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Abstract

The applicability of a massively parallel processing (MPP) paradigm to the simulation of charge transport in
semiconductor devices through the Monte Carlo method is investigated. A unique mapping of Monte Carlo simulation
to a data-parallel software model has been developed in which the problem is decoupled into multiple computational
domains, thereby increasing the locality of computation. The target machine for the Monte Carlo simulator is the
Connection Machine CM-2, a massively parallel SIMD architecture. Enhancement of convergence rates for Monte
Carlo estimators are achieved through the development of methods for efficient carrier flight time generation and
importance sampling. The computational efficiencies of the algorithms are analyzed, and applications of the simulator
are shown.

1 Introduction

The push for higher integration densities in semiconductor devices and the consequent reduction of minimum feature
sizes have placed tremendous demands on the capabilities ofsimulators. These tools play a key role in the development
ofnew designs, and accomplish three main goals: they streamline the development cycle by helping engineers guide the
refinement ofdesigns, they help to ensure the proper operation ofa design once it has been finished, and they eliminate
the need for costly experimental approaches for design. These goals are particularly relevant in semiconductor device
design, where the investment in development effort and cost can be daunting. Worse yet, the required investment is
steadily growing because ofthe significance ofphenomena that become increasingly complex as device sizes approach the
deep submicron regime. CAD tools for device simulation can help mitigate this complexity and considerably reduce the
investment required for new devices. These tools become essential for the effective design ofsubmicron devices.

Device simulation relies onthesolution ofthe Boltzmann Transport Equation (BTE), coupled with Poisson's equation
[1]. The Monte Carlo method [2, 3, 4] offers a statistical solution to the BTE and is one of the most accurate forms of
simulation available. This method studies the aggregate system through the detailed motion of individual particles. The
Monte Carlo method is often used to obtain accurate solutions of device behavior where macroscopic approaches such
as drift-diffusion simulation are inadequate. The disparity in accuracy between these approaches becomes increasingly
pronounced as device technology is pushed into the deep-submicron regime, where higher-order effects, such as non-local
or ballistic transport behavior, are critical. Unfortunately, the Monte Carlo approach is plagued by exhaustive CPU
requirements. In the absence of variance-reducing techniques, the convergence of the estimators is inversely proportional



to the square root of the numberof particles simulated [2]. Forsemiconductor device design, this may lead to inordinate
run-times which are unacceptable for practical engineering use. For instance, results related to a self-consistent Monte
Carlo simulation of a two-dimensional silicon MOSFET required several days of CPU time on an IBM 3090/600Ewith
vector processing capabilities [5]. Other attempts at coarse-grained parallelism and vectorization [6, 7, 8, 9] have achieved
promising speedups, but are focused on the two-dimensional Monte Carlo problem. Analysis in three dimensions is
particularly relevant for the feature sizes of interest for Monte Carlo. Unfortunately, the extension of Monte Carlo
simulation to three dimensions demands even greater computational requirements.

With such great demand for computational power, it is natural to turn to massively parallel architectures for solving
simulation problems. The Monte Carlo method holds great promise for exploiting the raw computational power of
these architectures, since it solves problems statistically through a large number of independent particle flights. In our
previous work, we have proposed the use of massive data-level parallelism to solve the three-dimensional Monte Carlo
problem in [10], on the Connection Machine CM-2. Alternative node-based implementations have been proposed in [11],
where performances on a distributed memory nCUBE multicomputer and a shared memory Ardent Titan II graphics
multiprocessor are investigated.

While the effectiveness of these node-based parallel Monte Carlo simulators rely on load balancing algorithms (which
are in turn dependent on the target device), a data-parallel algorithmic mapping avoids the problems of task partitioning,
since it is inherently load balanced. In this paper, we present our data-parallel approach, developed on the Connection
Machine CM-2, for three-dimensional Monte Carlo simulation. In addition to the raw computational gains made through
the use of massively parallel architectures, wepresent algorithms, whichexploit data-parallelism, for the efficientstatistical
convergence of Monte Carlo estimators through methods for carrier flight time generation and importance sampling.

This paper is organized as follows: Section 2 describes the Monte Carlo method and its mapping to data parallelism;
Section 3 discusses flight time algorithms for SIMD machines, in Section 4, variance reduction in rare regions is discussed;
Section 5 contains computational results and applications of the simulator; and finally, Section 6 discusses some conclusions
from this work.

2 Description of the Simulator

2.1 The Monte Carlo Model

Our simulator addresses the problem of single-particle,static-fieldMonteCarlo for electron transport [4,12]. Formally, the
solution to the stationary Boltzmann Transport Equation [1] is sought (equation 1), compliant with Poisson's Equation
(equation 2):

0=f =-v.Vr/-iF.Vk/+f (1)
coll

V(eV¥>) = P (2)

Here /, r, and k are the distribution function, position vector, and wave vector, respectively, while y? is the potential and
p is the net charge concentration. The last term of the BTE is the collision term, and is responsible for scattering and
generation/recombination of carriers. The Monte Carlo solution for / is generated from the iterative simulation of a single
charge carrier within the device, whose physics is governed by the BTE. An alternate method is the direct simulation of
an entire carrier population which is synchronized in time, called the Ensemble Monte Carlo method [4]. In this work,
we focus on the stationary problem and develop a single-particle parallel algorithm. With the single-particle method, the
carrier is treated in a periodic manner, where it is reinjected into the device when it exits through an ohmic contact. By
simulating a sufficient amount of time, enough sampling is performed on the carrier behavior so that reliable Monte Carlo
estimates of the distribution function can be formed.

The carrier injections involved in the simulation are statistically independent of each other. Hence, by ergodicity, the
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Figure 1: Monte Carlo as a post-processor to Drift-Diffusion

simulation ofn injections of a single particle into a device (with each injection taking place after the particle exits the
device) is equivalent to the concurrent simulation of n particles which are injected simultaneously. Alternatively, this can
be thought of as the collection of n independent single-particle Monte Carlo simulations.

The representation ofthe band structure is assumed to be a single spherical non-parabolic band, parameterized by a
and /? (we choose 0.5 and 1, respectively), which relates the energy E to wave vector k:

In this representation, ellipsoidal behavior can be accounted for through the Herring-Vogt transformation [4]. We have
included the scattering mechanisms used in [10, 13]: elastic acoustic phonon scattering [4], optical phonon emission and
absorption with deformation potential interaction [4], Brooks and Herring [14] ionized impurity scattering, Tang and
Hess impact ionization [15], and surface roughness scattering [16]. For impact ionization, the effects ofsecondary pair
generation are neglected. Inaddition tocomputing flight mechanics using theexact analytical effective mass, thesimulator
can optionally update effective mass values only when an electron enters a control volume [13]. The simulator is used as a
post-processor to an existing solution (figure 1), where the electric fields in the device are provided by a three-dimensional
drift-diffusion simulator running on the Connection Machine CM-2 [17].

2.2 Algorithmic Mapping

2.2.1 Computational Model

The target machine for our simulator is the Connection Machine CM-2 [18], a massively parallel Single Instruction
stream, Multiple Data stream (SIMD) [19] computer architecture. It can contain a maximum of64K processors, and
communication among these processors is accommodated through a hypercube network [20]. The processors can be
allocated into Virtual Processor (VP) sets, where many "virtual" processors can be mapped onto a single physical
processor. The ratio ofvirtual processors to physical processors is referred to as the Virtual Processor Ratio (VPR). The
use ofVP sets amounts tosplitting the physical resources of asingle processor among kvirtual processors, thus obtaining
approximately a &-fold increase of the number ofprocessors, at a cost ofa factor ofk in speed and local memory space
for each virtual processor. These VP's are connected in a topology, called the virtual machine architecture. This topology
is consequently mapped onto the underlying physical machine. Multiple VP sets can be implemented, where each VP
set can be composed of a different number of virtual processors and a different topology. This architecture employs a
data-parallel software paradigm. In this paradigm, the parallelism comes from simultaneous operations across large sets
ofdata, rather than from multiple threads of control [21].
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Figure 2: The computational domains are mapped to multiple VP sets, which in turn, are mapped to the physical machine
architecture.

2.2.2 Data Layout

Monte Carlo device simulation is difficult to map to data-parallelism because it inherently suggests multiple, disjoint
data representations. Because of the tight relationship between algorithm and data layout in a data-parallel paradigm,
the choice of data representation has a substantial impact on performance. The problem of charge transport suggests
a particle-based representation to resolve the mechanics of flight for each simulated particle, where each particle is
assigned to a processor. However, the storage of the electric fields, doping concentrations, and spatially-dependent
statistical information extracted from the simulation suggest a spatially-based representation, where the device structure
is physically discretized into a three-dimensional mesh structure, and each grid point is assigned to a different processor.
Storage of distribution functions generated from the simulation suggests yet another data layout, where the bins used in
generating histograms are distributed in an array of processors.

In parallel machines, this multi-faceted nature of the data is typically handled through the partitioning of the spatial
device structure among the processors [8, 11]. Each processor is then responsible for simulating the charge carriers which
reside in its corresponding spatial partition. Unfortunately, the effectiveness of this spatial partitioning of tasks relies on
load balancing among the processors, which is typically addressed through either dynamic load balancing algorithms or
through reliance on the statistical nature of the run-times.

In this work, an alternative approach was taken which solves the data layout problem by exploiting the flexible nature
of the CM-2 virtual machine architecture. The problem is decoupled into disjoint domains (particle-based, spatially-
based, and distribution-based), allowing the use of the most natural configuration for each problem (figure 2). Through
the use of multiple VP sets, the parallel architecture can be structured in multipleconfigurations. In each configuration,
each processor is assigned to a fine-grained element of the corresponding domain, avoiding the need for load balancing
algorithms. The simulator dynamically switches between these configurations to perform computations with the most
appropriate data layout. This approach is appealing for a linearized Boltzmann formulation, where there are no direct
carrier-carrier interactions, since the carrier flights are computationally independent.

2.2.3 Parallel Algorithm

The Monte Carlo algorithm is composed of two parts. First, the preprocessing consists of constructing the VP domains,
along with their associated data structures, and creating the parameters for flight time generation. The specific parameter
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Figure 3: Main loop for the Monte Carlo algorithm

generation algorithm is dependent on the choice of flight time algorithms, and is discussed in the next section. These
parameters are dependent on the local device structure, since the carrier scattering probabilities are related to the local
values, such as dopant densities. As a result, this step is performed with the architecture configured in the spatial
domain. The second part of the algorithm is the main loop (figure 3), which processes the carrier flights. The main loop
involves simulating the flight of particles and is therefore primarily performed with the parallel architecture configured
in the particle domain, where each virtual processor is assigned a particle. The computational tasks for each particle are
performed in instruction-level synchrony. These tasks consist of:

(i) Carrier injection: The particle is injected at the ohmic contacts according to a hemi-maxwellian distribution at
300°K [22]. In this step, no interactions among processors are required, so that the injections are completely parallel.

(ii) Free Flight Generation: The methods used for the generating carrier free flight durations are discussed in Section
3. Depending on the algorithm used for flight time generation, this step requires from one tofour single-precision floating
point coefficients to be retrieved from the spatial domain, at the location corresponding to the current grid position of the
carrier. In addition, the carrier flight processing in the subsequent algorithmic steps requires the impurity concentration,
electric field data, and carrier concentration data, which are also communicated in this step ofthe algorithm. As a result,
from 192 to 288 total bits per particle are communicated across VP domains. These communications references may
be considered global distributed memory accesses, where the global data addresses are the spatial grid locations ofthe
carriers.

These references may demand a substantial amount of communications [10]. The potential congestion is reduced
through a single-celled software caching mechanism for storage and retrieval of spatial or distribution-related data. In
this scheme, data is cached, or accumulated, in the particle domain (in the corresponding particle-based data structure)
until the carrier enters a new control volume. For instance, the electric field is updated only when a carrier enters a new
spatial cell. The use ofsoftware caching in this step ofthe simulation is effective. Simulations ofgridded bulk Si material
{Nd = 1016cm-3, E= lOkV/cm ) showed a 41% reduction of communications cost in this step.

(iii) Carrier State: In this step, the pre-scattering state ofthe particle (r,k) is updated after free flight. As in the first
step, the carrier state update operation is completely parallel. This step involves the analytical integration ofthe carrier
acceleration (to obtain wave vector) and velocity (to obtain position):

f*' q€k/ino/ = kinitiai - / —dt (4)

ft{ hk{t)rfinal =rinitial +Jo ———* (5)
Here, £ is the electric field (under a piecewise constant discretization), E{t) is the time-dependent carrier energy and 1j
is the carrier flight time.



(iv) Statistics Update: Prior to carrier scattering, theparticle state issampled for updating the Monte Carlo statistics
[4], and the residence time data is sent to the appropriate VP domain for statistics. This step reveals an advantage
that parallel machines enjoy over vector architectures. While statistics update is not vectorizable [6], parallelization was
achieved through the multiple domain mapping scheme. The accumulation of statistics is performed through a single
communications step, in which the routing hardware performs concurrent computation operations that "reduce" the
data, and sends it to the appropriate computational domain (spatial domain for spatially-related distributions such as
electron concentrations, distribution domain for single-dimensional functions such as energy distributions). If multiple
data packets have identical destinations, they are combined together during data collisions (for instance, when many
carriers send residence time information to the same histogram bin for estimating the energy distribution). The cost of
statistics computation is therefore equivalent to the communications cost of sending data across VP sets. Here, each VP
in the particle domain sends a single 32 bit packet for each Monte Carlo statistic. Again, software caching is performed to
reduce the cost of the communications. For instance, residence time information is accumulated until the particle enters
a new spatial cell - at which time the totals are communicated to the corresponding spatial domain processor. For this
step, software caching reduced the communications cost by 52% in gridded bulk Si simulations.

(v) Carrier Scattering: This step, which is completely parallel, randomly selects the scattering mechanism responsible
for the carrier flight termination. This selection is made according to the distribution generated by the scattering models
(according to the pre-scattering carrier state). The carrier wave vector, which may be impacted by scattering, is updated
in this step.

After carrier scattering, the processors return to step (i). If a carrier does not exit the device through an ohmic
contact in this free flight, the associated processor remains idle during the next iteration of step (i). Overall, for a bulk
simulation of Si material, the software caching mechanism in steps (ii) and (iv) reduced the total communications cost
by 43%, yielding a 5% overall improvement in simulator speed.

3 Computation of the Flight Time

In Monte Carlo, an essential part of simulating carrier flights is the generation of the free flight times - the amount of
time, during which a semi-classically treated carrier will move, before it suffers a collision. Although the percentage of
CPU time required by flight time routines may be as small as 5%, the impact on simulation performance is much greater,
because of the introduction of artificial scattering events which restrict the free flight times of particles. The probability,
V{t), that the free flight duration of a carrier is terminated during some dt around t is [4]:

V{t)dt =P{t) exp" /o p{t')dt' dt (6)

Stochastic free flight times may be generated through the inversion of the cumulative distribution function associated
with equation 6 [4]:

1-r = / P(<')exp"/o P{t")dt" dt' (7)
Jo
. - V P(t")dt" ,Q,

= 1 —exp Jo v ' (8)

/ P(t")dt" =-\nr (9)
Jo

Here, P(t) is the instantaneous carrier scattering probability and r is a uniformly distributed random number on (0,1).



This integral equation must be inverted to find the time associated with the random quantity on the right hand side.
However, the probabilities involved may require a great deal of computation. Since a large number of free flights may be
processed during a simulation, speed is a critical issue. As a result, algorithms must be used to transform the problem
into tractable forms which can be solved more easily [4, 23, 24]. These algorithms are typically based on the introduction
of a fictitious "self-scattering" mechanism [24] whose probability is constructed so that integral inversion from equation
9 can be efficiently computed. Unfortunately, the algorithms that are commonly used may not be well-suited for data
parallel machines.

In this work, a number of approaches have been implemented. The standard self-scattering approach, in which a
stepwise constant function is used in place of P(<), has been implemented for sake of performance comparison [10]. A
generalization of this method, which expands the definition of the self-scattering function to include arbitrary families
of functions, has also been developed and leads to more efficient flight time processing [25, 26]. Similar methods are
proposed in [27, 28]. Another alternative approach is the analytical solution of an approximation to equation 9, avoiding
the difficulties associated with generating "good" functions for self-scattering.

3.1 T-based Approaches

The usual techniques used to compute the flight time define self-scattering probabilities so that the total probabilities are
constant or piecewise constant functions [4, 13, 23, 29, 30], T, which can be used in equation 9, under the condition that
T > P(E(t)), VE(t). In this manner, the inversion of the resulting integral can be computed efficiently as:

/ P{t')dt'= f Tdt' =-\n
Jo Jo

(10)

<= --lnr (11)

While easy to implement, these techniques suffer from the problem of finding a reasonable definition of the self-
scattering term, which should be physically correct and at the same time computationally efficient. Furthermore, they
either involve iterative methods (Iterative-r technique [23, 29, 31]), or many fictitious scattering events (Variable-r
technique [13, 23]). In both cases, performance in SIMD machines is compromised because a large fraction of the
processors may lie idle during conditional execution steps [25, 26] (up to 70% of the processors, in extreme cases, can be
idle for approximately 38% of the main loop).

3.2 Algorithms for SIMD Architectures

The limitations of the T-based approaches suggest that other, more efficient, flight time algorithms be investigated for
SIMD architectures. Processing efficiency can be used as a metric to evaluate the performance of these algorithms:

r> • ntf • J-simulatedProcessing Efficiency =
Tcpu

•L simulated

CPUjMght time + CPUotht
(12)

Here, Taimuiated is the simulated time and Tcpu is the total CPU time, which can be decomposed into the CPU time
for flight time generation, and the CPU time required for all other operations. The overall processing efficiency of the
simulator can clearly be improved if Taimuiated is increased. This can be achieved through two approaches. First, by
using massively parallel architectures, the number ofcarrier flights simulated can be increased. Second, each carrier flight
can be made longer, subject to physical correctness. Traditional self-scattering algorithmsartificially reduce the carrier



flight times for the sake of computational efficiency. If longer carrier flights can be generated with little added cost in
CPUjught time, the overall processing efficiency can be improved.

One way longer carrier flight timesmay be generated is by reducing the effects of the piecewise applicationof a flight
time technique. Flight time algorithms are typically applied in a piecewise manner to the energy (or k-space) domain of
interest. This allows the development of total probability functions which more tightly bound the real scattering prob
abilities, leading to fewer self-scatterings and longer free-flight times. However, the piecewise nature of these algorithms
requires a fictitious scattering mechanism which causes the termination of free flights during the transition of carriers
across energy subregions. Though the self-scattering probabilities can be decreased with the use of more piecewise en
ergy segments, a tradeoff exists with the number of fictitious scattering events induced by the boundaries between these
energy segments. The number of energy-induced false scatterings has substantial implications in a massively parallel
SIMD context because of the inherent need for instruction-level synchronization. In this paradigm, processors are latent
during conditional execution stages if the condition is not satisfied, rather than immediate branching. This synchronous
behavior implies that each false scattering, as with a true scattering, requires a full computation of carrier flight, update
of statistics, and scattering angle. As a result, the effects of false scatterings are more pronounced in a massively parallel
paradigm than in the sequential case, since many processors may lie idle during these operations. The flight time algo
rithms developed in this paper seek to create scattering functions which span larger energy regions with fewer segments
than traditional variable-r schemes (to reduce energy-induced false scatterings), while reducing or entirely eliminating
self-scatterings.

3.2.1 Generalized Self-Scattering

A generalized self-scattering scheme is proposed in [25, 26], where arbitrary probabilities Sg{E) can be used instead of
T, if Sg{E) has the bounding property: Sg(E) > P(E),VE. Instead of only constant functions, the definition of Sg{E)
includes wider classes of functions, provided that the ability to analytically integrate and invert the resulting probability
equation (equation 9) is preserved. This lends more flexibility to choose functions which form tighter boundson the true
probability (which leads to longer and more statistically significant carrier flights, as well as fewer self-scatterings) and
whose piecewise segments span larger energy regions (which leads to fewer energy-induced false scatterings). A proper
choice for Sg{E) can be derived from the representation of the band structure, described by the E —k relationship in
equation 3. From this equation, under the assumption of a piecewise constant spatial discretization of the electric field,
we can define £:

In
C2(t) = f + —(ftk + F<)2 = [2aE+ (3)2 (13)

m

With this definition of £ we can define a particular bounding function, Sg-

Sg(C(E))=Sg(C)=Po + PiC2 (14)

Here, the choice of p0 and pi is subject to the bounding constraints that Sg(E) > P{E), and that Sg{E) - P{E) is
small. The choice of pi =0 recovers the case of the variable-r scheme. With the above definition of Sg, the bounding
function defines a probability which is quadratic in time. As a result, the flight probability can be integrated and
inverted analytically. Our particular choice of fitting constants results from linear regression, over each piecewise energy
segment, on the analytical probability. After this regression, the constant term, po, is increased to ensure a non-negative
self-scattering probability.

The inversion of the resulting flight integral involves the solution of a cubic equation. The amount of computation
required for this step is substantially reduced by selecting p0 and pi such that Sg is non-negative for all energies (a
sufficient, but not necessary, condition). In this manner, there is only one real solution to the integral inversion, thus
avoiding the need to generate and choose from among three solutions.



3.2.2 Analytical Flight Time Integration

A different approach towards flight time generation is based on the direct solution of the flight integral (equation 9).
The piecewise segments associated with this technique also span larger energy regions than the variable-r technique
and result in substantially fewer energy-induced false scatterings. In addition, self-scattering is avoided entirely, in an
effort to maximize the simulated carrier flight times while maintaining physical correctness. This approach avoids the
need to iteratively develop functions for self-scattering probabilities. The results obtained for this algorithm required no
interaction in defining scattering probabilities. The algorithm is composed of four main steps:

Energy/Time Transformation: The first step of the analytical flight time algorithmis the transformationbetween
carrier energy and time domains. Probabilities forscatteringaregenerally expressed as a function ofenergy or momentum.
Equation 9 can be posed in terms of P{E) rather than P(t):

J!pm'=Clp{E)(S)dE (15)
Unfortunately, P{E) remainsquite complex, causing difficulties in analytically integrating the equation.

Surrogate Functions: An alternative for solvingequation 15directly is the solution of an approximation to the in
stantaneousscattering probabilityfunction. The P(E) function is approximated with a suitable set ofsurrogate functions,
as found through the piecewise application of linear regression. Because of the simpler form of the resulting functions,
the integration can be performed analytically to find the corresponding primitive. For our examples, a four-dimensional
basis was used (G = {1,\/E,E,E2}). The preprocessing parameter generation for this flight time algorithm consists of
defining the bounds for the piecewise segments of Sa, and finding the corresponding coefficients of these basis functions.

Analytical Integration and Inversion: The generation ofstochastic flight times is performed through the solution
ofequation 9, with the P(E) term replaced by the appropriate surrogate functions, Sa{E):

fZf.nal / dt\

A• L..P{E){^r (16)
fEftnal / dt\

* I s^e\1eYe <17>
We define a F{E) as the primitive of the resulting integral:

F(E) =jsA(E)(j^jdE (18)
A« F{Efinai) - F{Einitiai) = -logr (19)

As a result, the generation of free flight is reduced to the solution for Efinai in equation 19, followed by the subsequent
energy to time transformation.

Turning Point Linearization: Afundamental assumption underlying the validity ofthe time/energy transformation
is strict monotonicity. Carrier energy turning points violate this assumption and must be resolved numerically. Two
ramifications result: First, the analytical integration must be performed in two steps. This leads to inefficiency in
simulation and amounts to the introduction of a false scattering mechanism, which we call "linear boundary" scattering.
Second, the ^ term approaches infinity, leading to numerical problems in the integration.

These numerical problems are overcome through the introduction of an energy region in which the instantaneous
scattering probability is assumed to be constant with time. At turning points, the instantaneous scattering probability-
changes very slowly with time and this approximation is accurate, given appropriate bounds for its use.



The definition of appropriate energy bounds for the constant probability approximation can be obtained from the
first-order Taylor expansion of the scattering probability, P, about the carrier energy minimum, Emin:

Po = P{Emin)

P(E) «Po +̂ AE
(20)

(21)

Here, P0 is the instantaneous scattering probability of the carrier at i?m,n. The maximum tolerable percentage error in
the instantaneous scattering probability, 8, is defined as the difference in probabilities between the minimum energy point
and the boundary of the region, and can be approximated with equation 21:

S =
AP

P(E) - Po

Po

%^
Po

This approximation can be inverted to find a bound on the size of the constant approximation region:

SPo
\AE\< dP\

dE \Bmtn

(22)

(23)

where AE is the distance from the energy minimum to the boundary of the constant approximation region for the given
tolerance. During free flight, a constant scattering probability is assumed when the carrier is within ±AE of Emin.

4 Weighted Monte Carlo

The Monte Carlo method is primarily used to solve the BTE in areas where macroscopic methods are deficient - for
instance, in the simulation of hot-carrier phenomena. Typically, these phenomena have significant effects on device
behavior, but occur very rarely. As a result, direct simulation of the physical system will converge very slowly in these
rare regions. Without variance-reducing techniques, Monte Carlo is not effective in estimating device behavior in the
presence of rare events. This may lead to exorbitant convergence times. Particle multiplication is a common technique
for reducing the variance of Monte Carlo estimates [32]. Unfortunately, this technique involves the simulation of a
nondeterministic particle population. In a data-parallel context, this is difficult to achieve in a straightforward and
efficient manner because of its requirement for the dynamicallocation of processors.

In recent years, a Weighted Monte Carlo technique [33, 34] has been developed which is based on importancesampling
in classical Monte Carlo [2]. This approach is especially appealing in a parallelized or vectorized environment, since the
method conserves particle populations. Weighted Monte Carlo allows the use of arbitrary probability distributions to
provide the underlying physics.

The typical evaluation ofcrude Monte Carlointegration generates an estimatorthrough collecting values, /, associated
with discrete events which occur with probability p:

/oo

f{x)p(x)dx
•00

10

(24)



A transformation is required to allow arbitrary probabilities, p'(x), to control the physics of the simulation:

/oo

f{x)p{x)dx
•00

* £/(*>($§)»'(*) (25)

This transformation is resolved for statistically through the use of the weighting function, $&. Consequently, the ex
pectations of the integrations will be identical, leading to an unbiased estimate. With a proper choice of new probabilities,
the variance can be reduced for theestimation ofrare events. Particles can be "pushed" into regions where p(x) issmall.
As a result, convergence of Monte Carlo estimators in these regions can be improved, because of the ability to observe
more samples. In this paper, statistics for high-energy carriers are enhanced by using weights for preferential scattering
directions (so that the carriers may gain more energy from the electric fields) and for dampening optical phonon emission
probabilities. The distributions for carrier scattering angles are modified by increasing the probabilities for the preferred
scattering directions. For instance, to push a carrier in the positive "y" direction, the probability for the final k-state
may be modified according to:

Pwmc{Hx,y,z))= (26)
f O.SbPcrude{k(x,yfz)) y<Q
\ Pcrude{k(x, y, z)) + 0.15Pcrude(k(s, -y, z)) y > 0

where Pwmc and Pcrude are the probability distributions for final carrier wave vectors using weighted and crude monte
carlo techniques, respectively. The probabilities for optical phonon emission are modified by:

Pcrude exp(-tfr) £<0.45
(

I I cruoe r \ Ay,/ — — ----

WmC =1 P^,«P<-*&^) E>0.45 (27)
Here, P^mc is the optical phonon emission probability using the Weighted Monte Carlo technique, and P'crude is the
unperturbed probability for optical phonon emission, for crude Monte Carlo. In this equation, Vt = —, where k is
Boltzmann's constant, T is the carrier temperature, and q is the electronic charge.

5 Computational Results

5.1 Scaling

An important computational statistic is the relation between virtual processor scaling (scaling the number of virtual
processors while maintaining a constant number of physical processors) and processing speed, where the latter metric
can be defined by the CPU time needed for all virtual processors to simulate one free flight iteration (figure 4). In the
results for scaling, a constant conductivity effective mass was assumed during these free flights. With higher VP ratios,
and hence, more particles in the simulation, the amount of congestion in the routing network increases. Overall, the
time-multiplexing of processors yields a linear tradeoff between the VP ratio and processing speed:

Total Time = m •VPR + b (28)

Here, m is the slope ofexecution time to VP ratio, and bis an empirical constant. An interesting point is that doubling
the VP ratio does not double the CPU time. This occurs because communications need not be performed if both the
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Figure 4: Total time and communications time per scattering iteration for a bulk simulation using variable-r.

source and destination virtual processors reside on the same physical processor. In addition, high VP ratios amortize the
cost of instruction broadcast and decode, which need to be performed only once per physical processor.

From equation 28, the total number of scatterings processed per second is:

Scatterings Total Scatterings
second Total Time

_ (VPR) •(physical processors)
m • (VPR) + b

(29)

For m•(VPR) < 6, the scatterings processed per second is approximately linearwith the VPR; while for m•(VPR) > 6,
the scatterings processed per second exhibits asymptotic behavior, as seen in figure 5.

Theoretical calculations of maximum scattering processing rates for 512 and 1024 processors yielded 3048 and 5500
scatterings per second, correlating well with the actual performance. Clearly, doubling the number of physical processors
does not double the speed. This is due to the increase in routing congestion (in communicating among domains) com
mensurate with the increased number of particles. These results indicate that the maximization of VP ratios, subject
to memory constraints, will maximize the processing speed. The physical models used in this simulator for scattering
mechanisms and flight kinematics were identical to that from a Cray-XMP vector implementation [6]. This included
the assumption of constant conductivity effective mass during free flight, which simplifies the processing of the carrier
kinematics. Processing rates of 5,392 scatterings/second were achieved with a Connection Machine with 1024 processors,
whilea larger Connection Machine with 32K processors achieved computation rates of over 200,000 scatterings/sec. This
is a factor of between six to ten times vector performance, which was reported to be between 15,000 to 30,000 processed
scattering events per CPU second for typical MOSFET applications.

Unfortunately, the constant effective mass approximation yields inaccuracies when used in conjunction with some
Weighted MonteCarlo functions. The effective massofcarriers change as a function of energy, which, in the representation
of the band structure from equation 3, results in:

d£
6k

m = = mo(0 + 2aE) (30)
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Figure 5: Scattering processing rates on the CM-2

where m0 is thescalar electron mass in free space. With Weighted Monte Carlo, carriers may often gain a large amount of
energy during the course ofa free flight, as a result ofabnormally long carrier flights or scatterings in preferred directions
which may align the carrier flight path with the electric field. In these cases, the approximation of a constant electron
effective mass fails, and the equations ofmotion must be integrated with the analytical conductivity effective mass from
equation 30. The use of the analytic effective mass during flight leads to roughly a 2x increase in computation time for
calculating the flight trajectories and detecting carrier exit from the current control volume.

5.2 Flight Time Algorithms

5.2.1 Gridless Simulation

A typical application of Monte Carlo is the simulation of gridless bulk silicon for the study of carrier behavior and
extraction of macroscopic parameters, such as carrier mobilities. Processing efficiencies were therefore measured for
simulations involving a gridless homogeneous slab with a dopant level 1016cm"3 as a performance benchmark, running on
a CM-2 with 1024 processors. Results from the generalized self-scattering and analytical flight time integration algorithms
were compared with the results from three optimized choices ofenergy segment size for the variable-r technique (figure 6).
Two energy patches were used for analytical flight time integration (with the boundary at the optical phonon threshhold,
0.052 eV), while four energy patches were required with generalized self-scattering (with boundaries at 0.052 eV, 0.175 eV,
and 0.45 eV). The strategy from [13] was used for determining good choices for the energy segment sizes in the variable-r
technique. The coarsest choice ofsegments among the three variable-r implementations (VG I, where the segments each
span 0.029 eV) shows the best performance under high electric fields because offewer energy-induced false scatterings,
while the use offiner segments (VG II and VG III, where the segments each span 0.025 eV and 0.022 eV, respectively)
yields better fits to the analytical probabilities and better performances at lower electric fields. Under high fields, the
performances ofall flight time techniques degrade because ofboth the short free flight times ofhigh-energy carriers, as
well as an increase in the number of energy-induced false scatterings.

Whereas optimality with the variable-r technique typically requires 15-20 segments [13], substantially fewer (2-5)
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Figure 6: Performance of methods in gridless bulk silicon

segments are typically necessary for the generalized technique and the analytical flight time integration method, leading
to fewer energy-induced false scatterings. The benefits from this are substantial, particularly in a SIMD paradigm, and
are visible when scaling the applied field (figure 6). Here, the speedup of the generalized method improves from 37%for a
10kV/cm field to a 69% gain in the case of a 33 kV/cm field. Likewise, while the performance of the analytical method is
worse than the variable-r implementations for low fields, it yields a 5% improvement over variable-r for a 33kV/cm field.
In the high field region, energy-induced false scatterings account for 58% of the carrier flights in the case of a variable-r
approach, compared to 22% for the generalized method and 12% for the analytical integration approach.

5.2.2 Gridded Simulation

Although the simulationof a gridless device reveals the full improvement in efficiency obtainable through new algorithms
for the study of bulk materials, the performance for gridded structures must be analyzed to estimate the computational
speedup for more complex devices. The main benefit derived from the new flight time algorithms is longer carrier flight
times, and hence, more statistical significance per simulated flight. In gridded structures, however, flight times are
artificially truncated when carriers cross grid boundaries, offsetting the benefits of the new algorithms. The pathological
case occurs when spatial false scattering becomes the dominant mechanism, resulting in little performance difference
between the twoself-scattering based flight time algorithms and degrading the performance of the analytical integration
approach.

The same homogeneous device was simulated under 10 kV/cm, 20 kV/cm, and 33 kV/cm electric fields with different
choices ofgridspacings to determine the degree to which the grids limitthe computational advantage ofthe new algorithms
(the speedups of the generalized self-scattiring method over the variable-r algorithm is shown in figure 7, while the
speedups of the analytical flight time integration algorithm over variable-r is shown in figure 8). For the generalized
self-scattering method, the processing efficiency is more sensitive to grid spacings in the presence of low or moderate
electric fields, because of longer average flight times. Long carrier flight times increase the probability of a grid boundary
crossing, leading to more grid-induced false scatterings. Table 1 shows the frequency of the different fictitious scattering
mechanisms. The speedup of the generalized algorithm for a 10 kV electric field falls from 37% for the gridless case to
halfof that value in the finely discretized case. Alternatively, with higher fields, average carrier energies are higher, and
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Table 1: Fictitious scattering frequencies in a simulation ofbulk silicon (Nd = 1016cm"3, E=10kV/cm) with varying grid
size.

Algorithm
Var-r Gen. T AFT

Grid Size 0.25/1 0.01/j 0.25/4 0.01/i 0.25/i O.Olfi
Self 10.7% 6.3% 4.0% 1.9% N/A N/A
Energy 31.6% 15.2% 12.6% 5.2% 9.9% 4.5%

Grid 5.3% 48.8% 7.6% 57.5% 6.5% 53.1%
Linear N/A N/A N/A N/A 13.9% 6.5%
Total 47.6% 70.2% 24.2% 64.6% 30.3% 64.1%

Table 2: Processing Efliciency on Devices
Device Var-r Generalized Analytical

n+nn* - A(lK) 8.21e-ll 9.35e-ll 6.90e-ll

n+nn+-B(l/<T) 5.72e-ll 6.45e-ll 5.34e-ll

n+nn* - A(16K) 1.09e-9 1.23e-9 8.98e-10

n+nn+ - A(32I<) 2.05e-9 2.42e-9 1.88e-9

nMOSFET (16K) 5.086e-10 5.566e-10 4.535e-10

average flight times are shorter. This leads to lower probabilities for grid-induced false scatterings. At high fields, the
generalized scheme yieldssignificant improvement over the variable-r approach, even for very fine grids. In the case of a
33 kV/cm applied field, the speedup falls from 69% for the gridless case to 40% in the finely discretized case. Hence, this
regime is not dominated by grid-induced false scattering and is therefore still far from the pathological case mentioned
previously. Typically, low field regions are discretized with coarse grids while high field regions are discretized with fine
grids. The worst case performance is therefore rarely seen in practice.

The performanceof the analytical flight time integration algorithm is competitive with that of the optimized variable-
T algorithms. While it suffers a disadvantage in low-field regions where electron scattering probabilities do not change
rapidly, this method enjoys a performance advantage in high-field regions (figure 8), where more statistics are generally
needed - for instance, in the estimation of the tail of the energy distribution function. With this algorithm, the effects
of grid spacings on simulator performance are smaller than with the generalized self-scattering approach. In Table 1,
the frequency of the different types of fictitious scattering events is shown. For all flight time algorithms, the fraction of
spatialgrid scatterings increase as the grid spacing is reduced. In the case of generalized self-scattering, these spatial grid
scatterings replace mostly real scatterings, so that the real scatterings are reduced by 40.39%. However, the analytical
flight time and variable-r methods produce a large fraction of fictitous scatterings which are not related to the grid.
For these algorithms, as the grid spacing is reduced, spatial grid scatterings replace significant fractions of both real and
other fictitious scatterings. The effects of other fictitious scatterings therefore mitigate the effects of grid-size scaling
on performance. Consequently, although the Generalized Self Scattering method yields the smallest fraction of false
scatterings for a 0.25/i grid spacing (24.24%), the Analytical Method exhibits the smallest fraction for a 0.01/i spacing
(64.07%).

5.2.3 Devices

Applications of the simulator to n+nn+ (figure 9) and n-MOSFET structures (figure 10) were performed to determine
the speeds of the flight time algorithms in more complex devices (Table 2). The n+nn+ device is a psuedo-lD device
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Figure 9: Device structure of the 1.2 micron, 1-D n+-n-n+ structure

Figure 10: Device structure of the 3D MOSFET
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Table 3: Simulator Routines
Max Time Calculates maximum time spent

in control volume by a particle
Scatter

Injection

Commun./Stat

Flight Time

Kinematics

Calculates scattering mechanism
responsible for flight termination
Performs injection of particles
into ohmic contacts

Time spent in communications
and statistics collection

Calculates free

particles
flight time of

Performs kinematics calculations

for particles

Table 4: Simulator execution profile on n+nn+ structure
Subroutines Percentage CPU Time

Var-r Gen. T AFT

Max Time 20.98% 21.22% 16.36%

Scatter 8.91% 9.14% 8.52%

Injection 6.36% 6.66% 4.92%
Commun./Stats 20.06% 16.69% 12.39%

Flight Time 4.34% 6.84% 26.09%
Kinematics 39.35% 39.45% 31.72%

(0.3/* x 0.3/i x 1.2//) doped at concentrations of n = 1018cm~3 and n+ = 1020cm~3, where the lightly doped region is 0.5//
long. This device was simulated with both coarse (n+nn+-A, average grid spacing 0.0375/i) and fine grid discretizations
(n+nn+-B, average grid spacing 0.009//) to evaluate the effects of grids. A bias of 4V was applied across the device.
In scaling the grid spacing, the analytical flight integration method was the least susceptible to change, (exhibiting a
22.6% change in processing efficiency for the n+nn+ device), while the generalized self-scattering was the most affected
(a 31.02% change in processing efficiency for the same device).

The scalability of processing efficiency with machine size can be seen in the application of the simulator to the
n+nn+ device for Connection Machines with IK, 16K, and 32K processing elements in Table 2. The 32K machine yields
speedups of 25.0, 25.9, and 27.2 times over the IK machine for the variable-r, generalized, and analytical flight time
methods respectively.

The simulator was applied to the submicron n-MOSFET structure in figure 10 with a machine size of 16K processors.
The source and drain regions are doped at Nd = 1020cm~3, and the bulkregion isdoped at Na = 1016cm-3. In this device,
the source and drain regions extend 1/i into the device, in the z direction. The effective channel length is 0.25//, where
AL = 0.22//. The biases applied to the device were Vgb = Vgs = 3.0V and Vds = 3.5V. On average, the performance
results were roughly half of the n+nn+ device. The cause of the performance degradation may be best seen in the
comparison of simulator profiles between n+nn+t and MOS simulations (in Tables 4 and 5, respectively). The tables
show the differences in relative CPU costs among the routines in the main loop. First, the time required to calculate
the maximum flight time before a carrier exits a spatial cell is larger in the case of this MOSFET. In these simulations,
the exact analytical mass is used, so that the inversion of the motion equations to find maximum flight time requires an
iterative method. In contrast to the one-dimensional nature of the n+nn+ device, the MOSFET is three-dimensional.
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Table 5: Simulator profiles for MPS simulation
Subroutines Percentage CPU Time

Var-r Gen. T AFT

Max Time 35.59% 44.33% 29.12%
Scatter 7.02% 6.59% 7.01%
Injection 4.87% 2.61% 4.07%
Commun./Stats 23.16% 13.54% 15.99%
Flight Time 3.51% 4.74% 22.16%
Kinematics 25.85% 28.19% 21.65%

With multi-dimensional fields, the iterative methods require longer convergence times.

6 Conclusions

A three-dimensional static-field Monte Carlo simulator has been developed to study the suitability ofmassive fine-grained
parallelism for charge transport calculations. The problems associated with the data layouts required by Monte Carlo
were overcome by exploiting the architectural flexibility of the CM-2. Efficient mappings were constructed, allowing over
a six-fold increase in scattering processing rates over vector supercomputing.

In addition, alternative approaches for flight time computation were investigated. These approaches seek to improve
simulator performance through diminishing the effects ofartificial scattering mechanisms. Generalized self-scattering is
appealing because of the potential for increased performance with little additional effort. The conversion of variable-r
methods to the generalized self-scattering scheme consists of the generation ofcoefficients for SG and the replacement of
the integral inversion and probability integration code. Aside from the coefficient generation, which is performed once,
the flight time code needs only tobe changed from linear tocubic equations. The analytical flight time algorithm provides
performance which is competitive with variable-r approaches while not requiring interaction to optimize performance.
The results presented here were obtained without experimentation to determine optimal energy segment lengths and
Sa(E) values.

The particular flight time algorithm employed is dependent on the nature ofthe underlying scattering probabilities.
From the results, the Generalized method yields substantial speedups over the other algorithms. However, when the true
scattering probabilities are strongly irregular, a large number of self-scatterings may occur. In this case, the analytic flight
time integration method may be more efficient. Also, with more complex scattering models, we expect the performance
of the analytic method to improve relative to the other algorithms, because, unlike the other flight time methods, the
CPU time for analytic flight time generation is not dominated by CPU0ther in equation 12.

Finally, although variable population algorithms are problematic in a data-parallel paradigm, the problem ofvariance
reduction was overcome through the use of Weighted Monte Carlo techniques.
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