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Abstract

In this paper, we study the generality of Chua's oscillator by deriving a class of vector fields

that Chua's oscillator is equivalent to. For the class of vector fields with a scalar nonlinearity,

we prove that under certain conditions, two such vector fields are topologically conjugate if

the Jacobian matrices at each point have the same eigenvalues and the equilibrium points are

matched up. We show how these conditions are related to the complete state observability of

a corresponding linear system. These results are used to show that the n-dimensional Chua's

oscillator is topologically conjugate to almost every vector field in this class. We comment on

the special case when the vector field is piecewise-linear and in particular when the vector field is

2-segment piecewise-linear. These results are illustrated by transforming several systems studied

in the literature into equivalent Chua's oscillators.

We also extend some of these results to the case of several scalar nonlinearities. As a

corollary we prove that almost all piecewise-linear vector fields with parallel boundary planes

are topologically conjugate if the boundary planes and equilibrium points are the same and the

eigenvalues in corresponding regions are the same.

1 Introduction

It is known that the unfolded Chua's circuit, also known as Chua's oscillator [R. Madan (Guest Edi

tor), 1993], with an odd-symmetric 3-segment piecewise-linear nonlinearity is topologically conjugate
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to almost all 3-dimensional systems with a 3-segment odd-symmetric piecewise-linear continuous

vector field [Chua, 1993; Shil'nikov, 1994]. The purpose of this paper is to extend this result to

the case where the nonlinearity is no longer odd-symmetric or piecewise-linear but may be any

arbitrary continuous function and the dimension of the system may also be arbitrary. We will do

this in two steps. In the first step, we show that under certain conditions, nonlinear vector fields are

topologically conjugate if the Jacobian matrices at each point have the same eigenvalues (Sec. 2).

In the second step, we show that Chua's oscillator can synthesize almost any eigenvalue patterns of

vector fields in our class (Sec. 3). These steps are combined in Sec. 4 to give the main result of this

paper. Sees. 5 and 6 are devoted to the special case of piecewise-linear vector fields. In Sec. 7 the

results in Sec. 2 are extended to systems with several scalar nonlinearities. We show that almost

all piecewise-linear vector fields with parallel boundary planes are determined, up to topological

conjugacy, by the boundary planes, equilibrium points and the eigenvalues in each region. This

generalizes previously known results on linearly conjugacy of piecewise-linear vector fields.

We use lowercase, bold uppercase and bold lowercase letters for scalars (or scalar-valued func

tions), matrices and vectors respectively. The transpose of a matrix A is denoted AT. The
vector 0 denotes the zero vector and e,- denotes the i-th unit vector, i.e., ei = (1,0,...,0) . Let

X(A) = det(AI-A) denote the characteristic polynomial of the matrix A. The integer n is usually

used to denote the size of matrices and vectors.

2 Topological Conjugacy under Equivalence of Eigenvalues

We consider the following class of vector fields in Lur'e form:

Definition 1 The class C(w) consists of vector fields of the form:

x=Ax+/(wTx)b (1)

where /(•) :R4Kwc real-valued continuous function. The class Cis defined as C= [JC(w).
w

If w = 0, C(w) reduces to the class of affine systems. When w ^ 0, there exists a nonsingular

matrix M such that MTw = ei. Using the transformation x -¥ Mx, system (1) can be written as

x=Ax+/(efx)b (2)

where A -> M_1AM and b -> M-1b. Thus for w ^ 0, vector fields in C(w) are topologically

conjugate to vector fields in C(ei).

Vector fields in class C(w) can be considered to be nonlinear vector fields where the nonlinearity

occurs only in the direction w and the changes in the Jacobian matrix are of a fixed form. In this

paper, we will mainly be working with vector fields in class C. By translating an equilibrium point

to the origin, a seemingly larger class of vector fields can be shown to be reducible to class C.



Definition 2 A point x* is a virtual equilibrium point of the system x = f (x) if

• x* is not an equilibrium point of the system; i.e., f (x*) ^ 0.

• There exists a point x where the Jacobian matrix exists and such that x* is an equilibrium

point of the system linearized at point x; i.e., Ax + b is the linearized vector field at x and

Ax* + b = 0, where A = £f(x)|x=x and b = f(x) - Ax.

The property of a system possessing a (real or virtual) equilibrium point is generic; a real

or virtual equilibrium point exists whenever the Jacobian matrix at some point is nonsingular.

In general, there are uncountably many equilibrium points in a system. For example, consider

the simple first order circuit shown in Fig. la. The virtual equilibrium points are found by

linearizing the nonlinear resistor around some point and finding the intersection with the v-axis

which corresponds to the equilibrium point of the linearized circuit. Some of the equilibrium points

of this circuit is shown in Fig. lb, where the blue curve is the v-i characteristic of the nonlinear

resistor. The red tangent lines correspond to the affine v-i characteristics of the resistor in the

linearized circuit.

Definition 3 The class C'iyv) consists of vector fields of the form:

x=Ax +h(wTx) b+c (3)

where h(-) is a continuous real-valued function such that the system has at least one equilibrium

point which can be real or virtual. We define C = (jC(w).
w

Lemma 1 The vectorfields in class C is equivalent to a subset of the vector fields in class C in

the sense that after a change of coordinates, Eq. (3) can be written as Eq. (1).

Proof: Let x* be an equilibrium point (which can be real or virtual) of system (3). x* being

an equilibrium point means that there exists a real number d such that Ax* + dh + c = 0. Let

y = x —x*. Then

y=x=Ay +Ax* +h(wT(y +x*)) b+c=Ay +/ (wTy) b

where / (wTyJ =h(wTy 4- wTx*J - d. •
Lemma 1 says that we can translate one of the equilibrium points to the origin, thereby obtaining

a simpler form and reducing class C to class C.



(a)

i •

Virtual Equilibrium Points Real Equilibrium Points

(b)

Figure 1: (a) First order nonlinear circuit consisting of a linear capacitor and a nonlinear resistor,

(b) Some equilibrium points of the circuit in (a). The blue curve indicates the v-i characteristic,

of the nonlinear resistor. The red tangent lines correspond to the affine v-i characteristics of the

resistor in the linearized circuit.



Definition 4 The pair (A,w) satisfies condition K if the matrix

K = K(A,w) =

l

wTA

wTA2

TAn~]w

\

/

(4)

is nonsingular, where A is an n x n matrix and w is an n x 1 vector.

Note that wr[K(A,w)]_1 = e[ when K(A,w) is invertible. Also note that if (A,w) satisfy
condition K, then w ^ 0. The set of (A,w) which satisfy condition K is of full measure. One of

the consequences of (A,w) satisfying condition K is that A is similar to a matrix in companion

form.

Lemma 2 //(A,w) satisfies condition K, then

I 0 1

KAK"1 =
0 0

^A

\ -r0 -n ••• -r„_i /

where x(A) = A" + r„_i An_1 H hT\X + ro and K = K(A, w) is as defined in Eq. (4)-

Proof: By the Cayley-Hamilton theorem, we have

KA =

/ wTA \ /

wTA2

wTA3

^wTAn j

wTA

wTA2

wTA3

n-l^wT(-rn.,A

\

riA - rol) y

/ 0

0

1 0

0 1

\ -r0 -ri ••• -rn_i /

(5)

K

Note that any companion matrix in form (5) together with ei satisfies condition K.

Lemma 3 //M is nonsingular, then K(A,w)M = K(M_1AM,MTw). In particular, for all
nonsingular M,

(A,w) satisfies condition K •*=$• (M AM,M w) satisfies condition K



Proof:

K(A,w)M =

V

the result follows.

TMww'

wTA
TA2

w M =

y*TMMrlAM

wTMM-1A2M

^wTMM-1An-1M ;wrAn-i

Since M is nonsingular, the second part of the lemma follows. •

Lemma 4 For all matrices A and all vectors b, w

(A,w) satisfies condition K -<=*• (A+ bwT,w) satisfies condition K

Proof: The case w = 0 is trivially true. For w ^ 0 using Lemma 3 we only need to prove the

case w = ei. Let K = K(A,ei) be defined as in (4). First note that ej = efK. We claim that
ef (A + befJ can be written as cfK for some vector c,. Thus Co = ei.

e[ (A +bef),+1 =cfK(a+bef)=cfAK +cfKbefK =(cfA+cfKbef) K
Thus c[+1 = cfA+ cfKbef. Since c0 = (1,0, ••-)T and ci = (efb,1,0, ••-)T» etc, it is clear that
the matrix

/

\ Cn-1 /

is lower triangular with l\s on the diagonal, i.e. it is nonsingular.

Since

/ ej \
ej (A +bef)
ef(A +bef)2

ef (A +bef)n-\

I «J \

V Cn-1 /

= K(M"1AM,Miw)

K

Lemma 5 Let A and A be matrices, and b, b and w be vectors. For each real number 6, define

As and A$ as follows:

As = A + £bwT, As = A + 6bwT

Then As has the same eigenvalues as As for all 6 if and only if Ast and A$, have the same
eigenvalues and As2 and As2 have the same eigenvalues for some 6\ ^6-2-



Proof: One direction is clear. Without loss of generality we can assume that w = ej. Let 6,- and 6,

denote the ith entry of b and b respectively and let at<7 and at-7 denote the (i,j)th entry of A and

A respectively. Expanding along the first column, x(A),x(A),x(A$),x(A$) can be written as:

X(A) = (A - axi)pi (A) - a2\P2(A) a„ip„(A)

X(A) = (A - au)p\(X) - a2ip2(A) oniPn(A)

X(AS) = xW ~ SblPl(X) - 6b2p2(X) 6bnPn(X)

X(As) = x(A)-^,pi(A)-^2p2(A) 6bnpn(X)

for some polynomials pi and j5t.

By the assumption x(Aj,) - x(A*2) = x(Aj,) - x(Aj2), i.e.,

(62 - ^,)(6lPl(A) + 62P2(A) + •••+ 6nPn(A)) = (*2 - *,)(&,?,(A) + b2p2(X) + •••+ 6npn(A)) (6)

Since 62- 6\ ^ 0, we can multiply both sides of Eq. (6) by f1^-, add x(A$,) to the left side, and
add x(A$,) to the right side to get x(Aj) = x(A$). •

Lemma 6 Let b be a vector and let (A, w) satisfies condition K. ThenKb is uniquely determined

by the eigenvalues of A and A + bwT, where K = K(A,w) is defined in Eq. (4)- Furthermore, b
is uniquely determined by A, w and the eigenvalues ofA + bwT.

Proof: Write the characteristic polynomials of A and A + bwT as:

X(A) = An + rn_1An-1+--. + r1A + r0

x(A + bwT) = An + *„-,An-, + .-- + *iA+ *o

Let Kb = (6i,62,• •-,6n)T. Then KAK"1 is in companion form by Lemma 2 and

/ 6, 1 0 \

K(A + bw^K"1 = KAK"1 + Kbef = &•> 0

\ K - ro -n ••• -rn_i /

By expanding along the first column, we see that the characteristic polynomial ofK(A+bwT)K~1
is:

X^A + bw^K-1) = xfKAK"1)
-61(A"-1+rn_1An~2 + --- + r1)

-MA^ + rn-iA^ + .-. + ra)
&„_i (A + rn_i) - 6n

(7)

(8)

(9)



which is equal to x(A + bwT). Comparing Eq. (7) with Eq. (9) the following set of equations is

obtained:

/ 1 0 0 \ / 6, \ / r„_! - s„_, \

r«-i 1

\ ri r2

0

1 / \bn J

Tn-2 - *n-2
(10)

\ r0 - sq J

So b is uniquely determined by Kb which in turn is uniquely determined by r* and 5, which is

determined by the eigenvalues of A and A + bwT.

Corollary 1 Let A be a matrix and w, bi and b2 be vectors. Suppose that (A,w) satisfies
condition K. The matrices A + bjw7 arid A + b2wr have the same eigenvalues if and only

if bi = b2.

Proof: One direction is clear. Now let A' = A 4- ^w7. Then A + b2wT = A' + (b2 - b^w7.
Lemma 4 implies that (A',w) satisfies condition K. Applying Eq. (10) in Lemma 6 to A' and
A' + (b2 - bi)wT for the case where r,- = «; we see that b2 - bi = 0. •

The following theorem gives some concepts which are equivalent to condition K.

Theorem 1 Let A be a matrix and w, bi and b2 be vectors. The following statements are equiv

alent:

J. The linear system

x = Ax

T
y W'X

(11)

is completely state observable1.

2. The pair (A,w) satisfies condition K.

3. No nontrivial subspace, which is invariant under A, is orthogonal to w.

4. The matrices A + biWT and A + b2wT have the same eigenvalues if and only if b\ = b2.

Proof: The equivalence between the first two statements is a standard result in linear system theory

[Chen, 1984]. The equivalence between statement 2 and 3 follows from the fact that Kb = 0 if

'A (time-invariant) linear system
x = Ax

y = Cx

is said to be completely state observable if there exists a time t > 0 such that for any initial state Xo at time 0, the

knowledge of the output y over the time interval [0, t] suffices to determine Xo [Chen, 1984].



and only if wTA*b = 0 for all nonnegative integers i. From Corollary 1 statement 2 implies
statement 4. Suppose that (A,w) does not satisfy condition K. Let b ^ 0 be in the kernel of

K(A,w). This implies that wTA,b = 0 for all nonnegative integers i. Now let A > |A| be a
real number and MTw = ei for M nonsingular. Since Ais not in the spectrum of A, the matrix
AI - A is invertible. Then (AI - A - bwT) = (AI - A)(I - (AI - A)-!bwT). By expanding
(AI- A)~* as a power series, we see that wT(AI- A)_1b = efM_1(AI- A)_1b = 0, i.e., the first
element of the vector M_1(AI - A)_1b is 0. Therefore the first row and all columns except the

first column of M_1(AI - A)-1bef consists of zero entries and thus det(I —(AI —A)_1bwT) =
det(I —M-1(AI—A)_1be^) = 1. Thus the characteristic polynomials of A and A -I- bwT agree
for all A> |A|. This implies that these polynomials are equal and thus A and A + bwT have the

same eigenvalues. This means that statement 4 is not satisfied. •

Remark 1 In studying the absolute stabilityproblem (or Lur'eproblem) of a system inform (I), it

is sometimes assumed that the linearsystem (11) is observable [Vidyasagar, 1978], and thus (A, w)

satisfies condition K.

Remark 2 Piecewise-linear systems where the Jacobian A and the normal vectors to the boundary

planes w satisfy statement 3 in the above theorem are called proper in [Komuro, 1988]. This

motivates us to give the following definition:

Definition 5 A vectorfield inC written in theform (1) is called proper i/(A,w) satisfy condition

K.

Remark 3 Proper vector fields form a set of full measure in C. Lemma 4 implies that Definition

5 is well-defined for a vectorfield in C. Furthermore, the matrix A in the definition can be replaced

by the Jacobian matrix at any point.

Remark 4 Statement 4 in Theorem 1 provides a characterizationfor state observability of single-

input single-output (S1SO) systems. It says that an SISO system

x = Ax+b* (l2)
y = w'x

is state observable if and only if for all b ^ 0, output feedback moves the poles of the system.

Consider a linear system of the form x = Ax. Two such linear systems are linearly conjugate,

i.e. topologically conjugate via a linear mapping, if the Jacobian matrices are similar, i.e. have

the same Jordan form matrix. If we restrict ourselves to matrices which are similar to a matrix in

companion form, then all Jordan blocks must be of maximum order, and the eigenvalues uniquely

determine the Jordan form matrix up to permutation. Thus if we assume that the Jacobian matrices



are similar to some matrix in companion form, then two linear systems are linearly conjugate if the

eigenvalues are the same. Lemma 2 says that matrices A which satisfy condition K with some w

are examples of such matrices. This result of topological conjugacy by matching of eigenvalues is

generalized in the next theorem which is the main theorem in this section. It is a generalization of

the global unfolding theorem in [Chua, 1993] and gives conditions under which vector fields in C

are topologically conjugate whenever the eigenvalues of the Jacobian matrices are matched up at

every point.

Theorem 2 Consider the systems

x=Ax +/(wTx)b (13)

and

x=Ax +/(wTx)b (14)
Assume that both systems arcproper. Then system (13) andsystem (14) are topologically conjugate

if the eigenvalues ofA and A are the same and the eigenvalues ofA+ bwT and A + bwT are the
same.

Proof: The proof follows the same steps as in [Chua, 1993]. By hypothesis, the matrices K =

K(A,w) and K = K(A,w) are nonsingular. Note that wTK_1 = wTK_1 = e[. Let us denote

X(A) = x(A) = An + rn_,An-1+..- + r1A + r0

X(A + bwT) = x(A + bwT) = AB + «n-,AB-1+ ..- + *iA+ «>

Using the transformation y = Kx, we obtain a system of the form:

y = KAK-Iy + /(wTK-,y)Kb

= Ay + /(e?y)Kb

where A is defined in Eq. (5).

Similarly using y = Kx, we get

£ = KAK-1y + /(wTK-,y)Kb
= Ay + /(efy)K£

By Lemma 6, the vectors Kb and Kb are uniquely determined by the coefficients rt- and at- and

are thus equal to each other. Thus the two systems above are identical, which means that systems

(13) and (14) are topologically conjugate. •

Remark 5 By Lemma 5, for differentiable f, the condition that the eigenvalues of A and A are

the same and the eigenvalues of A + hvrT and A + bwT are the same is equivalent to the condition
that the Jacobian matrices of the two systems (13) and (14) (with the same nonlinearfunction f)

have the same eigenvalues at every point.
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Lemma 7 Suppose (A, w) and (A, w) satisfy conditionK and A and A have the same eigenvalues.

The transfer function g(s) = wT(sI-A)_1b is equal to the transfer function g(s) = \vT(sI—A)-1b
if and only if A + bwT and A + bwT have the same eigenvalues.

Proof: By writing (si —A)"1 and (.si - A)-1 as a power series, we see that g(s) = g(s) if

and only wTA*b = wTA*b for all nonnegative integers i. This is equivalent to Kb = Kb where

K = K(A,w) and K = K(A,w). The matrix A + bwT is similar to KAK"1 + Kdw7^"1 =
A + KbeJ\ Similarly, A + bwT is similar to A -f- Kbej\ By Theorem 1, Kb = Kb is equivalent

to A -f Kbef and A + Kbef having the same eigenvalues. •

Definition 6 ([Chen, 1984]) A linear time-invariant dynamical system is irreducible if and only

if there does not exist a linear time-invariant dynamical system of lesser dimension that has the

same tixtnsfer-function matrix.

The SISO system (12) is irreducible if and only if the pairs (A,w) and (AT,b) both satisfy
condition K [Chen, 1984].

Lemma 8 Suppose the two systems

x = Ax + bu x = Ax -I- bu

y = wTx y = wTx

are irreducible. Then wT(sI - A)_1b = \vT(sl - A)_1b if and only if A and A have the same
eigenvalues and A + bwT and A + bwT have the same eigenvalues.

Proof: By [Chen, 1984, Theorem 5-20], ifwT(sI - A)_1b = wr(sl - A)-]b, then A and A
are similar matrices. The rest follows from Lemma 7. •

From an input-output properties point of view, this has the following interpretation. The

systems (13) and (14) can be decomposed into a linear and a nonlinear part as shown in Fig. 2a.

Suppose both linear parts havethe same transfer function g(s). Then both systemscan be depicted

as Fig. 2b.

There is essentially only one irreducible state-space realization of g(s), so if the linear parts are

irreducible, then the two systems are linearly conjugate. This is what Lemma 8 and Theorem 2

say.

If the linear parts are observable but not controllable (i.e. (A,w) and (A,w) satisfy condition

K, but (AT,b) and (AT,b) do not), then by Lemma 7 these 2 systems are still linearly conjugate

if A and A have the same eigenvalues.

We say that a virtual equilibrium point x* in system 1 and a virtual equilibrium point y* in

system 2 are matched if x* = y* and the same point x is used in both systems for the linearization

(Definition 2). Two real equilibrium points are matched if they are the same.
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u
x = Ax + bu y

y =wTx

u = f(y)

U

scalar nonlinearity

<V^. '•w-

x = Ax + bu

y = w x

ti =f(y)

scalar nonlinearity

(a)

u

g(s)
y

u = f(y)

scalar nonlinearity

(b)

Figure 2: (a) System (13) and system (14) each decomposed as a linear system with (scalar)

nonlinear feedback, (b) By expressing the transfer function of the linear part as g{s), the systems

in (a) can be depicted as shown.
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The next theorem shows that matching the equilibrium points and the eigenvalues of the Ja
cobian matrices at every point are sufficient to guarantee topological conjugacy of vector fields in
C(w).

Theorem 3 Consider two systems in C:

x = Ax+/(wTx)b (16)

and

x = Ax + flf(wTx)b (17)

where f and g are differentiable functions. Suppose that these two systems are proper and have at

least one matched (real or virtual) equilibrium point and their Jacobian matrices at each point have

the same eigenvalues, then these systems are topologically conjugate.

Proof: Fix xt and define A' = A+ f'{wTXi)bwT and A' = A+^(wTXi)bwT. Then Eqs. (16-17)
can be written as follows:

x=A'x+(/(wTx) - /'(wT*i)wTx) b (18)

x=A'x+(g(\vTx) - ^(wTxi)wTx) b (19)
Then (A',w) and (A',w) both satisfy condition K by Lemma 4 and A' and A! have the same

eigenvalues.

Without loss of generality we can assume that A and A have the same eigenvalues, as otherwise

we can always perform the above transformation. Assume that b ^ 0 and ^'(ejy) ^ 0 for some y.

Similar to the proof of Theorem 2, by using the transformations y = Kx and y = Kx for the two

systems respectively, we get

y = Ay + /(efy)Kb

y = Ay + $(eJy)Kb

The Jacobian matrices ofthese systems at y are respectively A+/'(e^y)Kbef and A-\-g'(eJy)Kbef.
By Lemma 6, /'(eJV)Kb = g'{e[y)Kb for all y. Since Kb ^ 0, this implies that f'(e[y) =
c9f(eJy) f°r aU y f°r some constant c. This means that there exists a constant e such that
/(•) = cg(-) + e. Since g'(ejy) ^ 0 for some y, it follows that cKb = Kb. Thus the two systems
simplify to

y = Ay + g(ejy)kb + eKb

and

y = Ay+<7(e[y)Kb

13



Now if they share an equilibrium point y*, then Ay* + dKb + cKb = 0 for the first system, and

Ay* + dKb = 0 for the second system, where d = g(e[y*) if the equilibrium point is real, and
d = <7'(efy)e^(y* - y) + </(efy) if the equilibrium point is virtual due to linearization around y.
In either case, we see that cKb = 0, thus the two systems are topologically conjugate. The cases

where b = 0 or g'(e[y) = 0 for all y are handled in a similar manner. •
Since topological conjugacy is preserved under affine change of coordinates, Theorem 3 can be

stated with more generality.

Theorem 4 Consider two systems in C

x = AlX+ /(wfx)b, = hi(x) (20)

and

y = A2y-r g{wjy)b2 = h2(y) (21)

where f and g are differetitiablc functions and Ai and A2 are n x n matrices. Suppose that these

two systems arc proper. Suppose further that T is a nonsingular matrix and t is a vector such that

x and y = Tx + t arc real equilibrium points of (20) and (21) respectively and Dhi (x) share the

same eigenvalues as Dh2(Tx +1) for all x, then the two systems (20) and (21) are topologically

conjugate.

Proof: Without lossof generality wecan assume bi and b2 are nonzero and / and g are nonlinear

scalar functions. Using the transformation y = Tx + t, system (21) can be written as

x = A2x + ^(wjTx)T"1b2 + T"1 A2t (22)

Then system (20) and (22) share an equilibrium point x and the Jacobian matrices at each point

share the same eigenvalues. The result follows from Theorem 3 after using Lemma 1 to remove the

term T_1A2t. •

3 Eigenvalue Patterns in the n-dimensional Chua's Oscillator

In this section we extend the 3-dimensional Chua's oscillator [Chua, 1993] to higher dimensions

by adding additional linear inductors, capacitors and resistors. We will call this the n-dimensional

Chua's oscillator. We show that the n-dimensional Chua's oscillator can synthesize almost every

eigenvalue pattern of 7i-dimensional vector fields in C.

For even n the n-dimensional Chua's oscillator is shown in Fig. 3a. For odd n the ?i-dimensional

Chua's oscillator is shown in Fig. 3b. The state equations of the n-dimensional Chua's oscillator
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Figure 3: 7i-dimensional Chua's oscillator, (a) n is even, (b) n is odd.

15



with an arbitrary nonlinearity are given by:

when n is even, and

dv\
It

Ht
dt'a
dt

dV4
It

<ft2j-l
dt

dV2j
dt

dvn
dt

dt

dV7
dt

dJ3
dt

dvA
dt

dt

dt

din
dt

* (*1i?L-»(••))
iW+fe)
L3 \ Vi I+G3R4 ^ I+G3/W

ct (-T+cffc - T+ikru +*5)

I^IT V~V2j-2 ~ i+G2i-i/«2, + l+G2j-iR2})
1 f G2j-i«2j «'aj-i • ; . ^

G2> V l+G2j_,K2, l+G2>_,/*2> "f^j+lj

f *'n-l <?n-lVn 'S

_L ( Guv* ia__ 4. i_\

1 /" .. ^2jt2j~l , V2, \
L2j_, V U2J-2 1+G2j-,K2, "T" 1+G2,_,K2J
1 (_ Gjj-lV2j _ «2j-l , • . \

C2j \ l+G2j-\R2j l+G2>_iK2> "T"z2j+i;

= £(-*-•-*)

(23)

(24)

when 7i is odd. We define G2 = l/#2. For n odd, ^j- = 0 is allowed. The state variable vj is
the voltage accross capacitor Cj and the state variable ij is the current through inductor Lj. The

function g(-) is a continuous real-valued function describing the v-i characteristic of the Chua's

diode [R. Madan (Guest Editor), 1993] nonlinear resistor.

By using a state transformation, the following dimensionless form is obtained:

dx\
dt

dxi
It

dX4
dt

= kct\(x2 —x\ —h(x\))

= k(X\ - x2 + x3)

= &a3(-a:2 + /?3(-«4^3 + ^4))

= kfi4(fi3(-x3 - 732:4) + x5)

dX2t
—a

-1 kCt2i-l (-321-2 + 02i-l (-Ct2iX2i-i -f X2i))

kfi2i{p2i-\ (-x2t_i - 72i-lX2t) + X2i+i)
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where the last equation is:
dxn
— = kpnpn_i (-z„_i - 7„_ia;„)

if 7i is even and
dxn . f xn \

It =*°" (-X»-' " Tn)
if n is odd. The state transformation is given by:

E- \V,x\ - —,x2j = —,x2j+1 = —-—, tor j = 1,2,---,[-jJ

. 1 C2 ., v ^2g(^^)

<*2i =%S ft« =^. fori =2f3,-,ltJ

«W-i =J^. ^' =i^UsHh^» T*-i=*aGfc-i, fori =2,3,-.,r?l
where [xj is the largest integer less than x and \x] is the smallest integer larger than x. If we also

rescale time, then we can assume k = +1 or k = -1 depending on whether C2R2 is positive or

negative.

We will write (Eqs. (23-24)) in the form of Eq. (1) as:

where

and

A =

/ G^+Ga
C\

C2

Gz
G,

-ft
1

x = Ax + —^ /(efxje.
l

v2

*3

V4x =

\Vn J

G2
ftl 1

MI+G3K4) L3(l+G3«4)
1 -Ga

C4(l+G3ft4) C4(l+G3«4)

17

G4

Cntl+Gn-iKn)
G„_i

C„(l+C/n_iH„) /

(26)

(27)



when 7i is even, and

and

A =

ft

V

1

I3*

x =

V\

V2

»3

V4

is

\*n /

G2
Ra 1

L3(1+G3R,) L3(l+G3«4)
1 -Ga

C4(l+G3/L,) C4(l+G3«4) G4

_L L_ ,
Ijti LnGn 1

when 7i is odd.

The function /in Eq. (26) is related to the function g in Eqs. (23-24) as follows:

50'i) = 6>1 + (Gb-6'o)/(vi)

Consider two tridiagonal matrices Aq and Ai defined as follows:

A0 =

A,=

/ ffll.l al,2

a2,i a2,2 <*2,3

an-l.Ti-2 an-l,n-l °n-l,n

an,n— 1 a7»,n /

^2,1 <*2,2 02,3

an-l,n-2 On-l.n-l ^n-l.n

V

\

(28)

(29)

(30)

(31)

Thus Ao and Ai only differ in the first entry. Let the characteristic polynomials of Ao and Ai be

written as:

X(A0) = An + rn_1A"-1 + ... + r1A + r0

X(A0 = An + *B_iAw-, + -.. + *iA + *o

The following Lemma is proved in [Kocarev et a/., 1993]:

(32)
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Lemma 9 Define k, = atjt for i = 1,.. .,n and pi = altt+1a1+i,t /or i = 1,.. .,n - 1. .Except /or a
set of measure zero, the tmlues of"Sit\, «,• and pi are uniquely determined by rt- and Si in (32) and
vice versa.

The following (n + l)-step algorithm2 is given in [Kocarev et a/., 1993] for computing ai,i, k,-
and pi from r^ and «,-:

Algorithm 1

Step 0: Calculate

4,-,i = (-l)V„_t- fori = l,...,n

i4,-,2 = (—1) for I = l,...,7l - 1
rn_! - 5„_i

Step 1: Calculate

«i = i4i,i - i4lt2

Ol.l = -*n-l - ^1,2

P\ = -j42,l+i42,2 + Kli4i,2
= -/lJ+2,l+^+2,2 +^Mi+l,2 fori=1?...)n_2

^i,3 =
P\

A —A1ly\ + «l «4,i-l,2
Ai-2,3 = ~

P\

Step 2: Calculate

«2 = Ax-2 - Ah3

Pi = -A2t2 + A2y3 + K2Ah3

= ->lj+2,2 +^+2,3 +«2>4i+1,3 fori=li.<.)7l_4

An-3,4 =
—An-\,2 + «2^n-2,3

Pi

Step &, for A; = 3,..., n —3: Calculate

«fc = A\,k - Ai^+i

Pk = -A2ik +A2,k+\ + KkAi^+i
A., - ~^J-f2,fc + A>+2,fc+l + KkAj+hk+l f . _ - , 0
4j,*+2 = tor J = 1,..., n — k —2

Pk

-Au-k+\,k + «Jt-4n-A:,A:+l
PA:

JThe algorithm sbown here corrects some typograpliical errors in [Kocarev et a/., 1993].
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Step n —2: Calculate

Step n —1: Calculate

Step n: Calculate

K„_2 = i4],n-2 - i4],n-i

Pn-2 =Pn-2 = -^2,n-2 + A2tH-i + Kn-2^1,n-l
-^3,n-2 + K„_2^2,n-1

P«-2

K71-I = >h,H-l —A\fn

Pn-l = _^2,n-l + «?i-l>4l,n

Kn — -^1,71

End of Algorithm 1

The matrix Adefined in (27) or (28) is tridiagonal and differs from A+ Ga^ib^\eJ in only the
first entry. Therefore we can apply Lemma 9 to the matrices A and A 4- '*£ Tfreie^. Applying
Algorithm 1 to find 01,1, «,• and pi and then solving for the circuit parameters in A and A +
Go-C'b^eJ^ we obtain the following theorem:

Theorem 5 Assume that the parameters ai^, k,- andp{ are calculated as in Algorithm 1. Suppose

that the following inequalities are satisfied:

oi.i i1 «i (33)

k2 ± 0 (34)

Pi ^ 0 fori= l,...,n- 1 (35)

P2i-1 ^ «2t-i«2i for i = 1,•••, UJ (36)

Then the following valuesfor the circuit parameters will give a matrix A (Eq. (27) or (28)) such

that

x(A) = Aw +rn_1An-1+... +r1A +r0
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c,

G2

Ga

Ch

C2

Lz

Gz

R4

CA

L2i-\

G2i-\

R2i

C2i

Gn

= 1

-£l£i.
«2

—K\C\ —G2

-Cl.l^'l - G2
_G*

K2

1
p2G2

Ka

^3(P3~«3«4)
«3l/3(p3~K3K4)

P3

P3

^3(P3~«3«4)2

P2t—2G2|_2 ^ 7 • • •» I 2 I

7 1 **' . r-r /ori = 2,...,HH
^21 —1lP2t —1 —«2i —1 «2t) ^ ' ' L2J
_ *2i-l^2t-l (P2t-1 ~*2i-l«2i) for 4= *) I2i I

P2i-1 ^ »' ' '♦ L2 J

—7 Ti Z r~T2" I0* l — A • • ••> \~o\^2i-l(P2i-l-K2i-lK2ir J 'L2J

—f-*— if n is odd

(37)

4 Topological Conjugacy Between Chua's Oscillator and Vector

Fields in C

We are now in a position to combine the results in the previous sections into the main result in this

paper which shows that by choosing appropriate parameters the 7i-dimensional Chua's oscillator is

topologically conjugate to almost every 7i-dimensional vector field in C. The statement of the next

theorem also gives an algorithm for choosing the parameters of Chua's oscillator.

Theorem 6 Consider a proper vector field of C written in the form (1). Let the characteristic

polynomials of A and A + bwT be written as Eq. (7). Suppose the inequalities (33)-(36) air
satisfied, then the Chua's oscillator defined in (23-24) wi*/i the parameters specified by (37) and

(29) is topologically conjugate to system (1).

Proof: It can easily be shown that given the conditions in the theorem, the matrix A defined

in (27-28) together with ei satisfies condition K. The theorem then follows from Theorem 2 and

Theorem 5. •

Remark 6 Lemma 1 implies that almost all vector fields in C are topologically conjugate to Chua's

oscillator.

Remark 7 Lemma 5 implies that the eigenvalues of the Jacobian matrix in Chua's oscillator (Eqs.

(23-24)) and the vectorfield in C (when written as Eq. (2)) will be the same at corresponding points

where the Jacobian matrix is defined.
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Remark 8 The set of vectorfields in C where inequalities (33)-(36) are not satisfied or is not

proper is of measure zero. For these vector fields, in general it is possible to perturb the system

slightly to obtain a systeiii in C outside this set which generates similar behavior.

Remark 9 In dimensionless form (25), the parameters for Chua's oscillator are given by:

k

«i

<*3

72t-l

02i-l

<*2t+l

fai

<*2i

= -K2

= $

= ~%
*2i-1*2i

P2i-1

_ 1

/ori = 2,...,HH

i+™-, /«•«•=2,...,ffl
P2iP2t-lPU>2l-l /«_ 1 _ O I 71 I

_ _(p2.-i-*2.-.«2,)2 /ort = 2,...,|§|
= icai-i^-i-icai-nca.-) /or j = 2,..., ISJ

K2P2i-l«2i-l ' ' 'L2J

M*) = (^-i)^ +7f(«i,i-«i)/W

(38)

5 Continuous Piecewise-Linear Vector Fields

For piecewise-linear vector fields, the Jacobian matrices Ji and J2 in neighboring regions must

satisfy a consistent variation property Ji - J2 = £caT. Piecewise-linear vector fields in C are such

that the vectors c and a are the same at all boundaries. Thus we consider the subclass of piecewise-

linear vector fields, where the Jacobian matrix in the different regions differ by a scalar multiple of

a fixed rank 1 matrix:

Definition 7 The class V is the class of vector fields which are:

• continuous,

• piecewise-linear with a countable number of regions,

• the boundary planes are parallel planes of the form wTx = a\,

• there is at least one equilibrium point (which can be real or virtual),

• there exists a matrix A and a vector b such that the Jacobian matrix in each region is of the

form A -{• /x,bwT.

Lemma 10 By a change of coordinates, the vector fields in class V form a subclass of C and can

be written in the form

x=Ax +(/ +cefx +]^ct|efx-dt| jb (39)
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Proof: The proof is similar to Lemma 1, where an equilibrium point is translated to the origin.

Without loss of generality we can assume that w = ei. It is clear that vector fields in class V can

be written in the form

x = A,x + bt, Jt_i <ejx < di (40)

Suppose that there exists an equilibrium point due to the linearization in region k, i.e. there exists

fjt such that Ajkfjt + b* = 0. The difference between the Jacobian matrices in two different regions

are of the form SbeJ. If a\ £ 0, by continuity, we must have

1 T
At+1 - A,- = T(bi - bt-+i)e,

di

If di = 0, by continuity we have b, - b,+i = 0. Thus in either case, we have (b; - b,+i) = 6b for

some constant 6. So we can write Eq. (40) as

x = Atx + bk + 6ib, d,_i < e?x < dt- (41)

where £,• are real numbers and 6k = 0. Using the transformation y = x —ft, we obtain

y = x = A,y + AA + bk +6,b, i-_, - ejfk < ejy < d{ - eftk (42)

Observing that A.-f* + d* = (At- - Ajk)fjk + A^. + bjt = (A; - Afcjf* = Kibe[fk = Ktefffcb for
some k,-, we see that system (42) is in the form

y = A,y + £tb, d{.x < ejy < d{ (43)

where i G{0,1,.. .,n}, Si € K and fa = 0 for some k. Noting that At- = A +wbef and by using
the canonical piecewise-linear equation [Chua and Kang, 1977], this can be written as Eq. (39). •

Thus the class V can be reduced to a subclass of C and we can apply Theorem 6 to these vector

fields. For vector fields in Vy Theorem 3 has the following interpretation. If two vector fields in V

have the same boundary planes, and the eigenvalues in corresponding regions are identical, and the

equilibrium points are matched, then the two systems with these two vector fields are topologically

conjugate (except for a measure zero set in V).

Consider the 4-dimensional 3-region piecewise-linear system considered in [Matsumoto et a/.,

1986] which exhibits hyperchaos:

dv\ _ /(v2-vi)-t3
dt ~ C,

dv* -/(ttt-^m)-^
j" ~y* (44)dh _ vi +Rtz v '

i = a'
where

f(x) = 7ni.a: + -(7n0 - mi) (\x + 1| - \x - 1|)
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For the parameters C\ = 5, C2 = ^, L3 = 1, L4 = §, R = 1, m0 = -0.2, and mi = 3, there
exists a real equilibrium point in each of the three regions.

Applying Theorem 5 we obtain the following values for the 4-dimensional Chua's oscillator:

C, = 1

C2 = -6.2599109091 x 105

C*4 = -7.3076305375 x 105

L3 = -6.7877793494 x 10"7

R2 = 2.4121749046 x 10"4

G3 = 7.7704985725 x 105

R4 = -9.9757154563 x 10~8

Gtt = -4.1500363636 x 103

Gb = -4.0796363636 x 103

with g(-) defined as

g(x) =Gbx +X-(Ga - Gb) (\x +1| - \x - 1|)
For these parameters, both system (23) and system (44) have an equilibrium point at the origin,

both systems are odd-symmetric 3 segment piecewise-linear, and the eigenvalues in corresponding

regions are matched. Figure 4 shows a projection of the resulting attractor from Chua's oscillator.

6 2-Segment Continuous Piecewise-Linear Vector Fields

In this section we study the subclass of vector fields in V which is piecewise-linear with 2 segments.

Thus the system has the form:

k=l Aox+bo, ejx<d (45)
1 Aix +bi, ejx > d

Without loss of generality we can assume that there exists a (real or virtual) equilibrium point by

linearizing in the region e^x < d?
The following corollary to Lemma 10 transforms system (45) into a more simplified form:

Corollary 2 Assume system (45) is in V. System (45) is then topologically conjugate to one of

the following systems:

{Aox, efx < 1

Aix+ D2, ejx > 1
(46)

3Thus weassume that there is either a real equilibrium point in the region efx < d or a virtual equilibrium point
in the region efx > d. If this assumption is not satisfied, it will be satisfied after the application of the transformation
y = —x since we assume the existence of at least one equilibrium point for a vector field in P.
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-0.01 -0.005/2 0 0.005 0.01

Figure 4: Attractor from the 4-dimensional Chua's oscillator which is topologically conjugate to

the system in Eq. (44) with parameters C\ = ^, C2 = ^, J
77ii = 3. The attractor is projected onto the V\-v2-iz plane.

the system in Eq. (44) with parameters C\ = 4, C2 = ^i ^3 —1> L4 = g, # = 1, 7?zq = —0.2 and
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/or «07ne vector b2.

x = i -—""* ~IT^' (47)
I Aox, e, x > 1

. = |A„x, efx<0

Proof: We will refer to Eqns. (46)-(48) as Form 1 to Form 3 respectively. Consider system (45).

Let f = (/i, f2i..., fn)T be such that Aof + bo = 0. Using the transformation y = x —f, we get

{A0y, ejy <d- fi
Aiy + b,+Aif, efy> d-fx

If d —f\ 7^ 0, a transformation of the form z = -£L- will transform the system into Form 1 (Eq.
(46)) if d - h > 0 and into Form 2 (Eq. (47)) if d - f\ < 0. If d - /i = 0, we obtain the system

.= f A0y, ejy <0
\ Aiy+bi+Aif, efy>0

which by continuity must be equal to Form 3. •

This corollary says that one of the equilibrium points, which can be real or virtual, can be

translated to the origin. Form 1 and Form 2 correspond to the cases where a real and a virtual

equilibrium point respectively, is translated to the origin. Form 3 corresponds to a real equilibrium

point lying on theboundary being translated to theorigin. When we use A = Ao and A+be^ = Ai
in Theorem 5 for calculating the parameters of Chua's oscillator, we only need to deal with Chua's

oscillator with one of the following 3 nonlinearities:

g(x) = ^(Ga-Gb) +^(Ga +Gb)x+±(Gb-Ga)\x-l\ for Form 1 (49)
9(*) = \(Ga-Gb) +i(Ga +Gb)x +±{Ga-Gb)\x-l\ for Form 2 (50)
9{*) = \(Ga +Gb)x +±(Gb-Ga)\x\ for Form 3 (51)

Note that using these three forms for g(-) results in Chua's oscillator having the same number

of parameters as the 3-segment odd-symmetric Chua's oscillator.

Let us illustrate the above by transforming two chaotic systems, which have 2-segment piecewise-

linear vector fields, into equivalent Chua's oscillators.

[Nishio et a/., 1992] introduced two simple circuits which exhibit hyperchaos. The state equa

tions are given by:

«i = x3 - f{x\)

** = 7c(«4-*») (52)
Xz = x2 — X\

x4 = —jlx2 + ax4
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and

X\ = Xz

*2 = lc(x4-x3- f(x2))
(53)

Xz = X2 — X\

X4 = —JL.X2 + CtX4

where f(x) = ±(\x - 1|+ x - 1).
Consider Eq. (52) with parameters 7l = 0.5, 7c = 0.5, a = 0.18, € = 0.005. There exists a real

equilibrium point in each of the two regions, so we obtain Form 1. Using Theorem 5, we obtain the

following parameters for the 4-dimensional Chua's oscillator:

d = 1

C2 = -1.2980742146337069 x 1033

C4 = -2.5961484292674138x 1033

L3 = -1.5407439555097887 xlO"33

R2 = -2.7755575615628914 x 10~17

G3 = 4.6730671726813447 x 1032

R4 = 4.2764235361475130 x 10~50

Ga = 3.6028797018963968 x 1016

Gb = 3.6028797018964168 x 1016

where g(-) is defined by Eq. (49). Note that some ill-conditioning causes Ga to be very close to

Gb. Figure 5 shows a projection of the resulting attractor from Chua's oscillator.

Consider Eq. (53) with parameters 7/, = 1, jc = 1.545, a = 0.26, e = 0.005. Again there

exists a real equilibrium point in each of the two regions. Using Theorem 5, we obtain the following

parameters for the 4-dimensional Chua's oscillator:

C\ = 1

C2 = -1.8284023669 Xl02

C4 = -2.1568595807 x 102

L3 - -1.1321166763 x 10"2

R2 = 4.2071197411 x 10"2

G3 = 7.1307692308 x 101

R4 = -2.5374219121 x 10"3

Ga = -2.3769230769 x 101

Gb = 2.8523076923 x 102

where </(•) is defined by Eq. (49). Figure 6 shows a projection of the resulting attractor from

Chua's oscillator.
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-1e+17 -

Figure 5: Attractor from the 4-dimensional Chua's oscillator which is topologically conjugate to

the system in Eq. (52) with parameters 72, = 0.5, -fc = 0.5, a = 0.18, € = 0.005. The attractor is

projected onto the vi-v2-i3 plane.
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Figure 6: Attractor from the 4-dimensional Chua's oscillator which is topologically conjugate to

the system in Eq. (53) with parameters 77, = 1, 7c = 1.545, a = 0.26, €= 0.005. The attractor is

projected onto the v\-v2-i3 plane.
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7 Linear Conjugacy of Vector Fields with Multiple Scalar Non-

linearities

We now extend the results in Section 2 to vector fields with several scalar nonlinearities. We

consider the following class of vector fields:

Definition 8 The class Cn(w) consists of vectorfields of the form:

x=Ax +]T/t-(wTx)bi (54)
i=i

where A is an n x n matrix and /,(•) : R -»• E are real-valued continuous functions. We define

Cn = [jCn(w).
w

If w = 0, this reduces to the class of affine systems. Vector fields in class C„(w) can be considered

to be 7i-dimensional nonlinear vector fields where the nonlinearity occurs only in the direction w.

This is stated more precisely in the following lemma.

Lemma 11 Forw ^ 0, the class C«(w) is equal to the class of continuous vector fields x = f(x)

such that f (x) = Au + g(v) for allx where x is decomposed osx = u + v and v = ^r^w is the
orthogonal projection o/x onto w.

Proof: Since wTx = wTv, a system in the form (54) can be written as:

oo

x=Au +Av +Y, fi (wTv) b«
t=l

So one direction is clear. Consider a system of the form x = Au + g(v). Since v = (wyw) w'x,
g(v) can be written as g(wTx). Thus we can write the system as

x = Ax —Av + g(w x) = Ax - A—=—w x + g(w' x)

This can be written as (54) if we define bt- = e,- and

/;(wrx) =ef (g(wTx) -A^wTx)
for i = 1, • • •, 7i. •

Definition 9 A vectorfield in Cn in the form (54) is said to be proper if (A,w) satisfy condition

K.

The following theorem is the analog of Theorem 2 for the class C„(w).
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Theorem 7 Consider the systems

oo

x=Ax +^/1(wTx)b1- (55)
t=i

and
oox=Ax +£/i(wTx)bt- (56)

t=i

Assume that both systems are proper. Then system (55) and system (56) are linearly conjugate if

the eigenvalues ofA and A are the same and the eigenvalues of A + btwT and A + btwT are the
same for each i.

Proof: The proof follows the same steps as in Theorem 2. •

The next theorem is the analog of Theorem 3 for the class Cn.

Theorem 8 Consider two systems in Cn

oo

x =Ax+^/t(wTx)bi (57)
t=i

and
oo

x = Ax +$>i(wTx)bt- (58)
t=i

where fi and gi are differentiable functionsfor all i. Suppose that these two systems areproper and

have at least one matched (real or virtual) equilibrium point and their Jacobian matrices at each

point have the same eigenvalues, then these systems are linearly conjugate.

Proof: The proof is similar to the proof of Theorem 3.

As in Theorem 3 we can assume that without loss of generality A and A have the same

eigenvalues. Consider K = K(A,w) and K = K(A,w) which are nonsingular by hypothesis.

Since K-1e; and K"1^ forms two bases of Rn, it is easy to see that without loss of generality we

can assume that the two systems can be rewritten in the form:

x = Ax+J2fi(vTx)K-lei (59)
«=i

x = Ax +^fttw^K-'e,' (60)
t=i

Similar to the proof of Theorem 2, by using the transformations y = Kx and y = Kx for the

two systems respectively, we get

y=Ay+£/,(e7V)et-
i=l
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y =Ay+5Z^,(efy)et-
t=i

The Jacobian matrices of these systems at y are respectively A -f- E!=i fl(e[y)eiej and A +
Ei=i 9i(e[y)eief. By Lemma 6, //(ef y)et- = g'^ejy)et- for all y. This implies that fl(ejy) =
g'i(ejy) for all y and thus there exists a constant c, such that /,(•) = <j,(-) + Cj. Thus the two
systems simplify to

n

y=Ay+2 (#(eiV) +c,) e<
«=i

and
n

y =Ay+£<7,(efy)et-
i=i

Now if they share an equilibrium point y*, then Ay* + £?=i (di + ct)e,- = 0 for the first system,

and Ay*+ £"=1 d,et = 0 for the second system, where di = gi{e(ym) if the equilibrium point is
real, and di = gi(ejy)ej(y" - y) + gi{ejy) if the equilibrium point is virtual due to linearization
around y. In either case, we see that c; = 0 for all i, thus the two systems are linearly conjugate.

•

For completeness, we will state the following analog of Theorem 4 for class C„.

Theorem 9 Consider two systems in Cn

oo

x = A,x +^ /ilwfxlb,-,, = h! (x) (61)
t'=l

and

y = A2y +Efif,(w.ry)bt,2 =h2(y) (62)

where fi andgi are diffcrcntiable functions and A\ and A2 are n x n matrices. Suppose that both

systems arc proper. Suppose further that T is an nonsingular matrix and t is a vector such that

x and y = Tx +1 are real equilibrium points of (61) and (62) respectively and Db\ (x) share the

same eigenvalues as £>h2(Tx -f t) for all x, then the two systems (61) and (62) are topologically

conjugate.

The simplest case of nonlinear vector fields in Cn are the continuous piecewise-linear vector fields

where the boundary planes are parallel. Parallel boundary planes means that in the consistent

variation property Ji —J2 = caT the vector a is the same at all boundaries. It is easy to show that

all piecewise-linear vector fields with parallel boundary planes belong to class C„. Thus we get the

following corollary to Theorem 8:

Corollary 3 Two proper continuous piecewise-linear vector fields with parallel boundary planes

are topological conjugate if the boundary planes and the equilibrium points are matched up and the

eigenvalues are the sanie in corresponding regions.
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In [Komuro, 1988] it was shown that 7t-dimensional 2-region proper piecewise-linear vector fields

are topologically conjugate if the eigenvalues in corresponding regions are the same. In [Feldmann

and Schwarz, 1994] this is shown for all 7i-dimensional 3-region odd-symmetric piecewise-linear

vector fields. Corollary 3 extends these results to the class of proper continuous piecewise-linear

vector fields with parallel boundary planes.

8 Conclusions

We have identified a class of vector fields where the members are topologically conjugate when

ever the Jacobian matrices have the same eigenvalues at each point and the equilibrium points

are matched up. Since Chua's oscillator belongs to this class and can synthesize a large set of

eigenvalue patterns, this implies that Chua's oscillator is topologically conjugate to a large class

of vector fields. This extends previous results which deal only with 3-dimensional odd-symmetric

3-segment piecewise-linear vector fields. The topological conjugacy part of the main result can be

extended to systems with multiple scalar nonlinearities and we use that to prove that almost all

continuous piecewise-linear vector fields with parallel boundary planes are topologically conjugate

if the boundaries and equilibrium points are the same and the eigenvalues in corresponding regions

are the same. This result extends previously known results which are limited to 2-segment and

3-segment odd-symmetric piecewise-linear vector fields.
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Appendix 1

In this appendix we present 3-D phase projections of attractors from several well-known 3-dimensional

chaotic systems and their counterparts from the 3-dimensional Chua's oscillator by applying Theo

rem 6. In cases where Eq. (33) is not satisfied, s„-i is decreased by a small amount when applying

Algorithm 1.

Chaotic Colpitts Oscillator

The state equations of the chaotic Colpitts oscillator [Kennedy, 1994] are given by:

<?!^ = 1L-Ic

L& = Vcc-Vce + Vbe-IlRl

where

Ib = {
0 Vbe < Vth

-V-
P*- Vbe > Vth

Ic = Mb

For the parameters VCc = 5V, RL = 35fi, L = 98.5//ff, C\ = C2 = 54?iF, REe = 400Q,

Vee = —5V, Vth = 0.75V, Ron — 10017, /?f = 200 of this system, the corresponding parameters

for Chua's oscillator are given by

C\ = 1

C2 = 3.9234278162 x 102

L3 = 6.7473529008 x 10"17

R2 = 8.2538319739 x 10"9

G3 = 3.1852491364 x 10"

Ga = -1.2092436506xl08

Gb = -1.2110955024 x10s

g(x) = l(Ga-Gb) + ±(Ga + Gb)x + ±{Gb-Ga)\x-l\

The corresponding attractors from these two systems are shown in Fig. 7a and Fig. 7b respectively.

Brockett's System

The state equation for Brockett's system [Brockett, 1982] is given by:
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where / is a 3-segment piecewise-linear function given by:

f(y) = ,
3fcsgn(y) \y\ > 1

For k = 1.8, the corresponding parameters for Chua's oscillator are given by:

C, = 1

C2 = 5.3270141220 x 102

L3 = 3.4698425778 x 10~6

R2 = -1.8666566179 x 10~3

G3 = 2.8657513826 x 105

Ga = 5.3671716962 x 102

Gb = 5.3672716962 x 102

g(x) = Gbx + ±(Ga-Gb)(\x+l\-\x-l\)

The corresponding attractors from these two systems are shown in Fig. 8a and Fig. 8b respectively.

Sparrow's System

The state equations for Sparrow's system [Sparrow, 1981] are given by:

i\ = f{xz) - x\

X2 = X] — x2

%z = x2 - Xz

where / is a 3-segment piecewise-linear function given by:

8.4rz3 + 0.96276 + 2.3872r x3 < 0.28419

f(x3) =I -8.4x3 +3.35 0.28419 <x3 <f
SArxz - 0.25 - 3.6r x3 > j

For r = 19.0, the corresponding parameters for Chua's oscillator are given by:

C, = 1

C2 = -6.2252592698 x 102

L3 = 2.8731155811 x 10"7

R2 = 5.3544019103 x 10"4

G3 = 1.1601531225 x10s

Ga = -1.8646222233 x 103

Gb = -1.8645922233 X103

g(x) = Gbx + ±(Ga-Gb)(\x + l\-\x-l\)

The corresponding attractors from these two systems are shown in Fig. 9a and Fig. 9b respectively.
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Ogorzalek's System

The state equations for Ogorzalek's system [Ogorzalek, 1989] are given by:

x\ = f(x3) - 1x\ + x2

x2 = x\ —2x2 + %z

xz = x2 — Xz

where / is a 3-segment piecewise-linear function given by:

m\Xz + Wlj —TTlo Xz < -1

f(xa) = \ W0Z3 |a:3| < 1

m\Xz + mo —m\ xz > 1

For 7710 = —33.03 and r»i = 400, the corresponding parameters for Chua's oscillator are given by:

C, = 1

C2 = -3.4660736904 x 102

L3 = 3.3408722323 x 10"7

R2 = 5.7696798665 x 10~4

6*3 = 5.9859025418 x10s

Ga = -1.7281984151 x 103

Gb = -1.7281484151 x 103

g(x) = Gbx + \(Ga-Gb)(\x+\\-\x-\\)

The corresponding attractors from these two systems are shown in Fig. 10a and Fig. 10b respec

tively.

Arneodo's System

The state equation for Arneodo's system [Arneodo et a/., 1982] are given by:

d3y d2y dy o

For p. = —1, no = —5.5, p,\ = 3.5, \i2 —1, the corresponding parameters for Chua's oscillator

are given by:

C, = 1

C2 = 8.0737820354 x 101

Lz = 1.2239479563 x 10"4

R2 = -1.1329163199 x 10"2

Gz = 7.4732911509 x 103

Ga = 8.9267772512 x 101

Gb = 8.9277772512 x 101

g(x) = Gax+(Gb-Ga)x3
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The corresponding attractors from these two systems are shown in Fig. 11a and Fig. lib respec

tively.

Nishio's System

The state equations for Nishio's system [Nishio et a/., 1990] are given by:

x\ = -b(f{xi)-rx3)

X2 = Xz

iz = (a-b)xz-x2 - bf(xi)

where / is a 3-segment piecewise-linear function given by:

/(*i) = {

JIllX] + Wli — 77lo X\ < —1

n\QX\ \x\\ < 1

m\X\ + mo — 7W] X\ > 1

For 77t0 = —0.5 and mi = 10, a = 0.3, 6=1, the corresponding parameters for Chua's oscillator

are given by:

C\ = 1

C2 = -3.2604757879 x 10"2

Lz = -2.7603333333

R2 = -1.0111111111 x 101

63 = 1.0868252626 x 10"1

Ga = 5.9890109890 x 10"1

6*6 = 1.1098901099 x 101

g(x) = Gbx + i(Ga-Gb)(\x+l\-\x-l\)

The corresponding attractors from these two systems are shown in Fig. 12a and Fig. 12b respec

tively.

Dmitriev's System

The state equations for Dmitriev's system [Rul'kov et a/., 1992] are given by:

X\ = x2

x2 = —x\ —6x2 -J- xz

xz = 7(^(^1) - £3) - vx2

where F is given by:

FM={
0.528q xi < -1.2

aii(l-z2) |a;i|<1.2 (63)

-0.528q xx > 1.2
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For a = 20, 6 = 0.43, a = 0.71, 7 = 0.1, the corresponding parameters for Chua's oscillator are

given by:

6*, = 1

6'2 = -8.9906258405 x 101

Lz = 5.6294509561 x 10~4

R2 = 2.2612337453 x 10"2

63 = 3.6113480161 x 103

Ga = -4.3693645701 x 101

6*6 = -4.3688645701 x 101

g(x) = Gax + (Gb-Ga)F(x)

where F(>) is given by (63). The corresponding attractors from these two systems are shown in

Fig. 13a and Fig. 13b respectively.
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Appendix 2

We give in this Appendix a different 71-dimensional circuit which is presented in [Kocarev et ai,

1993]. This circuit can also synthesize almost all eigenvalue patterns in C. The circuit diagram for

n is even and n is odd is shown in Fig. 14a and Fig. 14b respectively.

R1

V1

+

v1

•WAN"
L2 R2

C1

i2

C1

v3

C3

IMA/1
L2 R2

+

v3

• •

G3

(a)

C3 Q3

< » <

vv
Rn

+

>

Vn-1

Cn-1

———HI 1

•n-1

Ln-1 Rn-1
+

• • 'n

R1

(b)

Figure 14: 7i-dimensional circuit given in [Kocarev et a/., 1993]. (a) n is even, (b) n is odd.

The state equations are given by:

dK-Ax g(e^c.dt -Ax C, l
where g(>) is the v-i characteristic of the nonlinear resistor and A is given by:

A =

0
1

0 0 0 ... 0 0 0

1

-ft
1

0 0 ... 0 0 0

0 l

-ft
1

c3 0 0 0 0

0 0 0 0 ... 0 1

Cn-1
Gn-1
Cn-i

1

Cn-1

0 0 0 0 ... 0 0 1

fc
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if 7i is even and

A =

0 1

c, 0 0 0 ... 0 0 0

1

L2 -ft
l

in
0 0 ... 0 0 0

0 i

c3 -&
1

cl 0 0 0 0

0 0 0 0 ... 0
1

Ln-1
Rn—1
Z»n-1

1

£n-l

0 0 0 0 ... 0 0
1

"c„
Ca
Cn

if n is odd. Applying Algorithm 1, the following assignment of circuit parameters will give the

desired topologically conjugate system when g(-) is given by (29):

6*i

Ga

6*6

L2

R2

Cz

= 1

= —K\C\

= -oi,i6'i
1__

Pi6',
= —K2L2

1_
P2^2

6*2/-1 =

111 =

#2/ =

62/+I =

•«2/-l6*2/-l
1

Pil-\C2l-\
K2iL2i

1

p2iL2i

R1l = -/c„L„, if 7i is even

6„ = —Kn6'n, if 7i is odd

Other circuit topologies for synthesizing eigenvalue patterns in Care given in [Gotz et a/., 1993].
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