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Preface

This is the fifth annual edition of the 290W report. This edition includes descriptions of
projects completed during the Spring semester of 1994, in the context of the graduate course
"Special Issues in Semiconductor Manufacturing**. Five students have participated, and accord
ing to the course requirements, these students worked with me on their projects during the last six
weeks of the semester.

Each of the presented projects coversat leastone novel aspect of semiconductormanufactur
ing. The first discusses experimental modeling of micro self-assembly. The second deals with the
control of pulsed laserenergy for photolithographic applications. The third presents a detailed sta
tistical process control scheme for a polysilicon etcher. The fourth solves die problem of statisti
cally valid worst casecharacterization of BSIM3 models.Finally, the last projects investigates the
possibility of process characterization based on high level integrated circuit behaviors.

It is my hope that these reports will add to our understanding of semiconductor
manufacturing. My thanks go to the 290W students whose work made this document possible. I
am also grateful to the personneland managementof the Berkeley Microfabrication laboratory for
their help with the experimental part of the projects presented here.

Costas J. Spanos

August, 1995
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Electrostatic Self-Assembly of Microfabricated
Structures: Factorial Optimization

Michael Cohn

The term "self-assembly" has been applied to spontaneous ordering pro
cesses such as crystal and polymer growth. In these processes, random
thermal vibration causes a system of atoms or molecules to evolve in a way
that minimizes its potential energy. Recently, this principle has been pro
posed for use in microelectronics manufacturing, for rapid assembly of
large-scale hybrids. A demonstration system has been constructed. The
rate of self-assembly in this system is analyzed with factorial experiments.
Results are employed to optimize performance and model system behavior.

1.0 Introduction

Self-assembly has been proposed for the manufacture of hybrid circuits incorporating large
numbers of devices [1], [2]. For example, one may wish to bond approximately 100 GaAs lasers
onto a microprocessor die to provide optical interconnects; alternately, single-crystal silicon FETs
could be placed on a plastic substrate for active-matrix liquid crystal displays.

The focus here will be on rapidly placing a number of small (400x400x200 micron) devices at
predetermined sites on a substrate. To accomplish this, electrodes are lithographically defined on
the substrate, so that an applied voltage results in electrostatic forces which can attract small par
ticles in the vicinity of the electrodes. The substrate is vibrated to defeat static friction and to
bring devices near the electrodes. The apparatus is diagrammed in Figure 1.

FIGURE 1. Apparatus.
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The electrodedesign is shown in Figure2. Thisdesign represents a parallel-plate capacitor, in
which the upper plate has a small aperture. Fringing fields will attract a neutral particle by induc
ing electricalpolarization. The force on the particle thenparallelsthe fieldgradient. Binding of a
single particle in the aperture shields subsequent particles from the field.

This concept borrows from thermodynamics and simulated annealing principles. As in these
areas, equilibrium behavior can be modeled straightforwardly, depending only the potential
energy change on binding and the average particle velocity. However, kinetics — the rate of
assembly in this case ~ depend on many variables. These include the overlap of the electrode's
potential well with the particle's velocity-spacedistribution. Orientational asymmetry of the par
ticle and well must also be taken into account, as well as the particle's average spatial distribution
within the container. Since the dependence is in general both complex and sensitive, assembly
rate is a worthwhile candidate for statistical analysis and optimization.

2.0 Methodology

The binding time, T, was measured as a function of electrode voltage Vand vibrational ampli
tude A. Other parameters, such as vibrational frequency, were held constant.

semiconductor
device —Q

FIGURE 2. Electrode configuration.

Since the range of binding times extended below 1 second, an optical sensor was employed in
conjunction with a recording oscilloscope to accurately time these events. (See Figure 3.) An AC
high-voltage supply was employed to counter the effects of static charge buildup on the particle.
Initial trials established that x was highly sensitive to both control variables; therefore, measures
were taken to ensure stability and repeatability. Electrode voltage was stabilized using a self-
oscillating driver on the primary of the step-up transformer, in conjunction with an automatic gain
control (AGC) circuit. (See Figure 3.) The loudspeakerwas driven from the source output of an
HP3562A Digital Signal Analyzer (402.6 Hz sinewave), via a power amplifier. The RMS elec
trode voltage was found to be stable to 0.06%, and the speaker drive to 0.33%, over a 10 minute
period. Both noise levels were significantly below the sensitivity of the experiment.

ElectrostaticSelf-Assembly of Microfabricated Structures: Factorial Optimization EE290W S94
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FIGURE 3. Schematics for high-voltage power supply, speaker amplifier, and optical sensor
circuit.

The initial centerpoint was chosen to yield convenient binding times, on order of 30 seconds,
so as to allow an acceptable number of trials. Also, electrode voltage had to be minimized (< 4 V
at the testpoint), because otherwise the dielectric tended to break down in a matter of minutes oth
erwise.

A two-level factorial was subsequently run over both control variables, including the center-
point (5 points total). 25 measurements were collected at each setpoint, on the basis of initial esti
mates of effects and the standard error. The magnitude and significance of each effect, as well as
the interaction, were evaluated. A subsequent run of 70 measurements was performed at a sepa
rate setpoint to obtain more information on the distribution and to evaluate autocorrelation. A
second five-point experiment was performed to optimize the process (minimize x).

Electrostatic Self-Assembly of Microfabricated Structures:Factorial Optimization EE290W S94



m

o
-

!£ ii

fc
h

3
"

0> 8- 8- O 3
*

a v
>

o o
'

3 O O O c 3 0
0 3 P
»

c
r.

x C
L

H 3
"

3

O
O

t/
>

|>
gL

E
L

K
-5

to

8
c?

2:

8 C
U

3

i 5 to 3s 3 to n B 3
.

!
°

t
o

!
°

< <

O
J

4
k

0

i
n

>
o

i
n

b
o 8

c
/
>

<
-
4

i
n

O
N

O

i
n

i
n

i
n

N
O

O

> 3 <

> • V

1
0

i
-
»

i
n

Q
A 0

0 5
'

N
O

O
4
k

O
J

0
0

4
k

t
o

t
o

O
J

O
J

i
n

0
0

jo
t
o

N
O

O
J

O
N

N
O

O
N

0
0

O
J

O
J

O
i
n

O
J

4
a
-

?
^
^

O
J

0
i
n

O
J

t
o

it
K
»

O
n

O
J

•
-
«

i
n

O
N

i
n

O

N
O

t
o

0
0

O
N

0
O
N

0

N
O

N
O

0

© O
n

O

t
o

4
k

N
O

b i
n

-
J

b
o

1
0

O

O
N 8

N
O

O
J

0
O
J

O
N

t
o

O

J
k

O
O

4
k

i 0

i
n

0
0

O

b 0
8 0

§
b
o

t
o

b O
J

§
t
o

0

i
n

O
J

0

O
J

N
O

0

O
J

O
O

0
0

-
J

t
o

-
0

t
o

t
o

I
n

t
o

O -
O

O
J

O
J

O
J

0
0

t
o

-
J

©

t
o

0 a
s

-
O

i
n

t
o

O
n

t
o

O
J

0
i
n

t
o

N
O

O
O

O
N

-
0

4
a
.

O
J

a
s

0
0

S
O

m
t
o

N
O

o
j

0
0 0
0

O i
n

i
n

O -
o

b
o

0
0

0
0

© a
s

O
J

N
O

O

O
N

O

b
o

-
0

0

b O
J

O
J

O
O

i
n

O
J

O
J

2
8

4
*
.

N
O

i
n

N
O

O
s

-
J

O

O
J

O
J

0
4
a
.

O

b
o

i
n

a
\

O
J

O
J

4
a
-

O
O

O

O
O 8

b 0
«
o

t
o

9
°

1
0

>
4

4
k

0
0

O
J

O
n

O
N

i
n

t
o

O
N

O
N

O
J

i
n

O
J

t
o

O
J

O
J

i
n

O
J

0
0

-
J

4
*
.

O
O

'Z
.

O
N

i
n

-
0

8
i
n

O
J

N
O

So

N
O
J

o
j

N
O

i
n

4
k

K
>

b
o

S
J

N
O

4
k

N
O

t
o

O
J

8 to
4
k

3
in O
J

0
0

-
J

t
o

N
O

-
J

^
1

O
J

O
O

O
J

-
J

0
-
0

t
o

0 t
o

i
n

O

b
o

O

^
J g

O
J ?3

i
n

0
0

O
J

0

a
s

N
O

b i
n

t
o

0

"
O
J

in 0

0
0

O
O

t
o

O
O

O
J

O
N

5
§

t
o

O
J

4
k

N
O

t
o

N
O

t
o

-
J
p

0
0

t
o

i
n

0
0
£

>
—
•

*
-
*

a
s

•
0

«
o

i
n

O
O
N

0
0

t
o

0
0

i
n

O
J

O
N

N
O

^
4
k

0
0

N
O

O
O

t
o

-
0

O
N

t
o

I
n

N
O

O
J 8

L
a

t
o

O
J

O
J

0
O
J

0
O
J

O

N
O

O
N

N
O

O
N

t
o

i
n

t
o

4
k

0
0

b
o

O

^
1

0 O
J

*«
o

O
N

b
o

O

N
O

b i
n

O
O
J

O
J

i
n

4
a
.

t
o

N
O

0
0

O
J

0
0

0

b
o

O

t
o it

P

O
J

O
N

O
N

I
O

4
k

0
0

a
s

t
o

0
0

O
J

o
t

0 O
J

0
*
l

a
s

-
0

<
7

\

0 0 -
0

0

O
J

I
n

4
k

O

0
0

b
o

e
n

O

4
k

a
s

O
J

N
O

i
n

N
O

0
0

b
o

O
J

O
J

0
0

4
k

t
o

i
n

0 t
o

O
J 8 O

N
O

*4
k

-
J

O

O N
O

4
k

O
J

1
—
•

O
J

0

^
1

O
J

0
0

i
n

O
J

0
0

O
J

O
J

0

t
o

O
J

i
n 8

t
o

O
J

O
J

0

O
J

N
O

O
N

-
o
<

O
J

4
a
.

N
O

4
k

O
t
i
l

1
0

o
j

1
—
»

e
n

0 i
n

0 0
0

^
1

0
-
J

^J
e
n

t
o

t
o

O
J

0
0

N
O

O
N

O
s

t
o

1
0

O
n

O
J

O
J

•
O

8
4
»
.

O
N

t
o

N
O

i
n

N
O

S
•
J

O
-
0

0
0

i
n

*
—

0
0

C
*
l

*;
e

i
n

O
n

0
0

b
o

O
8 4

k

t
o

N
O

O
J

O

t
o

0
1

O
I
n

O
n

4
k

O
N

N
O

t
o

N
O

O
J

t
o

N
O

O
N

N
O

i
n

O
N

t
o

t
o

O
O

0
0

0

i
n

t
o

O
J

1
—
•

t
o

b
o 8

g
O
J

t
—
»

t
o

b O
J

0

i
n

N
O

O

i
n %

i
0
1

4
k

N
©

•
O
J

©

-

O
J

4
k

N
O

O
N

O
£

4
k

4
k

t
o

N
O

a
s

4
k

O
4
k

i
n

O
N

i
n

4
*

0
0

0
0

O
J
p

O
J

O
O

N
O

O
I
—
"

»
o

-
0

<
—

•

N
O
5 NO

-
0

•
O
,

N
O

>
—
• 8

n 0 a
S
.

O O
n

O

C
D

O
J

8 *
.

i
n 8

O
J

-
J

0

4
k

O N
O

O
J

t
o

b N
O

b O
N

t
o

i
n

O
i
n

O

N
O

O
N

N
O
8

8
4
k

4
k

b
o

-
0

i
n

O
O

i
n

O

b
o

-
J

O

i
n

O
N

t
o

N
O

N
O

4
>
.

O

N
O

O

i
n

O
J

•
—
*

b
o

*
4

i
n

t
o

i
n

O
0

y
t
o

N
O

7
0

i
n
p

O
O
N

t
o

O
J

0
0

O
n

O
J

O
J

4
k

4
k

O
J

O
*

t
o

O
J

^
J

4
>
>

O
J

t
o

4
»
>

i
n

t
o

O
s

t
o

O
J

0
p

i
n 8

N
O

0 O
N

O
J

O
J

O
N

O
N

O

i
n

O
N

t
o

b
o

t
o

8 to
i
n 8

4
k

O
J

-
0

t
o

i
n

O

4
a
-

O O
N

4
a
.

O
N

N
O
1

i
n

O
J

0

4
>
.

O
J

i
n

N
O

4
a
.

4
* 8

O
N

i
n

O
n

0
0

-
J

-
O
J

O

3 O 3 3
*

n 3
>

•-
»

V
)

in © E sr to S a

p1
Xh

3 0
0 3 C
D

3



11

Solving, we finde that the number of events occurring at time t is expected to be

200

100 h ++ - + +
•V +

T T
+

*+

20 40 60

FIGURE 4. Time series from the run of 70. Binding time (seconds) vs. run number.

0 50 100

t (seconds)

FIGURE 5. Histogram of untransformed data, showing sampling kernel (dotted line - see
Figure 8).

FIGURE 6. Histogram of log-transformed data.
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In agreement with the exponential model [3], the standard deviation is not constant, but rather
tracks the mean. Accordingly [4], the variance is stabilizedby a log transformation. The averages
and variances of the six transformed data sets are shown in Table 2

setpt 1 2 3 4 5 run of 70

«dn(t)> 3.004 3.713 2.861 3.729 1.891 3.390

a(ln(x)) 0.928 0.936 1.077 1.226 1.042 0.938

TABLE 2. Averages and variances for log-transformed data.

The significance of the various possible effects is evaluated on the basis of the transformed
data, as required by the IIND assumption [5]. These are calculated below in Table 3. Note that
the voltage effect was most significant - beyond the 1% level. The amplitude and interaction
effect were both significant at between the 5% and 1% level.

src of var sum

sqr

DOFs Mean

Sqr
Fo yl.. 140.1

A 6.1 1 6.1 5.26 5% Fo0.05,1,96 -3.94 y2.. 164.8

V 45.2 1 45.2 39.09 1% Po 0.01,1,96-6.9 yi- 186.0

Interaction 5.7 1 5.7 4.92 5% y.2. 118.8

Error 111.0 96 1.2 y... 304.8

Total 168.0 99 SSsubt 57.0

TABLE 3. Significance of effect calculations for the first factorial experiment.

Employing a basic regression model, ln(t) can be approximated by.

}n(T) = E0 + Ev(V-V0) + EA(A-A0) + EAV(A-A0)(V-V0)

The four parameters are extracted using four of the five setpoints, i.e.. the vertices of the
square.

E0 3.049

EV -2.689

EA 0.986

Eva 0.954

TABLE 4. Parameters of the linear model of ln(t) for the first factorial experiment.

Residuals are scatter-plotted as a function of setpoint, and also plotted in histogram and nor
mal-scale form below in Figures 7-9.

Electrostatic Self-Assembly of Microfabricated Structures:Factorial Optimization EE290W S94
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FIGURE 7. Residuals of the log-transformed data scatter-plotted versus setpoint.

40 -
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3
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20
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FIGURE 8. Histogram of the residuals of the log-transformed data (kernel width is 0.8). *

Note that the standard deviation of the data is almost exactly 1 (actually, 1.026; average is
3.2*10'7>. The histogram plots the function

/OO-SXf-v,)
i

where h is the normalized gaussian kernel, and v/ is the ft* data point. This method acts to
low-pass filter the data,and avoids aliasing which mayoccurwith the morecommon square-
wave filter [6].

Electrostatic Self-Assembly of Microfabricated Structures: Factorial Optimization EE290W S94
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FIGURE 9. Normal-scale plot of the residuals of the log-transformed data.

Note that the centerpoint was not included in the parameter calculation, but nevertheless fits
the model well, as evidenced by the small average of the residuals (Figure 8). The slight non-lin
earity of the normal-scale plot is not surprising, since the distribution of the original data is some
what unusual. Specifically, the untransformed distribution is neither normal nor perfectly
exponential, in that it takes on a zero value at t=0 because the particle is initially free (see Figure
5). Thus, the log transform may overcompensate slightly for the kurtosis.

3.1 Second Factorial Experiment - Performance Optimization

The results for the second 5-point factorial are summarized in Table 5 below. The effective
centerpoint is set as near as possible to #5 of the first factorial, though the exact setpoint was lost
because of interceding repairs to the apparatus. Note, however, the significant improvement in
binding time ~ approximately 4.5 seconds, versus 11 in the previous experiment, comparing aver
ages for the best setpoints in each. This is not unexpected, since a higher electrode voltage and
less vibration favors capture of the particle.

set pt. 1 2 3 4 5

<T> 15.372 34.617 14.215 89.494 4.367

a(T) 14.475 32.086 13.637 76.429 4.589

<ln(x)> 1.969 3.071 2.217 4.083 1.073

o(ln(T)) 1.985 1.087 1.090 1.016 0.883

TABLE 5. Summary of the results from the second factorial experiment

3.2 Physical Model

The statistical results place constraints on the physical model. Specifically, the first experi
ment only shows an interaction in the transformed data; no interaction is seen in the untrans
formed data (see Table 6 below). This suggests that the variables appear as separate terms in a
sum.

Electrostatic Self-Assembly of Microfabricated Structures: FactorialOptimization EE290W S94
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src of var sum sqr DOFs Mean Sqr Fo

A 5151.3 1 5151.3 2.96 10% Fo0.1,1,96-2.76

V

Interaction

Error

50905.3

130.7

167182.5

1

1

96

50905.3 29.23 1% Fo 0.01,1,96-6.9

130.7 r 0.08 1

1741.5

Total 223369.7 99

TABLE 6. Significance of effects for untransformed data in the first experiment

The classic model for this type of trapping event [7], [8], assumes particles ofconcentration n
traveling with mean velocity v in the vicinity of a trap with areal cross-section a. Conventionally,
the trapping rate R is expressed

R = nvc

x in the experiment corresponds to the reciprocal of R. n is assumed constant, and v is assumed
proportional to A. a is estimated as follows: the electrostatic trapping site is modeled as a one-
dimensional wire of length L, at a potential V(corresponding to the one-dimensional edges of the
aperture in the upper electrode). The electric field will vary with radial distance from such a wire
as

£ oc —
I I r

,V2
The potential energy of the particle is given by -£|E| Vp, where e is the particle's dielectric

constant and Vp its volume. Fortheparticle to becapiuicu, u& netenergy must be negative. Thus,

Potential Energy < -Kinetic Energy

and

and

— oc—mv ocV ocA
r) 2

V
roc —

A
o is then approximated as a rectangle of height r and width L. Thus,

R=nva « hAI —LJoc V

Toe
1

Electrostatic Self-Assembly of Microfabricated Structures: Factorial Optimization EE290W S94
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This explains the relatively strong V effect, though not the small but significant A effect.

A simple way to introduce an A effect without anA*V interaction is to posit another cross-sec
tion, o\ such that a and a' appear as series "conductances":

Then,

Then

and

R = nvo,total

1
ov-,_i —'total — J ]

— +

R nvc,M„, nv\c &J

1 1
oc +

VL A&{A)

The A effect occurs with the experimentally observed sign if, e.g., a' °c 1/A2, yielding
1 A

Toe — + A
VL

where a' is assumed dependent on A only. The required separation of V and A into two terms is
provided by this form.

The "second cross-section" assumed here could arise from the interaction of the particle with
the floor of container, e.g. if the particle approached within a diameter of the floor, it would col
lide and be slowed. Alternately, the particle might be interacting with the three dimensional shape
of the binding site, i.e.. as a peg in a hole, independent of the electric fields present. In this case,
the cross-section could define a range of permissible particle orientations.

In the second experiment, it is the log transformation that removes the interaction, and we
therefore expect A and V to occur as a product (see Tables 7 and 8 below). Note that the ampli
tude is decreased and electrode voltage increased as compared to the first factorial. Thus, the term
in A above might become insignificant. In addition, r=V/A could grow to exceed L, in which case
G behaves as

0-ocr2 •13

V2 V2
R = nvo oc nA—r ©c —
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ln( r) =lnf —j=-2ln(V) +InA+constant

which displays the experimentally determined A,Vindependence under log transformation.

A 29.1 1 29.1 27.79 1% EV -3.87

V 93.4 1 93.4 8932 1% EA 2.17

Interaction 0.1 1 0.1 0.10 Eav 0.13

Error 100.4 96 1.0 eff error 0.97

Total 222.9 99 Fo 0.01,1,96--6.9

TABLE 7. Parameter analysis for the second experiment, log-transformed data.

src of var sum sqr DOFs Mean Sqr Fo

A 26183.9 1 26183.9 14.80 1% EV -105.53

V 69601.6 1 69601.6 3933 1% ea 64.72

Interaction 12672.7 1 12672.7 7.16 1% Eav -45.03

Error 169868.9 96 1769.5 eff error 22.59

Total 278327.1 99 Fo 0.01,1,96--6.9

TABLE 8. Parameter analysis for the second experiment, untransformed data.

4.0 Conclusion

In summary, the factorial technique yielded a performance improvement of some 540%, com
paring 1/xat the initial centerpoint to the optimal result in the secondtrial. These types of experi
ments can also build intuition regarding system behavior. The "second cross-section" model, for
example, does not occur in standard thermodynamics or physical chemistry; rather, the statistical
analysis seems to motivate it directly.

Further experiments will search for an optimaloperatingpoint, as well as collect data to sub
stantiate the models. One key point which must be addressed is stability of the apparatus against
dielectric breakdown, which necessitates replacement of the electrode assembly and randomly
changes the effective operating point. A stable electrode assembly could be modeled by finite ele
ment analysis to provide the field distribution; in conjunction with direct measurements of V, v,
and particle mass, this would enable quantitative modeling.
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Forecasting and Control of Pulsed Laser Energy using
an Integrated Moving Average Model

Richard Schenker

A 213nm pulsed Nd-YAG laser is currently being used for the characteriza
tion of Deep-UV damage of fused silica. The need for nearly constant pulse
energies is of extreme importance in order to determine damage rates as a
function of pulse energy density. Analysis of past pulse energy measure
ments showed a non- stationary series with both long term drift and short
term oscillations of average pulse energy. Differencing of the measured
pulse energies was successful in producing a stationary data series where
Box-Jenkins modeling could be applied. An ARTMA(0,1,1) model proved
robust in tracking the average pulse energy as it oscillated in time. The
model was implemented in computer code to forecast future pulse energies
so as to block future pulses outside a desired energy range. The ARIMA
model blocked about 43% of pulses outside the set range in one test, while
only blocking 8% of the pulses inside the range. An EWMA control chart
was also configured to detect long term shifts in the pulse energy mean. It
proved to be an efficient method of monitoring drifts in the average energy
without excessive sensitivity to short term energy fluctuations.

1.0 Motivation

Lithography has been consistently moving towardsusing shorter and shorter wavelength light
sources. Deep-UV sources are already being used in industrial IC fabrication processes and will
undoubtedly be the main line lithography tool of the futurebecause of their ability to print smaller
features. One obstacle to wide spread application of UV lithography is the damage which UV
radiation causes to fused silica, the primary material used in UV optics. A pulsed quintupled Nd-
YAG laser of wavelength 213nm is being used in the Berkeley microlab to irradiate fused silica
with relatively energetic pulses in order to better understand the mechanisms behind various dam
age processes [1].

It is of high importance to find the damage rates of fused silica as a function of laser pulse
energy density. Since a two photon process is believed to contribute to the damage mechanisms,
the damage rates as a function of totalenergy delivered increase for higherpulse energy densities.
Unfortunately, the pulse energy delivered from the Nd-YAG laser is difficult to control. Heating
effects in the YAG rod and in the non-linear optics used to quintuple the laser frequency cause
large variations in pulse energy. These variationstake the form of both an apparent random distri
bution around a temporary average energy and often a drifting of average power over the span of
several hundred laser pulses. In order to improve the accuracy of the determination of damage
rates as a function of pulse energy, a system needed to be designed to limit the number of laser
pulsesdelivered to the samplewhich were significantly different from the desired pulse energy.
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The nature of the variations in laser pulse energy is such that each reading statistically
depends on previous readings. In other words, the data is autocorrelated and not independently
and identically distributed according to a simple normal distribution. Autoregressive Integrated
Moving Average (ARTMA) models areoften quite robustin predictingthe future value of autocor
related data. Applying an ARIMA model to predict future energy values provides the ability to
either block subsequent pulses which are predicted to be outside a desired energy range or to
adjust in real time the inputs which effect pulseenergy to make subsequentenergiescloser to the
desired value. Unfortunately, real time adjustment of pulse energy is not a viable solution. The
only method tochange the laser power without altering the beam direction orshape isachieved by
rotating a waveplate which is placed before the final non-linear crystal. This crystal mixes the sec
ond and third harmonics of the original 1064nm radiation to produce 213nm radiation. The effi
ciency of the mixing is a strong function of the relative phases between the two harmonics so a
slight rotation of the waveplate dramatically alters the beamenergy. Consequently, this waveplate
can only adjust the average beam energy by coarse amounts. Furthermore, the sensitivity of pulse
energy to changes in waveplate orientation varies with thermal conditions and is difficult to pre
dict due to the complexity of the physical situation.

The ability to filter or block future pulses is available in that the computer which monitors the
pulse energy can also be programmed to close a shutter which then blocks the beam from irradiat
ing the sample. The pulse energy could still be measured when the shutter is closed because the
shutter would be positioned after the initial sampling of the beam power as can be seen in Figure
1.The computer will use an ARIMA model to predict the subsequent pulse energy and control the
blocking shutter based on that prediction. Coarse adjustment of thebeam power using the rotating
waveplate will only be used when an Exponentially Weighted Moving Average control chart, also
programmed into the computer, indicates that the average pulse energy has drifted outside of
specified limits.

2.0 Analysis of Past Measurements

2.1 Basic Trends in Laser Pulse Energy

Figures 2, 3 and 4 show the typical variation of laser pulse energy with time. The variation in
pulse energy can be said to consist of three components:

• Random Variation about Current Average

• Short term oscillation of Average Energy

• Long term drift of Average Energy

Figure 2 contains a linear regression fit of all 2800 data points. The positive slope of this fit
corresponds to a long term drift of the average laser energy independent of the short term oscilla
tions. Figure 3 is a control chart of the residues from the linear fit subtracted from the measured
energy. Only one data point is outside the three sigma limits (sigma calculated from data), which
is fewer than would be expected from a normal distributionof the data. One would expect on aver
age seven points to fall outside the control limits if the data was normally distributed about the lin
ear regressive fit. It appears that the calculated sigma of the pulse energy (0.063) is inflated in
terms of its applicability for the controlchartdue to the shortterm oscillationsof the pulse energy.
In order to more precisely estimate the sigma for the control chart, a fit of the short term oscilla
tions of the average energy is required in order to track only the random fluctuations of pulse
energy.
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Figure 4 which shows a shorter time interval and best illustrates the oscillations in pulse
energy. These oscillations, which are not strictly periodic, seem to result in either a maximum or
minimum of laser energy roughly every 300 pulses. The heating and cooling cycles of the non-lin
ear crystals used in the system are a possible assignable cause for these oscillations. ARIMA
models, in general, are only applicable when there is definite assignable cause for the autocorrela
tion of the data, such as sampling at a high frequency. But, since the basic characteristics of the
pulse energies has consistently been observed to be similarto that in Figure 2, 3, and 4; it is logi
cal to assume that some physical process, albeit not precisely known, is behind the non-normal
behavior and hence can be predicted with an ARIMA model.

2.2 EWMA Control Chart

Because of the difficulty in adjusting the output pulse energy of the laser, it is only desired to
attempt to adjust the energy for long term drifts in the laser power. A method of monitoring the
average energy which is not overly sensitive to the short term oscillations in energy is needed. A
Moving Average chart computes the averageof the last n data points in order to detect small shifts
in process mean. A Moving Averagexwindow' of at least 300, the approximate period of the short
term oscillations, would be required to sufficiently reduce the sensitivity to the short term oscilla
tions. The real time storage of the "window' of data points is slightly time consuming for the PC
controller used in this experiment, which must perform all its operations during the 0.1 second
period of the pulsed laser. Fortunately, an Exponentially Weighted Moving Average (EWMA)
chart does not need to store many past measurements and has essentially the same performance in
detecting small shifts in mean as the generic Moving Average chart.

The EWMA chart monitors the entire process history but places more weight on the more
recent measurements. The weighting decreases geometrically as the data points move farther back
into time. The estimated current mean, wt, is given by the equation:

wt = Azt+ (l -X)wt_i (1)

where z, is the last data measurement and X is the geometric weighting factor. A small geometric
weighting factor of 0.01 was chosen so that a large degree of averaging would take place in order
to reduce mean fluctuation due to solely short term oscillations. The control limits for an EWMA
chart generally are equal to plus and minus 3o * (X/(2-A.)) around the desired mean. Since it is
already conceded that the pulse energy average oscillates with time, the control limits will be
expanded by a full sigma in each direction. This gives the control limits as:

UCL =Center +a +3o* QJ(2-X))m (2)

LCL =Center - o - 3o*QJ(2-\))m (3)

These limits hence are set up to test for situations where the current average is outside plus or
minus one sigma from the desired center energy. If the actual mean was just below one sigma
above the center, a false alarm would occur with a probability of 0.00135.

2.3 Attempt to Fit ARMA model to Data

The fitting of a time series model is usually performed with the aid of the Autocorrelation Func
tion (acf) and the Partial Autocorrelation Function (pacf) of past measurements. Figures 5 and 6
show the acf and pacf respectively for the previously presenteddata calculated using BLSS (The
Berkeley Interactive Statistical System). The standard method used in forecasting, Univariate
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Box-Jenkins analysis or ARIMA analysis, requires that the dataseries be "stationary' for the anal
ysis to be valid [2]. According to Pankratz, a stationary series has a mean, variance, and acf that
are essentially constant through time. Simple inspection of the data shows that the mean is not
constant with time indicating that the data series is non-stationary. A more formal check of sta
tionarity uses the values of the coefficients in the acf and pacf functions. For an ARMA(2,q)
model, if any of the following three conditions is not met the data is not stationary.

!<|>l < 1 (4)

<t>2 + 4>i<l (5)

4>2-<l>l<l (6)

§ arethe pacf coefficients An ARMA(l,q) has only the condition, l$l < 1, for stationarity. But, the
above rules are mute due to the form of the estimated acf function which does not fall to zero for
several hundred lag spacing. Virtually all acfs which correspond to physical situations with a sta
tionary mean and variance fall to zero after only lag 5 or 6 [2]. It is clear that the data series is
non- stationary so a transformation is needed before a time seriesmodel can be implemented.

2.4 Differencing of Data Series

Differencing is one method to make a time series stationary. This is achievedby simply calcu
lating the difference between adjacent data points in the data series, essentially differentiating the
series. Figures 7 and 8 show the first differences of the previously plotted data. Note that both the
long term drift and short term oscillations of values areno longer observable. Figures9 and 10 are
the calculated acf and pacf of the first difference data. The acf function falls to zero effectively
after the first autocorrelation coefficient, which is consistent with a stationary series. The pacf
coefficients also conform to the three conditions for stationarity listed above for a ARMA(2,q)
model. Since, the acf and pacf functions areconsistent with stationary data series, and because the
plots of the first difference portrayno indications that either the varianceor mean is time varying,
one can conclude that the first difference is a stationary series. Therefore, No further differencing
is needed.

2.5 Choice of ARIMA Model

The general form of an ARIMA model is the following.

yt = U+ ^Z,.! + <J>2Zt_2 +.... + £t - 6,^.! - 62^.2 -.... (7)

where yt is the next value, \i is the mean, the z are previous values in the series, ^ is the normally
distributed error from the predicted model, e^ are the past errors in the model prediction, and 0
and <j> are coefficients tobe fitted for thegiven data series. An ARJMA(p,d,q) model has p autocor
relation terms (<frxZt_x), q moving average terms (8yet.y), and has had the data differenced d times.
It has already been determined that our data series had to be differenced once to make it station
ary. The choice of p and q was made by using the Box-Jenkins modeling procedure [2]. The acf
and pacf of the first differenced data was compared to theoretical acfs and pacfs of stationary
processes. In general, ARTMA(l,d,0) processes, autoregressive processes, have a pacf which con
tains only one significant term and an acf with terms that slowly decay down to zero.
ARIMA(2,d,0) processes have two significant pacf terms and a similar exponentially decaying
acf. ARJMA(0,d,q) (q=l or 2) processes, or moving average processes, on the other hand, have
only q significant acf terms and a pacf which slowly decays exponentially to zero. Processes with
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both a non-zero q and p, also called mixed processes, have theoretical acfs and pacfs, both of
which, have several significant terms.

The acf and pacf shown in Figures 9 and 10 strongly follow that of an ARTMA(0,d,l) model
because of the single significant acf term and the exponentially decaying pacf. This would result
in the following model for the first differenced data: yt = \i+et- O^^ lie mean of first differ
enced data was calculated to be 4.35 x 10 , which will be considered small enough to be set to
zero for convenience. One can calculate the theoretical acf of the yt = Zt = ^ - Ojet.i model. The
acf coefficients are just the correlation coefficients for the data series pk, where p^ = l/az * E(Zt,
z^k). Expanding this with the model yt =^ =et - O^i gives:

pk =l/o22 E[(et - e1et.,)(et.k -6,6^)] (8)

Pk =l/°z2 0E(£t Et-k - 9,^,6^ -6,^ Et.,^ +e^iet-i-k)] (9)

pk =l/c^e, Et_k) - e1E(et.]et.k) - 01E(et et.14c) +e^E^e^)] (10)

The estimated value of ^Ey for x not equal to y is zero because the estimated value of the
product of two random numbers is zero. So, the above equation is only non-zero whenk=l which
gives:

Pk =-l/°z2 eiE(£i-i£t-i) =- »i* °e2/cz2 (11)

for k=l and pk= 0 for k>l. Notice that the variance of z is not equal to the varianceof the errorof
the model prediction. One can find oz2 in terms ofoe2 using Zj =^ - 0^.] to find that;

Gz2 =(l+912)oe2 (12)

This finally gives

Pi =-e,/(i +e,2). (13)

The pacf coefficients can be found by applying the algorithms used to calculate the pacf for
measured data to simulated data generated using the model. The first coefficients in the acf and
pacf are always equal.

The choice of6j for the model was done using the formula pj =- 8i/(l +8i2) and setting it
equal to -0.49, the calculated pi for the first difference data. This gave a 6] of 0.8 and a final
ARTMA(0,1,1) model of:

yt = zt = et-0.8et.1. (14)

2.6 Applying ARIMA Model to Past Measurements

Figures 11,12 and 13 show the results of applying the above model to the first difference of
the previously described data and then integrating back to get a predicted pulse energy. As can be
seen, the model nicely follows the general trend of the pulse energy, including the short term
oscillations. Only random deviations about the model are observed; this is best shown in Figure
12.Figure 14 shows the residual between the model and measureddata. The residues appearto be
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identically and independently distributed about zero with a normal distribution. Five points fall
outside the three sigma control limits, which is close to the seven which would be predicted from
an arbitrary normal distribution. The calculated standard deviation of 0.0445 does not appear to
over estimate the true sigma of the process.The model plots and the residual plot confirm that the
choice of the ARTMA model is a valid one, eliminating all but random deviations from the data
series.

3.0 Implementation of Time Series Filter and EWMA Control

After the basic model of laser pulse energy was established, the model was implemented in
the actual damage exposure system. Figure 1 shows the setup which is entirely controlled by a
personnel computer. The shutter has not yet been installed. The software package Windows for
Data provided the framework for the code. Some of the commands in Windows for Data are dif
ferent from standard C languagecommands.

The different operations of control of a damage experiment are illustrated in Figure 15. In
Manual Mode, data points are stored only when the operator instructs the computer to do so by
means of a keystroke. Stat Mode stores the last 2500 points in an array energys_pd continuously.
When Stat Mode is exited a new coefficient for the ARMA(0,1,1) model, macoeff, is calculated
using the stored pulse energies. An iterative procedure finds 8j which best satisfies the equation
Pi = - *VU + ©i )• If Stat Mode is not entered the coefficient value remains at its default of 0.8,

the value calculated from the past data analyzed above. Automatic Mode is the mode used during
the majority of damage characterization experiments. It stores averaged measurements periodi
cally without operator assistance. It also continuously implements the ARLMA(0,1,1) model by
predicting the next pulse energy. The code for predicting the next pulse energy is run after every
laser pulse is fired and measured:

diff=detectors_pd[2]-hold 1;

err=diff-pred;

pred=macoeff*err*(-1);

predb=detectors_pd[2]+pred;

hold 1=detectors_pd[2];

vdetectors_pd[2]' is the measured pulse energy, sholdl' is the previous pulse energy, sdiff is the
difference between the current and previous pulse energies, ^err' is the error in prediction of the
current difference, *pred' is the predictednext difference in pulse energies, and vpredb' is the next
prediction pulse energy.

If the predicted next pulse energy is outsideof the range specifiedat the beginning of running
the code, an output bit on a PC board is toggled to produce a positive five volt value. This voltage
can be then used to close a shutter, which blocks that pulse from hitting the sample. Automatic
Mode also calculates the EWMA for the pulseenergy. In calculating the control limits, the sigma
of the process was assumed to scale with the magnitude of the average pulse energy. If the
EWMA falls outsideof the previously calculated control limits an alarm is generated. A negative
energy reading on the PC screen indicates to the operator that an alarm is present. The operator
should adjust the rotating waveplate so that it returns the pulse energy to the desired value when
an alarm is generated.
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4.0 Evaluation of Operation of Time Series Filter and EWMA control

After successfully compiling the modified damage experiment control code, the code was run
to test its performance. A desired pulse energy of 0.75 was set as the goal, with the allowed pre
diction interval set to 0.67 to 0.83. An acceptance chart couldhave alsobeen used to setup control
limits. Stat Mode operation was enteredandamoving average coefficient of 0.81 was output. The
code was modified to save the predicted energy values and every laser pulse energy. Figures 16
and 17show both the measured energy values andthe values predicted by the real time computer
control. As with the reference data, the model was successful in tracking the average mean of the
pulse energy. The program successfully toggled the output bit when the energy was predicted to
be outside the set range. Figure 18 shows a histogram of the measured energies and the pulse
energies which would not have been blocked by the shutter. As can be seen, the program was suc
cessful in filtering out many of the shots far from the center value, while allowing almost all shots
near the center value to pass through. 115 of the 260 pulses with energy measured above 0.83
were blocked while 110 of the 262 pulses below were successfully predicted. Only 117 of the
remaining 1478 shots within the 0.67 to 0.83 range would have been incorrectly blocked and most
of those were near the edge of the range.

No EWMA control alarms were generatedduring the test. Subsequent tests did later show that
an EWMA alarm was generated when appropriate. Figure 19 plots the EWMA for the above men
tioned test. As can be seen, the EWMA never falls outside the control limits, which is consistent
with the plot of pulse energy which does not appear to show significant long term drift of laser
energy.

5.0 Conclusions

Differencing of the measured pulse energies was successful in producing a stationary data
series where Box-Jenkins modeling could be applied. An ARTMA(0,1,1) model proved robust in
following the average pulse energy as it oscillated in time. The model was implemented in com
puter code to forecast future pulse energies so as to block future pulses outside a desired energy
range. The ARIMA model blocked about 43% of pulses outside the set range in one test, while
only blocking 8% of the pulses inside the range. A EWMA control chart was also configured to
detect long term shifts in the pulse energy mean. It provedto be an efficient method of monitoring
drifts in the average energy without excessive sensitivity to short term energy fluctuations. Future
work should involve the determination of an assignable cause to the short term pulse energy fluc
tuations. More extensive modeling of the physical processes in the non-linear crystals should also
be performed to gain a betterunderstanding behind the causes of the erratic energyoutput.
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Developing a Statistical Process Control Method for

the LAM Rainbow 4400 Plasma Etcher

Antonio J. Miranda

Control charts for individuals are investigated and developed to form a sta
tistically robust monitoring process for the LAM Rainbow 4400 Plasma
Etcher, located in the Microlab at the University of California, Berkeley.
Much information can be collected from the etcher, including real time
data from the Real Power Monitor, the HYT Particle Counter, and the
SECII communications. It is desired that the control charts developed,
monitor the essential aspects of the etcher, and give a good indication of the
process etch variability.

1.0 Introduction

Control Charts are used in many environments in order to monitor the stability of a given pro
cess. One area which can benefit from judicious use of control charts is in the manufacturing of
integrated circuits. Statistical Process Control (SPC), with all its various tools, is useful in achiev
ing theprocess stability, and improving the capability through reductionin variability, required to
remain competitive in the semiconductor industry. In the Microlab, the Lam Rainbow plasma
etcher (LAM4) is just such a piece of equipment which can benefit greatly from SPC.

Presently, the microlab's monitoring procedure for LAM4 consists of etching 3 patterned
wafers which have a layer of silicon dioxide(~1000 Angstroms) and polysilicon(~5000 Ang
stroms) grown on them. Pre- and post-etch polysilicon thicknesses are measured at five locations
on the wafer (top, center, flat, left, right), using the Nanospec. The etching process consists of a
pre-etch and a main etch step. The pre-etch step is done to remove any native oxide which may
have formed on the wafers. This is done using an SF$ feed gas. The main etch step is carried out
using a C^/He mixture. The input settings are summarized in Table 1.

The microlab tracks the etch rate for the main etch process only. This assumes a negligible
amount of poly is etched during the pre-etch step. The average etch rate, wafer-to-wafer and
within-waferetch rate uniformities are presentlymonitored.The etch rate uniformity is calculated
as follows:

%uniformity = (Highest Rate - Lowest Rate)/ (Highest Rate + Lowest Rate) * 100 (1)

The control standards used to determine if LAM4 is in control are:

• Etch Rate: 5500 A/min+/-10%

• Wafer-to-Wafer Etch Rate Uniformity: +/-10%

• Within-Wafer Etch Rate Uniformity: +/-10%
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This method is fine for general analysis and control. However, in order to use the plasma
etcher to its fullest extent, statistically definedcontrol charts should be used to give a better indi
cation of the etcher's performance. Control charts when definedand used appropriately give valu
able visible feedback, which is not obtained using the present method. The objective of this
project is to define appropriate control charts for use in the microlab, which are statistically sound,
robust, and easily implemented. To this end, I will investigate all data available from LAM4. This
includes not only the monthly process monitor results, but also the real time data collected.

Pressure (mtorr) 425

RF power (watts) 275
Gap (cm) 0.600
CI2 flow (seem) ISO
He flow (seem) 400

He Clamp (torr) 8.0

Time (sec) 30

TABLE 1. Recipe for the main etch step of the process monitor test

2.0 Methodology

2.1 Choosing the Proper Type of Control Chart

Since the process monitoring test is only run once a month on three wafers, it would not make
sense to use the normal X-R charts to monitor the parameters. A more appropriate chart is the
control chartfor individuals. This is the appropriate chart to use because presently data is col
lected too infrequently, and it would not be acceptable to have run lengths longer than one to catch
processes which are out of control. The process variability is determined by using the moving
range of two successive points. The moving range is defined as MRj = Ixj - xj.jl. In the control
chart for individuals, the parameters are:

• UCL=X+3A/fl/d2

• Center Line = X

• LCL=X -3MR/d2

X is the total average, MR is the moving range average, and d2 is a statistically defined constant
which depends on the sample size. The moving range could also have been plotted, but it would
not have been correct in this case. Since the individual points are actually averages for the three
wafers, the measurements are not necessarily independent and therefore, would not be correct to
plot the moving range.

2.2 Choosing the Appropriate Parameters to Control

One of the challenges when first developing control charts, is choosing the proper parameters
and sub-grouping the data correctly. Another obstacle is having the historical data available to set
up the control charts. Both of these proved to be difficult issues to tackle for the LAM 4. Since the
system has only been in operation for a little over a year very little historical data was available.
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The process monitor test began in June 1993, and therefore only 10 months of data is available.
Even worse, no historical data is available for the real timesignals monitored by the plasmaetch
sensors. Therefore, what is presented here is the basis for the control chart, to be used in the
future. In addition to the historical data, a few monitor wafers wererun to beginbuilding a data
base of real time signals, including SECSII,RPM and the particle counter.

2.2.1 Etch Rate: Grand Average

The average etch rate for each process monitor test is determined by taking the average of all
measurements taken from the wafers. Since at this point the data appears to be random there is no
reason to alter the way the average etch rate is computed. This should be investigated more
closely when at least 30 to 35 points are available.

2.2.2 Etch Rate Uniformity: Wafer-to-Wafer

When monitoring the wafer-to-wafer uniformity the present test used equation 1 to determine
the wafer-to-wafer uniformity. Presently this is the best method to use. However, there is reason to
believe that these average values are not independent.

Recall how the monitor wafers are created. One of the process steps is to grow approximately
5000 Angstroms of poly-silicon. This is typically done in an LPCVD fiirnace, in the microlab
(tylan 11). There is strong evidence that the furnace displays deterministic behavior from wafer-
to-wafer. One of the main reason for this, is the gas depletion effects in the tube. This determinis
tic effect has been shown to effect the resistivity, and thus the doping concentration of the poly-
silicon. If this deterministic effect is indeed true, then the etch rate may be greatly altered from
run-to-run depending on the position the waferheld in the tylan furnace. Unfortunately, at present
time the position which the wafer held in tylan 11 is not kept track of. There is no way of know
ing, from the historical data, whether or not the variability in wafer-to-wafer etch rate uniformity
is due to limitations in the plasma etcher or deterministic behavior from the tylan furnace. There
fore, the control charts developed for the wafer-to-wafer uniformitymay have wider control limits
then should be expected for our process.

Twothings can be done to determineif the etch rate is correlatedto the position the wafer held
in the tylan furnace. First, keep track of the position the wafer held during the poly deposition.
This may be done by scribing a number on each wafer and tracking this number using a log.This
way future runs in the plasma etcher can be analyzed for any correlations to the LPCVD furnaces.
Alternatively, if the process engineers feel confident that the deterministic effects are negligible
for adjacent wafers, then no tracking is needed as long as three adjacent wafers are used in run
ning each monthly monitor test. The control charts have been developed assuming the second
approach was inherently used.

For wafer-to-wafer uniformities what is typically monitored is the range of etch rates per
wafer. Therefore, the wafer-to-wafer uniformity control chartwascalculated by taking the differ
ence between the largest and smallest etch rate wafer averages.

2.2.3 Etch Rate Uniformity: Within Wafer

The issue of independence and sub-grouping had to be investigated closely for the within
wafer uniformity. Presently the within wafer uniformity is determined as stated in eq. (1). Even
though the deterministic effect which may have caused exaggerated control limits in the wafer-to-
wafer parameter does not seem to have a dramatic effect, the measurements do not look to be
independent. Instead, what seems to be occurring is what is termed the bull's-eye effect. This is
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attributed to spacial non-uniformities, in the density of ions, in the sheath. This results in etch
rates which vary as you move out from the center of the wafer. To determine if this effect was sig
nificant, a paired t-test was performed on the average of all center points verses the average of the
four outer points for all wafers. The results in Table 2, illustrate that this effect is significant and
should be accounted for. Even at a confidence level of l%(from table: t-value = 3.646), the null
hypothesis can easily be rejected (H0: The average of the center measurements is the same as the
four outer measurements).

Number of Points 30

Avg. of Difference 262.8
t-statistic 9.2128

99% Conf. Level 3.646

Conclusion Reject H0

TABLE 2. Paired t-test on the difference between outer four points and the center etch rate
measurement.

A within wafer control chart can then be created by taking the difference between the average
of the center measurements and the four outer values for the three wafers, and dividing by the
smaller of the two values. This will give a value for the percent uniformity within each wafer.

2.2.4 Real Time Signals

Even though the real time signals are collected automatically, no historical data is available.
This is attributed to a limit in available memory space, and is an engineering decision to deter
mine when the data should be deleted from the database. Some monitor wafers were run in order
to begin building up a database of information, but since only one run has been made it is not
practical to try and perform any statistical analysis. However, in the future the data should be col
lected so that trends and overall averages can easily be extracted. This may lead to the need for
regression charts, if the data has a slope during each wafer run. In addition, only a few parameters
should be kept track of, in order to make the database more manageable. For instance, maybe only
the RPM and particle counter data should be collected, and the SECSII information discarded.
This may need to be done because the SECSII data is coupled to the input settings and, therefore,
is not independent and will not give a true indication of the etcher's stability. A more detailed
analysis should be performed when sufficient data is available.
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3.0 Results

The next step in setting up the control charts is to do an initial plotofeach parameter. The data
calculated for each control chart, as well as the date of when each run was made and the number
of wafers etched are summarized in table 3.

Date # of wafers Grand Average Wafer-to-Wafer Within Wafer

June 21, 1993 2 5276 58U U.05($
August 25, 1993 1 5204 — 0.0683
September 14,1993 3 5079 116 0.0356
October 19,1993 3 4329 206 0.0098
November 16, 1993 3 5210 182 0.0489
December 17,1993 3 5352 77 0.0442
January 28, 1994 3 5554 16 0.0660
February 28, 1994 3 5636 222 0.0414
April 22, 1994 3 5311 121 0.0114

May 1,1994 (set 1) 3 5400 229 0.0936
May 1,1994 (set2) 3 5040 780 0.1241

TABLE 3. Data used to build preliminary control charts.

3.1 Plotting the Control Charts: First Pass

The control charts presented in this section are preliminary, since the control limits should not
be fixed until more data has been collected. Figure 1 shows the results for the three control charts
as determined from the historical data. Western Electric rules were applied to determine if any
alarms were present.

3.2 Assignable Causes for Out of Control Points

A coupleof initial alarms are visible on thecontrol charts. Usingthe problemlog on the wand,
possible reasons for the alarms were found.

In the overall average etch rate control chart, point 4 dropped below the lower control limit.
During this time period, September - October 1993, The Lam Rainbow Plasma Etcher experi
enced several different problems. The major problem was that the Freon mass controUer drifted
and the flow of Freon in thechamber was not zero. This was traced back to loose +/-15 Vdc con
nectors for the gas control PCB. The problem was not detected until the flow exceeded the thresh
old manually set on LAM 4. However, before the problem was corrected a wafer broke in the
chamber and it had to be vented. Therefore, the chamber was probably cleaned while it was
opened to remove any residue which may have accumulated on die walls and electrodes. This can
obviously effectthe etch rate of the system. Another problem which was logged on the wandwas
a gap error. If the gap between the wafers is not set correctly, theetch rate may be altered depend
ing on the dimensions which actually exist.

The wafer-to-wafer uniformity etch rate also displayed an alarm. In this case the first month of
the monitor test was greater than the upper control limit. Once again the chamber was opened a
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couple of days before the monitor test was run because a wafer was stuck in it. The chamber, in all
likelihood, was wiped down while it was open. This once again could have caused a shift in the
etch rate uniformities. Problem with the Helium clamp also arose when the system was being
brought back on line. This was corrected by simply cleaning all electrical connections leading to
the clamp.

The last control chart, the within wafer uniformity, also had a point out of control. This error
occurred in the last run, which was recently performed (May 1,1994). No problem logged on the
wand could be assigned to this alarm. Therefore, either a shift is taking place in the etcher or this
may well be the natural variation of the system. At this point this can not be determined, because
enough data points do not exist. This should be monitored closely in the future.

3.3 Revised Control Charts

The control charts were re-evaluated with the points which could be explained removed when
determining the control limits. The new control charts, shown in figure 2, now have all its points
in control. These control charts are only the basis for charts to be built upon in the future. If a shift
does exist for the within wafer uniformity control chart, then new control limits should be deter
mined from the point in time the shift occurred.

4.0 Implementation

The control charts developed here should be implemented automatically, in order to make it
simple. At present time the microlab is in the process of automating their statistical process con
trol charts. This is being done using a combination of script files and UNIX interface and data
retrieval commands. The software may be found on the argon cluster by typing spcwand. The pro
gram from the lam4 monitor test should retrieve all data stored through the nanospec interface and
calculate the following values:

• Total average etch rate = average of all readings

• Wafer-to-wafer uniformity = Highest etch rate wafer average - lowest etch rate wafer average

• Within wafer uniformity = (Average etch rate of Center pts. - Average etch rate of Outer pts.) /
(the minimum of the two readings)

These values should then be put into their respective control charts and compared to the con
trol limits.

5.0 Conclusions

Control charts have been developed to effectively and efficiently monitor the LAM Rainbow
plasma etcher. The control charts monitor the total average etch rate, wafer-to-wafer uniformity
and within wafer uniformity etch rates. Real time signals were also investigated, however, since
no historical data was available, only recommendations were made. The control charts proposed
should provide a more rigorous indication of the ethers capabilities. It should be noted, however
that the control limits presented here should not be fixed at this point, because sufficient data is yet
not available.
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Predicting Worst Case SPICE Files Using BSEVI3

James C. Chen

In this work, we present a methodology to predict worst and best case
SPICE files using a subsetof the entire BSIM3 device model parameter set.
This methodology takes advantage of the physical robustness of BSIM3 to
simplify the traditional analysisusing Monte Carlo simulations. The results
show that this methodology is sensitive to a the number of Monte Carlo
simulation points as well as the goodness of fit of linear regression models.

1.0 Introduction

1.1 The Problem Defined

It is well known fact that the production of IC's suffers from process fluctuations, which in
turn manifest themselves in devices, ultimately affecting circuit performances. The attempt to
characterize this process variation necessitated the methodology of SPICE Worst, Best, and Nom
inal files. These files (also called process "corners") are given to the circuit designer in order to
ensure that all their designs will assume proper operation.

In order to track device variability (and hence circuit performance spreads), traditional meth
ods for determining process corner files rely on the explicit use of Monte Carlo Analysis. Data
from a test run of a given process is collected to estimate the mean and sigma values for device
model parameters (and their correlations) for the device model tobeused. A Monte Carlo analysis
is executed and aparticular circuit performance variable ofinterest (Idsat, tp, power, etc.) is exam
ined. Worst case files are then chosen at the +/-3a levels for these circuit variables. Various modi
fications of this methodology have been proposed but most, if notall, share the same problems.

These problems are all concerned with the efficiency and physical robustness under which
specific variations in process variables (e.g. Tox, Leff, We^, N^) are translated into device model
parameters variations. This difficulty arises because traditional device models attempt to capture
device behavior through the use of fitting parameters to match non-physical equations to actual
device I-V curves. These fitting parameters seldom have no physical meaning outside of the simu
lation domain. Hence, it is very difficult to reconcile real, physical data such as Rds (parasitic
resistance) collected from fab electrical teststo specific device model parameters.

1.2 Justification for BSEVI3

Given such difficulties many present methodologies are nowusing so-called physical models
tobridge the gap between the process domain and device domain. These models range from very
simple models modeling only the on-state transistor current Id to many complex proprietary for-
mulations[1,2,3]. Still, the availability of an accurate, deep-submicron (down to L= 0.25^im),
physical model that is computationally efficient and readily available in SPICE has been sparse.
BSIM3 (Berkeley Short-Channel IGFET Model)[4] fulfills this requirement and was chosen for
this study.
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In BSIM3, there are a total of 33 DC model parameters of which 7 are the basic parameters.
These 7 parameters, in addition to having a physical meaning, are responsible for determining the
majority of device characteristics. The model has been formulated in a way that most of the
remaining 26 parameters are either functions of these basic parameters or contribute little to first
order effects. A summary of these 7 parameters is given in Table 1 along with their physical
meanings.

SPICE Parameter Physical Meaning Units

VthO Threshold Voltage @ Vbs
= Ov for Large W and L

V

Tox Thickness of Gate Oxide M (meters)
dl Channel Length Reduc

tion on One Side

M

dw Channel Width Reduction

on One Side

M

Kl First-Order Body Effect
Coefficient (proportional
tolW)

vl/2

K5 Second-Order Body
Effect Coefficient (related
toNsub)

-

RdsO Parasitic Resistance

Between Source and

Drain
ohms

TABLE 1. Basic Parameters for BSIM3

2.0 Methodology

The goal of this experiment was to use the above 7 basic parameters to generate the Worst and
Best case SPICE file for the average propagation delay (Tp) and average power dissipation (PaVg)
for a 21 stage ring oscillator. This particular circuit was chosen for its ease in evaluating both
speed and power dissipation, two of the most critical circuit performance variables in digital cir
cuit design.

The methodology required the use of Principal Component Analysis (PCA) to resolve the pos
sible correlation among the basic BSIM3 device model parameters. This is important because
PCA will enable us to carry out the remaining analysis with independent pseudo-variables which
greatly simplify mathematical equations and geometrical concepts. This transformation of actual
SPICE model variables into pseudo-variables is simple; each pseudo-variable is a linear combina
tion of the SPICE variables. Thus as a result of PCA, we have:

PV1=P1>1*VthOnmos,+...Plt6*RdsOnmos+Pu*VthOpmos,+...Pltl2*RdsOpinos 0)
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PVn =Pn,1*VmOnmos,+...Pn>6*RdsOnmos+PnJ*VthOpmos,+...Pnjl2*RdsOpmos

The variables PV/ are the n pseudo-variables (also called principal components) resulting from the
PCA analysis. Each successive PV explains an incremental amount of the variance in the original
data set until the last pseudo-variable, PVn, at which point all the variation in the data set has been
accounted for. These pseudo-variables can now be used in a Monte Carlo experiment to build a
simple linear regression model for each of our circuit performance variables. These models will
be of the form:

Tp =f(PV,,PV2,...PVn) and Pavg =f(PV1,PV2,...PVn) (2)

Once these equations are known, a non-linear optimizer is used to find the maximum or mini
mum values for each of the above two objective equations separately. These optimized values of
Tp and Pavg, hence, will be our "worst*' and "best" case values. For each of these values there will
be a unique set of corresponding pseudo-variables(the optimization is done in the rotated space of
the pseudo-variables). Once these PV's are determined, the PCA equations in (1) above can be
then used to transform them into meaningful BSIM3 basic model values corresponding to our
worst and best case files.

Before we employ the use of the non-linear optimizer for the equations defined in (2) above,
we must define the constraints of our optimization problem. These constraints arise from the mul
tivariate normal distribution of our pseudo-variables. Each PV is normally distributed since it is a
linear combination of the basic BSEM3 parameters, each is assumed to follow a normal distribu
tion (See Figures 1 through 4). When we lump all n PV's together to form a multivariate distribu
tion and decide on a specific probability contour, we produce the constraint for our non-linear
optimization. Mathematically, this implies:

(x - u.)TI"l (x - \i) =constant (3)

The left hand side of equation (3) above defines the multivariatedistribution of our PV's: (x - |i) is
a n x 1 matrix of our pseudo-variables minus its mean and £ is its n x n covariance matrix. These
variables follow a multivariateGaussian distribution. The constant is usually set to some probabil
ity value which corresponds to the pth cumulative percentile.

Graphically, this procedure can be visualized with the help of Figure 5 for the case of two
PV's (n=2). Our equation for the constraint would resemble that of an ellipse with the boundaries
of the ellipse bounding the pth cumulative percentile of the multivariate distribution.
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optimizer trying
to find max or
min values

FIGURE 5. Graphical Representation of Optimizing a Nonlinear Function ofTwo Variables

3.0 Implementation

BSIM3 .model files for both NMOS and PMOS were extracted from a 0.8u,m process. There
were a total of 40 SPICE .model files extracted from one wafer corresponding to 40 individual
dies. From these files the estimate for the mean and sigma values for each of the basic BSIM3
parameters in Table 1 were calculated, with the exception of the variable Tox. Tox was extracted
with a range of 5 Angstroms across the wafer. Such a small variation could be considered to be
insignificant compared to the variation seen for the other basic parameters. As a result, the total
number of basic parameters was 12,6 for each type of MOS device.

The 12 variables exhibited some correlation between one another. For instance, dwnmos and
dwpmos had a correlation coefficient (p) equal to 0.79, while the correlation between Kl and K2
for both NMOS and PMOS was -0.92 and -0.94, respectively. The results of PCA (see Table 2)
show how 12 pseudo-variables could be used to explain 100% of all the variance in our original
data. Even though the percentage of variance explained by each successive principal component
decreases rather sharply, it is important to keep all 12 pseudo-variables, to ensure that there are
enough linear equations to map from pseudo-variable space directly to real SPICE parameter
space and vice versa.

This proved to be important for our Monte Carlo Analysis which followed. Random numbers
(from a normal distribution) were generated in pseudo space which were then transformed back
into real values for the 12 BSIM3 basic parameters to be used in SPICE. Thus for every Monte
Carlo point, 6 BSIM3 parameters were varied for each type of device. The remaining 27 DC
parameters were fixed at their values extracted from the center of the die. This is because the
physical nature of BSIM3 and the assumption that the variation in these 7 (now 6) basic model
parameters will explain the most significant part of the variation in the current drive of the device.

VthO(nmos)
dl(nmos)
dw(nmos)
Kl(nmos)

PV1
-1.492108e-3

3.726&77e-l
2.931581e-l

3.10621 le-1
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PV2

5.905668e-l
-1.8782l0e-l

3.815624e-l

PV3

-8.517796e-2

1.378l65e-l"
1.784557e-l

PV4

3.163409e-2

-2.505171e-2

-4.237756e-l
3.655242e-l
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K2(nmos)
RdsO(nmos)
VthO(pmos)
dl(pmos)
dw(pmos)
Kl(pmos)
K2(pmos)
RdsO(pmos)

Variance

% of total

Cumultative %

VthO(nmos)
dl(nmos)
dw(nmos)
Kl(nmos)
K2(nmos)
RdsO(nmos)
VthO(pmos)"
dl(pmos)
dw(pmos)
Kl(pmos)
K2(pmos)
RdsO(pmos)

Variance

% of total

Cumultative %

VthO(nmos)"
dl(nmos)
dw(nmos)
Kl(nmos)
K2(nmos)

RdsO(nmos)
VthO(pmos)
dl(pmos)
dw(pmos)
Kl(pmos)
K2(pmos)
RdsO(pmos)

PV1

-2.723438e-l
2.487619e-l

3.205826e-l

2.08159e-l

3.576423e-l
3.682049e-l
-3.366706e-l
-1.4031 lle-1

4.17309

34.77575
•34.77575'

PVS

•4.703119e-l

1.63l40le-l
-8.240403e-2
2.078682e-l

-3.536356e-l
3.417080e-l
-3.09l586e-2
-5.49643 le-1
1.340821e-2
-1.6307l2e-l
9.227592e-2
-3.493127e-l

7.832995e-l
33275

83.85186

PV9

6.020433e-2
-7.790794e-l
-6.709257e-2
8.636655e-2
1.650754e-2
3.197551e-l
1.364084e-l
4.651098e-l
8.862903e-2
1.079737e-l
6.444173e-2
-1.278026e-l
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PV2

-1953l61e-l
-3.782492e-l
6.75363 le-3
-2.142144e-l

1.3979l4e-l
-1.663373e-l
2.356324e-l
-1.364805e-l

1006184
16.7182
51.49396

PV6

1.058689e-2
1.673190e-l

3.275626e-l
-4.247258e-2

6.1532l9e-2
3.130584e-l
1.473436e-l

-3.209041e-l
2.4699l0e-l
-6.439068e-2
6.226508e-2

7.53l812e-l

7.58259e-l
6.31883

90.17069

PV10

2.341407e-l
8.93716le-2
-6.442109e-l

7.179719e-2

1.660058e-l
9.999898e-2
-1.922844e-l
-1.507048e-l
6.396207e-l
9.326037e-2
4.222229e-2
1.379345e-2"

PV3

-1.287262e-l

2.874006e-l

-4.538006e-l
4.554936e-l
9.897135e-2
-3.84664e-l

4.412387e-l
8.491283e-2

1.603642
13.36369
64.85765

PV7

-3.84398e-l
-2.566214e-l

2.382398e-l
-4.318194e-2

•1.281194e-1
-4.244618e-l

-5.43461 le-1
5.966834e-2
3.569030e-l

1.989695e-l
-2.423637e-l

8.098749e-2

4.l57l97e-l
3.46433

93.63502

PV11

-2.862604e-l

3.975985e-2
2.758212e-2
4.534965e-l

3.75989le-l
-1.821015e-l

1.01558le-l
-4.952238e-2
-8.038769e-2
4.798739e-l
5.320785e-l
5.384005e-2

PV4

-4.852363e-l
-3.97424e-2
-1.145988e-l

8.914575e-2

-3.829252e-l
1.697973e-l
-1.6954l3e-l
4.704298e-l

1.496005
12.46671
77.32436

PV8

3.520794e-l
-1.088275e-2
1215665e-l
6.73449le-2
2.166942e-l
4.104748e-l

-5.569698e-l
-2.13l889e-l
-2.885404e-l

3.553272e-l
1.554870e-l

1.322661e-l

3.098587e-l
2.58216
96.21717

PV12

-9.768466e-2
-4.907228e-2
4.141946e-3

5.682694e-l
4.745300e-l
-4.510925e-2
3.064068e-4
2.323582e-2
-2.952l02e-2
-4.612373e-l
-4.7259l8e-l
1.985559e-2
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Variance

% of total

Cumultative %

PV9

2.3l3289e-l
1.92774
98.14491

52

PV10

1.579808e-l
"T3T55I
99.46142

PV11

5.335946e-2
0.44466
99.90608

PV12

1.126996e-2
0.09392
TOO"

TABLE 2. Principal Component Loadings

The variations in the 27 other parameters are not as significant. The center die was picked
under the assumption that the process was "centered" at this point.

A21 stage ring oscillator with afanout oftwo per stage was then simulated and its xp and Pavg
measured for every Monte Carlo simulation point (50 points in all). Simple linear regression was
subsequently performed on the 12 independent PCA pseudo-variables and the dependent circuit
variable (xp orPavg)- The result is a relationship between a circuit performance variable and a set
of pseudo-variables, which is just another methodof representing real SPICE device parameters.
Another linear model with quadratic pseudo-variable dependence was also formulated but the fit
of the model (see Section 4.0) was no better than the one below. Explicitly, these equations are the
following:

Tp(psec)= 181.80-2.051PV, +0.955PV2 - 0.865PV3 +0.547PV4 + 1.024PV5+ 1.823PV6 +
1.567PV7 + 1.06PV8 + 2.455PV9 - 0.956PV10 -1.410PV,, + 9.259PV12 (4)

Pavg (mW) = 13.170 + 0.116PV, - 0.156PV2 + 0.162PV3 - 0.009PV4 - 0.0646PV5 - 0.217PV6 -
0.0877PV7 - 0.0705PV8- 0.119PV9 - 0.0202PV10 - 0.0715PV,, - 0.052PV12 (5)

As previously stated, it is necessary for us to maximize or minimize these xp and Pavg with
respect to some constraint. A good discussion of the formulation of this constraint can be found in
[5,6]. The important point to remember is that this constraint is a multivariate distribution of
pseudo-variables resulting from the previous Principal Component Analysis. Since the PCA com
ponent loadings are calculated with normalized BSIM3 parameters, the pseudo-variables have
zero means as well. Equation (3) then simplifies to:

(x)TZ*1(x) = constant (6)

with u. = 0. The covariance matrix, 2, also assumesa simple form containing only non-zero values
in its main diagonal entries due to the orthogonalityof the pseudo-variables. Hence, our constraint
is the following:

(PV,)2/4.173 +(PVo)2/2.00618 +(PV3)2/1.6036 +(PV4)2/1.496 +(PV5)2/7.833e-01 +(PV6)2/
7.583e-01 + (PV7)2/4.157e-01 + (PVR)2/3.099e-01 + (PV0)2/2.313e-01 + (PVm)2/1.58e-01 +

(PVu)z/5.336e-02+ (PV12r/1.127e-02 = 21.03 (7)

The value of the constant used was 21.03 corresponding to 12 degrees of freedom (12 pseudo-
variables) at a cumulative 95% value for a Chi- Squared distribution.

Once equations (4), (5), and (7) have been obtained, they were used with a general non-linear
optimizer called "hanpal." The output of hanpal is hopefully the set of "worst" and "best" case
parameters (in pseudo space) corresponding to a unique set of actual BSIM3 SPICE parameters
(the basic 12 parameters). The C input file used in hanpal is given in the Appendix.
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4.0 Results and Discussion

The results of the optimized worst and best case files for the ring oscillator circuit were com
pared to the actual performance distribution obtained by simulating the same circuit 40 times will
complete BSIM3 .model decks extracted from each individual die. The results are summarized in
Table 3.

File Predicted Value Location in Actual

Distribution (a)
Best Case Pavg
(minimum)

11.82mW -3.40

Worst Case Pavg
(maximum)

14.86mW +3.11

Best Case xp
(minimum)

172.46 psec -0.68

Worst Case xp
(maximum)

202.19 psec +4.35

TABLE 3. Comparison of Predicted Worst and Best Case versus Actual

Several observations can be made. First, we see immediately that our methodology was more
precise atpredicting the +/- 3a values for Pavg than for xp. Secondly, prediction ofworst case files
for Pavg falls a little beyond the 3a limits, but this error is symmetric. This is not the case for xp
where the minimum xp is severely under-estimated and the maximum xp over-estimated. These
errors can be traced to two main steps in our methodology.

First, in the formulation of the equations (4) and (5) above we assumed that a 50 point Monte
Carlo analysis was adequate in generating enough data points for performing the linear regres
sion. The "rule of thumb" concerning the convergence of Monte Carlo is 100-150 simulation
points. Thus our Monte Carlo might not have givenus enough data points to adequately bound the
distribution of both circuit performance variables. This is a failing not the methodology but of the
resources available at the time of the project. Certainly, more points in the Monte Carlo analysis
could be performed.

If inadequate coverage of the Monte Carlo analysis was the only plausible explanation of the
errors in our methodology, then we wouldexpect that both sets of predictions would be similarly
in error. This is not true and leads us to suspect that there are other underlying factors at work.
One possibility could be the poor model given by our linear regression model (see ANOVA Tables
4 and 5).

As we can see, the result of our linear regression was far more satisfactory in for the predic
tion of PaVg than for xp. We evaluate this based upon the value of R-squared and the F-value. R-
squared is the regression sum of squares divided by the total sum of squares and represents the
percent variation in the response explained by the regression model. The results of the linear
regression on Pavg returned a R-squared value of 0.94. Although a large R-squared value usually
denotes a good fit of the model, thisunfortunately is not always so, due to the fact that R-squared
usually increases as more termsare added to the model. A betterassessment is to use the adjusted
R-squared value which was 0.92 in this case.
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Since the R-squared statistics is not a good assessment of overall fit, the F-value is used. The
F-value is the ratio of the regression mean square to the residual mean square and is a measure of
the significance of the fit asawhole. The F-value is usually usedin a significance test of hypothe
sis to determine the probability of whether observing a F-value as large or larger than the one
observed (assuming that all the coefficients are zero)[7]. Thus a high F-value corresponding to a
small significance level are good indicators of the goodness of fit. For Pavg, this was indeed the
case for F-value was equal to 48.48 and the significancelevel was determined to be zero.

The ANOVA table tells another story for Xp. The adjusted R-squared coefficient was 0.699842
and the F-value was 10.52. Even though the significance level of the F-value was small (le-08)
the fit of this particular linear regression can be considered poor relative to that for Pavg. A new
linearregression with quadratic independent terms was performed in the hopes of improving fit,
but this was also unsuccessful for similar values for R-squared and F-value were obtained. Subse
quent results from hanpal optimization on this regressionrelation were therefore not accurate.

Error Source Sum of Sq. DF F Sig. Level

Regression 12.788268 12 48.48271 0

Residual 0.813290 37

R-squared (adjusted) 0.920814
Std. Dev. of Regression 0.148259

TABLE 4. ANOVA Table for Pavg Model

Error Source SumofSq. DF F Sig. Level

Regression 1924.79443 VI 10.520635 le-08

Residuals 564.108798 37"

R-squared (adjusted)
Std. Dev. of Regression

TABLE 5. ANOVA Table for xp Model

PredictingWorst Case SPICE Files Using BSIM3

0.699842
3.9046369
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5.0 Conclusions

The methodology presented in this paper allows for the prediction of worst and best case
SPICE .model files based upon the analysis of a subset of the BSIM3 parameter set (known as the
basic parameter set). However, the results point to two limitations of this methodology. First,
enough points in the Monte Carlo analysis must be performed to adequately allow the model of
the circuit performance variable to converge to its actual distribution. Secondly, care must be
taken in performing/evaluating the linear regression. It has been shown that satisfactory results
will only be obtained if the fit is good.

As a parting observation, it is important to understand that the generation of worst and best
case SPICE files requires an intimate knowledge of the device model. BSEM3 is a good illustra
tion of this concept. This model was formulated and implemented into SPICE with as many phys
ical relationships as computationally practical. Because of the prevalence of the underlying
physics involved, most of the variation in a device performance can and should be only signifi
cantly influenced by the most physical parameters such as those in Table 1. Therefore, it naturally
follows that our methodology is only concerned with this subset of basic parameters. Conceiv
ably, all 33 parameters could be included in the analysis with PCA, Monte Carlo, linear regres
sion, and hanpal optimization but the increase in computational cost would be enormous.

Acknowledgments: The author would like to thank the help of many whom have given their
time and shared their knowledge on this project. Those who come to mind are: Sovarong Leang
for his help in introducing the hanpal optimization program, Sherry Lee for her assistance with
the statistical package SPlus, Eric Boskin for his many references on Multivariate Statistics and
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many suggestions/advice concerning my methodology as well as for spending a memorable after
noon with me debugging the intricacies of gcc compilation of the hanpal optimizer. Thank you all
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A Methodology for Process Parameter Extraction from

Ring Oscillator Period Measurements

Mark Hatzilambrou

In order to ease the extraction of key circuit performance related process
parameters, a suite of ring oscillatortest circuitswhose performance is eas
ily measurable is modeled through simulations. These models are then used
to extract the values of the parameters from results generated via simula
tion at arbitrary points in the parameter space.

1.0 Introduction

It is widely known that speed performance variations in digital MOS logic circuitry is attribut
able to variations in several key device metrics, i.e. transistor effective channel length (Leff), tran
sistor effective channel width (Weff), device threshold voltages (Vt), and gate oxide thickness
(Tox). It has been shown that varying the component parameters of these few metrics in simula
tion can adequately describe speed performance variation across the range of process variation.

Monitoring the variation in these device parameters directly is very expensive in terms of time
and resources; thus, acquisition of this data for each wafer processed is prohibitive. Electrical
measurements, however, are much less expensive than the standard SEM and more destructive
measurement techniques used to measure the key components parameters. An electrical means of
measuring the effects and extracting the valuesof these parameters would be helpful for SPC, bin
ning, and statistics acquisition for circuit design.

This study explores the possibility of extracting parameter values from ring oscillator(RO)
period measurements. In order to extract parameter values from electrical measurements which
confound effects of these parameters, an overdetermined system is required. Therefore a suite of
circuits is modeled in order to extract parametervalues through least squares fitting. An analysis
of the models is conducted to discover deficiencies in the methodology.

2.0 Methodology

Eight ring oscillators designed so that they have different sensitivity to seven key parameters
are simulated across the range of parameter component variation. Simple additive models are built
to relate RO periods to the seven process components. These models are then used to estimate
parameter component values through a least squares fit to results from simulations, which are con
ducted at arbitrary points in the parameter space. The validity of the overall methodologycan be
determined by the accuracy with which it extracts these parameter values.

The methodology can be divided into four basic steps: selection of process, model, and
parameter components; selection of test circuits; modelling circuitperformance in terms of pro
cess parameters; and parameter extraction from the suite of circuit models.
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2.1 Process and Parameters

The hSpice circuit simulator presents a range of choices of device models, of which MOS
LeveB was selected. Although hSpice Level3 model is an empirical model which relies upon
parameter fitting in order to achieve circuit accuracy, good results have been achieved in simulat
ing process variationusing this model by varying only the key device parameters[l].

We used Leff component parameters XL (poly gate length variation) and LD (diffusion of
source and drain under gate poly, separate for both NMOS and PMOS); Weff parameter XW
(transistor width variation); Tox parameter TOX (gate oxide thickness); and Vt parameter
DELVTO(zero-bias gate threshold variation, separate for NMOS and PMOS) to model variations
in Leff, Weff, Tox, and Vt for both NMOS and PMOS devices. Although some of these parame
ters arein realityhighly correlated (e.g.Tox andVt) so that independentvariation of these param
eters can result in combinations not seen in production, there is no loss of generality in allowing
them to vary independently in this simulated experiment. The MOSIS \\i process models are
used, although source and drain static overlap capacitances have been removed and are calculated
dynamically [2].

There are a total of seven parameters, which are listed in Table 1, covering component varia
tion for both NMOS and PMOS devices. The range of variation in the MOSIS process was
assumed and is also listed in Table 1 along with the full device models.

Table 1: Parameter Variations and MOSIS l|i hSpice LeveB MOS Models
Parameter Variation

.param

variation

Diffusion Under Gate

(PLd) (NLd)
PDELLD NbELLD

+/-0.1U. +701U.

INMU5 Model:

.MODEL NMOS NMOS LEVEL=3 PHI=0.600000 XJ=0.150000U TPG=1 VTO=0.7894 DELTA=5.3480E-01

KP=1.2023E-04 UO=588.4 THETA=1.2810E-01 RSH=2.2190E+00 GAMMA=0.5931 NSUB=4.4240E+16
NFS=2.9700E+12 VMAX=1.7610E+05 ETA=4.1800E-02 KAPPA=1.4750E-01 CGBO=3.4802E-10

CJ=1.4276E-04 MJ=0.7052 CJSW=4.5285E^10 MJSW=0.351440 PB=0.800000 TOX=MODELTOX
DELVTO=NDELVT LD=NMODLD XL=DELXL XW=MODELXW
PMOS Mode):

Gate Poly
(XL)

T5EEXT

+73TTir

Gate Ox

(Tox)
T5ECTO5T

+/-20A

Threshold Voltage
(PVt) (NVt)

TBEEvT

+/-0.2V

Tn5ECvT

+/-0.2V

Width

(XW)
DELXW

+A0.3n

.MODEL PMOS PMOS LEVEL=3 PHI=0.600000 XJ=0.150000U TPG=-1 VTO=-0.8682 DELTA=5.9780E-01
KP=3.5553E-05 UO=174.0 THETA=1.9370E-01 RSH=1.8010E+00 GAMMA=0.4694 NSUB=2.7710E+16
NFS=4.8760E+12 VMAX=8.6470E+05 ETA=1.1730E-01 KAPPA=9.9050E+0 CGBO=3.7779E-10
CJ=5.5753E-04 MJ=0.4566 CJSW=7.1088E-11 MJSW=0.013373 PB=0.850000 TOX=MODELTOX
DELVTO=PDELVT LD=PMODLD XL=DELXL XW=MODELXWDELVTO=PDELVT LD=PMODLD XL=DELXL XW=MODELXW

.param MODELTOXz:41.6$E-0S +DELTOX* .param PMODLD=* 1.123E-07 +PDELLb*

.param MOr)ELXW=t-0.3624E-6 +DELXW* | .param NMODL&=t1.463E-07 +NDEEEgr

2.2 Ring Oscillator Circuits

In order to provide a set of models that form an overdetermined system in terms of the seven
parameters, eight ring oscillators were designed to be variously sensitive to these parameters.
Threshold voltage sensitivity was emphasizedby stacking gates in series, and gate oxide sensitiv
ity was changed by increasing fanout due to gate loadingon each stage.
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Table 2 summarizes the structure of the test circuits. Single stack indicates simple inverters,
NAND-NOR cascade is made up of standard NAND and NOR gates, and Triple Stack Inverters
indicates a series of 3 devices in each the NMOS and PMOS legs of the inverter. Fanout indicates
the loading on the output of a gate in terms of its own gate loading. A full spice deck for model1
is included in the appendix.

Table 2: Ring Oscillator Test Circuits

Model 1 2 3 4 5 6 7 8

Gate Single Single Single NAND- NAND- NAND- Triple Triple
Structure Stack Stack Stack NOR NOR NOR Stack Stack

Inverter Inverter Inverter Cas

cade

Cas

cade

Cas

cade

Inverter Inverter

Fanout 1 4 7 1 4 7 1 2

2.3 Model Development

A simple and numerically efficient model is desired relating ring oscillator period to the val
ues of the key parameters for each of the eight circuits. A full factorial experiment was run in sim
ulation by varying the parameters by the extremes of the process listed in Table 1. From the
results of these simulations, the Yates algorithm can be used to determine the factor effects, and
the resulting model can be verified by comparing residual sum of squares to model sum of
squares.

It should be noted that the models are constructed in terms of the deviations of parameter val
ues from nominal values; therefore each model consisting only of main effects for the seven
parameters would contain eight terms, one for each factor effect, and one grand average. A model
could also be derived from the factorial data using a least squares fit; alternatively, simulations
could have been run for points throughout the parameter space rather man just at the extremes of
the factorial, from which curvature could be more directly modelled. However, inadequacy of the
models developed from the factorial can be deduced from confirmation runs.

2.4 Parameter Extraction

Once models have been developed for all eight circuits, given the measured periods of the
eight circuits fabricated, or in this case simulated, at a point in the parameter space, parameter val
ues can be extracted using a least squares fit[3]

b=/XrXjr7X7y (1)

where b is the resultant vector of parameter values, X is the matrix of main effects of these
parameters, and y is the difference between the measured periods and the grand averages. In order
for the fit procedure tobewell conditioned, the columns of X should be as linearly independent as
possible.
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3.0 Model Results

The main factor effects of the 8x128 simulation runs are displayed in Table 3. Note that all
factor effects are calculated in terms of the normalized parameter range +/-1. These main factor
effects are all more significant than any of the interaction terms, with only a few interaction terms
being of the same order of magnitude as the smallest main effect. This implies that for the circuits
selected, the parameters have independent effects upon the ring oscillator period.

Testing the adequacy of the model is somewhatcomplicated by the fact that our experiment is
deterministic involving no measurement error and no error due to variation in other process
parameters. Some of this uncertainty may be included by fitting only a four-term model involving
only the grand average and the three most significant main effects. By treating the variations in the
resulting parameters as replicated runs, an estimated variance may be arrived at and goodness of
fit deduced for the four term model. Note that the extremes of variation will tend to overestimate
the actual variation, so care must be taken in drawing conclusions. An F-test using the resulting
mean-square ratios indicates that the 4-term model is highly significant. The R value of -0.85 for
the four term model indicates a reasonably complete fit given the noise of the system. Residual
plots indicate that the residuals are randomly distributed in their deviation from zero, which we
might expect with a good fit to a deterministic experiment.

The 8-term model displays an R2 value of0.98, which indicates a fairly complete fit. How
ever, it is difficult to draw definite conclusions given the complete lack of any noise information
whatsoever. Noise estimates could be incorporated by running replicated experiments with Monte
Carlo selection of further key parameters, but a more physical device model than the one we have
used here would probably be necessary to yield adequate results. There is no possibility that our
models for our circuits are overfit, considering the deterministic nature of the experiment.

Table 3: Factor Effects from Full Factorial Runs

Model Coefficients Adjusted R2

Model Avg PLd NLd XL Tox PVt NVt XW 8term 4term

1 9.509 -1.06 -1.10 2.00 -0.71 -0.24 0.32 -0.26 .98 .86

2 24.41 -3.29 -2.92 5.37 -1.92 -0.62 0.83 -0.64 .98 .87

3 39.24 -5.46 -4.70 8.71 -3.16 -0.94 1.33 -.101 .98 .87

4 11.14 -1.02 -1.21 2.42 -0.92 -0.23 0.37 -0.24 .98 .85

5 31.05 -3.87 -3.66 7.23 -2.87 -0.65 1.05 -0.65 .98 .85

6 50.50 -6.84 -6.07 11.99 -4.85 -1.07 1.78 -1.07 .98 .85

7 21.19 -2.19 -2.31 4.60 -1.96 -0.41 0.75 -0.27 .98 .83

8 28.65 -3.09 -3.11 6.33 -2.71 -0.65 0.99 -0.32 .98 .83
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4.0 Confirmation Run Results and Discussion

Using the methodology described in section 2.4, parameter values were extracted and com
pared with the known input values. Confirmation runs were performed at arbitrary points in the
parameter space (not at points examined during the factorial experiment) in order to test the valid
ity of the models throughout the parameterspace. As a less rigorous test of the model and meth
odology, an attempt was made to extract points that were partof the initial factorial experiment.
Theresults of these least-squares extractions areshown in Table 4, withthe first fourpairsof rows
listing datapoints internal to the parameter space andthe final fourpairs of rows listing"corner"
points in the factorial set.Notethat all values are in terms of normalized parameter variation.

The results show a remarkable inadequacy in either the models or the methodology. We can
see that although an occasional extracted parameter is close to its actual value (such as the case
with PLd and PVt in the first example), it is very often astronomically incorrect. Calculation of
predictions and residuals using the extracted values of the parameters indicates that the least-
squares fit has indeeddone a goodjob. In fact, the higherror in values is more indicative of a sys
tem that is overfit with the high values attributable to insignificant terms.

If our models were perfect, we would expect that extraction of parameters for points on the
factorial would yield exact results. The fact that our extraction for such points does not yield
resultswhich are close to, or even in the direction of, our actual values, indicates that perhaps the
incompleteness of the models is not the culprit.

Fits using the 4-term model, and fits to the three most significant parameters using the 8-term
modelswith known values of the remaining parameters yielded similarly unsatisfactory results.

Table 4: Actual Versus Extracted Normalized Parameter Variation

PLd NLd XL Tox PVt NVt XW

Actual 0 0 0 0 0 0 0

Extracted -0.065 1.31 1.065 0.29 -0.027 -2.77 -2.44

Actual 0.99 -0.12 0.40 -0.42 -0.84 -0.41 0.94

Extracted 0.55 4.43 1.96 2.35 4.00 12.14 -1.38

Actual -0.94 0.85 0.65 0.70 -0.19 0.08 -0.55

Extracted -0.608 -1.416 -0.66 0.13 0.036 0.182 -0.748

Actual -0.66 -0.16 0.15 -0.39 0.96 0.66 0.73

Extracted -8.43 24.80 14.39 12.51 -12.43 -8.14 24.99

Actual +1 +1 -1 +1 +1 -1 -1

Extracted 0.512 3.733 -0.997 -2.29 0.064 -1.216 -3.32

Actual +1 +1 -1 +1 +1 +1 -1

Extracted 0.814 1.539 -1.968 -2.94 -0.447 -2.52 -2.912
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Table 4: Actual Versus Extracted Normalized Parameter Variation

Actual +1 -1 -1 -1 -1 -1 +1

Extracted 1.275 -3.96 -0.837 1.787 2.632 -0.795 4.313

Actual -1 +1 +1 *l \d -.^ :.:-:. •r*l •. -.-; +1

Extracted -1.098 2.184 1.106 1.472 -1.206 4.731 1.398

Equation 1 leads us to examine ourcoefficient matrix X. It was noted above that in orderfor
thefit to benumerically insensitive to thematrix inversion operation, thecolumns ofX mustbe as
closeto orthogonal as possible. The columns of X represent the parameter coefficient columns of
our models, and colinearity of these columns is a measure of the covariance of parameters with
respect to model outputs. A measure of the colinearity can be calculated by taking the inner prod
uct of the normalized columns with one another. This colinearity is listed in Table 5 as the angular
difference between the direction of the parameter vector in parameter 7-space. We see that these
vectors are nearly colinear, with the greatest deviation being 16.3 degrees, and typical deviations
around five degrees. By analyzing the rows of X, we find a similar relationship between circuit
models, indicating that the circuits themselves do not differ very much in their sensitivity to the
various parameters. The colinearity in rows and columns of our coefficient matrix magnifies any
imperfections in modelling our deterministic system, yielding highly inaccurate results.

Table 5: Angular Deviation Between Parameter Columns (Degrees)

PLd NLd XL Tox PVt NVt XW

PLd 0 3.7 174.9 8.0 5.6 174.2 5.3

NLd 0 178.0 5.3 4.2 177.6 11.3

XL 0 176.6 174.5 1.8 167.0

Tox 0 8.3 176.2 16.3

PVt ''•'•'• 0 175.1 11.3

NVt
.

0 166.5

XW
....:..,„, ; • .''«<,' •.}'~JZ&££:$ 0

5.0 Conclusions

It has been suggested that deducing process variation and process performance from the fre
quency of test ring oscillators is difficult because ring oscillators confound all parameters. How
ever, mis is not necessarily the major problem. Confounded effects may be extracted given a
system that adequately spans the parameter space. Designing ring oscillators so that the desired
parameters are represented in adequately orthogonal models appears to be a key.
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6.0 Appendix

The following is the hspice inputdeck for model 1. Parametric definitions are found at the end
of the file.

****************************************************************

.SUBCKT inv VDD GND in out

Ml VDD in out VDD PMOS W=15.0U L=1U AD=60.0P PD=38U AS=60.0P PS=38U
M2 GND in out GND NMOS W=5.0U L=1U AD=20.0P PD=18.0U AS=20P PS=18.0U
CI in out 1 .OF M=FANOUT

C2 out GND 19.0F M=FANOUT

*** Fan-out Loading Transistors
* Mpll VDD out nil VDD PMOS W=15.0UL=1UAD=60.0P PD=38U AS=60.0PPS=38U
* + M='FANOUT-l'

* Mnll GND out nil GND NMOS W=5.0U L=1U AD=20.0P PD=18.0U AS=20P PS=18.0U

* + M='FANOUT-r

*CllnllGND20PF

* + M=TANOUT-r

*** Node Listing for subckt: inv
** GND Node 0 is the global ground node
** GND GND!

** in input
** out output
** VDDVdd!

.ENDS

****** top level cell
xinv31 VDD 0 31 1 inv

xinv30VDD0 30 31 inv
xinv29 VDD 0 29 30 inv

xinv28 VDD 0 28 29 inv

xinv27 VDD 0 27 28 inv
xinv26 VDD 0 26 27 inv

xinv25 VDD 0 25 26 inv

xinv24 VDD 0 24 25 inv

xinv23 VDD 0 23 24 inv
xinv22 VDD 0 22 23 inv

xinv21 VDD 0 21 22 inv

xinv20VDD0 20 21 inv

xinvl9VDD0 19 20inv

xinvl8VDD0 18 19 inv

xinvl7VDD0 17 18inv

xinvl6VDD0 1617inv

xinvl5VDD0 15 16inv
xinvl4VDD0 14 15inv

xinvl3VDD013 14 inv
xinvl2VDD01213inv

xinvll VDD Oil 12 inv

xinvlOVDDOlOllinv

xinv9 VDD 0 9 10 inv

xinv8 VDD 0 8 9 inv

xinv7 VDD 0 7 8 inv

xinv6 VDD 0 6 7 inv
xinv5 VDD 0 5 6 inv
xinv4 VDD 0 4 5 inv

xinv3 VDD 0 3 4 inv
xinv2 VDD 0 2 3 inv

xinvl VDD0 1 2 inv
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***** models fornmos andpmosmosfets *******************************
.MODEL NMOS NMOS LEVELS PHI=0.600000 XJ=0.150000U TPG=1
+ VTO=0.7894 DELTA=5.3480E-01 KP=1.2023E-04
+ UO=588.4 THETA=1.2810E-01 RSH=2.2190E+00 GAMMA=0.5931
+ NSUB=4.4240E+16 NFS=2.9700E+12 VMAX=1.7610E+05 ETA=4.1800E-02
+ KAPPA=1.4750E-01

+ CGBO=3.4802E-10 CJ=1.4276E-04 MJ=0.7052 CJSW=4.5285E-10
+ MJSW=0.351440 PB=0.800000

+ TOX=MODELTOX

+ DELVTO=NDELVT
+ LD=NMODLD

+ XL=DELXL

+ XW=MODELXW

.MODEL PMOS PMOS LEVEL=3 PHI=0.600000 XJ=0.150000U TPG=-1
+ VTO=-0.8682 DELTA=5.9780E-01 KP=3.5553E-05
+ UO=174.0 THETA=1.9370E-01 RSH=1.8010E+00 GAMMA=0.4694
+ NSUB=2.7710E+16 NFS=4.8760E+12 VMAX=8.6470E+05 ETA=1.1730E-01

+ KAPPA=9.9050E+00

+ CGBO=3.7779E-10 CJ=5.5753E-04 MJ=0.4566 CJSW=7.1088E-11

+ MJSW=0.013373 PB=0.850000

+ TOX=MODELTOX

+ DELVTO=PDELVT

+ LD=PMODLD

+ XL=DELXL

+ XW=MODELXW

***** Independent sources ********
Vdd VDD 0 dc=vccv

***** Analysis ********
.param vccv=5V
.dcvoltv(l)=OV
.op all 35ns
.tran .Ins 20ns

.MEASURE TRAN first TRIGv(15)VAL=(\5*vccv*) RISE=1
+ TARGv(15)VAL=(*.5*vccv,)RISE=2

***** Fanout Parameter ********

.param FANOUT=l
***** Parameters formodel changes ********
.param DELXW=-0.30E-6
.param NDELVT=-0.2V
.param PDELVT=-0.2V
.param DELTOX=-0.20E-08
.param DELXL=-0.10E-6
.param NDELLD=-0.10E-6
.param PDELLD=-0.10E-6

.param MODELTOX=' 1.69E-08 + DELTOX'

.param PMODLD='1.123E-07 + PDELLD'

.param NMODLD= 1.463E-07 + NDELLD'

.param MODELXW='-0.3624E-6 + DELXW'
FMTJ
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