are placed ineach row, 1/4 and 3/4 ofthe way across the array, so that the average

distance from the bias cells tothe analog bus is the same as the average distance from current cells

to thebus. (This reduces gain error caused bydifferences between bias and current cells). Thebias

cell has current carrying devices with the same orientation as the current cell, for matching, plus

additional devices to generate bias voltages. Bias current is onaseparate input from bias voltage,

to eliminate bias current induced IRdrops onthe bias voltage lines. If thesize of thebias circuitry

is to be increased, this is done through repetitive placement of the cell.

The number of rows and columns (NROWS and NCOLS) in the array are dependent on the

designer input By adjusting thenumber of rows and columns theaspect ratio of thedesign may be

modified. Rows and columns are turned on using ahierarchical symmetrical switching scheme,

cancelling out first order and second order gradient effects. The disconnection between right and

left side rowsignals permits amore sophisticated rowselect ordering, whichcenters each logical

row to the middle of the array.

Segment cells have current sourcesmade up of an M individual 1 LSB current sources, wired

in series. The current sources may bein amirrored layout, or all devices should be placed with the

same orientation. This has not caused a penaltyin video DAC designs, because the LSB currents

require larger thanminimum sized devices, but in low current designs it wouldbe advantageous to

allowsingledevice segments, andthen somecurrent subdivision technique forthe LSB cells.

LSB cells, for binary weighted currents withweight lessthan M are placed in thetop row. The

number of LSB cells is limited by the number of columns, and allowing for common centroid

placement, this limits M to the NCOLS/2. These cells are identical to segment cells, except that

they require no special digital encoding circuits, and their current sources and switches are scaled

to the appropriate cell weight Theirinclusion in the array permits accurate prediction of the mis

match errors betweenthe LSB elements and the segment cells. In the implementations done for

this work, theLSB cells have weight of 1LSB only, simplifying cell design, butlimiting themax-

2.5 D/AConverter Summary 43

imum valueof M to the NCOLS. Cells are mirrored asthey are placed, to improve device match

ing in LSB cells with only one current source.

A conceptual placement of this DAC layoutis shownin Fig. 2.20a, emphasizing DAC func

tion, and the placement usedfor layout is shown in Fig. 2.20b. Notethatwhenthe number of seg

ment rows reduces to 1, mis architecture degenerates to a single row DAC architecture, and the

cellleveldecodes are nolonger required. Additional subcell schematics for the DACmodule gen

erators are in appendices B and C.

Thisis an excellent architecture for high speed Video DACapplications, and prototype circuits

developed with this module generator haveexploited that. Some limitations to the cell library are

disadvantageous for low speed and low current applications. Relatively simple changes to the

existing architecture, such as allowing more than 1LSB current per LSB section cell, ordevelop

ing asetof current subdivision based cells for theLSB row, would alleviate these problems. Tliese

are viewed aspotential improvements to thecell library, but werenot required for this research.

There are two types of design variables for this DAC. Architectural variables describe the

degree of segmentation for thecell, overall placement atthemodule level. Tliese are usually inte

gers. Circuit level variables describe the device sizing for analog anddigital subcells, suchascur

rent sources, switches, bias devices, digital latches, inverters, logic, and buffers. Table 2.2 lists

these variables, withabriefdescription of their use, and their type. When used in a DAC imple

mentation, all of these must be rounded to aninteger or powerof 2 number.

Inthis chapter thechoices for aDAC implementation have been briefly described, motivating

thechoice of asegmented current switched DAC for module generation. Inthe following chapters

the implementation of this in an analog synthesis system using this DAC architecture will be

described.

2.5 D/A ConverterSummary

Is

&

Column Input (Mid. bits)
^

CLK

Decode

W ± 1 ± 4 ±

0)

Q

umn Latch and Drivers
• -•• -- '••: • - '• •••:•- 1 • - - ••::

Segment
Cell

Digital In

m
Decode

Latch

Switched
Current
Source

-L*
' o

*
T '

lout

Analog signall/O

(a)

Column Input (Mid. bits)

CLK

IS*
2^

LSB bits
^

Segment
Cell

Is
*«'
o 5

LSI

Decode

Column and LSB Latch and Drivers

!3

eels

<u

00
0)

e

C/3

43-
00
o

LSI

-8-

oo
u

I

E

T
Analog signal I/O

(b)

ed

cell;

CD

00
CD
v.

Digital In

J44
Decode

Latch

out

Figure 2.20 DAC Circuits forModule Generation: 2-D Current Switched Architecture, a)
functional block diagram and b) module layout.

44

2.5 D/A Converter Summary 45

Table 2.2 Design Variables for DAC Module

Variable Description Type

Architecture Level Variables

N Number of Levels (# of LSB) Power of 2

M Number of LSB per Segment Power of 2

Rows Number of Rows Power of 2

Cols Number of Columns* Power of 2

Bias Number of Bias Columns Integer

Cell Level Variables

W1,L1 Size of current source main device Layoutb

WC,LC Size of current source cascode devices Layout

WS Width of Current Switch Layout

WBiasl,2 Sizes for bias cell devices Layout

WBUS Width of power bus Layout

WDigl-8 Sizes for digital buffers and decodes Layout
a. w,m, kows ana columns ooey reiationsmp xn=m'kows*cois.

b. Layout dimensions must be rounded to match the layout grid. They are
treated as an integer number of grid units.

46

CHAPTER 3

DSYN - A Compiler for CMOS Current

Switched Digital/Analog Converters

3.1 Introduction

This chapter introduces the DAC synthesis process for DSYN, a set of tools andlibraries for

design synthesis and layout of Digital/Analog Converters. Once aDAC module has been imple

mented within theDSYN framework, a finished layout may beproduced from an input specifica

tion. DSYN consists of two important parts. Itincludes aset of generic simulation, optimization,

and layout tools, appropriate for DAC module generation, butnot circuit or design specific. For

each DAC implementation the design specific estimation, design partitioning and layout inputs

mustbe created. DSYN uses the synthesis issues described in chapter 1 to motivate its choices for

design selection, analysis, and module layout The DAC modules implemented to date have been

thehigh-speed segmented current-output typedescribed in chapter 2.

This chapter gives the outline of the synthesis process, from specifications and designer input

throughintermediateresultsto a final layout.The structure of the DSYN frameworkis the focus ~

what exactly are the technology inputs, what are the tool inputs and outputs, and how isthe design

verified. Designspecificandnon-specific aspects of DSYN will be identified. At this level an

interesting issue is fee view that different users have ofthis set of tools. This chapter will consider

DSYN from the point of view of auser synthesizing aDAC to ahis specification, adesigner

3.2 Synthesis Process 47

implementing a new DAC in fee DSYN framework, and a technologist changing fee process tech

nology description. While fee user, designer, and technologist may all be fee same person, this is

fee nomenclature I will use for this chapter. The algorithms for design selection, analysis, and lay

out will be described briefly here, but fee motivation for the use of feese algorithms and an in

depth description must wait until chapters4 and 5.

3.2 Synthesis Process

Fig. 3.1 illustrates fee inputs, outputs, andsynthesisprocess for DSYN. Tb create a module to

specifications, fee user inputs fee design specifications and application conditions. These maybe

used as design constraints, oras constants for useduring design analysis. A second typeof input is

Technology Information

MOS transistor model
. Matching = f(w,l) v

(Design Files for
Simulation and Analysis

Layout Database

Topology Information

Area Estimates

6Layout Templates

fi^^Y^cation: ,
xttactipii aridSimulation

mAC Module Specs)

.^ Optimization wife
isj^ Circuit simulation
S 4 and Design Equations

i
Optimized Design

Description

(Optimi

Des(

I
DAC Layout

Stretching and Tiling

^y DAC Module "\
^\^ Layout J

I

ICircliu^^cation:

Constrained, Mixed Integer
Optimization:

Circuit Simulations for
device level accuracy.

DAC Design Equations
for prediction of high level

performance.

tools:
SpiceOptim & HSPICE

Create Tiling Script

Find Minimum Cell Sizes
and Size Cells

Create Cells

Tile DAC

tools: DT,TA,STC

Figure 3.1 DAC Synthesis process in DSYN.

3.2 Synthesis Process 4g

fee technology description, in fee form ofdevice level models and layout parasitics such as wiring

capacitance and resistance. Module specific inputs are also required. A cell library and atiling

algorithm are required for fee layout step, and aset of simulation files which will predict circuit

performance based on any design input is needed. Tlie design input also specifies fee design vari

ables for the module, and mayinclude some design specific constraints, suchas bias conditions

which must be maintained

The DSYN synthesis process follows astandard two step analog synthesis process. In fee first

step fee circuit architecture and device sizes are determined, and in fee second step alayout iscre

ated. The intermediate result is fee set ofdesign inputs plus fee selected values ofdesign variables.

This can beexpanded into a full circuit netlist. The final output is the DAC layout, and alistof

DAC performance estimates.

Thekey elements in fee first step are design estimation and selection. For design estimation, a

combination of low level circuit simulation and high level analytic equations are used to predict

fee performance of fee DAC. As shall be shown in chapter 4, this allows accurate estimation from

low level bias conditions, through random current cell mismatch, to DAC level static nonlinearity.

This is implemented using fee commercial circuit simulator HSPICE, allowing useof modern

short channel device models, evaluation of design equations, use of re-runs for worst case design,

and a flexible performance measurement processing, all within fee same tool. The estimation step

may take from a few seconds up to aminute ormore, depending on fee complexity of fee circuit,

and fee need fortransient simulations to estimate dynamic characteristics.

For design selection, an optimization approach was chosen, to allow aminimization of design

cost, without having fee solution space berestricted byaknowledge based framework. The opti

mization algorithm must perform amixed integer, constrained optimization, minimizing either an

area or power cost,whileusinga slowcircuit simulation tool for design estimation. An optimiza

tionapproach using a combination of asupporting hypeiplane algorithm for optimization wife a

branch-and-bound mixedinteger step met feese requirements, and was implemented in feeoptimi

zation tool SpiceOptim. The complete optimization takes from 100 to several hundred simulation

runs, depending on fee number of design variables, fee degree of discreteness of feese variables,

and fee number of active constraints. The optimization problem is simplified through fee use of a

3.2 Synthesis Process 49

parametrized design, reducing fee number ofdesign variables, as inOPASYN [KOH89] a*10* manv

other synthesis approaches. Optimization timetypically takes a6 hours compute timeorless,dom

inated by fee time spent running HSPICE simulations.

Once the optimization is complete, a list of all device sizes and cell structure variables is cre

ated, to drive fee layout synthesis step. Many tools produce anetlistatthis point, butin DSYN this

is omitted, because fee layout step inputs topology information through acell library, and requires

inputof values for device sizes and tiling algorithms, rafeer fean a single netlistwith all device

sizes. There is acommon pre-processing step used in bofe simulation and layout which expands

fee design description from a setof design parameters to a full description of fee DAC cell.

For fee high speed CMOS current switched DAC implementation chosen for DSYN, fee lay

out strategy was selected to create area efficient layouts, and allow accurate prediction of layout

parasitics without requiring acomplete layout step. Towards this end, fee layout approach starts

wifeacell library, and atiling algorithm, and completes fee layout through adeterministic process

of stretching fee library cells and tiling them for the DAC layout The first design specific input is

fee tiling file generator, whichconverts highlevel DAC information, suchasnumber of rows, col

umns, andbias cells, to a tiling file, whichis a simplelist of fee specific subcells to use at each

point in atiled array. By including some flexibility in this tiling file generator, fee same program

has been used for several different DAC implementations.

The cell library is defined wife minimum sized devices, and locations in fee cell where fee cell

maybe stretched to resize fee devices. By stretching thecell fee device sizes can be changed to the

sizes determined from optimization. Stretch operations may include just one device, or may cover

fee widfe of fee library cell. Thestretching tool, STC, first implements fee required stretches, and

then performs additional cell modifications to create arectangular output. It also has a sizing

mode, inwhich it returns fee expected cell dimensions, but does not create fee cell. The tiling pro

gram, TA, first runs fee cell generator in sizing mode for every cell, finding minimum dimensions

for every row andcolumn in fee array. Then it uses STC to create fee subcells, andtiles them into

a final layout. The total layout step requires less fean 2 minutes run time on a workstation. The

tools useMAGIC [SCOT85] as the cell database, and fee final output is a MAGIC layout The full

description of fee choices feat let to this layout approach and its implementation isinchapter 5.

3.3 Accurate Performance Estimation and Verification 50

3.3 Accurate Performance Estimation and Verification

An important goal for DSYN is accurate performance prediction, but fee uncertainties and

inaccuracies of fee synfeesis inputs conspire against this. A definition for accurate performance

prediction mustbe made first, and feen a mefeods of attack for accurate performance estimation

willbe described. This willmotivate feeestimation philosophy usedin DSYN.

Design verification is an important part of any design orCAD process, lb verify fee correct

ness of fee performance predictions made in thisdesign process, bofedesign process inputs and

the simulation/analysis process must bechecked. Animportant technology input is fee process

model, includingdevice models, verified before synfeesis begins, and models for device mis

match, whichcanbe initially estimated, and feen verified through fabricated results. The simula

tion/analysis step is verified through a back-end verification, using full circuit extraction and

simulation aftersynfeesis, andtesting of prototypes.

3.3.1 Performance Estimation Philosophy

What isametric for accurate performance prediction? In many analog synthesis approaches a

final comparison of predicted results toSPICE circuit simulation isused toindicate fee accuracy of

predictions, and therefore fee general promise of fee method for widespread use [KOH89, OCH093

HARV92]- This may indicate fee matching of analytic results to SPICEmodels, or SPICEmodels

used in SPICE to SPICE models used in anothersimulator, but this does not include the misfit of

SPICE models to real devices. As will be seen in fee following section, model inaccuracies for

short channel MOS devices used wife typical analog bias conditions are significant. A better met

ric is to compare predicted results to actual fabricated deviceS[jusu93,GlEL90,DEGR87i» wi*h the
effectsof modelmisfitincluded in the estimation process.

Two general approaches canbetaken to correct feeestimation process - aback-end correction

after design estimation, ora front-end correction to specific known errors in fee inputs. Inaback-

endcorrection, fee synfeesis is run, fee results measured through simulation or fabrication and test,

and correction factors used to calibrate fee predicted results to fee actual results [KOH89, JUSU93]-
After fee correction factor is known, later uses of fee tool should result in performance predictions

which match fabricated results. There are problems wifethis approach. What form should fee cor-

3.3 Accurate Performance Estimation and Verification 51

rection factor take? Additive? Multiplicative? How should one choose? Is it possible to guarantee

that a correction factor found for one set of specifications apply to a different spec? No! A better

approachis to locate fee specific places where design inputs are inaccurate, and make corrections

at feat point This front-end approach is more time consuming, because all significantsources of

error must be accounted for, but wife this estimationphilosophy circuit performance can be accu

rately predicted across a range of design specifications, instead of corrected for each specific

design.

DSYN adheresto fee front-end philosophy, correcting for all errors in simulation and model

ling wherethey occur, andavoiding fee use of back-end calibration of the estimation process.

Comparison to fabricated circuit performance is feeultimate test for this approach.

3.3.2 Device Model Verification

Verification of processmodels is done before circuit synfeesis begins. In MOS device model

ling, fee most common models used, including SPICE level 1,2, 3, BSIM 1,2,3, and fee Metasoft

BSIM 1 variant(level 28) aredesigned to fit well in stronginversion and in sub-threshold. Tliese

are fee important regions of interest for digital circuit simulations. In analog circuitdesigntwo

ofeer parts of fee device curves are emphasized: fee weak inversion part, wife Vgs a few hundred

mV above threshold, and fee onset of saturation, wife Vds<Vgs, but Vds>Vdsat At best, feese

regions are treated as transition regions in fee device model. An effort is made fean to lineup the

Id curves atthose points in fee models, wife continuous derivatives. Many of these models have

continuous first derivatives, but have discontinuous second derivatives at fee onset of saturation,

resulting in large changes in fee sensitivities of small signal derivatives to bias at those points. In

fee contextof a circuit simulation and optimization environment, this discrepancy betweendevice

models and actual device curves must be bounded. For this work a set of BSIM 2 models were

optimized to measured device curves, and fee discrepancies afteroptimizationwere noted. While

fee models fit thedevice currents wife small absolute errors, there were large discrepancies in fee

smallsignal g^ conductance. Fig. 3.2plotsmeasured g^ fora 1.2urndevice, andfee fitted model.

The modelis fit for allregions of operation, so it is not possible to further optimize fee fit shown

here without impacting fee overall curve fit. Afteraman-month of model optimization and curve

fitting, using BSIM, Level 28, and BSIM2 models, this was thebest fit seen in this region! In the

3.3 Accurate Performance Estimation and Verification 52

lowest pair of curves fee device is biased in weakinversion, wife current density of 2 microam

peres permicron of devicewidfe. Here the model fits poorly across the saturation region, and

underestimates g^ by a factor of 4. In fee toppair of curves fee same device is biased in strong

inversion, (Vgs-Vt > lvolt), and amuch better fit is seen in fee saturation region. At fee onset of

saturation, near V^lV, a kinkin themodel is seen, and in that region feemodel is again in error

by a factor of 2. In fee middle pair of curves alarge error is again seen throughout fee saturation

region, but it is smaller than in fee weak inversion fit

gda
Measured and FitOutput Conductance

2
T I 1 1 ,....

Vg8aO.S data

\
%

VjjiSESTR

Vgs^f.Tfdaia*'
10-03

- Vgi^l.W"
^gS^liSHaTa"

5 _ VgitnsTit" "

2

\ \ \ x
10-04

S

2
-

le-05 - \ V **•-...
5 \^—-^__ -

2

- |

V
1 -10-06 1 1 1

Vds

Strong
Inversion

Weak
Inversion

0.00 0.50 1.00 1.50 2.00

Figure 3.2 Measured data and model fits for g^ of a 1.2um channel length MOS device.
Model gds is too small for low Vgs and Vds near Vgs-Vt

If synfeesis using circuit simulations does notinclude feeeffects of inaccurate device models,

then fee results of fabricated devices may notmeet design specifications. Unlike typical analog

MOS circuits, DACcurrent sources tend to be biased in strong inversion to reduce threshold volt

age induced mismatch, so the modelling inaccuracies in weak inversion do not affect feese

designs. Theerrors at fee onset of saturation are important particularly if high swing cascode cur

rent source biasing is used, oralarge voltage swing is seen at fee current source output. InDSYN

3.4 Views ofthe DSYN synthesis process 53

these errors were compensated for throughconstraining fee minimum Vds for saturated devices to

200 mV aboveV^, andby derating fee outputconductance of saturated devices by a factor of 2.

Poor device models is one of the MOS analog circuit design issues which has made fee field diffi

cult for analogCAD, and interesting for circuit designers.

Estimates of elementmismatch is animportant technology input,but it is impossible to fit a

mismatch model to a technology without test structures. Most work in this area gives device

matching data for a single technology, and does notsuggest a mefeod for extrapolation to new

technologies. There is anexception to this ~ Pelgrom measured matching for several different

technologies, and suggestedtrends in mismatch behavioras oxide thicknesses and line widths are

reduced [pelg89]- DSYN uses fee mismatch model suggested by Pelgrom, and conservative

extrapolations from his data have been used for the mismatch parameters. The mathematical

model commonly used for device mismatch as afunction ofspacing [pelg89, MICH92] corresponds
exactly to a linear process gradient, so a linear gradient (wife random direction) is assumed for

feese functions.

3.3.3 Design Synthesis Verification

Once fee synfeesis process has been run, asecond verification step is a full extraction of fee

design, including all parasitic capacitances, and simulation. This step verifies fee estimation of

parasitic capacitances madeduring fee optimization simulations, and overall correctness of esti

mates based on simplified circuits. While statistical variations cannot besimulated, dynamic spec

ifications such as settling and glitch energy can be verified, and proper operation of digital buffer

and decode circuits as well.

The third verification step is through fabrication of devices, and measurement to test of fee

designed circuits. This can verify fee models and constants used for random mismatch and process

gradients, andsimulation models forchip andboard level circuitbehavior.

3.4 Views of the DSYN synthesis process

Depending on fee user function, there are different views ofany synfeesis process. In this sec

tion fee different views ofthe synfeesis process will be described, depending on fee purpose of fee

3.4 Views of the DSYNsynthesis process 54

user interaction. The DSYN tool will be described from fee point ofview auser, adesigner, and a

technologist.

When a DSYN user implements a DAC design for a new setofspecifications, using anexist

ing module architecture and technology, fee process follows fee path shown onfee leftside ofFig.

3.3. The user inputs fee design specifications to fee optimization/analysis step, and waits for fee

results. Depending onfee complexity of feemodule this may takeup to a few hours. Theinterme

diate result is passed to layout, and within a few minutes thelayout is created. This design should

be extracted and simulated to verify fee correctness of the design before fabrication. From this

view fee complexity of fee design is not apparent, except as measured in optimization time. The

choices fordesign variables, design partitioning, and estimation accuracy havealready beenmade,

and are not required for fee user.

User

f DAC Module Specs J f Technology Information
MOS transistor model

I
Optimization wife
Circuit simulation

and Design Equations

I
Optimized Design

Description

I
DAC Layout

Stretching and Tiling

iA
^-f" Design Files for

I Simulation and Analysis

Matching = f(w,l)

Layout Database

Topology Information

Area Estimates

Layout Templates

I
DAC Layout

I
>

Circuit Verification:

Extraction and Simulation

Circuit Verification:

Fabrication and Testing

Figure 3.3 DSYNas seenby a user, designer, and technologist.

3.4 Views ofthe DSYN synthesis process 55

While creating a module using anexisting design is fast, implementing a new design is not.

Implementing anewDACarchitecture in DSYN requires design partitioning, determining fee set

of simulations andequations for design estimation, creation oflayoutcell libraries andverification

of allof this through circuit extraction andsimulation. The right side of Fig. 3.3 illustrates fee

libraries adesigner mustcreate as part of thisprocess, and feerole of feedesigner in process veri-

ficatioa Tliis process is feesame magnitude of difficulty as fee full custom design process. Inbofe

cases fee designer must understand all important circuit issues. Fortunately, if a previous design

exists, opportunities for re-use of derived equations and simulation files speeds fee design imple

mentation, just as in full custom design.

It is notclear whether design entry for DSYNis more orless difficult fean fee analog design

process for asingle specification. Inbofecases analysis and simulation mustbe specified for deter

mination of the performance of feecircuit asa function of input specifications. Thereare two dis

tinctmind sets for this. In full custom design, fee designer answers fee question "what is fee best

design whichmeetsmy specifications," while in design entry for DSYN feedesigner mustanswer,

"How can I simulate and compute fee specifications from any setof design inputs." Unfortunately

there are several factors which make design entry for DSYN more difficult than standard analog

design. The design partitioning mustbe done explicitly, and all constraints must be computed

explicitly. Since fee optimization process is notsmart, circuit simulations must be setupto con

verge, despite poor choices for design input Most importantly, for design entry in DSYN any set

of reasonable specifications must be allowed, so simplifying assumptions which maybe applied

for aparticular specification cannot beused if awide range of input specifications is expected. The

main advantage fee DSYN engineer has is feat he does not need to choose fee final values for his

design variables and device sizes. Once fee design has been entered into fee simulator, fee optimi

zation process will find feese for him.

The third view of fee DSYN process is from fee view of fee an engineer making atechnology

shift. In a shift to a new technology, fee technologist must enternominal andworst casetechnol

ogy inputs for wiring widthsand overlap capacitances, inputdevice models for nominal, fast, and

slow corners, andnotemodeldiscrepancies, as shownin Fig. 3.3.Estimates of device mismatchas

3.5 Summary 56

a function of device area and spacing must bemade. Notshown in fee figure are any modifications

to cell libraries required whenlayouts are scaled to fee new groundrules.

3.5 Summary

This chapter has presented an overview of fee DSYN digital/analog converter synfeesis tools

and libraries. The operation of fee tools, and fee interactions between fee tools and various users

have been described for both module generation from specifications and design entry for new

architectures and technologies. In fee following chapters fee choices for optimization, estimation,

and layout algorithms will be explored, and motivation for feese particular implementations will

be given.

57

CHAPTER 4

DAC Analysis and Optimization for

Synthesis

4.1 Introduction

In this chapter fee details of fee DAC design analysis and selection process will be discussed,

including a review of synfeesis requirements, available approaches, and implementation details.

This introductionwill review issues raised in previous chapters, and feen fee analysisand selection

mefeods will be discussedin turn. Since anoptimizationalgorithm was used for design selection, a

discussion of various optimization mefeods is included. The interaction between feese mefeodol

ogy choices is important, andfee complimentary operation of feese algorithms is discussed. A key

design choice is to avoid a stronglyhierarchical approach in this problem, and fee motivation and

consequences of this will be touched on.

In chapter 1 fee requirements for a circuit synfeesis mefeodology were discussed, and fee

points whichapplyto designestimation andselection bear repeating here. For designselection, fee

mefeodology should fully explore fee design space; it shouldnot be limited by algorithms which

may ignorebetter solutions,or limit fee choiceof freevariables. Also, fee design selection process

must constrain fee design to meet performance specifications. Performance estimation must be

accurate, so feat when designs are predicted to meet specifications feey actually will. The use of

high level fudge factors to correct for discrepancies between estimated and actual performance is

4.1 Introduction 58

strongly discouraged, because it is usually notclear how discrepancies for onedesignspecification

should map to ofeer design specifications. Finally, fee analog synfeesis process should not take

excessive computer time, but speedis not critical. A few hourson a fast workstation is good

enough here.

The preceding issues are for general synthesis. There are some specific issueswhichmustbe

addressed for fee current switched DAC architecture used in thiswork. Recall feat some of thekey

design variables mustbe integer valued by theendof the synthesis process. If anoptimization

algorithm is used for design selection, thisrequires some integer programming to reach fee final

result, butit also has implications for estimation. Though feese variables are typically considered

integers, if gradients are tobecomputed using finite differences, feen being able tocompute per

formance for non-integer values of (eventually) integer variables will be helpful. If fee circuit is

being evaluated in an infeasible region, it is difficult to guarantee that derivatives for performance

estimates willbe reasonable. One solution is to choose an optimization algorithm which does not

leave fee feasible region [braY81,nye88]» ^d another is to choose an algorithm which is tolerant

of feese inaccurate derivatives of performance estimates when fee estimate itselfis clearly infeasi

ble.

For this class of DACs, estimation of design performance requires acombination of analyses,

atbofecircuit level and DAC architecture level. A circuit level analysis of DC performance is

needed to predict bias margins, and bias dependent mismatch of devices. A transient analysis is

required for determining settling, switching, and delay times. For analysis of static linearity (INL

and DNL), fee predicted mismatch of devices is combined wife sensitivities to voltage drops and

DAC architecture inputs. For glitch energy fee results of a simple transient may be further ana

lyzed toobtain glitch energy predictions, or aseparate transient analysis may beused. Finally, fee

circuit is subject to process variation and layout related parasitics, and feese must beincorporated

into fee synfeesis process somehow. No one analysis mefeod meets fee combination of accuracy

and speedrequirements for DAC designestimation.

There is also asetof standard rules for optimization which improves fee robustness of any

optimization approach. As much as possible, fee number of optimization variables should be min

imized, since fee optimization time is linear or worse wife fee number of optimization variables,

4.2 Design Estimation Review 59

(especially if gradientsmust be computed through finite differences). The complexity of fee objec

tive and constraint functions should be minimized, since fee more linear fee system, fee better and

faster fee convergence inoptimization1.

4.2 Design Estimation Review

Design estimation approaches were mentioned briefly in chapter one. Here feese will be dis

cussed in more depfe, covering circuit simulation, analytic equations, and behavioral simulation

approaches. A description of each approach and its application to DAC design estimation is

included, indicating advantages and disadvantages for this problem.

4.2.1 Circuit Simulation (SPICE)

Design estimation using circuit simulation is fee most familiar mode of low level computer

aided circuit analysis for design engineers.The best models for MOS devices have been developed

for feese simulators, and accurate simulation results for DC, AC, and transient performance are

easy to obtain. Disadvantagesof this approach are feat it is relatively slow, even for small circuits.

In fee DAC problem, this is fee best mefeod for low level circuit estimation, because accurate per

formance prediction requirements may be met. Slow simulation time is a fact of life for this

approach, and though some steps canbe made to improve this situation in a synfeesis implementa-

ti°n[NYE88]- ^ this approach is used, feen fee optimization algorithm should try to minimize fee

number of simulation runs.

Forhigh level DAC estimation, full simulation is a poorchoice for determiningstaticlinearity.

Two important effects aredifficult to manage. Resistive drops in a multiple current source design

areimportant, but to include this effect in a full simulation framework requires a inclusion of N/M

current sources and N/M resistorsbetween fee current sources. If there are many segments, fee

complexity of fee problem gets large, and simulation is slow. If implementations must be evalu

ated when fee N/M ratiois non-integer,then fee setup of fee problem is unclear. For statistical mis

match a more insidious problem appears. Monte Carlo mefeods aretypically applied to statistical

1. Specifically, a function v a + b as problematic when it was partof the objective function, with both a andb as
design variables. Also, achoice is generally made to let M, thenumber of lsbelements persegmentbe aninteger design
variable, rather than using B =log2(M) asthedesign variable, since therelationship of M to performance is muchmore
linear than B.

4.2 Design Estimation Review 60

analysis of circuits, requiring multiple reruns, and yielding a result which is itself a randomvari

able. If the finite differences required to compute a gradient use feeserandom variable results, feen

fee gradients will be random variables, leading to convergence problems in optimization. A faster,

completely deterministic approach is required forhigh level DAC estimation.

4.2.2 Behavioral Simulation

By abstracting fee circuit into a set of abstracted elements, behavioral simulation can be used

for high level DAC estimation [Liu93,CHAN94]- Some of the design complexity problems in full

simulation approaches can be overcome, and complete transfer functions, including envelopes for

INL and DNL curves maybe produced. Mefeods which useacombination of design sensitivities

andparameter variances avoid fee usedof monte carlo analysis, anddirectly predict meanand

variance of alloutput codes, making this approach suitable for anoptimization framework. There

are some reasons not to use behavioral simulation. The first is fee simulation setup problem when

non-integer architecture variables are input, similar to thatdescribed for low level simulation. Sec

ond,behavioral simulation, though much faster fean circuit simulation, may notbe fast. Simula

tion of an example 5-bit DAC took 540 seconds on DEC 5000/125 workstation [ltu93]. While

much better fean fee full simulation mefeod, it is still orders of magnimde slower fean analytic

mefeods.

Behavioral simulation is not appropriate for low level DAC estimation, because of device

modeling accuracy problems.

4.2.3 Analytic Equations

The analytic equation approach, using design specific derived equations, is a third estimation

mefeod. For highlevel DACestimation, it can be used for determination of static linearity from

device mismatch and resistive drop information. Rafeer fean computing INL and DNL for fee full

curve, analytic approaches concentrate on finding an expression for INL and DNL at fee worst

pointin fee curve. In general this approach is fee fastest, candeal wife non-integer architecture

variables, and is accurate, assuming fee analytic models used are good. The problem wife this

approach in general is that analytic equations mustbederived, a process which maybe error prone

for complex systems. When second and third order effects are important, it may be better to

4.3 Design Estimation for DACs 61

depend on a simulation framework for inclusion of feese effects, rafeer than to deal wife them in

an analytic mode. For this high level DAC estimation problem this is not fee case. The important

high level architecture inputs andeffects which impact worst casenon-linearitywere modeled well

wife design equations.

Analytic equations were not seriously considered for low level DAC estimation, due to fee

device modeling problem.

4.3 Design Estimation for DACs

ITie DAC design estimation approach uses a combination of low level circuit simulation and

highlevel analytic equation solving. The key elements to fee approach are fee use of circuit simu

lation for low level DAC performance estimation, combined wife aset of derived analytic equa

tions which first predict element mismatches from bias conditions, and feen predict DAC static

performance based on element mismatch. Equations similar to feose derived inchapter 2 are used

for estimating worst case INL, DNL, Gain Error and TUE contributions from device mismatch,

and deterministic effects such as resistive drops are included. Chapter 6has a full description of

feese design equations. Besides using analytic equations to solve for design performance, analytic

relationships are also used to expand fee design description from aset of input variables to a full

description ofall device sizes, circuit areas, and circuit parasitics at fee beginning of fee estimation

step. Fig. 4.1 shows ablock diagram of fee approach.

As an illustration of fee estimation process, consider fee steps required to compute INL for a

DAC. ITie initial device sizes and DAC architecture variables are input to the estimator. All device

sizes can be computed from this input, as well as all predictions oflayout parasitics, and DAC cell

sizes. The random mismatch ofdevices ispredicted, based on technology inputs and device areas,

and mismatches due to process gradients are computed from fee cell sizeand architecture informa

tion. Acircuit simulation is run to determine fee DC operating point offee circuit, and small signal
conductances gm and gds are extracted for fee current source devices. The post-simulation analysis

starts wife an analysis of fee matched current sources, giving fee sensitivity ofoutput current to Vt

mismatch, and fee current source output resistance. From feese intermediate results fee contribu

tions to INL from random mismatch, process gradients, and resistive drops in bias lines may be

4.3 Design Estimation for DACs ___^ 62

DAC DesignInputs {# seg,W, L, bias}

Analytic Equations

T
Full Design Description {all device sizes, rows, cols, parsitics}

Circuit Simulation

Raw DC, AC and Trans. Results {Bias points, digital delays,
I settling,

Performance Estimates

{INL, DNL, Glitch,...}

Figure 4.1 Estimation Process flow consists of analytic preprocessing, circuit simulation,
andanalytic postprocessing. Implementation is in anHSPICE job.

computed for fee worst case point in fee INLtransfer curve. Thestatistical effects are multiplied to

obtain 3-sigma bounds, and the absolute values of fee contributions are added to obtain a total INL

estimate.

There are a numberof implementation considerations for analog circuitdesign estimation,

driven by estimation accuracy andoptimizationalgorithm requirements. Estimationinaccuracies

dueto layoutparasitics anddevicemodelinaccuracies, IC technology process variation, as well as

some optimization issues must be considered.

4.3.1 Inclusion of Parasitics

Inaccurate performance estimation dueto circuit parasitics may be compensated for through

either of two mefeods. In the first, parasitics are accurately predicted during fee synfeesis process,

while in fee seconda performance margin is allocated to fee layout, and a constraint based layout

process prevents a layout induced performance degradation from exceeding fee allocated margin.

When fee layoutprocess is tightlycoupled to design synfeesis, or whenit is inexpensive to imple

ment the layout for every candidate set of design inputs, the actual layout parasitics may be

included in design estimation [ONOD90]- When fee process is loosely coupled fee onlyreasonable

option isaconstraint driven analog place and route [CHAN92]-

4.3 Design Estimation for DACs 63

In DSYN, fee layout process is a deterministic algorithm, so all circuit parasitics canbe pre

dicted from fee design inputs, without creatinga layout. The layout predictions include device

source and drain capacitances, wiring parasitics, and also predictions of DAC subcell and module

sizes. The DAC layout dimensions areuseful as a performance objective to be minimized, andalso

forprediction of bus wiringresistance anddevicemismatch due to process gradients.

4.3.2 Device Model Inaccuracies

This estimation process wasdesigned assuming thataccurate circuit simulations couldbe per

formed for short-channel MOS devices using feemost modern devicemodels. As seenin fee pre

vious chapter(section 3.3.2), this is simply not true, especially for devices biased in fee common

regions of operation for analog MOS devices. The mefeod described feere to derate fee simulated

device output conductance was used to correct fee simulation predictions. The magnitude of this

correction is dependent on fee expectedbiasconditions in fee application, andwas chosenconser

vatively.Fordevices expected to be biasedin strong inversiona factor of 2 was used.

4.3.3 Process Variation

Process variation isafact oflife for IC designers. Itis fee responsibility of fee designer tocre

ate adesign which will maintain high yield despite variations in fee process over time, and perfor

mance variation over device lifetime and temperature variation. Some designers use nominal

device models, and maintain enough performance margin between simulation and specifications to

remain confident ofdevice yield inmanufacturing. The required margin for this process isdifficult

to quantify, except through experience.l Asecond process is worst case design, in which fee com

bination of threshold voltage, oxide thickness, channel widfe and length variation which results in

fee fastest and slowest possible circuit speeds isused to bracket fee design. By simulating wife

feese worst case model files, fee designer is assured ofgood yield despite large process variations.

More sophisticated but time consuming mefeods are available. The process variation may be mod

elled statistically, and monte carlo analysis run to obtain adistribution ofcircuit performance due

to process variation [SpoT86]- Thetechnique of design centering is used to modify circuits to

improve yield, byoptimizing to reduce fee probability ofpoor performance. Besides process vari-

1. I found this description difficult to believe -- the engineer describing itsaid that the other methods were too pessimis
tic, and he had been successful at meeting specifications with this method. The foundry never produced devices as poor
as the worst case processcorner.)

4.3 Design Estimation for DACs 64

ation affecting MOS device speed, fee designer must consider other sources ofdesign variability.

Circuit speed is sensitive to temperature, and speed, and voltage margins may be sensitive to vari

ations in supply voltage, externally supplied bias current, and integrated resistor values.

For analog circuits fee definition of"worst case" isnot as simple as for digital logic. For some

design constraints, such as signal switching time, fee worst case isrelated to circuit speed, corre

sponding to slow devices, high temperature, and low voltage. For worst case in performance

related to matching fee worst case is for fast devices, high vdd, but low bias currents. It ispossible

for worstcasedesign specifications to occur atcombinations other fean fee traditional fast and

slow corners, but exhaustively simulating at all possible combinations of design variation

increases fee number of simulations by2 for every additional source of variation. Animportant

problem is feat fee worst case performance for one specification may move from one process cor

ner to anotheras fee circuit optimization progresses.

Two systematic mefeods appear in the literature. Dharchoudhury rpHAR92] estimates fee worst

caseperformance using aresponse surface technique, and optimizes predicted worstcase perfor

mance. When a solution is found, fee response surface is updated, and fee optimization repeated.

This appears to cost afactor of7times more circuit simulations1, due to fee repeated optimizations

and fee cost ofcomputing fee response surface. Mukherjee [mukh941 finds meworst case corner at

eachstep of a simulated annealing optimization, and uses feat corner to find fee next pointin fee

optimization The search for feenew corner is expensive, and is repeated manytimes. An optimiza

tion2 which was initially 10 minutes became 900 minutes when this mefeod was applied. In bofe
cases feeeventual solution meetsperformance requirements across feese variations, at fee expense

of greater simulation time.

The DSYN framework doesnot enforce amefeodology for designing wife process variations.

In the DAC optimization implementations a limited worst case design approach has been used.

The circuit designer identifies process corners which will result in worst case performance, and

simulations at feeseworstcasecorners are runatevery stepof fee optimization. Performance must

meet constraints for all feese specified corners. It is fee designers responsibility to include all lim-

1. Thisproblem was an opamp optimization with7 independent process variables, 5 design variables, and 2constraints.
2. This problem wasan opamp optimization with6 process and 6 design variables.

4.3 Design Estimation for DACs 65

iting cases. Process, supply, andbias variations areincluded in fee implementation. Temperature

variationwas not included in fee demonstrations used for this work, but could easily have been

incorporated within fee same framework. Three corners wereused for DC analysis, and fee slow

cornerwas used in transientanalysis. The simulation time penalty for inclusion of feese additional

DC simulation runs was approximately 10%. Use of fee more systematic mefeods of optimization

wife process variation wouldhaveresulted in excessively long optimization times.

4.3.4 Estimation in Optimization

As described earlier in this chapter, fee useof an optimization approach for design selection

places requirements on fee estimation algorithm: evaluations must make sense for real valued

inputs, and fee process must be tolerant ofpoorly chosen design inputs, at least returning fee infor

mation feat aresult does not meet constraints for poor inputs. Variables which are typically integer

valued maybe evaluated wife non-integer inputs by designing fee circuit simulations to use unit

elements, and letting high level analysis multiply element level results by appropriate factors.

Non-convergence problems can beavoided bytaking care in fee setup ofcircuits for simulation, or

through fee use of indicator functions when fee circuit simulation does not function as expected.

DSYN uses an optimization algorithm which does not require accurate performance sensitivities

for infeasible circuit inputs, so asimple indicator function for no-convergence isenough.

4.3.5 Design Estimation Implementation

The design estimation process is implemented within fee framework of HSPICE, acommer

cial version of fee SPICE circuit simulator [META93]- HSPICE contains many extensions to fee

original SPICE implementation, including better convergence algorithms, incorporation ofuser

parameters with algebraic function evaluations, library support, and special measurement state

ments. The HSPICE library structure was used extensively to allow loading and unloading ofpro

cess models and simulation setups. The entire design estimation step, from design parameter input

to analytic post-simulation processing was implemented inone simulation job. This included fee

expansion of fee parametrized design input to a full design description, multiple simulations for

worst case analysis, and post-processing to convert DC and transient simulations to performance

measures such as INL, DNL, andglitchenergy.

4.3 Design Estimation for DACs __^_ 66

Other implementations ofoptimization wife acircuit simulator have tended touse atighter

coupling ofoptimization and simulation, and this has given some speed up tofee optimization pro-

cess [NYE88, SHYU88, OCH094, META921-m ^ looselycoupled case, the circuitsimulator program

must beloaded, the circuit read in, and fee simulation set-up run every iteration of fee optimization

process. In a tightly coupled system, these set-up steps are onlydone once, but if circuit simula

tion time is large compared to fee set-uptime, then this actual simulation time will dominate fee

run time inbofe cases. A second advantage of tightly integrated simulation and optimization pro

grams is thatperformance sensitivities to design inputs maybe efficiently computed from onesim

ulation, without requiring finite difference computations across multiple runs [NYE88, SHYU88]-
This can greatly reduce fee number of circuit simulations required1.

DSYN originally used fee SPICE3 circuit simulator developed at U.C. Berkeley, linked at

computetime to anoptimization algorithm and somealgebraic C code forhighlevel analysis. This

approach hadfee advantage of loading fee simulation program once, but didnot takeadvantage of

ofeer possible speed-ups. SPICE3 was dropped when it became apparent feat fee convergence

problems wife fee simulator madeoptimizations unreliable. It had fee additional disadvantage feat

design specific information was in two places: a circuit simulation file, and C code, linked into fee

optimization program. Switching to HSPICE solvedfeeconvergence problem, andfee use of alge

braicconstructs in fee HSPICE deck kept all circuitimplementation specific data in fee circuit

simulation files. Though feealgebraic manipulation available within HSPICE is not as powerful as

found in a programming language, it is a familiar environment for fee circuit designer who must

enter fee design implementation.

Even wife fast modern computerworkstations, this design estimation process is not instanta

neous for fee DAC circuitsimplemented by DSYN. The first pass simulationswere run on a DEC-

Station5000/133, andrequired 45 seconds runtime perestimation. These simulations included 3

DC simulations, one transient simulation for dynamic behavior, plus algebraic preand post-pro

cessing. 8 months later fee secondpass DAC simulations were run on a DEC Alpha, a machine

roughly twice as fast as fee DECStation, but fee simulation requirements had grown to include

l. Sensitivities areavailable in HSPICE, but only for DC simulations. Since transient simulations
were critical forthis work there was no way to use HSPICE and avoidmultiple runscomputing
finite differences.

4.3 Design Estimation for DACs 67

more complicated DC simulations plus an additional transient for glitch energy, resulting in run

times of 36 seconds. The additional available computer power was quickly applied to fee estima

tion step. These simulation times should be kept in mind in fee next section, when total optimiza

tion time becomes an important limitation to the kinds of optimization algorithms which can be

applied.

4.3.6 Example: Estimation of Integral Non-linearity (INL)

lb illustrate fee design estimation process, an example showing how INL is determined due to

random Vt mismatch and finite output conductance in a current source DAC follows. In fee full

implementation other factors, such as process gradients, resistive bias drops, and device current

factor mismatch are also included.

The procedure follows feat outlined in Fig. 4.1. A set of design parameters is input, and feese

are used to compute all device sizes and bias currents for fee analog DAC circuits. The random

variationin Vt is predicted from device sizes. ITiecircuits are simulated using HSPICE to deter

mine DCbiasconditions, forfeecascoded current sources usedin thisdesign, andsmall signal gm

and gds for fee current source devices Ml and M2. Analytic expressions are used to convertfee

outputs of simulation to INL predictions. Animplicit assumption is featoperating pointvariations

across theDAC array aresmall, so all DAC current sources have fee same bias point, wife fee

same small signal parameters.

4.3.6.1 INL due to Output Resistance

For aperfect current source, fee output impedance isinfinite, but inrealistic designs fee output

impedance is finite, and feechange in DAC output impedance asa function of code creates a non-

linearity, lb compute INL due to finite output impedance offee current sources, fee output con

ductance isofasingle current source iscomputed first After aDC simulation, fee bias point offee

devices infee current source are known. For fee cascode current source inFig. 4.2, fee output con

ductance gout offee current source iscomputed, based on the small signal gdS and gm conductances
of Ml and M2:

_ gdsl' Sds2 _ &dsl ' Sds2

Sm2+ Sdsl + Sds2 8m2

4.3 Design Estimation for DACs 68

Vdd

Bias -|[*_ Ml

CascodeBias -|P M2

lout

Figure 4.2 Cascode Current Source, usingPMOSdevices.

The total DAC outputconductance is just fee conductance ofanindividual current source mul

tiplied by fee number ofelements connected to fee output, so it is signal dependent:.

gDAC<n) = n'g0ut (4.2)

When fee DAC is usedto drivearesistive load, fee output resistance causes an absolute error

in fee transfer function, related to fee relative difference between fee signal current going to fee

load and fee signal leaked into fee DAC through fee finite output conductance. The voltage output

and voltage error may be written:

VDAC (•) =n'W• Rload' 1+r * .- <43)
VDAC (») " n •"unit •Rload' <1 " Rload" 8out" n> <44>

VoltageError (n) =n2 •Iunit • (Rload) *•gout (4.5)

This errorresults in a gainerror andin bow non-linearity. The worst case non-linearityis at fee

midpoint, n=N/2, and fee gain errormust be subtractedout before INL erroris computed. Result

ing gain error and INL are:

Absolute Gain Error =Error(N) =N2 •Iunit •(R,oad) *•gout =VFS •R,oad •N•gou,

Gain Etrot (in Isb) =N2 •R,oad •gou((4.6)

N2Midpoint INL (in lsb) =Etror(N/2) - (Gain Error / 2) = -j- •R,oa(J •gout (4.7)

4.4 Design Selection byOptimization 69

4.3.6.2 Computing INL due to Threshold Voltage Mismatch

Random variation in device threshold voltage (V^ results in a random variation in current cell

current, whichleads to variation in INL.Themodel for random variation is the sameas Pelgrom's

[PELG89]- Givenfee technology dependent mismatch constant SVt anddevicearea, fee variance in

Vt can be computed for every device:

2 <SVt>2
°vt= Tw^IT (48)

After a DC simulationis run, fee small signalconductancesare known, and fee linear relation

shipbetween Vtandoutputcurrent canbe usedto compute Cj. Contributions frombofetransistors

in fee current source are considered:

ITie tfj/Iunit ratio issubstituted into Eq. 2.15 to obtain fee oINL from this effect. The magni

tude of allindividual INL contributions are added to find fee worst casetotal INL. A three-sigma

bound is used to ensure a 99% yield.

o

4.4 Design Selection by Optimization

For design selection, optimization approaches are chosen to allow a full search offee design

space. The optimization algorithm must minimize an objective, while meeting all performance

constraints. The algorithm must converge to integer results, and betolerant ofpoor performance

estimation for infeasible results. This isamixed-integer non-linear programming (MINLP) prob

lem. The optimization must converge to a solution ina few hours running time, using aperfor

mance estimation step which requires on fee order of20to90seconds ofCPU time per estimation.

Tlus constrained non-linear programming (NLP) optimization problem is set up:

Minimize the objective: f(x)

Subject to constraints: g(x) < b

4.4 Design Selection byOptimization 70

wherex is fee vectorofdesignvariables, g(x) is the vectorof constraint functions, andb is the

vector ofbounds on the constraints.

Gradient based approaches have been used for circuit optimizations in several previous works.

In these approaches fee gradients of fee objective andconstraint functions are found at fee local

point, adirection for amove is chosen, and fee algorithm moves to fee next point. Hie simplest

algorithms mayconverge to alocal minima instead of feeglobal minima, butmany include heuris

tics to avoid local minima.

One option for constrained optimization is tobuild aweighted cost function which incorpo

rates fee individual performance constraints and fee design objectiveinto one function, and feen

use the optimization to minimize fee single cost function [bray81,jusu93, KOH90, META93]-
Though fee optimization algorithm may minimize fee cost function, there is no guarantee that all

constraints will be metwhen the function is minimized. A dynamic re-weighting is required if fee

problem is to be forced to meet all constraints. Since fee constraint andobjective functions are

combinedinto one measure, fee optimization algorithms may over-design aconstraint to minimize

fee globalcost function, insteadof minimizing fee desired objective function.

Simulated Annealing is commonly usedin problems in which feere are many local minima

whichprevent adirect path to a global optimum. It optimizes a single cost function, and gradually

converges to a final solution. ITie weighted cost function requires re-weighting to force fee algo

rithm to move toward solutions which meet all constraintSrQjELpo OCH094]- More importantly,

simulated annealing is a slowly converging algorithm, requiring hours to convergewhen fee cost

function is quickly computed. In this implementation, wife a slow simulation step, fee application

of simulated annealingis wholly inappropriate.

It is better to use anoptimization algorithm which meetsconstraints directly whileoptimizing

fee objective function. General constrained optimization packages such as MINOS [MURT87J ^d

NPSOL [GILL86) csn d° th*^ ^d these work well wifeanalytic objective and constraint functions

[MAUL93]- When used wife circuit simulation feese packages have two problems. The algorithms

are writtento deal wife complicated multi-variate optimizations, wife perhaps hundreds of vari

ables and constraints, but mostlylinear constraints, ornon-linear constraints feat are quicklycom-

4.4 Design Selection byOptimization 71

puted. In circuit simulation mostconstraint functions are non-linear, and require arelatively long

time to evaluate, but there are relatively few variables and constraints. There is a poormatch

between fee capabilities of feese packages and fee needs for this problem. A second issue is fee

problem of poorly defined function values for infeasible regions. These packages require reason

able gradients everywhere in order to work—adifficult requirement for a simulation based analy

sis. In fee course of this work optimizationsusing MINOS and circuit simulations have been run,

but feese optimizations have not reliably converged. By comparison, using MINOS wife fee set of

analytic equations developed for OPASYNhas resulted in arobust constrained optimization.

The feasible directions algorithm is a particular constrained optimization algorithm which has

been applied successfully to circuit simulations [braysi,NYE881- ft requires an initial point in fee

feasible region, and feen does not allow moves out of fee feasible region. In DELIGHT [NYE88]a

three step approach for simulation based optimization is implemented, wife fee first two steps forc

ingmoves toward and into fee feasible region, and feelaststepanoptimization only in fee feasible

region.

While feasible directions does solve fee constrained optimizationproblem for circuit simula

tion, it does not solvefee mixedinteger problem. The easiest way to obtain an integer result is to

round fee final pointin fee optimization to fee nearest mixed-integer solution. There is no guaran

tee feat this will be fee optimal point, or even a feasible point, but if a simpleweighted cost func

tion is used then meeting constraints may not have been guaranteed anyway. In this case fee

solution is not qualitatively worse than fee original real-valued solution (!). This is fee mefeod

used in fee optimization algorithm built into fee HSPICE circuit simulator, but because a feasible

solution cannot be assured it was not considered in here. If fee MINLP problem is to be truly

solved, there are two types of algorithms in the literature.

A direct approach to fee solutionof the MINLP problemis taken wife fee branch-and-bound

algorithm [guptsoj- Tte branch-and-bound algorithm runs multiple constrained optimizations,

adding additional bounding constraints which force feesolution to feeoptimal setof integer design

variables which meet fee specification. In fee course of solving fee MINLP problem, it must find

fee solution to many NLP sub-problems. This has been reported previously in an analytic con

strainedoptimization, in which fee integervariables were used to make an architecture selectionin

4.4 Design Selection by Optimization 72

anopamp circuit [MAUL93]- ™s algorithm works well when fee underlying optimization takes

only a few seconds to a few minutes. When applied on top of simulation based circuit optimiza

tions which already require anhouror moreof computetime, fee problem explodes, andis not

solvable in fee few hours time allowed for DSYN.

The second approach to the MINLP problem creates anapproximation to fee constraint func

tions wife asetof linear constraints, and uses this approximation to specify a mixedinteger linear

programming (MILP) sub-problem. This approach istaken infee Outer Approximation[DURA84j

and Generalized Bender's Decomrx>sition[GEOF72] solution mefeods. The MILP problem is rela

tively easy to solve, using the branch andbound algorithm andan LP solver. Once a solutionto fee

MILP problem is found, it is checked for feasibility wife fee non-linear constraints. If fee MILP

solution is infeasible, feen fee algorithm specifies a mefeod for creating additional linear con

straints from fee infeasible solution. For example, Duran specifies solving a non-linear program

ming (NLP) problem to create outer bounds for fee constraint space. This approach is faster than

the direct approach becauseit separates fee search for an integersolution from the evaluation of

non-linear constraint and objective functions. It also places additional convexity requirements on

fee constraint functions. Fig. 4.3 shows fee general approach.

Start

&
Solve MILP Sub-problem Add a linear constraint

I
Stop

Figure 4.3 MixedInteger Nonlinear Programming problem is solved wife aMixedInteger
LinearProgramming problemanda means for creating linearconstraints.

The algorithm usedin DSYN takes this second approach, separating fee search for fee mixed

integer solution from fee evaluation of non-linear constraint functions. The algorithm is ahybrid

4.4 Design Selection by Optimization 73

of fee Outer Approximation[DURA84] and Supporting Hyperplane[LUEN84] mefeods. The problem

is separated into an MILP sub-problem and amefeod for obtaining outer approximations to fee

non-linear constraints, and fee Supporting Hypeiplane mefeod is used to obtain feose approxima

tions.

4.4.1 Supporting Hyperplane Algorithm for Optimization

This section describes fee implementation of fee particular cutting plane algorithm usedin

DSYN - the supporting hyperplane algorithm [lueN84]- It includes ageneral description of fee

algorithm, some application specific issues for DSYN, and some general properties of fee algo

rithm The key modification to fee algorithm described by Luenberger is fee solving of fee sub-

problem as an MELP problem instead of anLP problem.

The supporting hyperplane mefeod takes fee form:

minimize the objective: cTx

subject to g(x) < b

where x has dimension n, and g(x) has dimension p, fee gj's are continuouslydifferentiable,

and the constraint region S defined by fee inequalities is convex. A feasible point y must be

known, such feat gj(y) £ ty for all i.

Start wife an initial space Pcontaining S, such feat cTx isbounded below on S. Then

• Step 1: Determine w = x to minimize fee objective function over P. If w is in S, feen
stop. Otherwise continue.

• Step 2:Find fee pointu on fee line joining y andw feat lies on the boundary of S. Let
i be anindex for whichgj(u) =bitand define fee half space H= {x: Vg^uXx - u) <
bj}. Update P by intersectingwife H. Return to Step 1.

The process is illustrated in Fig. 4.4. First fee optimal pointwt is found in fee spaceP. Since

this is not in fee feasible space S, fee algorithmretreats back towards fee feasible point y until it

finds fee boundary of S at ux. Taking fee gradient of g^) creates a linear constraint which

bounds fee half space Hlt asdescribed above. On fee second iteration fee optimal pointin HJ is

found at w2, from which fee feasible point u2 is located, and fee gradientof fee active constraint

4.4 Design Selection by Optimization 74

gi(u2> is defines an additional half-plane H2. Thenextpoint w3 is fee optimal pointwhich lies in

bofe Hi and H2. Tliis process continues with the addition of more linear constraints until fee sub-

problem solution Wj is a feasible point

Wi

Figure 4.4 Supporting Hyperplane algorithm creates bounds onfeasible regioa

4.4.2 Algorithm Implementation and Discussion

This section begins by describing fee optimization algorithm implementation in detail, and

feen continues wife adiscussion ofsome practical optimization issues related to fee implementa

tion. These include aprediction offee complexity and running time offee algorithm, fee relaxation

ofaccuracy requirements for simulations giving infeasible results, fee speed-up ofconvergence

through fee use offee MILP sub-problem solver, fee search for fee required initial feasible point,

fee use ofalinear approximation for fee objective function, and fee optimality offee final solution.

4.4.2.1 Implementation

The algorithm is implemented using fee simulation/analysis mefeod described above to esti

mate all objectiveand constraint functions. In this implementation fee sensitivities of feese func

tions to design variables arenotcomputed explicitly, butfinite differences are used toobtain feese

sensitivities for gradient computations. This increases fee optimization time, but simplifies fee

construction of fee design estimator, saving design implementation time.

4.4 Design Selection by Optimization ^ 75

The algorithm is given an initial feasible point y. In this implementation the first step is to

approximate the nonlinear objective function wife alinear function, found bycomputing fee gradi

ent at fee initial feasible point.

c = Vf(y) (4.10)

Next the sub-problem mustbesolved. TTus problem isan MILP problem, easily solved by fee

branch-and-bound algorithm implemented with MINOS [murt87] used as alinear programming

solver. On the timescale of the total optimization, fee MINOS optimizations take zero time, so

even though fee branch and bound algorithm is notefficient, and may require hundreds of calls to

fee MINOS package, fee total job time is not significantly changed by fee time spent solving fee

MILP sub-problem.

The solution to fee subproblem is the design point wlf which is tested for feasibility by fee

estimator. If it is infeasible, feen fee point ult attheboundary of S, is found by conducting abinary

search along fee line betweenWi andy, Tlie linesearch runs a performance estimation at each

point in fee search, andstops when fee changein alldesign variables is less fean a userdefinedtol

erance. The result of fee linesearch is actually two points, ufeas anduinf, on opposite sides of fee

boundary to fee feasible region S, and fee knowledge of fee particular gj(x) constraint function

whichbecomes infeasible across fee boundary. The newlinear constraint must exclude uinf, but

not ufeas. If fee boundon fee constraint function is gi0, feen, using the linear term of fee taylor

expansion fee new constraint may be written:

<* Vgi(Uinf)TX ^ VgiCUirffllirf +gi0 - giCUirf)} (4.11)

If fee last two terms on fee right side of Eq. 4.11 are left out, feen fee new constraint will not

exclude u^, and fee algorithm is prone to entering infinite loops, returning to 11^on every itera

tion. Note feat fee right hand sideis a constraint, so this may be rewritten as a simplelinear con

straint of the form:

{x:cTx<b} (4.12)

4.4 Design Selection by Optimization 76

The new linear constraint is added to fee sub-problem, and fee process is repeated. When fee

Wj is feasible, feen this final w, is returned as the solution for this linear objective function.

The linear objective function used in fee sub-problem is an approximation to fee objective,

made at the initial feasible point If the gradientof fee objective changes across fee feasible region,

then Wj may not be fee optimal solution. In this implementation fee heuristic is used to overcome

this. The linear objectivefunction is re-computed at fee solution point, wj, and fee optimization

restarted, using fee existinglinear constraints, andwA as fee new feasiblepoint This processof

restarting fee optimization wifea new feasible pointcontinues until fee resultof fee optimization

is fee same as the initial point.

4.4.2.2 Algorithm Running Time and Simulation Requirements

A prediction of algorithm running timeanddesign simulation requirements can be made by

tracing fee algorithm through oneiteration. Assume feat fee simulation has already been running

for sometime, so a feasible pointy is known, a linearized objective function is known, andsome

offee linear half-plane constraints have been defined. In tracking algorithm time a good assump-

.tion is that simulation time is fee dominant factor, socounting fee number of simulations gives a

good measure of fee total optimization time. The algorithm starts bysolving fee linear sub-prob

lemforpoint wit using a branch and bound algorithm to solve fee MILP problem. Since feesimu

lation isnot required, this may be considered azero time step. This w, is tested for feasibility, and

ifit isinfeasible, alinesearch proceeds along fee path between Wj and y. Asimulation isrequired at

each step in fee linesearch, tocheck feasibility. There is assumed tobeonly one crossing point, so

a simple binary search is used. The binary search is stopped when fee difference in design vari

ables is less fean some £, and fee number ofsimulations required for fee binary search is found:

define maxdelt = MAX(yj - Wj) over all j.

Number of simulations per linesearch =log2(ma*)

Typically this is between 7 and 10 simulations. In feese simulations fee results are checked for

only for feasibility, so accurate values for estimated results are notrequired in fee infeasible

region. At fee end ofthis search fee point u^fhas been determined, and each variable isperturbed

4.4 Design Selection byOptimization 77

in turn to compute fee gradient atu^ by finite differences. TTiis does require accurate simulation

results, but since it is fee edge offee feasible region, this is a reasonable requirement Iffeere are N

design variables, feen this requires Nsimulations. Anew linear constraint iscreated, and the algo-
maxdeltrithm repeats. Tlus requires atotal of log2(*) + N simulations per iteration.

The requirement ofinteger results actually reduces fee number of iterations, by limiting fee

number of possible feasible points. In this work thelargest problems have required about 20itera

tions, for a total optimization time (assuming 1 minute per simulation) of 6-7 hours. Whenthis

algorithm isused tosolve problems wife real valued design variables many more iterations may be

required,and other algorithms such as feasible directions may be a better choice.

Oneofeer property of this algorithm related to running time is that fee creationof a set of lin

ear constraints createsa memory for fee algorithm. If fee optimization is stoppedfor somereason,

but fee linear constraints are saved, feen restartingfee algorithm wife feese linear constraints as a

starting point saves optimization time.

4.4.2.3 Initial Feasible Point

In practice it is not difficult to supply an initial feasible point for fee optimization algorithm.

The feasible point does not needto haveinteger variables, or a minimized objective. If an auto

mated mefeod is desired, a constrained optimization algorithm maybe applied, wifeno objective

specified. This has been implemented for DSYN. If fee algorithm does not converge to a feasible

point, a designer mayproceedusingdesign specific heuristics to finda feasible point.

4.4.2.4 Approximating the Objective Function

In this implementation fee objective function is evaluated through calls to fee circuit simula

tion step. This is not a necessity, since fee objective function is a purely analytic function of fee

design inputs, but fee DSYN architecture puts all designinformation, for bofe fee objective and

constraintfunctions, in fee sameHSPICE basedframework, to unify design entry, lb avoid slow

objective evaluations, fee objective function is replaced wife a linear approximation, found by

evaluatingits gradient at fee best feasible point found so far in fee optimization. This approxima

tionhas worked when fee direction of fee gradient does notchange much across fee design space.

4.4 Design Selection by Optimization 78

When this was not true, as in acase wife an objective function of fee form fob- =c•Jx2 +y2,
fee algorithm will ping-pong between feasible solutions, butnot find fee optimal. If a nonlinear

objective function is required there are two possible solutions. Ahigher order approximation tofee

objective function may betaken, but if all second order terms are tobeincluded infee approxima

tion, feen N2 function evaluations are required, instead ofjust N. Asecond approach is to input fee
analytic objective function into feeoptimization program, sofeat no approximations are required.

Though fee sub-problem optimization ismade more complicated wife a nonlinear objective func

tion, this isstill ano-cost step compared tofunction evaluations wife simulation. Infee DAC opti

mizations implemented for this work the strategy used was toavoid non-linear objective functions,

sofeat linear approximations toobjective functions proved satisfactory.

4.4.2.5 Optimality

Luenberger and Duran bofe discuss fee requirements for optimal solutions wife this algorithm

[LUEN84,DURA84]- 1^e key requirement is feat fee linearized constraints mustnot over-constrain

fee solution space, andthiswill be trueif fee constraint functions areconvex. Because fee linear

approximations are only computed in fee feasible space, this requirement may be relaxed slightly,

to requiring aconvex space infee region where fee functions are feasible. When fee space is not

convex, linear constraints made early infee optimization may prevent finding fee optimal solution.

4.4.3 Optimization Implementation

All simulation based optimization algorithms are implemented in asingle program, SpiceOp-
tim, wife fee optimization algorithm chosen by user input. The program operates as an optimiza

tion manager, controlling user file I/O, fee simulation interface, and fee optimization algorithm

interface. All algorithms use HSPICE simulation runs to compute objective and constraint func

tions, so fee program is design independent The user inputs alists ofdesign variables, design con

straints, design constants, and any optimization algorithm parameters. The program creates alist

of parameters for each HSPICE run, executes fee HSPICE run, and reads results of.MEASURE

statements directly from fee HSPICE list output The optimization algorithms supported are:

• a generalconstrained optimization using MINOS

• a combination ofbranch and bound integer programming and MINOS

• general constrained optimization without an objective, used to find afeasible point

4.5 Hierarchy in Estimation and Selection 79

• supporting hyperplane algorithm without integer programming

• supporting hyperplane algorithm wifeinteger programming

• supporting hyperplane algorithm using anon-linear approximation to the objective
function

For all algorithms itispossible to read in information from previous runs, for restarting an

optimization upon an unexpected halt. Rg. 4.5 illustrates fee inputs and capability ofSpiceOptim.
Optimization Variables Constraints Constants

Control

Restart
Inputs

Intermediate
Results ^

I
SpiceOptim

Optimization Engines

ros

DNOS/Branch&Bnd-*-

s^ eas.

ding Hyper..

^up.;Hyper.

IKr.;*'-

J_i

?HSHCE
j' - -- •

Interface

J
Optimization Solution

Simulation
Rles

i
HSPICE

Figure 4.5 SpiceOptim program connects optimization algorithms to HSPICE simulation.

A shell script, optScript, has been written which runs fee mostcommonly used combination of

runs - an optimization to find a feasible point, a supporting hyperplane run wife integer program

ming, and, as aheuristic tocheck convergence, asecond supporting hyperplane optimization start

ing from fee previous solution. Fig. 4.6 illustrates fee optimization flow for optScript

4.5 Hierarchy in Estimation and Selection

ITie approach taken in this work is to avoid hierarchy if possible while searching for adesign

solution, because fee imposition of adesign hierarchy at alow design level imposes limitations on

4.5 Hierarchy in Estimation and Selection

Find Feasible Point

Find MINLP Solution

Check MINLP Solution

Optimization
(SpiceOptim)

Gradient Constraint Optz.

fbbj(x) = 0

I
SHP with Linear Obj

(SHP wife Linear Obj

C Done!!! J

I
T

Result

Feasible

Point

MINLP

Solution

Checked MINLP

Solution

80

Figure 4.6 Optimization flowimplemented in optScript.

design choices. The emphasishas been to include bofe high level DAC architecture andlow level

device sizesin fee same optimization, so that fee two areas for design choices maybe optimized

simultaneously. In fee first circuits chosen for this work fee complete current output DAC design

selection step was done as a single optimization. This was possible because feose particular cir

cuits were relatively simple, and the number of independent design variables was kept to7 through

fee use of ahighly parametrized model for digital buffer sizing. In fee second setof prototypes fee

useof amore complicated bias and current source cell, and fee addition of more digital buffers in

fee DAC layout resulted in additional design variables. Itnolonger was practical, oreven sensible,

to consider a single optimization. Instead of creating a design hierarchy, fee choice was made to

split fee optimization into separate digital and analog optimizations. In fee "analog" optimization,

fee key DAC performance objectives are used as constraints, and 13 independent design variables

havean impact here. The "digital" optimization, wife 6 independent design variables, is for fee

digital row and column buffer circuits, and local decodes, which operate on fee clock phase before

fee data is actually transferred to fee output The constraints for this optimization are determined

from fee requirement feat valid data arrive in time for fee cell level latch. These optimizations are

cascaded, since fee "digital" simulation may only berun after fee loading due to fee optimized

"analog" circuits isknown. More detail of feese implementations is found inchapter 6.

4.6 Summary 81

4.6 Summary

In this chapter the design estimation and selection problems for DAC synthesis have been

reviewed, and the approaches taken in DSYN have been described.

The estimation approach uses a combination of circuit simulation and analytic equations to

obtain accurate predictions of circuit andDAC level performance. The entire processis imple

mented in a single HSPICE simulation, usingbuilt in features for parametric analysis and perfor

mance measurement Estimation includes provisions for inaccurate device models and worst case

analysis for process variation. The estimation step usually takes less fean 1 minute on fee fastest

workstation available.

The design selection step uses acombination of integer programming wife the supporting

hyperplane algorithm. This mefeod successfully minimizes the objectivewhile meeting con

straints, subject to feevagaries of optimization using circuit simulatioa Typical optimizations take

up to 6 hours of computetime. The optimization problem includes all DAC design variables

affecting analogperformancein a single optimization.

82

CHAPTER 5

Layout Synthesis for DACS

5.1 Introduction

Layoutsynthesis is feesecond important step in module synfeesis. Automated layoutsynfeesis

is usedto create fee desired layout from feeoutputs of fee circuit synthesis step. For DSYN there

are two goals for this layout synfeesis - a compact circuit area, and mefeod for inclusion of accu

rate layout parasitics in circuit synfeesis. The circuit areashould be comparable to custom DAC

layouts, or else fee results will be seen asirrelevant by potential users of feese tools. Minimizing

DAC area also improves static linearity, because it reduces the absolute mismatch of devices

caused by process gradients. As seen in chapter 3, fee circuit synfeesis process used in DSYN

requiresan accurate estimate of layout parasitics forinclusion in circuit optimization, so fee layout

process must provide this.

Most previous analog layout synfeesis tools have been developed for opamp and comparator

circuits. These circuits have severaldesign qualitieswhich have influenced fee approaches taken

for analog layout synfeesis. Opamps and comparators are primarily differential circuits, wife cir

cuit performanceaffected by matchingof pairs of devices, or device parasitics in fee differential

structures. There are several heterogeneous sub-sections to fee circuit, such as current mirrors, dif

ferential pairs, or current sources.The devices tend to be large, so circuit area is dominated by

5.1 Introduction 33

device area, rafeer than wiring. Wiring parasitics are important, but wiring complexity isusually

not considered an important problem. In the solution to analog layout synfeesis, fee emphasis has

been ondevice placement considering matching issues and merging of MOS source and drain dif

fusions to minimize area and parasitics. Routing algorithms which enforce differential matching,

capacitive, andresistiveconstraints are employed.

In DAC circuits adifferent set of design qualities are present, which limits fee application of

existing analog layout synfeesis approaches. Consider bofe fee generic DACissues, and feen fee

specific issues for fee segmented, current switched architecture.

For all DAC layouts, feere is asetof identical devices which must bewell matched, including

matched nominal resistance, capacitance, ordevice dimensions, and matched parasitics. Devices

areplaced in an array configuration, andregular placement in fee array is needed for cancellation

of process gradient effects, and to maximize matching. DAC circuits are less complicated fean

opamps, wife typically only two functional blocks - a matched element and a means for connect

ing it to fee output. For example, current switched implementations require current sources and

switches, resistor strings require matched resistors and analog switches, and capacitive structures

require capacitors and switches.

Because of fee regular, cellular nature of current-switched DACs, consisting of many similar

segments, most manual DAC layouts are implemented wife tightly packed abutting cells so as to

minimize fee interconnection area. For acurrent switched DACimplemented in DSYN, consider

fee layout at fee segment current source cell level and fee DAC module level. The DAC imple

mentation described in section 6.2 is used an example here. At fee cell level, fee key elements are

adigital decode circuit, an optional digital latch, adigital inverter, acurrent steering switch, and

fee matched current source for fee segment. This is amix of analog and digital circuit functions,

and there are more devices devoted to fee digital functions fean to analog ones. All digital func

tions haveminimum device lengths, butdesign specified widths, while analog current source

devices have bofe design specifiedwidths andlengths.When fee latches areincluded, there are22

digital devices, and only 4 analog devices, although fee analog devices may consist of multiple

unit element devices. Fig. 5.1 shows asimplified schematic for this DAC cell, including alist of

fee number of transistors ineach module. DAC performance is influenced by parasitic coupling

5.2 Layout Synthesis Approaches

ColSel

Circuit
#of

Devices

Decode 8

Latch 12

Inverter 2

I-src 2

Switch 2

84

Rgure5.1 Simplified schematic for aswitched Current Source DAC segment cell.

from digital signals to bias and output, and by coupling from analog output to bias. Resistive

drops, particularly in supply and bias lines may beimportant for static linearity. To minimize lay

out area, fee key problem at fee cell level is digital functions, wiferelatively small devices, and

complex wiring. If this section isdone inefficiently feen fee layout may betoo large.

At fee DAC module level fee layout consists ofmany identical cells which are tobeplaced in

a regular structure. If inter-cell wiring can be accomplished across fee cells, rafeer than around

them, and cells can beabutted, then this elimination ofrouting channels results inasignificant area

savings.

This chapter continues wife areview of bofe analog and digital circuit synfeesis mefeods

applicable to this problem, adescription of fee synfeesis approach taken for DSYN, and adiscus

sion of fee advantages and disadvantages of feat approach.

5.2 Layout Synthesis Approaches

In chapter 1included ageneral review of analog layout synfeesis, and there it was indicated

thatthe best candidates for general analog layout synfeesis used asimulated annealing algorithm

for placement, and area routing [C0HN91,CHAR94]-ln tMs section feese approaches will be consid

ered, but also some approaches previously used on digital circuits will be considered for applica

tion to DAC layout synthesis.

5.2 Layout Synthesis Approaches 85

5.2.1 General Analog Place and Route

This analog layout synthesis approach starts wife acircuitnetlist and some analog layout rules.

In KOAN/ANAGRAM [COHN91] these include device matching and parasitic minimization rules,

used to drive fee placement selection partof fee Simulated Annealing algorithm. The UCB tools

use this approach, and include performance driven constraint of parasitics [chaR94]> The place

ment step takes advantage of opportunities to merge diffusions to reduce layout areas. Analog

routingtools alsomatch andlimit parasitics, Analogroutingtypically limits resistive parasitics by

using metal wiring layers only. The programs may take severalhours to run, and fee layout is not

deterministic. When used wife synfeesis, the synfeesis algorithm must allocate some performance

degradation to fee layout process.

This approach works well wife opamp and comparator circuits, wife the characteristics

described in fee introduction to this chapter. The use of layout rules for device matching and per

formance driven parasitic constraints yields circuits which meet performanceobjectives when fee

layout is extracted and simulated. When layout areais dominated by MOS device sizes fee area

penalty for automated synthesis is not significant

Unfortunately feese approaches do not fit fee DAC synfeesis problem, particularly for fee

implementation used in DSYN. For digital decodes, latches, andanalog switch circuits feese lay

out synfeesis algorithms work poorly, because feedevicesizesin feese circuits maybe a small part

of fee whole, and circuitarea is a strong function of fee ability to solve interconnect problems.

This is fee wrong problem for feese solutions. A manual design may also take advantage of poly

siliconwiring forinterconnect anopportunity missedby fee automated programs. The fundamen

tal differences between feese circuit types make feese tools a poor choice for DAC cell layout

synthesis.1

Thereare other less important implementation dependent disadvantages. At present there is no

goodway to automatically routeacross acell wife feese tools, or ensureroutingbetween cells wife

abutment but this is more animplementation issuethanan algorithmic one. Also, fee slow layout

1. Automatic synthesis of digital logic circuits is not easy by itself. Most standard cell libraries employ manually
designed cells, oran automated technology shrink of amanually designed cell. There is some recent work in layout syn
thesis for logic cells [CHEN89].

5.2 Layout Synthesis Approaches ____ 86

step without predictable parasitics is not compatible with DSYN as it stands, butthe ability to

incorporate performance constraints inlayout synfeesis isanother effective technique for synfeesis

to specifications.

5.2.2 Layout Synthesis for Digital Circuit Modules

Though the outputs ofDAC circuits are analog signals, fee large number ofdigital signals ina

DAC, and fee obvious similarity of high speed DAC layouts to digital ROM and RAMmodules

suggests looking toward digital module generators for solutions to feese layout problems.

Tiling of subcells is acommonly used technique for module generation of ROM, FSM, and

RAMblocks [neff87]- m these layouts subcells are placed wifeconnections made by abutment.

Though fee complexity of fee module scales wife fee number of rows orcolumns in fee structure,

fee subcells are fee same for all module specs. Depending on fee module specification, fee number

of rows orcolumns, fee address space, orfee ROM contents maybe setby thechoice of cell tiled

at each location. The individual tilesinclude ROMor RAM cells, row drivers, column drivers,

sense amplifiers, oroutput latches and buffers. These are usually manually constructed cells.

Reducing fee area of individual cells wife tight manual layouts has alarge payoff inreduced mod

ule area and parasitics.

DAC layouts may beviewed in asimilar way. The DAC module may beconstructed wife an

array dominated by DAC segment cells. The complexity of fee DAC segment cell does notscale

wife DAC size, so fee same cell structure may beused for 6-bit to 14-bit module designs. Also,

layout mefeods which result in compact DAC segment cells will give big payoffs at fee module

level.

Device or cell stretching is asecond device customization technique found indigital module

synfeesis and custom device generation. In fee CADENCE tool set parametrized cells (pcells) use

automated stretch operations to correctly size transistors from atemplate [CADE94]- Modification

of subcells by stretching across auser defined plane allows customization of more complicated

cells. Stretching has been used at fee module level tocustomize datapath cells, creating more cell

space for routing when adatapath compiler required it rrcuJ94]. and instandard cell libraries to

size buffers on fee fly. Using stretching operations to modify manually designed cells mixes fee

5.3 DAC Layout Synthesis with Cell Stretching and Tiling 87

qualities of fixed template automated mefeods wife manual design. As in manual design, compact

layouts may be created by exploiting the polysilicon and diffusion as interconnect layers. The

stretching creates a customized cell wife desireddevice or cell dimensions. Because this technique

is a fixed template approach, variationsin element sizes may result in white space at fee cell level.

Algorithms for shape optimization have been implemented for template based synfeesis [KOH89]>

but for simple stretching operations in a multi-device cell, some white spacewill accumulate.

In DSYN, layout synthesis is implemented by using cell stretching to customize template

library cells, and tiling fee subcells tocreate aDAC module. The approach starts wifealibrary of

cells. The correct library cells are chosen, based on fee module architecture, and customized by

stretching according to input device dimensions. The customized cells are feen tiled to create fee

DAC module. Interconnects between cells are made by abutment. This mefeodwas found to meet

fee two most important requirements for DSYN. Module area was comparable to manual layouts,

and circuit parasitics could be predicted apriori, and feese predictions used within fee design syn

feesis optimization process.

The following sections describes thesynthesis implementation in detail, and discusses advan

tages, disadvantages, and synfeesis results for CMOS current switched DAC modules.

5.3 DAC Layout Synthesis with Cell Stretching and Tiling

Fig. 5.2 outlines the layout synfeesis process, including layout inputs, process, and outputs.
This section will cover feese layout inputs, fee algorithm used for layout and fee programs created
for feat implementation.

5.3.1 Inputs

There are two user inputs for layout synfeesis, acell library and fee optimization results from

circuit synthesis. The library consists of subcells for every part of the DAC module, including
DAC segments, row and column drivers, bias generation, analog buses, LSB cells, and spacer cells
needed to fill out fee tiled array. The cell Ubrary includes specifications for cell stretching, indicat
ing where acell should be stretched for each input device dimension. The stretch annotation

includes an indication of fee default dimension, so when aminimum device size is input no stretch

5.3 DAC Layout Synthesis with Cell Stretching and Tiling

Optimized Design Variables {# segments, Key W, Lofdevices}

Tiling
Variable
Values

±
Layout Preprocessor dt

All Layout Variables
(W. L of every device)

Cell Generation

Sizing Mode

DAC Cell Siziesl

Cell Generation

Layout Mode

Cell Layouts

STC

STC

Cell/Function

Cross-Reference

A

Complete DAC Layout

88

Figure 5.2 DSYN layout synfeesis process. For key elements are fee celllibrary, fee
LayoutPreprocessor (DT), fee Stretching program (STQ, and feeTiling Manager (TA).

is made. It also includes specialhorizontal andvertical stretchinglocations, which areused to fur

ther stretch fee cell to fee desired height or widfe. These height and width stretches are used to

rectangularize all cells, and force all cells in a row to fee same height. The cell designer is respon

sible for making certain that interconnections between cells will be made by abutment, and abut

ment or stretching operations will not result in design rule violations. Along wife fee library, fee

user must provide a cross-reference file for the tiling program, which associates library cell names

wife module layout cell types.

The design input from fee DAC circuit synfeesis step may be separated into two parts. The

device and element sizes are used to control fee cell stretching operations, resulting in desired

device dimensions.The high level DAC parameters, such asnumberof rows, columns, andlsb per

segment areused to determine fee number and types of cells used when fee DAC is tiled.

5.3 DAC Layout Synthesis with Cell Stretching and Tiling 89

5.3.2 Algorithm

From feeseuserinputs a stretching and tiling algorithm creates fee module layout. The first

step is fee creation of a tiling template for fee DAC module. Using fee cross reference input and

feemodule architecture design inputs, aDACarchitecture-specific program creates an assignment

of library cells for every location in fee DAC module array. Thesecond step is an initial cell sizing,

finding fee minimum cell size for the userinputs. The maximum cell height in a row is used to

determine therowheight, and likewise for columns. Then all cells are assigned height and widfe

dimensions to match their location in fee array, and cells are created wife feese sizes. The DAC

module is tiled from fee setof created cells, and all connections between cells are made by abut

ment A final step is to locate I/O terminals, and assign terminal names. In fee algorithm there are

two additional cell listing steps, used to limit fee cell sizing and creation tasks to only feenumber

of unique cells, rafeer fean fee total number of cells in fee module.

5.3.3 Layout Synthesis Implementation

Layout synfeesis is implemented wifethree programs. Thetiling template is created by fee DT

(Dae Template) program. Cell stretching and sizing is done by fee STC (STretch Cell) program,

and row/column sizing, and cell placement of fee tiled array isdone wife TA (Tile Array). The pro

grams require acell library implemented using fee MAGIC layout editor [scoT85]» ^ create

command scripts for MAGIC to implement all layout stretching and placement operations.

DT is a modulespecific template generator, which was developed for feese DAC modules. It

organizes the placement of cells into fee correct number of rows and columns for fee specified

DAC design. The cross-reference file is used to maplibrary cells to locations in fee DAC module.

The program is flexible enough feat architecture modifications, such as elimination of row drivers

orcolumndrivers may be accommodated through fee specification of empty cellsin fee cross-ref

erence file.

STC operates in either of two modes. It takes design inputs and a specified library cell, and

creates fee stretched version of fee cell. In sizing mode, it does notcreate fee cell, but predicts cell

size for this design input. In cell creation mode it generates fee stretched version of fee cell. The

program allows bofe vertical andhorizontal stretches, andkeeps trackof fee interactions between

5.3 DAC Layout Synthesis with Cell Stretching and Tiling 90

fee two, and fee shape of the cell after stretches have been implemented. It implements a final set

of horizontal and vertical stretches to shape fee cell into a rectangle.

TA organizes fee tiling process,callingSTCto do cell sizing,determining fee row and column

sizes, and feen placing fee cells. The cell listing steps described in the algorithm are used to mini

mize fee number of calls to STC. Connectionsare made by cell abutment.

The STC and TAprogramsare generic, and couldbe used for any array type structure.

Fig. 5.3 illustrates a simple stretching example. This is an inverter cell, wife stretches anno

tated for fee NMOS and PMOS devices, as well as stretch locations for horizontal (HORIZ) and

vertical (VERT) stretching. The annotations include fee default dimensions of fee devices affected

byfee stretches. In feese MAGIC cell layouts the annotations are simple labels, and feeCUT_ pre

fix is used to indicate their use in STC. The numeric suffix indicates fee default dimension. Note

scale: = 4 lambda

Figure 5.3 Simple cell stretch example, a) is fee unstretched library cell, b) is after
stretching with inputs W_NMOS=5, W_PMOS=10, and VERT=20.

feat fee default dimensions for fee NMOS and PMOS devices are 4, fee default height is 18, and

default widfe is 24 in fee figure. (All dimensions in this example are in lambda.) Fig. 5.3a is the

library cell. Fig. 5.3b is fee cell after stretching, wife inputs as indicated. The devices have been

stretched to fee correct value, and fee cell further stretched to obtain fee correct overall height, of

20 lambda

5.3 DAC Layout Synthesis with Cell Stretching and Tiling 91

Fig. 5.3is a more complicated example, used for a DAC segment, including a digital decode,

an inverter, switches, and current source devices. Note that all of fee device widths may be modi

fied, and current source device lengths may be modified also. The figure shows fee library cell and

fee stretched, rectangularized version. Analog layout techniques, such as shielding of signal lines

from digital switching lines on fee leftside of this cell, aredone through hand layout of fee library

cells.

[Hiili!
lii^PSna

S^r;:*:;!

i

mm

a) Library Cell

b) Stretched Cell ihwMWMimmww*'-^

Local

Decode

Latch &

Inverter

Current
Switch

Current
Source

Bias

Connects

Figure 5.4 Examplesof fee library cell and its implementation for a DAC segment

5.3 DAC LayoutSynthesis with Cell Stretching and Tiling 92

Fig. 5.5 is an example of an 8-bit DAC module created from design specifications. The full

design is described in chapter 6, but here it is used as an example of a tiled DAC module. The final

design has 4 lsbs per segment, wife 4 rows of 16 segments each. The second row is used for fee 3

lsb segments. The boundary cells on fee left, right, and top are used for row and column latch/

driver cells. Analog I/O uses fee center cells, and bias generation cells are placed at 1/4 and 3/4 of

fee way across fee rows.

Figure 5.5 TiledDAC module for an 8-bit example.

5.4 Layout Synthesis Conclusions 93

5.4 Layout Synthesis Conclusions

5.4.1 Disadvantages

Themost important disadvantage for mislayout synfeesis method is the requirement of aman

ually designed cell library. When migrating to a new technology, wife different design rules, this

requires fee creation of new cells, or at least amodification of existing cells. This disadvantage is

alleviated by two factors. If scalable layout design rules are used [scoT85]» men toe same library

may be used across multiple technologies. This mefeod has beenused for digital cell libraries

scaled from 3 mm to 0.8 mm line widths, but recent technology shrinks have tendedto reduce

channel lengths, but not interconnect pitches, sothis seems less likelyin fee future. It may make

sense to redesign cellsto take advantage of additional interconnect layers as feey appear in new

technologies below0.8 urn channel length. A second factor is that fee required library cellsare not

complex, and there are only five library cells which actually contain transistors in fee current

switched DAC module. (Five others contain interconnect only.) Modifying fee cell library for a

new technology is a one time job which takes a few days time.

A second disadvantage relates to fee useof stretched and tiledcell library for layout. This can

result in white space in fee layout for tworeasons, due to white space in thecells, and empty cells

in fee module.

The useof a stretched library cell is equivalent to a fixed cell template, wife no shape optimi

zation. It is well known feat if a fixed cell template is used, feen somechoices for device sizes may

result in white space in fee cell. In this implementation cell white space has not been significant

because of fee alignment of alldevicewidfe stretches, andfee range of variations ofcurrent source

channel lengths. The most commoncellin the DAC moduleis fee segmentcurrent source cell.For

fee two 5 volt designs described in chapter 6, fee amount of required circuit andinterconnect area

as a percentage of total cell area may be used as a measureof layout efficiency, wife 100% for a

cell wife no white space. This is a measure of fee difference between fee module size obtained

using thisCAD approach and fee possible full custom module size, given identical circuit topolo

gies. For feese designs, feat percentage is 92% and 94%.

5.4 Layout Synthesis Conclusions 94

For some DAC implementations feeuse of sparsely filled cellsis amoreimportant loss of cir

cuit area. In particular, fee 100-Msample/s 8-bitDAC designin Fig. 5.5 has 16 columns,but only

3 lsb cells. In fee lsb row of fee array, there areonly 3 cells wife transistors in them, out of 21

across the array. This row results in most of fee white space in this DAC implementation. The

module layout efficiency is estimated atof 81% due mainly to these empty cells and additional

white space in fee column driver row. (In contrast, fee 10-bit example matches fee number of col

umns wife fee number of LSB cells, resulting in 100% space efficiency.) In general, fee trade-off

of a simpler overall DACimplementation, wife deterministic layout of lsb elements, wasmade at

fee expense of some wasted circuit area. The layout densities for these circuits was acceptable for

a CAD solution.

5.4.2 Advantages

This layout synfeesis approach satisfied all DSYN requirements, including fee quality and

compactness of fee results, andfee predictability of layout related parasitics.

Though not as compact as manual designs, fee layouts generated by DSYN using stretching

and tiling are much more compact fean feose created bytypical analog synfeesis tools, especially

for fee digital decodes, buffers, and latches required in feese cells. Use of acell library results in

compact cell layouts through fee use of all possible interconnect layers and compact module tiling

due tocell terminal placement for abutment connections. DAC specific analog layout issues, such

as device placement for matching, parasitic capacitive coupling effects, and parasitic resistive

effects, maybe considered whencreating fee library cells.

The layout process is apredictable algorithmic process. When fee cell library is known, it is

possible to predict all parasitics a priori from design variables. This is the approach taken wife

DSYNfor inclusion of layout parasitics within fee optimization process.

The layout synfeesis step takes a few minutes of compute time on a workstation. This is not

fast enough for inclusion wife circuit extraction inacircuit optimization, but this relatively short

layout time does help when debugging stretch annotations in fee cell library, and checking fee

stretched cells for connections through abutment

5.4 Layout Synthesis Conclusions 95

5.4.3 Summary

The advantages found for this approach led to its use for DAC layout synfeesis. It meets fee

requirements for fee design synfeesis approach usedin DSYN, and results in compact layouts of

bofe analog current sources and switches, and fee digital circuits used in fee DAC module. The

completelayout process typicallyrequires 3 minutes to runon a DECstation 5000/133. The syn

feesis mefeodsused herehavebeenused for digital circuits, but their application to analog DAC

modules is a new.

96

CHAPTER 6

DAC Module Synthesis Implementation

and Results

6.1 Introduction

In this chapter fee implementation of fee current sourced DAC module generator is described,

and fee results are discussed. It starts wife description of a high speedcurrent outputDAC archi

tecture implemented here, wife adescription of important design parameters and mapping of feose

parameters to layout geometries and module size. This is followed by a discussion of fee technol

ogy inputs, sources of non-ideal DACbehavior, and steps taken in aDACimplementation to miti

gate someof feese effects. Then fee estimation process for this DAC implementation is described,

determining performance from design inputs. The design synfeesis process is usedto size fee DAC

for two specifications. After feese test devices were fabricated, measured results could be com

pared to specifications and estimated performance. The sources of performance differences are dis

cussed, for future incorporation of corrections to fee DSYN process. A discussion of feose circuit

and performance effects feat could notbe included in fee synfeesis process is undertaken. Finally,

some conclusions aredrawn from fee synfeesis, fabrication, andtest process.

When writing this chapter, it was difficult to find agood place to start. Here fee synfeesis pro

cess is described in a linear manner, start to finish, but in practice fee process is moreorganic.

There is ahighdegree of interaction between fee parametrization of fee design, fee choice of sim-

6.2 A Parametrized Current Switched DAC Module 97

illation/analysis mefeods, fee layout implementation, and fee optimization process, and it is diffi

cult to consider each feese issues individually.

6.2 A Parametrized Current Switched DAC Module

The video DAC application was a target for this work, and a current switched DAC architec

ture capable of meeting feose specifications was chosen. In this application current is sourced from

fee DAC, and used to drive a transmission line directly. The current source architecture has PMOS

current sources for this reason. In this section fee overall module design and module parameters

will be discussed. Then each circuit will be described, wife its design parametrization. Free and

dependent variables will be labeled in each section. The complete design has 20 free variables.

This is an elaboration of fee DAC architecturedescription at fee end of chapter 2.

6.2.1 DAC Module Circuits

The DAC module is tiled from 12 stretched cells, of which 6 contain important circuits, while

fee remainder are used for routing. The key subcells are located and listed in Fig. 6.1. They are fee

switched segment current source cell, the switchedlsb source cell, the bias cell, an analog bus cell,

row latch and driver cell, and column latch and driver cell. All have may be stretched to change

key device sizes, except the analog bus cell, where stretching changes fee widfe of the analog

buses. Bofe digital and analog circuits can be modified in this module.

Col & Lsb Cell Types

Clk I ••• •BH3 •••I LbLi 1 ks
"- ' Latch/Buffer

Row

Figure 6.1 Module layout for high speed, current switched DAC.

Analog Busing

' I 1Segment Switched
ow | 1current Sources

Lsb Switched
Current Sources

Bias

I | Routing/Space

6.2 A Parametrized Current Switched DAC Module 98

The signal flow through fee module passesdigital datain at fee top and side boundaries, latch

ing and buffering row and column select signals at fee edge of fee array. Row and column select

signals are driven across fee module. Each individual cell determines if it should be enabled, and

sends fee currentsignalto eifeer anoutputor dump line. The analog bus in fee centerof fee array

collects fee output and passesthe current signal out throughthe bottom of fee array.

Datalatches arelocatedat fee row/column inputs, and afterbefore fee switches in fee current

source cells. True Single Phase Clock (TSPC) ryuAN89] latches are used throughout, wife latching

on feerising edge of fee clock. Latches are required to align fee data, preventing large glitches in

fee output. In alower speed design fee latches may be omitted.

An additional binary to thermometer encoding is required before row and column signals are

input to the module.

At fee modulelevel there are 5 parameters, of which4 are independent (or 'free'). These are

listed in table 6.1. N, M, Rows and Cols must obey fee relationship N =M*Rows*Cols. The right

hand column is used to specify fee typeof variable when it is used in optimization. Classifications

arefree, dependent, previouslydefined, and fixedby fee user.

Table 6.1 DAC Parameters at Module Level

Variable Description TV!*

N Resolution -Number of DAC levels. free

M Segment Size, in lsb free

Rows Number ofmodule Rows free

Cols Number ofmodule Columns dependent

Bias Number of bias elements ineach halfrowof thearray. free

6.2.2 Switched Segment Current Source

The switched segment current source consists of aM unit current source, its switch, alogical

decode, alatch, an inverter. The block diagram and transistor level circuits are inFig. 6.2. The dig

ital devices and analog switch devices have minimum channel length. The digital decode deter

mines if this element istobeswitched on. When fee Next_Row signal ison fee cell should always

be selected. Otherwise fee cell is selected when bofe fee Row and Col signals are on. The TSPC

6.2 A Parametrized Current Switched DAC Module 99

latch The current steering switch devices usetwo gates and a shared diffusion per switch device to

minimizeoutput capacitance. The current source is a cascode current source, madeup of M indi

vidual sources, placed in amirrored arrangement to null current direction mismatch effects. Sepa

rate analog and digital power supplies are used. Analog Vdd is routed in a wide bus over fee

current sources, minimizing resistance in that bus.

Cfk

Row Col Nextrow

+ + *

Sel

Decode

3S = (N + RC)

Latch/Invert

Bias

Cbiasv"v

Out Dump

(a)

Sel

Sel

Decode TSPC Latch

Dvdd

r^HC i—C i—t r^nC

il
Inverter

ifH
Sel

AV88

Cg^

!=£
DV88

Avdd

c%

±d5^dS

Bias—|L M1

Cbias-V M2

Ht[MS1,2 Jj
Out Dump

(b)

Cl*^

±d5

Sel

Current

Source

Switch

• Sel

Figure6.2 Segment Switched CurrentSource, a) Block diagram b)circuits.

User input is used to set all device widths, andlengths for fee current source devices. There are

16 design variables for this circuit, listed in table 6.2.

Table 6.2 Variables for Switched Segment Cell

Variable Description Type

M Number of sources per segment Defined

Wl WofMl Free

LI LofMl Free

W2 WofM2 Free

L2 LofM2 Free

6.2 A Parametrized Current Switched DAC Module

Table 6.2 Variables for Switched Segment Cell

Variable Description Type

WS1 WofMSlandMS2 Free

WNLNV W of NMOS in inverter Dependent

WPINV W of PMOS in inverter Free

WPJ^LAT W of PMOS in N section of latch (first two legs) Free

WN_NLAT W of NMOS is N sectionof latch(firsttwo legs) Dependent

WP_PLAT1 W of PMOSin first P section of latch(thirdleg) Free

WN_PLAT1 W ofNMOS in first Psection of latch (third leg) Dependent

WP_PLAT2 W of PMOS in second P section of latch (fourth leg) Dependent

WN_PLAT2 W of NMOS in second Psection of latch (fourth leg) Dependent

WPDECODE W of all PMOS in decode Free

WNDECODE W of all NMOS in decode Free

100

6.2.3 Switched LSB Current Source

The switched lsb current source cell is functionally similar to fee segment current source cell,

except feat it has asingle input enable line, does not require fee logic decode, and has only asingle

current source. Theblockdiagram and schematic are in Fig. 6.2. Thecurrent source is asingle cas-

codeof two devices, wife fee same dimensions and bias voltages as fee segment source. In each

cell there is only one source, so it cannotbe mirrored, but fee lsb current source cells aremirrored

and grouped so feat for all even codes feere is an equal number of right-to-left and left-to-right cur

rent sources connected to fee output.

The same user inputs which set fee segment cell control sizing in fee lsb cell. The digital

devices andcurrentsource switches arescaleddown due to reducedcurrents and device sizes seen

in this cell.There are no cell specific independent variables.

6.2.4 Bias for Current Sources

Bias cells create ahigh swing cascode bias [leth87]- The circuit is inFig. 6.2. The MB1 and

MB2 devices match fee Ml andM2 current source devices. M5, M7, andM9 create a second bias

current which drives Ml3atahigh current density tocreate fee cascode bias voltage. The cell has

6.2 A Parametrized Current Switched DAC Module

Clk

Sel

HI

AV88
i

Sel

TSPC Latch

BlasHC M1 fUrrent"2 Source
Cbias—|f M2

(b)

he[msi,2]a
Out Dump

Switch

.Sel

101

Figure 6.3 LSB Switched CurrentSource, a) Block diagram b) circuits.

half fee number of current sources as fee currentsegment cell, to make room for fee additionalbias

circuitry. Bias circuit design parameters are summarized in table 6.3.
Avdd

MB1 If

MB2

ibias

Bias

Cbias

Avss

Figure 6.4 DAC bias cell circuit

Bias cells are placed in fee center of each halfrow, to first order match resistive drops seen by

fee bias to resistivedrops seen by fee current segments. One of fee design inputs sets fee number

ofbias cellsper halfrow. If feebias mustbe settled quickly, oneoptimizer option is to increase fee

number of bias cells, reducing fee impedance on fee bias lines.

6.2 A Parametrized Current Switched DAC Module

Table 6.3 Bias Cell Variables

Variable Description TVpe

M Number of sources per segment Defined

Wl WofMBlandMB5 Defined

LI LofMBl,MB5,andMB13 Defined

W2 WofMB2 Defined

L2 LofMB2 Defined

W7 WofMB7andMB9 Free

L7 LofMB7andMB9 Fixed

W13 WofMB13 Free

102

6.2.5 Analog Bus

The analog signal bus cell is used toconnect supplies and bias to fee current sources, and pass

the outputcurrent out of fee cell. It consists of routing on metal1 and metal2, and polysilicon

shielding geometries to reduce substrate coupling to fee analog output. Stretches are defined in fee

analog bus cell to match fee current source segment, so feat interconnects will align. Also, bus

widths are controllable. The minimum bus widths for bias current, output, and supply are setby

electromigration rules. In some low voltagedesigns buses must be widened further to reduce non-

linearity due to resistive drops. Parameters aresummarized in table 6.4.

Table 6.4 Analog Bus Variables

Variable Description TVpe

WVDD Width ofVdd supply Free

WVSS Width ofVss Dependent on
Electromigration

rules.
WIBIAS Width of Current Bias Input

WOUT Width ofCurrentOutputs

6.2.6 Row and Column Latch/Buffer Circuits

Row and column latch/buffer circuits areused to latch fee input data and drive row, column,

and lsb select digital signals. Thelatch and buffer circuits are identical for all of feese, except for a

signal inversion in fee lsb select path. The layouts differ, to better pitch match fee DAC module.

6.2 A Parametrized Current Switched DAC Module 103

The basic circuit is illustrated in Fig. 6.2. The row cell consists of a latch/buffer circuits for fee

Row and Next_Row signals. The column cell has latch/buffer circuits for Col and LSB signals.

Sel TSPC Latch

Clk
TSPC Latch

SelPhi
Sel

Buffer

Dvdd

.—Itf r-£ ,-Hf! ,—If!

c*K c% ClkS£ Clk*tf

Mt: Mt: •-< »-*;
Dvss

Dvdd

i! 3
SelPhi

H \ 3
DV88

(b)

SelPhi

Sel Buff

Figure 6.5 Latch and Buffer circuit topology used to drive row and column signals, a)
block diagram, b) circuits.

For feese circuits fee TSPC latch circuit is not parametrized, but fee inverters in fee buffer are.

Table 6.5 lists fee parameters for fee row and column versions of this cell.

Table 6.5 Variables for Row and Column buffers.

Variable Description TVpe

WC1 Scales columnbuffer first stage. Free

WC2 Scales column buffer second stage. Free

WR Scales all row buffer sizes Free

6.2.7 Other Layout Cells

There are a half dozen ofeer layoutcells in fee DAC module,used for routing and spacing of

fee DAC design. Most have simple stretches used to obtain correctcell size and to pitch match

routing to ofeer cells.

6.3 Inputs for DSYN 104

6.3 Inputs for DSYN

A synfeesis tool depends on accurate inputs for circuit performance estimation. Typical inputs

for any circuitdesign problem includetechnology inputs anddesignrelated inputs. Technology

inputsincludedevice models, models for allelectrical elements, andpredicted lot-to-lot process

variation. Design related inputsinclude power supply voltages, biascurrents, andoutputloading.

The inputs must specify bofe nominal inputs and fee range of variation for all of feese. For this

analog circuit design, this basic set of inputs must be expanded upon, to include estimates of

device mismatch due to random variation, and random process gradients. In these circuits rela

tively high currents may be present, so electromigration rules must be included. Device thermal

and 1/f noise were not important in feese applications, so accuracy of feese factors was not mea

sured in this DAC work, though in low power amplifier, filter, buffer circuits noise models would

be an important input.

Accurate designestimation is animportant goal forthis work. According to fee estimation phi

losophydescribed in section 3.3.1, anyerrors in fee design inputs should be corrected before feey

are used in calculations. For example, corrections to MOS deviceoutputconductance (g^) mea

surements shouldbe made before g^ is used to compute currentsourceR^ and DAC INL. In this

section known errors and limitations to fee input will be highlighted, so feat front-end corrections

can be made.

This section discusses each of feese synfeesis inputs in turn, noting fee importance of fee

input, fee accuracy of fee available data, and any special considerations when used in synfeesis.

6.3.1 Nominal Process

The process model consists of two parts: fee MOS device models and electrical characteristics

for circuit interconnects. Before considering second order effects, fee nominal modeling data

should be evaluated. For this work a 1.2 urn foundry process from ORBIT Semiconductor was

used. Test devices were measured for fitting to device models, and other process specific informa

tion was obtained from fee technology descriptionjORBI92].

6.3 Inputs for DSYN 105

6.3.1.1 Nominal MOSFET Models

The nominal device models for a process are fitted from measured device performance curves.

The definitionof a good model is application specific. Most MOS device models are adequate for

digital circuit performance, but none of fee widely available models meet all fee requirements for

analog circuit applications. Tsividis offers a list of 6 specific tests, and no commonly available

model passes all of theserxsrvo^]1- *n specific applications other model deficiencies may also result
in erroneous results2. As seen in section 3.4, fee model fit for gds in weak inversion and near fee

linear/saturation region boundary is a weak point offee models available in fee HSPICE simulator,

and this is an importantpart of fee curve for accuratepredictionof DAC static performance. A der

ating of gdS of all devices by a factor of 2 is used at all times, compensating for fee worst case mis

fit seen for devices in strong inversion.

6.3.1.2 Nominal Parasitics and Electromigration Rules

Nominal process parasitics and minimum wiring widths were provided by fee foundry. These

included wiring layer capacitances, sheet resistance, and maximum current densities for metal 1

and metal 2 interconnects.

6.3.2 Process Variation

Process variation is fee lot-to-lot change in process characteristics over time. For fee technol

ogy used in this work worst case variations to device model inputs were specified, and feese were

used to create fast and slow test files. Fast and slow modifications for fee NMOS transistor are

illustrated in table 6.6. The PMOSdeviceused identical magnitude variations, wife appropriate

signs. The fast NMOS / fastPMOS, andslow NMOS / slowPMOS caseswereused in designesti

mation to find worst case design points.

For other circuit parasitics range of variation of resistances and capacitances was given. For

this DAC circuit fee nominal capacitance values were used, and worst case resistances. Electromi

gration rules are expressed for a worst case lifetime, so no additional spec biasing was used.

1. BSIM 3 models in development atU.C. Berkeley have passed mostof these, buthavenotpassed theweakinversion
output conductance problem. [HUI94]

2. Gate capacitance inmoderate inversion is an important, poorly modelled, effect in some low power gain block appli
cations [CHIE94].

6.3 Inputs for DSYN 106

Table 6.6 Nominal, Fast, and Slow Variations for an NMOS Transistor in Orbit 1.2 urn
technology [ORBI92].

Technology Input Nominal Fast Bias Slow Bias Units

tox 225 -15 +15 Angstrom

vt 850 -200 +200 mV

Weff W-Wd +0.25 -0.25 |im

Leff L-2*Ld -0.15 +0.15 Urn

6.3.3 Temperature Variation

All semiconductor products are specified for an operating temperature range, and designs are

built to function across a range of junction temperatures. Device models include temperature

effects, and circuits are simulated atfeeextremes offeetemperature range. Worst case design tech

niques identical to feose used for process variation are used toensure feat fee design will function

in all applications. Inthis research temperature effects were not included explicitly. The approach

for synfeesis including operating temperature range is a worst case analysis approach, likefeat as

described for process effects, soleaving outthis aspect of fee problem does notcompromise fee

overall applicability of fee results.

6.3.4 Statistical Matching Effects

Device mismatch is animportant factor for DAC performance, causing static non-linearity.

Device mismatch is typically separated into two components, one fee mismatch found in adjacent

devices, dependent on fee geometry of fee devices, and fee second mismatch a function of fee dis

tance between feedevices. In amplifier circuits, fee distance function is usually insignificant, but

in this case, wife matched devices separated bydistances upto 1000 um, bofe effects are signifi

cant

6.3.4.1 Random mismatch

Several studies of random mismatch behavior have been done, looking at causes and models

for capacitor and MOS device mismatches [SHYU84,LAKS86,PELG89]- The two earlier studies

emphasized edge effects causing variations in device widfe or length, and formulated models

based on feese assumed causes of device mismatch. Data was feen fit to feese models. Unfortu

nately, fee test data used did not have a wide enough range ofdevice aspect ratio toadequately test

6.3 Inputs for DSYN 107

feese assumptions. Also fee test data taken in feose works was for single technologies, so it is dif

ficult to re-apply feat data to a newer technology. In Pelgrom's work, much more data was taken,

wife a larger range of device aspect ratios and in several MOS technologies. The results from fee

large aspect ratio devices refuted fee mismatchdue to edge effects model, and instead suggested

random variation in mobility (p) and threshold voltage (Vt) across a device's area. This gave an

expression for variance of Vt and p, inversely proportional to device area (W • L):

(V = W^L (61)

Wife AVt and Ap, being constants specific to fee technology. These technology specific constants

were plotted as a function of oxide thickness (t^). When this was done no trend in Ap was obvi

ous, but AVt was inversely proportional to t^. This is consistent wife fee a physical model of P

variation due to random mobility variation in fee device, andVt variation due to random trapped

charge at fee oxide interface.

Pelgrom measured devices in technologies wife tox ranging from 25nm to lOOnm. Most of fee

datais from processesin use at Phillips, althoughhe includes some data points from ofeer sources.

In this DAC synfeesis application, fee technology uses a22.5nm process from Orbit Semiconduc

tor, so a conservative extrapolation to a foundry and technology outside Pelgrom's data is neces

sary for this work. The expressions used for Ap and AVtused in DSYN are:

Ay^O.66*^ (6.3)

Ap =0.02xl0-6 (6.4)

Where t^ isinmeters, AVt isinvolts*meters, and Ap isinchange*meters.

After observing results from fabricated devices corrections to fee estimates ofAVt and Ap may

be made. In an industrial setting betterdata is usually available for determining feese constants

before synfeesis is done.

6.3 Inputs for DSYN 108

6.3.4.2 Mismatch due to Device Spacing

In all of feese matching papers, device mismatch as a function of distance has also been con

sidered. For all effects, a good model has been:

02(d)=S2d2 (6.5)

where d is fee distance betweendevices, and S is a technology dependent constant. This is fee

model for two devices placed along one dimension; asigma space (aspace) analysis may be done to

see find an appropriate model for multiple devices in2dimensions [mich92]» in which all pairs of

devices meet this matching model. The solution tofee analysis is dependent onfee a2(d) function.

When a (d)a d^, feesolution corresponds to a linear gradient across fee space, and feestochastic

nature of fee problem is expressed through feedirection andslopeof fee lineargradient

In DSYN a lineargradient model is used, wife an application dependent worst case direction

assumed, andmagnitude setby S forfeetechnology. It willbe seenfeatfee assumption of linearity

allows cancellation of mostof fee DAC nonlinearity causedby this effect. Again, limiteddata is

available, so values ofSVt and Sp were taken from a50 nm process characterized by Pelgrom.

SVt = 4.0V/m

Sp =2m"1

6.3.5 Design Inputs

Design inputs can be expressed eifeer as constants, usedas performance inputs or constraints,

or mayexpress a domain of operating conditions forproper device function. Analog integrated cir

cuits areusually specified for operation across a range of power supply, bias, andloading condi

tions. For thisDAC implementation fee range ofpossible bias andsupply conditions was included

as part of fee worst case analysis of fee circuit, and fee external loading was simulated at fee max

imum specified lead inductance and load capacitance.

6.4 DAC Implementation Techniques 109

6.4 DAC Implementation Techniques

Before getting to fee actual optimization of fee current switched DAC design, feere are some

low cost implementation steps which can be used to reduce the effects of the non-idealities

described previously. This includes current source layout for matching and current source switch

ordering to minimize process gradient and resistive drop effects. In this section the general

approaches are outlined, and feen fee circuit implementations for this work are described.

6.4.1 Layout for Matching

Several rules for layoutof matched MOSdevices should be obeyedin integrated circuit imple

mentations [PELG89.NAKA91]- Toreduce random mismatch, fee important rules are:

1 Matched devices should have fee same dimensions.

2 Matched devices should have fee same orientation.

3 Matched devices should have current flow in fee same direction.

4 Metal coverage of fee device, especially Ml, should be identical.

5 Layout adjacent to matched devices should be identical.

In this implementation, feese rules were generally followed in fee library cell layouts for fee

segment currentsource, lsb currentsource, andbias cell. Rules 1 and 2 were followed throughout,

wife all segment current sources implemented as multiples of lsb weighted current sources.

Devices were mirrored to reduce rule 3 mismatch. Rule 4 was followed except in fee cascode

devices of lsb sources. Rule 5 was not strictly followed, and this has been identified as a source of

error in fee test circuits.

6.4.2 Cell Switch Ordering for Improved Linearity

Process gradients and resistive drops result in graded errors across large arrays of devices. In

this implementation fee power supply is distributed through abus in fee center of fee array, result

ing in graded errors in fee vertical direction, and symmetrical errors in fee horizontal direction

(Fig. 6.1 illustrated this layout) The turn on ordering of fee cellsmay greatly effect fee DAC INL.

If fee devices are turned on in a sequential, left to right ordering, INL error is accumulated across

half of a row before it is cancelled by fee negative error in the second half of fee row. This INL

accumulation results in a significant error. Nakamura introduced a technique of hierarchical sym-

6.4 DAC Implementation Techniques

-.2

(a) §|
5

(b)

Graded Error

1 1 , 1 J 1 1 1
Location

12 3 4 5 6 7 8

1 5 8 4 3 7 6 2

INL

Hierarchical
Symmetrical"

110

Sequential

(c) Input Code

Figure 6.6 Switchordering cancellation of gradients, a)Graded error b)Sequential switch
ordering, c) Hierarchical Symmetrical switch ordering. d)INL for feese mefeods.[NAKA91]

metrical switching which cancels fee error accumulation due to graded and symmetrical errors

across arow, through anocost cell ordering scheme [NAKA91]- Flg- 6.6 illustrates this concept for

anexample wife a linear gradient The maximum INL for feese switching schemes is:

E N^
Sequential Switching: INL = ^

8 N-l

Hierarchical Symmetrical Switching: INL = E/2

(6.6)

(6.7)

Note feat fee INL wife sequential switching is proportional to fee number of elements (N) times

fee total error (E). For fee suggested switching scheme fee INL is only proportional to E.

When fee graded error E is due to a process gradient effect, whichis related to output signal

through a linear relationship, feen an expression for E is:

E = Nl •K •Seffect •N2 •CellSize (6.8)

Where Nl is fee number of lsb elements per switched unit, and N2 is fee number of units in

fee row. N2 * CellSize is fee total distance across fee switched devices. Seffect is fee slope of fee

graded error source. For this circuit animportant effect is Vt mismatch of fee maindevice, which

is related to fee outputcurrent through fee gm of feat device:

E = N1 • gm (M1) ' Sv,' N2 •CellSizeVt (6.9)

6.4 DAC Implementation Techniques 111

An important limitation is feat E sets a lower limit for INL, regardless of fee switching scheme

applied.

This switching schemeis applied to bofe fee rows and columns in the DAC design. The DAC

has M lsb/segment, R cells per Row, and C cells per column. Each row is turned completely on

before fee next row is used. Typically fee DAC aspect ratio is near 1, so assume DacSize = N2 *

CellSize is fee same for bofe rows and columns. Then

E(col) =M-gm(Ml) SVl- DacSize (6.10)

E (row) = R •M•gm (Ml) •SVt •DacSize = R •E (col) (6.11)

Wife these assumptions, fee INL contribution when the rows are switched, E(row), is most

significant. In a low voltage, highcurrent design, theE(row) factor due to threshold voltage gradi

ents prevented the design from meeting INL specifications, and further reduction in gradient

induced INL was required.

6.4.3 Row Splitting

A row splitting scheme was used to eliminate fee E(row) effect. The array was split in half

horizontally, and each logical row consisted of a left and right half-row. These half-rows were cho

sen so feat all logical rows havea common centroid layout, cancelling linear gradient mismatches

between rows. Fig. 6.7 illustrates this technique.

(a)

m

H

Figure6.7 Rowsplitting for common centroid rowlayout. Eachshading represents a logical row
in a 4 row DAC design, a)Theoriginal design, with each logical row corresponding to a physical

row. b) Rows split, wife fee common centroid of each row at fee center of fee DAC.

6.4 DAC Implementation Techniques 112

In this DACimplementation fee current source array is already splitinto two halves to allow

routing of feelrias, signal, and supply through fee center of the array in a vertical bus (See Fig.

6.1). The row select signals are routed in from eifeer side. This design was initially selected to

reduce resistive drop effects from fee analog busto fee extremes of fee array. In thisimplementa

tionthe addition of row splitting is free, requiring onlya different ordering of row select signals

between fee two sides of fee array.

6.4.4 Current Carrying Bias Lines

Resistive drops may be an important effect in current source DAC designs wifelarge output

currents. Current flows in fee power supply buses, fee output signal lines, and fee bias input cur

rent line. It is impossible to avoid current in fee power supply buses, and fee main design tech

nique is to let fee synfeesis process size the widfe of feese buses. Parasitic resistance in fee output

path doesnot impactlinearity significantly, because it is orders of magnitude smaller than fee out

put impedance of fee DAC. If fee signal line usedto set current source gate bias carries current,

feen there will be current source mismatchacross fee array.

This source of mismatch canbe avoided. Fig. 6.8 illustrates fee technique used to eliminate

this effecton non-linearity in this DAC. Thebias current is run in a separate signal line from fee

biasvoltage, andno biasvoltagesignal seesany DCcurrent Drops in fee biascurrent line are not

seenby fee DAC current source cells, so feese donotaffect linearity.

Vdd Vdd Vdd Vdd Vdd Vdd Vdd Vdd Vdd

Vbias' 1 I I ' I I I I ~

DAC Module (bias

Key

•

•

Bias

Source

bias current

Figure 6.8 Bias Voltage signal carries nocurrent, and sees zero resistive drop.

6.5 Design Estimation for a Current Switched DAC 113

6.5 Design Estimation for a Current Switched DAC

The design estimation process follows feat describedin chapter4. Using fee design inputs, a

full description of all element, bus, and cell sizes is created. Succeeding simulation and analysis

steps are used to predict circuit performance. In this section fee specific design steps and simula

tions for a current output DAC are described. This is broken into fee initial problem setup phase,

simulation/analysis for static performance prediction, and simulation/analysis for dynamic perfor

mance prediction.

6.5.1 Problem Setup

In fee problem setup phase, fee user input is combined with technology and layout specific

datato determine physical dimensions for fee DAC cell. The DAC design is a parametrizeddesign

[KOH89]» so a11 design dimensions are computed from a smaller set of design inputs. Additionally,

circuit elements which area function of layout parasitics are sized, and device mismatch is pre

dicted. The same setup step is used to produce fee necessaryinputs for layout synfeesis.

This is done through fee following steps.

1 Compute all device sizes from parametrized input.

2 Compute device random mismatch from device sizes.

3 Compute cell and DAC size from device sizes.

4 Compute process gradient mismatch from cell and DAC sizes.

5 Compute bus sizes from inputs and electromigration rules.

6 Compute parasitic resistance andoverlapcapacitance in signal buses.

7 Compute device diffusion capacitances from device widths.

At this point fee design is fully described.

6.5.2 Simulation/Analysis for Static Performance

When the designdescription is complete, DCcircuit analysis is used to find fee operating point

of fee circuit, and feen further analysis basedon fee operating point obtains circuit performance

measures. The circuitoperating pointis first checked for design feasibility. Then staticlinearityof

fee DAC is predicted based on deterministic and random effects. In fee implementation INL, DNL,

Gain Error, and Total Unadjusted Error were all included. Computing fee last two is usually rela-

6.5 Design Estimation fora Current Switched DAC 114

tively trivial once INL has been determined. INL and DNL are considered fee most important, and

will be discussed in depfe here.

6.5.2.1 Design Feasibility

Incircuit optimization a setof design inputs may result in a circuit operating point which vio

lates some of the assumptions made by the circuit designer. Most importantly in analog MOS

design, many devices should operate in the saturation region wife some margin. Indesign optimi

zation this is specified as a constraint, feat Vds - Vdsat > MARGIN. There are additional bias mar

gins featensure that feeinput current source has adequate headroom. Most offeese voltage margin

constraints canbeseenbyconsidering feeDAC bias circuit Thecircuit is in Fig. 6.9, andtable 6.7

lists fee applicable constraints, wifean explanation of each.
Avdd

MB1

MB2

ibias

AV88

Figure 6.9 DAC bias circuit

Bias

Cbias

Table 6.7 Design Feasibility Constraints

Constraint Explanation Typical Values (Volts)

vdsmarl Min. Vds - Vdsat for MB 1 0.2

vdsmar2b Min. Vds-Vdsat for MB2 0.2

vdsmarS Min. Vds - Vdsat for MB5 0.2

vdsmar9 Min. Vds - Vdsat for MB9 0.2

vdsat7 Min. Vdsat for M7 0.4

vinmarg Min. Ibias input voltage 1.0

6.5 Design Estimation for a Current Switched DAC 115

6.5.2.2 Deterministic Effects on Static Performance

There are two important deterministic effects which affect static performance, Finite output

resistance of fee DAC current sources, and resistive drops across fee array.

Output Resistance

The current source output resistance causes a second order nonlinearity as more current

sources are connected to fee output, creatingINL. The ratio of load resistance to output resistance

determines fee magnitudeof this error. In section4.3.6, fee gain error computationis made, based

on small signalparameters extracted from fee operating point and modulelevel parameters. The

maximum INL occursat fee midpoint of fee range. That result is repeatedhere:

Gain Error (in lsb) =N2 •Rload. gout (6.12)

INL (in lsb) = GainError/ 4 (6.13)

Resistive Voltage Drops

Resistive supply voltage drops result in second order gradients in effective bias voltage

throughout fee array. The supply isrouted from fee bottom center offee current source array, and

resistive drops result in adecreasing Vdd - Vbias going upfee center column and outfeerows. This

is non-linear, because current in fee supply decreases fee further one travels from fee supply input.

Fig. 6.10 plots fee shape of supply drops for arow supplied at one end. It is assumed feat supply
drops are small, so all current sources see fee same sensitivity to supply drops through fee gm of
device Ml.

Ifall wiring resistances and current sources are equal, feen aunit voltage drop is defined by:

Vunit = Vc^wire (6.14)

and fee voltage drop at fee 1th current source in arow ofRsegments can be expressed:
i

VdroPi =vunit£ (r -j) =vunit (R. i- i!i±!i) (6.15)

6.5 Design Estimation fora CurrentSwitched DAC 116

Location

Figure 6.10 Current source arrays cause anon-linear supply voltagedrop. All resistors
and current sources are identical in this plot.

The current source error is linearly proportional to this voltage drop through gm(Ml). lb scale

this to units of lsb, divide by i^. Miki has analyzed fee non-linearity observed when this current

source non-linearity is switched wifeasymmetrical switching scheme(MiKi86i:

INL
NRowsVunit-gm(Ml)

lsb 36 J5
(6.16)

This is an optimistic limit, because in computing it Miki assumed a continuous function for fee

voltage drops, and infinitesimal switched elements. A more pessimistic analysis includes fee dis

crete nature of fee switched elements. If Row splitting were not used, fee worst case INL would be

due to fee difference between fee average current and fee total worst case row current:

INL= (Vworst-Vav.).M.NCols
«m(MD»m

llsb

INL = V
unit I

f2NRows-3NRows+l
M-N

g»(MD
Cols'

where V, -t = R„,. • NrA,p • M • Ileu
unit wire Cols lsb

lsb

(6.17)

(6.18)

6.5 Design Estimation for a Current Switched DAC 117

When row splitting is used fee effect is to approach fee infinitesimal addition of contributors,

as in Miki's derivation. There are now two contributions, due to fee discrete addition of individual

segments, and the mismatch between the average of fee outer elements and fee total average.

These are derived as a segment effect and a row effect, wife fee following results:

INL = Row Effect + Segment Effect (6.19)

r2TNI _ v fNRows-3NRows +2^ gm(Ml
INL =Vunit [12 J' 2*NCols ' M' —

_)
lsb

+v f2NRows-3NRows+l^ gm(Ml)
+Vunit I ~l I•M' —r (6.20)

v ° J xlsb

Comparing Eq. 6.18 wife Eq. 6.20, fee use ofrow splitting results inafactor of2improvement

in INL,even in this case wherefee non-ideality is a quadratic effect

Inthis implementation INL, DNL, and gain error effects are computed based on this resistive

drops from fee central analog bus to fee edge offee array, and fee voltage drops along fee vertical

supply bus. A pessimistic estimate is taken, assuming no cancellation between row and column

effects. Additional drops due to current drained by bias circuits was also included in fee computa
tion.

6.5.2.3 Stochastic Effects on Static Performance

There are three sources ofnonlinearity due to stochastic effects. Random mismatch ofdevices

contributes to bofe INL and DNL. Gradients cause mismatch in current segments, and between fee
main DAC array and fee lsb elements, again resulting inINL and DNL.

Random Device Mismatch

When analyzing DAC architectures in section 2.3.1.3, expressions for INL and DNL as afunc

tion ofunit element mismatch was derived. Those results are repeated here:

JN <*a
°INL = T ' Si (6'21>

6.5 Design Estimation for aCurrent Switched DAC 118

0DNL<EachSc6ment) =^4-jf (6.22)
In this case Aa is fee value for aunit current, Ifs/N, and aa is fee variance offeat current. Sec

tion 4.3.6.2 has the computation for <sx due to threshold voltage mismatch. The ofeer source ofran

dom mismatch is variation in device mobility, and itis computed wife fee same approach. In bofe

cases fee device variation is found as afunction of device area, and feen small signal parameters

are used to convert this to an element current variance. These two effects are assumed indepen
dent, and fee total INL variance is found from fee sum offee variances.

For DNL this isfee variance for an individual DNL sample, but there are actually N/M code

transitions which have this variance. Tb obtain a better fean 99% yield for a design wife 64such

transitions, a 4.5-sigma design is needed for this random variable, instead offee usual 3-sigma.

Gradients

For this design linear process gradients were assumed, wife a worst case direction, and slope

assumed to be fee 3-sigma slope. The worst case direction and slope is fee one feat maximizes fee

mismatch of fee two most extremely placed matched elements in fee DAC. Recall feat fee device

mismatch standard deviations are proportional to distance, as seen in equation 6.5.

For INL computations, two contributions were identified. Within each row, fee end devices

have fee maximum gradient mismatch. Between rows fee maximum row deviation results in a

nonlinearity. In eifeer case, fee unit current element variance at fee maximum distance is com

puted:

of(d) =̂ +f^SVtljd2 (6.23)
Where Gj2 isfee relative variance ofaunit element current source, and gm and i^ are for fee main

current source device Ml. d is fee maximum distance between matched devices, or groups of

devices. If common centroid row switching is not used, fee distances of interest are fee DAC widfe

(w) and height (h), fee INL contributions are:

MINL due to ahorizontal gradient across arow: tfTNL = -y G. (w) (6.24)

6.5 Design Estimation for a Current Switched DAC 119

Nl • cols
INL due to avertical gradient across fee DAC: ffjNL = 9 aj (n) (6.25)

The factor of 1/2 comes from fee symmetricalswitching.When common centroid row switching is

used, fee effect of vertical gradients is greatly reduced, wife fee cols factor removed, but fee dis

tance fee diagonal across fee array:

Nl / 9 9INL due to avertical gradient across fee DAC: aJNL = -^ a. »]h +w (6.26)

For DNL fee worst case gradient is longest distance from fee centroid of fee lsb elements to

any segment:

°DNL = M'ai(dmax) (6-27)

6.5.2.4 Addition of Stochastic and Deterministic Effects

Total estimates for staticnonlinearity are found by combining stochastic and deterministic

effects. All stochastic effects are assumed to be independent, so fee variances of feese estimates

are added. This design uses a three sigma error estimate. Individual deterministic effects are com

bined additively, and added tofee 3sigma stochastic nonlinearity estimate. This gives a pessimis

tic estimate for fee combined performance.

6.5.3 Simulation/Analysis for Dynamic Effects

Direct simulation is used for dynamic performance estimation In a first pass all dynamic per

formance was estimated from fee simulation ofa worst case rising and falling output, using addi

tional analysis to compute glitch energy. This saved simulation time, but fee glitch energy analysis

required very simplifying assumptions. In fee second iteration a separate simulation wife glitch

energy specific transients was run. An additional requirement at high data throughput rates was a

simulation to ensure data integrity through fee DAC.

6.5.3.1 Output Settling

The output settling simulation isused to estimate all dynamic performance specifications asso

ciated wife a full scale transient. These are fee clock delay time, fee settling time, and fee DAC

6.5 Design Estimation fora Current Switched DAC 120

switching time. Theimportant issues are identification of fee worst case transients, and fee reliable

measurement ofoutput settling.

An abstract view of a DAC undergoing a full scale transition is shown in Fig. 6.11. There are

three primary effects affecting settling behavior. Thedifferential switching waveforms atcurrent

switch determine when fee current makes fee transition, and fee magnitude of any charge injection

due toeifeer capacitive coupling oradead time when bofeswitches are off. Theoutput capacitive,

resistive, and inductive loading determines fee settling waveform. Thecoupling from fee output to

fee bias and fee settling timeconstant on fee bias may result in aslow settling tail. Theentire pic

ture is further complicated by parasitic coupling between signals andthe usual MOS parasitic

capacitances. Not shown in this figure are fee latch and inverter circuits which create sel and sel

vdd

data

-^X
^fc^> sel

cIlL Vout

ibias
load

vss

Figure6.11 Abstract view of a switched DAC, including bias, switched current source,
and external loading. Clock transitions trigger fee cell to switch.

This is a good abstract view for fee worst case rising waveform, when fee signal transitions

from zero to full scale (FS). When fee signal settles at fee maximum value slow settling tails from

fee bias have maximum impact, and in this case fee ratioof signal swing to settled value is maxi

mized as well.

Less obvious is fee worst case falling waveform. In particular, fee settling from FS to 0 maxi

mizes capacitive coupling effects, but disconnects fee DAC cell from the output, and does not

include any bias settling tails. A small transition from FS to 0.9 FS maximizes fee sensitivity to

bias settling, but reduces the amount of charge injection from signal switching. A compromise

transition is used, from FS to 0.5 FS. Typical output waveforms for feese transitions are shown in

Fig. 6.12.

6.5 Design Estimation for a Current Switched DAC

Output
(Volts)

121

rise

Figure6.12 Rise and Fall transitions simulated for dynamic performance estimation.

Measuring the waveform for rise time and delay time is easily done wife HSPICE '.MEA

SURE' statements, but techniques to accurately and efficiently measure fee settling waveform is

worth mention here. The settling time is specified as fee time from fee 50% point in fee signal tran

sitions to fee settling within some delta (8) of fee final value. The most direct ways to determine

fee final value are error prone. Sampling fee output at fee end of simulation is gives erroneous

results if fee signal is notcompletely settled atfeeendtime. The fix for thisrequires verylong sim

ulations, and wastes CPU time. Computing fee final value a priori from design inputs may be in

error if there are built in offsets in fee bias and current source circuits. The mefeod used success

fully in this work was to create areplica circuit which was not switched, and compare fee setfeng

output to fee replica signal. Settling simulations were runto 1.5 times feeconstrained settling time.

If fee output did not settle to within 8 by fee end of fee simulation, feen fee observed final error

was usedto constrain theoptimization solutions to feose wife complete settling.

6.5.3.2 Glitch Energy

Glitch energy is seen when switches turning off are cancelled by other switches turning on. In

this DAC architecture glitches occur when a segment is turned on while all lsb elements areturned

off. In section2.3.1 a first order calculation of glitch energy was made, basedon fee difference in

turn on and turn off delay, and fee number of elements being simultaneously switched. This sim

plified analysis ignores any circuit mismatches between lsb and segment circuits, and charge injec-

6.5 Design Estimation for a Current Switched DAC 122

tion in fee current switch operation. A simulation approach was undertaken to include these

effects.

In fee glitch energy simulation, theimplicit assumption is featfee output from fee switched

elements does notchange fee output voltage significantly, and output current into a low impedance

canbe measured instead. A clock signal is used to switch on an M-bit segment current, while M

lsb currents are switched off. The output currents are added, compared to a constant M-bit signal,

andfee difference integrated to find fee glitch energy. Theopposite transition is simulated simulta

neously. The glitchenergy is normalized to units of (settling time) * (lsbcurrent).

6.5.3.3 Digital Signal Integrity

This DAC module must pass datafrom feeedges offeearray through a setof latches, buffers,

a logic decode, and another latch toreach fee current source switches. Atfee high clock rates envi

sioned for this module this is not a trivial task. Iffee digital circuits are incorrectly sized, fee digi

tal signals may not arrive in timeat fee cell latches, or fee digital delays in fee buffer and decode

circuits may affect fee analog circuitperformance. In this module performance constraints have

been used to ensure feedigital signal integrity. This is done through feespecification of setup time

requirements for all latch circuits, andminimum signal level requirements latchedsignals in fee

dynamic TSPC latchcircuits. Fig.6.13 illustrates some of feepoints in fee design where fee signal

integrity mustbe verified At feelatchin feesegment cell, fee select signal (S)must arrive ahead of

Decode

*4 -*l

11

TSPC Latch

Dvdd

i—iC i—t

C^C C^C

?

B

Mr; Mr, Mr!
DV88

z

w

s

Inverter

Sel

Avdd

7H

H

Sel

Figure6.13 Digital signal integrity in fee segment cell.Examples of locations where
signal may be compromised. R, N, andC are drivenby row and columnbuffers.

6.6 DAC Synthesis Limitations 123

fee Clk signal falling edge wife some timing margin, typically Ins. The levels of fee dynamic

nodes A, B, C, and Sel must be checked to make certain feey go to full logic levels. The perfor

mance constraintused is feat feey must be within a voltage margin(typically 300mV) of fee full

CMOS high and low levels. This is simulated wife bofe logic transitions, and fee row and column

latches are also checked for full swing signals.

6.6 DAC Synthesis Limitations

The module synfeesis process described in this chapter does not solve fee complete DAC

design problem, because it is by nature limited to module level design. In a mixed-signal chip

implementation feere are additional chip level issues of importance for DAC performance. These

non-idealities are fee bonding wire lead inductance, and noisy digital supply and signal coupling to

fee analog circuits through capacitive parasitics and fee chip substrate. Theyresult in an environ

ment in which fee entire chip substrate may beringing wiferespect to board ground, and this, in

combination wifedigital switching noise results in alarge noise floor seen at fee analog output.

Even when fee analog circuits are shielded from sources of digital noise onchip, fee process of

taking fee analog signal offchip results inalarge noise signal component. These issues are partic

ularly significant in fee caseof single-ended outputvideo DACs, which do not have fee inherent

common mode rejection of differentialoutputs.

There are anumber of common design techniques used to minimize feese effects. Multiple

bonding wires are used for supplies, digital output drivers are designed for minimum switching

current, supplies onchip are carefully separated to minimize direct coupling to sensitive supplies,

and digital circuits may be completely disconnected from fee substrate in an attempt to reduce

noisein fee substrate. When this is notenough, specialized digital cell libraries canbe used which

have low signal swings and constant current drain, reducing coupled noise and eliminating di/dt

induced supply noise. Additional resistive and capacitive structures can beadded on chip to create

a low impedance, low Q on chip supply, at fee costof somesupply headroom. This is an area of

continuing research in mixed-signal circuit design, and feese issues must be solved if fee combina

tion of high SNR circuits and digital signal processing is to beintegrated on fee same substrate.

6.7 Design Example 1:8-bit, 100-MS/s Video DAC 124

All of feese techniques are chip level design techniques, which cannot be designed in at fee

DAC module level. At the module level fee designer is much more limited, to creating circuits

whichare relatively insensitive to supply noise, and which do notcreate significant additional par

asitic coupling.

In this DAC implementation feese issues wereaddressed through the use of good design prac

tices at fee moduledesignandchiplevels,but they werenotexplicitly includedin fee moduleopti

mization process. For example, care was taken to avoid overlaps between digital signals and

supplies and fee analog output and bias signals. Polysilicon layer was used to shield fee output

from fee substrate, and fee substrate was not connected directly to any of fee noisy supplies. An

RC network was connected to fee current bias input pin, filtering noise from fee external current

source connection.

Designing wife feese issues in mind is one of fee areaswhere analog circuit design looks more

like an art fean a science. The processes involved areimpossible to simulate or quantify efficiently

or completely. This makes inclusion of these effects in a synfeesis framework difficult.

6.7 Design Example 1: 8-bit, 100-MS/s Video DAC

One of fee target applications for this module generator is the video DAC application. The

goalof this example was to demonstrate fee synthesisof a DAC for a widely applicable specifica

tion in fee Personal Computer (PC) arena. Today's PCs typically offer resolutions to 1280 x 1024,

wife screenrefreshratesof72 MHz, andcolordepfe of 256 levels. When fee video blanking inter

vals are included, this translates into a DAC specification of 8-bit resolution at 135 MS/s. Video

systems typically use 75 Q. impedance levels, wife astandard voltage range [ADI92J- When this

DAC is used to drive a doubly terminated 75 Q line directly fee full scale DAC current is a nomi

nal 17.6 mA. In this section fee synfeesis setup, optimization, and results from devices fabricated

in a 1.2 urn process will be summarized.

6.7 Design Example 1:8-bit, 100-MS/s Video DAC 125

6.7.1 Synthesis Setup

The DAC module generationproblem is separated into a set of constant inputs and constraints,

based on fee DAC input specifications. These arein additionto fee 1.2u,m technology inputs dis

cussed earlier in fee chapter. They are:

Table 6.8 DAC Synthesis Design Constants from input specifications and technology
data.

Constant Value Units Comment

Resolution 8 bits

Clock Rate 135 MS/s

Power Supply 5.0 Volts +/-0.25

Full Scale Current 17.6 mA +/- 3%

Nominal Load 37.5 ohms

Cload 20 pF typical typical

Bond Wire Inductance 5 nH typical

Compliance Range +1 Volts max

Clock Rise/Fall Tune 2 ns at module input

Ofeer design specifications are integrated into fee list of optimization constraints:

Table 6.9 DAC Synthesis Design Constraints.

Constraint Limit Units Comment

DNL <1 lsb 3o

DNL <0.5 lsb

Gain Error <2 lsb

Total Error <4 lsb

Rout >10 m

PSRR <0.01 %/% at 1 kHz

Delay Time <5 ns

Rise/Fall Tune <3 ns

Settling Time <13 ns

Glitch Energy <1 fcb * Tsett]e 33pVs

Vds margin >0.2 Volts M1,M2,M5,M9

6.7 Design Example 1:8-bit, 100-MS/s Video DAC

Table 6.9 DAC Synthesis Design Constraints.

Constraint Limit Units Comment

Vdsat margin >0.4 Volts M7

4 other constraints to force feasible solutions

6 Digital LatchSetupTime < Ins constraints

12Digital Signal Level Integrity constraints

W1<W2 constraint*

a. i nis constraint was aooea oecauseit removed a grossnon-uneanty from the objective hmctton,
andallobserved optimizations met thiscondition anyway.

The 20 design variables described in section 6.2 are used in fee MINLP optimization which

meets constraints andminimizescircuit area. All variables are expressed asintegers —architecture

variables must be integer or power of 2, and layout dimension variables must be placed on a

lambda = 0.6 pun grid.

This optimization problem, wife 20 variables, minute long estimation steps, is too large to

solve in areasonable timeonamodern engineering workstation. Fortunately it is relatively easy to

separate fee simulationinto two, largely independent parts, andit makes intuitive sense to have

separate optimizations for each part1 The problem is split at fee cell latch, into "analog" and "dig

ital" optimizations. Thedigital optimization sizes fee digital row and column buffers, and fee logic

decode, making certain feat digital signal integrity constraints are met. The analog optimization

starts when fee select signal is clocked out of fee cell level latch, and initiates a switched DAC out

put. It includes fee AC and DC analog simulations required for static linearity, output resistance,

and PSRR. The two simulations are summarized in table 6.10.

Table 6.10 Optimization split into digital and analog optimizations.

126

Digital Optimization Analog Optimization

Variables Digital Buffer, decode, and latch
device sizes

All analog device sizes.

Digital inverter sizes.

DAC architecture vars.

l. Thesizeof fee problem goes up(first order) wife fee product of fee number of variables and
constraints, so splitting into two equal parts should reduce fee problem by into two problems, of
approximately 1/4 fee original size

6.7 Design Example 1:8-bit, 100-MS/s Video DAC 127

Table 6.10 Optimizationsplit into digital and analog optimizations.

Digital Optimization Analog Optimization

Constraints Signal integrity constraints Static and Dynamic DAC perfor
mance constraints.

Bias constraints

Objective Digital Circuit Area DAC Circuit Area

Typical Run Time lhour 5 hours

In this process feere are significant dependencies from fee analog optimization to fee digital

one. In particular, fee analog optimization determines fee loading on fee final signal nodes in fee

digital problem. In fee ofeer direction there are some second order effects, due to small percentage

changes in segment cell size as fee digital circuits are sized, but this is a relatively insignificant

factor. In practice feey are runsequentially - fee analog optimization is run first, and fee solution

is used to set fee loading in fee succeeding digital optimizatioa

6.7.2 Synthesis Process

Once fee design has been described, fee synthesis process can proceed, using fee optimization

algorithm described in chapter 4 wife fee constraints and DAC specific simulations and analysis

described previously in this chapter. Inpractice this process is an iterative one, wifeinitial optimi

zation results requiring a full circuit extraction and verification simulations. Once fee module is

verified, it can be further integrated wife ofeer chip elements. In this section fee actual process

resulting in this completed design is described.

Initially, fee circuit optimization was run without fee completion of fee DAC cell library, using

estimates of circuit parasitics based onproposed device source and drain merging, and estimates of

subcell sizes. The 135 MS/s spec was used, and it was found feat feeoptimal value for M wife this

spec was 4. A square aspect ratio was desired, and for fee proposed cell layout this resulted in a

DAC module wife4 rows of 16 DAC segment cells. The layout cell library was implemented for

an M=4 segment, and further optimizations using parasitics and cell sizes based on actual layout

were run. Other parts of fee chip design were implemented in this timeframe, including fee exter

nal digital row and column encoding circuits.

6.7 Design Example 1:8-bit, 100-MS/s Video DAC 128

When fee external circuits wereimplemented, initial simulations from fee extracted layouts

indicated feat fee4 to 16 column select encoder was not fast enough for fee 7.4 ns clock period,

especially whenusing fee slow process file. Twoiterations of fee design weredonein anattempt

to speed up fee circuit, but feese did not solve fee problem. Since fee purposeof this research is

not to develop fast custom digital circuits, but to demonstrate module generation techniques, fee

DAC specificationwas relaxedto lOOMS/s, a speed which feese circuitscould meet.

When fee lOOMS/s specwasdefined, feecircuits were optimized again, thistime forcing M=4

to utilize fee existing cell library. Simulation results were passed to fee layout programs, for auto

mated DAC modulelayout generation. Then circuit parasitics wereextracted from layout for full

simulation. In this pass fee extracted circuits did not passdigital data through fee cell level latches

asquickly as predicted in circuitestimation. The discrepancy was foundin a 12 fF parasitic wiring

capacitance which had not been included in optimization. The optimization was re-run, this time

wife better simulationaccuracy andabetterunderstanding of fee signal integrityconstraints.

A final optimization problem was solved at the end of fee design process, when it was

observed feat fee optimizations were behaving poorly wife a non-linearobjective function. After

fee adding fee last constraintin table 6.9, which removed a corresponding nonlinearity from fee

objective function, optimizations converged morequickly, because fee linear approximation to fee

objective used in fee optimization algorithmwas more accurate.

Before fee final release of fee chip to fee fab, additional chip level designtechniques were

used to reduce fee supplyringing problems. The final implementation used multiplebond wires for

all supplies, and separate digital, analog, and substrate supplies, in an attempt to reduce digital

noise in fee signal output.

6.7.3 Results

This DAC module was fabricated in fee Orbit Semiconductor 1.2 urn process, using single

poly and double metal layers. The chip has 4 mm2 active area available, of which this DAC mod

ule uses 0.71 mm2. It ispackaged in a44 pin LCCC. Fig. 6.14 is fee die photograph for this part.

12 parts were fabricated, and all were functional.

6.7 Design Example 1:8-bit, 100-MS/s Video DAC 129

Static performance was measuredusing a computer controlled setup, in which fee computer

sets fee DAC input, and measured fee output through a 5 digit voltmeter. In this measurement the

total measurement time for all codes may be significant, so care must be taken to minimize fee

effects of temperature variation in external components during the measurement process. A tem

perature compensated bias current was implemented on fee test board, and a butterfly sampling

pattern, similar to symmetrical switching patterns, was used to time average fee current flowing

into fee external load resistor, reducing its temperature variation over fee course of fee measure

ment. Full scale and midscalereadings were taken at fee beginningand fee end of fee test cycle to

Figure 6.14 Die Photo for DAC test chip. 8-bit part in lower left, 10-bit part in lower right.

6.7 Design Example 1:8-bit, 100-MS/s Video DAC 130

check for measurement drift. Observed drift waslessthan 0.05 lsb for feese tests. A plotwife all

INL curves is in Fig. 6.15. Worst case INL and DNL plots of fee 12samples are in Fig. 6.16.

40 80 120 160 200 240 Code

Figure 6.15 INL plots for all test chips.

DNL(lsb)

0.20 P

0.10 ->

0.00 -
^^V'W^

INL (lsb)

0.6

i 1

0.4 - f "', -
f '-.

0.2 -# AA. -

0 J r
i i

S2S&&?&£99>Zi

-0.10

0 Code 255 0 Code

Figure 6.16 INL and DNL plots for fee 8-bit DAC. (Worst of 12 parts).

JZ)
255

6.7 Design Example 1:8-bit, 100-MS/s Video DAC 131

All dynamic performance specifications used in video applications occur at a transition

between two levels, so integrated on this chip is a data toggle circuit which will alternate between

two 8 bit inputs, controlled by fee DACclock. This allows static data inputs for highspeed tests,

reducing on chip noise. For a full scale transition, 0 and 255 are applied to fee inputs, while for

glitchenergythe desired code transition is applied. The DAC alsohas a digital test output which is

atFc]k/2, and is usefulasatrigger whenfeeoutput difference is small. The test setupwasdesigned

for fee DAC output to terminate on board to fee 75 ohm line impedance, anddrive a75 ohm coax

to a Tektronix DSA 602 digitizing oscilloscope. At fee DSA, fee an external termination is used,

and fee DSA is connected in a high impedance mode. When this setup was used fee impedance

mismatch at fee DSA resulted in reflections in fee signal. To get a cleaner signal fee system was

converted to a 50 O. impedance, using fee internal 50 Q, terminationin fee DSA. This gave better

impedance matching in fee measurement setup. As aresultof this change in fee impedance levels,

fee dynamic switching and settling performance should be improved by a factor of 2/3, so mea

surements taken were derated by a compensating factor of 1.5.

Measurement of full scale transitions wereread off fee DSA. For settlingtime fee settling to

within 1 lsb of fee final value could not be measured, because of digital noise coupling, and set

tling to within 2% of fee final value was measured instead. The switching waveform is shown in

Fig. 6.17a. To observe glitchenergy, two waveforms were digitized, one wife fee glitch, and one

wife DCinput at fee samevalue. The difference waveformsubtracts out fee coherent digital noise,

and fee glitch waveform can be observed in Fig. 6.17b.

Table 6.11 summarizes fee performance of fee synfeesis process and fee performance of this

test chip. It lists specificationinputs for synfeesis, fee estimated performance, and feen fee mea

suredresults for this small sample. Thereis good agreement between feese predictions and mea

suredresults. The static linearity data has been investigated more thoroughly, indentifying fee

sources of nonlinearity seen in fee data wife deterministic and stochastic nonidealities. It was

found feat measurable INL wascaused by adjacent layout specific mismatch, betweensegments at

fee edgeof fee array and feose in fee main body, and between lsb elements and segment elements.

Process gradients weretwice fee value predicted from fee literature search. There appears to be

more variation in fee first level metal sheet resistance fean indicated by fee technology description.

6.7 Design Example 1:8-bit, 100-MS/s Video DAC

Time (ns)

(b)

132

Figure 6.17 Topical switching and glitch waveforms for 8-bit DAC. Measured driving 50-Q
doubly terminated transmission line to fee DSA.

Details of this analysis maybe found in the appendix to this chapter. When fee data was taken and

results analyzed, some errors were discovered in the analysis, and a factor had been left out of fee

gain error computation. In fee estimated results column of fee table, fee value in parenfeesis is fee

original erroneous estimate.

Table 6.11 Measured Performance of 8 bit video DAC

Name Specified Estimated Measured Units

INL/DNL <1.0 0.53 (0.59) 0.64 max

0.31 avg

lsb

DNL <0.5 0.16 (.06) 0.18 max

0.10 typical

lsb

Gain Error <2 3.6(1.5) 3 lsb

Total Error <4 3.6(1.9) 3 lsb

Tsettle (rise / fall) <13.0 7.4/4.43 5.5/5.25 ns

Tswit (rise/fall) <5.0 1.6/1.0 1.8/1.1 ns

Tdelay <5.0 4.75 NAa ns

Glitch (rise/fall) <1.0 0.77/0.62 0.74/0.46 lsb*Ts

Rout >10 10.5 >12.5 kH

Clock Rate >100 101 225 max MS/s

6.8 Design Example 2:10-bit Instrumentation DAC 133

a. Not measurable.

In this design fee dominant cause of nonlinearity is finite output resistance of the current

sources. In fee typical designs, this is half of the total INL. All ofeer sources of error tend to look

like a voltage mismatch at fee gate of current source devices, and fee high current densities used to

minimize design area tends to reduce fee effects of voltage mismatch. Fortunately this limited fee

effects of fee unexpected mismatch and gradient magnitude errors in this design. 11 of 12 devices

had less fean fee maximum estimated INL and DNL errors, even in fee presence of feese unmod-

elled nonidealities.

6.8 Design Example 2:10-bit Instrumentation DAC

A second test DAC was built, using some of fee remaining space on fee die. A 10 bit specifi

cation, wife lower full scale current and no dynamic specifications was developed. That is summa

rized in table 6.12 and table 6.9. The elimination of fee dynamic performance specs meant feat fee

latches and buffers could be removed from fee layout, reducing cell size. A single optimization,

similar to fee "analog" optimization for fee 8-bit DAC, was run, but without fee transient simula

tions. Simulations ran quickly for this problem, wife results in less fean an hour. The optimizations

predicted a minimum sized design for M=32, but wife this module layout and available cell library

M was limited to M < Cols, and Cols = 16 was chosen for aspect ratio reasons. The layout is in fee

lower right corner of: Fig. 6.14.

Table 6.12 10-bit DAC Design Constants.

Constant Value Units Comment

Resolution 10 bits

Power Supply 5.0 Volts +/-0.25

Full Scale Current 4.0 mA +/- 3%

Nominal Load 256 ohms

Compliance Range +1.1 Volts max

Table 6.13 10-bit DAC Design Constraints.

Constraint Limit Units Comment

INL <2 lsb 3a

6.8 Design Example 2:10-bit Instrumentation DAC 134

Table 6.13 10-bit DAC Design Constraints.

Constraint Limit Units Comment

DNL £0.5 lsb

Gain Error £4 lsb

Total Error £8 lsb

^out >20 kQ

Vds margin >0.1 Volts M1,M2,M5,M9

Vdsat margin >0.2 Volts M7

The INL and DNL specifications were not met when this DAC was fabricated. As in fee first

design, some INL and DNL causingeffects were not predictedaheadof time, but in this case fee

design optimization process tended to reduce fee current density in fee current sources, reducing

circuit area, but increasing sensitivity to effective gate voltage mismatch. In a second pass feese

sources of mismatches may be better quantified, and fee design re-optimized to meet specifica

tions. The INL and DNL data is summarized in table 6.14.

Table 6.14 Measured Performance of static 10-bit DAC

Name Specified Estimated Measured Units

INL 2.0 1.87 2.1 lsb

DNL 0.5 0.16 1.6 lsb

This performance sensitivity to anunmodelled effect points to a problem wife this mefeodol

ogy, whichis a general synfeesis problem as well. In analog design feere is often some second or

third order effect which is known to exist, but is difficult to analyzeor simulate. How does one

develop amodule generator which is robust in fee presence of poorly modelled orunknown pro

cess and fabrication effects? Often fee approach taken is to overspecify fee problem, to force fee

result to tighter constraints fean original specification. The problem is feat if fee source of error is

not part of the performance estimation process, feen fee optimized design may meet fee new,

tighter, specification, yetremain very sensitive to fee unmodelled effect, and still not meet specs in

fabrication. An approach which feese DAC results suggest is to model feeseunknown effects asan

estimation input, in this case as auser defined maximum gate offset voltage input, and force fee

optimization tomeet design requirements despite gate voltage errors of feat magnitude, in addition

6.9 Module Generator Development and Synthesis Time 135

to fee currently estimated nonlinearities. In this technology it appears feat this general error volt

age constant would be on fee order of 12 mV, based on mismatches found related to unmatched

adjacent device layouts. For each module generator, and perhaps each technology, feese unclassi

fied sources of errors may have to be re-calibrated.

6.9 Module Generator Development and Synthesis Time

As discussed in chapter 1, implementation design time is an important metric for any analog

design, so it must be a metric used when discussing fee application of this mefeodology. It is diffi

cult to strictly classify fee time spent in this researchas module design time, tool development, or

algorithm development time, because all three occurred simultaneously for much of this research.

As long as fee optimization process finds an optimized, constrained solution in a few hours, it is

not fee limiting factor in minimizing design time. The most time consuming parts of fee module

design are fee design analysis and input time for optimization, fee cell library development time,

and feetechnology analysis and entry time. Inthis section fee timerequired to develop anewmod

ulegenerator, and toreapply an existing tool todifferent specifications ortechnology is discussed.

6.9.1 Module Synthesis Development Time

Module synfeesis development time is fee dominant design time for anew module generator

implementation. This includes fee typical circuit design tasks ofdeveloping fee circuit topologies

for fee application, and finding simulation and analysis mefeods to estimate design performance,

and additional synfeesis related tasks ofspecifying design variables, automating design estimation,

and integrating estimates ofparasitics into design estimation. The synfeesis process will find opti

mized design variable values, atime savings, but this isoffset by fee need to explicitly include all

design analysis in fee estimation framework, and develop additional tests to force fee design to

maintain bias margins. Asaresult, initial module synfeesis development time is fee same order of

magnitude as manual design. Designer time savings occur in subsequent design cycles, when fee

same design isre-implemented wife new specifications or technology.

6.9 Module Generator Development and Synthesis Time 136

6.9.2 Layout Cell Library Development Time

A new cell library may be required when amodule design isimplemented, or anew technol

ogy is used1. It is advantageous to adapt pre-existing cell designs whenever possible. Layout of a
cell Ubrary for anew module design may take 2weeks, including fee layout ofimportant module

cells, and verification that cell stretching and tiling results in properly connected cells. When an

existing cell library can beadapted toanew design, fee cell library design time shrinks tohours or

a few days at most

6.9.3 Technology Analysis and Input Time
o

Migration to anewtechnology requires fee input of newtechnology constants, and verification

or fitting of MOS device models. For DACs estimates of device mismatch constants are needed.

Ideally this is a zero time step, requiring just fee simple substitution of one well documented tech

nology description file for anofeer, and using scalable design rules to reuse fee layout library in fee

new technology.

6.9.4 Example Implementation Times

In fee 8-bit DAC example described in this chapter, fee basic form of fee DAC was inherited

from an earlier prototype, but most of fee design implementation was completely new, including

new low level circuits, new estimation mefeods for settling and glitch, new layout cells and para

sitic computations, and new design parametrizing. From starting wife design specifications to tape-

out of fee finished test chip took 6 months, but this time was not exclusively devoted to this 8-bit

DAC module. Subtracting out time spent implementing layout automation algorithms, implement

ing fee 10-bit DAC, chip level design and implementation of digital circuits, analysis of chip level

noise and coupling issues, leaves an estimated 3 months for module generation.

The 10-bit design example re-used fee static linearity analysis from fee 8-bit design, and mod

ified fee cell library, removing latch and buffer circuits. It used fee same technology as fee 8-bit

"design. Implementation time for this DAC module was about 2 weeks, wife initial optimizations

1. When a scalable layout style is used, such as the scalableCMOS layout rules supported by MOSIS in technologies
from 0.8 urn to 3 urn, then new cell libraries arenot required for a technology shrink, but may be advantageous when the
technology shrink includes a new metal routing layer.

6.10 Chapter Summary 137

done first, and feen required library cells developed for a design wife M=16 unit current sources

per segment. Back end verification was also done in this time.

A third example design took fee existing video DAC specification, and migrated it from 1.2

Jim design rules to a 0.8 u,m technology. Bofe technologies could be described with scalable

CMOS design rules, so fee cell library could be re-used. The majority of fee implementation time

was spentsorting out fee newtechnology inputs, estimating errors in fee device fits, process varia

tion, andmismatch constants. This was concurrent wife completion of modulesynfeesis libraries,

so this designtime was spread out due to instability in fee underlying synfeesis libraries. Once fee

libraries were stable, fee design was completed in 1week, wife mostof feat time spent waiting for

optimization andback-end verification simulations to complete.

A lastexample wasare-specification of an existing module generator for a7-bit, 5MS/s appli

cation. In that case the same module libraries and technology files could be re-used, and no

changes were required. The design synfeesis was completedover fee course of a day, wife DAC

specifications determined in a brief meeting in fee morning, fee optimization running over fee

course of fee afternoon, and a finished layout by evening.

6.10 Chapter Summary

In this chapter fee application of fee DSYN tools for design and layout synfeesis to a specific

DAC module architecture have been described, including fee specificcircuits, fee complexity of

fee optimizations, fee implementation of feese circuits in a 1.2 urn technology, and fee fabricated

results.

The most important conclusion is feat fee process works. The 8-bit part met all static and

dynamic specifications on fee first pass, and over 90% of fee test chips fell within fee predicted

worst case specifications. It is unclearif fee outlier is due to a random deviation, a defect, or poor

process data. The 10-bit DAC did not meet specifications on this pass, but corrections to estimated

process gradient inputs and elimination of DAC layout mismatches would fix feese problems on a

second pass.

6.10 ChapterSummary 138

The difficulties in quantizing all possible sources of non-idealities point to a larger problem in

performance estimation, due to poorly modelled or "unsimulatable" inputs. These results suggest

feat these are best considered as a nonideality added to process model inputs, rafeer fean as an

overconstraint on fee final design.

Design time for this process has demonstrated feat synfeesis is not a time saver for an initial

design,but is a significantone when amoduleis to be re-implemented wife a new specification, in

anew technology, andeven when fee circuits are slightlychanged, but fee most of fee designinput

analysis can be reused.

6A Appendix: Estimated andActual Causes of Nonlinearity 139

6A Appendix: Estimated and Actual Causes of Nonlinearity

The estimated and actual INL and DNL for fee 8-bit DAC areinvestigated here. The causes

and their respective contributions to overallnon-linearity arelisted. Three sources of measurable

INLand DNL have been found which were not included in fee estimates used in DAC synfeesis.

The worst case process gradients seenare muchworse than predicted in fee literature, and feere is

evidence feat there is awidevariability in metal 1sheet resistance as well, though thisis more dif

ficult to separate from random errors.

6A.1 Nonlinearity Contributors.

Table 6A.1 lists causes of nonlinearity, and their predicted maximum effect on INL and DNL

in synfeesis. All errors are expressed in lsb at 8 bits, for fee specific 8-bit designimplemented in

section 6.7. These errors are of two types ~ stochastic and deterministic. The DAC transfer func

tion available from 12 test chips can be analyzed to see if fee causes of circuit non-idealities can be

tracked to fee observed DAC INL and DNL. In this work it is best to concentrate on fee 63 DAC

segments, and assume fee lsb current sources perform wife zero mismatch relative to fee nearest

DAC segment. After fee INL is measured, asseen in Fig. 6.15, fee first stepis to take anaverage of

all INL curves, seen here in Fig. 6A.1

Table 6A.1 Summary of predictedstatic linearity - 8 bit DAC units in lsb

Cause
Effect on

INL
Effect on DNL

Finite Rout .24 0

Resistive Drops .06 0.02

Random Mismatch 0.19 .07

Mismatch Gradients 0.04 .07

totals .53 .16

6A.2 Deterministic Effects

This average INL is dominated by two components - a quadratic bow non-linearity due to

Rout, wife average magnitude0.15 lsb, and an S shaped sawtoofe due to resistive drops between

fee rows of fee DAC, wife maximum predicted amplitude of 0.04 lsb on this plot1. There is

6A.2 Deterministic Effects 140

0.25

0.15

0.05

-0.05

Figure 6A.1 Average 8-bit DAC INL.

anofeer effect, which is best seen by taking fee 64average segment currents, and plotting them as

a function of their column location on fee DAC. This is done in Fig. 6A.2. Ideally this should be4

parallel lines, due toresistive drops between rows, and this effect is seen, feough it is compUcated

by fee left-to-right variation due to fee combination of switch ordering and output resistance. The

unexpected effect is fee variation at fee ends of fee array, in columns 1 and 16, of +0.025 lsb on

average. The best explanation for this is adevice mismatch, due to different adjacent circuit lay

outs between fee edges of fee array and fee main body of current source segments. This average

edgeeffect is magnified by fee symmetrical switching mefeod, which chooses columns 1 and 16

consecutively, resulting in sawtoofe nonlinearity of magnitude 0.05 lsb, and period of 1/4 full

scale. A similar layout induced mismatch was seen between fee segments and fee lsb current

sources, wife aresulting mismatch of 0.02 lsbbetween fee average lsbcurrent source and fee aver

age segment.

1. This effect increases to0.06 lsb when the lsb sources are included inthe analysis, as intable 6A.1.

6A.3 Stochastic Effects 141

0.02

0.01

-0.01

-0.02

-0.03
10 12 14 16

Figure 6A.2 Average Segment Current vs. Column Location.

6A.3 Stochastic Effects

The stochastic effects can be divided into two parts ~ random mismatch, and random gradi

ents. The analysis approach taken was to look at plots of segment current source values, wife fee

average subtracted out, and look for fee magnitude of any gradient seen. Fig. 6A.3 shows some

representative plots from 4 of fee test DACs. The estimate of random variation of current sources

for this design was a current source standard deviation of 0.01 lsb. The observed variation cer

tainly has a less than 0.02 lsb. It may be as low as 0.01 lsb - it is difficult to separate measurement

noise from actual mismatches in fee data taken here. A conservative designer may want to use

twice the random mismatch factor in fee future. The predicted gradient across fee array should

give a 3a mismatch of 0.08 lsb, but judging from this data, a better 3a limit would be 0.14 lsb, or

roughly twice the gradient mismatch initially estimated.

6A.3 Stochastic Effects 142

0.03

-0.01

-0.02

-0.03

Figure 6A.3 Observedcurrent sourcevalues across columns of fee DAC, for 4 different
test devices. A combinationof randomgradients anddevice mismatch areseen.

These additions and corrections to fee nonlinearity inputs can beused to recompute estimates

of INL and DNL. Table 6A. 1 is fee same astable 6A. 1, wife fee additionof a column for corrected

and new causes of nonlinearity. Wife feese additions fee estimates bracket fee observed INL and

DNL.1

1. TheINLseen in theworst case transfer function isequal to this worst case estimate, butthe combination of effects
seen inthat part does not correspond to this model exactiy. In particular, the assumption that gradients are linear, and per
fectly cancel should be re-visited. A slight curvature in the threshold voltage gradient would explain the additional INL
contributions in that chip.

6A.3 Stochastic Effects 143

Table 6A.2 Summary of predicted and observed static linearity. Units inlsb. Shaded cells
indicate corrections.

Cause Effect on INL Effect on DNL

Finite Rout .24 0

Resistive Drops .06 .02

t: End Segment Layout Mismatch .05 .025

"Segment/LSB Layout Mismatch .02 .02

Random Mismatch .19 .07

Mismatch Gradients ' .07 .14

totals (original total) - .63 053) .28(0.16)

Observed Max

Avg

.64

.30

0.21

.10

144

CHAPTER 7

Conclusion

7.1 Summary of Research Results

This research has demonstrated the computer aided synfeesis of high performance CMOS dig

ital/analog converters. The combination of several factors made this possible.

• A DAC circuit estimation process was developed which emphasized accurate perfor

mance prediction from circuit, topological, and technology inputs.

• The use of back-endperformance calibration factors was avoided,in favor of front

end corrections to modelling, process ormatching parameter errors.

• A combinationofcircuitanalysis and full circuit simulationwas found to be a flexible

framework for all design estimation needs. Multiple simulations were usedto simulta

neously find static and dynamic behavior atworst case design corners.

• A newMixed Integer Non-linear Programming algorithm was implemented, for effi

cient optimization wife this estimation mefeod. This algorithm uses acutting plane

mefeod to create linear constraints for a fast mixed integer, linear programming sub-

problem, and avoiding adirect combination of amixedinteger solution wifenonlinear

7.2 Barriers to Acceptance ofAnalog Synthesis CAD tools 145

constraint functions. The optimization algorithm completes in several hours, even

wife function evaluation times on the order of a minute.

• The layout synthesis approach is matched totypical DAC layout styles, using acom

bination of tiling and stretching algorithms to complete fee DACmodule. The com

pleted module has >80% of fee density of an ideal manual design.

• Tightcoupling of fee deterministic layout process wife circuit performance estimation

allows accurate parasitic prediction in feeestimation phase. Parasitic capacitances as

small as 12 IFhavebeenimportant in design simulations, so this coupling is neces

sary.

Implementation of a new DAC module design takes several months, a period compa

rableto manualdesign. Re-targeting to a new specification, new technology,or even a

modified architecture is very fast, wife several examples requiring less fean 1 week.

• The DAC synfeesis process has been demonstrated wife 8-bit video DAC and 10-bit

resolution prototypes. These test designshave validated fee synfeesis process.

7.2 Barriers to Acceptance of Analog Synthesis CAD tools

In fee course of this work fee question of fee application of analog CAD techniques to real

world situations has come up many times. It is worthwhile to look at where innovations in CAD

for analog circuit designers are moving forward rapidly, and at fee barrierswhich prevent fee cur

rent widespread use of analog synfeesis CAD tools

7.2.1 Where is analog CAD successful today?

Analog CAD tools are used everywhere analog circuit design occurs. The typical circuit

designer uses a set of sparse, problem specific tools in an ad-hoc way, developing circuit and sys

tem simulations wife a combination of circuit simulation (SPICE), behavioral simulation (SPICE

or Ptolemy), specialized simulation tools (SWITCAP), or self-written programs. Circuit layout

mefeods use a similar set of sparse tools, aiding fee user in an essentially manual mefeodology.

Improvements continue all fee time wife feese tools. The capability for circuit simulation is larger

7.2 Barriers toAcceptance ofAnalog Synthesis CAD tools 146

every year, fee inclusion true mixed signal simulation and behavioral simulation wife analog sub-

circuits increases fee users' capability. Optimization linked to circuit design is now used to quickly

size individual circuits under user control. Graphical interfaces promise to make circuit design as

we know it more efficient and less error prone. Layout automation to simplify element creation,

automate routing, and automate digital cell layout is proceeding.

All of feese advances maintainfee existingphilosophyof giving fee user greater powerto sim

ulate and understand design options, and speed design entry, but do not fundamentally alter fee

way fee engineer specifies fee design inputs, and expects fee tools to accurately predict perfor

mance.

Circuit synfeesis tools take a fundamentally different approach, seeking to create designs auto

matically to meetuser specifications. While synfeesis tools have gained wide acceptance in digital

circuits, feey have still seenlittle use by analog circuit designers.

7.2.2 Limitations to today's synthesis tools

The most important limitation to widespread acceptance of analog synfeesis tools is fee lim

itedcapabilities of fee tools themselves. There limitations include barriers to fee input of new

designs in a synfeesis framework, fee incomplete design solution which many current synfeesis

approaches provide, and fee incomplete technology database available to synfeesis.

When anew circuit architecture is to besynthesized, someone, usually an analog circuit

designer, must input fee elements of fee design required for synfeesis. This is atime consuming

task for any real design. At minimum, fee synfeesis designer must specify all design constraints,

and fee mefeods for performance estimation. He must make some choices for parametrization of

fee design. An unfamiliar input format will make this task more difficult. As a result of feese fac

tors, fee design input process requires auser wife considerable design expertise, butmay take a

considerable amount of time. The design input process may beerror prone, especially when ana

lytic mefeods which cannot bechecked through simulation are used. Though some tools have been

developed wife feese issues in mind, it is difficult to see how this problem can be completely

avoided when real, complex modulesynfeesis is done.

7.2 Barriers to Acceptance ofAnalog Synthesis CAD tools 147

Recent synfeesis approaches have beenoversold, advertising a complete synfeesis solution

while solving simplified examples1. In many cases synthesis mefeods are demonstrated using sim
pleopamp circuits, demonstrating AC and DC performance wife nominal models, inputs, and cir

cuitloads. Real designs typically usemore complicated circuit topologies, usually require transient

analysis, andmust be testedover a full range of temperature, process, input range and loading.

Theseadditional requirements makecircuit design significantly moredifficult. In practice obtain

ing atopology which meets performance specs under nominal conditions may be done rapidly, but

consideration of all process corners increases design complexity by an orderof magnitude. No

body has demonstrated a complete worst case design, using an optimization approach wife inter

esting circuits.2

As seen in fee error sources described in fee previouschapter, it is difficult to comprehensively

describe fee technology and interactions which affect CMOS circuit performance. Device models

may be incomplete, lacking noise and matching information, and may not even fit fee devices in

important regions of operation. Layout dependent and substrate noise effects arenot fully under

stood at this time. These uncertainties aredifficult to incorporate efficiently into synfeesis. Ideally,

fee design must meet specifications, despite feese nonidealities, yet not be wastefully overde-

signed. The lack of a fully qualified technology database prevents fee reliable prediction of circuit

performance in fee first pass of a design.

Layout synfeesis is a bright spot here. While typical analog layout synfeesis tools were not fee

best choices for fee DAC synfeesis application, fee mefeods developed and currently in research

showpromise for stand-alone layout synfeesis from annotated netlist inputs[chaR92,cohn91

7.2.3 Analog design culture works against synthesis acceptance

Besides limitations to existing analog synfeesis tools, feere are elements of fee current analog

circuit design culture which work against acceptance of analog synfeesis.

One of fee first rules seen in fee practice of analog circuit design is do not change a known

good design. Potential improvements to a design are never worth fee perceived risk of change.

1. The one exception is IDAC, which was geared towardindustrial application, including interesting circuit blocks and
worst case analysis, butrequired long design input times. [DEGR89]
2. This work has some worst case design aspects, but it is not done systematically enough to meet this criterion.

7.2 Barriers toAcceptance ofAnalog Synthesis CAD tools 148

Though some tweaking may make sense to a designer, if fee current part and layout meets specifi

cations, do not change it. If fee specification changes, try to change as little as possible. If a stan

dard cell meets the circuit requirements, use it. Designers tend to re-use familiar circuit

architectures, and specialize feem for key system analog blocks. This culture is not receptive to fee

design style suggested by analog module generator tools, in which designs are implemented to

specificationsin every case, wife reuse of design knowledge through fee module generator, but not

a reuse of fee known good design.

A second cultural issueis anengineering management one. Thereare neverenough analog cir

cuit designers, andtime to market is critical to company profits. If fee payoffof ananalog synfee

sis mefeodology is uncertain, in termsof actual synfeesiscapability andmodule generator design

reuse, feen fee extra time spent by circuitdesigners on first implementations in a module genera

tion mefeodology are difficult to justify. The inclination is to continue to do designs fee old way,

and only accept incremental changes to fee tools, which will moderately increase analog designer

efficiency.

7.2.4 How can this change?

Tb gain wide acceptance of analog synfeesis tools, improvements must occur in existing syn

feesis tools and methodologies, andindustry must be willing to take some risks wife feese new

tools.

Development of synfeesis tools must continue, and fee limitations identified earlierin this sec

tion mustbe addressed. We mustgetbeyond nominal design of opamp circuits, and address manu-

facturability, worst case design, and realistic design problems. Testcases must be used which

complete fee design process through to fabrication, because feese testcases are fee ones which can

convince industrial customers feat feese synfeesis approaches meettheir promise.

Industry must bewilling todevote resources and analog designers to fee problem. Itis unreal

istic to expect feose who specialize in circuit synfeesis mefeods to simultaneously provide all fee

design expertise required for high performance circuit synfeesis implementations. Unfortunately,

industry has gone down this road in fee past, wife well publicized, butunsuccessful efforts aimed

at allowing design ofcomplex circuits by relatively naive designers [DEGR89, LABE87]- Since these

7.3 Future Directions 149

have not panned out, analogsynfeesis does not have fee track record feat digital circuit synfeesis

boasts, and there is not fee same level of industry trust. Consumers of feese tools must keep rea

sonable expectations: fee tools may never help naive designers wife complicated circuits, but feey

do provide a path toward rapidhigh performancecircuit synfeesis when used by educated users.

7.3 Future Directions

In the course of this research several areas of need for analog synfeesis have been identified.

A complete technology database for an analog circuit technology has never been

strictly defined. Obviouslyfee typical foundry data is not enough for DAC design, as

it does not include device matching constants, feough this may bechanging[MjCH92].

What ofeer information should be included? Can all possible variations in devices and

process be described?Can layout dependent effects be included? Is it possible to com

plete such a technology description before designers are ready to move on to fee next

technology?

This research has considered module generation as a stand-alone process, but in a sys

tem designsituation it is only part of a larger system optimizationand partitioning

process. In feat application high level estimates of inverse cost functions (or "flexibil

ity functions") areneeded foreach sub-circuit. If fee synfeesis processcan be run in

an automatedway wife avarietyof designinputs, is it possible to efficiently automate

an estimation process for module cost functions?

In this module generation implementation alimited worst casedesign approach was

used, wife fee user determining asubset ofdesign corners for design estimation. A full

corner simulation includes 2C simulations, where C is fee number of corner vari

ables1, but isobviously excessive, while an ad hoc mefeod such as fee one used here

may miss a significantcorner. Mefeods which ensure feat an optimized design meets

constraints under all conditions is required,without forcing exhaustive simulation.

1. C includes process and temperature comers, and also input specification comers, such as resistive loading ranges and
common mode input range.

7.3 Future Directions 150

• When feese parts were fabricated, "non-simulatable" effectshadanimportant impact

on fee total performance. These includednoise couplingthrough fee substrate from

digital circuits, andlayoutdependent devicemismatch. Is therea goodway to abstract

circuit, technology, and device non-idealities for inclusion in simulation, without

knowing fee exact causeof feese effects?Can fee problem be described so feat fee

effects fromnon-simulatables will be minimizedin fee optimization process?

151

References

[ALLE85] P. E. Allen and E. R. Macaluso, "AIDE2: An Automated Analog IC Design System." in Proc.
IEEE Custom Integrated Circuits Conference, May 1985, pp. 498-501. [Module Compilers
(procedural) and Standard Cell Construction.]

[ALLE86] P. E. Allen andP.R. Barton,"A Silicon Compiler forSuccessive Approximation A/D andD/A
Converters," Proc. IEEE Custom Integrated Circuits Conference, 1986, pp.552-555.

[ADI92] "DataConverter Reference Manual, Vol. I," Analog Devices Inc, 1992.

[BAST91] C.A.A. Bastiaansen,D. Groeneveld, H. Schouwenaars, and H. Termeer, "A 10-b 40-MHz
0.8um CMOS Current-Output D/AConverter." IEEE Journal of Solid State Circuits, SC-
26(7), July 1991, pp. 917-921. [Demonstrates 10-bit matching ofcurrent sources using a large
binary weighted array of large devices, closely spaced in a 2d layout. ERB (effective Resolu
tion Bandwidth) = 5 MHz.]

PERK881 E. Berkcan, M.d'Abreu, andW. Laughton, "Analog Compilation based onSuccessive Decom
positions," inProc. ACM/IEEE Design Automation Conference, 1988, pp.369-375. [An.Com,
a topdown approach toanalog design automation. Successive decomposition allows working
downfrom a high level without exhaustive simulation. Required behavioral or macromodel
circuit representations.!

[BRAY811 R.K. Brayton, G.D. Hachtel, andA. Sangiovanni-Vincentelli, "A Survey of Optimization
Techniques for Integrated Circuit Design," Proceedings of the IEEE, 69(10), October 1981, pp.
1334-1364. [Summarizes optimization for nominal and statistical design}

[BULT921 K. Bult, and GJ.G.M. Geelen, "An inherently Linear and Compact MOST-only Curent Divi
sionTechnique." IEEE Journal ofSolid State Circuits, SC-27(12), Dec. 1992,1730-5. [AnR-
2R structure of MOS transistors creates a linearcurrentdivision.l

[BURI851 M.R. BuricandT.G. Matheson, "Silicon Compilation Environments," Proc. IEEE Custom
Integrated Circuits Conference, May 1985, pp. 208-212. [silicon compilation for digital from
functional to geometric!

[CADE94] Design Framework IIUser Manual, Cadence Design Systems, 1994.

[CHAN92] H. Chang, A. Sangiovanni-Vincentelli, etal. "A top-down, constraint-driven design mefeodol
ogyforanalog integrated circuits," Proc. IEEE Custom Integrated Circuits Conference, May
1992, pp. 8.4.1-6.

[CHAN941 H. Chang et al, "Top-Down, Constrait-Driven Design Mefeodology Based Generation ofn-bit
Interpolative Current Source D/A Converters," Proc. IEEE Custom Integrated Circuits Con
ference, May 1994, pp. 15.5.1-4.

[CHAR921 E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli, "A ConstraintDriven Placement
Methodology forAnalog Integrated Circuits," Proc. IEEE Custom Integrated Circuits Confer
ence, May 1992, pp. 1711-1714.

C.C. Chen and SJL. Chow, "The Layout Synthesizer An automatic Netlist-to-Layout System,"
Proc. ACM/IEEE Design Automation Conference, 1989, pp.232-238. [Digital cellbuilder!

[CHEN891

[CHIE94] G. Chien, private communication. [In a low power ADC application, gate capacitance ispoorly
modelledby HSPICEwife the level28 model,especially for Vdsat < lOOmV.]

152

[CHOU90] U. Choudhury and A. Sangiovanni-Vincentelli, "Use ofPerformance Sensitivities in Routing
ofAnalog Circuits," Proc. International Symposium on Circuits and Systems, May 1990, pp.
348-351.

[COHN901 J.M. Cohn, DJ. Garrod, R.A. Rutenbar, and L.R. Carley, "New Algorithms for Placement and
Routing of Custom Analog Cells in ACACIA," Proc. IEEE Custom Integrated Circuits Con
ference, May 1990, pp.27.6.1-5. [SA algorithms applied to placement, wife designer input
rulesformatching, parasitics. Allows more free-form layouts, esp.device merging.!

[COHN911 J.M. Cohn, DJ. Garrod, R.A Rutenbar, and L.R. Carley, •Techniques for simultaneous place
ment and routing of custom analog cells in KOAN/ANAGRAM n," Proc. International Con
ference on Computer-AidedDesign, Nov. 1991,pp. 394-397.

[CONW92] J.D. Conway, "An Automatic Layout Generator for Analog Circuits," Proc. European Conf on
Design Automation, March 1992, pp.513-19. [Exhaustive slicing structure approach, wife size
optimization.

[CREM89] A. Cremonesi, F. Maloberti, and G. Polito, "A100-MHz CMOS DAC for Video-Graphic Sys
tems," IEEE Journal ofSolid State Circuits, SC-24(3), June1989, pp.635-639. [Glitch energy
reduced by equalizing on/offdelays. Requires digital to differential conversion, using an exter
nally supplied bias voltage (!)]

[CRYS92] "Analog/Digital Conversion ICsData Book, Volume I," Crystal Semiconductor, 1992.

PEGR871 M.C. Degrauwe, et al.,"IDAC: Aninteractive design tool for Analog CMOS circuits," IEEE
Journal of SolidState Circuits, 22(6), December 1987, pp. 1106-16.[Knowledge based
approach creates a formal description which creates device sizesfrom specs. Hiearchy allows
subsystem design.!

PEGR891 M.C. Degrauwe, et al. "Towards anAnalog System Design Environment," IEEE Journal of
Solid State Circuits, 24(3), June 1989, pp. 659-671. [IDAC 3+ ILAC. IDAC includes synthe
sis, optimization, and analyzers per architecture.]

[DEWI93] M.de Wit, Tan, K.-S. Tan,, R.K. Hester, "Alow-power 12-b analog-to-digital converter with
on-chip precision triniming." IEEE Journal ofSolid State Circuits, April 1993, vol.28, (no.4):
pp.455-61.(Trim DACsection using CMOS compatible fuses.!

[DHAR92] A. Dharchoudhury, and SM.Kang, "An Integrated Approach toRealistic Worst-Case Design
Optimization of MOS Analog Circuits," Proc. ACM/IEEE Design Automation Conference,
1992, pp.704-709. (Finds worst case design file perevery design constraint.]

PURA861 M.A. Duran andI.E. Grossmann, "An Outer-Approximation Algorithm fora Class of Mixed-
Integer Nonlinear Programs. Mathematical Programming, 36:307-339,1986. [Solves MINLP
problem using a combination of a relaxed MILP master program, anda NLPsub-problem
which creates cuts eliminating infeasible solutions.]

[FELT94] E. Felt, A. Narayan, adn A. Sangiovanni-Vincentelli, "Measurement and Modeling ofMOS
Transistor Current Mismatch in Analog ICs, " Proc. International Conference on Computer-
Aided Design,l994, pp. 272-277. [Measures device mismatches, finding large process gradient
effects.]

[FOT094] B. Fotouhi, "Optimization ofChopper AmpUfiers for Speed and Gain," IEEE Journal ofSolid
State Circuits, 29(7), July, 1994, pp. 823-828. [Demonstrates a circuit optimization without
CAD approach.]

153

[F0UR911 J.M. Fournier and P. Senn, "A 130-MHz 8-b CMOS Video DAC for HDTV Applications,"
IEEE Journal ofSolid State Circuits, SC-26(7), July, 1991, pp. 1073-7. [For row-col lookup,
describes a row decode source of glitch, anddeglitches locally!

[GADE91] G. Gad-El-Karim and R. S.Gyurcsik, "Use ofPerformance Sensitivities in Analog Cell lay
out," Proc. International Symposium on Circuits and Systems, 1991, pp. 2008-2011. [Demon
strates thegeneration of performance sensitivies to layout placement andparasitics.!

[GARR881 D.J. Garrod, R.A. Rutenbar, and L.R. Carley, "Automatic Layout ofCustom Analog Cells in
ANAGRAM," Proc. International Conference on Computer-Aided Design, Nov. 1988, pp.
544-547. [SAbasedplacement and routing to minimizecrosstalk.!

[GEOF72]

[GIEL891

[GIEL90]

[GILL86]

[GRAY90]

[GRAY94]

A.M. Geoffirion, "Generalized Benders Decomposition," Journal ofOptimization Theory and
Applications, 10(4): 237-260,1972. [Describes the Benders decomposition MILP algorithm.
Wife each iteration through an BLP sub-problem, either find fee solution, or add a violated ine
quality to the subproblem.]

G.G.E. Gielen, H.C.C Walscharts, and W.M.C. Sansen, "ISAAC: A Symbolic Simulator for
Analog Integrated Circuits," IEEE Journal ofSolid State Circuits, 24(6), Dec. 1989, pp. 1587-
1597.

G.G.E. Gielen, H.C.C. Walscharts, and W.M.C. Sansen, "Analog Circuit Design Optimization
Based on Symbolic Simulation andSimulated Annealing,"/£££ Journal of Solid State Cir
cuits,25(3), June, 1990,pp. 707-713.

P. Gill, W. Murray, M.Saunders, and M.Wright," User'sguide forNPSOL vers. 4.0,"Techni
cal ReportsSOL86-2,Stanford University, Jan. 1986.

P.R. Gray, EECS 290Y Lecture Notes, University of California at Berkeley, Spring, 1990.
[Notes onD/AandA/D conversion foranalog CMOS subsystems.]

P.R. Gray and R.R. Neff, "Analog-Digital Conversion Techniques for Telecommunications
Applications," inDesign ofAnalog-Digital VLSI Circuitsfor Telecommunications and Signal
Processing, ed.J.E. Franca andY. Tsividis, Prentice Hall, 1994, pp. 289-316.

[GROE89] D. W. J. Groeneveld, J. Schouwenaars, J. Termeer, and C. Bastiaansen, "A Self-Calibration
Technique forMonolithic High-Resolution D/AConverters," IEEE Journal ofSolid State Cir
cuits, SC-24(6), December 1989, pp. 1517-1522. [Introduces dynamic current copier based
matching. Audio application.]

[GUPT80] O.K. Gupta, "Branch and Bound Experiments inNonlinear Integer Programming," PhD. fee-
sis, Purdue University, Oct. 1980.[Describes implementation ofbranch and bound algorithm
for MINLP optimization.]

[HARA92] I. Harada, H. Kitazawa, and T. Kaneko, " A Layout System for MixedA/D Standard Cell
LSIs," IEICE Trans, on Electronics, Vol. E75-C(3), March 1992, pp.322-332. [Covers issues
fora mixed Analog/Digital Std. Cell Environment, particularly shielding ofanalog wires.]

[HARJ87] R. Harjani, R. A. Rutenbar, and L. R. Carley, "A Prototype Framework for Knowledge-Based
Analog Circuit Synfeesis," Proc. ACM/IEEE Design Automation Conference, June, 1987.
[Knowledge based - mimics designer methods using design equations.]

[HARJ88] R. Harjani, R. A. Rutenbar, and L.R. Carley, "Analog Circuit synfeesis forPerformance in
OASYS," Proc. International Conference on Computer-Aided Design, November, 1988, pp.
492-495. [Some comparators in OASYS]

154

[HARV921 J.P. Harvey, M.I. Elmasry, and B. Leung, "STAIC: An Interactive Framework for Synthesizing
CMOS andBiCMOS Analog Circuits," IEEE Trans, on Computer-Aided Design, 11(11),
November 1992, pp. 1402-17. ["Successive Solution Refinement" andseparate layout tool.
Nice comparison of other tools.!

[HOCE90] D.E. Hocevar, etal., "AUsable Circuit Optimizer for Designers," Proc. International Confer
ence onComputer-Aided Design, Nov. 1990, pp.290-293. [Flexible Spice/Optimization envi
ronment. Identifies user needs.]

[HONG901 S.K. Hong, and P. E. Allen, "Performance Driven Analog Layout Compiler," Proc. Interna
tional Symposium on Circuits and Systems, May 1990, pp. 835-838. Pifficult paper. Results
donotlookimpressive, and noverification, even with spice, ofresults.]

[HORT92] N.C. Horta, J. "Vital, J.E. Franca, "Automatic multi-level macromodel generation for data con
version systems employing binary-weighted capacitor-arrays." Proc. International Symposium
on Circuits andSystems, May 1992, pp. 2561-4. [Behavioral Simulation withAutomatic mac
romodel generation.!

[HUAN941 J.H. Huang, Z.Liu, M.C. Jeng, K. Hui, M. Chan, P. Ko, and C. Hu, "BSDM3 Manual," Depart
mentof EECS, U.C. Berkeley, March 7,1994. [BSIM 3 model andextraction manual.!

[HUI941

[JENG90]

[JUSU901

[JUSU931

[KOH89]

[KOH90]

K. Hui, private communication.

M-C. Jeng, "Designand Modeling fo Deep-submicrometer MOSFETs," UCB/ERL Memo
M90/90,U.C. Berkeley, October, 1990.Ph.D. Thesis. [Describes BSIM2MOSFETmodeland
mefeods for fitting the model.]

G. Jusuf, P.R. Gray, and A.Sangiovanni-Vincentelli, "CADICS - Cyclic Analog-to-Digital
Converter Synfeesis." in Proc. International Conference on Computer-Aided Design, Nov.
1990, pp. 286-289.

G.Jusuf, "Automatic Synfeesis ofCMOS Algorithmic Analog-to-Digital Converter," Univer
sity of California at Berkeley, May 1993, Ph.D. Thesis. [Sythesis and layout of A/D convert
ers. Synfeesis uses hierarchical optimization wife behavioural and equation based analysis.
Layoutuseshierarchical slicing structures likeOPASYN].

[KAYA88] M.Kayal, S.Piquet, M. Declercq and B. Hochet, "SALIM: A Layout Generation Tool for
Analog ICs." Proc. IEEE Custom Integrated Circuits Conference, May 1988, pp. 7.5.1-7.5.4.
[Bottom up grouping ofdevices into modules, and slicing structure layout. Attempts to obey
routing rules. No notion of routingconstraints.]

H.Y. Koh, "Design Synthesis ofMonoUfeic Operational Amplifiers," University ofCalifornia
at Berkeley, May 1989, Ph. D. Thesis.

H.Y. Koh, C.H. Sequin, and P.R. Gray, "OPASYN: ACompiler for CMOS Operational Ampli
fiers," IEEE Trans, on Computer-Aided Design, 9(2): 113-125, Feb. 1990. [Circuit synfeesis
via equation based analysis with optimization. Layout wife a template and cell size optimiza
tions.]

[KUND93] K.S. Kundert, I.H. Clifford, "Achieving Accurate Results wife a Circuit Simulator," in IEE
Colloquium on 'SPICE: Surviving Problems in Circuit Evaluation", June, 1993, p.4/1-5. Pis-
cusses SPICE simulation andmodel accuracy problems.]

155

[KUP91] BMJ. Kup, E. C. Dijkmans, P.J.A. Naus and J. Sneep, "A Bit-Stream Digital-to-Analog Con
verter with 18-b Resolution," IEEE Journal ofSolid State Circuits, SC-26(12), December
1991, pp. 1757-1763. [Oversampled D/A Converter, in BiCMOS, including digital filtering
and 1-b D/A. Analog chip is just stereo bitstream D/As, no filtering. Phihps]

[LABE87] C.A. Laber, C.F. Rahim, S.F. Dreyer, G.T. Uehara et al., "Design considerations for ahigh-per
formance 3-urn CMOS analog standard-ceU Ubrary," IEEE Journal ofSolid State Circuits,
22(2), April, 1987, pp. 181-9. [Describes a Ubrary ofstandard cells. SuccessfuUy reused by
designers, but did not allow customer use as digital blocks would. Many stiU inuse today]

[LAKS86] K.R. Lakshmikumar, R. A. Hadawy, and M.A. Copeland, "Characterization and Modeling of
Mismatch inMOS Transistors for Precision Analog Design," IEEE Journal ofSolid State Cir
cuits, SC-21(6), Dec.1986, pp. 1057-66. [Creates a modelformismatch andfits limited data to
that model, for a 3 urn technology. Derivation ofcontributions ofmismatch toDAC DNL.]

[LEE84] H.S. Lee, D.A. Hodges, and P. R. Gray, "ASelf-CaUbrated 15 BitCMOS A/D Converter,
IEEE Journal ofSolid State Circuits, SC-19(6), December 1984, pp. 813-819. [Cahbrates a 2-
step Capacitor-Resistor structure wife anerror memory and a calibration DAC]

[LERC91] R.G. Lerch et al., "A MonoUfeicIA A/D and D/A converter wife Filter for Broad-Band
Speech Coding," IEEE Journal ofSolid State Circuits, SC-26(12), December 1991, pp. 1920-
7. [Codec application of oversampled A/D and D/A. All filters andanalog circuits in 31mm2
monolithic part.]

CLETH87] L. Lefeam, B.K. Ahuja, et al., "A High-Performance CMOS 70-MHz Palette/DAC," IEEE
Journal ofSolid State Circuits, SC-22(6), December 1987, pp. 1041-47. [Thorough Video-
DACpaper,detailedcircuits. 8 bits, 2-D segmented architecture.]

[LEME91] C. Leme, A. Yufera, N. Hora, J.E. Franca, et al, "Flexible Silicon Compilation of Charge
Redistribution DataConversion Systems," Midwest Conference, May, 1991.

[LIN91] Z. Lin,"DAVE: AnAutomatic Mixed Analog/Digital IC Layout Compiler," Proc. IEEE Cus
tom Integrated Circuits Conference, May, 1991, pp. 5.4.1-4. [Netlist to Layout. Device sym
metry, shape, matching and signal decoupling.

[LIU93] E.W.Y. Liu, "Analog Behavioral Simulation and Modeling," University ofCalifornia at Berke
ley,ERLMemo M93/38, May 1993. Ph.D. Thesis. [Behavioural modelling of statistical and
dynamic effects.]

[LIU92] E. Liu, G. Gielen, H.Change, A.Sangiovanni-VincentelU, andPR. Gray,"Behavioral Model
ing andSimulation ofData Converters," Proc. International Symposium on Circuits and Sys
tems, May, 1992. [Estimates Static Linearity using a Behavioral Modelhng tooland statistical
inputs.!

[LOUI941 W.A. Louis in, B.E. Boser, E. Liu,andB. Wooley, "MIDAS-UCB UserManual," Center for
Integrated Systems, StanfordUniversity, Version 2.1-UCB, June, 1994.

.{LUEN84] D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley PubUshing Co., 2nd
Ed., 1984.

[MAKR92] C.A. Makris and C. Toumazou, "QuaUtative reasoning in Analog IC Design Automation,"
Proc. IEEE Custom Integrated Circuits Conference, May 1992, 8.3.1-4. [Circuit correction
basedon qualitative reasoning to correct errors in equation basedapproach. Creates numerical
adjustments to errors.

156

[MAR93] M.F. Mar, "Automated Design of Signal Acquisition Modules," Electronics Research Lab, U.
C. Berkeley, Memo UCB/ERL M93/21, March, 1993 (Ph. D. Dissertaion). [Uses hierarchical
digital synthesis for filters for oversampled A/D converters.!

[MAUL92] P.C. Maulik, MJ. Flynn, D.J. Allstot, and L. R. Carley, ""Rapid redesign of analog standard
cells using constrained optimization techniques."Proc. IEEE Custom IntegratedCircuits Con
ference, May, 1992, pp. 8.1.1-3.

[MAUL92b] P.C. Maulik, L. R. Carly, and R. A. Rutenbar, "A Mixed-Integer Nonlinear Programming
Approach to Analog Circuit Synthesis." Proc. ACM/IEEE Design Automation Conference,
June, 1992, pp. 698-703. [Mixedintegeroptimization allows some circuit selection, as weUas
device sizing, by attaching integer valuesto selected circuittopology.!

[MAUL92c] P.C. Maulik, "Formulations for Optimization-Based Synfeesis of Analog CeUs," Carnegie
MeUon University, Research ReportCMUCAD-92-50, October 1992.

[MAUL931 PC MauUk, L.R. Carley, and D.J. Allstot, "Sizing of ceU-level analog circuits using con
strained optimization techniques," IEEE Journal of SolidState Circuits, 28(3), March, 1993,
pp. 233-41. [Separates analytic approach into circuitlevel anddevice level, and uses BSIM for
device level. Optimization uses constrained optimization (NPSOL). KCL is one of fee con
straints.]

[McCR81]

[MICH92]

[META92]

[MEYE93]

J.L. McCreary, "Matching Properties, and Voltage and Temperature Dependence of MOS
Capacitors," IEEE Journal ofSolid State Circuits, SC-16(6), Dec. 1981, pp. 608-616.

C. Michael, and M. Ismail, "Statistical Modeling of Device Mismatch for Analog MOS Inte
grated Circuits," IEEE Journal ofSolid State Circuits, SC-27(2), February 1992, pp. 154-66.
[Fits models todevices, and finds statistical model for underlying device parameters.]

[MIKI86] T. Miki, Y. Nakamura, etal., "An 80-MHz 8-bit CMOS D/A Converter," IEEE Journal of
Solid State Circuits, SC-21(8), Dec. 1986, pp. 983-988. [Improvements to SHEN83. Static
logic decode (not pass gate), symetrical switching toovercome process and IRdrops.]

[MIKI92] T. Miki, Y. Nakamura, etal., "A lOit 50MS/s CMOS D/A Converter wife 2.7V Power Supply,"
in Proc. International VLSI Circuits Symposium, 1992, pp. 92-93.

[MEHR91] S.W. Mehranfar, "ATechnology-Independent Approach to Custom Analog CeU Generation,"
IEEE Journal ofSolid State Circuits, 26(3), March 1991, pp. 386-392. [Another schematic to
layout tool, preserving quafitative user inputs.]

[MERC94] D. Mercer, A 16-b D/A Converter wife Increased Spurious Free Dynamic Range," IEEE Jour
nal ofSolid State Circuits, 29(10), October 1994, pp. 1180-5. [Decreases DAC glitch energy
through equalizing rise and fall delay, notthrough decreasing segment size.]

HSPICE User's Manual, version H92," Meta-Software, Inc, CampbeU, CA.

V. Meyer zu Bexten etal. "ALSYN: Flexible Rule-Based Layout Synthesis for Analog ICs,"
IEEE Journal ofSolid State Circuits, 28(3), March 1993, pp. 261-268. [Hierarchical nefest to
layout synthesis. Layouts do not have analog "look". Noexplicit constraints onrouting parasit
ics.]

[MOGA89] M. Mogaki etal, "LADIES: An Automatic Layout system for Analog LSIs." Proc. Interna
tional Conference on Computer-Aided Design, 1989, pp. 450-453. [Anofeer netlist to layout
system. Attempts toininimize area, but noobvious Unk tocircuit performance.]

157

[MUKH94] T. Mukherjee, L.R.Carley, and R.A. Rutenbar, "Synfeesis of Manufacturable Analog Cir
cuits," Proc. International Conference on Computer-Aided Design, November, 1994, pp. 586-
93. [Uses Infinite Programming algorithm tofind worst case process comer in fee inner loop of
the ASTSX/OBLX formulation. Optimization time explodes90x, but solutiondoes remain
within spec across design conditions and variations.]

[MURT87] B.A. Murtagh andM.A. Saunders, "MINOS 5.1User's Guide," Technical Report SOL83-
20R,DepL of Operations Research, Stanford University, December1983, rev.Jan. 87.

[NAKA91] Y. Nakamura, T.Miki, et al., "A 10-b70-MS/s CMOS D/AConverter," IEEE Journal ofSolid
State Circuits, SC-26(4), April 1991, pp. 637-642. [Improvements to MIKI86. Better switch
ordering algorithm,consideration of device asymmetryin cell design.]

[NAYL83] J. R. Naylor, "A CompleteHigh-Speed Voltage Output 16-Bit MonoUfeic DAC," IEEE Jour
nalof SolidState Circuits, SC-18(6), December 1983, pp. 729-35. [Segmented Switched Cur
rent design. 16-b settling requires attention to thermal heating effects.]

[NEFF87] R. R.Neff,"Design of a custom IIRdecimation/anti-aUas filterfor a multi-channel sigma-delta
coder using LAGER," M.S. Report, U.C. Berkeley, 1987.

[NING91] Z. Ning, T. Moufeaan,and H. Wallinga, "SEAS: A simulatedEvolution Approach for Analog
Circuit Synfeesis," Proc. IEEE Custom Integrated Circuits Conference, May, 1991, pp. 5.1.1-
4. [SA optimization around a circuit descriptionwhich includes both topology and analytic cir
cuit models aUows selection of designs as weUas device dimensions.]

[NING92] Z. Ning, M. Kole, T. Mouthaan, and H. Wallinga,"Analog Circuit Design Automation for Per
formance," Proc. IEEE Custom Integrated Circuits Conference, May, 1992, pp. 8.2.1-4.
[Improved version of NING91. Better description of synfeesis algorithm.]

[NYE88] W. Nye et al, "DELIGHT.SPICE: An Optimization-BasedSystem for the Design of Integrated
Circuits," IEEE Trans, on Computer-AidedDesign,7(4), April 1988. [Optimization framework
for SPICE, using feasible directions for Constrainedoptimization.]

[OCH093] E.S. Ochotta, R. A. Rutenbar, and L.R. Carley, "ASTRX/OBLX: Tools for Rapic Synfeesisof
High Performance Analog Circuits", Report #93-62, Carnegie Mellon University, October
1993. [SA optimization with AWEsimulations and design equations for trans. Many design
vars allowed. Circuit Synthesis.]

[OCH094] E.S. Ochotta, R. A. Rutenbar, and L.R. Carley,"Analog Circuit Synthesis for Large, ReaUstic
CeUs: Designing a Pipelined A/D Converter with ASTRX/OBLX," Proc. IEEE Custom Inte
grated Circuits Conference, May 1994, pp. 15.4.1-3. [Same as above. Claim of ADC design
stretches opamp and comparator optimization to full ADC !!]

[OHTS92] T. Ohtsuka, H. Kunieda, and M. Kaneko, "LIBRA: Automatic Performance-Driven Layout for
Analog LSIs," IEICE Trans, on Electronics, Vol.E75-C(3). March 1992, pp. 312-321. Poes
performance driven layout, in particular, considers wiring resistance effect on offset.]

IONOD90] H. Onodera, H. Kanbara, and K. Tamaru, "Operational-AmpUfier Compilation wife Perfor
mance Optimization." IEEE Journal ofSolid State Circuits, SC-25(2):466-474,1990. [Proce
dural approach to design selection, foUowed by tight coupling of optimization with extracted
layouts.Spice used, but only AC and DC. Procedural layout techniquesresult in quick results.]

158

[ONOD92] H. Onodera and K. Tamaru, "Analog Circuit Placement - Branch and Bound Placement with
Shape Optimization," Proc. IEEE Custom Integrated Circuits Conference, May, 1992, pp.
11.5.1-6. [Just placement, using branch and bound to do placement without template. No rout
ing. Shape optimization after placement]

[ORBI92] "Foresight User's Manual," Orbit SemiconductorCorp, Rev. 1.5, July 1992.

[PADU87] S.L. PadulaandJ. Sobieszczanski-Sobieski, "A ComputerSimulatorfor Developmentof Engi
neering System Design Methodologies," Report NASA TM-89109, NASA, Washington, DC,
Feb. 1987. [Discussion of issuesfor hierarchial optimization. Use of sub-level estimators.]

[PELG89] M.J.M. Pelgrom, A. Duinmaijer, andA.Welbers, "Matching Properties of MOSTransistors,"
IEEE Journal of Solid State Circuits, SC-24(5), October 1989, pp. 1433-40. [Bestpaper for
Matching properties of MOS devices.Verifies matchingmodels wife odd sized devices, and
looksacrossprocess to allowinterpolation and perhaps extrapolation to otherprocesses. Data
strongly suggests the var(mismatch)proportional to l/(Device Area) model for mismatch.]

[PELG90] MJM. Pelgrom, "A10-b 50-MHz CMOS D/A Converter wife 75-Q Buffer," IEEE Journal of
Solid State Circuits, SC-25(6), Dec. 1990, pp. 1347-1352. [Uses a 2-dlookup to tapa resistor
string. Voltage outputpassed to foUower driving 75 Q load. Power dominated by Buffer. Out
put current used to advantage in buffer design.]

[PHIL94] R.A Philpott, R. A. Kertis, R.A. Richetta, T.J. Schmerbeck, and D.J. Schulte, "A 65 MHz,
Mixed-Signal, Magnetic Recording Channel DSP Using PRML," IEEE Journal ofSolid State
Circuits, SC-29(3), March 1994, pp. 177-184. [High performance disc drive chip inananalog
standard cell technology.]

[REYN94] D. Reynolds, "A 320MHz CMOS Triple 8bDAC with On-Chip PLL and Hardware Cursor,"
International Solid State Circuits Conf. Dig. of Tech Papers, WP3.2,Feb. 1994, pp. 50-51.
[Current speed record holder inCMOS. No details onDAC. Uses parallel data paths togetdata
to the DACs in time.]

[RIJM89] J. Rijmenants, j. B. Litsios, T.R. Schwarz, M.G.R. Degrauwe, "ILAC: An Automated Layout
Tool for Analog CMOS Circuits", IEEE Journal ofSolid State Circuits, 24(2), April 1989, pp.
417-425. [Analog netiist tolayout Places and routes generated blocks, subject tousual suite of
matching and parasitic constraints, annotated infee netiist Placement isSA. Opamp and some
hierarchical examples.]

[SAUL80] P. H. Saul, PJ.Ward and A.J. Fryers,"An 8-bit, 5 ns Monolithid D/A Converter Subsystem,"
IEEE Journal ofSolid State Circuits, SC-15(6), Dec. 1980, pp. 1033-9. [High speed bipolar,
binary weighted.]

[SAUL84] P.H. Saul and J. S. Urquhart, "Techniques and Technology for High-Speed D-A Conversion,"
IEEE Journal ofSolid State Circuits, SC-19(1), Feb. 1984, pp.62-68. [8,10, and12bitDACs
described in eelprocess, wife no trinuning. 12bit requires segmentation.]

[SCH079] J.A. Schoeff, "An inherently monotonic 12B DAC," in International Solid State Circuits Conf
Dig. of Tech Papers, pp. 178-9,1979. [Describes used of segmentation to improve linearity
DNL.]

[SCHO86] H.J. Schouwenaars, E.C. Dijkmans, B.M.J. Kup, and E. Van Tuijl, "A Monolithic Dual 16-bit
D/A Converter," IEEE Journal ofSolid State Circuits, SC-21(3), June 1986, pp. 424-429.
[Dynamic matching byswitching between elements, averages outmismatch. Bipolar.]

159

[SCH0881 H.J. Schouwenaars, D. W.Groeneveld, and H. Tenneer, "A Low-PowerStereo 16-bit CMOS
D/AConverter forDigital Audio," IEEE Journal ofSolid State Circuits, SC-23(6), December
1988, pp. 1290-7. [CMOS, Segmented coarse current sources are interpolated in a binary
weighted divider to obtain 16 bit performance.]

[SCH091] H.J. Schouwenaars, D. W. Groeneveld, C.Bastiaansen, andH.Tenneer, "An Oversampled
Multibit CMOS D/AConverter forDigital Audio wife 115-dB Dynamic Range," IEEE Jour
nal ofSolid State Circuits, SC-26(12), Dec. 1991, pp. 1775-1780. [Combines oversampling
with currentsource calibration to gethighdynamic range.]

[SCOT85] W.S. ScottG.Hamachi, J.Ousterhout, and R.N. Mayo, "1985 VLSI Tools: More Works by fee
Original Artists," Report UCB/CSD 85/225, Feb. 1985. CS Division, UCBerkely. [MAGIC]

[SERH85] G.I. Serhan, "Automated Design ofAnalog LSI," Proc. IEEE Custom Integrated Circuits Con
ference, May 1985, pp. 79-82. [Micro-linear bipolar gate array product. Attempts to create
building blockon bipolar masterslice. Design system allows userinputof high level blocks
and interconnects.]

[SHEN83] V. Shenand D.A. Hodges, "A 60nsGUtch-Free NMOS DAC," in International Solid State
Circuits Conf. Dig. ofTech Papers, Feb. 1983, pp. 188-9. [Introduces highly segmented 2-d
array architecture, forlow gUtch and high speed. Decoding is slow and NMOS specific, but2
step decoding is introduced.]

[SHEN83D] V. Shen, "High Speed Digital-To-Analog Conversion," University ofCalifornia at Berkeley
ERL Memo M83/70, Nov. 1983. Ph. D. Thesis.

[SHEU87] B.J. Sheu, D.L. Sharfetter, P.K. Ko, and M-C. Jeng, "BSIM: Berkeley Short-Channel IGFET
Model for MOS Transistors," IEEE Journal ofSolid State Circuits, SC-22(4), August 1987.
[Description of BSIM 1 formulation.]

[SHYU84] J-B. Shyu, G.C. Temes, and F. Krummenacher, "Random Error Effects in Matched MOS
Capacitors andCurrent Sources," IEEE Journal ofSolid State Circuits, SC-19(6), Dec. 1984.
[Considers randomerror effects as a maskedge effect, and fits data to this model.Data does
not have enough W and L variation to test this model.]

[SHYU88] J.Shyu and A. Sangiovanni-VincenteUi, "ECSTASY: ANew Environment for IC Design Opti
mization," Proc. International Conference on Computer-Aided Design, Nov. 1988, pp.484-
487. [Spice3 version ofDELIGHT. Includes random search, and superUnear convergence.
SPICE3 convergence is a real downer.]

[SMIT89] LD. Smife, H.R. Farmer, M. Kunesh, M.A. Massetti, etal.,"A CMOS-based analog standard
cell product family," IEEE Journal ofSolid State Circuits, 24(3), April 1989, pp. 370-9. [IBM
Analog Standard CeU effort. Describes technology, butreally this is a place androute forcus
tom blocks, incorporated into anenvironment for mixed signal design. Depends onapplication
designers to fillout fee standardcell Ubrary.]

[SPOT86] J.P. Spoto, W.T. Coston, and C.P. Hernandez, "Statistical Integrated Circuit Design and Char
acterization," IEEE Trans, on Computer-AidedDesign, 5(1), January, 1986, pp. 90-103. [Sttis-
tical design, including Monte Carlo andapproximate statistical mefeods. Links process wife
device and circuit design.]

[SWIN90] K. Swings, G.Gielen, and W. Sansen, "An Intelligent Analog ICDesign System Based on
Manipulation ofDesign Equations" Proc. IEEE Custom Integrated Circuits Conference, May
1990, pp. 8.6.1-4. [User interaction stressed in reaching a good design, based on equation rep
resentation approach.]

160

[SWIN91] K. Swings, S.Donnay, and W. Sansen, "HECTOR, AHierarchical Topology-construction pro
gramfor analogcircuitsbasedon a declarative approach to circuitmodeling,"Proc. IEEE Cus
tom Integrated Circuits Conference, May 1991,pp. 5.3.1-4.

[TOUM92] L. L. ToumeUn, et al., "A 5-V CMOS Line ControUer wife 16-b Audio Converters,"/£££
Journal ofSolid State Circuits, SC-27(3), March 1992, pp. 332-341. [Includes oversampled 16
bit D/A, with 2-b D/A conversion.]

[TSIV94] Y. P. Tsividis andK. Suyama, " MOSFET Modeling forAnalog Circuit CAD: Problems and
Prospects," IEEE Journal ofSolid State Circuits, SC-29(3), March 1994, pp.210-216. [Details
problems wifemany commonly used MOSFET models, whenappUed in analog circuits.]

[TSUJ94] Y. Tsujihashi, et al., "A High-Density Data-Path GeneratorwifeStretchableCells,"IEEE Jour
nalofSolid State Circuits, 29(1), January 1994, pp.1-8. [Demonstrates stretching and tiUng of
subcells to create digital datapath layouts.]

[VORE94] P. Vorenkamp, J. Verdaasdonk, R. van de Plassche, D. Scheffer, "A 1 Gs/s, 10-b Digital-to-
Analog Converter," International Solid State Circuits Conf. Dig. of Tech Papers, WP-3.3, Feb.
1994, pp. 52-53. [Careful bipolar design matches delays and impedances. AU current sources
are identical size,including LSBs, which arepassed through 50QR-2R to get ceU sizes.]

[YAGH88] H. Yaghutiel, "Automatic Synthesis and Layout of Switched-Capacitor Filters." University of
California at Berkeley, ERLM88/56, August 1988, Ph.D. Thesis. [Synthesis andlayout of SC
filters, building custom switch banks andcapacitors, wifestd.cellopamps, andstd. layout tem
plate.]

[YANG89] J.W. Yang, and K.W. Martin, "High-ResolutionLow-Power CMOS D/A Converter," IEEE
Journal ofSolid State Circuits, SC-24(5), October 1989, pp. 1458-61. [2stepresistor string to
binary weighted capacitorinterpolator creates a clockedoutput through an opamp. 15-b,
lOOKHz.]

[YUAN89] J. Yuan andC.Svensson, "High-Speed CMOS Circuit Technique," IEEE Journal ofSolid State
Circuits, SC-24(1), Feb, 1989, pp.62-70. [Description of True Single Phased Clocked (TSPC)
latch and logic design.]

161

APPENDIX A

DSYN User's Manual

A.1 Introduction

This appendix serves as a user's manual for the DSYN release, including a description of

tools, dependencies for tool compilation and use, and a description of fee design libraries in fee

distribution, developed for fee designs described in chapter 6.

A.2 DSYN Distribution Overview

The DSYN distribution tar includes5 main components: Programs for design optimization,

programs for layout, library files for optimization and layout of DAC designs, and additional

libraries required for compilation of fee design optimization program, and documentation. The

directory structure is shown in Fig. A.4.

A.2.1 DSYN Programs and Compilation Requirements.

DSYN programs are implemented using C++, UNIX shell scripts, and AWK scripts. The lay

out programs STC, DT, and TA requireno external libraries, and have compiled using cfront and

g++. SpiceOptim has several dependencies for compilation. It requires fee LEDApackage, for

definitions of C++ data types.The non-linear optimization package MINOS is used for linear and

non-linear constrained optimization, and a C++ front end, named optz, is used to call MINOS. In

A.2 DSYN Distribution Overview 162

Program
Directories

Figure A.4 DSYN Directory Structure

this tape release fee current version of optzis distributed, wifeoutrequired MINOS source code,

and only include files and compiled objects are included for LEDA, due to restrictions on fee dis

tribution of that package.

LEDA is developed at fee Max Plank Institute, and is available via anonymous ftp from ftp.-

mpi-sb.mpg.de: /pub/LEDA. The currentversion is 2.6.3.

MINOS is developed by fee Systems Optimization Laboratory in fee Department of Opera

tions Research atStanford University. The MINOS 5.1 User's Guide (Report number SOL 83-

20R) is available from Department of Operations Research - SOL, Stanford University, Stanford,

CA 94305. Theversion used here is 5.1. A license for fee program and fee source code should be

obtained from fee OfficeofTechnology Licensing atStanford.

Thecurrent optz version is 2.2.1. Ithas been developed as aC++ front end for MINOS by Eric

Felt, BrianLee, and HenryChangat Berkeley.

Thecurrent versions of fee compilers used are version 3.0.1 of fee AT&T C++ front end (CC),

and version2.6.3 of fee GNU g++ compiler, developed through fee Free Software Foundation.

A.2 DSYN Distribution Overview 163

The programs have been compiledusing g++ on DecStation (mips), Sun Sparc, andDec Alpha

platforms. The CCcompiler wasusedwife anearlier version of LEDA and optz for feemips archi

tecture. See distribution information atthe endof this chapter for availability of compiled pro

grams for specific workstations.

A.2.2 DSYN Environment requirements

DSYN requires help from integrated circuit simulation and layout programs, as well as stan

dard UNIX utilities. The shell scripts makeextensive use of fee UNIX nawk utility program. The

optimization program calls fee commercial HSPICEcircuit simulator, from Meta-Software, Inc,

(408)369-5400. Tlie layout program directs fee layout using fee MAGIC layout editor, developed

at U.C. Berkeley. It is available via ftp: contact"magic@decwrl.dec.com" for information, or it is

available on magnetic tape from fee EECS/ERL Industrial Liaison Program, Cory Hall, University

of California at Berkeley, Berkeley, CA 94702. These three programs must be in fee execution

pafe for fee programs to runcorrectly. If nawk is not available, but awk is, feen a symbolic link

may be set up to execute awk in placeof nawk: "In -s /usr/bin/awk nawk"

A summary ofrequirements is in table A.l

Table A. 1 DSYN Dependencies

Dependency Version Source Comments

LEDA 3.1.2 Max Plank Institue

ftp.mpi-sb.mpg.de: /pub/leda

ftp (free)

MINOS 5.1 Stanford University

Office of Technology Licensing

(415)723-0651

$

optz 2.2.1 Berkeley Included

GNUg++ 2.6.3 Free Software Foundation ftp (free)

hspice most Meta-Software, Inc. $$$

magic 6 ftp: magic@decwrl.dec.com

Tape: ILP at U.C. Berkeley

Free

$

A.3 Optimization Tools 164

A.3 Optimization Tools

For design optimization fee SpiceOptim program is used. The optScript shell script is used to

manage callsto fee optimizer, andofeershell scripts areusedto savedesign information from var

ious runs. The layoutCmd script converts results from optimization to a script wifewill runfee

layout process

A.3.1 spiceOptim Design Optimization Program

Design optimizations arerun byspiceOptim. This program manages calls to fee HSPICE cir

cuitsimulator, and uses fee optimization algorithm selected byuser input There are a large num

berof input options, determining fee names of file input sources and fee optimization algorithm,

which are listed through fee -hcommand. ITie command line is solong for spiceOptim feat typi

callyit is calledindirectly through feeoptScript command Usage is:

—> spiceOptim <-h-cspiceConFile -ospiceObjFile -p [printlevel]> -doptz -voptz_var -1
optz_con -s spec -f dumpfile

Program options and input files, and their formats are as follows:

-c conjroot

sets the root name for constraint simulation runs. Tb find the constraint values for a set of

design variables, fee program will generate a file "con_root.param", and feen attempt toexecute

"hspice con_root.sp >con_root.lis" It expects to find fee output of MEASURE statements in fee

hspice listoutput corresponding toall design constraints. Should fee expected name appear multi

pletimes, it takes fee value for thefirst measurement. For normal operation, fee con_root.sp file

mustexist, andinclude fee "con_root.param" file (wife fee HSPICE .include statement).

-o objjroot

Setsfeerootname forobjective function simulation runs. This is anidentical setup tofeecon

straint runs, except feeprogram looks for a measurement of"objective" in feelistoutput foruse as

fee objective function in optimization.

-pit

A.3 Optimization Tools 165

Sets fee output print level. Default is just to print output when constraints are not met, and

informationabout fee progress of fee optimization. It is easy to get feousands of lines of output.

The number inputis a5 bit binary number whichsetsswitches for selecting debug output from dif

ferent parts of program operation.

Outputs fee help message

-dfilename

Sets fee optimization defaults file name. These are design inputs which are constants for this

optimization, such as nominal power supply, circuit loading, and number of DAClevels. Format

is:

varname value

where value isgiven inastandard floating point format. These inputs are passed directly to fee

".param" files for computing constraints and objectives. Comments inthis and ofeer input files are

indicated wife * or # characters in fee first position ineach line, and blank lines are ignored.

-v filename

Sets fee file name for fee optimization variable definition file. This is fee set ofdesign vari
ables for fee optimization. Format is:

varnamestarting_value min_value max_value scale_factor

Extra fields are ignored, and comments are specified as before. When an integer optimization

is done, feese are forced to integer numbers offee scale factor. For example, if acapacitor may
vary from 2pfto 20pf, and must be an integer number of pF, fee input line would be:

cl 5e-12 2e-12 20e-12 le-12

-Ifilename

Sets fee file name for optimization constraints (or limits). Format is:

A.3 Optimization Tools 166

constraintname value type scale_factor

Where type isupper or lower. Value and scale_factor isinstandard floating format Itisimpor

tant to setfee scaled value towithin an order of magnitude orsoof unity. For example, aconstraint

on maximum settling time, may be:

tsmax 20e-9 upper le-9

-s filename

Sets optimization spec filename. The spec file is a set of inputs to fee optimization program,

determining some constants used by feat program. Comments are as above, with format fee same

as fee defaults file:

varname value

Different spec inputs may be used depending on fee type of optimizationbeing run. Important

options are shown in table A.2.The used by field describes fee partof fee program which uses fee

option,eifeer fee MINOS optimizer, fee optz MINOS handler, or fee CUTTER cutting plane opti

mization implementation. Forinformationabout fee MINOS options see fee MINOS manual.

Table A.2 Optimization Spec file inputs

Spec Name Explanation Used By:

do_file_io Uses files for MINOS fortran I/O optz

print_level Sets amount of printed output MINOS

summary_file Sets fortran unit for summary file MINOS

summaryjrequency Sets frequency of summary output MINOS

backup_basis_file Sets fortran unit for backup of basis file MINOS

new_basis_file Sets fortran unit for basis file MINOS

punch_file Sets unit for punch output file MINOS

dump_file Sets unit for dump output file MINOS

insert_file Sets unit for loading insert file (punch output MINOS

load_file Sets unit for load file (from dump output) MINOS

iterationsJimit Limits total number of iterations MINOS/Cutter

major_iterations limits minos major iterations MINOS

A.3 Optimization Tools 167

Table A.2 Optimization Spec file inputs

Spec Name Explanation Used By:

minor_iterations limits minos minor iterations MINOS

function_precision Expected precision of function evaluations MINOS / Cutter

difference_interval Difference used for finite differences MINOS

row_tolerance Tolerance used to see if constraints are met MINOS

feasibility_tolerance Tolerance used for determiningaccuracyof vars MINOS

optimality.tolerance Tolerance for objective function MINOS/Cutter

major_damping_parameter Damps steps taken in MINOS MINOS

minor_damping_parameter Damps steps taken in MINOS MINOS

gradient.step Design var differences used for finite difference
gradients

Cutter

line_tolerance Tolerance for reaching fee end of fee linesearch,
with linesearch stopped when difference in
scaled design variables less than line.tolerance.

Cutter

cut_overconstrain Constraints over-specified by this amount.
Speeds convergence,but loss of optimality. In
normalized units applied to all constraints.

Cutter

optz_int_tol Tolerance on integers in MILP step. Cutter

optz_int_func_tol Tolerance on meeting constraints in MILP step Cutter

-O filename

Sets name for variableoutput file. This summarizes fee state of fee design variables at fee end

of fee optimization. The format is:

varname finalval min max scale startingval

Other parts of the output file summarize constraint and objective results. Format is such feat

this output file can be used to start a subsequent optimization wife this final point, using this output

as a variable input file.

-ffilename

Sets dump output file.

A.3 Optimization Tools 168

-Sfilename

Sets linear constraint save file name. spiceOptim saves the current value of the linear con

straints on each call to the MILP solver when using fee cutting plane algorithm. This file may be

readin wife the -L option to restore a set of constraints, savingoptimizationtime if a job needs to

be restarted. File format is fee numberof constraints on fee first line, followed by lines wife fee

format:

numVarsconstraintnum al a2 a3 ... b type

where type is 1 or -1 for upper and lower constraints, constraintnum is fee index of fee nonlin

ear constraint which forced this linear constraint. If x is fee vector of design variables, and (al a2

...) forms the vector a, feese lines form linear constraints of the form ax<b,or ax>b,depending

on type.

-Lfilename

Sets fee name for loading fee linear constraint file. (See -S above for creating feat file.)

-mmode

Sets fee optimization algorithm number (or mode). Options are listed intable A.3In practice

options 2,5, and 7 have been used inwhen spiceOptim iscalled byoptScript.

SpiceOptim returns completion codes as follows:

0 - optimal result found

1 — feasible result found

2 — infeasible result

A.3 Optimization Tools 169

Table A.3 Optimization options for spiceOptim.

Mode Type ofOptimization

0 Standard MINOS NLP

Branch and BoundMINLP wife MINOS NLP Subproblems

Find Feasible (Run MINOS, butnoobjective, quitat first feasible point.)

Supporting Hyperplane, linear objective

Supporting Hyperplane, approximated non-linear objective.

MINLP implementation using Supporting Hyperplane to create constraints.

Supporting Hyperplane Algorithm, wife NL IP. (Non Linear objective, wife Integer
Programming)

7 Supporting Hyperplane Algorithm, with nonlinear approximated objective, and inte
ger programming.

A.3.2 OptScript shell script

Wife fee large number of options available for spiceOptim, but asimilar recipe used inmost

cases, the optScript shell script was written to simplify calling and managing optimizations. opt

Script is called from fee command line:

—> optScript consRoot objRoot RunName

In which consRoot is passed inas fee rootoame of fee spice file which computes constraints,

objRoot is fee rootoame for objective functions, bofe passed directly to spiceOptim, and RunName

is fee root for all files to beused for this setof optimizations.

The script expects first looks for a setof optimization input files with the names Run-

Name.OPTZ, RunName.OPTZ.SPEC,..., but if feese are not found will copy OPTZ* files found

in the current directory to RunName.OPTZ*. Summary output from optimizations is passed to

RunNamclist. The script will run three optimizations, setting mode to 2, 5, and 7, to first find a

feasible point, feen an optimal point using alinear approximation for the objective, and finally a

second optimal point using anonlinear approximation to fee objective. Optimization outputs are

sent to RunName.feas_vars, RunName.cut_ip_vars, and RunName.final_vars. Ifone of fee output

files already exists, the corresponding simulation isskipped, and optScript proceeds to fee next

A.3 Optimization Tools 170

optimization. Linear constraint files are saved for the second two optimizations to RunN-

ame.CUT_IP_VARS and RunName.CUT_AP_VARS. Iffeese files already exist feey are loaded

wife fee optimization. After fee optimizations are run fee spiceTime script isused toobtain asum

mary ofthesimulation and computer time for each step in feerun.

A.3.3 Other Optimization scripts

Three ofeerscripts areprovided forjob management optSave is usedto savefeecurrent out

put files, optUnsave retrieves a setof previously saved runfiles, andoptDelete removes files cre

ated by optSave. spiceTime is used to compute total simulation timefor anoptimization. Usage

for feese is:

—> optSave RunName Version_number

Creates a subdirectory named RunName of fee current directory, andsaves all run relatedfiles

wife fee Version_number appended.

—> optUnsave RunName version_number

Looks in the RunName subdirectory, and copies back to fee currentdirectory files of this ver

sion, wife fee version__number stripped off fee filename.

—> optDelete RunName version_number

Deletesfee files associatedwife this version from fee RunNamesub-directory.

spiceTime optz_output_file

Scans fee output file for summaryresults from HSPICEjobs, and filters feese to extract real,

user, and system compute time. Calls spiceTlme.awk or spiceTlme.${machine}.awk to filter fee

file. Specialmachine dependent files maybe needed due to differences in fee HSPICE summary

format between platforms.

A.3.4 layoutCmd shell script

When the optimization is completed, fee layoutCmd script is used to convertoptimization

results into a command whichwill drivefeelayoutprocess. Theprocess is twostep.Firstanhspice

run is done which replicates fee read-in anddesign computation step doneduring normal design

AA Layout Tools 171

estimation, to find fee actual device and module dimensions computed from input design variables

during simulation. The information ispost-processed for inclusion inacommand script which can

execute fee DT andTA layoutprograms. Usage:

—> layoutCmd layoutName

where layoutName is fee name of thetoplevel cell in theeventual layout. This command is

runinfee same directory asfee design optimization, after optimization is complete. It assumes feat

fee .param files exist containing fee parameter values from fee end ofdesign optimization.

layoutCmd requires an HSPICE run named Resultsp, which runs fee first part ofdesign esti

mation to compute alldevice sizes, andfeen hasmeasure statements for alloutputs which areto be

passed to layout. These identified by fee prefixres_, e.g.: res_wl is computed for the dimensionof

wl. Units mustbe compatible wifethe layout step ~ typically integers and integer numbers of

lambda.

A.4 Layout Tools

There are three programs used for layout: DT (DAC Template), TA (Tile Array), and STC

(STretch Cell).DT is a designspecific filewhichcreatesa templatefor the DAClayout. It lists fee

location of every subcell in a tiled array, includingfee name of fee subcell, and fee library cell ref

erenced for feat cell. TA and STC are not specific to a module architecture. STC is used to stretch

dimensions in a cell, and rectangularize fee stretched cell. STC also has a sizing mode in which

sizesof cells are computed, but stretches are not implemented. TA uses sizing information from

STC to locate all cells in fee template created byDT, andfeen uses STC to implement fee cells,

and implements fee completed array. None of feelayout programs are case sensitive to parameter

names, but are case sensitive to cell names.

Besides requiring MAGIC for the implementation of stretching and tiling, these programs

require a cell library directory. That directory consists of library cells (in .mag format) for all

required cells, and a cross reference file attaching functional block names knownby DT to actual

cell names. TheDSYNLAYOUELIB environment variable mustbe set to pointto this Ubrary.

A.4 Layout Tools 172

A.4.1 DT (Dac Template)

DT is a small program used to create fee template file for a design. It is design specific, and

has hard coded functional block names and expected parameternames. It uses fee cross reference

file XREF, found in fee library directory, to associate fee library cell implementation to fee func

tional block name. If a DAC (or other module) requires a different cell organization, a new version

of DT would be required. Some flexibility is built into fee program - number of rows and col

umns, and numberof biascells andlsb cells are set through userinput, and types of cells may be

left outby specifying acellimplementation wife zero area. In fee examples fee "nodesign" cell has

zero area, and is left out after processing by TA.

The DT command has fee form:

—> DT [-h] [-1] newcellname [-d] <parm=val>...

where -dturns ondebug output, -hprints fee help message, and -1 produces alistof expected

cell names (useful for starting across reference file, wife some information about syntax of fee

cross reference file.) The newcellname is used as arootname for all created cells, as well as fee

name for fee top level cell. Thetemplate is output to standard output. The parameter list follows.

The onlyparameters used in thecurrent implementation of DT are: rows, cols, m, and nbias.

The cross reference file is can substitute parameters into fee layout list, letting asingle library

be used for multiple setsof design inputs. For example, if fee cell function is cross-referenced:

bias dac${m}bias

feen when fee value of m =2, it fee program will use dac2bias as theUbrary layout for abias

cell.

A.4.2TA (Tile Array)

TA is used to size array elements to equalize differing elements across rows and columns,

implement fee cells, and then tile fee module. It reads in atemplate, identifies all unique cells,

sizes fee cells, removes zero area cells, creates, and tiles fee remainder. Itis heavily dependent on

STC for implementing of stretching operations. Usage is:

—> TA newcellname templatename [-d] parm=val...

AA Layout Tools 173

where newcellname is the name for fee top level module, templatename is fee name of fee

template file, -d turns on debug output, and fee parameter Ust includes all parameters required by

fee stretching program. If fee program is run wifeout options a help message is given.

A.4.3 STC (Stretch Cell)

STC performs stretching and sizing operations at fee cell level. Usage is:

—> STC newcellname templatename [-d] parm=val...

where newcellname is fee implemented cell name, templatename is fee name of the library

template file, -d turns on debug output, and fee parameter Ust follows. If no parameters aregiven a

usage message is output. Two special parameters result in sizing information being output. If

VERT=-1 or HORIZ=-l is passed in, feen fee program does not create fee cell, and returns fee

appropriate minimum cell dimension (givenofeerinputs) to standard output. If VERT or HORIZ

is passed with a positive value, then fee program expands the cell size to the input VERT or

HORIZ value. Tlie program looksin fee directory pointed to by $DSYNLAYOUTLIB to find fee

template file.

The template file is a MAGIC file wife labels used to indicate where stretches can occur.These

labels have fee format CUT_NAME_N_M. The underscores are part of fee naming convention.

CUT is fee prefix indicating fee usage ofthis label by STC. NAME must match aparameter name

in fee input list, or this label isignored, Nis fee nominal value for this parameter, given no stretch,

and Mis amultiplier for this stretch. Mis an optional parameter, defaulting to 1. For example, if

fee label is CUT_W1_4, and fee parameter Wl is input wife value6, feen fee stretch associated

wife this label is 6-4=2. As a second example, if acutcovers two parallel devices, feen fee label

may be CUT_W1_4_2, and for parameter inputWl=10, fee stretch is 10/2-4=1.

Each cutstretches mask layers eifeer to fee right orup. The program detects fee direction asso

ciated wife fee cutby fee orientation of fee label. If fee label defines a vertical line, orabox wife

height >widfe, feen fee stretch isto fee right. Otherwise fee stretch isup. Also, feere are two types

of stretches. Stretches defined by boxes are only applied to fee circuits within fee box. Stretches

defined byUnes are applied to all of fee cell above fee plane (or partial plane) defined by fee label.

VERT and HORIZ labeled planes are used to define fee edges of fee layout ~ places where fee cell

A.5 Design Libraries ^^ 174

should be stretched to rectangularize fee cell. The parameter information for HORIZ and VERT

cuts isused to indicate default cell height and widfe before stretching. If fee Ubrary cell isnot rect

angular multiple labels may be used to define cell edges. The program keeps track of fee effects of

stretches on ofeer parts of fee layout so that afinal set ofstretches can be appUed to rectangularize
fee cell, and information about fee final size is known.

A.5 Design Libraries

The DSYN distribution includes design libraries for several optimizations and two layout

tibraries, as well as aUbrary oftechnology files developed for fee Orbit Semiconductor 1.2um pro

cess.

A.5.1 Optimization

The optimization libraries consist of several directories, each containing information specific

to a particular design. Each contains hspice runs for computing constraint and objective functions,

OPTZ* files for starting anoptimization, and someexplanation of fee design in a readme file.

There is also aResults.sp file used to obtain layout parameters from design variable inputs. Ineach

case feey are set up to run anoptimization out of fee box, but fee user can chang fee application

specifications in fee OPTZ_CON and OPTZ files as needed. The recommended procedure is to

copy fee entire directory to a new location, and feen run the optimizations in fee new location.

Optimization libraries are:

DACdynP3: Video DAC application based optimization. Includes static linearity, DC bias

margins, and transient performance. Current sources are implemented with PMOS devices, to

allow aresistive loadtied to ground, and a signal range from 0 to Vfs.

DACstat: Static DAC optimization, including only fee DC parts of DACdynP3, and setup for

much lower current levels.

MirrorN: Nmos high swing cascode current mirror.

tiny: Simple two transistormirror optimization.

A.6 Example Design 175

A.5.2 Layout

Tliere are two layout Ubraries provided, which match the DACstat and DACdynP3 optimiza

tion libraries above. The TERMINALS, VARS, andREADME files in eachdirectory provides

information about the use of feese layout Ubraries.

scmos.p: A DAC design wife no latches, and no separation of digital and analog suppUes in

fee DAC module. This is meant for lower speed, static designs. For use wife DACstatoptimiza

tion.

scmos.p.l: A DAC design wife latches in fee cells, row and column drivers, and latches at fee

edge of fee cell. This has been used to implement fee high speed design describedin this disserta

tion. For use wife DACdynP3 optimization.

A.5.3 Technology

A technology database hasbeendeveloped for fee Orbit Semiconductor 1.2urnprocess. This

is located in fee directory tech/ORBIT.Ub, and includes model files, a Ubrary file which uses fee

model files to get nominal, fast, and slow models, atechnology constants file which includes over

lapcapacitance, resistance, and other technology information, and a LINK file usedto create sym

bolic links from this directory to fee directory using feese files.

A.6 Example Design

It is helpful to seehow fee tools workwife acouple of design examples.

A.6.1 Tiny Current Mirror example

To see a simple optimization example, copy fee contents of fee DSYN/lib/optimization/tiny

directory to anewlocation, and from there run fee LINK script in feeORBIT.Ub technology direc

tory. Then to execute a tiny currentmirror optimizationuse fee command:

—> optScript tinyRun tinyObj test

This will create a testlist output file, which summarizes the results found during execution.

For more extensive output, spiceOptim output is routed to a file in fee /tmp directory. If fee job

A.6 Example Design 176

aborts, it often means feat hspice job aborted, and this can be tested by executing a stand-alone

hspice job:

—> hspice tinyRuasp.

Also, if aconstraint output is not found in fee hspice output the job willquit.

There is no layout directory associated wife thisoptimization.

This tiny job should run in under 20 minutes.

A.6.2 DAC example

For amore reaUstic example, consider one of fee DAC example directories, DACdynP3.

Again, copy fee contents of fee optimization Ub directory DACdynP3 to a new location, and

linkin fee technology file. Use fee -roption to include fee DigBuff subdirectory in fee copy. This

optimization is started:

—> optScript dacRun dacObj test

After this result iscompleted (several hours), asecond optimization is needed to optimize dig

ital circuits, cd to the DigBuff directory, and source fee LINK script which symboUcally links

results from fee first run to this directory. Then execute fee second optimization in this directory:

—> optScript digRun digObj test

If you wish results may besaved using fee optSave command. Thesecond optimization results

must be passedback up to fee top directory:

—> In -s digRumparam ../.

Next fee results from optimization are used to create fee command script. In the directory

which dacRun was run in, execute:

—> layoutCmd MyCellName

TTiis creates an executable script feat runs DT and TA wife fee final design values.

To run the layout part, make certain that the DSYNLAYOUTLIB is set to point to the

scmos.p.l:

A.7 Common Problems and Solutions 177

—> set DSYNLAYOUTLIB = ~DSYN/Ub/layout/scmos.p.l

then create a subdirectory for fee layout, and move the layout script to feat subdirectory.

Change directories to fee layout directory, and execute fee script:

—> mkdir layout; mv MyCellNamcscr layout; cd layout; MyCellNamcscr

The layout job typically takes a few minutes, depending mainly on the network

implementation. Most of the job time is taken by the time needed to load MAGIC for stretch

operations on each cell implementation, and if MAGIC is loaded across fee network, then it is

somewhatslower. When done, you canexecuteMAGIC to browse fee layout

—> magic -dX11 MyCellName

For information on connectivity, see fee TERMINALS file in fee layoutlibrary.

A.7 Common Problems and Solutions

A.7.1 Finding an Initial Feasible Point

A common problem is feat fee optimizer willnot find a feasible point in fee first optimization.

It is easier to manually find a feasible (if verycostly) solution, which maytake a designer ahand

ful of runs, rafeer fean letting fee optimizer go for some time wifeout finding a solution. Remem

ber feat fee first solution only needs to be feasible, and the optimizer is better at improving an

already feasible solution fean at finding fee initial feasible point. In practice, fee easiest wayman

ually search for a feasible setof design variables is to change fee starting point for feedesign vari

ables, executeoptScript, and observe it a feasible point is found immediately in the first call to

spiceOptim. If not feasible, halt fee run, observe the outputs, including a list of violated con

straints, and modify fee design inputs.

A.7.2 Optimization stops when no improvement is seen

During fee executionof fee Supporting Hyperplane optimization, each additional linear con

straint should eliminate fee previous infeasible solution to the MILP step (see chapter 4 for fee

algorithm). If fee same infeasible point is returned on consecutive calls to the MILP algorithm,

feen fee algorithm will go in an infinite loop, returning fee same constraint and same next point on

each additional pass. This situation is detected, and fee program will halt wife an error message.

A.8 Finding the TAR 178

Theoretically this shouldbe impossible, but since fee feasibility tolerance (optz_int_func_tol) is

non-zero in fee Branch and Boundalgorithm, it is possible feat slightly infeasible results may be

returnedfrom fee MDLP step, causing this situation. The optimization should be restarted, wife two

possible solutions. The optz_int__func_tol value may be reduced, which wiU increase optimization

time for Branch and Bound, or fee cut_overconstrain value may be increased, to force fee solution

inside the linearconstraints, speeding solution, but reducingoptimality. It is possible to restart

with an over-constrained optimization, find a result, and then go back and try reducing fee

cut_overconstrain input later in a subsequent re-run.

A.8 Finding the TAR

The compressed tar file for thisdistribution, including a postscript copy of thischapter, is cur

rentlyretrievable by anonymous ftp athaiku.eecs.berkeley.edu, in fee file pub/nenTDSYN/DSYN.-

tar.Z. Because of fee potential difficulty compiUng fee spiceOptim code, acopyof fee spiceOptim

program may also maintainedthere, in spiceOptim.$machine, where machine is sun4, alpha, or

mips, for feose architectures. If this siteis unavailable feelocation of feedistribution may be found

by fingering: finger neff@eecs.berkeley.edu. The usual uncompress andtarcommands canbe used

on this file. If you have questions fee author canbe reached atneff@eecs.berkeley.edu.

A.9 Compiling the Code

Makefiles are in eachC++ source directory. This distribution is not streamUned, so you must

go to each of fee three subdirectories under fee src hierarchyand set fee machine and C++ com

piler. If starting from scratch, first obtain and compile the LEDA source, then obtain fee fortran

MINOS source and place in fee optzsub-directory, compile MINOS, compile optz,and feen com

pile spiceOptim. If you canuse fee existing LEDA object code, then skip fee first step and start

wife optz. Once fee executables are made, make certain the DSYN/bin directory and perhaps

DSYN/machine/bindirectories are bofe in fee user's pafe.

A. 10 Disclaimer 179

A.10 Disclaimer

This software is offered on an as-is basis. The user assumes all risk for the functionality of

designs obtained with it. The designs in these libraries were madewifeout a thorough patent

search, so it is also the responsibiUty of fee user to determine fee existence of appUcable patent

infringements, if any, should feese libraries be incorporated in acommercial design.

A.11 Acknowledgments

The optimization program described herewouldnot havebeen possible wifeout fee contribu

tions of MINOS and LEDA from Stanford and Max Plank Institute, as well as fee development of

fee optimization interface done at Berkeley by Brian Lee, Henry Chang, and Eric Felt. Henry and

Eric have always beenhelpful whenIhavehad difficulties wife my code. Funding for thisresearch

is provided through fee Semiconductor Research Corporation, grant DC-94-324.

	Copyright notice 1995
	ERL-95-28 (1)
	ERL-95-28 (2)

