

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

THE CNN UNIVERSAL MACHINE IS AS

UNIVERSAL AS A TURING MACHINE

by

Kenneth R. Crounse and Leon O. Chua

Memorandum No. UCB/ERL M95/29

5 March 1995

THE CNN UNIVERSAL MACHINE IS AS

UNIVERSAL AS A TURING MACHINE

by

Kenneth R. Crounse and Leon O. Chua

Memorandum No. UCB/ERL M95/29

5 March 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

The CNN Universal Machine is as Universal as a Turing Machine

Kenneth R. Crounse * Leon 0. Chua

Abstract

It is shown that the simplest integrated circuit implementations of the CNN Universal
Machine can play the 'game of life', and are therefore equivalent to a Turing Machine. In
addition, a constructive proof is given for the direct implementation of general first-order
cellular automata on such machines.

1 Introduction

The CNN with certain capabilities has been shown to be able to run the famous 'Game of Life'
cellular automaton. The game of life played on a large enough array is known to be a universal
computer [1]. Therefore, these CNNs are universal as well [2]. This approach was presented
prior to the introduction of the machine concept for CNN arrays. Therefore, the methods require
either multiple layers, complex template nonlinearities, or discrete time operation.

It is unlikely that such complicating elements would be included in the first CNN chip
designs. It is therefore an important question to determine the simplest CNN Universal Machine
implementation which retains universality in the sense of Taring. Here we show that the simplest
CNN Universal Machines can implement the game of life - with only single layer continuous time
CNN dynamics, linear templates, local logic memory, and a local logic unit, and are therefore,
indeed, universal.

Next, we show a general constructive proof that the same architecture can directly implement
arbitrary first-order cellular automata. Past approaches have used either discrete time operation
and complex nonlinearities [3], multiple layers [4,5], or time varying templates [6]. By using the
CNN Universal Machine architecture, we show that these complications are unnecessary.

2 Background

2.1 The CNN Universal Machine

The CNN Universal Machine was first introduced in [7] to enable the power of the original
Cellular Neural Network [8, 9] to be fully exploited. This advance embeds the standard CNN
into a machine which can control the CNN parameters and manipulate and multiplex its inputs
and outputs in a programmable manner. Current chip designs [10] exceed the capabilities of the
machine shown in Figure 1, which is the 'minimal' architecture used for this discussion. High
level programming languages are being developed which can be compiled into CNN templates
and control sequences.

'Sponsored under the Joint Services Electronics Program, Contract Number F49620-94-C-0038. The United
States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding
any copyright notation hereon.

LAM1

CNN CELL

LAMl

x(0)

externa]

LAM 2

external

LLM1 LLM2

LLU

Figure 1: A simplified CNN Universal Machine register transfer diagram, with the obvious
implicit multiplexing. The main features are the CNN cell where the analog transient occurs,
the Local Analog Memories (LAM) which hold stateand input,the Local Logic Memories (LLM)
which can each store a binary value for each cell, and the Local Logic Unit (LLU) which can
perform arbitrary intra-cell logic functions on the contents of the LLM.

2.2 First-Order Cellular Automata

The game of life is a first-order cellular automata, so wefirst discuss this class of systems.
Cellular automata are dynamical systems which are discrete in space, state, and time. We

will speak of an array of cells. Each cell (ij) holds a state s,j(n) at time n. For a first-order
CA, the state can only take on one oftwo values and the state values evolve in time according to
a state transition rule which gives the next state as a function of the current states of a cell and
its immediate 8-neighbors only. For our purposes, we assume that the transition rule is space
invariant, that is, it is the same for every cell. Since the state transition rule can be an arbitrary
boolean function of the eight neighbor's states and a cell's own state, there are an enormous
22 > 10154 possible systems in this class, although many are symmetric.

In the following discussion we will use +1 to mean 'on', 'alive', 'logical TRUE', and -1 to
mean 'off', 'dead', or 'logical FALSE'.

The game of life is discussed extensively elsewhere. It is called a 'totalistic' CA since the
state transition rule depends only on the sum of alive neighbors. Following the approach in [2],
it is convenient to describe the state transition rule in the following manner: " a cell will be
alive (in the next generation) if and only if at least 3 ofthe 9 cells in its 3 x 3 neighborhood are
alive and at most 3 of its 8 neighbors are alive."

3 Implementation of Life

The above formulation of the Life rule is important for a straightforward implementation on a
CNN because it is in terms of the simple ANDing of two linearly separable boolean functions.
It is well known that such functions can be expressed in termsofa simple linear threshold layer,
which can be implemented on a CNN by a B-template and a thresholding A-template [4].

Number of Number of

9-neighbors
alive (+1)

9-neighbors
dead (-1)

£l,f=-l *i+kj+l +4 Lij

0 9 -5 -1

1 8 -3 -1

2 7 -1 -1

3 6 +1 +1
4 5 +3 +1

Number of Number of

8-neighbors

alive (+1)
8-neighbors
dead (-1)

£fc,f=-l,£(0,0) -Si+kj+l - 1 Mitj

0 8 +7 +1
1 7 +5 +1
2 6 +3 +1

3 5 +1 +1

4 4 -1 -1

: :
;

•

Table 1: A demonstration that the boolean functions L and M can be written in the form of

linear threshold functions.

For a given cell (i, j), define Litj(n) to be true if at least 3 of the 9 cells are alive at time n
and Mtj-(n) to be true if at most 3 of its 8 neighbors are alive at time n. Then the Life rule can
be written

*j(» + 1) = LiAn) AND MiAn)
Now, for CNN implementation, we can write these boolean functions in a linear threshold

form as follows:

Li,i = s6n(]C *+*J+i +4l

\

Mij = sgn £ -*+Jfej+! - 1
<*,¥(o,o) /

which can be verified by simply writing out the possibilities for the number of 'alive' neigh
bors, as shown in Table 1.

From this point, the mapping on to a CNN Universal Machine is straightforward. The two
separable functions of the neighborhood can be formed by letting the current state of the CA
be loaded into the input u and using the B-template to perform a weighted sum. The bias term
/ is used to determine the value which this sum is thresholded about. The A-template cancels
the state self-feedback in the hnear region and provides stability in the saturation region, and
so the initial condition can be anything satisfying |x<j(0)| < 1. Specifically, the functions Lij
and M{tj can be implemented by the following templates:

AL =

Am =

0 0 0

0 10

0 0 0

0 0 0

0 1 0

0 0 0

BL =

Bm =

1 1 1

1 1 1

1 1 1

-1 -1 -1

-1 0 -1

-1 -1 -1

Il = +4

iAf = ~1

The ANDing of the results canbe performed by the LLU, or by another CNN template. See
Figure 2 to see a flow chart of the complete algorithm when the LLU is used to perform the
conjunction.

4 Implementation of general First Order Cellular Automata

There has been a lot ofpastinterest in building circuits and accelerators [11,12] to perform cel
lular automataoperations for image processing [13], random number generation, and simulation
of physical systems, to name a few. Therefore, even though the CNN Universal Machine was
just shown to be able to perform anything a digital computer can,it is interesting to show that
general cellular automata can be implemented in a direct manner through CNNUM algorithms.

A first-order cellular automata can be written in the following form:

«,;(«+i) = /[s,/(n)]

where /[•••] is a boolean function of the nine variables sjk,/(n) in the neighborhood of(t,i). Such
a boolean function can always be written as a truth table where every possible neighborhood
configuration is listed along with its corresponding next state. Each of these neighborhood
configurations has a corresponding boolean expression, called a minterm,which is TRUEif and
only if theneighborhood is in that configuration. Then, thefunction /[• ••] can always bewritten
as the sum (OR) ofthe minterms for which the next state is to be TRUE. This is equivalent to
explicitly checking for every neighborhood configuration for which the cell should be 'on' in the
next step.

As an example, consider a state transition function which indicates alive when the cell is on
a vertical, horizontal, or 45° line ofalive cells. This can be expanded to checking for the four
neighborhood cases shown in Table 2. The corresponding minterms are also given.

Thecomplement ofminterms arecalled maxterms. Bya similar argument a boolean function
can always be written as the product (AND) ofmaxterms, each ofwhich corresponds to a 'next
state' entry of FALSE in the truth table. This is equivalent to explicitly checking for every
neighborhood configuration for which the cell should be 'oflf' in the next step. Since for a
function of nine variables the truth table has 512 entries, it can always be written either as a
sum (OR) ofno more than 256 minterms or the product (AND) ofnomore than 256 maxterms.

It is simple to show that minterms and maxterms are both linearly separable and can be
implemented by a hnear threshold class CNN. Consider minterm 1 from Table 2. For each
variable which needs tobe TRUE in order for the minterm tobe TRUE make the corresponding
weight +1. For variables which are to be FALSE the corresponding weight is made to be -1.
Then, it isclear that theweighted sum will bemaximal and equal to 9when thelogical conditions
ofthe case are met. Ifjust one variable dissents the sum will be only 7 and will decrease further
as more variables do not agree with the case we are checking. Then, to make the case selection,

-1 1 -1

-1 1 -1

-1 1 -1

Case 1

Minterm 1 =

Minterm 2 =

Minterm 3 =

Minterm 4 =

•1 -1 -1

1 1 1

•1 -1 -1

Case 2

1 -1 -1

-1 1 -1

-1 -1 1

Case 3

-1 -1 1

-1 1 -1

1 -1 -1

Case 4

($_,,..!)(5_1|0)(s_lfl)(50,_1)(sofi)(sOA)($,,_,)(slfi)(s1A)
(S-a.-j)(s_1|0)(S_U)(50,_1)Ko)(5o,i)(*!,-,)(slfo)fe.i)

(<-i.-i)(s-ij*)(s-iA)(50,_1)(so,o)(*o,i)K-i)(s1>0)(sltl)

Table 2: The minterm will be TRUE if and only if the neighborhood is in the corresponding
case configuration.

we should threshold around 8, which is equivalent to adding -8 and thresholding around zero
The associated CNN templates to check for case 1are given by:

A, = Bi =
-1

-1

-1

1 -1

1 -1

1 -1
Ii = -8

This constructive method can be apphed to produce any of the 512 minterms. Since each
maxterm is just the complement of aminterm, they can be formed by inverting both the weights
in the B-template and the bias.

The OR or AND terms can be implemented by the LLU or through the CNN dynamics. See
Figure 3for aflowchart of aCNNUM algorithm using the LLU to implement the ORing of four
TTT fnM^f th0S,e f°UDd ln TaWe 2' N°te that althOT«h the met^ "lay consumehundreds of CNNUM steps for every CA iteration (for instance, the game oflife would require 84
templates) each happens very quickly and the template programming can be straightforwardly
automated from any description (i.e., truth table, boolean function) of the state transition
function Also with more LLMs, it is possible to simulate higher order CAs (i.e. more states
per cell) by this method. v »**«»

References

(1] ™lB2^7' J' «;7C«nayMM<lR-,K- GUy' WinninS Wa"S^ y™ ™tl>ematical plays,vol. 2, ch. 25, pp. 817-850. New York: Academic Press, 1982.

[2] MaL?"/^^' ?d P' L-„Venetianer> "The CNN is a, universal as the TuringMachine, IEEE Transactions on Circuits and Systems-I, vol. 40, pp. 289-291,1993.
[3] PL. Venetianer P. Szolgay, K. R. Crounse, T. Roska, and L. 0. Chua, "Analog combi

natorics and cellular automata - key algorithms and layout design," Report DNS 7-1994
Analogical and Neural Computing Laboratory, Computer and Automation Institute, Hun
garian Academy of Sciences, Nov. 1994. *

[4] L. 0. Chua and B. E. Shi, "Exploiting Cellular Automata in the design of Cellular Neural
Networks for binary image processing," Memorandum UCB/ERL M89/130, University of
California at Berkeley Electronics Research Laboratory, Nov. 1989.

[5] L. 0. Chua and B. E. Shi, "Multiple layer Cellular Neural Networks - a tutorial," in Algo
rithms and Parallel VLSI Architectures (F. Deprettere and A. V. der Veen, eds.), pp. 137-
168, Elsevier Science Publishers, 1991.

[6] Z. Galias, "Designing Cellular Neural Networks for the evaluation of local boolean func
tions," IEEE Transactions on Circuits andSystems-II, vol. 40, pp. 219-223, Mar. 1993.

[7] L. 0. Chua and T. Roska, "The CNN Universal Machine, part 1: The architecture,* in
Second IEEE International Workshop on CellularNeuralNetworks and Their Applications,
Proceedings, pp. 1-10,1992.

[8] L. 0. Chua and L. Yang, "Cellular Neural Networks: Theory," IEEE Transactions on
Circuits and Systems, vol. 32, Oct. 1988.

[9] L. O. Chua and L. Yang, "Cellular Neural Networks: Applications," IEEE Transactions on
Circuits and Systems, vol. 32, Oct. 1988.

[10] J. M. Cruz, L. 0. Chua, and T. Roska, "A fast, complex and efficient test implementation
of the CNN Universal Machine," in Proceedings of the Third IEEE International Workshop
on Cellular Neural Networks and Their Applications, pp. 61-66, Dec. 1994.

[11] T. Toffoli, Cellular Automata Machines. Cambridge, MA: The MIT Press, 1987.

[12] A. P. Marriott, P. Tsalides, and P. J. Hicks, "VLSI implementation of smart imaging
system using two-dimensional cellular automata," IEE Proceedings G (Circuits, Devices
and Systems), vol. 138, pp. 582-586, Oct. 1991.

[13] K. Preston Jr. and M. J. B. Duif, Modern Cellular Automata: Theory and Applications.
New York: Plenum, 1984.

s(0)

s(n)

u u

1 r ''

TEM TEM

L M

y y

LLMl LLM2

11 <L_

s(n+l)

Figure 2: A flow chart of the CNN Universal Machine Algorithm for implementing the game of
Life.

TEM

minterm 1

LLM1

s(0)

s(n)

LLM1

TEM

minterm 2

LLM1

TEM

minterm 3

TEM

minterm 4

s(n+l)

Figure 3: A flow chart of the CNN Universal Machine Algorithm for implementing a cellular
automata with a4-minterm state transition function. The structure can beextended indefinitely.
In general the TEM blocks can be any linearly separable boolean operation.

	Copyright notice 1995
	ERL-95-29

