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Abstract

We present a novel approach to synthesizing hardware implementation from Hard
ware Description Language (HDL) programs that cannot be automatically synthesized
before. We deal with multi-phase/ multi-stage designs, and demonstrate that this prob
lem can be mapped into a class of timed automata which is called umulti-phasen fi
nite state machines (FSM). We propose three procedures to decompose a multi-phase
FSM into a network of interacting single-phase FSMs. The first two procedures are
based on the region graph expansion of a timed automata [AD90]. The first procedure
extracts single-phase FSMs by traversing a region graph. The second procedure for
mulates the region graph decomposition as an integer linear programming. These two
region-graph-based procedures may have an explosion in the number of states. The third
procedure, without building intermediate transition structures, constructs single-phase
FSMs directly from the transition structure of a multi-phase FSM. It is more efficient
but redundancy might exist in the constructed FSMs. Not only can these procedures
be used for the synthesis from a multi-phase design, they can also be used to speed up
FSM-based simulation.

*EECS Department, University of California, Berkeley



1 Introduction

Hardware description languages (HDL) for event-driven simulation (e.g., VHDL[vhd88],
Verilog [TM91]) have been widely used in circuit and system design. These HDLs are
designed for efficient simulation, but their formal semantics are not predetermined.
Therefore, it is possible to write an HDL program which has no corresponding hard
ware implementation. Some algorithms [syn94, vhd92] have been proposed to compile
some HDL programs into implementations. However, these state-of-the-art HDL com
pilers are limited to a subset of the language as well as to single-phase processes. In
some designs, like multi-phase pipeline circuits, multi-phase protocols, etc., this is too
restrictive.

The synchronous finite state machine (FSM) model used in hardware synthesis in
terprets transitions as controlled by a central clock [Koh78, SSL+92, VSV90, LN89,
DHLN91]. On the other hand, multi-phase FSMs are useful to model HDL programs
in which a process is controlled by several clocking schemes. In a multi-phase FSM,
whether a transition is made depends on the "phase" of the current state. Unfortu
nately, without analyzing the phase relationship among different clocking schemes, it is
impossible to obtain a correct implementation for a multi-phase FSM. As a result, tim
ing information must be preserved in the modeling of HDL programs so that synthesis
can be performed.

Timed automata [AD90] are ordinary automata augmented with timing elements for
modeling real-time systems. They have been successfully used in verification of timing
constrained systems [AD90, ACH+92, CDHWT92, LB93, LB94, BSV92, BBC+95]. In
[CBY+95] timed automata were proposed to model a general classof Verilog programs.
The extracted information can also be used for formal verification [ABB+94, BBC+95].

In this paper, we address the problem of synthesizing circuits from multi-phase
FSMs and multi-phase HDL programs. First, we give some motivation and definitions
in Section 2. We demonstrate that a multi-phase FSM can be decomposed into a
network of interacting single-phase FSMs. Two decomposition procedures based on
region graphs are proposed in Sections 3.1 and 3.2. One is based on region graph
traversal, the other on an integer programming formulation. In Section 3.3, we present
a more efficient procedure. These techniques are HDL independent since they are based
on a formal model, "multi-phase FSMs". More discussion on these approaches is given
in Section 4. Two applications (for synthesis and for FSM simulation) are presented in
Section 5. In Section 6, we present some preliminary experimental results on the size
of the single phase FSMs versus the more compact multi-phase FSMs.

Our main contribution is that we provide a technique for synthesizing multi-phase
HDL programs which also lead to more efficient simulation techniques as well (see
section 5).

2 Motivation and Definitions

When HDLs like Verilog and VHDL are used for synthesis, it is not easy to make
circuits out of general HDL programs even though these languages are called "hardware
description languages". Two difficulties arise. First, these languages were designed for
efficient simulation. No formal semantics exist; their semantics semantics depend on
the specific schedule a simulator chooses at run time. Therefore, it is hard to "guess"



always

begin
Q(posedge phil) i-fetch;
O(posedge phi2) ...
GKposedge phi3) ...
end

process

begin
wait until (phil'event and phil
wait until (phi2*event and phi2
wait until (phi3>event and phi3
end

process
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Control Row Graph(CFG)

Table 1: A multi-phase system in Verilog/VHDL and the impact of clock configurations on
system behavior.

the behavior of a program without a simulator. Second, HDLs are so powerful that
they can describe behaviors that are difficult to emulate by a circuit. For example,
due to delta-time in Verilog and VHDL, it is possible to perform an infinite number of
calculations in zero hardware time.

Nonetheless, it is attractive to be able to synthesize HDL programs. Typically a
subset of the HDL (synthesizable subset) [syn94, vhd92] is used for synthesizing cir
cuits. Among other things, these methods can synthesize single-phase processes into
sequential circuits. A single-phase process is one that may have multiple synchroniza
tion points, but each is controlled by a single clocking signal. This requirement may
be limiting for applications like multi-phase system design. For example, designs like
the one in Table 1 are excluded from the "synthesizable subset" due to the above
restriction.

In this paper we are concerned with multi-phase synchronous HDL programs not
only for synthesis but also for efficient simulation (see section 5). We assume that a
design is delay independent: all delay information can be discarded. An HDL program
is modeled by a sequencer and a datapath. Data-paths are allocated to emulate the
data operations of a program. A sequencer is used to control register access. Control
flow graphs (CFG) are used to represent the abstract execution of an HDL program.
But a control flow graph alone does not provide enough information to devise a se
quencer. Consider, for instance, the simplified pipeline processor in Table 1 (aVerilog
program on the left, a VHDL process for the same processor on the right). Assume
that phil, phi2, and phi3 are running at the same frequency (with period tt). i_fetch
may get executed every one, two, or three ir time units, depending on the phase rela
tionship among phil, phi2, and phi3. Hence, register variables touched by i_fetch
get updated every one, two, or three n. Note that these cases have the same control
flow graph. Without the timing information from a multi-phase HDL program, the
implementation of the program cannot be determined.



Definition 2.1 (Phase) A phase <f> is a pair (n,p) where p € Tl+ U{0},7r € Af. 4> is
a periodical event. Event <j> is generated every n time units. It is first emitted at p+n
time units.

Definition 2.2 (Multi-Phase FSM) A Finite State Machine (FSM) M is a tuple
< Q,g0)£,<£,A >• Q is the set of states. q0 € Q, is the initial state. E = /UO is
the input/output alphabet ofM.S is the transition function, A is the output function.
6 :Q x I -¥ Q. \:Q x I -* O. S and A are completely specified.
A Multi-Phase FSM (MPFSM) M is a tuple < Q,g0l E, 5, A, <f> >. cj>: Q -• Afx [1Z+ U
{0}]. It is a FSM in which each state is labelled with a phase <j>(s). A Single-Phase
FSM (SPFSM) is a special case of multi-phase FSMs where all states are labeled by the
same phase. A ^-machine is a single-phase FSM that is controlled by phase <f>.
The set of all phases used in M is denoted by $(Af) = {<j>a € Af x [1Z+ U{0}] | s €
Q,<t>(s) = <!>*}•

If a state s in a multi-phase FSM is labelled with phase <{>(s) = (?r,/>), then a
transition from s can be made only when the corresponding phase event happens
(and the labels on the transition are met). We use multi-phase FSMs to model HDL
programs in the following way. First, a CFG is extracted from an HDL program. For
each event control node (node that corresponds to Q(...) in Verilog, or wait in VHDL)
in the CFG, a multi-phase FSM state is allocated. Transitions in the multi-phase FSM
are derived by an event control to event control path traversal [CB94]. In this paper,
we assume that all synchronization signals are periodic and the phase relationships
among them are known.

3 Decomposing Multi-Phase Finite State Ma
chines Into Single-Phase Finite State Machines

We present three algorithms that extract implementations from multi-phase FSMs.
An extracted implementation consists of a network of interacting single-phase FSMs.
Each single-phase machine can be regarded as a FSM in traditional sequential synthesis.
The first two algorithms first build a timed automata that emulates a multi-phase FSM
derived from an HDL program. A region graph is then constructed from the timed
automata [AD90, ACH+92]. A region graph is a untimed transition structure where
timing information is incorporated in each region. The first algorithm decouples the
region graph into a set of interacting single-phase FSMs by graph traversal. The second
algorithm uses integer programming to solve the single-phase FSM extraction from a
region graph. The third algorithm decomposes a multi-phase FSM into a control-token
network and a set of difference counters. The control-token network has a structure
similar to the transition structure of the multi-phase FSM. Control token passing inside
the network depends on the state of difference counters. Difference counters are used
to provide each single-phase FSM with information regarding relative phases of the
other clocks. Although the region-graph-based algorithms have more opportunity for
optimization, they can encounter a size explosion during region graph construction.
On the other hand, the direct structure-based algorithm is more efficient, but it may
generate a circuit that is not optimal.
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Figure 1: A multi-phase FSM, its region graph, and extracted single-phase FSMs.

3.1 Algorithm I - Decomposing Region Graph of a Multi-
Phase FSM Using Graph Traversal

Given a multi-phase FSM, the way a state responds to a sequence of inputs may depend
on the configuration of the clock that control the progress of the MPFSM. For instance,
consider Figure l.a. The periods of the clocking signals <j>i, <fo, and 03 are 2, 1, and
4, respectively. Assume that L is false and the machine has just reached unshaded
0i from the starting state (where all clocks are reset to zero), then after 4 time units,
shaded <f>\ will be visited. Afterward, if unshaded 0i is visited again and L is false,
shaded <f>\ can not be visited in 6 time units.

Snapshots [AD90] are used to differentiate a state with various clock configura
tions. A snapshot is a pair consisting of a state in the automaton and assignments to
timer variables. However, there is an infinite number of snapshots. Therefore, tran
sition systems built from snapshots may be infinite. Fortunately, for our application,
many snapshots are equivalent and the number of equivalence classes is finite. Each
equivalence class forms a region [AD90, ACH+92].

In this section, a set of timed automata is used to emulate a multi-phase FSM.
The emulating timed automata is then expanded to derive a region graph [ACH+92,
CDHWT92]. We then present a class of procedures that produce single-phase FSMs by
walking the extracted region graph. The quality of the generated single-phase FSMs
depends heavily on the way each transition is generated and labeled.

A multi-phase FSM M =< Q, qo, E, <5, A > can be modeled by the product of a set of
timed automata. Basically, we create a phase signal generator for each synchronization
signal. We then copy the transition graph of M. Each transition is controlled by
associated labels as well as the phase of the present state. In general, a timed automata
T is built from M according to the following rules.

• Label each transition (s, i * o, t) of M with 0(s).

<>1 machine

♦2— c

"torn

$2 machine ♦3 machine



always begin
0(phl1)stmt1;
0(phi2) Stmt2;
and

(a.1) Verilog prooeu

process
begin
watt (phil); stmtl:
wait (pW2); stmtfc
end

process

(«.2)VHDLproceu (b) MRFSM foricqucnccr

toso

IQsO

(c) timed

Figure 2: Region expansion and multi-phaseFSM ofa hardwaredescription language (HDL)
process.

• Add self-loop to each state 5 of M. The loop is labelled with 0(s).

• For each 0 = (n,p) € $(M),

1. Allocate a state 0.

2. Allocate a timer t for 0.

3. Add a self-loop on state 0 labelled with 0, t < n.

4. Add a self-loop on state 0 labelled with 0,* == 7r,i?eset(t).
5. If p ^ 0 allocate a state 0.

6. If p ^ 0 add a transition from 0 to 0 labelled with £== />.

After building an emulatingtimed automata fora MPFSM, the methodsof [ACH+92,
CDHWT92] can be used to derive its region graph R. Figure 2 showsan example HDL
process (Verilog and VHDL), the multi-phase FSM extracted from the control flow
graph of the process, and the timed automata constructed according to the above
rules. In this example, 0(s) = 0i = (7Ti,/>i) = (5,0) and <f>(t) = 02 = (7r2,p2) = (3,0).
We choose the lowest boundary class [AD90] within each region as the representative
for that region. For example, state < s, (2 < x < 3,0 < y < 1) > is represented as
< s, [2,0] >. For a region state r € R, we also define the phase of the region, 0(r),
to be the set of clocks that count from zero in that region. That is, on entering the
region, phase signals in 0(r) are emitted and timers for those phase signals are reset.

Definition 3.1 (Phase of a region) Given a region a =< s, (ri,
gion graph R, 0t- € 0(a) iffO G r;.

, Tn) > in a re-

For example, Figure l.b is the region graph derived from Figure l.a. 0(a) = {0i} and
0W = {0i,02}.

The following procedure, for each phase 0;, builds transitions for a 0t-machine by
enumerating paths on region graph R of a multi-phase FSM M. An enumerated path
p : s ~~* t has to satisfy the following criteria:

1. 0(s) = 0(0 = 0,-.

2. Except s and t, p contains no region r such that 0,- 6 0(r).
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Figure 3: Relabelling 0i and 03 in Figure 1 to optimize the single-phase FSM for 02.

for 4>i e 0(M)
foreach simple path p s^* t, 0(s) =•-m = 0,-

(except s and t, p passes no node whose phase is 0i)
generate a 0t—machine transition, labelled with £{s^>t).

There is a wide choice for C. One possibility is:

C(p : s^*t) = <
unconditional p has no branch
r predecessor, r, of Hn i2 has no branch
r, L t is on branch of r labelled with L.

(i)

Single-phase FSMs generated using this method leave a lot of space for optimization.
For example, consider Figure 1. It shows 0i, 02, and 03 machines that are extracted
from Figure Lb using region graph traversal and labelling function 1. Suppose that
transitions of 0i and 03 machines are carefully relabelled as shown in Figure 3. 02
machine can be reduced to a 3-state machine from the original 12-state machine. The
optimality of an implementation can be influenced by the way the states of a single-
phase FSM are referred to by other machines.

3.2 Algorithm II - Extracting Single-Phase FSMs from
Region Graph Using Integer Programming
In this section, integer programming [Pap82] is used to solve single-phase FSM extrac
tion. Given a multi-phase FSM M and its region graph R} an integer programming
instance is formulated in the following way.

For each state s € R, allocate a variable n8. ns indicates if there is a single-phase
FSM state that is allocated to represent region s. For each transition s —• t € R,
allocate a variable e3t. est indicates if region transition s -¥ t should be identifiable
with the produced single-phase FSMs. For each transition < m, (...) >-» t € R, if
0(m) 6 0(t), then the transition is called "essential". The present region of an essential
transition is called an essential region. If a transition is in a solution, then the present



and the next regions of the transition must also be in the solution. Finally, a solution
must guarantee that all "essential transitions are reachable". Put these together, we
have the following integer programming formulation.

min/
s.t.

est = 1, if s =< m, (...) >, and 0(m) € <f>(t). /* essential transition */
est < ns

est < nt

lL,s^t€3t > nt, for each t € R./ * if a state should be included in the solution * /
set, at least one of its input arc must be in

^ ieS 6ij - *'
cluded in the. solution,

for all nontrivial partition (5, S) of regions of R such that there

jes is an essential region r € S and < ft, [0,...,0] >€ S.
/* essential transitions are reachable */

est,ns G {0,1}

Cost function / can be any function involving est and na. For example, if the goal is
to reduce the sum of numbers of states in extracted single-phase FSMs, then the cost
function can be J2seRns'

Given a solution to the above integer programming, a set of single-phase FSMs are
built using the following rules:

• For each ns = 1 allocate a state in a single-phase FSM that is controlled by 0,-,
0,- G 0(s).

• For each ea% = 1, if

- State a in phase 0t- SPFSM is allocated for region s.
- State {3 in phase <f>j SPFSM is allocated for region t.

- The original s to t region transition is s -¥ t.

allocate a <f>j transition (—, a *£,(3).

• For each 0,-machine, if its transitions are not complete, then allocate a dummy
state Sfc for 0t-machine. Make 0t- machine complete by directing all unspecified
transitions to s^.

By formulating the single-phase FSM extraction problem using integer program
ming, an exact solution can be found. However, the synthesis procedure suffers from
both space and time explosion due to region graph construction and the complexity
for solving an integer programming.

3.3 Algorithm III - Direct Construction

The problem with region-graph-based single-phase FSM extraction is that the inter
mediate representation, region graph, of a multi-phase FSM explodes pretty fast. In
this section a procedure is proposed which builds single-phase FSMs directly from



the transition structure of a multi-phase FSM M. The procedure does not guaran
tee the optimality of the solutions it finds. However, since the procedure constructs
single-phase FSMs by a direct mapping from a multi-phase FSM, the complexity is ap
proximately the size of the input multi-phase FSM. To be more precise, the complexity
ofthe procedure is O(M) +0(£ *,-,*; e*(M) _f£ii2Eiil2i). Besides, the procedure can
find good solutions for programs whose registers are controlled by clocking signals of
the same frequency.

Instead of embedding the knowledge of the relative phase of other clocks into each
state. The algorithm in this section uses a set of counters, difference counters, to count
the status ofother machines. A <f>j to <f>i counter, denoted by 0j#0,-, is a •c-m-fo»,rj)_
state ring counter controlled by 0;. States of 0j#0,- are labelled />,- mod 7Tj,/>; + *•,• mod
nj,...,pi + kni mod ttj, — It constitutes 0,-machine's perception of 0j-machine's

status.

For a multi-phase FSM, the extracted single-phase FSMs consist of two parts,
namely the control-token network and the difference counters. A control-token net
work has a structure similar to the transition graph of the multi-phase FSM. It is used
to designate the current focus of control. For each state s € M, a register is allocated
controlled by <f>(s) (control-token register, denoted by Af(s)). 1 It is used to hold a
control-token. If there is a transition s —• t in M, then Af(s) can pass token to Af(t).
Control-token passing among control-token registers is guarded by the states of differ
ence counters as well as the conditional values that are sampled. Difference counters
provide information regarding the validity of control-tokens. That is, from the status
of difference counters, it can be determined whether a token is "stale", and whether a
token needs to be held longer in order to be passed down to a slow reacting successor.

For example, assume that there is a transition s -> t in a multi-phase FSM, <j>(s) =
<f>j = (5,0), <f>(t) = 4>i = (3,0), and s is now holding a control-token. Assume that
the state of 0j#0, is 4. The control-token is stale and should be rejected by the <f>(t)-
machine because from the content of 0j#0; it is known that s has had the control token
for 4 time units. Therefore, t should have received a control-token from s already (at 3
time units before current time slot), t should not get another control-token from s until
s has a chance to refresh its state. As another example, assume there is a multi-phase
FSM transition s -> t, 0(s) = 0j = (3,0), <f>(t) = 0,- = (5,0), and s is holding a token to
be passed to t. Assume 0t#0j = 1. Before s refreshes its content, which is 3 time units
later, t does not have a chance to have a look at s's token. Therefore, if s relinquishes
its control-token at this time, the token is going to get lost forever.

In general, assume there is a multi-phase FSM transition s -> t. A token from s is
not stale if

' 1<0(S)#0(O <7T(0(t)), if 7T(t) < W(S).
the token is always fresh, if 7r(t) >n(s).

A token to t needs to be held, for at least one 0(s) cycle, until 0 < 0(O##(s) <
7r(0(s)) —1. After this, the control-token should be released, unless s receives another
token.

Difference counters are allocated only for those multi-phase transitions which relate
states of different phases. To be more precise, for each s -> t, if n(<f>(s)) ^ n(<f>(t)),

{

xs and ftf[s) are used interchangeably if it does not cause any confusion.



then 0(s)#0(O and 0(O#<£(S) are allocated. In addition, if 0j#0» has only one state
(i.e., 9Tj|7r,'), 0j#0t is eliminated. In this case, a control-token is always fresh and it is
not necessary to prolong the holding of a token.

For each state s in M, let Eo(s) = {s -> t\,..., s -» tn} denote the set of transitions
from s. If n > 1 allocatea latch that is capable of recording {0,1,..., n-1}. The latch
is called branch indicator and is used to record the labels that occur when s receives

a control-token. A successor t of s determines if it should receive a control-token from

s by looking at (1) s's branch indicator, (2) 0(s)#0(*)> and (3) Af(s). The branch
indicator for s is updated every time Af{s) gets a control-token.

In summary, for a multi-phase FSM M, a set of single-phase FSMs are constructed
according to the following procedure, enc is a function that maps a label I on a
transition s -¥ t m M into {0, 1, ..., out-degree(s)-l).

for each state s € M allocate a latch, named Af(s), controlled by <f>(s)
i

for each transition s—>t,

1. Allocate 0(s)#0(t)- If it has only one state then remove it.

2. Allocate 0(O##(5)« If it has only one state then remove it.

for each state s with out-degree greater than 1
allocate a branch indicator B(s) controlled by 0(s)
B(s) is synchronized with Af(s) in the sense that

when Af(s) receives control token, B(s) samples the occurred conditional values
for each edge e : 5 -> t G M, the following rules determine

when each control-token register receives/releases control.

1. Af(t) gets a control-token (set to 1) if:

• Af(s)==l.
• 5(s)==enc(£).

• l<0W#0(O<7r(0(t)).

2. Af(s) relinquishes its control-token (reset to 0) if:

• ^(O^M indicates that Af(t) has gotten token in time.

Initially, for all s € M, s ^ ft, Af(s) are set to zero, and A/*(ft) is set to 1.

4 Comparison Between the Procedures

The procedures in Section 3.1 and Section 3.2 embed timing information into each
region. In contrast, the procedure in Section 3.3 explicitly builds difference counters
to keep track of the relative phase of various clocks. Obviously, the first two proce
dures have more room for optimizing the generated FSMs. However, the drawback
of the region-graph-based procedures is that region graphs explode pretty fast even
for moderate sized timed automata. In general, it might be worthwhile to try the

10
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Figure 4: Decomposing a multi-phase FSM into a token network and difference counters.

third procedure. Furthermore, if transitions are generated carelessly, the quality of
the implementations generated by the first procedure might be even worse than those
generated by the direct construction procedure.

Consider the pipeline process in Table 2 and assume that phil, phi2, and phi3
are running at the same frequency (with period 3). We consider two initial phase
configurations, (p\,p2,pz) = (0,0,0) and (p\,p2,pz) = (1,2,3). The direct construction
algorithm always gets a three latch single-phase machine. There are no additional
latches for difference counters (since each difference counter has only one state). If
the first procedure is applied to the same problem and labelling function 1 is used,
the results can be optimal (when (p\,p2,pz) = (1,2,3)) or poor (when (p\,p2,pz) —
(0,0,0)). When (p\,p2,pz) = (1,2,3), the first procedure generates a network of
one-state SPFSMs. Therefore, no additional latch is required for the sequencer of the
program. This is obviously the optimum solution. If (puP2, Pz) = (0,0,0), each single-
phase machine has 3 states. Consequently, a total of 6 latches are required. This result
is worse than that is produced by the direct construction procedure. But, if transitions
are carefully relabelled then each single-phase machine needs only two states. This
leads to a 3-latch implementation of the sequencer. A even smarter way to implement
the multi-phase FSM is to use a single counter to count for the three single-phase
FSMs. This leads to an optimum implementation which requires only 2 latches. This
solution can be found by the second procedure.

5 Applications

5.1 Hardware Synthesis:

The procedures proposed in this paper can be applied to the synthesis of HDL pro
grams. For example, consider the following program segment:

always begin
Q(negedge phil) r = a I b;
$(negedge phi2) s = (x)?r:0;
G(negedge phi3) t = arr[s];

11



Pipeline process:

Phase configuration

7r = [3,3,3],
P= [1,2,3]

*= [3,3,3],
/> = [0,0,0]

always

begin

a(phil) i_fetch;
<9(phi2) exec;
<2(phi3) w_back;
end Multi-rate FSM

Direct Construction Region-based Construction

$1

♦3

*1

♦3

+ no difference counter

+ no difference counter

[0,0,0]

Region graph

[2.1.0) CO ♦* nMchine

[0^.1] CO *2 n****1*
C^_3 ♦' machine[1.0.2]

Region graph

$1 machine $2 machine $3 machine

$3!=>a $l!=a

£^?

Naive
Implementation

Better
Implementation

$2h=a

Optimal
Implementation

Table 2: A simplified multi-phase pipelineprocessor and the implementation extracted using
various procedures for two phase configurations.

end

If phil, phi2, phi3 are three different synchronization signals, a traditional hardware
compiler.cannot yet handle such cases [syn94, vhd92]. However, processes like this can
be modeled by a control flow graph (CFG) and a data-path [CBY+95]. The data
path is used to compute a I b, (x)?r:0, and arr[s]. The CFG is used to model the
sequencing of the program and to schedule the updates on register variables r, s, and
t. It is easy to synthesize hardware which implements the functionality of a data-path.
Nonetheless, it is in general not easy to derive a sequencer from a CFG. If a program
is multi-phase and there is no delay in it, then its CFG is a multi-phase FSM. We
can apply the procedures presented in this paper to derive a network of interacting
SPFSMs which can be used as an implementation of the CFG. The extracted single-
phase machines can also be fed into a sequential synthesizer for a more optimized result.
The controlling phase of a variable can be determined by a backward CFG traversal
from the point where an assignment to that variable is made. For example, in the
above example, r is controlled by phil and s is controlled by phi2. A realization of an
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HDL program is simply the implementations for datapath, CFG, and each variable,

5.2 FSM-Based Simulation:

Another application is FSM-based simulation. Consider the previous example. If the
whole pipeline machine is compiled into a single multi-phase FSM [CBY+95], then on
the occurrence of phil, all data-path for r, s, and t need to be reevaluated. This is
because there is no way to tell the phase of each variable. On the other hand, if we
can determine the phase and controlling logic for each variable, then we do not need
to evaluate logic cones for s and t when phil occurs, i.e., approximately two thirds of
the computation can be eliminated. This saves a lot of unnecessary computation which
only ends up by updating latches with their current states. Furthermore, if [CBY+95]
is used to generate timed FSMs for modeling a multi-phase process, then the produced
logic contains many "edge detectors". These are used to detect the occurrence of a
specific signal transition. Given the information regarding the period and initial phase
of each synchronization signal, we can bypass these edge detectors but still determine
the timing/sequencing of expression-evaluation/variable-update. Thus, more savings
can be achieved by avoiding evaluating edge detectors.

Note that even though the implementation of a process may not exist, the proposed
technique still applies for simulation. For example,

always begin
Q(negedge phil) r = a I b;
©(negedge phi2) r = (x)?r:0;
©(negedge phi3) t = r - t;
end

In this example, r is controlled by both phil and phi2. In reality, we do not yet know
what is the synchronous implementation forsuch a variable. However, by separating the
process into a network of single-phase machines, the phases and control logic for each
variable can be decided. Therefore, the logic cone for t (r) need not to be evaluated
when phil or phi2 (phi3) occurs.

6 Experimental Results

We have implemented the direct construction procedure in a Verilog to FSM compiler.
This compiler takes programs in a subset of Verilog as defined in [CBY+95]. The
resultant implementations can be represented in either SMV [McM94] or BLIF-MV
[BCH+91]. Table 3 shows experimental results for some Verilog programs. Programs
tmstl, tmst2, tmst3, tmmxl, tmmx2, and tmmx3 contain a mixtures of conditional ex
pressions and event-controls. Programs pipel, pipe2, and pipe3 are pipeline processes
with a varying number of stages and synchronization signals.

MPFSMs are a compact representation for HDL programs. However, when it comes
to implementation, timing analysis must be performed. In contrast, the size of the
SPFSM networks in our experiments is substantially larger. This is due to the "dif
ference counters" which differentiate states in various time periods. Our preliminary
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Program # regions SPFSM MPFSM

cpu space cpu space

tmstl 15 0.07 6 0.046 6

tmst2 7.2 x 1012 1.6 336 1.152 78

tmst3 3.26 x 1019 3.5 704 2.386 160

tmmxl - 0.554 112 0.332 26

tmmx2 - 0.652 120 0.445 32

tmmx3 - 1.014 192 0.664 44

pipel - 0.058 4 0.039 3

pipe2 - 0.187 27 0.140 12

pipe3 - 0.261 40 0.195 15

Table 3: Experimental results of SPFSM extraction.
# regions: number of regions in the region graph of the controller of a program.
SPFSM: use direct construction procedure to build SPFSMs.
MPFSM: use [CBY+95] to build timed automata to model a program.
cpu: CPU time in seconds on a DEC 5000/125 with 64MB memory
space: size of the generated circuits (datapath + controller, represented in SMV+) in kilo-bytes.

results indicate that our direct construction procedure looks promising for synthesizing
programs with a large region space.

7 Conclusions and Future Work

We proposed three procedures to extract implementations from multi-phase HDL pro
grams. Two are based on region graph expansion of a timed automata. Although
region-graph-based algorithms are capable of generating better results, state explosion
during region graph extraction can make them impractical. The third procedure maps
the transition structure of a MPFSM directly into an implementation. Since the num
ber of states in a MPFSM is proportional to the number of event controls in an HDL
program, this procedure is the most efficient. However, it may produce results that
are not optimal in size. These techniques can also be used to speed up FSM-based
simulation.

Future work will extend this work to incorporate various HDL timing constructs.
In addition, we would like to improve the integer linear programming based proce
dure in Section 3.2 so that it can find an optimal solution under practical space/time
constraints.
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