

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

BCIMS: THE BERKELEY COMPUTER

INTEGRATED MANUFACTURING SYSTEM

by

L. J. Massa-Lochridge

Memorandum No. UCB/ERL M95/46

27 June 1995 ...

(Revised 18 August 1995)

BCIMS: THE BERKELEY COMPUTER

INTEGRATED MANUFACTURING SYSTEM

by

L. J. Massa-Lochridge

Memorandum No. UCB/ERL M95/46

27 June 1995

(Revised 18 August 1995)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

8/18/95

BCIMS:

THE BERKELEY COMPUTER INTEGRATED

MANUFACTURING SYSTEM

LJ. Massa-Lochridge

ABSTRACT

This document describes the Berkeley Computer Integrated Manufacturing System

(BCIMS) being developed by the Computer Integrated Manufacturing (CIM) research

group. This system implements process control, equipment management, access control,

facility management, and administrative subsystems. A novel architecture for system inte

gration is presented. A framework for developing integrated systems computer-human

interaction layers, which hide specifics of heterogenous platform clusters is described.

BCIMS has been validated in operation at EECS/ERL's Microfabrication Laboratory.

Table of Contents

1.0 Introduction 4

2.0 Major features 6
2.1 Microlab access 6

2.2 Computer-Human interaction 6
2.3 Access control for equipment use 8
2.4 Reserving equipment for use 9
2.5 Data collection, equipment monitoring, and process control 10
2.6 An example of a typical BCIMS client at work 13

3.0 Tools for the Microlab's maintenance and research staff, and CIM researchers 15
3.1 Tools for process development and associated research staff 15

3.1.1 BLIMP 16

3.1.2 HotPotato 17

3.1.3 WIP 18

3.1.4 Statistical Process Control 18

3.2 Equipment maintenance tools 19
3.2.1 Gases 20
3.2.2 Techjob 21
3.2.3 Faults 21

3.3 Facility Management Tools: CIMtool 22
3.4 The Staff system 26
3.5 Administrative tools 26

4.0 System Design, Architecture, and Implementation 27
4.1 BCIMS system architecture 27
4.2 Software system design 28

4.2.1 The Wand HCI architecture andimplementation 34
4.2.2 The BCIMS RelationalDatabase System 42
4.2.3 BCIMS Equipment Control subsystems 46
4.2.4 Process Monitoring 49
4.2.5 Faults Equipment Maintenance and Diagnosis Tool 55
4.2.6 BCIMS Facility managementsubsystems 57
4.2.7 Administrative applications 59

4.3 BCIMS Hardware Architecture 62
5.0 History and organizational facts 65

5.1 History 65
5.2 BCIMS facts 66
5.3 Organizational Facts 67

6.0 Future research and development Directions 68
7.0 Appendix 1: Database Entity Relationship Diagrams 70
8.0 Appendix 2: Technical description of the Wand login system and related processes ... 80
9.0 Appendix 3: Program Listing 85
10.0 Bibliography and References 91

2 of 97

11.0 Acknowledgments 95
12.0 Author Acknowledgment 97

List of Figures

FIGURE 1 The Login Terminal 7
FIGURE 2 Wand main menu 8

FIGURE 3 The Reserve subsystems's initial form 10
FIGURE 4 The Equipment submenu 12
FIGURE5 Tystar furnace status 13
FIGURE 6 Labuser activity and charges review 14
FIGURE7 The Staff system 16
FIGURE 8 BLIMP Sensor Status output 17
FIGURE9 SPC output 19
FIGURE 10 The Equipmentstatus board, epstat 20
FIGURE 11 Techjob 22
FIGURE 12 A typical Faults report 23
FIGURE 13 CIMtool initial view, a floor plan of the lab 24
FIGURE 14 The CIMtool interface to BLIMP sensor data 25

FIGURE 15 Two-level software/hardware system architecture 29
FIGURE 16 Relationships between wand, BRDS, and subsystems 30
FIGURE 17 Subsystem layers and corresponding code libraries 32
FIGURE 18 Relational Database System Access 35
FIGURE 19 Database software subsystem integration 36
FIGURE 20 Wand login system: Process intercommunication 40
FIGURE 21 CIM Database: Top level entity-relationship diagram 43
FIGURE 22 Software and hardware data acquisition systems 47
FIGURE 23 Tycom Communication Subsystem 51
FIGURE 24 BLIMP sensor status output 53
FIGURE25 The BCIMS multi-cluster network 63
FIGURE 26 CIM Database: Primary top-level entity-relationship diagram 71
FIGURE 27 CIM Database: Accounting tables entity-relationship diagram 72
FIGURE 28 CIM Database: Labuser tables entity-relationship diagram 73
FIGURE 29 CIM Database: Gases tablesentity-relationship diagram 74
FIGURE 30 CIM Database: Inventory tablesentity-relationship diagram 75
FIGURE 31 CIM Database: Purchase tables entity-relationship diagram 76
FIGURE 32 CIM Database: Qualify tables entity-relationship diagram 77
FIGURE 33 CIM Database: Reserve tables entity-relationship diagram 78
FIGURE 34 CIM Database: Resource tables entity-relationship diagram 79

3 Of 97

Introduction

1.0 Introduction

An integrated circuit computer-integrated manufacturing (CIM) system has been developed

and used to control the Berkeley Microfabrication Laboratory (Microlab). The system, called

the Berkeley CIM System (BCIMS) includes subsystems that implement the following func

tions:

• process control (e.g., work-in-progress (WIP) and real-time process monitoring and
control);

• equipment management (e.g., equipment status logging and maintenance and
repair);

• facility management (physical resource management, real-time monitoring of utili
ties, lab use scheduling); and

• administration (e.g., access control, accounting, inventory control, and purchasing).

The Berkeley CIM project was formed in the early 1980's to develop software to conduct

CIM research and manage the Microlab. The Microlab is a class 100 clean room fabrication

facility for semiconductor research.

The initial computing environment was a centralized time-shared computer with alphanu

meric terminals connected to it. In the late 1980's, the environment changed to a distributed

computing system composed of two servers: one for production and one for development.

Workstations, X terminals, and alphanumeric terminals are connected to the servers over

local area network. In addition there are several specialized hardware subsystems that are

used for data acquisition, equipment control, and direct connection to processing or analyti

cal equipment.

The principal design goal for BCIMS is that it be a portable, open system based on a shared,

integrated database. It runs on the UNIX operating system and incorporates the Ingres

Relational Database Management System (RDBMS). BCIMS is comprised of approximately

4 of 97

'introduction

200 distinct programs written in a variety of programming languages including C, C++, Com

mon Lisp, ABF/4GL, and UNIX shell scripts, and it is integrated through the database.

Our philosophy has been to develop prototype applications and then refine them into pro

duction applications in response to user feedback. Applications are developed by one or

more students or staff members under the direction of a faculty advisor. The integration of

subsystems, and particularly the logical database design, are maintained and enhanced by

one or more student and staff software designers and engineers under the direction of one

or more faculty and staff advisors. The modular software architecture and the shared data

base produced a flexible open system that can easily be extended to accommodate new

applications and concurrent development efforts.

The remainder of this paper describes the operation, design, and implementation of BCIMS.

Section 2.0 presents several examples that illustrate how BCIMS applications are used.

Section 3.0 describes tools that have been developed to support the lab's maintenance, pro

cessing, administrative, and associated research staff. Section 4.0 describes the architec

ture, design and implementation of the system. Section 5.0 discusses the history and

organizational details of the facility. Lastly, Section 6.0 describes our future plans and pre

sents our conclusions.

5 of 97

Major features

2.0 Major features

This section presents some examples that will give the reader an understanding of how the

system works from the lab client's point of view. The reader will be taken, through the typical

operations that most lab members require, beginning with entry into the laboratory.

2.1 Microlab access

The gateway to the clean room portion of the lab is the "login terminal" located just inside the

Microlab lobby doors. On the way into the clean room area, before gowning up, you sign-in

at the login terminal. A sign-in is a simple login procedure, followed by a choice of either

continuing immediately into the lab or accessing the BCIMS menu-driven interface and login

system, called the Wand. The software checks to see if there are others in the lab; if there

are not, the user is warned that he or she may not work alone. The sign-in procedure also

begins the accounting of the user's time in the lab. After the sign-in, the user may gown up

and proceed into the clean room area of the lab. FIGURE 1 shows the login terminal screen.

Once inside the clean room, the user may log on to any workstation or terminal located at

the various work cells in the lab.

2.2 Computer-Human interaction

The computer-human interaction subsystem, called the Wand, provides a consistent menu-

based interface to more than 200 separate programs. The goal was to provide seamless

computer-human interaction across disparate subsystems. It was designed for the naive

user, to hide the complexity of the UNIX command shell language. In addition, the Wand

offers an integrated view of the heterogenous multi-cluster of hardware platforms which are

part of BCIMS in the Microlab, and can do so for a generic multi-cluster. The Wand com

pletely hides system specifics from the user, including the existence of separate machines.

From any terminal or workstation the user perception is that there is one computer and a

6 of 97

Major features

E
the MICROFABRICATION LABORATORY Cargon ttyp8]

• •/.-• .'nail

>>> Welcome to

>>> Enter your Account Name please: labwho
13 users @ Fri Aug 4 12:28:58 1995
Name Entry time Idle Total

Patrick Uehrly (wehrly) 5 Fri Aug 4 06:23 1:12 6:05
Marcelle Stagno (marcelle) S Fri Aug 4 07:30 2:02 4:58

Kim Allen (kallen) Fri Aug 4 07:43 1:33 4:45

Katalin Voros (voros) S Fri Aug 4 08:03 4:24 4:25

Phill Guillory (phillip) 5 Fri Aug 4 08:30 3:55 3:58

Zhenlei Bao (baoz) Fri Aug 4 08:33 2:57 3:55
Tariq Haniff (haniff) Fri Aug 4 09:07 :36* 3:21

Xiaofan Meng (mengxf) Fri Aug 4 09:14 1:35 3:14

+recharge: repair Fri Aug 4 09:14 (3:14)
Norton Mitchell (nortonm) 5 Fri Aug 4 11:18 1:07 1:10
Marilyn Kushner (marilyn) S Fri Aug 4 11:22 :48 1:06

Seung Hyuk Kang (shkang) Fri Aug 4 11:26 :31 1:02
Wen-Hwa Chu (whchu) Fri Aug 4 11:35 :43 0:53

Dongkyun Kim (dkim) Fri Aug 4 11:43 :21 0:45

>>> Welcome to the MICROFABRICATION LABORATORY [argon ttyp8]

•i >>> Enter your Account Name please: |

FIGURE The Login Terminal

single login session, regardless of user movement from one terminal or workstation to

another. The primary reason for this perception is that as a user logs into a machine at a

work cell, her existing login session is transferred to the new location and displayed on the

new screen.

A library of menu functions is available for use in developing each new software subsystem.

Each application developed using the Wand libraries presents a uniform look and feel. FIG

URE 2 shows a typical Wand text-based menu screen. The screen is divided into four areas.

The upper left area, labelled CATEGORIES, is the main menu within the current context.

The upper right area, labelled TASKS is the immediate submenu of the current selection

(marked by an arrow) in the main menu. Because this interface was designed for the naive

user, help operations are available and persistently displayed in the lower left portion of the

screen labelled HELP. Lastly, the lower right area, labeled TASKS IN PROGRESS, shows a

listing of subprocesses that the labuser (a term used in BCIMS to refer to a person who has

access to the laboratory) has running. The labuser views the system as running on one

7 of 97

Major features

computer even though more than one program may be running at the same time on different

machines. When a labuser logs out of one terminal in the lab, the state of the Wand and any

running processes are saved. Existing processes are either suspended or kept running as

appropriate. For example, a data collection process would continue to run, but an editor

would be suspended. The labuser is reconnected to the Wand and the programs which were

left running (if any) when he or she logs into the system again at any terminal on the local

network. The Wand is accessible from anywhere on the Internet by logging into your Micro

lab account and typing "wand" on the command line.

MICROLAB: leslie
CATEGORIES(space) ,

A ALARM Evacuate Lab!
c Chemicals and Materials

e Equipment
E Equipment Communication

==>g General Purpose
h Help
i Info. About Lab Members and Fees
1 Lab Manual and Your Lab Notes
m Mail and Messages
p Process Logs
r Reservations

s Sign Out of Lab
S Safety, Trouble & Prevention
v Visitors

HELP

- Enter character next to item

- SPACE moves between main menus

- Use ESC to hide this wand
- Use ? (and !) for help info
- Use ^L to redraw the screen

FIGURE 2 Wand main menu

TA5KS(space)
c Run a C-shell (exit back)

C Stack calculator

d Dictionary
p Processjob program (staff only)
s Staff program (staff only)
t Techjob program (staff only)
T Talk to a non-lab member

TASKS IN PR0GRESS(%)

2.3 Access control for equipment use

Special training is required before most equipment in the Microlab can be used. The exact

requirements are different for each piece of equipment. BCIMS controls access to the equip

ment so that only qualified Iabusers can access it. Data describing labuser qualifications are

8 of 97

Major features

stored in the database and checked each time a labuser executes an operation that

accesses a piece of equipment. Qualifications expire after a time interval that the lab man

ager may set (every six months in the Microlab) to insure that a labuser who has not used

equipment recently must requalify before using it again.

Located at each piece of equipment is a hardware interlock that physically disables a key

function of the machine. When a currentlyqualified labuser selects an equipment operation,

the hardware interlock is unlocked and the equipment is "enabled" for use. If a message

about the equipment has been logged in the Faults subsystem (an equipment maintenance

and repair logging and diagnosis system) the message is displayed to the labuser. If the

equipment is usable but a problem report has been posted, the labuser will be warned about

the potential problem but allowed to continue. Staff may also place a software lock on equip

ment so that it cannot be enabled.

2.4 Reserving equipment for use

A labuser can reserve equipment with the Reserve subsystem [Resende '87] to insure that

equipment will be available when he or she wants to use it. The reservation system allows

the labuser to view, make, and delete reservations. When making a reservation, the labuser

is presented with the forms-based interface shown in FIGURE 3. Some Wand operations

are duplicated on the reservation form so that the labuser has convenient access to all func

tionality that may be required. The status operator is mapped to a procedure which

accesses the Faults system and retrieves the current status of equipment. The labuser may

also make a new reservation, delete a reservation or look up existing reservations. In the

screen shown, a listing of all reservations in the database for the current date has been

selected. Alternately, one can ask for only those reservations made by a specific labuser or

during a particular time period. Once the labuser has reserved the equipment, he or she has

priority over all other Iabusers during that time.

9 of 97

Major features

mi ni i n n m'm m "hi n

Equipment name: |
User name:

Process:
-+-

Equipment IUser

Imarilyn 131-jul-
Ikallen

Ikallen

Imarilyn
lhaniff

Ihaniff

lhaniff

ItewodrosI04-aug-
Ihaniff I04-aug-
Idhans I04-aug-
+ +

and <RETURN> to move

Igcapg
Imrc

Iv401

Igcaws
Itylanl3
liv

Idisco
Ilam4

Ibonder

Itylan20
+

Use <TAB>

From

From:

To:

To

08/04/95 12:50

mm/dd/yy hh:mm (24 hr clock)

-+-

Process

03-aug-
04-aug-
04-aug-
04-aug-
04-aug-
04-aug-

1995 08:OOI04-aug-1995 l?:00lmasks
1995 17:00l04-aug-1995 17:00IZn0 stress tests
1995 08:00l04-aug-1995 13:00 ITi/Au/Al
1995 09:OOI04-aug-1995 11:00 Ifocus patt
1995 09:OOI04-aug-1995 12:001
1995 09:OOI04-aug-1995 12:001
1995 09:00104-aug-1995 12:001
1995 09:30l04-aug-1995 10:30IEtch
1995 12:30l04-aug-1995 15:001
1995 13:OOI04-aug-1995 14:00 Iqualification

+ + +

cursor. Use <ESC> or <CTRL> to choose a command.

Find Reserve Delete Equipment Status Quit

FIGURE 3 The Reserve subsystems's initial form

2.5 Data collection, equipment monitoring, and process control

During processing, Iabusers collect data from analytical, processing, and environmental

monitoring equipment. Traditionally, data collected in semiconductor fabrication facilities has

been stored on paper and on separate computers under incompatible software packages.

This situation made it extremely difficult to share and use data from the disparate sources in

any meaningful way (such as for work in progress, statistical process control, scheduling, or

computer-aided design). Therefore, automated data collection, equipment monitoring, and

process control have been implemented in BCIMS. In addition, using paper as a primary

method of transferring information between people and for storage of data can be error-

prone and inconvenient. Paper can't be continuously updated. In the clean room environ

ment, any paper that is to be used must be a special type that will not contribute particulate

matter to the air. Therefore, the use of paper under BCIMS has been minimized by providing

for user document management and on-line manuals and help. FIGURE 4 displays the

10 of 97

Major features

Equipment submenu of the Wand; it offers options related to the status of equipment. Virtu
ally all equipment supports some type of data collection from the equipment console. Some

pieces of equipment have an RS232 interface that can be used to monitor the equipment
and collect data. For a subset of equipment, capabilities available at the equipment console

are duplicated by BCIMS software subsystems. These subsystems offer an improvement

over alternatives that require the use of a specific console or terminal because with BCIMS

the labuser is no longer tied to a particular location in the lab to collect data, monitor equip

ment status, or control processing. The equipment interface can be accessed from any

machine on the network including a terminal in the labuser's office. Equipment that may be
remotely operated through BCIMS includes but is not limited to:

• Lam Research etchers (various types)

• Tylan and Tystar furnaces (various types)

• Tencor's Alphastep 200 Profiler and flatness gauge

• Nanometric's film thickness measurement systems

• Prometrix Resistivity Mapping System

New equipment may be easily interfaced because the modularity of the equipment software

requires onlythe specification of characteristics particular to the equipment.

A separate subsystem, the Berkeley Laboratory Infrastructure Monitoring Program (BLIMP),

implements communication to a hardware/software system that monitors sensors in the lab.

An off-the-shelf hardware data acquisition system (manufactured by Acurex) is used to

deliver data from sensors to a host computer. BLIMP uses the input data collected by the

Acurex data acquisition hardware to monitor environmental factors and resources in the lab

such as gas pressures, fluid levels, etc. The features available through the equipment com-

11 of 97

Major features

MICROLAB: leslie
CATEGORIES(space)

A ALARM Evacuate Lab!

c Chemicals and Materials

==>e Equipment
E Equipment Communication
g General Purpose
h Help
i Info. About Lab Members and Fees

1 Lab Manual and Your Lab Notes

m Mail and Messages
p Process Logs
r Reservations

s Sign Out of Lab
S Safety, Trouble & Prevention
v Visitors

HELP

- Enter character next to item

- SPACE moves between main menus
- Use ESC to hide this wand

- Use ? (and I) for help info
- Use ^L to redraw the screen

TASKS(space) ,
d Disable equipment
e Enable equipment
f FAULTS

E Read enable message
n Equipment names
o Read old equipment logs
p Problems and comments
q Qualified members list
r Recharge equipment
s Show problem status board
t TCA clean of tylan tube
T Turn off TCA cleaning
w What is currently enabled
Ul Show your current equipment only

TASKS IN PROGRESS(%)

FIGURE 4 The Equipment submenu

munication subsystems vary with the different equipment but typical operations are:

• single status or continual status monitoring

• recipe viewing and/or recipe directory viewing

• recipe loading and/or downloading

• recipe editing

• single set or continuous data collection

• operation parameters setting

The Tystar Communication subsystem is representative of the equipment communication

subsystems. FIGURE 5 shows the status returned by a Tystar furnace in response to a

request through the communication interface.

12 of 97

Major features

g] +argon

Tube El-16,18,20 or 0 for all]: 20
FNC: DS - Display Process Status LT0STNBY.020
Mode: RUN End: 00.43.32Step: 0055
ST_TTG: 00.38.10
Signal Setpt Actual I Signal Setpt Actual

02

N2VAC

SIH4

N2BKFL

PH3

PRCPR

GATE

LCHECK

4. G

10. H

2. G

0.

110.

0.
150. G 177.

0.4 G 0.0

350. G
ON

OFF

348.

ON

OFF

TEMPL

TEMPLC

TEMPC

TEMPSC

TEMPS

RMPRATE

TCUID

BOATSPD

450.0
450.0
450.0

450.0
450.0

0.0
0

0.0

>>> Press RETURN to continue...|

FIGURE 5 Tystar furnace status

449.9
450.0
450.0
449.9
449.7

0.0

Signal Setpt Signal Actual

2.6 An example of a typical BCIMS client at work

This section describes how a typical individual conducting research in the lab (named

Leslie) interacts with BCIMS. She will complete a furnace run, do some analytical data col

lection, and use a CAD program to produce a mask for photolithography.

Leslie logs into the lab, then proceeds to a terminal located near the Tylan furnace. She

enables Tylan12 (one of the furnaces). Since Leslie is qualified to use the equipment, the

hardware is unlocked for her use. A message is displayed from a previous labuser indicating

that the boat loader for Tylan 12 is sticking. Leslie initiates the furnace run and a process to

collect data from the furnace into files for later analysis. Leslie plans to use the flatgage next,

but did not make a reservation. Using an equipment control menu selection and the reserva

tion subsystem she determines that the equipment is not in use and that there are no reser

vations during the time slot she requires. The furnace run will take hours so Leslie "hides"

her Wand login at this terminal, which frees the terminal for use by others. She proceeds to

13 of 97

Major features

the area in the lab where the flatgage is located and logs in to the nearest terminal. Her

Wand is re-displayed and the In Process portion of the Wand display lists the furnace data

collection process that Leslie left running.

Leslie enables the flatgage, starts a data collection process for it, scans the wafer and then

stops the data collection process and disables the flatgage. Now she leaves the clean area

to go to a CAD station and finish her mask. Throughout the day she can check on the

progress of her furnace run from the CAD area, her office, or from anywhere on the network.

During the time that Leslie was in the clean room portion of the lab BCIMS has kept a log of

her activities. A time-stamped equipment usage record is used to automatically produce

accounting records so that the appropriate account may be billed for equipment use. A

Wand menu option allows Leslie to review her charges. FIGURE 6 shows a typical user's

activities and charges for the month.

[•] lanjori
. . -r^.^iaii

Searching between 08/06/95 00:00 and 08/13/95 00:00.
Activities of K im Allen

Date Time Amount Rate Description
08/12/95 12:16 198 mins 0.41/min Lab Usage
08/12/95 11:15 127 mins 0.00/min APT emulsion mask developer
08/12/95 11:02 114 mins 0.33/min GCA 3600 pattern generator
08/12/95 10:22 25 mins 0.00/min Canon 4X wafer stepper
08/12/95 10:13 3 each 6.34/each Plate 2.5"x2.5"x.090 Emulsion
08/11/95 20:09 50 mins 0.33/min GCA 3600 pattern generator
08/11/95 15:34 534 mins 0.41/min Lab Usage
08/11/95 11:01 188 mins 0.00/min Randex sputtering system
08/10/95 16:22 529 mins 0.41/min Lab Usage
08/10/95 16:04 1 each 1.58/each Shipping Tray, 4" Wafer
08/10/95 14:40 26 ms 0.20/m Disco DAD 2H/6 saw

08/09/95 16:44 598 mins 0.41/min Lab Usage
08/09/95 16:37 1 pair 1.09/pair Shoe Covers, Md, pair
08/08/95 15:42 479 mins 0.41/min Lab Usage
08/08/95 10:07 10 mins 0.00/min sink in GL2

08/08/95 09:52 35 mins 0.00/min Canon 4X wafer stepper
08/07/95 15:41 625 mins 0.41/min Lab Usage
Last Transaction Checked: 08/05/95 12:46
Total charges are $1295.43.
Have a nice day ,

"

argon% |

FIGURE 6 Labuser activity and charges review

14 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

3.0 Tools for the Microlab's maintenance and research staff,
and CIM researchers

This section briefly describes the applications that are used primarily to maintain and run the

Microlab. Some of the tools are also used by research staff working on process develop

ment and CIM researchers working in various areas such as Work In Progress (WIP), pro

duction process management, and statistical process control. The tasks involved in running

and maintaining the lab, process development, and CIM research require an extended set of

operations. Many of the tasks require special privileges such as access to subsystems or

features not generally accessible. The Staff subsystem provides privileged access opera

tions to staff members. Staff has the same uniform look and feel as the other text-based

menu driven BCIMS software. The tasks can be grouped into four areas of responsibility,

which are addressed by BCIMS:

• process research and development

• equipment maintenance and repair

• facility management

• administrative and clerical

The remainder of this section briefly describes the BCIMS tools according to usage cate

gory. FIGURE 7 displays the main menu from the Staff program, the version of the Wand

that is restricted to laboratory staff use.

3.1 Tools for process development and associated research staff

This section describes tools used by process development staff and researchers doing pro

cess development. Process developers require feedback about conditions in the lab,

resource levels, and the status of equipment and processing runs. In addition to the capabil

ity to collect such data, tools are required to aid in extracting different types of information, or

15 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

LAB MANAGEMENT : mudie

CATEGORIES (space) ,
a Accounting
c Computers
C Equipment Comments
e Equipment
E Equipment Communication
g General
h Help
i Inventory
I Information About Lab Members

==>m Maintenance

p Power Outage
q Qualify
r Reserve Equipment
v Vendors and Purchasing

HELP

- Enter character next to item
- SPACE moves between main menus
- Use ESC to suspend
- Use Control-C to quit
- Use ? to get help information

TASKS(space)
c Maintenance calendar (qbf)
e Edit maintenance manual

f FAULTS (abf)

F FAULTS summary reports
g Gases database (qbf)
h Hepa database (qbf)
m Maintenance status board

M Maintenance manual

p Pumps
P Generate a printout
u Display utilities dependencies
U Utilities database (qbf)
x Maintenance MatriX

X Xfig of layouts

IN PROCESS(%)

FIGURE 7 The Staff system

examining correlations from a large and varied sample space. Lastly, staff must be notified

of events that they may be interested in (i.e. technicians need automatic notification of cer

tain equipment problem reports). BCIMS tools that implement these capabilities are named

Blimp, HotPotato and WIP. Another tool, CIMTOOL, is also useful to processing staff but

because it is primarily a facility management tool it is described in Section 3.3 in Administra

tive and facility management tools.

3.1.1 BLIMP

BLIMP is a software/hardware subsystem that consists of sensors, data acquisition hard

ware, and software [Sharma '88]. Its purpose is to collect data from the sensors and monitor

the sensor readings, sending out alarm email when specified conditions are met. The sen

sors are located at equipment and resource distribution points inside the laboratory. Sensors

provide analog or digital input to BLIMP representing temperatures, pressures, flow rates,

etc. BLIMP has a GUI (graphical user interface) based on Xand VEM, and also an alphanu

meric (ASCII) terminal interface. The GUI displays data by means of virtual instrumentation

16 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

and the ASCII version displays time-stamped data per sensor along with current settings for

alarm conditions. An enhancement of BLIMP, called BLIMPIII, has been developed (by the

author and an undergraduate student, Eric Ng) and written in C++. BLIMPIII augments the

capabilities of the first version and also incorporates improved performance and methods for

handling noisy data. FIGURE 8 shows the output of a BLIMP sensor status display.

B ^^^J^^B • •>'-iail

Utility tttt Description Date

8/4/95

Time

8:47

Value Units

n2 1 (In tank level - 30 inche 73.53 inch. N2

n2 2* (n2 flow meter) 8/4/95 13:15 499.90 slpm
n2 3 (house n2 pressure - 75« 8/3/95 12:58 84.10 PSI

o2 4 (o2 flow meter) 8/3/95 12:16 2.33 slpm
o2 5 (house o2 pressure - 25** 8/3/95 12:51 48.20 PSI

rodi 6* (di tank level - 30 inche 8/4/95 12:46 89.60 inch. h2o

rodi 7 (rodi resistivity - 18 Mo 8/3/95 8:19 18.16 Mohms

rodi 8* (make-up flow rate) 8/4/95 12:32 -0.05 gpm di
utility 23 (compressed air press. 8 8/4/95 13:04 89.70 PSI.

utility 24 (vacdrain vacuum - 15 inc 8/3/95 15:09 17.84 inch. Hg
utility 30** (delta barometric pressur 8/4/95 13:10 3.44 Torr

utility 32 (chws temp. 45-55 deg.) 8/4/95 9:54 42.88 Deg. F
utility 33 (supply air temp. 64-68 8/3/95 20:50 55.40 Deg. F
utility 35 (icw pressure - 50 psi mi 8/4/95 13:13 82.50 PSI.

spin2 40* (relative humidity) 8/4/95 13:15 85.55 %RH

spin2 41* (air temp) 8/3/95 11:55 25.70 deg C
svgcoat 42* (relative humidity) 8/4/95 9:56 42.17 %RH

svgcoat 43* (air temp) 8/4/95 11:43 22.70 deg C
svgcoat 44*! (diff air press) 7/30/95 12:15 -0.13 in h2o

gases 45* (h2/n2 cylinder pressure 7/30/95 15:14 2039.57 psi

I
gcaws 46**!
JH5S23B i

(gcaws envn chamber temp) 6/26/95 8:26 -44.71 deg C

FIGURE 8 BLIMP Sensor Status output

3.1.2 HotPotato

HotPotato is one of the original applications and is used by process development staff to

maintain files of process recipes, record who is working on a process, log status and modifi

cations for recipes, and interface to the UNIX editor, vi, to edit the process recipe files. All

files that are opened for editing are locked. All files opened for viewing only are opened

using the 'lookat' program, which does not allow any modifications to the file, therefore the

file is not locked when being viewed. HotPotato is available from Wand menus under "Pro

cess Logs".

17 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

3.1.3 WIP

WIP (Work In Progress) is a more recently developed subsystem utilizing the Ingres data

base and BPFL (Berkeley Process Flow Language), which can be used to specify the infor

mation required to design, test, and execute processes to manufacture integrated circuits.

[Rowe, Williams, Hegarty '90]. The WIP system can track the state of a process run, and it

may monitor status and interact with operators or equipment in the lab concerning the state

of processing runs or actions to be carried out at different steps in processing [Hegarty '91].

WIP may also provide the functionality of HotPotato (storing and editing recipes) but oper

ates on recipes stored in the database rather than in flat files. The WIP system is described

in detail in a paper entitled "The Berkeley Process-Flow Language WIP System" [Hegarty,

Rowe, Williams '90].

3.1.4 Statistical Process Control

Statistical Process Control (SPC) is the most recent area of research applied in the Micro

lab. The SPC subsystem provides the processing staff with the ability to track and analyze

equipment calibration data on-line. A "baseline" process is a standard manufacturing pro

cess which can be used in determining whether equipment is operating abnormally. The

baseline process is run through the semiconductor fabrication facility periodically. Following

each step in the process, analytical equipment is used to collect data describing the wafers

in the baseline lot. If the data indicates that the equipment calibration has drifted beyond a

normal range, the equipment may be scheduled for calibration or maintenance. Statistical

methods are used to determine what is normal for the equipment, based on historical data.

The SPC subsystem is available on the Wand from the Process Logs menu item. The SPC

submenus include options to initiate the baseline process, data collection, and analysis as

well as options to display performance graphs and print out recorded data. When each

baseline process is run if the equipment is found to be operating outside of control limits,

automatic email is sent to the equipment technician for that equipment.

18 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

The data that is collected at each periodically run baseline process is stored in an equipment

history database. The historic data is used to track equipment drift. Statistical methods can

be used to predict and prevent future failures by predicting when maintenance and calibra

tion may be required. FIGURE 9 depicts a graphed SPC sample set.

[•] +aryon IllllS: 13

1
Theta Error

1 *+ + + + +|

0.8 ++ * Theta Error *♦•*■***++

1 «* 1

1 ** 1

0.6 ++ *M ++

1 ** 1

0.4 ++ * * ++

0.2
|MMM MM M MM M MM MM MM M MM |

0 M+ MM . MM . ** . . MMMMM . M , , (# MM . , M , . M . . M # # MMMMM t f ,.**., , . *♦♦*♦♦+
| MM M M MMMM M MM M M MM M MM M MM M M M |

MM MM M MM MM M MM MMMM MMM MMM

-0.2 + + MM MM MM MM M MM MM MM MM ++*

-0.4

7/94 10/94 1/95 4/95 7/95

Date

n Press return to exit...|

FIGURE 9 SPC output

3.2 Equipment maintenance tools

Several tools have been implemented that aid in equipment maintenance and repair. Many

of the tools that were developed earlier on in the project were oriented towards administra

tive management of the repair and maintenance procedures, and typically supported text-

based displays. For example, an earlier project produced epstat which focused on the

recording of equipment problems or status. Another example is the comments program.

Comments provides a repository for unstructured text comments or log notes, and display of

the past comments. Epstat and comments can be used to manage information about equip

ment. When problem reports are entered, a copy of the report may be emailed to a specified

19 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

technician or equipment operator. After the problem has been cleared, the technician's com

ments are prompted for and stored. The stored equipment histories are a valuable source of

knowledge which characterizes equipment for the technicians. A current-status display is

available and the labuser may also review old comments. Earlier projects served to provide

experiential data useful in developing the next generation of related tools. A more recent

project (Faults) focused on recording equipment failures, repairs and maintenance and uti

lizing failure and symptom data for diagnosis and fault prediction. The experience and

labuser feedback gained in developing and working with epstat and comments was useful

in the development of Faults. Summary Faults data is still optionally available from the orig

inal epstat status board display for alphanumeric terminals. FIGURE 10 depicts a typical

epstat display.

1 Problem for afm reported Wed Jul 26
2 Problem for aptchrome reported Fri
3 Problem for bigblue reported Thu Au
4 Problem for drm reported Tue May 16
5 Problem for ionmill reported Mon Ju
6 Problem for lam3 reported Thu Aug
7 Problem for lextra reported Sat Jul
8 Problem for mrc reported Fri Jul 7
9 Problem for prometrix reported Wed
10 Problem for pzt reported Wed Jul 26
11 Problem for reichert reported Thu J
12 Problem for sink7 reported Thu Aug
13 Problem for taurus reported Thu Aug
14 Problem for terminals reported Thu
15 Problem for tylanl reported Mon Jul
16 Problem for tylanlO reported Fri Au
17 Problem for tylanl6 reported Fri Au
18 Problem for tylan3 reported Fri Aug
19 Problem for tylan4 reported Fri Aug
20 Problem for westbond reported Fri J

09:56 by bob
Aug 4 11:52 by marilyn
g 3 14:36 by bob
10:11 by kirn

1 31 09:55 by amitm
3 16:50 by cwilliam

1 15:49 by anickles
15:43 by ddev

Aug 2 16:47 by hjwann
11:29 by bustillo

ul 20 08:04 by hadley
3 07:25 by nortonm
3 14:46 by bob

Aug 3 13:13 by kraitch
31 15:08 by voros

4 08:15 by micro
4 10:19 by bob

4 11:48 by marcelle
4 11:38 by marcelle

ul 28 13:45 by bob

Locked equipment:
pzt locked by phillip Tue Jul 25 14:58:41 1995
—More—(87%)

FIGURE 10 The Equipment status board, epstat

3.2.1 Gases

Many pieces of equipment use chemical gases in processing. The gases subsystem is a

forms-based database application that maintenance staff use to track the status, repair,

20 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

maintenance and inventory of cylinders of gases. Standard information management opera

tions are provided, (e.g., Append Retrieve, Update, etc.), as well as operations required to

track inventory and the location of installed units and their status. For example, Gases has a

'PresUpDate' operation to update the current gas pressure in a cylinder. Other resource

specific applications include: quartz, pumps, cryopumps, and utility. These are used to

manage quartzware for the furnaces, pumps and pump parts, cryogenic pumps, and depen

dencies among utilities respectively. While each of the other programs manages a specific

resource, the utility program (and database tables) not only tracks a single resource (utility

lines such as water, vacuum lines and gas feeds) but also stores facility wide data. Depen

dencies among equipment and utilities are stored in the database. This information can be

used to determine which equipment may be affected by utilities. In the event of a utility fail

ure, technicians can use this information to quickly shut down or otherwise attend to equip

ment that may be affected or damaged.

3.2.2 Techjob

Techjob is a subsystem that is used to assign and track the status of equipment mainte

nance tasks which are carried out by the equipment technicians. Technician tasks may be

assigned, viewed, edited and prioritized by the technicians and managers. Techjob also

stores a history of tasks which have been cleared or resolved. FIGURE 11 is a screendump

of the main Techjob menu, which was implemented with the Wand Ul toolkit.

3.2.3 Faults

The Faults system offers a forms based interface to data on equipment faults and symp

toms. The Faults tables are a part of the facility-wide CIM relational database. The Faults

tables in the CIM database constitute a formalization of the semantics of preventive mainte

nance and repair events. Accumulated information is automatically indexed to aid diagnosis

of failures as they occur. Utility programs may then produce summaries such as preventive

maintenance intervals, mean time between failures, predicted downtimes, performance

21 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

TECHNICIAN(space)
.==>c Charles Williams

e Endre Szentkiralyi
j James Parrish
k Ebo Croffie

1 Leif Jordan

m Mike Linan
p Phillip Guillory
u Unassigned jobs
w Patrick Uehrly

.| x Xiaofan Meng

TECHJOB: mudie

HELP

- Enter character next to item
- Only select from menu in box
- SPACE moves between main menus
- Use ESC to hide this wand

- Use ? to get help information

FIGURE 1 Techjob

FUNCTION(space)
r read current joblist
e edit current joblist
p print current joblist
P print ALL joblists
E equipment status board
a read archived joblist

TASKS IN PR0GRES5(%)

trends, etc. [Mudie '91]. FIGURE 12 shows a typical problem report form displayed by

Faults. The faults application includes a calendar system to track all types of maintenance

activities, including scheduled preventive maintenance (PM). Equipment maintenance tasks

that are performed periodically, such as changing pump filters and purging gas lines, may be

entered into the calendar by technicians. When a scheduled PM task becomes due, an

email notification is sent to a specified technician and recorded in the equipment log.

3.3 Facility Management Tools: CIMtool

This section describes tools that support facility management tasks in the Microlab. The

tools in this category are designed to provide feedback for the labuser about conditions in

the lab. They provide a broad view of laboratory operations and status of the physical
resources.

22 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

Report ID: 12573
Equipment: tylan3

+ +

ISymptoms I

l[2oat-loader |

IComments

REPORT INSPECTION
User: marcelle
Tech:

+

Reported: 04-aug-1995 11:41:57 IFaults
Diagnosed: I==========

Cleared: I
Fatal: n I

+

Itylan3: boat-loader problem from marcelle (04-aug-1995 11:41:57)
I

IBoat loader does not go back in when ACK is pressed during the unloading step
IThe boatloader should stop and/or return back into the furnace when ACK is
Ipressed during this step. The furnace can be used, but it has to closed
Imanualy by pressing the IN botton on the ROP.
I
I

Use ~JKFG to move around. Use ESC to execute a command.
Help End Diagnose SymptomList Update Clear Vi Unclear >

FIGURE 12 A typical Faults report

CIMtool is primarily a facility management and administrative tool which incorporates func

tions that overlap into other areas such as equipment communication, process monitoring,

and education [Smith, Rowe '91]. For staff or researchers working in the laboratory it sup

plies easy access to high level information concerning the state of the lab as a whole (e.g.

equipment status, layout of utilities, equipment utility dependency, location of moveable wall

partitions). One can also access a hypermedia educational subsystem (IC-HIP) that utilizes

recorded video and still images to teach material on semiconductor processing [Schank,

Rowe '92].

The initial CIMtool display (FIGURE 13) is a two-dimensional schematic floor plan view of

the Microlab. This display, and other views (obtained by zooming in on parts of the map)

constitute a visual interface to data describing the laboratory. Status of equipment is

encoded using colors that indicate whether the equipment is up for processing, down for

short term maintenance, or in some other state. Routing of utilities is also displayed using

23 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

color coding and highlighting of the utilities that the labuser may select for display. The infor

mational content of the display is controlled by clicking on the buttons at the lower right of

the screen.

IH ;'Ai ^

View

All
Redraw
111!!!!!;,! I!!!

4-

j-i^BiSplaiHlTI::::::::::::::::::::::::

fvf Equipment

• Utilities

n Junctions

Spaces
HI * >

ifj|[_.j§|
^ *w A

RGURE 13 CIMtool initial view, a floor plan of the lab

Queries and constraints on queries may also be defined through this GUI. For example, to

obtain information on utilities that are connected to a particular piece of equipment one can

select the equipment or groups of equipment by pointing and clicking with a mouse on the

equipment shown in the map. Any further queries, such as one for a listing of utilities, will

select information concerning the selected equipment only.

CIMtool utilizes data from several other subsystems to represent laboratory state. One of

these is BLIMP III, described above, which monitors data collected from sensors in the labo-

24 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

ratory. CIMtool provides an interactive window based interface to the sensor data that

BLIMP III acquires, and supports graphing of one or more sets of sensor data at one time.

FIGURE 14 shows the CIMtool interface to the BLIMPIII data and a graph of sensor data.

• House N2

gf House 02

|Vj CompreAir

• ICW

FIGURE 14

Pressure Sensors

i i i i i i i i i i i i i i i i i i i

The CIMtool interface to BLIMP sensor data

Resume Capturj

Close

Another subsystem which is integrated under CIMtool is Faults. Faults data is presented to

the labuser through a CIMtool GUI. The interface supports an ad hoc query capability

enabling a labuser to ask questions about facility, equipment and, processing history data. It

is designed so the labuser may develop a query through the use of virtual switches or set

tings, and does not require any knowledge about the underlying RDBMS or databases in

general. Another set of views that can be displayed from the ad hoc query GUI, as applied to

Faults data are the equipment "status board" views, which provide a summaries of the facil

ity-wide equipment status. A one-line description of each outstanding maintenance task of

equipment problem is displayed. The status board offers overall status at a glance, mirroring

more detailed information that is available through the regular Faults problem database

interface shown in FIGURE 12.

25 of 97

Tools for the Microlab's maintenance and research staff, and CIM researchers

3.4 The Staff system

A subsystem named the "Staff" includes Wand operations and an extended set of operations

dedicated to staff tasks. In general, the staff tasks are more complex and numerous than lab

client tasks. For example, the Faults equipment status and maintenance logging tool is most

often used by lab clients to report problems. In contrast, the lab staff use the full complement

of diagnosis and maintenance tracking capabilities of Faults. The equipment communica

tions subsystem for the Tycom furnaces provides another example. Most Iabusers use the

reduced set of "safe" operations that are made available on the Wand. Qualified staff and

researchers are able to use an alternate console mode of the software which allows direct

connection and unchecked SECS message passing to the furnace controller.

3.5 Administrative tools

The administrative tools are divided into three main categories, accounting, inventory/pur

chasing, and clerical. Accounting applications support tasks like keeping track of who our

Iabusers are (Iabusers), how the Iabusers should be charged (contracts), and generation of

billing documents (acct). Inventory/purchasing support tasks such as keeping track of inven

tory (inven), creating and monitoring purchase orders (purchase), and maintaining a ven

dors database (vendors). Clerical applications include operations to create and remove

computer accounts (killacct, makacct, newacct), allow Iabusers to access their billing

records on-line, redirect charges, and checkin/checkout inventory items (chkin, chkout). All

of these applications provide report generation, and in some cases automatic notification of

changes to one or more administrative staff members (by email).

26 of 97

System Design, Architecture, and Implementation

4.0 System Design, Architecture, and Implementation

This section describes the overall system design and architecture of BCIMS. Additionally,

the software and hardware subsystems are described. Section 4.1 describes the overall

software/hardware system design and architecture. In Section 4.2, the software design and

implementation is described. An exhaustive description of engineering and implementation

details for all software subsystems is outside the scope of this paper. Instead, this section

will cover at least one representative example from each class of laboratory operations

(listed in the Introduction section). In each case the most significant design issues or goals

are described, followed by a discussion of the resulting architecture, engineering and imple

mentation of representative subsystem(s). Section 4.3 presents a discussion of the hard

ware architecture. Entity relationship diagrams for the database objects described in this

section may be found in Appendix 1. A listing of the constituent executables of BCIMS may

be found in Appendix 3.

4.1 BCIMS system architecture

Two-Level Architecture

Existing manufacturing systems are difficult to analyze because it is difficult to correlate data

from different manufacturing areas. Even closely related data sources such as lot, process

and test data are often stored in incompatible, separate databases. A primary goal of

BCIMS is to use a logically integrated, physically distributed database so that data from all

sources in the system may be fused and correlated including design, marketing and sales,

scheduling, WIP, equipment control, transport control, process monitoring and testing.

The system architecture of BCIMS was designed to allow integration of dissimilar sources of

data while minimizing the number of layers, in order to reduce complexity [Hodges, Rowe,

Spanos '89]. BCIMS has a two-level architecture made possible because rather than

designing the system so that all subsystems which need to exchange data communicate

27 of 97

System Design, Architecture, and Implementation

directly, each subsystem instead communicates through a mediating subsystem. In this way

asynchronous communication and independence of all subsystems in the communication

network is achieved. A DBMS is used as the mediator or primary integration vehicle for the

system. One reason for the added complexity of older systems is that individual subsystems

were communicating directly, and therefore required facilities for knowing how to communi

cate to several disparate subsystems. Without asynchronous communication and indepen

dence, this architecture was not feasible and systems were typically 4 to 6 layers. FIGURE

15 shows a schematic of the BCIMS software/hardware system architecture. The lower level

of BCIMS is composed of the embedded software and hardware subsystems that provide

the data acquisition, labuser I/O and other local resources for a particular node. In this con

text, the term node indicates a stand-alone software or hardware system that constitutes a

single unit on a network insofar as the capability for independent operation is concerned

(i.e., the unit is not a client or completely dependent on any other unit). A node may or may

not have its own network address. The upper layer is composed of the distributed network of

nodes that are integrated through the relational DBMS. In our system the Ingres DBMS is

used on all platforms. However with the addition of Ingres Star a distributed relational DBMS

with gateways to other database systems (or some other RDBMS gateways system), data

bases from other vendors can also be integrated quite easily. Thus one of the roles of the

RDBMS can be thought ofas that ofa bus or a network through which all other subsystems

communicate. FIGURE 16 depicts the integration of BCIMS through the Ul, for the labuser,

and the RDBMS for internal operation of the system.

4.2 Software system design

Modular software design

The concept of modularity is central to the design of BCIMS software. The software system

is a collection of integrated subsystems. Each subsystem is in turn composed of modules of

code archived into code libraries. Each subsystem provides facilities for a class of tasks iso-

28 of 97

C
O C
^

C
O

0 (
Z X
)

m 0
1

C
D

0>

•
•

•

3
C

R
E

L
A

T
IO

N
A

L
D

A
T

A
B

A
S

E
M

A
N

A
G

E
M

E
N

T
S

Y
S

T
E

M

D
A

T
A

A
C

Q
U

IS
IT

IO
N

H
A

R
D

W
A

R
E

E
T

H
E

R
N

E
T

/T
C

P
-I

P
N

E
T

W
O

R
K

E
Q

U
IP

M
E

N
T

C
O

N
T

R
O

L

H
A

R
D

W
A

R
E

D
IR

E
C

T

E
Q

U
IP

M
E

N
T

C
O

N
N

E
C

T
IO

N

C
O

C
O

C
D 3 D C
D

C
O

cq
"

3 O 3
;

C
D

O «
-
^

c p 0
)

3 C
L

3 -g
.

C
D 3 C
D

3 2
.

o 3

System Design, Architecture, and Implementation

60

a
<L>

•»-»
CO

*t3

>>
CO

X5
3
CO

P
>s &

u £

o
CO

T3 T3

1 S

4)

00

1
• 1-1

3
C
CD

s

alarm

— chemicals & materials

_ equipment

_ equipment communication

_ general purpose

— help

information

_ manual and notes

mail and messages

process logs

_| reserve equipment

-4 safety, trouble & prevention

—I sign out of lab

visitors

t

x>

I

FIGURE 16 Relationships between wand, BRDS, and subsystems

30 of 97

System Design, Architecture, and Implementation

morphic to a class of lab operation. As previously mentioned, the classes of lab operations

are:

• process control

• equipment management

• facility management

• administration

We may also speak of functions that are classified according to the operations internal to the

system. In BCIMS, these classes are:

• user interface

• application specifics

• data management and subsystem integration

• specialized protocol and or hardware interface

The architecture of the subsystems can be viewed as layered, with each layer implementing

functions belonging to one of the classes of internal software operations. FIGURE 17

depicts subsystem architecture. The Ul Layer is at the top, followed by application specific

code, which in turn calls functions in a data management and subsystem integration layer.

Lastly, if specialized protocol or hardware is a component to the subsystem, it is imple

mented in the lowest layer. One or more code libraries are associated with each type of

layer, with the possible exception of the application specific layer. Grouped according to the

layers just described, the following libraries have been developed.

• Ul layer: menulib, keymaplib (menu and key mapping functions)

• application specific layer: faultlib, blimplib (for the Faults and BLIMP subsystems)

• data management and integration layer: objlib (database object methods), wizlib

31 of 97

C
O

r
o

C
O

•v
l

o c
z

7
0

C
O

c C
T

C
O

C
O

C
D 3 C
D

-
^

C
O

0> 3 Q
.

O O -
^

C
D

C
O

"
O o 3 Q

.

3
'

C
O o o Q

.
C

D

C
T B CD
"

C
O

C
O

M
P

O
N

E
N

T
S

O
F

T
H

E
S

O
F

T
W

A
R

E
S

Y
S

T
E

M
C

O
R

R
E

S
P

O
N

D
IN

G
S

O
F

T
W

A
R

E
S

Y
S

T
E

M
L

IB
R

A
R

IE
S

U
S

E
R

IN
T

E
R

F
A

C
E

L
A

Y
E

R

M
E

N
U

L
IB

K
E

Y
M

A
P

L
IB

A
P

P
L

IC
A

T
IO

N

S
P

E
C

IF
IC

L
A

Y
E

R

F
A

U
L

T
L

IB

B
L

IM
P

L
IB

R
D

B
M

S
IN

T
E

G
R

A
T

IO
N

L
A

Y
E

R

L
IB

IN
G

R
E

S
(c

om
es

w
it

h
In

gr
es

)

O
B

J
L

IB

W
IZ

L
IB

L
O

W
L

E
V

E
L

H
A

R
D

W
A

R
E

L
A

Y
E

R

P
R

O
T

O
C

O
L

S
L

A
Y

E
R

E
Q

U
IP

L
IB

L
IB

L
A

M

L
IB

T
Y

C
O

M

C
O

C
O

#
-
*

C
D 3 D C
D

C
O

CO
*

3 > O C
D

O *-
♦

c p 3 Q
_

3 •
o C
D 3 C
D

3 0
> o
'

3

System Design, Architecture, and Implementation

(integration functions and utilities, interface functions to libingres distributed with
Ingres)

• equipment protocol and hardware interface layer: equiplib (generic functions for
equipment interface), tycomlib, lamlib (SECS protocol equipment interfaces)

In the case of the SECS protocol libraries, a generic prototype library has been developed.

The prototype library is cloned to create each new equipment specific interface.

When viewed as a dynamic collection of communicating processes the system software

architecture is a collection of distributed agents, most of which act asynchronously. Each

agent operates within a small scope of responsibility and is designed under the assumption

that the run-time environment is deterministic. Some of the subsystems are implemented as

client-servers. The client-server model is one in which two or more processes communicate;

at least one server process provides one or more resources and one or more clients con

sume the resource(s) [Leffler, McKusick, Karels, Quarterman '89]. A client-server unit may

be composed of one or more servers, one or more clients and one or more agents which are

not strictly servers or clients but perform some service(s) such as communicating with hard

ware or downloading a program into a remote subsystem, usuallyasynchronously. From the

User Interface (Ul) perspective, it is the Wand that integrates all of the running subsystems

for the labuser. However, the Wand does not perform any real, operational or internal inte

gration of subsystems.

The BCIMS Relational Database Subsystem (BRDS) is composed of the Ingres relational

database management system (RDBMS) and the BCIMS interfaces to the RDBMS. It is the

primary vehicle for the internal operational integration within BCIMS, and it also helps to

make the system more modular. FIGURE 18 depicts the major BCIMS subsystems and their

relationship to one another. This architecture is designed to allow all of the subsystems to

operate asynchronously and without knowing details about other subsystems. All of the sub

systems create and/or use database data. Although a subsystem or database object may

have a dependency upon the existence of some data produced by another subsystem, there

33 of 97

System Design, Architecture, and Implementation

is no direct contact required between subsystems. The subsystems are effectively indepen

dent. The graph and network theoretic properties of the star shaped topology for communi

cation are well known. The reader may refer to any elementary text on graph theory.

Essentially, such topologies may be more efficient than those which are connected graphs,

as long as the mediator(s) are not a resource bottleneck. FIGURE 19 depicts the graph or

network topology of BCIMS. The RDBMS is the central node or mediator for all of the nodes

or subsystems. Each node need only have the capability to communicate with the mediator

node (the RDBMS). Therefore each node may be designed and implemented as a com

pletely separate module. The mediator is not a bottleneck in this case because it has the

capability to communicate simultaneously and asynchronously with multiple nodes. The

number of connections that may be open to the RDBMS at one time limits the bandwidth of

communication through the database. Currently the BCIMS RDBMS may have hundreds of

connections open at any one time - far more than is typically required. Capacity can be

increased through addition of distributed database nodes. Bandwidth may be improved

through simple RDBMS configuration, and/or the addition of memory, semaphores, and OS

parameters. In addition, the database design and database application design may have an

effect on communication bandwidth. However, a more complete discussion of the factors

affecting performance tuning is beyond the scope of this document. BCIMS subsystem com

munication performance has been satisfactory based on a fairly standard Sun Server based

cluster which has not required an unusual amount of memory or other platform resources.

In addition to the performance and complexity related benefits this architecture has afforded,

the RDBMS also impacts robustness and security. The transaction processing, security,

backup and historical data discovery, and event trigger facilities built into the RDBMS have

greatly enhanced BCIMS.

4.2.1 The Wand HCI architecture and implementation

The Wand's user interface is its most visible feature, but the Wand actually has several dif

ferent faces. The Wand is a user interface that represents on the screen the separate sub-

34 of 97

C
O

C
O

*n
|

0 c 7
0

L
F

L
A

T
U

N
IX

F
IL

E
S

B
C

IM
S

D
A

T
A

B
A

S
E

C
O

C
O

C
D 3 O C
D

C
O

cq
"

3 o 3
^

C
D

O «
-
*

c —
t

p 0> 3 Q
.

3 •o C
D 3 C
D

3 S" o
*

3

C
O

C
O

-v
l

Q c
z

7
0

m D 21 $U C
O

C
D

C
O

C
D

C
D

C
O

c C
T

C
O

C
O

C
D 3 0 C

Q
-
* o
"

3

r
E

Q
U

IP
M

E
N

T

C
O

N
T

R
O

L

^

E
Q

U
IP

M
E

N
T

A
C

C
E

S
S

C
O

N
T

R
O

L
V

r
E

Q
U

IP
M

E
N

T

M
O

N
IT

O
R

IN
G

B
C

IM
S

D
A

T
A

B
A

S
E

F
A

C
IL

IT
Y

M
A

N
A

G
E

M
E

N
T

A
C

C
O

U
N

T
IN

G

A
N

D

IN
V

E
N

T
O

R
Y

L
A

B
A

C
C

E
S

S

C
O

N
T

R
O

L

F
A

C
IL

IT
Y

M
O

N
IT

O
R

IN
G

C
O

C
O

0 3 D C
D

C
O

cq
"

3 o 3
;

C
D

O c P B
>

3 Q
.

3 -g
_

C
D 3 C
D

3 «
-
*

ff
>

.—
••

o
"

3

System Design, Architecture, and Implementation

systems of BCIMS in a cohesive manner. The Wand is also a toolkit for engineering, for

building menu driven Ul's that offer a single highly structured "look and feel". Lastly, the

Wand is a group of intercommunicating processes and ancillary ASCII text files which com

pletely hide operating system and hardware topology from the user. It is more than a user

interface because it defines the entire computer-human interaction for the system. This sec

tion will discuss the design, architecture, and implementation of the Wand in terms of these

three facets. The discussion of the third facet of the Wand does not assume special knowl

edge about UNIX. For a more complete technical detail which does assume a knowledge of

UNIX at the system level see Appendix 2. In the following text, all first occurrences of UNIX

or BCIMS system objects and process names are indicated by bold underlined type, and

may be looked up in the UNIX or BCIMS manual pages. Entity relationship diagrams for the

database objects described in this section (and others) may be found in Appendix 1.

The Wand user interface

The Wand is a user interface that represents functions of BCIMS to the user in a menu

driven command format. Design parameters for the Wand Ul were based on a profile of the

average user and the particular needs of a CIM environment.

The average IC fabrication facility or laboratory computer user is at the naive level. There

fore, the most singular requirements for representation of operations in a CIM environment

are that the representations be designed for easy use with a minimum learning curve, and

that the system be flexible and easily modified while on line. The first requirement is particu

larly necessary in a manufacturing environment where mistakes are costly or dangerous.

The second requirement is driven by the fact that downtime in a manufacturing environment

is very expensive, and the environment changes frequently.

The design and implementation of the Wand reflects these requirements. Appropriate to an

interface for naive users, memorization of commands is not required. The display of all nec

essary information needed to select commands is persistent. The current menu and sub-

37 of 97

System Design, Architecture, and Implementation

menu are always visible whenever the screen is not displaying output data. The most basic

help commands are always visible whenever menus are being displayed. A list of processes

that the user may have running is also persistently displayed, as a reminder. Lastly, all sys

tem specifics are hidden from the user. This last implementation feature required an innova

tive design and some very skilled engineering because it has been executed in an unusually

complete manner. Typically, systems which hide system specifics conceal the operating sys

tem's command language from the user. The Wand Ul goes further and additionally hides

the entire system from the user, including the concept of one or more host computers. To a

Wand user, there is a single login session regardless of which machine(s) the user may

actually be using. Furthermore, this single continuing session is available at any terminal or

workstation in the system.

The design goal to create a flexible system that can be modified without system down-time

has been realized through the use of external configuration files. Two plain UNIX configura

tion files are required for each application based on the Wand Ul. One of the files contains

strings that specify the appearance of each menu selection (Menudefs), and the commands

and optional prompts for arguments that will be executed when the particular menu item is

selected. The other file contains strings that specify optional special key bindings (Keydefs).

The Wand based program does not have to be restarted when changes to either of these

two files are made, therefore changes may be made while on-line.

The Wand Ul toolkit

The Wand Ul may be used as a toolkit in the development of any application program. In

addition to the Wand program, it has been applied to several other BCIMS subsystems

including Staff, Techjob and Equipment Communications. Each of these is a BCIMS sub

system and a menu selection on the Wand program's menus, as well as a stand-alone sys

tem that may be run from the UNIX command line. The toolkit may be used by any software

requiring the facility for mapping keyboard input to specific execution statements. One of the

38 of 97

System Design, Architecture, and Implementation

fields in the menu configuration file (Menudefs) is used to indicate what type of execution is

required. For example, an "x" in this field indicates a binary executable and an "s" indicates a

bourne shell executable. Execution of binary files and several types of shell and script files

are supported. The toolkit code is implemented as two collections of short modular func

tions, one for menuing (menulib) and one for key mapping (keylib).

The Wand computer-human interaction system

In this subsection the Wand computer-human interaction system (CHI), architecture and

implementation is described. While basic knowledge of UNIX or some other multiple pro

cess operating system is assumed, we do not assume special knowledge about UNIX. For a

detailed technical description, assuming a knowledge of UNIX at the system level, see

Appendix 2.

The Wand CHI (WCHI) system is implemented as a system of intercommunicating pro

cesses and ancillary ASCII text files. Each process performs a different task required in sup

port of each and every WCHI login shell. FIGURE 20 depicts the WCHI processes and their

relationship to one another. The system of cooperating processes depicted is required to

allow a continuous login session to be transferred from one terminal or workstation to

another. The unaugmented UNIX operating system does not support moving a login session

between terminals, or suspension of a login shell. The only way to free a terminal for a new

user login shell is to discontinue the session by logging the user out i.e. terminate the login

shell process. The user may log in at another terminal, but it will be a new login - not a con

tinuous session. The benefits of a continuous session are that all work in progress or pro

cesses that the user has running may either continue to run, or be suspended to be

awakened later. An additional benefit is that the multi-cluster network topology is hidden

from the user.

How has the appearance of a single continuous session across multiple platforms been

achieved? A method was developed which disassociates a login session from the terminal it

39 of 97

o
P
L
U
T
O
T
E
R
M
I
N
A
L

C
O

P
L
U
T
O
T
E
R
M
I
N
A
L

P
L
U
T
O
T
E
R
M
I
N
A
L n

us
er

lo
gi

n

W
an

d
^

lo
gi

n
sh

el
l

C
O

%
<

C
O

C
D 3 D C
D

C
O

C
O 3 > -
n

O C
D

O P $» 3 G
L

3 C
D 3 C
D

3 1
-
+

S3
,

o
"

3

System Design, Architecture, and Implementation

was initiated on. At host boot time one process named pluto is started for each terminal in

the system that has been configured to be a Wand system terminal. Additionally a single

process which runs continuously named waved is started. These processes continue to

run as long as the host machine is operating in multi-user mode. A plain ASCII text file is

used to configure the system - the file is read by a start-up script at boot time that starts all

BCIMS processes. The pluto processes take the place of a UNIX process which is normally

run (one for each terminal) (called a (jetty). One pluto process is dedicated to each new

login at a terminal. When the user logs in to a terminal, the pluto process connects to the

waved process to request information about the computer account name that the user has

entered at the login prompt. The waved process is a special kind of process called a server

daemon. Typically a server daemon provides one or more system resources or information

to other processes called clients, at the client's request. The waved process provides infor

mation about who is logged in, whether a user is actively using a particular terminal, and

other information required to manage the user logins. If the user does not have an existing

login session then waved creates a login session and then returns the needed information

about the new session to the pluto process. If the user already has a continuing login ses

sion then the waved process returns information about the existing login to the pluto client

process. The waved server is able to do this because it stores information describing the

status of a user login session.

To create a login session, waved starts a new process called incant which is at the root of

the hierarchy of processes depicted in FIGURE 20 as the "per-user process group". This

group of processes performs initialization and then starts a login shell for the user. Thereaf

ter most of the group of processes continues to run as long as the user has an ongoing login

session. The per-user process group is a dynamic structure of processes designed to sup

port the two features listed earlier, which are not supported by UNIX, i.e. the ability to move

the user login shell between terminals, and suspend and awaken the login shell. These two

features are required to allowthe user's login to follow him/herto different stations in the lab.

41 of 97

System Design, Architecture, and Implementation

When a user moves to a new terminal and enters his computer account name at the prompt,

the pluto associated with that terminal connects to waved and asks for information about the

user. The pluto receives the Process Group Identifier (PGID), (a number used to identify the

user's login) from waved. Then pluto uses the PGID to connect to one for the processes in

the per-user-process-group, named overseer. The overseer process is the direct parent of

the user's login shell process. Once overseer has accepted a connection from a pluto the

user's login shell can be started or restarted at the terminal that the pluto is associated with.

If the user had left a login shell active on a different terminal, then that same login shell is

disconnected from the old terminal and transferred to the new terminal. This frees the user

from having to rememberto disconnect from the terminal. Alternately, the user may explicitly

temporarily disconnect (or "hide") the login shell, suspending the login process and freeing

the terminal for later use by the same user or others. Whenever a user's login shell is sus

pended, all processes for which it is appropriate are kept running and others are suspended.

Thus the user may movefreely about the work area unhindered by any system specifics.

4.2.2 The BCIMS Relational Database System

This section briefly describes the BCIMS database design and implementation. No knowl

edge of database design or relational theory is assumed.

The BCIMS Relational Database System (BRDS) consists of the INGRES relational data

base management system (RDBMS) [INGRES '91], the BCIMS software interfaces to the

RDBMS, and various plain ASCII text files. The text files are used as intermediate data stor

age areas for data to be up/downloaded to/from the database. The relationship of the BRDS

components to one another is depicted in FIGURE 21. Entity relationship diagrams for the

database objects described in this section (and others) may be found in Appendix 1.

42 of 97

System Design, Architecture, and Implementation

PROCESS CONTROL/EQUIPMENT

EQUIPMENT MANAGEMENT

FIGURE 21 CIM Database: Top level entity-relationship diagram

43 of 97

System Design, Architecture, and Implementation

Database design

In addition to the typical issues of all database design (which we will not expand upon here),

the design of BRDS required addressing the following major issues:

• What kind of data structures are appropriate for a CIM environment?

• What sort of data types are required to represent CIM information?

• How can integration of heterogenous subsystems be integrated through an
RDBMS?

The design for information representation in BRDS is object oriented in that classes of

objects in the database correspond to physical or conceptual objects which exist in the labo

ratory. However, the object classes are not strictly hierarchically structured, they are repre

sented in a structure which is isomorphic to the relationships between real world objects.

Hierarchical structures are used only if a corresponding hierarchical relationship existed in

the "real world".

Management and control of an IC-CIM manufacturing operation requires database facilities

for the conventional business data (e.g. accounting and inventory) and also engineering and

scientific data (e.g. geometric positional data and sensor measurement data collected dur

ing processing [Rowe, Williams '87]. Provision for the engineering and scientific data types

was a difficult design issue to address. Most database systems do not support the engineer

ing and scientific data types, a few commercial RDBMS's are beginning to emerge, only

now, that do provide the facility for defining your own data types. As an interim measure,

BRDS utilizes the facilities offered by a conventional database (the only available option at

the time) to simulate geometric positional data types. This solution allowed some applica

tions to be prototyped and developed to a certain extent, and provided the best interim solu

tion possible. An example is the Facility Layout Information Program (FLIP). The portion of

the CIM database developed for FLIP required several tables to store positional data that

could be more optimally represented if geometrical positional data types were available.

44 of 97

System Design, Architecture, and Implementation

Performance improvements and a reduction in complexity of queries could be obtained with

a database supporting the needed data types. However, the interim solution devised for

FLIP was optimal at the time, and has held up rather well. The FLIP database tables were

reused without change (except to update data) as the source of data for the laboratory floor

plan and equipment and utilities maps in CIMTOOL.

The FLIP tables contain the dimension data for objects. An object is either a single unit,

such as a door, or a component to a single unit such as the back panel on a piece of equip

ment. Another separate table holds data representing vertices where objects meet. Since

different heuristics apply to how a window, for example, and a piece of equipment may be

displayed in a map, separate tables are used for these different classes of objects. This

allows specific methods to be associated with specific geometric positional data types. The

RDBMS data type issue may have to be addressed in the design of new subsystems or new

IC-CIM system projects. Some examples of data types that will need to be represented in

the future are: imprecise or fuzzy data, data associated implicitly by class with a unit of mea

sure, message data associated implicitly by class with protocol methods. Ingres (and more

recently some other RDBMS's) now supports user defined data types and a rule manage

ment system, both of which may be very useful in implementing the new data types.

FIGURE 21 depicts the dependencies or entity-relationships between the primary database

objects at the most general level. Each of the primary database objects corresponds to a

table in the database (and a set of database applications). Some of the individual programs

open direct connections to the database and others use an external UNIX plain file as an

intermediate storage area for data that is periodically transferred to or from the database.

There are several different cases dependent on the type of data and how it is used that

determine what type of interaction with the database a particular program or operator has:

• direct connection to the database every time the program requires data

• no direct connection to the database, the application produces data and consumes

45 of 97

System Design, Architecture, and Implementation

data stored in ASCII text files and that data is uploaded and downloaded by ancil
lary programs or scripts

• the database is connected to directly under some circumstances and indirectly
through plain files in others

Direct connection is usually the case when data must be updated in real time. No direct con

nection is typically the case when data need not be updated in real time, and/or data is cre

ated in constant streams and at such a rate that to keep a direct connection open would

unnecessarily add to system load. In the last case, cases one or two are applied accordingly

when a subsystem can conditionally alter program flow.

4.2.3 BCIMS Equipment Control subsystems

This section briefly describes the design and implementation of the equipment control facili

ties of BCIMS. Entity relationship diagrams for the database objects described in this section

(and others) may be found in Appendix 1.

Equipment control

The design goals for equipment control applications of BCIMS have been to provide modu

lar, easily extensible subsystems to support equipment control and communication. The

approach taken was to avoid defining any specific architecture for equipment interface mod

ules or subsystems. However, some architectural concepts that have been applied in other

components of BCIMS have also been applied to equipmentcontrol subsystems. For exam

ple, external configuration files are used to specify operational parameters, and modular

code libraries have been developed. In all other aspects architecture has been allowed to

vary with the specific equipment control application. Because equipment interface is essen

tially an equipment-specific undertaking, this approach has proven to be a good one. The

software/hardware system architecture ofequipment control is depicted in FIGURE 22.

There are two primary equipment control subsystems of BCIMS. One is used to send a sig-

46 of 97

System Design, Architecture, and Implementation

FIGURE 22 Software and hardware data acquisition systems

47 of 97

System Design, Architecture, and Implementation

nal to equipment specific hardware interlocks that can be used to enable or disable equip

ment use (eqcnti). The other is a system for communication with laboratory equipment

which supports the Semiconductor Equipment Control Standard (SECS) protocol (tytalk,

lamtalk, flattalk, nanotalk) [SEMI '92] [Lam '88]. Although the SECS protocol software can

be used to control equipment, it is almost solely used in the laboratory to monitor process

related data, and therefore is discussed in the following section on Process Monitoring.

The software portion of the eqcnti subsystem consists of the eqcnti program, the equiplib

library and a UNIX plain file used to specify configuration. Qualifications data, labuser data

and accounting data are created and/or consumed by eqcnti. The modular code library,

equiplib, consists primarily of functions that drive the I/O hardware through which signals are

sent to the hardware interlocks that are attached to processing and analytical equipment in

the lab. The I/O hardware is a commercial product called the Taurus Lab. It is a Z80 based

controller unit and one or more I/O port boards (the laboratory has two), each of which pro

vides 64 one bit ports. The hardware interlocks, and everything else on the outbound side of

the I/O board have been developed by equipment technicians and development engineers

who also maintain the processing equipment. The eqcnti software, in itself has no positive

information or feedback about the equipment or hardware interlocks. However, it was imple

mented under the assumption that setting a bit (raising the voltage) will "enable" the equip

ment for use and clearing the bit (lowering the voltage) will "disable" the equipment. Thus

the laboratory managers have complete control over precisely what they wish to occur when

a signal is sent by BCIMS, and the system is completely portable and environment/equip

ment independent. In addition, BCIMS is also independent from its own hardware compo

nents. Any I/O hardware similar to the Taurus may be used in place of the Taurus Lab; its

capabilities are common and available from a wide variety of manufacturers who supply I/O,

data acquisition or process control hardware. Eqcnti participates in the accounting process

by logging each "on" or "off" command (equipment enabling/disabling). The log is time-

stamped and is used to track use of equipment so that equipment use time may be billed. In

addition, eqcnti plays a part in equipment problem reporting. At the end of each session of

48 of 97

System Design, Architecture, and Implementation

use, when the user executes an off command to disable the equipment, the operator is

prompted to report any problems with equipment. In this way technicians are assured to

receive prompt problems reports.

As previously described, when a lab member wishes to use equipment he or she selects a

Wand menu option to "enable" the equipment. The menu option corresponds to the eqcnti

program being executed with two argument strings, the first is "on" and the second is the

name of the equipment (as given in the BCIMS database). Eqcnti connects to the BCIMS

database and performs queries on the Iabusers and qualify tables in the database. The

query is keyed on the User ID (UID) and the name of the equipment. The labuser's request

to enable the equipment is granted if:

• the computer account name corresponds to an active labuser

• the equipment name requested exists in the database of equipment

• the labuser is currently qualified to use the equipment

• the status of the equipment allows enabling (i.e. its not "locked")

• no scheduling conflicts exist

• the limit on number of pieces of equipment enabled will not be exceeded

• the equipment is not already enabled

In addition, eqcntl's commands to the hardware must be completed successfully. The

labuser is warned if the hardware communication was not successful.

4.2.4 Process Monitoring

Software for process monitoring will be described in this section. A group of subsystems

based on a code library that implements the Semiconductor Equipment Communication

Standard (SECS) protocol is described. Additionally, a Work In Progress (WIP) subsystem

and the Berkeley Process Flow Language (BPFL) is discussed. Entity relationship diagrams

49 of 97

System Design, Architecture, and Implementation

for the database objects described in this section may be found in Appendix 1.

SECS protocol equipment communication

Primary design issues to be addressed for the SECS protocol equipment interfaces were

that the protocol be implemented according to the standard, and that the design support

modularity and easy extension. The equipment is a limited resource to which access must

be managed. Therefore the client-server model was deemed appropriate.

A code library has been developed which implements the generic SECS protocol [SEMI '92]

in the C programming language. Equipment specific libraries (one per equipment) imple

ment the equipment dependent portions of the protocol implementation. The SECS software

that has been developed includes:

• tytalk/tytalkd for the Tylan furnaces

• lamtalk/lamtalkd for a LAM Research etcher

• nanotalk/nanotalkd for Nanometric's spectrophotometer

In addition to the use of short concise library functions, modularity has been providedfor by

"protoizing" the generic and equipment dependent portions of the SECS protocol implemen

tation. That is, a template implementation was developed, and that implementation may be

"cloned" each time a new equipment specific interface is required. The system is easily

extensible because relatively few modifications need be made to the clone in order to tailor it

to the specific equipment. Totailor a new clone, the values of environmental parameters are

specified in the prototype include files (header files). Additionally, an instance of a record

like data structure, used to specify exactly what SECS messages the equipment supports,

must be edited. An instance of a data structure must also be edited to specify the mapping

between an input user command to send a supported message, and the function that will be

the handler for the request (i.e. the function that will be called to implement the message).

Andfinally, any special equipment specific handler functions must be supplied.

50 of 97

System Design, Architecture, and Implementation

The server daemon process that may be compiled from the prototype library supports two

modes of operation. One is a batch mode. In batch mode a user runs the client process exe

cutable with arguments that specify a message to be sent. The other mode is interactive. In

this mode the client process makes a connection to the server daemon such that all user

input is passed directly to the equipment controller. Interactive access to the equipment con

troller is restricted to a few qualified users because in this mode all output to the furnace is

unchecked. Select functions of the SECS protocol equipment interfaces are available from

the Wand and Staff subsystem menus. An enhanced equipment interface is available for

process monitoring of the Tylan furnaces, called Tycom Communication. In addition to the

SECS equipment communication server daemon and client process, a C program (tytasks)

integrates scripts (tylan_monitor, tylan_monitor_online) developed to continuously monitor

a furnace, store the data, and optionally display the data concurrently. FIGURE 23 shows

the main menu for the Tycom Communication subsystem.

TYCOM COMMUNICATION: leslie
CATEGORIES(space) TASKS(space)

d Display Status (1-16,18,20) . c Collect data (during run)
r Recipes (1-16) . 1 Look at or copy old data
S Restart tycom interface . v Collect data and view (on xterm)
t Tylan watch (tywatch)

.==>T Tylan monitor (tytasks)

HELP

- Enter character next to item

- SPACE moves between main menus

- Use ESC to suspend
- Use Control-C to exit
- Use ? (and !) for help info- Use

IN PR0CESS(%)

FIGURE 23 Tycom Communication Subsystem

51 of 97

System Design, Architecture, and Implementation

WIP

Work in progress (WIP) is used to monitor entire processing runs and groups of processing

runs and encompasses information about any and all steps and the associated equipment

and resources. WIP utilizes the Berkeley Process Flow Language (BPFL) to represent the

information. The design and architecture of the WIP system is not described in this paper. It

is described in detail in a paper entitled "The Berkeley Process-Flow Language WIP Sys

tem" [Hegarty, Rowe, Williams '90]. The WIP system has been experimented with in the lab

oratory and has been a subsystem available on the Wand menu in the laboratory. A baseline

process is being developed which will become a standard test-bed component for WIP. WIP

will run the baseline process in connection with the Berkeley Computer Aided Manufacturing

(BCAM) group's workcell controller, currently under development [BCAM User's Manual

'94].

Sensor Data Acquisition

The Berkeley Laboratory Infrastructure Monitoring Program (BLIMP) is a hardware software

system that supplies sensor data on utilities to the labuser. FIGURE 24 displays BLIMP sen

sor status output for a number of different sensors. The primary design issues addressed

during development of the original BLIMP involved the reliable delivery of sensor data at a

range of sampling frequencies. As with the other BCIMS equipment interface subsystems,

the client-server model was chosen. However in this case it is the stream of data (rather

than connect time to a server daemon) that is a limited resource that must be managed. Cli

ent processes wishing access to data do not directly or indirectly address the data acquisi

tion hardware. To reliably supply data at desired sampling rates, given the resources

available for equipment purchase, the data acquisition system must utilize the full I/O band

width. Thus the system was designed to eliminate server daemon overhead associated with

client process connect time. The server daemon process operates asynchronously and

independently from any data consuming processes. An added benefit is that the reduced

52 of 97

System Design, Architecture, and Implementation

complexity of decoupled operation makes the design more robust.

Bj^^jl •31

Utility «» Description Date

8/4/95

Time

8:47

Value Units

n2 1 (In tank level - 30 inche 73.53 inch. N2

n2 2* (n2 flow meter) 8/4/95 13:15 499.90 slpm
n2 3 (house n2 pressure - 758 8/3/95 12:58 84.10 PSI

o2 4 (o2 flow meter) 8/3/95 12:16 2.33 slpm
o2 5 (house o2 pressure - 258 8/3/95 12:51 48.20 PSI

rodi 6* (di tank level - 30 inche 8/4/95 12:46 89.60 inch. h2o

rodi 7 (rodi resistivity - 18 Mo 8/3/95 8:19 18.16 Mohms

rodi 8* (make-up flow rate) 8/4/95 12:32 -0.05 gpm di
utility 23 (compressed air press. 8 8/4/95 13:04 89.70 PSI.

utility 24 (vacdrain vacuum - 15 inc 8/3/95 15:09 17.84 inch. Hg
utility 30** (delta barometric pressur 8/4/95 13:10 3.44 Torr

utility 32 (chws temp. 45-55 deg.) 8/4/95 9:54 42.88 Deg, F
utility 33 (supply air temp. 64-68 8/3/95 20:50 55.40 Deg. F
utility 35 (icw pressure - 50 psi mi 8/4/95 13:13 82.50 PSI.

spin2 40* (relative humidity) 8/4/95 13:15 85.55 %RH

spin2 41** (air temp) 8/3/95 11:55 25.70 deg C
svgcoat 42** (relative humidity) 8/4/95 9:56 42.17 %RH

svgcoat 43** (air temp) 8/4/95 11:43 22.70 deg C
svgcoat 44**! (diff air press) 7/30/95 12:15 -0.13 in h2o

gases 45** (h2/n2 cylinder pressure 7/30/95 15:14 2039.57 psi

^

gcaws 46**! (gcaws envn chamber temp) 6/26/95 8:26 -44.71 deg C

FIGURE 24 BLIMP sensor status output

The BLIMP subsystem consists of a server daemon, one or more client processes, a script

that downloads a program to the data acquisition hardware, and ASCII text files (used to

store data). The server daemon runs on the machine to which the data acquisition hardware

is attached by an RS232 line. Typically, (although the configuration may be changed), when

ever the host machine is rebooted a script is run to program the data acquisition hardware.

First a signal to halt acquisition is sent to the data acquisition hardware, then a fresh copy of

the program, (which incorporates current information from a configuration file) is down

loaded followed by a command to begin data collection. When the programming script has

completed, a program is executed that continuously collects data. The data is collected from

a UNIX domain socket bound to character-special device file. This device file is a link to

the tty hardware port that the remote hardware is connected to (by an RS232 line). The

server daemon process, called blimpd, is also started whenever the host machine reboots.

53 of 97

System Design, Architecture, and Implementation

Blimpd runs continuously listening at a socket, accepting connections from client pro

cesses, and providing them with data. A recent major revision of the BLIMP software,

(BLIMPIII) has been designed by the author and an undergraduate student (Eric Ng), and

written in C++. This latest revision was driven by the growing number of sensors being mon

itored, and the increased client demand for sensor data by researchers. BLIMP has been

one of the most heavily voluntarily used (as opposed subsystems researchers and staff are

required to use in order to work in the lab) subsystems in the Microlab. The BLIMPIII revi

sion enhances the methods that have been encoded for handling noisy data gracefully. It

also adds facilities for broadcasting data to a large number of clients so that sample fre

quency to a single client is not affected by the number of clients that wish to receive data.

Rather than the usual method of queuing client's for data, clients "register" for service and

are warned if the requested sample frequency cannot be provided. Thereafter the client may

receive broadcasted data. Receipt of data does not require connect time to the server dae

mon, so an otherwise limited resource (the connection to the server) is obviated.

Several different client programs have been developed and experimented with. The most

often used client processes have been those used by laboratory staff. The laboratory staff

normally only require updates once per hour, because the utilities data does not usually

change very often. In contrast, lab member research project clients of BLIMP typically

require high sample rates. The system is designed to support any client program(s). There

have been requests to maximize the sample rate for lab member research projects. The

maximum sample rate that could be obtained primarily varies with the number of sensors

that must be sampled (given the existing data acquisition hardware), although there are sev

eral data acquisition system programming factors that may introduce overhead in a manner

which is not linear inthe number of sensors. When the minimum sensors required by labora

tory staff (19) are supported the best sample rate that could be achieved was approximately

3 samples per second. The limiting factor in this sample rate was found to be the data acqui

sition hardware, not the BLIMP software. Without faster data acquisition hardware, we could

54 of 97

System Design, Architecture, and Implementation

not empirically determine the best sample rate that could be achieved by the software given

high throughput hardware, however experiments were done using simulated data input to

BLIMP III at much higher sample rates. Based on the results of the simulation, we estimate

sample rates of one tenth of a second could be reliably achieved on the current platform,

and that higher rates are possible.

4.2.5 Faults Equipment Maintenance and Diagnosis Tool

In this section, the design and implementation of the Faults subsystem is briefly described.

For an in-depth description of Faults see the paper by its author [Mudie '91], which is sum

marized here.

Equipment maintenance and diagnosis

Faults is an equipment maintenance and repair tracking system which also provides a

mechanism for failure analysis and diagnosis. The facility for failure analysis and diagnosis

may be utilized directly by the operator or by a diagnostic software application. There were

several issues to be addressed in the design of Faults. Typically, in existing semiconductor

manufacturing environments, information describing equipment status or qualification and

maintenance is stored on paper or in unstructured computer text files. Problem reports are

reported in unstructured text, or even orally to technicians by operators. These unstructured

means of storing the information make it extremely difficult or impossible to perform any use

ful system analysis for diagnosis.

To address these issues, the following goals for Faults functionality were developed:

• provide structured equipment qualification and maintenance tracking tools for the
facility management

• support structured maintenance case history recording and browsing for techni
cians

• design the user interface and supply operators so that the users of the system may

55 of 97

System Design, Architecture, and Implementation

also maintain it without the need for a programmer

• provide a mechanism for integration with a variety of other CIM applications that
require data on equipment status and history, such as automated diagnosis system

Based on these design goals, issues to be addressed include:

• developing appropriate data structures

• formalizing the semantics of equipment maintenance and repair information

• utilization of the forms-based interface for naive users

• development of a consistent application interface for subsystem integration within
the CIM framework

An object-oriented paradigm is used as the data model in the development of the Faults

database tables. Five classes of object are defined: Iabusers, resources, comments,

reports and faultsymps. All but the faultsymps class have straightforward physical counter

parts in the manufacturing environment. The faultsymps type is the parent class to the fault

and symptom classes. To enforce structure and to formalize the semantics of Faults infor

mation, a hierarchical structure composed of faults and symptoms is used. Through stan

dard knowledge acquisition techniques, information describing typical faults and symptoms

was gathered, and an unambiguous terminology for faults and symptom description was

developed.

The forms-based user interface uses persistently displayed menu items and restricted oper

ations on clearly labeled fields. The interface is designed to minimize human error and pro

vides a structure to the actions of entering new data, browsing historical data, and modifying

hierarchies. This makes it possible for Iabusers to maintain the system without expert help.

Lastly, the mechanism of a uniform integration point for other CIM subsystems is imple

mented in the same way that the other major BCIMS subsystems provide this support. A

modular code library, faultlib, has been developed. The library contains code modules which

56 of 97

System Design, Architecture, and Implementation

may be linked in to any applications which require integration with Faults data and data

structures. An application utilizing faultlib use BRDS as the operational integration mecha

nism.

4.2.6 BCIMS Facility management subsystems

This section describes the design and implementation of several BCIMS subsystem devoted

to facility management. FLIP and CIMtool are only briefly described. For in-depth description

of FLIP and CIMtool see [West '89], [Rowe, Williams '87], [Smith, Rowe '91], and [Picasso

'90].

Facility management

Facility Layout Information Program (FLIP) and CIMtool are two distinct but related sub

systems devoted to facility management. FLIP is one of the subsystems that was developed

early, during the mid to late 1.980's, and is a precursor to CIMtool which was developed in

the early 1990's.

Design issues addressed in the development of both subsystems included:

• database information representation

• database application design

• user interfacing to a large system of complex and volatile data

The information representation design has survived unchanged since it was developed as

part of FLIP. The FLIP database tables have been incorporated into CIMtool; they are used

to create the CIMtool graphical interface to the laboratory.

The FLIP database is object oriented in that database objects are isomorphic to correspond

ing physical objects in the laboratory. For example, FLIP database objects include the lab

itself, walls, vertices (of objects), equipment, material, utilities, etc. A primary challenge to

57 of 97

System Design, Architecture, and Implementation

the development of the FLIP database was the representation of geometric positional data

so that the objects could be displayed. At the time when FLIP was developed, database sys

tems did not support either geometrical or scientific data types, or user-defined data types

(Ingres now supports user-defined data types). Positional attributes for the objects had to be

explicitly defined. The approach taken was to use a two-dimensional coordinate system

common to all objects, and to represent "height" and "bottom" of an object only when neces

sary. The height attribute is a relative measurement of the distance between the bottom of

an imaginary bounding box enclosing and object, and "bottom" is the vertical elevation rela

tive to the zero height attribute of the lab object to the bottom of the bounding box enclosing

an object. Thus the representation is a mixture of absolute and relative coordinate systems

within a single framework. This approach minimized the data required to represent labora

tory objects.

A great deal of energy devoted to the design and implementation of FLIP went into the

development of the menu-driven and graphical user interface. X Windows is utilized, how

ever the user interface issues that were faced went far beyond simply using the resources

provided by X at the time (mid to late 1980s). One of the design issues addressed was cre

ation of an interface and program flow that would allow a naive user to modify database

data. To this end FLIP was designed to consist of separate modules. Each devoted to han

dling one of the interface areas according to functionality. Modules developed included:

• view generator

• data entry editor

• specialized built in graphics and text handling capabilities

• an events and scheduling manager

FLIP was designed so that all of these special built-in capabilities could be replaced by tool

kits in the future, and that is exactly what successfully occurred in the development of CIM

tool. CIMtool utilizes the capabilities of FLIP, and goes further by integrating the database

58 of 97

System Design, Architecture, and Implementation

tables and some of the facilities of other subsystems such as Faults.

The CIMtool application design is based on the primary goals of:

• providing a tool that is easy for naive users to learn an use, and

• integration of a wide variety of dissimilarCIM data into a representation that offers a
high level view of the status of the laboratory.

Rather than design built-in facilities to support these features, CIMtool is based on the GUI

toolkit, Picasso [Picasso '90] and an Ad Hoc Query Interface to the database [Smith, Rowe

'91]. Using Picasso allowed developers to quickly prototype CIMtool. Multimedia and hyper

text extensions to CIMtool have also been developed (also based on Picasso). Additionally,

the Faults and BLIMP III BCIMS subsystems are integrated under CIMtool. CIMtool is a spe

cifically applied example of the Ad Hoc Query Interface (referred to as AQI in the remainder

of this paper). The AQI allows end-users to specify and run ad hoc queries without requiring

any special knowledge of query languages or database design. The user is presented with

panels of switches that can used to incrementally build a query.

The data structures developed for CIMtool are Common LispObject System (CLOS) objects

(Picasso is written in Lisp also). CIMtool is object oriented in a fuller sense than FLIP in that

a true object hierarchy is used in the graphical representation of objects. For example, an

etcher object class is a subset of an equipment object class, and a specific type of etcher

would be a subset of the etcher object class. This hierarchy is most general at the top and

becomes increasingly specific, mirroring the procedure used to develop queries using AQI.

4.2.7 Administrative applications

In this section, the design and implementation of the administrative subsystems of BCIMS

are described. Entity relationship diagrams for the database objects described in this section

may be found in Appendix 1.

59 of 97

System Design, Architecture, and Implementation

The design goals for BCIMS administrative applications were primarily to produce applica

tions that are secure, robust, capable of reversing the results of transactions that are already

committed to the database, and keeping secure records of transactions. In addition, special

attention had to be paid to minimizing data entry errors.

Administration

Primary administrative applications within BCIMS are acct, inven, vd, Iabusers, purchase,

and contracts. All administrative applications store data in the database, some of them

directly access the database every time the program is run and others do not. Administrative

data is characterized as being generated frequently from many different sources simulta

neously, and it is critical that data points are never lost. The generalized procedure used in

BCIMS for processing of data with these characteristics is:

• put data from sources and/or database table(s) into a UNIX plain file

• review/edit data using an editor specialized for the task

• conclude with a file/hardcopy report and/or updating/appending to database
table(s)

All administrative data is constantly collected from sources and is uploaded into the data

base twice per day. After the database upload new plain files are downloaded from the data

base. Administrative staff may upload or download data on demand at any additional time.

The acct program is used to calculate charges for laboratory use and generate accounting

statements for a specified period. Act-upload is used to upload and download accounting

activity data. The acct application consists of a program executable, several tables in the

database, and also UNIX plain files containing data. The procedure for producing the routine

60 of 97

System Design, Architecture, and Implementation

periodic statements is:

• upload data into the database from the plain file it is constantly collected in

• generate a statement for the period (usually a month long interval) into a plain UNIX
file

• review and edit the statement in the plain UNIX file using a dedicated accounting
editor

• finalize the statement, producing a new finalized plain UNIXfile and hardcopy

The plain UNIX files that contain the statements and finalized reports are always written to

files named for the accounting period of the report and an extender indicating type of state

ment. The path to the files is hard-coded for security. The tables that store data for acct (also

accessed by other programs) are activity and acctperiod. As the names suggest they store

the charges activity and the record of statement periods. When statements are generated or

finalized the acctperiod table is updated to reflect the current state for that period's account

ing and a time-stamp. The specialized editor (vd) is designed to reduce the probability of

data entry errors by restricting operations. Vd also records who is editing and when, uses

locking on all files being opened for updates, and always creates a backup copy of a file

opened for editing. In addition, an option is provided for the labuser to voluntarily store notes

that will also be time-stamped.

The inven program also utilizes the vd editor. The same general procedure is followed in the

case of inventory record maintenance as described above for accounting reports. Separate

fields display current inventory levels, inventory location and reorder thresholds. The vd edi

tor is used to provide control over what can be done within each field type. For example,

fields may be restricted to a specific number of digits, or be restricted from editing.

The Iabusers, purchase, and contracts subsystems are all forms based database applica

tions. In addition to providing a consistent user friendly interface, Ingres forms definitions are

used as a mechanism to provide very specific control over the editing of fields. For example,

61 of 97

System Design, Architecture, and Implementation

for security reasons certain fields in the labuser forms may only be updated by someone

logged in as a specific labuser at a specific terminal during specific business hours. Addi

tionally, attribute definition and type checking are used to very narrowly define acceptable

input for fields, thereby decreasing the possibility of errors in data entry.

4.3 BCIMS Hardware Architecture

In this section, the current hardware architecture is described. For a historic description see

Section 5.1.

Hardware architecture

The current hardware architecture is a distributed computing system composed of two com

pute and file servers, one for production called Argon and one for development called

Radon, and client workstations [Sun '90]. X terminals and alphanumeric terminals are con

nected to the servers over a local area network. Typically, 50 people are logged into Argon

and 20 people are logged into Radon during the day. The development machine is also a

standby system that can replace the production machine if needed.

In addition to the servers, workstations and terminals, we have several specialized hardware

subsystems that are used for data acquisition, equipment control, and direct connection to

processing or analytical equipment. These specialized subsystems are connected by

RS232 links to one of the workstations or terminal servers or directly to the production

server. FIGURE 25 shows current hardware components of the Microlab equipment cluster.

The data acquisition system is a commercial product (an Acurex). It monitors approximately

40 sensors, primarily concerned with utilities and resource levels. The equipment control

hardware is a commercial product (a Taurus). It implements the capability to signal the hard

ware interlocks (developed and managed by the laboratory technicians and engineers) that

are used to control access to equipment and resources. Direct connection to equipment is

62 of 97

C
D

C
O

C
D

3
]

0 c
z

T
O

m r
o

e
n

H =
r

C
D

0
3

O (f
)

3 c
_

o c C
/)

«
-
t
-

(D —
i

D C
D

•—
»

•

O

© S
u

n
3

/1
1

0

(i
ri

d
iu

m
)

^
-
~

*

<
N

S
u

n
3

/1
1

0

(p
al

la
di

um
)

3
=

P
ri

n
te

r

S
u

n
3

/1
6

0

(b
el

l)

S
pa

rc
5

(g
ol

d)

S
u

n
3

/1
1

0

(r
u

b
id

iu
m

)

S
pa

rc
lO

(a
rs

en
ic

)

(9
N

C
D

X
T

er
m

s)

(2
G

et
ty

+
9

P
lu

to
T

er
m

s)

(1
G

et
ty

+
8

P
lu

to
T

er
m

s)

S
u

n
3

/1
6

0

(c
o

p
p

er
)

1
'

i !

T
yh

m
Fu

rn
ac

e
(T

ub
es

18
,2

0)

U
.C

.
B

er
ke

le
y

M
ic

ro
la

b
H

a
rd

w
a

re
—

O
th

e
r

E
th

e
rn

e
t

R
S

2
3

2
S

E
C

S
T

o
S

u
n

4
/6

9
0

(r
ad

o
n

)

S
u

n
4

/2
8

0
1

0
4

M
B

F
il

e
se

rv
e
r:

3
.6

G
B

D
is

k

(a
rg

on
)

(1
3

G
et

ty
T

er
m

s)

la
se

rw
ri

te
rl

l
(l

w
4

0
6

)

S
u

n
3

/1
1

0

(z
ir

co
n

iu
m

)

D
EC

ta
lk

K
I

1/
2"

T
ap

e
D

ri
v

e

L
.

N
a
n

o
li

n
e

N
an

o
sp

ec

A
lp

h
as

te
p

C
-V

(H
P

)
F

la
tg

ag
e

T
au

ru
s

E
q

u
ip

C
o

n
tr

o
ll

e
r

T
T

T
T

(L
ab

E
qu

ip
O

n/
O

ff
)

S
pa

rc
2

(k
ry

p
to

n
)

I

A
c
u

re
x

D
a
ta

A
qu

is
it

io
n

S
y

st
em

T
T

T
T

T
T

(U
ti

li
ti

es
S

en
so

rs
)

S
pa

rc
1

(e
al

li
u

m
)

r
\

S
u

n
3

/7
5

(l
ea

d
)

4
8

6
C

lo
n

e

(p
ri

np
c)

<
.

-

/•*
•

4
8

6
C

lo
n

e

(l
am

l-
p

c)

/•
•

4
8

6
C

lo
n

e

(l
am

4-
pc

)

S
pa

rc
5

(r
ad

iu
m

)

V
id

e
o

F
ra

m
e

G
ra

b
b

e
r

-
S

E
M

R
ic

he
r!

M
ic

ro
sc

o
p

e

A
u

to
p

ro
b

e

P
h

o
to

re
s
is

t

In
sp

ec
to

r

L
A

M
(1

&
2

)

A
u

to
e
tc

h

L
A

M
4

A
u

to
e
tc

h

P
ro

m
e
tr

ix

T
y

la
n

F
u

rn
ac

e
C

on
tr

ol
le

r
(t

yc
om

)

I
T

yl
an

F
ur

na
ce

(T
u

b
es

1
-1

6
)

(J
)

C
D 3 D C
D

C
O

cq
'

p > —
\

o 0 o c <3 Q
.

3 "
O 0 3 C
D o
'

System Design, Architecture, and Implementation

via RS232 links. Direct equipment connections utilize the SECS protocol whenever possible,

and specialized protocols when the equipment does not support SECS.

64 of 97

History and organizational facts

5.0 History and organizational facts

5.1 History

Semiconductor research has been ongoing at UCB since the advent of the microchip.

-EECS/ERL established an early integrated circuits fabrication laboratory in 1962 [Microlab

'93]. In 1979, planning for a new laboratory to support fabrication of higher density chips

began. Construction started in 1981 and the new facility opened in 1983. Computerization of

the new laboratory began at its planning stage, and some support for utilities was imple

mented during its construction.

The facility, now called the Berkeley Microfabrication Laboratory (or Microlab for short),

includes class 100 clean rooms and fabrication equipment for semiconductor research. At

about the same time, in the early 1980's, professors Hodges and Rowe started research in

computer-integrated manufacturing (CIM) and the Microlab became the testing facility for

CIM software. The first version of the BCIMS was installed in 1984 to support operations in

the Microlab. Since then it has been in continuous use. BCIMS evolved through a coopera

tive research project of five years, with substantial input from the users and staff of the

Microlab [Voros, Ko '89].

The initial computing environment was a centralized timeshare computer with alphanumeric

terminals connected to it. In the late 1980's the environment changed to a distributed com

puting system composed of two compute and file servers: one for production and one for

development. Workstations, X terminals, and alphanumeric terminals are connected to the

servers over a local area network. In the summer of 1990, these machines were upgraded to

Sun4's. The same software and database system that ran on the previous platform, DEC

VAX and Sun3, now runs on the Sun4. We were able to move BCIMS to different machine

architectures after making relatively few modifications.

The project slowly moved from the research phase into routine use until it became an indis-

65 of 97

History and organizational facts

pensables tool for Microlab management. Many self contained modules were added along

the way and we now have all necessary features to fully support a university microfabrica-

tion laboratory. The BCIMS software was released to the Industrial Liaison Program [ILP '94]

for distribution in 1992.

With Professor Spanos joining the faculty in 1988, the emphasis in CIM research shifted to

equipment communications, monitoring, and control. The Berkeley Computer-Aided manu

facturing (BCAM) system is a framework built to facilitate the experimentation with various

CAM applications. BCAM currently supports real-time monitoring, real-time SPC, diagnosis,

recipe generation, and equipment modeling, as well as run-by-run process control for multi-

step sequences such as photolithography [Leang, Thomson, Bombay, Spanos '94]. The effi

cient integration of these applications has been based on the common data structures for

equipment models and for process recipes. BCAM [BCAM User's Manual '94] was released

for distribution in 1993.

5.2 BCIMS facts

• Total lines of original code written as part of BCIMS: approximately 200,000

• Lines of code in source directory ~micro/sra 162,386

• Lines of code in code libraries ~micro/src/lib: 31,290

• Size of the entire distribution of BCIMS: approximately 200MB (includes a sample
database, but not third party software such as the RDBMS)

• There are approximately 160 lab members who are "active" in the lab in any given
month.

• Peak number of lab members using BCIMS in the Microlab at a single point in time
is approximately 50.

• BCIMS has been validated over the years of its evolution by operating the Univer
sity of California's Microlab

66 of 97

History and organizational facts

5.3 Organizational Facts

Microlab Supplies and Expenses (S&E)

• In the fiscal year 1993/94 "Computer maintenance and upgrade" cost the laboratory
$13,812.24, about 3% of 'Total Supplies & Expenses" for FY 93/94.

• In the fiscal year 1988/89 "Computer maintenance" cost the laboratory $4,746.76,
less than 2% of the figure given for 'Total Supplies & Expenses" for that same fiscal
year.

• System administrator's salary is NOT included in either of the above.

Other Related Expenses

• Ingres database license fee (purchased by BCAM research group)

• Other licence fees (purchased by BCAM research group)

• Software packages and utilities used by BCIMS or CIM researchers (beyond those
typically bundled with the host computing environment) have included: Frame-
Maker, Allegro Common Lisp, CLOS, X Windows, Motif, Ingres RDBMS, Gnu
Emacs, GNU C and G++, OCTtools, KIC, MAGIC, SUPREM, VEM, Spice, Fluent
Creare X, and Phoenics.

• Professional Staff Programmer/Analyst (one full-time employee)

Personnel

• The total number of graduate students who have participated in the original BCIMS
project is eight, working with four professors.

• Several professional staff programmer/analysts and undergraduate assistants have
been employed over the years.

67 of 97

Future research and development Directions

6.0 Future research and development Directions

In this section some ideas for future or continuing CIM research projects are briefly listed.

Future directions

The workcell controller developed by the BCAM group should be brought on-line in the labo

ratory in connection with WIP and BPFL so that the individual systems can be experimented

with, and the integration of these separate systems may be effected and experimented with.

An automated diagnosis system would be an extremely valuable tool for semiconductor fab

rication. This would be a natural extension to the work begun by Faults, which can provide

the data required for such an application.

Sensor data on the status of system resources and equipment control subsystems should

be coupled so that researchers may work towards an "intelligent" equipment control mecha

nism in the lab. The current system provides no connection between these systems other

than the human observer.

Current technology (or advanced) user interface techniques must become the standard in

use in the Microlab. Hardware upgrades should include: more color displays - preferably

touch screens, easy to manipulate pointing devices, voice recognition and more voice syn

thesis (currently we only have voice synthesis for broadcast of safety alarms over the inter

com). We should use the new interface hardware along with video to build a multimedia

version of the Wand. This will provide CIM researchers with a better test-bed. Experimental

data should be gathered so that the effects on productivity and decreased human error may

be examined.

Use of hypermedia techniques should be expanded beyond the instructional system devel

oped for IC instruction (IC-HIP). Users should have hypermedia tools added to BCIMS to

replace the currently practice of using unstructured files for storage of lab research notes

68 of 97

Future research and development Directions

and other records.

Now that RDBMS's, including Ingres, have recently implemented support for user-defined

data types, we may begin to take advantage of database object types based on geometrical

and scientific data types in the design of new applications.

Another new capability that is now available in commercial databases, including Ingres, is

rule based knowledge management. Perhaps this is one method that should be explored

through its application to integrating the sensor feedback with equipment control.

A subsystem which implements a uniform interface to the various configuration points of the

BCIMS software should be implemented. The representation of the BCIMS parameters

should reflect the correlation of parameters (if any). A first revision may warn a staff member

about other related parameters. A second revision might implement sanity checking on con

figuration changes.

Ultimately, now that the underlying framework is stable we should work toward automating

at a higher, facility-wide level. This facility-wide automation should be enhanced in two pri

mary areas. The first is the area of visualization of scientific data and visualization of the

entire system state in real-time. The second is in relieving the human components of the

system from time consuming busy work. A higher level of intelligencethroughout the system

should be strived for, and is now feasible in terms of the processing power and hardware

which has become available recently.

To go further towards a higher level of system automation, intelligent assistant agent soft

ware can be developed which may potentially be of great service to the administrative and

technician staff who support the laboratory. In addition, such software agents may play a

useful role for researchers and staff as an aid in data collection and analysis.

69 of 97

Appendix 1: Database Entity Relationship Diagrams

7.0 Appendix 1: Database Entity Relationship Diagrams

FIGURE 26

FIGURE 27

FIGURE 28

FIGURE 29

FIGURE 30

FIGURE 31

FIGURE 32

FIGURE 33

FIGURE 34

CIM Database:

CIM Database:

CIM Database:

CIM Database:

CIM Database:

CIM Database:

CIM Database:

CIM Database:

CIM Database:

Primary top-level entity-relationship diagram 71
Accounting tables entity-relationship diagram 72
Labuser tables entity-relationship diagram 73
Gases tables entity-relationship diagram 74
Inventory tables entity-relationship diagram 75
Purchasetables entity-relationship diagram 76
Qualify tables entity-relationship diagram 77
Reserve tables entity-relationship diagram 78
Resource tables entity-relationship diagram 79

70 of 97

Appendix 1: Database Entity Relationship Diagrams

PROCESS CONTROL

EQUIPMENT MGMT

FIGURE 26 CIM Database: Primary top-level entity-relationship diagram

71 of 97

Appendix 1: Database Entity Relationship Diagrams

Quser_id J

FIGURE 27 CIM Database: Accounting tables entity-relationship diagram

72 of 97

Appendix 1: Database Entity Relationship Diagrams

Iabusers

FIGURE 28

•fr

o-O

idgen

-&

contracts

(contracted)

idgen

Clabuser J

process

Caccessfee)

entity

weak entity

one-to-one relation

many-to-one relation

many-to-many relation

existence dependency

non-unique id attribute

unique id attribute

CIM Database: Labuser tables entity-relationship diagram

73 of 97

Appendix 1: Database Entity Relationship Diagrams

(gaslocid")

(gasname }

FIGURE 29

gaslocation

resource

(gaslocid j

gasloc_equip (objid)

entity

weak entity

one-to-one relation

many-to-one relation

many-to-many relation

existence dependency

non-unique id attribute

unique id attribute

CIM Database: Gases tables entity-relationship diagram

74 of 97

Appendix 1: Database Entity Relationship Diagrams

entity

weak entity

one-to-one relation

many-to-one relation

many-to-many relation

existence dependency

non-unique id attribute

unique id attribute

FIGURE 30 CIM Database: Inventory tables entity-relationship diagram

75 of 97

Appendix 1: Database Entity Relationship Diagrams

purchitem

mlnumber

entity

weak entity

one-to-one relation

many-to-one relation

many-to-many relation

existence dependency

non-unique id attribute

unique id attribute

FIGURE 31 CIM Database: Purchase tables entity-relationship diagram

76 of 97

Appendix 1: Database Entity Relationship Diagrams

activity

I time J

qualify H> resource

(equipnamej

entity

weak

one-to-one relation

many-to-one relation

many-to-many relation

existence dependency

non-unique id attribute

unique id attribute

FIGURE 32 CIM Database: Qualify tables entity-relationship diagram

77 of 97

Appendix 1: Database Entity Relationship Diagrams

Iabusers

•fr user id

reserve

a-

process

procid

Qlabuser J

entity

weak entity

one-to-one relation

many-to-one relation

many-to-many relation

existence dependency

non-unique id attribute

unique id attribute

FIGURE 33 CIM Database: Reserve tables entity-relationship diagram

78 of 97

Appendix 1: Database Entity Relationship Diagrams

resource -fr idgen

&D

entity

weak entity

one-to-one relation

many-to-one relation

many-to-many relation

existence dependency

non-unique id attribute

unique id attribute

FIGURE 34 CIM Database: Resource tables entity-relationship diagram

79 of 97

Appendix 2: Technical description of the Wand login system and related processes

8.0 Appendix 2: Technical description of the Wand login
system and related processes

This appendix will describe the Wand system and the group of related processes, assuming

a basic knowledge of Unix at the system level.

As a precursor to describing the implementation of the Wand, we introduce some terminol

ogy. The notion of a single "wand session" means one span of time logged into the Wand,

delimited by an initial login at the login terminal, and a logout of the Wand session resulting

in a exit ofthe login shell at the end. Atty or pty are the Unix character-special devices.The

tty device is associated with a single specific hardware unit, typically a single RS232 port on

a hardware i/o device. The pty, or "pseudo terminal" driver is a software construct. It is typi

cally not associated with any specific hardware unit, and may be associated with any hard

ware port. The terms "HUP", "TERM", and "KILL" refer to the Unix signals. SIGHUP,

SIGTERM and SIGKILL as defined in the Unix system C include file, signal.h.

There were difficult technical issues to be addressed in the design of the Wand's facilities

for user login shell handling. As described above the major issue was the design of a mech

anism to suspend a login shell and disconnect and reconnect it from a connection to a

character-special device. The resulting solution and implementation takes full advantage of

the Unix facilities for process control (job control). The Unix process control facilities depend

on the terminal I/O system to control access to a terminal, or tty. When a person logs into a

terminal, a job, or group of processes that are controlled and associated together with a ter

minal (or tty) and a user (or uid), are assigned a unique identifier called a process group

identifier (PGID), a process identifier (PID) number. An instance of a data structure for each

terminal contains a PGID as one of its fields. The shell and the terminal that it is running on

are assigned to the PGID, which is the same number as the login shell's PID, when the ter

minal is first opened [Leffler, McKusick, Karels, Quarterman '89].

80 of 97

Appendix 2: Technical description of the Wand login system and related processes

The suspension of the Wand process was dealt with by developing a strategy by which the

existing Unix facility for suspending or "backgrounding" processes (normally not applied to

the root or login shell), could be applied to a login shell. The approach taken was to engineer

a replacement for the gettv process which opens and initializes a tty, prompts for and reads

a login name, and invokes the login process. This replacement process is called a Pluto.

and a terminal running connected to a pluto process is referred to as a "pluto terminal".

While the getty process associates one specific tty with one specific login, the pluto associ

ates with one specific tty and any pty(s). The pty becomes the master in the master-slave

pty-tty pair. The user's shell is then associated with the pty. The ioctls TIOCSTOP and

TIOCSTART can then be used to suspend and awaken the login shell.

By changing the PGID in the status portion of the tty data structure, the process that is asso

ciated with, or actively using a tty can be changed. Normally this would result in termination

of the login shell process because every Unix login shell requires a parent associated with a

special -character device, or other parent process. To satisfy the Unix requirement a process

is forked during the initial login procedure which will function as the parent process to the

login shell. The login shell's PID may now be written into a tty's data structure as the tty

PGID number, thereby associating it with a tty, but it may also be transferred to another tty/

pty without termination of the login shell. Most of the facility of the intercommunicating pro

cesses mentioned at the beginning section is in performing tasks required to support the

ability to move the Wand login from terminal to terminal in this fashion. FIGURE 20 depicts

the intercommunicating processes and their relationship to one another.

A server executable called waved is also one of the component processes, it is a daemon

which can be connected to through a Unix domain socket. The daemon is a server process

that typically is started at boot time and continues to run, accepting connections and pro

viding resource(s) to client processes, as long as the machine is up. If the waved daemon is

killed then a new.waved process is automatically executed. Waved's domain of responsibil-

81 of 97

Appendix 2: Technical description of the Wand login system and related processes

ity is allowing and disallowing lab logins and maintaining login statistics and user identifica

tion parameters. The resource waved supplies is "lab login" (and the external files that must

be created in support, to allow other processes to start a Wand for a user). The other com

ponents to the Wand make up a collection of hierarchically organized processes that per

form some initialization functions and thereafter manage the user login.

When a new wand login is started, the first process to be forked is an incant process. It

forks a copy of itself and the child incant gets a pty for the user by trying to open each pty in

order until it opens successfully. Incant then records the pty name in the user's Wand file.

The pty is locked for exclusive use. Then the child incant forks an overseer process and

waits on the process until overseerstops itself with SIGSTOP, indicating that it is ready to

accept connections. The child incant then signals its parentjncant with a SIGTERM caus

ing it exit. Upon the termination of the parent, the waved daemon receives a SIGCHLD sig

nal, and continues on to server the next client request. The child incant (and now only incant

process) sends a SIGCONT to restart the overseer process, then waits on the overseer to

terminate. When the overseer process exits, the incant process continues on to fork a

clruser process which logs the user out from the current Wand login session.

The overseer process is responsible for connecting and disconnecting the users Wand login

shell. The overseer is running or stopped for the entire duration of the Wand login session.

The overseer exits when the user selects the Wand option to log out, thereby ending the

Wand session. When the overseer process is first forked by incant it binds to a socket so it

can listen at the socket for connect requests, and upon accepting a connection, communi

cate with a pluto terminal. Overseer records the pluto terminals name into the users Wand

file. The overseer then executes setuid. setaid. and initgroups so that it effectively

"becomes" the user by inserting itself into the hierarchy of standard Unix processes typically

present for any login, in a position directly above the login shell process. Overseer then

sends a SIGSTOP to itself, signaling the parent incant process to continue. The parent,

82 of 97

Appendix 2: Technical description of the Wand login system and related processes

incant, restarts the overseer with SIGCONT. Thereafter the overseer listens for connection

requests from pluto terminals.

Before a connection request to an overseer from a pluto can be made the pluto must con

nect to waved to get the socket identifier for the users overseer process. The pluto then

attempts to connect to the socket. When overseer receives a connection request and

accepts it, itdetermines the pluto terminal's host and tty device names from the socket, and

awakens the users Wand login shell at the pluto terminal. If this is an initial connection, the

overseer first looks up the user's default lab shell (usually a Wand shell) in a configuration

file then forks the shell and waits on the shell process for either a stop or a terminate. A

stopped lab shell with no exit causes the overseer to disconnect the lab shell from the pluto

terminal, then stop and listen for another connection request at the socket. If the user's lab

shell exits, the overseer sends an out of band message (OOB message) through the socket,

the OOB message will be received by any and all pluto terminals that may be connected.

The overseer then exits, and the parent incant process completes the accounting records for

the users lab login time. If overseer receives a HUP signal it will stop the lab shell, discon

nect from the pluto and resume listening at the socket for connection requests. If the over

seer receives a TERM signal it will hup and term the lab shell before killing it (to allow it to

exit gracefully) then it will disconnect the lab shell from the pluto and exit. The hup of the

overseer can be sent by a remote process when the user has left a lab shell running at one

pluto terminal and then tries to "call up the Wand" at another terminal. In this way the lab

shell is transferred to the new pluto terminal. The term signal is sent by the clruser function

that can be used as a stand-alone program that is run by staff to clear "wedged" or leftover

lab shells, or by waved when it receives a new initial lab login request for a user already

logged in, or after a machine reboot when the Wand may log a user out because a period of

downtime has occurred unexpectedly.

The ancillary files used for configuration, data transfer and locking, by the Wand login sys

tem are plain Unix files. Each entry in the configuration file specifies one component of the

83 of 97

Appendix 2: Technical description of the Wand login system and related processes

main menu or a submenu. Fields in the configuration file (Menudefs) consist of

• text of the menu item as is will appear on the menu

• a character indicating the type of executable to be executed

• the Unix command line or built in function to be executed

• arguments to the executables (if any)

The code libraries for the Ul contain the routines that interpret the contents of the specifica

tion file and map the tokens (strings) to routines that implement operations. The implemen

tation of routines for handling external files as data transfer points is also in the code

libraries. The file formats are those that are useful in transferring data to and from the data

base or to and from editors and then later to or from the database. The locking files are files

that are used to indicate that a particular process holds a lock on some resource. Most of the

locks used by the system are advisory.

84 of 97

Appendix 3: Program Listing

9.0 Appendix 3: Program Listing

An asterisk in front of the program name indicates that the program is directly accessible

from a Wand, or Staff menu. Two asterisks indicate that the program is executed as a direct

result of a "single asterisk" program, but is not directly accessed from a Wand or Staff menu.

All other programs are only used from the Unix prompt (or shell scripts). This program listing

was created from the BCIMS manual index ~micro/man/whatis with a little editing. For a

complete list of BCIMS programs, please refer the manual pages shipped with the BCIMS

distribution. For details on a particular program, please refer to the BCIMS manual page for

that program.

Xfig (1)

*acct (1)

activitygraph (1)

*addpr(1)

*alarm

addresslabel (1)

alpha2xg (1)

appt(1)

as200get(1)

menu oriented xfig executor

calculate member charges for microlab use

convert activity records to input for "graph"

add a new resource (equipment, part) to the database

send alarm messages out over lab terminals and/or the dectalk

create page(s) of 30 PostScript address labels.

convert data dumped from as200 to <x,y> data suitable for xgraph

make a personal appointment

ASCII interface to Alphastep 200 automatic profilometer.

baseline, hotpotato, bmics, devline, proclog (1)track wafers through the microlab.

blimp

blimpscan

blimpwatch

blimpraw(1)

GUI to the Blimp subsystem to monitor data from sensors for resources

setup sampling hardware for data acquisition

parses data looking for alarm conditions and emails a warning to speci

fied technicians or operators

display raw sensor data from a file

'broadcast, broadcast_remote (l)broadcast a message using a synthesized voice

*buddy(1)

bundle

caldepend (1)

*chmode (1)

*ckout, ckin (1)

sign up list for working in the lab at night

bundle specified files into a shell script

list equipment/staff maintenance calendar dependencies

change protection modes on files and directories

check out/in lab supplies

85 of 97

Appendix 3: Program Listing

*clruser(1)

*comments (1)

*cont

*continmon

*diwatch

*dolabdist

*dolabmake

*epstat(1)

*eqcntl(1)

*eqdepend (1)

*evac_alarm (1)

*faultreports (1)

**faultrpt(1)

*faults, **faults.exe

*fax(1)

filemod (1)

file-monyr

**filerev(1)

*fixfault

*flat-stress(1)

*flatget(1)

"flip

*formpr

**flip2fig(1)

*gases (1)

getimage(1)

*hp(1)

**hpget(1)

**hptalk(1)

**incant

item in

kills a users' wand

report comments and/or problems

part of blimp, a component in the continuous monitoring of blimp data

part of blimp, a component in the continuous monitoring of blimp data

watch blimp sensor data concerning deionized water levels

bundle and rdist BCIMS software

make indicated sources for BCIMS

equipment problem status board

control lab equipment

list equipment/utility dependencies

broadcast a lab evacuation alarm over the DECtalk

menu oriented command executor

reports statistics concerning FAULTS

(l)equipment maintenance and repair tracking system

create a FAX cover sheet

edit files with locking

appends month and year to filename,

display a file in reverse order line by line

shell script access to Faults allowing maintenance for a specified equip

ment's current problem entries,

compute stress from flatgage data

ASCII interface to FLATGAGE flatness measurer

X10 windows application, facility management information tool

print out the specified laboratory form (P.O. forms for example)

convert FLIP format data to fig format

gases program

take a snapshot of a region of the screen

reverse polish notation, screen oriented stack calculator

ASCII interface to HP9836

wand interface for hpget program

controls the start-up of a "magic Wand" for each user who logs into the

lab

accept terse commands to change inventory level records

86 of 97

Appendix 3: Program Listing

iupload*

*inven (1)

isort(1)

joblist

jobreq (1)

labdo(1)

labedit (1)

*labcharges

*labcost

*labcostnew

*labdist

labfinger, f (1)

labgraph (1)

*labhelp(1)

*labhist(1)

*labhist.s

*labingres (1)

*labmailto(1)

labmake (1)

*labman (1)

labstart

*labtalk(1)

print an Ingres Quel command on stdout that can be used to upload the

specified Ingres tables with data from the specified plain Unix file

query and update lab inventory

turn copyout from INGRES into a delimited textfile

view, edit list of prioritized jobs assigned or requested according to

computer account login name

fill out TCS job request form electronically

program that helps manage and maintain Microlab files

editor for microlab files

shell script that will tell how much time has been logged in the lab

Display the amount of time that has been charged on a specified piece
of equipment. Optionally specify a specific single user, time periods can

be specified for a single day, week, month.

script that reportsthis months lab costs to the archive and truncates the

labcost table in the database.

script to build the BCIMS distribution

query user information a la finger

display and print graphs of lab accounting history

get help on a specific topic

list lab usage history

wrapper for labhist that pipes labhist output through the less program.

provide restricted access to ingres utilities

send personal messages to other members.

method for remaking Microlab system files

list lab documentation for a specified chapter

shell script that is run at the host computer boot time to startthe BCIMS
software system

'talk' to somebody from inside the lab

*labusers, **labusers.exe (1)labusers database management, an INGRES application by

*labwall(1)

*labwho, Iw (1)

*lamstart

forms (abf)

like the UNIXwall program, posts messages on all lab terminals

show who is in the lab now

TERM and restart or just start the lamtalkd server daemon.

87 of 97

Appendix 3: Program Listing

*lamtalk(1)

*late(1)

*lendstat(1)

**lookat(1)

luinfo (1)

*maintmatrix(1)

*maintreminder (1)

*makelabel (1)

*manlog (1)

**microdate(1)

**microdatget (1)

**microhash (1)

*microman, mman

mkaliases (1)

mkcalendar(l)

mkprgroup (1)

mkprocesscap (1)

mkqualify (1)

mkresourcelist (1)

mkschedule (1)

mkuserid (1)

mkvendors (1)

modprt(1)

*mtitalk(1)

*nanoline(1)

*nanotalk(1)

*nukepluto (1)

*obf, obf.exe (1)

**pip-pos(1)

*pm(1)

*pmstat(1)

*prdata(1)

interface to the LAM Plasma Etcher via the SECS protocol

list possibly late purchase orders

lent items status board

a screen-oriented file perusal program

list lab user information on the terminal

menu oriented maintenance matrix executor

send preventive maintenance reminders

create PostScript labels.

manually log in member's lab time, staff time, or equipment time

return today's date as month_day_year

get or list data files from a remote machine

create a hashed data file from a text table

(1)list documentation on specific topic

create mailing lists of qualified users

send and update the list of preventative maintenance messages

download the process group database

download the process database, and create hashed data files

download list of qualified users

download the resource database

download a list of equipment reservation times

download the username database

download list of Microlab vendors

print files that have been recently modified

UNIX interface to the MTI omnichuck

interface to the Nanometrics line width measuring system via the SECS

protocol

interface to the Nanospec via the SECS protocol

kills a pluto on a given terminal

Microlab Objects-By-Forms system

position a RasterOps Picture In Picture on an X display

send phone messages easily

preventative maintenance status board

display/print Taurus port assignments

88 of 97

Appendix 3: Program Listing

premake (1) configure a Makefile or shell script with local variables

*prgases, prquartz (1)download and print out an INGRES table

*prinfo (1)

*process (1)

*procjob (1)
*proget(1)

*protalk(1)

*prpumps (1)

*purchase (1)

*qualify (1)

rcmp (1)

*sensorhist (1)

*sensornotify (1)

*sensors (1)

*sensorstat (1)

setclock(1)

setpath (1)

*spc (1)

*spcdata(1)

*spcextract (1)

*spcgraph (1)

*spcshow (1)

*spcwand (1)

list process information on the terminal

automated recording of processing a baseline lot

process staff job board

ASCII interface to Prometrix resistivity measurer

wand interface for proget program

print out pumps database

purchase program

check who is qualified on what; add new qualified users

police leftover mann and cif files

**repfault, repmaint, repupdate, fixfault (1)FAULTS shell scripts

*reserve, reserve.exe (1)reserve time on lab equipment

**reservedmail (1) mail a reminder about an equipment reservation

**resleft (1) tracks how much of a resource is left

*resleftmenu (1) menu oriented command executor

**rpluto, trpluto (1) programs to remotely communicate with magic wand

*sensorgraph (1) graphical display of sensor history

ASCII display of sensor monitoring

turns of alarm mail from blimp sensors

monitor utility sensors in facility

sensor acquisition program

set the clock on a z29 terminal

script that sets common environment variables for Labmembers

Microlab Statistical Process Control system

manage Microlab SPC data batches

filter Microlab SPC data

plot Microlab SPC graph

display Microlab SPC graph

menu oriented command interface to Microlab SPC system

*special_chemicals (1)special chemicals status board

squeeze (1) squeeze out newlines

*staff (1) menu oriented command executor

89 of 97

Appendix 3: Program Listing

stripmail (1)

*tca_clean (1)

*tech (1)

*techjob(1)

tellme(1)

timewarp (1)

*treset(1)

*tychk(1)

*tylan (1)

*tylanioproblem,

*tyreset(1)

*tytalk(1)

*tytalk2 (1)

"tytasks (1)

*tywatch(1)

ubergraph (1)

utimes(1)

**vd(1)

**vichmod(1)

**vipr(1)

Visitor (1)

wand(1)

**wavehost (1)

xwd32topnm (1)

remove irritating header lines from mail files

tea cleaning maintenance of tylans

list technician assignments

technician job board

tell me a message at a certain time

manipulate time and date

reset a microlab terminal

the outlaw tylans program

menu-based interface to Tylan programs

postjault (1) programs to post a fault about a tycom I/O problem,

reset the tylan communications daemon

UNIX interface to Tylan TYCOM controller

UNIX interface to Tylan FCS10 Tube Computer

monitor TYLAN furnaces

watch the data from a Tylan Furnace

a beefed-up version of the standard UNIX "graph" program

update file access and modify times

visual database with command structure like the editor Vi'

create and/or edit lab files by staff members

edit (process) files with locking

look at/add to the list of visitors who have seen the lab

menu oriented command executor

identify Microlab wand server

convert a 32 bit X11 or X10 window dump file into a portable anymap

90 of 97

Bibliography and References

10.0 Bibliography and References

[BCAM User's Manual '94]

David C. Mudie. BCAM 3.1 User's Manual (12/94). EECS/ERL Industrial Liaison Program,

College of Engineering, University of California, Berkeley CA 94720.

[Hegarty, Rowe, Williams '90]

Christopher J. Hegarty, Lawrence A. Rowe, and Christopher B. Williams. "The Berkeley Pro

cess-Flow Language WIP System". Presented at SRC TECHCON '90, Department of Elec
trical Engineering and Computer Sciences, University of California, Berkeley CA 94720

[Hegarty'91]

Christopher J. Hegarty. Process-Flow Specification and Dynamic Run Modification for Semi

conductor Manufacturing. Memorandum No. UCB/ERL M91/40, 15 April 1991, Electronics

Research Laboratory, College of Engineering, University of California, Berkeley CA 94720.

[Hodges, Rowe, Spanos '89]

David A. Hodges, Lawrence A. Rowe, Costas J. Spanos. Quality and Productivity in Semi
conductor Manufacturing. 1989 EECS/ERL Research Summary. Department of Electrical
Engineering and Computer Sciences, Electronics Research Laboratory, EECS/ERL Indus
trial Liaison Program, University of California at Berkeley.

[ILP '94]

Industrial Liaison Program Research Software 1994-1995. Department of Electrical Engi

neering &Computer Sciences, University of California, Berkeley CA 94720.

[INGRES'91]

Ingres/SQL Reference Manual for the UNIX and VMS Operating Systems, Release 6.4
(December 1991). INGRES Corporation, 1080 Marina Village Parkway, Alameda CA 94501.

[Lam '88]

Lam Research Corporation. Lamlink Communications Manual, Revision D1, September 15,

1988.

91 of 97

Bibliography and References

[Leang, Thomson, Bombay, Spanos '94]

Sovarong Leang, Shang-Yi Ma, John Thomson, Bart Bombay, and Costas J. Spanos. A

Control System for Photolithographic Sequences. Submitted for publication to Transactions

on Semiconductor Manufacturing, November 1994.

[Leffler, McKusick, Karels, Quarterman '89]

S. Leffler, M.K. McKusick, M. Karels, J. Quarterman. The Design and Implementation of the

4.3BSD UNIX Operating System. Addison-Wesley Publishing Company, Inc., 1989

[Microlab '93]

Microfabrication at Berkeley (informational booklet). EECS/ERL Industrial Liaison Program,

College of Engineering, University of California, Berkeley CA 94720.

[Mudie'91]

David C. Mudie. Faults: An Equipment Maintenance and Repair Tracking System Using a

Relational Database. Memorandum No. UCB/ERL M91/44, 23 May 1991, Electronics

Research Laboratory, College of Engineering, University of California, Berkeley CA 94720.

[Picasso '90]

P. K. Schank, J. Konstan, C. Liu, L A. Rowe, S. Seitz, B. Smith. Picasso Reference Manual.

Memorandum No. UCB/ERL M90/79, 11 September 1990, Electronics Research Labora

tory, College of Engineering, University of California, Berkeley CA 94720

[Resende '87]

Mauricio Guilherme De Carvalho Resende. Shop Floor Scheduling of Semiconductor Wafer

Manufacturing. Ph.D. Dissertation, 1987. Department of Industrial Engineering and Opera

tions Research, University of California, Berkeley CA 94720.

[Rowe, Williams '87]

Lawrence A. Rowe and Christopher B. Williams. An Object-Oriented Database Design for

Integrated Circuit Fabrication. Memorandum No. UCB/ERL M87/43, 20 May 1987, Elec

tronic Research Library, College of Engineering, University of California, Berkeley CA
94720.

[Rowe, Williams, Hegarty '90]

Lawrence A. Rowe, Christopher B. Williams and Christopher J. Hegarty. The Design of the

Berkeley Process-Flow Language. Memorandum No. UCB/ERL M90/62, 26 July 1990,

92 of 97

Bibliography and References

Electronics Research Laboratory, College of Engineering, University of California, Berkeley

CA 94720

[Schank, Rowe '92]

Patricia K. Schank and Lawrence A. Rowe. An Introduction to Semiconductor Manufacturing

and Markets. Memorandum No. UCB/ERL M92/35, 7 April 1992, Electronics Research Lab

oratory, College of Engineering, University of California, Berkeley CA 94720.

[SEMI '92]

1992 SEMI International Standards, Equipment Automation/Software Volume. 805 East

Middlefield Road, Mountain View CA 94043.

[Sharma '88]

Amit Sharma. "Berkeley Fabrication Facility Monitoring System". Master of Science

Research Project Report, 1988. Department of Electrical Engineering and Computer Sci

ences, University of California, Berkeley CA 94720

[Smith, Rowe'91]

Brian C. Smith and Lawrence A. Rowe. An Application-Specific Ad Hoc Query Interface.

Memorandum No. UCB/ERL M90/106, 21 November 1990 (Revised 23 May 1991), Elec

tronics Research Laboratory, College of Engineering, University of California, Berkeley CA

94720.

[Sun '90]

Sun Microsystems Inc. "Network Programming Guide" (on the client server model). SunOS
4.1, Revision A of 27 March, 1990, Sun Microsystems Inc., Mountain View CA.

[Voros, Ko '89]

Katalin Voros and Ping K. Ko. Evolution of the Microfabrication Facility at Berkeley. Memo

randum No. UCB/ERL M89/109, 23 September 1989, Electronics Research Laboratory, Col

lege of Engineering, University of California, Berkeley CA 94720.

[West '89]

Alex C. West. FLIP: A Graphic User Interface for Management and Utilization of Facilities.

Memorandum No. UCB/ERL M89/39, Electronics Research Laboratory, College of Engi

neering, University of California, Berkeley CA 94720.

93 of 97

Bibliography and References

Additional Reading

[Aho, Sethi, Ullman '86]

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison-

Wesley Publishing Company Inc., Reading MA, 1986.

[Silberschatz, Peterson '89]

A. Silberschatz and J.L. Peterson. Operating System Concepts (Alternate Edition). Addison-

Wesley Publishing Company Inc., Reading MA, 1989.

[Teorey '90]

Toby J. Teorey. Database Modeling and Design: The Entity-Relationship Approach. Morgan

Kaufman Publishers, San Mateo CA 94401,1990.

[Yourdon '88]

Edward Yourdon. Managing the System Life Cycle (2nd Edition). Yourdon Press, Englewood
Cliffs, New Jersey, 1988.

94 of 97

Acknowledgments

11.0 Acknowledgments

The vision to transform the Berkeley Microfabrication Laboratory into a fully computer inte

grated facility was provided by Professor David A. Hodges along with Professor Lawrence

A. Rowe, of Electrical Engineering and Computer Sciences (EECS), University of California

at Berkeley. Together with their students and staff participants, their vision has become a

reality in BCIMS. Professor Roger C. Glassey of Industrial Engineering and Operations

Research, and his students, have also taken part in the area of shop floor scheduling. Pro

fessor Costas J. Spanos and his students have, and continue to make major contributions to

the evolution of automation in the Microlab by producing and integrating the subsystems for

statistical process control. The Microlab's manager, Katalin Voros has guided the integration

of the various projects into standard use in the Microlab. Her support in providing user feed

back and facilitating the input from the Microlab's users and staff has been invaluable.Grad-

uate students who have participated in the BCIMS project are (in chronological order):

Michael Klein (Hodges)

Christopher Williams (Hodges, Rowe)

Mauricio Resende (Glassey)

Christopher Hegarty (Rowe)

Brian Smith (Rowe)

Amit Sharma (Hodges)

Norman Chang (Spanos)

Undergraduate assistants who have taken part in the BCIMS project are:

Thomas Muller

James Hopkin

Scott Miles

Alex West

Adhi Gaduh

Eric Ng

Vadim Gutnik

95 of 97

Acknowledgments

Professional staff who have contributed to BCIMS are:

David Mudie (software design, engineering and systems analysis)

Lauren Massa (software design, engineering and systems analysis)

Christopher Hylands (systems administration)

Mark Kraitchman (software design, systems administration)

We gratefully acknowledge the generous support for this research from the Semiconductor

Research Corporation, the National Science Foundation, California MICRO, and Microlab

operating funds.

96 of 97

Author Acknowledgment

12.0 Author Acknowledgment

I would like to thank Dean David A. Hodges for his generous encouragement and for his

astute advice. It has meant a lot to me and made a real difference in my life. Professor

Lawrence A. Rowe has my thanks for tirelessly reviewing and offering excellent editorial

advice. I am sure that I am a better writer today for his efforts. Professor Costas J. Spanos

has my gratitude for his very generous support of my professional and academic endeavors,

and for having a sense of humor. I would also like to thank Katalin Voros for her extensive

review and suggestions.

David Mudie and Christopher Williams have my appreciation for helping me in my early days

with BCIMS. I would especially like to thank David Mudie for all his help and advice.

Lastly, but most importantly I would like to thank my husband Mark for putting up with my

hectic schedules and my frequent neglect of my half of the chores.

97 of 97

	Copyright notice 1995
	ERL-95-46

