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Multidimensional Synchronous Dataflow (MDSDF) [15][7] is a model of computation that has been pro
posedfor specifying multidimensional multirate signal processing systems suchas imageandvideo processing algo

rithms. The model is an extension of synchronous dataflow (SDF) [14] and has all of the desirable properties of the

SDFmodel such as static schedulability, exposition of data andfunctional parallelism, anda visually pleasing syntax

well suited for block diagram signal processing environments such as Ptolemy [6] and Khoros [13]. However, the

MDSDFmodel as specified in [15] is limited to modelling mulddimensional systems sampledon the standardrectan

gular lattice. Since many multidimensional signals of practical interest are sampled on non-rectangular lattices, for

example, 2:1 interlaced video signals, and many multidimensional multirate systems use non-rectangular multirate

operators like hexagonal decimators, it is of interest to havemodels that are capableof representing and simulating
such systems.This report describes an extension of the MDSDF model that allows signals on arbitrary sampling lat

tices to be represented, and that allows theuse of non-rectangular downsamplers andupsamplers.

2 Introduction

2.1 Multidimensional signal processing fundamentals

A multidimensional signal of dimension m, xm (t...... t ) , is a function of m real variables /„ ...,t .
aim \ m

This signalcan be sampled to generate a discrete timesignal. However sampling a multidimensional signal is funda-

1. A portion of this research was undertaken as part of the Ptolemy project, which is supported by the Advanced
Research Projects Agency and the U. S. Air Force (under the RASSP program, contract F33615-93-C-1317), Semiconductor
Research Corporation (project94-DC-008), National Science Foundation (MIP-9201605). Office of NavalTechnology (viaNaval
Research Laboratories), the State of California MICRO program, and the following companies: Bell Northern Research, Dolby.
Hitachi.Mentor Graphics, Mitsubishi, NEC, PacificBell. Phillips,Rockwell. Sony, and Synopsys.
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Introduction

mentally more complicatedman samplinga unidimensional signal because of the many different ways the sampling

geometry can be chosen. The straightforward extension of unidimensional sampling would result in the sequence

x(nv n2) = xQ (nlTv n2T2) where wehave considered the m = 2 case for simplicity. Thus all values of tv t2
that are integer multiples of the sampling periods Ty T2 are retained bythe sampler. Figure 1shows the samples that
are retained for the case where T{ = 2,T2 = 1. Ascan beseen, the samples are arranged inarectangular pattern,
and thus this sampling scheme is known as rectangular sampling. A more general sampling scheme is to consider
the sequence generated by

x{nvn2) o xa(annl+al2n2,a2lnl+a22n2)

Notice that the sample locations retained are given by theequation

t =

Q2\ all
= Vh

The matrix V is called the sampling matrix. Every sample location ? is of theform

?= n1v1+n2v2

where

vi =
'li

.V- =
'12

421 *22

(EQ1)

(EQ2)

(EQ3)

That is, the sample locations are vectors ? that are linear combinations of the columns of the sampling matrix V.
Given the sampling matrix, the sample locations can be obtained graphically by first drawing the two vectors v., v,
from the origin. Then draw two sets ofequispaced parallel lines such that the two vectors form two sides ofaparallel
ogram generated by these lines. The sample points are then located at the intersections of these lines. Figure 2(a)
shows anexample.

Note that the sampling matrix need not be an integer matrix but must be real and non-singular. Using the
above terminology, rectangular sampling can berepresented byadiagonal sampling matrix:

V =
7, 0

0 7\,

In fact, rectangular sampling isdefined to be asampling scheme for which the sampling matrix isdiagonal.
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Fig 1.An illustration of rectangular sampling
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Fig 2. Sampling on a non-rectangular lattice, a) The samples on Die; lattice:, b) The renum
bered samples of the lattice.

Thesetofall sample points 1= Vhthe K.that is, the set ofvectors V nkvk, isthe set ofall integer lin-
*= i

ear combinations of the columns v1§ ..., vm of the sampling matrix V. This setiscalled the lattice generated by V,

and is denoted LAT(V) .The matrix V is thebasis that generates thelattice LAT(V) .The basis for a lattice is not
unique; for example.

(v -A
1 -1

LAT
1 2

0-1

3 2
= LAT

The set of matrices thatgeneratethe same latticecanbe characterized as follows.

Definition 1: A unimodular integer matrix £ is amatrix with integer entries such that det (£) = ±1 . Note that the
inverseof E is alsoaunimodular integermatrix.

Lemma l:LetVbeaanmxm real non-singular matrix generating the lattice LAT{V) .Then, for any integer uni
modular matrix E, LAT(V) =LAT(VE) .TfV isany other basis for LAT (V) .then there exists an integer uni
modular matrix E suchthat V = VE.

Proof:This proof can be found in [23].

2.1.1 Numbering on a lattice

Suppose thatn isapoint on M 7X10 .Then there exists an integer vector k such that h = Vk. The points
k are called the renumbered points of LAT(V). Figure 2(b) shows the renumbered samples for the samples on
LAT(V) shown in figure 2(a).

2.1.2 Sampling density

The determinant of the sampling matrix plays arole in the sampling of an MD signal. The sampling density
p, defined as the number of sample points per unit volume (or area in the 2-dimensional case), is given by
p = l/\det (V) |. The sampling density isan important concept that plays arole in the multidimensional sampling
theorem. Intuitively, for an MD signal that is bandlimited in some fashion, we expect the sampling density to be
above some minimum if we expect toretain all of die information in die signal. However, the sampling density

AGeneralization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices 3 of 33
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depends on the sampling matrix, and hence the sampling geometry, and thus, by a judicious choice of sampling
geometry, we can make sampling density as low as possible. An example of this is the sampling of an m -dimensional

signal that is bandlimited to a hyperspherical region in thefrequency plane. The savings in sampling density by using
a particular non-diagonal sampling matrix ("hexagonal" sampling) over a diagonal sampling matrix (rectangular
sampling) for sampling this hyperspherically bandlimited signal is a factor of 1.15 for m = 2. The savings factor

goes up to a factor of 2 for 4 dimensional signals, and a factor of 16to 8 dimensional signals [9]. Hence, there is a
practical reason to favor non-rectangular sampling schemes overrectangular ones because of thepotential savings in
storagerequirements and processing rates due to the lower sampling density that can result [17]. Someapplications

thatfavor non-rectangular sampling schemes include 2:1 interlaced TVscanning [8], hierarchical video coding appli
cations [5], and filterbanks for doing directional decomposition [2]. Filter design techniques for non-rectangular lat
ticeshave also beenmaturing as evidenced by manypublications in the area [12][24][1][2][10][22][23].

2.1.3 The fundamental parallelepiped

Given a sampling matrix V, suppose thatthe column vectors aresketched from the origin, as shown in fig

ure 3 for the examplefrom figure 2. The completed parallelogram resulting from thesevectors is called the funda-

1 to
Fig 3. The fundamental parallelepiped for a matrix V

mentalparallelepiped of V, denoted FPD (V) . The points which fall inside FPD (V) can be represented as the set

Vx where x = \xl xJ . with 0£xl, x2 <1.The entire lattice LAT(V) can be thought of as atiling of the plane

bycopies of FPD (V) shifted so that there isnooverlap with other tiles, with the points of the lattice always falling
on the corners of these tiles.

Fromgeometry it is well known thatthevolume of FPD (V) isgiven by \det{V)\. Since only oneinteger
sample point falls inside FPD (V) , namely the origin, we can see why the sampling density isgiven by the inverse
of the volume of FPD (V) .

Definition 2: Denote the set of integer points within FPD (V) as the setN (V) .That is, N (V) is the set ofinteger
vectors of the form Vx, x€ [0,1 )m . The following lemma characterizes the number of integer points that fall
inside FPD(V) , or the size of the set N(V) . Butbefore that, we state another lemma that is required for theproof
of the lemma characterizing \N(V) \.

Lemma 2: Forany integer matrix A, there exists an integer, unimodular matrix C such that CA isupper triangular.

V =
1 -1

1 2
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'inl"n"" " "••• " nt-i-mniimiiin minim irininiHnniiiiiiiniuiiiiiiiiii

Introduction

Proof: See[20]; it also gives apolynomial Hm>. algorithm for finding C.

Lemma 3: Let V bean integer matrix. Thenumber ofelements in N(V) isgiven by

|tf(V)| = \det(V)\ (EQ4)

Proof: Consider an upper triangular matrix M.In two dimensions, M= r f ,and this corresponds to aparallelo

gram with one ofits sides on the x-axis. Since the side that ison the xaxis has integer length e, the number ofinteger
points on the x axis that lie inside FPD (M) is just e. It is easy to see that there are / such rows ofinteger points in

FPD (M) ,and each of these corresponds to the vector [* 6]r being shifted by an integer vector. Hence the number
of integer points ineach row isalso e, making the total number of points in FPD (AQ equal to ef = \det (M) |.
This argument can beextended tohigher dimensions inthe same way; the number ofpoints will bethe product ofall
the entries in M along the diagonal. Hence the lemma istrue for integer, upper triangular matrices.

By lemma 2, we can always find an integer unimodular matrix C such that CV is upper triangular for any
integer matrix V. Letx be an integer point in N(CV) .Tne point C~lx is an integer point and isin N(V) . Hence,
for every integer point x in N(CV) . there isaunique integer point C~lx in N(V) . For every integer point x in
N(V) , there is aunique integer point Cx inN(CV). Hence, the size of N(V) equals the size of N(CV) .Since
CV isupper triangular, |7v* (CV) | = \det(CV) | = \det (V) |, where the last equality follows from the unimodular-
ity of C. QED

2.1.4 Multirate multidimensional operators

Multidimensional decimators

The two basic multirate operators for multidimensional systems are the decimator and expander. Given a 1-
Ddiscrete-time signal x(n) , the M-fold decimated version of the signal isdefined as v(n) = x(Mn) , where M is
apositive integer. Equivalently, if the input signal has sample period Tt, then the decimated version is given by
y(n) = x(n),n =TjMk. In an analogous way, for an MD signal x(h) on LAT (V7) , the M-fold decimated ver
sion isgiven by v(n) = x(h), h€ LAT (VjM) where M isan mx m non-singular integer matrix, called the deci
mation matrix. Figure 4 shows two examples ofdecimation. The example onthe leftis for adiagonal matrix M; this
iscalled rectangular decimation because FPD (M) isarectangle rather than aparallelepiped. In general, arectangu
lar decimator isone for which the decimation matrix isdiagonal. The example on the right is for anon-diagonal M
and is loosely termed "hexagonal" decimation.

Inthe above example, the input signal to the decimator was onthe rectangular lattice. Note that inorder to
usethemethod of drawing thecolumn vectors of M todetermine thesamples retained, thecolumns of M haveto be
interpreted according to the renumbering by the input lattice. Figure 5shows an example where the input *'£"»' ison
anon-rectangular lattice. Notice that the point (2,0) isactually renumbered as (1,0) bythis lattice, and the point (1,1)
is renumbered (0,1). Hence, the point (U)=l*(1.0)+2*(0.1), and the first column of M is actually the point at

AGeneralization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices 5 of 33
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• Samples kept

o Samples dropped

Fig4. a) Rectangulardecimation, b) Hexagonal decimation
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Fig5. Decimation on a non-rectangular lattice

1*(2.0)+2*(1,1)=(4,2). Of-course, the points that are retained can also be determined by computing the lattice gener
ated by VjM. Note that LAT (V7) 2 LAT (V;M)

The decimation ratio for a decimator with decimation matrix M is defined to be the number of points
thrown away for every point kept from the input. Apoint non the output lattice is of the form n=V; (Mk) .Since
this point is also on the input lattice LAT (V{) , it isrenumbered as Mk bythe input lattice. Hence, only the points
that fall on LAT(M) when renumbered by LAT(Vj) are kept by the output Clearly, any integer point k in
FPD (Af) isarenumbering of the point Vtk on the input lattice. Hence, for every such point on LAT (Af) , N(M)
points are discarded, implying that the decimation ratio isgiven by \N (Af) | = \det(Af) |. The decimation ratio for
the example onthe leftin figure 4 is6 and is4 for the example onthe right.

Multidimensional expanders

In the 1-D case, the L-fold expander isdefined to be adevice with the following input-output relationship:
( \ - (*(«/£) « =multiple ofL

VO otherwise

Equivalently, if the input signal issampled with period T{, then we can write

6 of 33 AGeneralization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices
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y(n) =
x(n) n = k'Tj

K 0 otherwise

In the multidimensional case, the definition is similar, but in terms ofthe mxmexpander matrix L,which is again
non-singular and has integer entries. The "expanded" output v(h) is 0unless h belongs to the lattice generated by

V/i = kT;L l

v(n)
rx(n) neLAT(Vj)

0 otherwise

where Vj is the input lattice to the expander. Note that LAT (V7) £LAlf VjL !J. The expansion ratio, defined as
the number of points added to the output lattice for each point in the input lattice, is given by \det (L) \. This is
because apoint noaLAT\VjL-l\ that is also on Mr(V,) can be written as n=Vjk =VjL-lk=>1c =Lk. So
the points of y that are the original points ofx are renumbered as Lie by the output lattice. Every other integer point
k inFPD (L) isclearly arenumbering ofthe point VjL^k on the output lattice. Hence, N(L) points are added by
theexpander for every point intheinput; this implies that the expansion ratio is \N(L)\ = \det(L) |. Figure 6 shows
twoexamples of expansion. In theexample on theleft,theoutput lattice is also rectangular and is generated by

7(v7L-i)Vn€Li4

•63

•••+--Q • 6 4-

..,#......^.,i4^.o--#.

•t 4 i--<H"
••0--4 o o 4-

• Samples kept -

O Samples added

L =
1 1

2-2

,! O: : O !

i o \ o i
i o * o t-

O i O I
#. :. * ;. A.

Qo Hoi
i O i

4 :°U \
?ig6.a);Rectar^uimexr^$ion. b)rvon-te«

0.5 0

.0 0.5

The exampleon therightshowsnon-rectangular expansion, where thelattice is generated by

L-i =[b.5 0.25"
" [0.5 -0.25

An equivalent way to view the above diagrams is to plottherenumbered samples. Notice thatthe samples from the
input will now lie on LAT(L) (figure 7). Some of the points havebeenlabeled with letters to show where they
would map to on the output signal.

A Generalization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices
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L =
1 1

2 -2

:• Samples kept \

\0 \Samples added

Fig 7. Renumbered samples from the expanders output

Models of computations

3.1 Synchronous Dataflow (SDF)

In the SDF model of computation, the algorithm or program is represented by a directed multigraph
G = (V, E) where the nodes represent computations and arcs represent precedence constraints and communication
channels. Each node produces and consumes afixed number of tokens, and these numbers are known at compile time.
Aschedule foranSDF graph is a sequence ofactor invocations that return the buffers to their initial state. The state
of abuffer is simply the number of tokens it contains. Supposing that anode u produces Ouv samples onto an arc
(w, v) , and node vconsumes fj. we can write down aset of balance equations that specify that the total number

of samples produced on the arc should equal the number of samples consumed in any schedule. Denning r and r
tobe the number oftimes u and v are invoked in any schedule, we get that

8 of 33

r 0 = r 1
U U V V (EQ6)

We get \E\ such equations (one for each arc). The smallest integer solution to these equations comprises the repeti
tions vector which specifies the number of times each node should be invoked in any periodic schedule. In [14], an
efficient algorithm isgiven for solving the balance equations.

In the SDF model, arcs are FIFO queues ofbounded length; these bounds can be easily computed once a
schedule has been constructed. Since FIFO queues are inherently one-dimensional, the SDF model is well suited for
specifying uni-dimensional signal processing algorithms where the data is always a one-dimensional stream. Of-
course. higher dimensional systems can also be modelled if the data is suitably packaged as a one dimensional
stream. For example, avideo signal can be considered aone-dimensional stream ifeach particle in the stream is atwo
dimensional array representing an image at asampling instant. However, modelling avideo system this way does not
expose all of the data paraUelism that might be present. See [7] for more examples where using the SDF model for
specifying multidimensional algorithms becomes awkward.

AGeneralization ofMultidimensional Synchronous Dataflow toArbitrary Sampling Lattices
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Fig 8. Data space for an MDSDF arc

3.2 Multidimensional Synchronous Dataflow (MDSDF)
A model more suited for multidimensional systems is anextension of SDFcalled MDSDF wherethe arcs

become m-dimensional arrays instead of FIFO queues. Data along onlyoneof the m dimensions is allowed to be an
infinite stream; this isbecause if the stream were infinite inmore than one dimension, the computation might depend
on the schedule for the system,leading to non-determinacy. The produced/consumed numbers foreachnodeon each
arc are now m -dimensional tuples. A setof balance equations analogous toequation 6 canbe written for eachof the
dimensions toget arepetitions matrix where each column (oflength m) of the matrix represents the repetitions of
the node along thedifferent directions. Figure 8 makes these notions clearer. It represents a2 dimensional MDSDF
graph where node A produces an 2x1 array of samples oneach firing, and node B consumes an 1x3 array of samples
on each firing. The horizontal dimension is taken to be thedirection along which the stream is infinite The second
diagram shows the underlying data space. Thedata space can bethought of as atwodimensional array mat is infinite
inthe horizontal direction and of size2 inthe vertical direction. The first column isthe data produced by A onits first
invocation. The balanceequations areas follows:

rA,lx2 = rB,lXl

rA,2Xl = rB,2*3
This can be solved to yield (rA y rA2) = (1,3) and (rfi v rB 2) = (2,1) .Hus means that A fires 3times in
the horizontaldirection (produces 3 columns of data) andonce in the verticaldirection, and B fires once in the hori

zontal direction and twice in the vertical direction. The total number of samples exchanged onthe arc is an array of
2x3 samples. The data produced in the next period will be thought of as data produced on columns 4 through 6.
Notice that theactual buffer onthe arc isof size 2x3. Usually, the horizontal dimension will represent time.

3.2.1 Delays

InSDF. adelay is an initial token or sample on the arc. InMDSDF. delays are also multidimensional tuples
and represent initial rows and columns. Figure 9 shows adelay of (1,2) onan arc. This means that the production of
data isoffset by 1row and 2columns as shown inthe figure. Note that the consumption ofdata isnot offset; it pro
ceeds as usual. Thus, ineach firing cycle, the (O.O)th firing ofB will always consume avector of initial values in fig
ure9.Thereis also no change in theway thebalance equations are written orsolved.

AGeneralization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices 9 of 33



MDSDF decimators and expanders

Fig 9. Delays in MDSDF

3.3 Cyclostatic Synchronous Dataflow (CSDF)

This is a generalization of SDF that has been introduced recendy in [3]. In this model, a node is not

restricted to consume or producethesamenumber of tokens onevery invocation, but is allowed tovary in a restricted
way.The number of tokens that the node producesor consumes is drawn from a finite set and is periodic with some

finite period. Figure 10shows anexample of a CSDF graph. The notation means actor A has three phases: it pro-

A
{1,2,3} {1,1,0,1}

Fig 10. A CSDF graph

duces 1.2, and 3 tokensin thesephases. Similarly, actor B hasfourphases, and it consumes 1,1. 0.1 tokens in each

of these phases. These phases always occur sequentially. Hence a valid schedule for the above graph would be one
complete phase sequence for A, meaning three invocations, and two complete phase sequences for B meaning 8
invocations. Forexample, the 2nd and 4thinvocations of B would consume the two tokens produced by the second
invocation of A . One of the advantages of the CSDF model is that data buffering requirements are less for certain
kinds of multirate graphs, although this might occur at the expenseof code-size. However, the idea that a node need

not consume or produce the same numberof tokens all the time is an attractive one. and as we shall see. might be
required in an MDSDF modelcapableof expressing non-rectangular systems.

MDSDF decimators and expanders

In this report, the only multirate actors we concentrate on are decimators and expanders in order tospecify
semantics fora generalized MDSDF model that can describe non-rectangular systems. The reason for concentrating
only onthese two actors is both for simplicity, and the fact that most practical signal processing systems that usenon-
rectangular lattices, like sampling structure converters and multirate filterbanks, are composed of decimators and
expanders, in addition to some othernon-multirate actors like FIRfilters. Also, these twoactors are theonly twosig
nal-processing actors that change sampling lattices.

10 of 33 AGeneralization of Multidimensional Synchronous Dataflow to ArbitrarySampling Lattices
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MDSDF decimators and expanders

In SDF. the actor that represents adecimator consumes N tokens and produces 1 token oneach firing, as
illustrated in figure 11(a). Similarly, an expander actor consumes 1 token and produces L tokens on each firing
These actors have an additional parameter for the phase of upsampling or downsampling. For the downsampler. if
phase =p, with 0 £p <N, then the output sample is the pth input sample from the N samples consumed. For the
upsampler, if phase =p, with 0£p<L, then the input sample will be the pth sample among the L output samples.
These phases are usually fixed at compile time and do not change from invocation toinvocation, although there isno
reason whythe phase cannot betime-varying (since atime-varying phase does notdestroy theSDF semantics of the
actor). However, since there donot seem to be any interesting signal processing uses of having a cfccimator (or
upsampler) that has atune-varying phase, thephases are usually fixed.

The CSDF decimator and expander have M and L phases respectively. Thedecimator consumes one token
ineach phase but produces one token only on the p'h decimation-phase, and zero tokens in the other phases. The
behavior ofthe upsampler issimilar. Figure 11(c) shows these actors with adecimation-phase and expansion phase of
0.

The MDSDF decimator consumes a tuple (Mv .-.,Mm) and produces (1,.... 1) while the MDSDF
expander consumes (!,...,!) and produces (Lv ...,Lm) (figure 11(b)). Anm-tuple ofphases can be specified for

M

a)

(ity-+ m Mj^py1-1)
b)

Lm)

{14.».,lVf^{1.0,0>.»>0}

u,o,...,o3jgyu,..,i}
Fig 11. a) SDF decimator andexpander, b) MDSDF decimator and expander, c)
CSDFdecimator and expander

these MDSDF actors as well; the phases specify how the input samples map tothe output as inthe SDF case.

Since the MDSDF decimator consumes arectangle of samples for every sample it produces, the decimation
matrix for an MDSDF decimator is always diagonal if the decimation phase is fixed and not time-varying:
M = diag (Mv ..., Mm) . Similarly, the expander matrix isalso diagonal if the phase is fixed.

These observations show that MDSDF is not capable of allowing a) non-rectangular sampling lattices
because the arcs are always rectangular arrays, and b) non-rectangular decimators and expanders because the pro
duced/consumed semantics necessarily restrict ustoconsume and produce rectangles of data.

AGeneralization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices 11 of 33
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MDSDF decimators and expanders

Notation: We will frequently use terms like "rectangular systems", or"rectangular MDSDF'; these always mean
systems where allsampling lattices are rectangular. "Rectangular MDSDF' willmean theMDSDF model of compu
tation from [IS].

Consider thesystem depicted in figure 12, where a source actor produces anarray of 6x6samples each time
it fires ((6,6) in MDSDF parlance). This actor is connected tothe decimator with anon-diagonal decimation matrix.
Thecircled samples indicate the samples that fall onthe decimators output lattice; these are retained bythe decimator.
hi order torepresent these samples onthe decimators output, wewill think of the buffers onthe arcs as containing the
renumbered equivalent of thesamples onalattice. For adecimator, if werenumber thesamples attheoutput accord
ing to LAT (Vjbd) , then the samples get written toa"parallelogram" shaped array rather than arectangular array. To
see what this parallelogram is,weneed to introduce the concept of a"support matrix" that describes precisely the
region of therectangular lattice where samples have been produced. Figure 12 illustrates this for adecimation matrix.

M •U

M.4 >••*. '#

t
O > i » » »

Fig 12. Output samples from!the decimator renumbered to
illustrateconcept of support matrix.

where the retained samples have been renumbered according toLAT (M) and plotted onthe right. The labels onthe
samples show the mapping. The renumbered samples can be viewed as the set ofinteger points lying inside the paral
lelogram that is shown in the figure. In other words, the support of the renumbered samples can be described as
FPD(Q) where

a [3 ^l
" [3 15]

We will call Q the support matrix for the samples on the output arc. In the same way, we can describe the support of
the sampleson the input arcto the decimator as FPD (P) where

-i
•H

It turnsout that Q = Af P.

Definition 3:The containability condition: let X be aset of integer points in 9tm. We say that X satisfies the con-
tainabiliry condition if there exists an mx m rational-valued matrix W such that N(W) = X.

12 of 33 AGeneralization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices
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MDSDF decimators and expanders

Definition 4: Wewill assume thatanysourceactor in the system produces data in thefollowing manner. A source S
will produce a set ofsamples £ on each firing such that each sample in £ will lie on the lattice LAT(VS) . Hence,
the set £ = {V~ln: h€ £} is aset of integer points, consisting of the points of £ renumbered by LAT(VS) .We
assume thattheset £ satisfies thecontainability condition.

Givena decimator withdecimation matrix M as shown in figure 13,wemakethefollowing definitions and
statements.: Denoting the input arc todie decimator as e and the output arc as /, Ve, Vf are the bases for the input

Ve, ^Kr7\ Vf»Wf Ve« We/-?\ Vf,Wf
e

Fig 13.Generalized expander and decimatorwitharbitrary input latticesand support matrices.

and output lattice respectively. We, W* are the support matrices for the input and output arcs respectively, inthe sense
that samples, numbered according to the respective lattices, are the integer points of fundamental parallelepipeds of
therespective support matrices. Similarly, wecan alsodefine these quantities for theexpander depicted in figure 13.
With this notation,we can state the followingtheorem:

Theorem 1: The relationshipsbetweenthe input and outputlattices,and the input and outputsupportmatricesfor the
decimator and expander depicted in figure 13 are:

Decimator Vf =VeM, Wf=M~lWe.
Expander Vf =VJL'X. Wf =LWe.

Proof: The relationships betweenthe input andoutput lattices follow fromthedefinition of theexpanderand decima

tor.Considera point n on the decimator's input lattice. Thereexistsan integervector k such that n = V k. .UM^k
is an integer vector, then this point will be kept by the decimator since it will fall on the output lattice; i.e.

n = VJ4K where k' = M~lk. This point n is renumbered as if = M~xV~xn = M~lk by the output lattice. Since
k was the renumbered point corresponding ton on the input lattice, and hence inN(We) ,every point Jt inN(We)
that is kept by the decimator is mapped to M~lk by the output lattice. Now,
keN(We) =>3z€ [0, l)2 s.t* = Wez.SoM-lkeNlM-lW\ because Af"1* = M~lWez. Conversely.let j
be any point in Milf-^l. Then. 3z€ [0,1 )2 s.t. j = M~lWez. Since Wgz = Mjt we have that
Mj € N(We) . Also, the corresponding point tothis onthe input lattice is V£Mj implying that the point is retained
by the decimator. Hence. Wf = M~1Wg. The derivation for the expander is identical, only with different expressions.
QED

Corollary 1: In an acyclic network of actors, where the onlyactors that are allowed to changethe sampling lattice
arethedecimator andexpander in themanner givenbytheorem 1.andwhere allsource actors produce dataaccording
to definition 4, theset of samples on everyarc,renumbered according to thesampling latticeon thatarc,satisfies the
containability condition.

Proof: Immediate from theorem.

vrr* VI»wr ve» we^-x vf,
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HI8IM0IIII8IIMIIIIIIII0IHIIHI8IIII1IIIIIIIHHIIIIIIIHIIIIIIIIIIII IMMOMMMOMMIMONNMMMMMMOI lilllHIIIIIIIIIIIIIOI iimniioiiiioooMeiimmiwi

A generalization of MDSDF for non-rectangular systems

A generalization of MDSDF for non-rectangular systems

In the following, we will develop the semantics of a model thatcan express these non-rectangular systems

by going through a detailed example. In general, ourmodel for the production andconsumption of tokenswill be the

following: anexpander produces FPD(L) samples oneach firing where L is theupsampling matrix. The decimator
consumes a"rectangle" of samples wherethe"rectangle" hasto be suitably defined by lookingat the actor thatpro
duces the tokens that the decimator consumes. While the asymmetry of the abovedefinition, namely that FPD (M)
doesnot come into play (M is the decimation matrix) but FPD(L) does, is abit disconcerting, the asymmetry is to
be expected sincein onecasesamples are being produced while in theother case, samples are beingconsumed.

Definition 5: An integer (a, b) rectangle is denned tobethesetof integer points in [0, a) x [0, b ) , where a, b
are arbitrary real numbers.

Definition 6:Let X be asetof points in 9t , and x,y twopositive integers such that xy = |X|. X is said tobeorga
nized as ageneralized (x,y) rectangle of points, orjust ageneralized (x,y) rectangle, by associating arectangu-
larizing function with X thatmapsthe points of X toaninteger (x, y) rectangle.

Example 1: Consider the systembelow, where adecimator follows anexpander (figure 14(a))

a)

b)
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L =
2-2

3 2
M =

-2-1012

1 1

2-2

Fig 14. An example to illustrate balance equations and the need for
some additional constraints, a)The system, b) Ordering of data into
a 5x2 rectangle inside FPD(L).
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Ageneralization of MDSDF for non-rectangular systems

We start by specifying the lattice and support matrix for the arc SA. Let V-A = r ° and W~A = r ° . So the
SA L01J L03J

source produces (33) inMDSDF parlance. For thesystem above, wecancompute thelattice and support matrices for
allother arcs given these. We will needto specifythescanning order foreacharc aswell that tellsthenodedieorder
in which samples should beconsumed. Assume for the moment that the expander willconsume the samples on arc
SA in some natural order; for example, scanning by rows. Now we need to specify what theexpander produces on

each "firing". Thenatural wayto specify misis that the expander produces FPD (L) samples oneach firing. What
should be thescanning order fortheproduction of thesesamples? Agam,theriatural order is on^
port matrix on arc AB (mis is explained in detail later).

In order to get a setof "balance equations", asin theusual MDSDF case, we also haveto order the samples
in FPD (L) insuch away that we can say that the expander produces (LVL2) samples; this is understood to be the
set FPD (L) of points organized as ageneralized (LVL2) rectangle. Suppose we choose the factorization 5x2 for
\det(L) |. Consider figure 14(b) where the samples in FPD (L) are shown. One way to map the samples into an
integer (5,2) rectangle is as shownby the groupings. Noticethatthehorizontal direction for FPZ) (L) is the direc

tion of the vector [23] and the vertical direction is the direction of the vector [_2 2]r; the grouping reflects this
nicely.We cannumber the samplesas follows:

Table 1. Ordering the samples produced by the expander

Original sam
ple

(0,0) (0.1) (0.2) (U) (1.3) (-1.1) (-U) (-13) (03) (0.4)

Renumbered

sample
(0,0) (1.0) (2.0) (3,0) (4.0) (0.1) (1,1) (2.1) (3,1) (4.1)

Hence, FPD (L) is a generalized (5,2) rectangle ifwe associate the function given in the tableabovewith it as the

rectangularizing function. Note that the above re-numbering hasnothing to do with the numbering of the samples

according to the lattice.Given a factoring of the determinant of L, the functiongiven abovecan be computedeasily;

for example, by ordering the samples according to theireuclidean distance from the two vectors thatcorrespond to

the horizontal and vertical directions. The scanning order for the expander across invocations is determined by the

numbering of the input sampleon theoutputlattice. For example, the sampleat (1.0)thatthe source produces maps to

location(2.3) in the re-numbered latticeat the expanders output.Hence, consuming samplesin the [10] direction on

arc SA results in 5x2 samples(i.e. FPD (L) samples but ordered according to the table) being produced alongthe

vector [23] on the output. Similarly, the sample (0,1) produced by the source corresponds to (-22) on the output. A

global orderingon the samples is imposed by renumbering the sample at (2,3) as (5.0) since the first FPD (L) of

samples produced ended with sample (4,1). With this global ordering, it becomes clear what the semantics for the

decimator should be. Again,choose afactorization of \det(Af)|, and consume a"rectangle" of thosesamples, where
the "rectangle" is deduced from the global orderingimposed above. Forexample, if we choose 2x2 as the factoriza

tion, then the (0,0) invocation of the decimator consumes the (original) samples at (0.0). (-1.1). (0,1), and(-12). The

(0.2)th invocationof the decimatorwould consume the (original) samples at (1,3), (0,4), (2,3) and(1.4).The decima

tor would have to determinewhich of these samples falls on its lattice; this canbe doneeasily.

A Generalization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices 15 of 33
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A generalization of MDSDF for non-rectangular systems

We have already mentioned the mannerin which the source produces data. We add that the subsequent fir

ings of the source arealwaysalongthe directions established by thevectors in the support matrixon the source's out
put arc.

Now we can writedown a setof"balance" equations usingthe"rectangles" thatwe havedefined. Denotethe

repetitions of anode X in the "horizontal" direction by rx x and the 'Vertical" direction as rx 2.These directions
are dependent on thegeometries thathavebeendefined on thevarious arcs. Thus, forexample,the directions are dif
ferent on the inputarc to theexpander from thedirections ontheoutput arc. We have

3rs,i = lrA,l
3r

S,2
\r

A, 2

5rA,l = 2rB,l

2rA,2 = 2/fi,2

rB, l~rT,l

rB,2 = rT,2

(EQ7)

where we have assumed that thesink actor T consumes (1,1) for simplicity. Wehave also made theassumption that
the decimator produces exactly (1.1) everytimeit fires. Thisassumption is usually invalid butthecalculations done
below are stillvalidaswillbediscussed later. These equations can be solved to yield

's,i = 2,r52= 1

rA,l =6>rA,2 = 3
rB, 1= 15' rB, 2 = 3

T,l = 15, rT 2 = 3

(EQ8)

Figure 15 shows the data space onarc ABwith this solution tothe balance equations. Itmight bereasonable
towonder whether, the total number of samples output by the decimator is equal to the total number of samples it
consumes divided bythe decimation factor if each actor isinvoked the number oftimes specified byequation 8. After
all, this is always true when wehave purely rectangular lattices and rectangular expanders and decimators (this will
beproved below). And of-course, this is also true inSDF. Note that this not an issue for the expander since itcon
sumes (1,1) and produces exactly \det (L) | for each one itconsumes, unlike the decimator which might sometimes
produce nosamples at all since there might not be any that fall on its lattice amongst the ones it has consumed on
some particular invocation.

In order tocompute the number of samples output by the decimator, we have tocompute the support matri
ces for the various arcs assuming that the source isinvoked (2,1) times (so that we have the total number ofsamples
being exchanged in one schedule period). We will do this symbolically using rs v rs 2 and plug in the values later.
We get

16 of 33

Wab = WSA

3rs,i 0

0 3r
5,2

6rS,l ~6rS.2
9rS,l 6rS,2

(EQ9)
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A generalizationof MDSDF for non-rectangular systems

w„ =irlwM - i[2 ll[6ri.i -6rs2 _1[2^,1 -«^,2
Recall that the samples that the decimator produces are the integer points inFPD (WBT). Hence, we want

to know if

\NWBT)\ = fi(WAB)\/\M\ (EQ10)

is satisfied by our solution to thebalance equations. Now. by lemma 3.thesizeof thesetN(A) for an integer matrix
A isgiven by \det (A) |. Since WAB isan integer matrix for any value of rs v rs 2 (tiiese variables are integers of-
course). we have

FWAB)\°\det(WAB)\ = 90rSilrS2

The right hand side ofequation 10 becomes

(90r51rS2)/4= (45r5y52)/2

k-i Original samples
[ producedtDy source

*T Samples retainkl by
0 To^mator -4H

L \ Samplesaddedby
0 rexp^erjoTscaitied by

i-decimater; <•—>

Fig 15.Total amount of data produced by the source in one iteration of the periodic
edule determined by the balance equations in equation 8.
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A generalization of MDSDF for non-rectangular systems

Hence, our first requirement is that rs ^s 2 = 2k k = 0,1,2,.... The balance equations gave us
rs i = 2,rs 2 = 1; this satisfies die requirement With these values, weget

w =[21/2 -3/2"
BT " [3/2 -9/2_ '

Since this matrix is not integer-valued, lemma 3 cannot be invoked to calculate the number of integer points in

FPD (WBT) . For non-integer matrices, the only way tocompute \N (WBT) I appears tobebybrute force: bydraw
ing this out on graph paper, it can be determined that there are 47 pointsinside. Hence, equation 10 is not satisfied!

One way tosatisfy equation 10 istoforce WBT tobe an integer niatrix. This implies that r5 { = 4£,/t =1,2,... and
rs 2 = 2k, k= 1,2,.... The smallest values that make WBT integer valued are rs x= 4,rs 2 = 2. Bomthis, the
repetitions of the othernodes are alsomultipliedby 2, thusincreasing theblockingfactor to 2, wherethe definition of

the blocking factor is as in the MDSDF case. Note that the solution to the balance equations by themselves are not

"wrong"; it is just that fornon-rectangular systems equation 10givesanewconstraint thatmust also be satisfied.

We formalize the ideasdeveloped in theexampleabove in the following.

Lemma4:The support matrices in thenetwork can each be written down asfunctions of therepetitions variables of
one particular source actor in the network.

Proof: Immediate from thefact that all of the repetitions variables are related toeach other viathe balance equations.

Lemma 5: In a multidimensional system, the jth column of the support matrix on any arc can be expressed as a
matrix that has entries ofthe form a-.rs ., where rs . isthe repetitions variable in the /* dimension ofsome partic
ular source actor S in the network, and a., are rationals.

Proof: Without loss of generality, assume that there are 2 dimensions. Letthe support matrix on the output arc of

source S for one firing be given by Ws = \p ° .For rs ., r firings in the "horizontal" and "vertical" directions
[r s] s>2

(these are the directions of the columns of Ws), the support matrix becomes

w* = \ ^ ~l ~ S<1 S'2 6° muhiple dimensions, the right multiplicand would be a diagonal
lrsi[° rs,2J K.i 'rs.2|

matrix with rs . iny™ row).

Nowconsider anarbitrary arc (u,v) in thegraph. Since thegraph is connected, there is atleast oneundi
rected path P from source S tonode u. Since the only actors that change the sampling lattice (and thus the support
matrix) are the decimator and expander, all ofthe transformations that occur to the support matrix Ws along P are
left multiplications by some rational valued matrix. Hence, the support matrix on arc e, W , can beexpressed as
We = AWs. where A is some rational valued matrix. Theclaim of thelemma follows from this.

Theorem 2: Inan acyclic network of actors, where the only actors that are allowed tochange the sampling lattice are
the decimator and expander inthe manner given bytheorem 1, and where all source actors produce data according to
definition 4, whenever the balance equations for the network have asolution, there exists ablocking factor vector /

18 of 33 AGeneralization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices
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A generalization of MDSDF for non-rectangular systems

such that increasing the repetitions of each node in each dimension by the correspondingfactor in J will result in the

support matrices being integer valued for all arcsin the network.

Proof: By lemma 5. a term in anentry in the jth column of the support matrix on any arc is always a product of a
rational number and repetitions variable rs , of source S. We force this term tobeinteger valued by dictating that
each repetitions variable rs , bethe 1cm of the values needed toforce each entry inthe j'h column tobean integer.
Such a value can be computed for each support matrix in the network. The 1cm of all these values and the balance

equations solution for the source would then give a repetitions vector for the source thatmakes all of the support
matrices in the network mteger valued and solves the balance equations. QED

The rectangular case

Here we show that the constraintof the type in equation10 is always satisfiedby the solution to the balance

equations when all of the lattices and matrices are diagonal. Since we are only interested in these additional con

straints for arcs betweenanexpander and decimator, consider the systemin figure 14.The balance equations for arc
ABare

The supportmatrix for arcAB is given by

LlrA,\ = MlrB,l

L2rA,2 = M2rB,2

WAB-
o L2rA,2

(EQ11)

since theinputlattice and support matrix on theexpanders input are bothdiagonal. The support matrix for arc BT is
given by

WBT = M-l

WAB =
M

-l

0 M

Va,i
0

0

L2rA, 2

M~lL\rA,l

M2L2rA,2
We have \N(WAB) | =LxL2rA xrA 2. A solution to the balance equations in equation 11 implies that the matrix
WBT is an integer matrix; hence. |N(WB7.)| = |<fe/(WB7.)| =M~i^^AlM~2L2rA2 and we see that equation 10
is satisfied since \det(Af) | = MXM2. Sowesee that the rectangular MDSDF case isaspecial case of the more gen
eral set of constraintsneeded for non-rectangular systems.

The factthatthe decimator produces avarying number of samples perinvocation might suggest thatit falls
nicely into the class of cyclostatic actors. However, there are a coupleof differences. In the CSDFmodel of [3], the

number of cyclostatic phases are assumed to be known before hand, and is only a function of the parameters of the

B

(1J}/fT\(Ll,L2) (MlJvl2^/p}\ (1,1)

L =
Lx 0

0 L„
M =

M, 0

0 M„

Fig16. For a rectangular system, the constraint of equation 10 is always met.
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A generalization of MDSDF for non-rectangular systems

actor, like tiie decimation factor. In ourmodel for the decimator, the numberof phases is not just a function of the

decimation matrix; it is also afunction of diesampling lattice ontheinput to thedecimator (which in turn depends on

the actor thatis feeding the arc), and the factorization choice that is madeby thescheduler. Secondly, in CSDF, SDF
actors arerepresented ascyclostatic by decomposing theirinput/output behavior overone invocation. Forexample,in

figure 11(c) we saw that the CSDF decimator wasbehaving exactly like the SDF decimator except thatthe CSDF
decimator doesnotneedall M data inputsto be present before it fires. Inourcase, thecyclostatic behavior of thedec
imator is arising across invocations rattierthan within an invocation. It is as if the CSDF decimator with decimation

factor 4 were to consume {4,4,4,4,4,4} and produce {2.0,1,1.0.2} instead of consuming {1,1,1,1} and producing
{1.0.0.0}.

One way to avoiddealing with constraints of the type in equation 10wouldbe to choose a factorization of

\det(M) | that ensured that the decimator produced one sample on each invocation. For example, if we were to
choose the factorization 1x4fortheexample above, thesolution to thebalance equations wouldautomatically satisfy
equation 10. As we showlater, we canfind factorizations where thedecimator produces onesample oneveryinvoca
tionin certain situations but generalizing thisresult appears to be adifficult openproblem since there does not seem

to be ananalytical way of writing down there-numbering transformation that was shown in table 1.Another wayto
avoid theconstraint would be to figure outhowmany distinct phases (inacyclostatic sense) tiie decimator hasfor any
given factorization. From this, a set of cyclostatic balance equations could be written down whose solution would
also automatically satisfy theconstraint of equation 10. The technique wehave given above is equally valid, withthe
only drawback being an inability to calculate efficiently the quantity \N(W)| when W is not integer valued. If an
efficient waycanbe found to dothis calculation, then our method might bemuch more efficient than trying to deter
minethenumber of phases thedecimator has and producing asetof "cyclostatic" balance equations. For example 1,
with the decimator consuming a generalized (2,2) rectangle, thenumber of horizontal phases turns out to be 10as
determined by looking atthenumber of samples produced by the decimator for each consumption. This sequence of
the number of samples produced for each (2,2) consumed turns out to be {2,1,1,2,1,0,1,1,0.1} in the "horizontal"

direction (which is the direction given by [2 3]T inthe renumbered samples data-space onthe input). For the next
"row" of samples (that isbygoing upto [2 -2]T and then scanning inthe [2 3]T direction), this sequence turns
out to be {0,1,1,0,1.2,1,1,2,1} whichis seento be thesequence for the first row shifted by 5. The third rowhasthe
samesequence asthe first row; hencetheseare theonly twodistinct sequences.

Implications of the above example for streams

Someremarks mustbemade about balance equations and streams. InSDF, there is onlyonedimension, and
thestream is in that direction. Hence, whenever therepetitions of anodeis greater than unity, thenthedata processed
by thatnodecorresponds to data along the stream. In MDSDF. only one of thedirections is the stream. Hence, if the
repetitions of anode, especially a source node, isgreater than unity for thenon-stream directions, thephysical mean
ing of invocations in those directions becomesunclear. For example, consider a 3-dimensional MDSDFmodel for
representing a progressively scanned video system. Of these 3 dimensions, 2 of the dimensions correspond to the
height and width of the image, and thethird dimension is time. Hence, a source actor that produces die video signal
might produce something like (512312,1) meaning 1512x512 image per invocation. If the balance equations dic
tated that thissource should fire (223) times, for example, then it isnotclear what the2 repetitions each in theheight
and width directions signify since they certainly donotresult in data from the nextiteration being processed, where
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an iteration corresponds to the processing of an image at the next sampling instant Only the repetitions of 3 along the

time dimension makes physical sense. Hence, there is potentiallyroom for great inefficiency if the user of the system

has not made sure that the rates in tiie graph match up appropriately so that we do not actually end up generating

images of size 1024x1024when tiie actual image size is 512x512.In rectangular MDSDF, it might be reasonable to

assume that the user is capableof setting the MDSDF parameters such that they do not result in absurdrepetitions

beinggenerated in the non-stream directions sincethiscanusually be doneby inspection. Howeverfornon-rectangu

larsystems, we would like to have more formal techniques forkeeping the repetitionsmatrix in check since it is much

less obvioushow to do this by inspection than in the rectangular case. The number of variables are alsogreater for
non-rectangular systems since different factorizations for die decimation or expansion matrices give different solu
tions for the balanceequations.

To explorethe differentfactoring choices, suppose we use 1x4 forthe decimator instead of 2x2. The balance
equations become

The solutionto theseis given by

From equation 9, WBT isgiven by

3r5,l = ^1
3r5,2 = lFA,2

5r*l = lrB,l
2rA,2 = 4rB,2

rB,l = rT,\

rB,2 = rT,2

r5.1 = l> rS,2 = 2

rA,l =3' rA,2 B 6
rBl = 15, rB,2 = 3

rT, 1= *5. rT,2 = 3

w =\2l/*

(EQ12)

(EQ13)

Again using graph paper, it can be determined that |N(WB70| =45 as required. So in this case, we do not need to
increase the blocking factor to make WBT an integer matrix, and this is because the decimator is producing 1token
on every firing as shownin figure 17.

However, if the stream inthe above direction were in the horizontal direction (from the point ofview ofthe
source), then the solution given by the balance equations (eq. 13) may not be satisfactory for reasons already men
tioned. For example, tiie source may be forced to produce only zeros for invocation (0,1). One way to incorporate
such constraints into the balance equations computation is to specify the repetitions vector instead ofthe number pro
duced or consumed. That is, for the source, we specify that rs 2= 1 but leave the number itproduces in the vertical
direction unspecified. The balance equations will give us aset ofacceptable solutions involving the number produced
vertically; we can then pick the smallest such number that is greater than or equal to three. Denoting the number pro
duced vertically by ys, our balance equations become
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3r5,l = lrA,l
ySl = lrA,2

5rA,l = lrB,l

2rA,2 = *rB,2
rB, 1 = rT, 1

rB,2 = rT,2

•eoaeooMMMMOOM

(EQ14)

The solution to this is givenby

rs,i - l>ys ~2k * ° 1.2,

rA,\ = Z'rA,2 = 2k

rB, 1= 15» rB, 2 =*

rT, i = ^' rr, 2 = 3

(EQ15)

and we seethat k - 2 satisfies ourconstraint Recalculating theother quantities,

6r5,l ~SrS,2
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WAB " W*A

1x4 rectangle
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decimator 5

9rS,l 8r5,2
and

Fig17.Total amount of data producedby the source in one iteration of the periodic sched
ule determined by the balance equations in equation 13. The samples that are kept by the
decimator are the lightly shaded samples.
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Fie18. An example to illustrate thattwo factorizations always exist that result in non-cyclostatic
behaviorwiththe decimator. a)The system, b) M1=2, M2=2. c) M1«1, M2=4. d) M1=4, M2«=1

WBT =M'W^ =i 2 1

2-1

6rS,l -*rS,2
9rS,l 8r5,2 3r5,l -3*rS,2

21/4 -2

3/4 -6

and we can determine that pV (WBT) | = 30 as required (i.e.. 3x4x 10/4 = 30). Hence, we get away with having
toproduce onlyoneextra row rather than three, assuming that the source can only produce 3meaningful rows of data
(and any number of columns).

5.1 Eliminating cyclostatic behavior

The fact that the decimator does not behave in a cyclostatic manner in figure 17 raises the question of
whether factorizations that result in non-cyclostatic behavior in the decimator can always be found The following
example and lemma give an answer to this question for the special case of adecimator whose input is arectangular
lattice.

Example 2: Consider the system in figure 18 where a2-D decimator isconnected toasource actor that produces an
array of (6.6) samples on each firing. The black dots represent the samples produced by the source and the circled
black dots show thesamples that thedecimator should retain; these are the samples that lieon LAT (M) intersected
with the samples produced by the source. Since \det (M) | =4, there are three possible ways to choose Mv M2.
With Mj = M2 = 2 we see that tiie 6x6 array can betiled with 2x2 arrays such that 1 sample is produced ineach
2x2 array (figure 18 (b)). However, since some of the 2x2 blocks retain the sample on the left-bottom corner and
some the sample onthe right-bottom corner, atime-varying phase would have tobeused todetermine which sample
should be output on agiven invocation. There are two other ways to choose MVM2 so that their product is 4:
Afj = 1, M2 = 4 and Mx = 4,M2 = 1. Figures 18 (b),(c) illustrate the tiling with these choices. For both these
choices, the repetitions ofthe source isdifferent than (1,1); hence the tiling isn't complete but can becompleted if the
source produces more data as specified by the solution tothe balance equations ((2.1) and (12) respectively). In fig
ure 18 (c) also, wesee that for every (1,4) consumed, (1,1) isproduced, although again, atime-varying phase will be
required. However, in figure 18(d), we see that on some invocations, no samples are produced (that is, (0,0) samples
are produced) while insome invocations. 2 samples are produced. This raises the question ofwhether there isalways
a factorization that ensures that the decimator produces (1,1) for all invocations. The following lemma ensures that
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for any matrix, there are always twofactorizations of the determinant such that the decimator produces (1,1) for all
invocations. Also, this example illustrates twoother points: it is only sufficient that thedecimator produce 1 sample
oneach invocation for the additional constraints ondecimator outputs tobesatisfied by thebalance equation solution.
It is onlysufficient that thesupport matrix onthedecimators output beinteger valued for theadditional constraints to
be satisfied. Indeed, we have

WSM~
6r

5,1

0 6r

0

S,2_

w =• wmo

3rc , 1.5rs,\ S,2

3rSil-1.5rs>2
where WMO is the support matrix on the decimators output For the case where Ml = 4, A/2 = 1, we have

5,1 = 2'r5,2= *• making W
MO

non-integer valued. However, we do have that

|^ (wmo> | = |^ (wsm) y\det (M) I•despite the fact that WM0 is non-integer valued and the decimator is cyclo
static.

Lemma 6: If

M =
ab

cd

is any non-singular, integer 2x2 matrix, then there are at most two factorizations (and at least one) of \det (AS) |,
AXBX = \det(M)\ andi42B2 = \det(M)\ such that if Af, = AyM2 = Bx or Mx =A2,M2 = B2 infigurel8.
then the decimator produces (1.1) for all invocations. Moreover.

*.-^»-*.-»-*-§»*-*-<'•<>
Remark: Note that gcd(a, 0) = a; hence, if Af isdiagonal, the twofactorizations are thesame and there isonlyone
unique factorization. This implies that for rectangular decimation, there is only one way to settheMDSDF parame
ters, which is comforting.

Proof: Firstly, note that since det(M) = ad - be, gcd (a, b) divides det(M) and gcd(c,d) divides det(h/[) .
The decimator keeps samples witii coordinates givenby

IV
M (EQ16)

or akx +bk2 = x and ckx +dk2 = y; hence, x and y have tobemultiples of gcd(a, b) and gcd(c,d) respec
tively. Suppose v = 0. Then, withalittle algebra, it can be seen that thesmallest positive, non-zero value of x that
solves equation 16 (meaning that kv k2 are integers) isgiven by x = \det(M) \/gcd(c, d) . Similarly, if x = 0,
thesmallest non-zero, positivevalue of y isgiven by v = \det(Af) \/gcd (a,b) . Hence, any rectangle consumed by
the decimator cannot have avertical dimension of greater than gcd(c,d) orahorizontal dimension of greater than
gcd (a, b) since if it did, then atleast twosamples that are keptby thedecimator willfall inside therectangle based
at the origin.So it remains to show that the two factorizations given in the statement of the lemma do in fact result in

one sample being kept on all invocations. Fix some value for x that is amultiple ofgcd (a, b) ;call it*0. Let yQ be
the smallest positive integer solution toequation 16. Then, the next positive integer y that solves equation 16 isgiven
by y0 +\det(M)\/gcd(a,b) . To see this, note that kx = (dxQ-byQ)/(ad-bc) and
k2 = (ay0- cxQ)/ (ad-bc) are both integers. We want to determine the smallest positive constant j such that
makes
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Decimator consumes
these set of samples

gcd(a,b)

Fig 19. Figure to illustrate proofof lemma 6.

k,=dxQ-b(y0+j) ^ ft ,ba(y0+j)-cx0
1 ad-bc 2 ad-bc

alsointegers. Rearranging the above expressions, we get

*' =* bj audit' = JL +--2L-
2 2 ad-bc

These are the samples
that fall on the output
lattice of the decimator.

Clearly, y = |a*e/ (Af) |/gcd(a, b) makes both jfcj' and k2 integers. It is also the smallest: let m = ad-bc. Then,
we have that bj/m = ix for some integer ix and a//m = i"2 for some integer i2. Hence, ixa = i"2& giving us the
claimed value of j as the smallest such value.

A symmetric argument shows that if y is fixed, then the values of x that solve equation 16 differ by
\det(M)\/gcd(ctd) .

Without loss ingenerality, consider the rectangle of dimensionality given by the first of the factorings in the
statement of thelemma. When this rectangle is placed atthe origin, only the sample atthe origin falls inside it and is
output by thedecimator (see figure 19). Invocation (0,1) of the decimator would consume therectangle whose lower
leftcorner is at v = \det(M)\/gcd(a, b) ,x = 0; this also contains only one sample that isoutput by the decima
tor (namely, the lower left comer sample). Qearly, as the rectangle is moved up along the y-axis by steps of
\det(M) \/gcd(a, b) , the sample kept is always the one onthe lower left corner. Now consider moving the rectan
gleto theright in steps of gcd (a, b) . None of these rectangles can contain two samples whichdonothavethe same
x coordinate. This is because the x coordinate in the solution equation 16 has to be amultiple of gcd(atb) . These
rectangles cannotcontaintwo samples which have the samex coordinate eitherbecause, as was shown, when x is

fixed, the y values differ by \det(Af) \/gcd (a, b) . Hence, all of therectangles that the decimator consumes will
contain exactly one sample that falls onthe output lattice, allowing the decimator tobenon-cyclostatic. QED.

For the example matrix in the figure 18. we can see that the two factorizations that work from the above

equation are Ax= l,Bx = 4 and>42 = 2,B2 = 2; this iswhat wesee from figure 18 (b).(c).
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5.2 Delays in the generalized model

Delayscan be interpreted as translations of the bufferof produced values along the vectors of the support
matrix (in the renumbered data space) or along tiie vectors in the basis for tiie sampling lattice (in the lattice data
space). Figure 20 illustrates a delay of (1,2) on anon-rectangular lattice.

'•63 0*2) Jk. Wf^\
(1.2) \*S

Sampling lattice

W =
1 -2

0 4

(1.2)

it •

<» • •

o <> • •

o o

Renumbered samples oj> oj O O
-e—©-

Fig 20. Delays on non-rectangular lattices

5.3 Summary of generalized model

la summary, ourgeneralized model for expressing non-rectangular systems hasthe following semantics:

•Sources produce data in accordance withdefinition 4. The support matrix and lattice-generating matrix on
the sources output arcs are specified by the source. The source produces ageneralized (Sx, S2) rectangle ofdata on
each firing.

•An expander withexpansion matrix L consumes (1,1) and produces thesetof samples in FPD(L) that is
ordered as ageneralized (LX,L2) rectangle ofdata where LVL2 are positive integers such that LXL2 = \det(L)\.
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•A decimator with decimation matrix M consumes a rectangle (A/.,M0) of data where this rectangle is
interpreted according to the way it has been ordered (by the use of some rectangularizing function) by the actor feed
ing the decimator. It produces (1,1) onaverage. Unfortunately, there does notseem to beany way ofmaking the dec
imators output any more concrete.

•On any arc, the global ordering of the samples on that arc is established by the actor feeding the arc. The
actor consuming the samplesfollows this ordering.

A set of balance equations are writtendown using thevariousfactorizations. Additionalconstraints for arcs

thatfeed a decimator are alsowrittendown. Theseare solved to yield therepetitions matrixfor thenetwork. A sched

uler can then construct a static schedule byfiring Arable nodes inthe graph until each node has been fired the requisite
number of times as given by the repetitionsmatrix.

6 Multistage sampling structure conversion example

In this section, we illustrate another example; this is a practical example of a system that does sampling
structure conversion for video signals. We will show how thesemantics developed above can be used tospecify and
determine a schedule for the system. This example is drawn from [16].

6.1 Video Signals

A video signal can be thought of as a three-dimensional signal where two of the dimensions correspond to
the height(vertical) and width(horizontal) of the image while the third dimension is time. The current practice is to
sample the signal in two of the dimensions and keep the third dimension continuous. The vertical and temporal direc
tions are sampled (this processed is called scanning) while the horizontal direction is not. Hence, as a discrete-time

signal, a video signal is two-dimensional, with samples occupying the vertico-temporal plane. Note that an actual
video signal is one-dimensional since the resulting lines (from the scanning) are abutted to form a one-dimensional
signal [8]. There are currently two types of vertico-temporal lattices in use: the progressively scanned signal, which
corresponds to a rectangular lattice, and the 2:1 interlaced signal, which corresponds to a "quincunx" lattice. There
are trade-offs between using these two lattices invarious types ofdistortions and interline flicker but in general, 2:1
interlaced scanning ispreferable tosequential scanning for agiven scanning density [8]'.The two lattices are shown
in figure 21.

6.2 Sampling structure conversion

An application ofconsiderable interest incurrent television practice isthe format conversion from 4/3 aspect
ratio to 16/9 aspect ratio for 2:1 interlaced TV signals. Itis well known in one-dimensional signal processing theory
thatsample rateconversion can be done efficiendy in many stages [21]. Similarly, it is moreefficient todo both sam-

1. TheAdvisory Committee on Advanced Television Service, a committee formed bytheFCCin 1987 to assist theFCCinestab
lishing anHDTV standard for theUnited States, tested 4 all-digital HDTV proposals (DigiCipher. DSC-HDTV. AD-HDTV,
CCDQ and found that systems using interlaced scanning (DigiCipher and AD-HDTV) had the best quality overall.[11].
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time:

I rr=pL/5psi ; '{""•j | j \ p
Fig21. Progressive scanning and 2:1 interlaced scanning in the vertico-temporal plane

pling rate and sampling structure conversion in stages for multidimensional systems. The two aspect ratios and the
two lattices are shown in figure 22.

Ph'

Pw

fWks
time

Ph O #o#

Tf

Fig22. Picture sizes and lattices for the two aspect ratios 4/3 and 16/9

»'

time

The relationship between the height and width for the two aspect ratios isgiven by Ph = (3/4) P and
Pfl = (9/16)/*w. Since the number of lines N is the same inboth cases, the mterline distances t/' and d .corre-
sponding to the 16/9 and 4/3 aspect ratios respectively, are related as d' = Ph'/N = (3/4) (Ph/N) = (3/4) d .
Thus thebases for thelattices for thetwo aspect ratios are given by

A = 2TfTA
0 dyA

and A =
2Tf
0 (3/4) d.

(EQ17)

XJ

for the 4/3 and 16/9 aspect ratios respectively. By the COR System Mstandard 625/2:1/50, Tf = 1/50 5 and
N = 625. One waytodothe conversion between the two lattices above is as shown below in figure 23 [16]. Below
each arc. thedesired lattice onthat arc is shown. For simplicity, the filters that are needed between the upsampling
and downsampling stages are omitted. From the lattices shown, we can compute the required values for L.,L2,M:

VSA - ^ = 2TfTf V =od}-v»
Tf 0
0 dy/2A .VBC

Tf 0
0 d/4

.andVC7, = i4' =
27\

3V4J
Since using realistic values for Tf d will make all the calculations rather ugly, we will just use Tf = 1, d =1
without any loss in generality.

By theorem 1,
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Fig23. System for doing mu
3 aspect ratio to 6/9aspec

"l/Tf 0"
0 2/d.

Ll = VABVSA =

tjstage sampling structure conversion from 4/
ratio for a 2:1 interlaced TV signal.

M - VBCVCT =

Suppose

2 1

03
Note that these matrices donotdepend on Tf and d

\det(Lx)\ =4 =2x2.\det(L2)\ =2 = 1x2.and \det(M)\ =6 =3x2

Let us assume that Sproduces samples in LAT (VSA) nm III. The support matrix for this can be computed as

VsA[os\ =2[p 2JL08J =[0 8j
Suppose further that thesamples that thesource produces are rectangularized in the following obvious way: sample at
(0,0) is (0.0); sample at (1,1) is (1,0); sample at(0,2) is (0,1); sample at(1,3) is (1.1) etc. So S produces (2.8) where
therectangle is understood to be asabove. We canwrite down the following balance equations:

These solve to

2rs,i = ^,1

8rS,2 = lrA,2

2rA,lS lrB,l
2rA,2 = lrfl,2

lrB,l =3rC.l

2rB,2 = 2rC,2
rC, 1 = rT, 1

rC,2 = rT,2
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>, 1 = *' rs, 2 *

rA,l =6'^,2 = 8

Al = 12'rB,2= 16

C,l =4'rC,2= 16
Again, we can calculate the various supportmatricessymbolically in order to verify whether

p(WCT)\ = f(WBC)\/\det(M)\

t r

2r
5,1

0
-,\

We have \N(WRr) I - <te/
SC

V .
0 32r

5,2

= 64r5 xrs 9,and
i /

,-1-
WCT = ^ ^C =

r5,l -(16/3)r5,2
0 (32/3) rS2

With the values obtained from the balance equations, equation 20 turns out to be not satisfied because

IN (WCT) I • 33 !In actuality, since there are 625 lines vertically, a more accurate model for the source is that it
produces samples in (2.625). again according to therectangle defined above. However, theresulting matrix

L -(1250/3) r52l
WCT =

0 (2500/3)r
5,2

(EQ19)

(EQ20)

presents a rather nasty challenge fordetermining thenumber of integer points inside itsFPD(since it isnot aninteger
matrix with thesolution to the balance equations). However, in the model where thesource produces (2,8), wecan
force WCT to be an integer matrix by making rs 2amultiple of 3. Ifthe source is in fact trying to produce 625 lines
vertically, then the smallest multiple of 3 that is greater than or equal to 625 is given by 209; we can make this the
vertical blocking factor. As in the previous example, we can try to find bettermodels for the source, one that will
allow it to cover exactiy 625 lines vertically for example. Of-course, this is assuming that the source actor can be
codedin a flexible way that allows it to produce asmuchdataor as little as desired.

7 Conclusions and open problems

We have described anextension of MDSDF tohandle arbitrary sampling lattices. The key extensions have
been toassociate two parameters for each arc inthe graph: the sampling lattice for the data on that arc, and a"support
matrix" that describes the region ofthe space where current data has been produced. Equivalendy, these two parame
ters can be specified for source actors, and can bedetermined for the other arcs by tracing the operations that each
node in the graph performs. Since decimation and expansion are the only two actors (of signal processing interest)
that change lattices, itshould be straightforward to determine the lattice and support matrix for every arc inthe graph
given the information at the source (assuming that there are no cycles in the graph). Given these two parameters, we
have shown how we can compute aglobal ordering for the data on the arcs, and how generalized "rectangles" can be
defined. Using these, we can derive a set ofdecoupled balance equations in an analogous manner to the rectangular
case. However, this is not enough; for decimators, some otherconstraints must also be satisfied. The directionsof the
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repetitions of anode isalso generalized todepend on the lattice and support matrix onoutgoing and inrnming arcs;
that is, the direction can bedifferent for an input arc from an output arc.

There are many open problems and issues that have notbeen tackled yet Some of these are listed below:

•The issueof buffering efficiencyand bufferimplementations hasnot beenaddressed. It wouldbe desirable
tohave systematic ways of deterrnining schedules that minimize for code size and buffer-usage, as was done in the
SDF case for well-ordeied graphs [18] and general acyclic graphs [19][4]. The techniques in [18][19] can be easily
applied to the rectangular MDSDF case since rectangular MDSDF can be thought of as several independent SDF
graphs (one for each dimension); with non-rectangular systems, it is less obvious how toextend the techniques of
[18][19]. The buffers would probably have tobe implemented direcdy as linear arrays but indexed appropriately (at
least for simulation) since techniques like using matrix and submatrix data-structures [7] may not befeasible for non-
rectangular support matrices.

•An extension of lemma 6 to arbitrary support regions would be desirable. This would give us away of
choosing factorizations that do not have the cyclostatic behavior that an arbitrary factorization generally does. This
would also ensure that solving balance equations issufficient and constraints of the type inequation 20do nothave to
be solved. However, this appears tobe difficult since there does not seem tobe aclean, analytical way ofexpressing
the ordering of samples as done in table 1. Since the understanding ofhow points on LAT (M) , where M is thedec
imation matrix, map to the rectangle under this ordering isneeded before aclaim of the sort made in i^mma 6, this
extension would be non-trivial.

•If methods of choosing factorizations remain ad-hoc. then an efficient way is required to determine the
number of integer points inthe fundamental parallelepiped of an arbitrary matrix. Hopefully, an analytic expression
for this number exists, or else an efficient algorithm would bedesirable. Counting the number of points in abrute-
force manner quickly becomes inefficient if the support matrix has large entries.

•More complicated examples. The examples presented inthis report have been those of simple, chain-struc
tured graphs. Concrete examples of acyclic graphs that represent non-rectangular systems with alotof inherent func
tional parallelism include directional decomposition filterbanks as described in [2]. and hierarchical video coding
applications [5].

•Examination ofhigher dimensions. The examples inthis report have all been for 2-D MDSDF; generaliza
tions to higher dimensions may be trickier. Aconcrete example ofa3dimensional digital signal isafully scanned TV
signal(where the horizontaldirection is scanned also).

•There are many other ways of doing the sampling-structure conversion [16]. Ifmore decimation stages are
used, more of the constraints of the type inequation 20 have tobe solved. Some of these ways of doing the conver
sion might bebetter incomputational terms than other ways inthat the repetitions of the various actors inbetween are
lower for some ways than others. It would be interesting to explore systematic ways ofevaluating the various ways.

AGeneralization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices 31 of 33



«aaooooeooM»ooog«m>oooooeooio>ww«emoowo>e»ooi«eo«»oo«o«owiowow«oawie«QQMQflDoiifliiooDioaoaiQnonoo inwtMwwwowgowoiooowwMoieweooMoooowooowwiioioDOQDQaieMww

References

8 References

[I] R. Ansari, S. H.Lee, 'Two Dimensional Nonrectangular Interpolation. Decimation Filterbanks", Proc. of the
ICASSP. New York 1988

[2] R. H. Bamberger, "The Directional Filterbank: aMultirate Filterbank for theDirectional Decomposition of
Images",PhX).Thesis, Georgia InstituteofTechnology, Nov. 1990

[3] G.Bilsen, M. Engels, R. Lauwereins. J.Peperstraete, "Static Scheduling of Multi-rate Cyclo-static DSP appli
cations," IEEEworkshop on VLSI Signal Processing, SanDiegoOctober 1994

[4] S. S. Bhattacharyya. P. K. Murthy. E A. Lee."APGAN and RPMC: Complementary Heuristics for Translating
DSPBlock Diagrams into EfficientSoftware Implementations." UCB/ERLTech.Memo. M95/3.andsubmitted
to the IEEETransactions on SignalProcessing. January 10.1995

[5] F. Bosveld. R. L. Lagendijk. J. Biemond, "Compatible Spatio-Temporal Subband Encoding of HDTV", Signal
Processing, vol. 28. (no. 3):271-289. Sept 1992

[6] Buck. S. Ha. E. A. Lee. D.G. Messerschmitt, "Ptolemy: aFramework forSimulating and Prototyping Heteroge
neous Systems", International Journal ofComputer Simulation, special issueon "Simulation Software Devel
opment." January. 1994.

[7] M. C. Chen, "Developing aMultidimensional Synchronous Dataflow Domain in Ptolemy". MS Report. UC
Berkeley, June 1994

[8] E.Dubois, "TheSampling and Reconstruction ofTime-varying Imagery with Applications inVideo Systems".
Proceedings of the IEEE.vol. 73. pp. 502-522. April 1985

[9] D.E Dudgeon. R. M. Mersereau, Multidimensional Digital Signal Processing, Prentice Hall. 1984

[10] B.L Evans. "Knowledge-Based Environment for the Design and Analysis ofMultidimensional Multirate Signal
Processing Algorithms", Ph.D. Thesis, Georgia Institute ofTechnology, September 1993

[II] R. Hopkins, "Progress onHDTV Broadcasting Standards inthe United States", Signal Processing: Image Com
munication, vol. 5.355-378, December 1993

[12] G. Karlsson, M. Vetterli, 'Theory ofTwo Dimensional Multirate FilterBanks", ifffTransactions on Acous
tics. Speech, and Signal Processing, vol. ASSP-38. pp.925-937, June 1990

[13] K. Konstantinides, J.R. Rasure, "The Khoros software development environment for image and signal process
ing", IEEETransactions on Image Processing, May 1994, vol.3.(no.3):243-52

[14] E.A. Lee. D.G Messerschmitt. "Static Scheduling of Synchronous Dataflow Programs for Digital Signal Pro
cessing," IEEE Trans, on Computers,Jan. 1987

[15] E.A. Lee,"Multidimensional Streams Rooted inDataflow", Proceedings of the IFD? Working Conference on
ArchitecturesandCompilationTechniques forFineandMediumGrain Parallelism, Jan. 20-22.1993, Orlando.
EL

[16] R. Manduchi, G.M. Cortelazzo, and G. A. Mian, "Multistage Sampling Structure Conversion ofVideo Sig
nals". IEEE Transactions on Circuits and Systems for Video Technology. Vol. 3. No.5.October 1993

[17] R. M. Mersereau. T.C.Speake. 'The Processing of periodically sampled Multidimensional Signals", TCPP
Transactions on Acoustics, Speech, and Signal Processing, vol.ASSP-31, pp. 188-194, Feb 1983

[18] P. K. Murthy, S. S. Bhattacharyya, E A. Lee, "Minimizing Memory Requirements for Chain Structured Syn
chronous Dataflow Graphs", Proceedings of theICASSP, Adelaide. Australia. April 1994

32 of 33 AGeneralization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices



•nnininnnnnnnin , iinTT-nnninnnnnniiniminniiniiniiiiinniinniiiiiiiiiiiDiir in n.iulil.iriii iniiiii

References

[19] P. K. Murthy. S.S.Bhattacharyya, E A.Lee, "Combined Code and Data Minimization for Synchronous Data
flow Programs", ERL Memo No. UCB/ERL M94/93, Electronics Research Lab, UC Berkeley, CA94720, and
submitted to dieJournal onFormal Methods in System Design. Nov. 1994

[20] G.L. Nemhauser, L. A.Woolsey, Integer and combinatorial optimization, Wiley 1988

[21] T. A. Ramstad, "Digital Methods for Conversion between Arbitrary Sampling Frequencies", 1RRP-Transaction
on Acoustics, Speech, and Signal Processing, vol. ASSP-32. pp.571-591, June 1984

[22] P. P. Vaidyanathan, "Fundamentals of Multidimensional Multirate Digital Signal Processing." Sadhana, vol. 15.
pp. 157-176. Nov. 1990

[23] P. P. Vaidyanathan, Multirate Systems andFilterBanks, Prentice Hall, 1993

[24] E Viscito, J. P. Allebach,"The analysis and Designof Multidimensional FIR PerfectReconstruction Filter-
banksforArbitrary Sampling Lattices", IEEE Transactions on Circuits and Systems,vol. CAS-38.pp.29-41.
Jan 1991

A Generalization of Multidimensional Synchronous Dataflow to Arbitrary Sampling Lattices 33 of 33


	Copyright notice 1995
	ERL-95-59

