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Abstract

Abstract

A Control and Diagnostic System for the Photolithography Process Sequence

by

Sovarong Leang

Doctor ofPhilosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Prof. CostasJ. Spanos, Chair

This dissertation presents a methodology for developing a generic control and diag

nostic system for asequence ofinterrelated processes. The goal ofthe system is to provide

an economical way of increasing process capability through innovative use of statistical

techniques and probability theory.

The control system consists ofafeedback loop and afeed-forward loop. The feedback

loop improves the process capability by keeping the outputs of the process centered

around target, while the feed-forward controller improves it further, by reducing its vari

ance. Although the control schemes are themselves not novel, the way they are used is.

Well known statistical techniques and optimization algorithms have been chosen instead

of heuristics, to support the control schemes. Then, the resulting control methodology can

be applied to any machine, and its accuracy can be properly quantified. If the equipment

models were more complex, the control methodology would still be valid, although better

optimization algorithms may needed for the recipe generation and model updating algo

rithms. Experimental results have shown that our control system can significantly improve

the process capability ofthe photolithography sequence in our laboratory, resulting in pho

toresist patterns whose variance is reduced by a factor of2, and whose closeness to target

is limited only by measurement error and model prediction error.



2 Abstract

A diagnostic system, which complements and is activated by the control system, has

also been developed. Its goal is to assist the operator in diagnosing the cause of the

decreased machine performance. As in the case of the controller, its structure is also

generic and can be applied on any machine. The diagnostic systemis based on conven

tional probability theory, because its mathematical foundations are rigorous, and its

assumptions are valid in most process domains. The main novelty of our diagnostic sys

tem is that it incorporates both shallow and deep level information as evidence, sothat any

evidence can be used to diagnose faults. Typically, current diagnostic systems only handle

one type of information (i.e, either shallow level or deep level only), which limits their

diagnosis capabilities, since some faults can only be diagnosed from deep level informa

tion, whereas others can only be diagnosed from shallow level information. From the evi

dence data, and from the conditional probabilities of faults initially supplied by machine

experts (and subsequently updated by the system), the fault probabilities and theirbounds

arecalculated, given a specified confidence level. Theoretical derivation show that the rate

of convergence of the fault probabilities follow amultinomial distribution. We have imple

mented a software version of the diagnostic system, and we have tested it onreal photoli

thography equipment malfunctions and drifts. Although it is often successful in

diagnosing the correct fault, the diagnostic system can use further inputs from machine

experts. Other possible improvements include better fault signature filtering, and a more

efficientway of obtaining and managing the conditional probabilities of faults.
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Chapter 1 Introduction

1.1 Motivation

To stay competitive, semiconductor industries must develop efficient, high yielding

manufacturing facilities. One way to increase yield is to reduce and control process vari

ability. This is a difficult task, because not only are semiconductor processes not always

well understood, they also drift with time due toequipment aging, depletion ofchemicals,

or changing ambient conditions. All thesecompounded instabilities decrease the overall

process capability.

One approach to reduce process variation is to use a supervisory system thatcontrols

processes on a real-time basis. Applied on modern analytical and processing equipment

that have the ability to interact with computer driven controllers, thesupervisory system

collects information, and manipulates recipes to compensate for process drifts.

However, equipment controllers donot diagnose the cause(s) of theproblem, and used

alone by themselves, could make a process become unstable. Therefore, we have devel

oped a diagnostic system and coupled it to the controller. The diagnostic system is not

designed to replace troubleshooting technicians, but rather to help the operator diagnose

problems that degrade machine performances, so that they can besolved properly.

1.2 Thesis Objective and Contribution

This thesis describes thedevelopment and the deployment of a generic controller and

diagnostic system for a sequence of interrelated processes (Figure 1.1). The goal of the

system is to provide an economical way ofincreasing process capability through innova

tive use of statistical techniques and probability theory.
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We have purposefully chosen to use well known statistical techniques and optimiza

tion algorithms, instead of heuristics, to support the control schemes. Then, the resulting

control methodology can be applied to any process sequence, and its accuracy can be

properly quantified.

The diagnostic system, which compliments and is activated by thecontrol system, has

alsobeen developed so that it can be applied on anymachine. It is basedon conventional

probability theory, because itsmathematical foundations are rigorous, and its assumptions

are valid in most process domains. The main novelty of our diagnostic system is that it

incorporates both shallow and deep level information as evidence, so that any evidence

can be used to diagnose faults. Typically, current diagnostic systems onlyhandle onetype

of information (i.e, either shallow level ordeep level only), which limits their diagnosis

capabilities.

Our demonstration vehicle is the photolithography process sequence. We have imple

mented both control and diagnostic systems on real photolithography equipment, and the

experimental results arevery encouraging.

1.3 Thesis Organization

The organization of this dissertation is as follows. Chapter 2 describes theexperimen

tal setup. Chapters 3 and 4 address the monitoring system and the equipment models,

respectively. Chapter 5 describes the run-by-run control system, and chapter 6, the diag

nostic system. Finally, chapter 7 presents experimental results of the control and diagnos

tic system.
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Chapter 2 Description of the Experimental Setup

2.1 Introduction

This chapter describes theexperimental setup of our system. First, a short introduction

to photolithography is given, since the goal of our controller is toimprove the capability of

that process. Then, each equipment of the process sequence is described along with its

inherent capabilities. Finally, the test patterns used to test the capability of our system are

described.

2.2 Brief Summary of Photolithography

Lithography is the process of transferring geometric shapes from a mask to a silicon

wafer. These shapes make up the parts of the circuit, such as gate electrodes, or metal

interconnects. In the first step of lithography, a photosensitive polymer film, called photo

resist, is applied onto the silicon wafer and then dried. That first stepis carried outhere, in

the Berkeley Microfabrication Laboratory (henceforth called Microlab), by a wafer track

which spin-coats the wafer with photoresist, and then bakes it at aspecific temperature for

apredetermined length of time. Next the wafer gets exposed through aphotomask with the

proper geometrical patterns to ultraviolet light or other radiation. If ultraviolet light is

used, the process is then called /?/w?tolithography. That step is carried out here by a wafer

stepper which steps across the wafer, and exposes asmall area, called die, using aparticu

lar light wavelength, exposure time and focus. Finally, after exposure, the wafer is placed

in an ambient that develops the images in the photosensitive material. Depending on the

type of polymer used,either the exposed orunexposed areas of the film are removed in the

developing process. Since we are using a positive photoresist, the exposed areas are the

ones that are removed. The developer solution can either begaseous (dry development) or

liquid (wet development). Our developer uses wet development. Finally, the next step is



6 Chapter 2 Description of theExperimental Setup

etching where the wafer is placed in an ambient that etches the surfaces that are left unpro

tected by the photoresist patterns [1].

Currently in industry, the first three steps of photolithography, spin-coat and bake,

exposure, and development, are lumped together as one single process, called the photo-

lithograhy process sequence. The etching step is typically considered aseparate step from

the sequence. In our work, we attempt to control the photolithography process sequence

by breaking it down into the three steps described above, and monitoring each step sepa

rately. The monitoring equipment are described along with the process equipment in the

next section.

Wafer Track
(Spin-coat & Bake)

T
Stepper

(Exposure)

T
Developer

(Development)

Monitoring Stations

Figure 2.1 Process Flow of our Experimental Setup.

r

2.3 Equipment Description

This section gives a detailed operational description of the photolithography equip

ment used in our laboratory, including theircapabilities andlimitations.

2.3.1 The Spin-Coat and BakeEquipment (or Wafer Track)

The first equipment in the photolithography sequence is the Silicon Valley Group

8626/36 Coater Bake Track System. It is designed to spin-coat and bake 4" wafers [2]. It

consists of achuck that can spin wafers at different speeds, a photoresist dispenser, a hot

baking plate, and a cold plate. The duration of each step is controlled by an internal com

puter in increments of one second. The wafers are loaded into theequipment in a cassette

containing up to 24 wafers and are processed individually one after another.
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During the coating operation, the wafer is held to the chuck by avacuum. The spin

speed of the chuck can be set from 0 to a maximumof 7000 RPM, in increments of 100

RPM. The chuck actual spin speed is within 20 RPM ofthe set value. The photoresist dis

penser can bemoved so that it can dispense the resist at any radial position on thewafer.

Throughout our experiment, we dispense theresist atthecenter of the wafer. The hot bake

plate can be programmed in increments of 1°C, but the actual temperature is kept within

±2 °C of the set value. The cold plate is set at room temperature which varies between

20°C and 27°C.

2.3.2 The Stepper

The next equipment in line is the 10Xreduction GCA stepper, model 6200 [3]. It is

also configured to handle 4" wafers, which are loaded in batch mode. The wavelength of

the light source is 365 nm (I-line). The numerical aperture (NA) of the GCA 6200 is 0.32,

and its partial coherence parameter (a) is 0.5. The GCA 6200 is a fully automated stepper

that handles one wafer ata time. The stepper has an embedded controller that keeps the

dose constant throughout the life of the lamp. The inputs to the stepper are focus and

exposure time, which controls theinput dose. The focus is measured in |im and is adjusted

in increments of 0.5 |im. The exposure time is measured in seconds, and can be controlled

to within ±0.01 second.

2.3.3 The Developer

Afterthe wafer is exposed, it is post-baked on the wafer track and then developed by

the Silicon Valley Group 8632 DeveloperTrack [2]. Like the other two machines, it is

also made to handle 4" wafers and processes one wafer at a time, with the wafers loaded in

batch mode. Up to three liquids can be used in the wet process.The SVG 8632 can there

fore serve asa developing station as well as aphotoresist stripping station. The SVG 8632

is linked to a computer where its recipe programs are stored. Although many parameters

can be changed such as the spin speed of the chuck, only the development time hasbeen
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varied in our control scheme. The development time can be controlled in increments of

one second.

Now that the photolithography machines have been described, the machines used in

our monitoring scheme will be discussed.

2.3.4 The Photospectrometerfor Reflectance Measurement

The photospectrometer used for collecting reflectance spectrographs is the Inspector

by SC Technology [4]. The photospectrometer is run by asoftware called INS801UV,

stored in an accompanying 486 33 MHz personal computer. (The personal computer needs

to be at least a386 25 MHz machine for proper operation.) The photospectrometer mea

sures the reflectance ofawafer from 320 nm to 620 nm, using axenon light source. It is

capable ofmeasuring the thickness ofasingle layer ofresist, oxide, or polysilicon film, as

well as two-layer film systems ofresist, oxide, and polysilicon. The precision ofthe read

ings is heavily dependent on setup operations, which include using very clean reference

wafers. The system can be set up to measure wafers in an automated fashion, by using a
trigger to start the measurement. We installed asensor that is activated by the raising of
the cold plate ofthe wafer track. That activates the Inspector which measures areflectance

spectrograph ofthe wafer and stores it in the hard drive ofthe personal computer. It is also

possible to have the data stored in alogical drive, which is what we have chosen to do. A

logical drive is avirtual drive that is linked to the drive of our system server through NFS
[5]. That permits data measured on arun time basis to be collected and stored automati

cally in our system database.

2.3.5 The Critical Dimension (CD) Measurement Computer

The instrument used for measuring CDs is the Nanoline IV Critical Dimension Com

puter, made by Nanometrics [6]. This instrument measures the CD by scanning horizon

tally across aportion of the wafer. The reflectance plot is then displayed on the computer
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screen. The photoresist covered regions have higher reflectance than the rest of the wafer.

The CD is measured at the 35% level of the maximum reflectance, since for our system
parameters, measurements are least sensitive to defocus at that particular threshold. This

level can be adjusted if needed. The Nanoline system also incorporates several other spe
cific programs, such as one that measures the pitch. The reliability of the Nanoline

depends heavily on the type of lens used. The strongest lens (100X) allows the most reli

able data collection. The Nanoline measures the CD in nm, with a stated precision of

±0.01 u,m. Experimentally, we find that the Nanoline precision is limited to ±0.03 nm.

2.4 Description of the Test Patterns

To obtain reliable readings, the test patterns and measurement locations must be care

fully chosen. Although the photoactive compound concentration (PAC) is independent of

measurement location, the resist thickness is radially dependent on position. The photore

sist is thicker in the middle ofthe wafer and thinner at the edges [60]. Therefore, toobtain

repeatable thickness measurements, measurements are taken at locations that lie on the

same radius (Figure 2.2).

I£. ."--"• I Oxide on Si.

Bare Si.

Measurement
Location

Figure 2.2 Measurement Locations on a Test Wafer
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To obtain the above pattern, we first grew 1000 A of thermal oxide on Si wafers. Our

samples included a random mixture of both <111> and <110> wafers. These wafers were

spin-coated with a positive photoresist (OCG 820) at 4600 RPM for 30 seconds, soft-

baked at 120°C for 60 seconds, and exposed with a I-line stepper using themask shown in

Figure 2.3. Then we post-baked the wafers at 120°C for 60 seconds, and developed the

pattern. This procedure results in a wafer patterned as in Figure 2.2.

Figure 2.3 Mask for the Wafer Test Pattern.

Before any processing, all wafers are cleaned and dehydrated in a convection oven for

30 minutes. The cleaning procedure involves fully immersing the wafers for 10minutes in

a piranha sink, and then rinsing them in DI water for around 15 minutes, until the cleanli

ness of the DI water exceeds 10 Mft-cm. Finally, the wafers are dried in a spin-dryer.

Next, we develop photoresist line patterns in each die in order to measure CDs. These

line patterns contain different sets of linewidths (d = 1 u.m, 2 u,m, 3 u,m, 4 u.m, and 5 nm

(Figure 2.4)), and each set has three different pitches. The reason is because we did not

know a priori the limitations ofour processing and monitoring machines. After investigat

ing the reliability of measuring all the line patterns, we have chosen to monitor the 2 nm

linewidth with a 4 nm pitch pattern.



Description of theExperimental Setup Chapter 2 11

IIIII Nil
3d 2d

Figure 2.4 Mask Test Pattern

2.5 Summary

This chapter described the experimental setup usedto test ourcontrol and diagnostic

system, which consist of the equipmentused in the photolithography sequence, and the

procedures for preparing the test wafers. The intention was to give the reader a better

understanding of the capabilities of ourequipment, so that the capabilities of our control

and diagnostic system could be fully appreciated, when they are described in subsequent

chapters. Next, we describe how the equipmentmodels aregenerated.



12 Chapter 2 Description of theExperimental Setup

[This page is intentionally blank]



Equipment Models Chapter 3 13

Chapter 3 Equipment Models

3.1 Introduction

The control and diagnostic system relies on equipment models to characterize the

behavior ofapiece ofequipment, control it and diagnose problems affecting it. There are

two approaches to developing equipment models, an empirical one and aphysical one.

Each approach has itsown strengths and weaknesses.

In the first stages ofthis work, equipment models have been developed using the

empirical approach known as Response Surface Modeling [22]. They are easily built, and

give highly accurate predictions of the machine's outputs [7]. One caveat however is that

the empirical models do not give us much insight about the process. Another one is that

they cannot be updated when achange of amachine component has caused the machine

outputs to shift beyond the experimental range of the empirical models. In such cases,

designed experiments must be run again in order to create new empirical models.

The merits of using aphysical approach when creating equipment models include a

better understanding ofthe process, quicker acceptance by the process engineering world,

and improved robustness. When anew process is developed, the physical parameters that

affect it are well documented by engineers. Therefore, using those parameters in the mod

els makes sense to process engineers. Furthermore, because physical models explain the

complete range ofthe process, new machine components that cause the machine outputs

to shift significantly will not render these models obsolete. On the other hand, the caveats

of the physical approach are that they are very hard to develop and sometimes, are not as

accurate as empirical models.

For our system, our philosophy has been touse physical models whenever their accu

racy is not significantly worse than that of the empirical models. Now, since our control
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and diagnostic system isfocused on photolithography, we describe the parameters used for

modeling the photolithography process.

3.2 RelevantPhotolithography Parameters

To characterize the state ofthe wafer after each photolithography step, the following

parameters are of interest: photoresist film thickness and chemical properties, numerical

aperture (NA) ofthe stepper lens, exposure dose, and develop time [13]. The photoresist's

chemical properties consist ofthe index ofrefraction n, and the absorption coefficient k,

which depends on the photoactive compound concentration (PAC) inside the resist [15]

andDill's A, and B parameters [14] [15].

*, .AxPAC + B
k- * S (3.1)

Ais the net absorption ofthe inhibitor; B, the net absorption ofthe base resin; and Xis the

light wavelength. Both A, and Bparameters are also functions ofX[16].

3.3 Photolithography Modeling Parameters

Among these photolithography parameters, we must choose a set ofindependent

parameters that provides a complete picture of the process status. We have chosen to

restrict our interest only to parameters that change significantly with time, to facilitate the

metrology. The other parameters are considered as fixed constants. Astudy ofeach

parameter has led us to monitor only resist thickness, Tres, and PAC (the PAC metrology

is discussed in Chapter 4). These two parameters characterize the status of a wafer well

after the spin-coat and bake process, while the change in PAC before and after exposure,

APAC, characterizes well the exposure step. After development, we measure the linewidth

dimensions (CD).

The other parameters, namely Dill's A, and B parameters, the films' index of refrac

tion and the NA ofthe stepper lens are considered constant with respect to time. The
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dependency ofindex ofrefraction on wavelength however isbeing considered in the cal

culations. Several handbooks show the following function for n [6]:

X2

where Na and Nb are called the Cauchy coefficients ofthe film.

(3.2)

The correlation between Tres and PAC has been studied (Figure 3.1). The low correla

tion coefficient of 0.30 confirms our belief that the two parameters are relatively indepen

dent of each other, and therefore both should be monitored in orderto track the status of

the photoresist.
16000

11000
0.90 0.95 1.00 1.05

Relative PAC (M)

Figure 3.1 Correlation Plot between Resist Thickness and PAP

Correlation = 0.30

1.10

3.4 Equipment Model for the Wafer Track

As mentioned in the previous section, modeling the spin-coat &bake process, i.e mod

eling the wafer track, can be reduced tomodeling the resist thickness and PAC. Inthe liter

ature, the spin-coat and bake process is typically modeled from a fluid dynamic

perspective, where the resist thickness has been solved for in terms ofspin speed, acceler-
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ation, and film viscosity [60]. Although the derivation isvery rigorous, themodel does not

fit experimental results very well, because ithas not taken into account the solvent evapo

ration during the spinning and soft-bake processes. Therefore, an empirical response sur

face model (RSM) was developed for characterizing photoresist thickness [22], using a

statistically designed factorial experiment. As for the PAC, since no previous work on

modeling it has been done, we have also developed an empirical RSM model for charac

terizing it.

The inputs of the equipment models consist of the chuck's spin speed and spin time,

the softbake plate temperature, and thesoftbake time, and theoutputs are resist thickness

and PAC. Since the equipment model of the wafertrack has four inputs, the factorial

experiment required 16 runs, to which weadded eight runs at the standard operating point

to help determine thereplication error of theprocess. Theexperimental settings are shown

in Table 3.1.

Table 3.1 Range of Modeling Experiment for the Spin-coat and Bake Equipment.

Input Factors Lower Setting (-) Std Setting (0) Higher Setting (+)

Spin Speed 3600 RPM 4600 RPM 5600 RPM

Spin Time 15 sees 30 sees 90 sees

Soft-Bake Temperature 75 °C 90 °C 105°C

Soft-Bake Time 20 sees 60 sees 100 sees

3.4.1 Resist Thickness Model

The following regression model has been developed for resist thickness [23]:

TRES =1291.98 +^52-1.62BTI-19.49BTE
Jsps

(3.3)

where SPS represents spin speed in RPM; BTI, baking time in seconds; BTE, baking tem

perature in degrees Celsius; and Tres, resist thickness in Angstroms. The non-linear trans-
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formation was derived from the physical model in [60] and confirmed by residual analysis
of the spin speed parameter.

The Analysis ofVariance (ANOVA) table [22] ofthe resist thickness model is shown

in Table 3.2. A scatterplot ofthe resist thickness values predicted by the model versus the

corresponding experimental values is given in Figure 3.2. The closer the experimental

data are to the y=x line, the more significant the model is.

Table 3,2 ANQVA Table for the Thickness Model of the Wafer Track

Source
Degrees of
Freedom

Sum of

Squares
Mean

Square F-Ratio Significance

Total 42 24309606

Regression 3 24133278 8044426 1779.3 0

Residua] 39 176327 4521

Lack of Fit 27 170587 6318

Error 12 5740 478

16000

eg 15000
c

§ 14000

11000

R2=0.993

Root Mean Square Error (la) = 65 A
Number of Observations = 42

11000 12000 13000 14000 15000 16000
Measured thickness (A)

Figure 3.? Scatterplot ofPredicted ThickneRSv^, Actual Thi^cc

This resist thickness model has later been improved by incorporating effects ofrelative

humidity and resist bottle level, using along range monitoring experiment done by the
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staff of the Microlab. The staff processed wafers using the same standard settings for one

and a half year, enabling us to study the effects of relative humidity, airtemperature, and

the amount of resist left in the bottle dispenser on thickness. The effect on the PAC how

ever could not be investigated, since its metrologyhas not been developed yet.
13000

11000
~ 20 40 60 80 100

Resist Bottle Level (%)
Figure 3.3 Resist Thickness vs. Resist Bottle Dispenser Level.
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Figure 3.4 Resist Thickness vs. Relative Humidity

Table 3.3 Correlation Between Environmental Variables and Thickness

Humidity Air Temperature Bottle Level

Thickness -0.79 0.17 0.28
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Figure 3,5 Resist Thickness vs. Air Tempp.rafiir?

The resulting thickness model is:

Chapter 3 19

TRES = 13657.926 -21.98H+1.785BL (3.4)

where Hcorresponds to the relative humidity in %, and BL, to the fraction ofresist left in

the bottle in %. Its ANOVA table confirms that the model is indeed significant, and the
model's fit is summarized in Table 3.5.

Table 3.4 ANQVA Table for the Thickness Model Based on Envfrmmental Furtnrc

Source
Degrees of
Freedom

Sum of

Squares
Mean

Square F-Ratio Significance

Total 24 2277974

Model 1475673 737836 19.31 le-5

Residual 22 802301 38205

Table 3,5 Summary pf Fit for the Thickness Model Based ™Environmental ymn-«
R' 0.65

Root Mean Square Error (la) 195 A

Number of Observations 24

Assuming that environmental parameters do not interact with machine settings,
have combined this model with the previous one developed from the machine settings:

we
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T = 1770.86+ ^±^-1.62BTI-19.49BTE-21.98H+1.785BL
^/SPS

The root mean square errorof this model is:

_ Is\ •df1+s22- df2 l652.39 +
" tj dfj +df2 "V 39 +̂ lS.128A

22

(3.5)

(3.6)

where Sj and s2 are the standard errors of each model, and dfj and df2, their respective

degrees of freedom.

To check whether it is actual resist aging ordecreasing vapor pressure in thebottle that

affects resist thickness, the Microlab staff has experimented with another way of dispens

ing photoresist: they have purchased photoresist packaged in a pouch and dispense it

upside down. This experiment also lasted a year. The scatterplot of resist thickness vs.

weight of resist pouch is shown below. Since the two variables do not show much correla

tion, we conclude that it is decreasing vaporpressure in the resist bottle that affects the

thickness, and not resist aging.
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Figure 3.6 Resist Thickness vs. Resist Left in Pouch

3.4.2 Photoactive Compound Concentration (PAC) Model

When unexposed resist is processed undernormal conditions, it has a certain absorp

tion. That absorption is quantified by Dill's A and B parameters, assuming a relative value

of PAC, called M, of 1.0. Under different processing conditions, the absorption can

change. We model that as a change in the relative value of PAC, which can either exceed
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or drop below 1.0. From the same factorial experiment used in developing the resist thick

ness model, we have developed the following relative PAC model for unexposed photore
sist (the PAC metrology isdiscussed in Chapter 4):

v-3,M = 0.91 +1.61 •10 BTE-(2.10 •10"5)SPS (3.7)

Although the F-test shows that the model is significant (F(3, 37) >7.3e-9), this PAC

model is not very precise: its R2 is only 0.57.

The ANOVA table of the PAC model is summarized in Table 3.6, and the scatterplot of
predicted PAC vs. measured PAC is shown in Figure 3.7.

1.05

0.90
0.90

R2=0.57

Root Mean Square Error (la) =0.016
Number of Observations = 40

0.95 1.00 1.05
Measured PAC (M)

Figure 3.7 Scatternlot of Predicted PAC vs. Measured p^P

Table 3.6 ANOVA Table for the PAC Model of the Wafer TrarV

Source
Degrees of
Freedom

Sum of

Squares
Mean

Square F-Ratio Significance

Total 40 0.02044

Regression 0.01160735 0.005804 24.3116 <7.3e-9

Residua] 37 0.00883265 0.000239

Lack of Fit 18 0.00595487 0.000331

Error 19 0.00287778 0.000151
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3.5 Equipment Model for the Stepper

As mentioned in §3.3, the relevant output from the exposure stage is the relative PAC

value (M) after exposure. Actually, Mvaries within the layer of photoresist, due to the

exposure intensity interference patterns. However, since our metrology effectively mea

sures the absorption coefficient k, from which we derive M, wecannot measure M as a

function ofdepth, and we are limited to using an average Mvalue for the whole film. The

inputs of the exposure model, or stepper model, include Tres, before exposure PAC (actu

ally M), and dose. Although defocus should also be considered among the inputs, we have

not included it yet, because we do not have an economical run-by-run sidewall slope

metrology, which is the effect of defocus on CD. Such a metrology is currently being

investigated [58] [61]. As soon as it is successful, defocus will be added as an input of the

stepper equipment model.

3.5.7 Physically-Based Stepper Model

Unlike the spin-coat and bake step, the exposure step has been rather thouroughly

investigated. Many exposure models exist, and can be found in photolithography process

simulators. For example, SAMPLE [13] employs state-of-the art physical models of expo

sure and development, that could be very useful to our control and diagnostic system. And

if SAMPLE'S outputs do not correspond exactly to our machine's outputs, they can easily

be fitted to the machine's measured outputs through a simple empirical model.

Figure 3.8 Schematic Representation ofthe Stepper Equipment Model

SAMPLE simulations return an Mmatrix which shows the amount ofexposure in each

region of the photoresist. Our PAC metrology, which will be described in Chapter 4, can-
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not measure the full Mmatrix however, because itactually measures the absorption coeffi

cient k and derives from it, an "average" value of M. Therefore, as a first order

approximation, we have averaged the Mvalues given by SAMPLE and compared it to our

measured valueof M. A scatterplot of the two parameters is shown below.
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Figure 3.9 Measured AM vs SAMPLE derived AM

The fitted regression model follows the equation below, and its ANOVA table is pre

sented in Table 3.7:

AMMeas - 03636 " °^^SAM]>tB +1.554AMSAMpL£2 (3.8)

Table 3,7 ANOVA Table for the Exposure Model Derived from SAMPI F

Source
Degrees of
Freedom

Sum of

Squares
Mean

Square F-Ratio Significance

Total 39 0.27253467

Regression 3 0.20304031 0.1015 52.59 3e-13

Residua] 36 0.06949436 0.00193
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3.5.2 Empirical Stepper Model

Since the prediction error of themodel (±0.044) is rather large, we have tried to fit an

empirical RSM model to the data, using Tres, Munexposcd, and dose as inputs. That

approach has resulted in the following equipment model:

Mexposed = Munexposed " 064 ~0.000909D +0.0000112^ (3.9)

where Drepresents dose in mJ/cm2. Although its R2 is lower, this model is more accurate

than the previous one, which is based on the physical model. We believe the reason is

because averaging the M values from SAMPLE'S M matrix does not result in the correct

"equivalent" M value. An investigation should be done to find the proper filtering method

that would result in a more correct MSAMPLE to Mmeas transformation. The empirical

model's ANOVA table is presented inTable 3.8, and ascatterplot of thenew model's pre

diction versus the experimental data is shown below.

Table 3.8 ANOVA Table for the Stepper Model Obtained from Regression Analysis.

Source
Degrees of
Freedom

Sum of

Squares
Mean

Square
F-Ratio Significance

Total 39 0.12147337

Regression 3 0.07872493 0.039362 34.07 1.3e-10

Residua] 36 0.04274844 0.001155
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R2= 0.65

Root Mean Square Error (la) =: 0.034

Number of Observations = 39
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Measured Mexposed

3.10 Scatterplot of Empirical Stepper Model Prediction vs. Measured PAC

Ultimately, although the model which uses the physical models embedded in SAM

PLE is theoretically more robust, we have adopted the empirical one instead for our con

trol and diagnostic system, because of itssuperior accuracy. Had both approaches lead to

models with similar performances, the one based on physical models would have been

preferred, since it is theoreticallymore robust.

3.6 Equipment Model for the Developer

The inputs of the developer model consist of Tres, Mexposed, and develop time, Dt.

The output of the model is CD. Ideally, the slope of the sidewalls shouldalso be included

among theoutputs, but as previously explained, we lack an economical metrology forit.
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3.6.1 Physically Based Developer Model

There exists a physical model for the develop step within the photolithography process

simulator SAMPLE, and we use it in a similar fashion as we used the physical exposure

model (Figure 3.11).

Thickness

PAC

Develop Time

SAMPLE

[§ Simple empirical model!
relating SAMPLE CD
to experimental CD

[Model Predicted
CD *

Figure 3.11 Schematic Representation of theDeveloper Equipment Model

The simple regression model that links the measured CD to SAMPLE'S CD is shown

in equation (3.10), its ANOVA table is presented in Table 3.9, and a scatterplot of the

mode] predicted CDs vs. the measured CDs is shown in Figure 3.14.

CD= 1.286CDSAMPLE-1.107

Table 3.9 ANOVA Table for the DeveloperModel Derived from SAMPLE

(3.10)

Source
Degrees of
Freedom

Sum of

Squares
Mean

Square
F-Ratio Significance

Total 35 0.71265714

Regression 2 0.59127869 0.591279 160.76 9.7e-18

Residual 33 0.12137845 0.003678
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R2 = 0.83
RMS Error = 0.06 ^m
Number of Observations = 35

0.8 1.0 1.2 1.4 1.6 1.8
Model Predicted CD (^im)

Figure 3.12 Scatterplot of Measured CDs vs. SAMPLE Derived CDs
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Figure 3.13 SAMPLE Development Output: A Simulation of Resist Profile

3.0

3.6.2 Empirical Developer Model

Now, we look into the possibility of using a pure regression model to fit the experi

mentally measured CDs. The resulting model is:

CD =- 3.503 +0.000347,^ +18.25Mexp0Sed-0.0013(1^ •Mexposed) (3.11)

"OH (Mexposed •D.) +7.9 •10-*•T^ •Mexposed •D,

where Dt represents develop time in seconds. This time, the empirical model is much

worse than the physically based one (Table 3.10). Its prediction error is 0.11 fim (Figure
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3.14), twice that of the last model's and significantly larger than the accuracy of the CD

metrology (see §2.3.5).

R2=0.50
RMSError = 0.11um
Number of Observations = 35

0.9 1.1 1.3 1.5 1.7
Model Predicted CD (|im)

Figure 3.14 Scatterplot of Measured CDs vs. Model Predicted CDs

Table 3,10 ANOVA Table for the Empirically Derived Developer Model

Source

Total

Regression

Residual

Degrees of
Freedom

35

29

Sum of

Squares

0.71265714

0.35834366

0.35431348

Mean

Square

0.071669

0.012218

F-Ratio Significance

5.866 0.0004

This time, since the physically based developer model is significantly more accurate

than the empirical one, it is the one used in our control and diagnostic system.

3.7 Summary

Equipment models have been developed for each step of the photolithography

sequence. The inputs ofthe equipment models consist ofthe machine input settings, previ

ous machine's outputs, and modelable environmental parameters. Their outputs are eco

nomically measurable parameters that have been carefully chosen to reflect the status of

the process. We have investigated models that are based on physical process simulators

and models that are based on stepwise regression analysis. Prediction accuracy is the main

criterion for selecting which model to use in our control and diagnostic system. In each
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case, it has been sufficient to clearly determine the superior model. The wafer track's and

the stepper's equipment models are based on empirical regression models, while the devel

oper's is based on aphysical process simulator, SAMPLE [13]. Ifthe physically based

models could predict the machines' output(s) as accurately as the empirical models, they

would take preference, because oftheir robustness and insight. Next, we illustrate how we

measure the parameters used inour equipment models.
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Chapter 4 Metrology for Photolithography Process Control

4.1 Introduction

In order to build the previously described equipment models, metrologies for the pho

toresist thickness, PAC and CD must be developed. While the first and last ones are easily

measured through aphotospectrometer, anovel metrology is needed for measuring PAC.

In this chapter, we will present such ametrology and characterize its capabilities.

4.2 A New Metrology for Characterizing PAC

Presently, both photospectrometry and ellipsometry are capable ofmeasuring resist

thickness, but not PAC [83]. To measure the latter parameter, we expand on photospec

trometry, by improving the analysis ofa reflectance spectrograph. The concept ofthe

metrology, depicted in Figure 4.1, is as follows: after measuring areflectance spectrograph

of awafer, atheoretically derived reflectance spectrograph is fitted onto itthrough an opti

mizer [17][18]. The Tres and PAC values used in the curve that best fits the experimental

data constitute the measurement results.

The advantage from using this metrology for measuring thickness comes from the fact

that we are also solving for the optimal index of refraction of the photoresist, when solving

for the optimal thickness. This results in a more accurate thickness measurement than the

one returned by the commercial photospectrometer, which assumes a constant value for

the indexof refraction of the photoresist.
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Experimental Measurement
Best Theoretical Curve Fit

300 400 500
Wavelength (nm)

Figure 4,1 Extraction ofT^ and PAC Example
600

4.2.1 Determination ofPhotoresist Thickness

At high wavelength, the photoresist absorption of light is very close to zero, because

Dill's A and B parameters are essentially zero (equation (3.1)). Therefore, since the level

of PAC will not alter the reflectance of the light at high wavelengths, solving for the best

curve fit at these wavelengths essentially reduces to solving for the photoresist thickness.

Besides decoupling the extraction of PAC and thickness, solving for the photoresist thick

ness at high wavelengths also has the following advantage: photoresist thickness affects

the periodicity and values of maxima and minima of the reflectance spectrograph of a

wafer [6], and these three characteristic parameters are better defined at high wavelengths.

For the OCG 820 photoresist used in our experiment, the high wavelengths at which the

photoresist absorption is zero range from 500 to 620 nm. The full theoretical derivation of

a reflectance spectrograph is presented by Bom &Wolf [17] and is summarized below for

wafers with a film stack, consisting of acoating of field oxide underneath acoating of

photoresist. We have assumed that the silicon substrate is semi-infinite, i.e, no power is

transmitted past the silicon wafer.

The optical properties ofalayer of film are described by its characteristic matrix Mc.

Both transmittance and reflectance of the layer of film can be derived from the compo-
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nents of Mc. Describing films through their characteristic matrix becomes very useful

when analyzing astack of films: iftwo adjacent layers have characteristic matrices Mcl
and Mc2 respectively, the characteristic matrix of the stack of films will be Mc =
Mc j • Mc2. The matrix Mc isgiven by:

1

Mc =

where

cos(k0-nl) :—sin(k0-n-l)

rsin(k0nl) cos(k0-n-l)

v - 2'n

(4.1)

(4.2)

and 1is the film thickness. For our two layer film system, the characteristic matrix is given

by:

Mc =
mn m12

m'21 m'22

cos(k0 "nres *Jres) fn"Shl(k0 ' nres *Us)
res

nres
—»n (k0 •nres •'res) cos(k0 ' "res "'res)

cos(k0noxlox) r__sin(k0.noxlox)
OX

-fsin(k0noxlox) cos(k0.nox.lox)

The reflectance of the stack of film is given by

R- Irl2 - <m'll +m'l2 •nsi> •"air"("21 +m22 ' nsj)
" (m'n +m'12 •nsi) •nair +(m'21 +m'̂ •nsi) (44)

The parameters with subscript si correspond to parameters ofsilicon; those with subscript

res correspond to parameters of photoresist; those with subscript ox correspond to param

eters of oxide.

The expression of reflectance described above is not the one we actually use. When

measuring reflectance, we always measure it relative to that of a reference silicon wafer.

(4.3)
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This silicon wafer has some nativeoxide on it. Therefore, when we simulate the reflec

tance graph of our wafer, we divide the reflectance expression above bythereflectance of

a silicon wafer covered with native oxide, which isgiven below:

where

Mc" =

R.. =|r|2 = (m"n +m"12. nsi) -nair- (m"21 +m"22 •nri)
(m"n +m"12 •nsi) •nair +(m"21 +m"22. nsi)

m ,, m ,2

m 21 m 22

cos(kOn -1 J t—— sin(kOn -1 )v ox nox' : « w***v«w »i *nni;
in ox *nox^

ox

^sin(k0.nox.lnox) cos(k0.nox.lnox)

(4.5)

(4.6)

and Wis tne native oxide thickness and is assumed to be 35A.

Given an initial guess of resist thickness taken from the value returned by the photo

spectrometer [4], a theoretical reflectance curve is derived from these equations. Then, an

optimizer is used to find the theoretical curve that best fits the experimental data between

the range of wavelengths of 500 - 620 nm. The resist thickness used in that best fit is con

sidered as the actual resist thickness.

4.2.2 Determination of PAC

PAC is derived from the absorption coefficient kofthe photoresist (equation (3.1)).

Therefore it is found at shorter wavelengths, where photoresist is absorptive. The range of

these short wavelengths, given our experimental setup and our brand of photoresist, is 320

- 430 nm. 320 nm marks the low end of the spectrograph of the xenon lamp of the spec

trometer, while 430 nm marks the high end ofthe wavelengths that are absorbed by the

photoresist. For the purpose ofextracting PAC, we have limited our range of interest to

350 - 380 nm, in the center ofwhich lies the exposure wavelength of365 nm. The reason

we have ignored the 320 - 349 nm wavelengths is because the light intensity ofthe xenon

light source is not stable at those wavelengths; and we have ignored the 380 - 430 nm
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wavelengths, because it is arange oftransition in the absorption characteristics ofthe pho

toresist, where the assumptions underlying our equations are not valid.

Using the thickness value found from the previous step, we fit theoretically derived

curves to the experimental reflectance graph in the narrow 350 - 380 nm range. The PAC

value used in the best fitting theoretical reflectance graph is considered as the actual PAC

value. Theoretically, the PAC value before exposure is 1.0 and 0.0 after full exposure. Dur

ing actual processing though, the PAC isaround 1.0 or slightly less before exposure, and

significantly lower, but positive, after exposure. More specifically, wehave found that the

average PAC before exposure is 0.97 and 0.32 after exposure.

Sometimes though, the extracted PAC before exposure value exceeds 1.0. The reason

is as follows: when measuring PAC, weare actually measuring theabsorption coefficient k

(§3.2). Equation (3.1) shows that themeasured PAC value depends on the value used for

Dill's A parameter. We have taken the A parameter value from achemical handbook [16],

which assumes that the photoresist is processed around its normal operating point. If the

photoresist is not processed under normal conditions, its absorption coefficient can

change. When this occurs, the PAC measured using the fixed A value can exceed 1.0.

Therefore, since the measured PAC values are relative to the standard value of Dill's A

parameter, we call them relative PAC values and denote them by the symbol M (not to be

confused with the characteristic matrix Mc).

In summary, we have extended the theories underlying photospectrometry, and devel

oped ametrology for measuring resist thickness and PAC. We call this metrology TaME,

which stands for T and M Extraction.
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4.3 Experimental Results

We evaluate now the performance of TaME by comparing experimental reflectance

spectrographs to TaME derived simulated spectrographs. Note that the TaME method has

only tried to fit the following portions of the curve: 350 - 380 nm, and 500 - 620 nm.

TRPS=12100A;MS1.0 i:o TppgS1241SA;MsQ.97

760"
Wavelength (nm)

— Experimental Measurement
_ TaME Curve Fit

Figure 4.2 Examples of TaME Results

Wavelength(tan)

Tpcg=12444A;M=0.98

WavelengthCom)

Finally, before closing the discussion on the details of the TaME methodology, we

notice that the introduction of an additional "offset" parameter increases the accuracy of

the fit. This offset parameter is added to thetheoretical spectrograph before fitting it to the

experimental data. The justification of such a parameter includes problems originating

from the angle of incidence of theprobe which can vary slightly during processing due to

machine vibrations, or from a dirty reference wafer. Becausethe importantsignal for the

photospectrometer is the normally reflected light from thewafer, if the setup vibrates and

results in a significant change in the angle of incidence, the intensity of the reflected light

will vary, distorting the information returnedto the spectrometer.
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In summary, the TaME algorithm consists of solving two minimization problems.

Tres *s ^ound °y solving equation (4.7).

620nm

min I (Rmeas(^TREs)-(Rtheo(X'TREs) +Roffset))2 (4.7)
X = 500nm

and PAC (M) is found by solving equation (4.8):

380nm

™n X (RmeaS(^TRES.M)-(Rtheo^TRES.M) +Roffset))2 («)
X = 350nm

4.4 Measurements Characterization

4.4.1 Outlier Filtering Methodology

Our installation does not work perfecdy all the time. Sometimes, erroneous measure

ments are obtained as aresult of an imprecise angle of incidence of the probe. A good cri

terion for choosing when to trust the TaME results and when not to is the error between

the best fitting theoretical graph and the experimental graph. Assuming that the errors of

the n samples of a wafer are normally distributed, there is a well-known relationship

between the range of the n errors, and the standard deviation of that distribution. The con

trol chart based on that relationship is the range chart, and we use it to filter out all data

that lies outside the 3 standard deviations of the distribution of the n samples. The upper

control limit (UCL) of the acceptable error is determined by [21].

d3
UCL = x + 3-rx (4.9)

d2
where x is the average error; d3 the standard deviation of the distribution of the relative

range; and d2 the mean of the distribution of the relative range. Both d3 and d2 are tabu

lated functions of the sample size [21].

Once outliers are found, we recompute theUCL from the rest of the data, and repeat

the filtering process until no data lie beyondthe UCL (Figure 4.3). The main sources of

bad TaME measurements are machine and metrology setup vibration and misalignment of

the probe relative to the die area to be measured. As an indication of the robustness of the
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method, we have shown below a sampleof 50 residual errors betweenthe TaME theoreti

cal graphs and the experimental graphs. Each measurement was performed on a different

wafer (Figure 4.3). Clearly, one solution to ourcurrent problem is to increase the sample

size when measuring each wafer.

20 30

Wafer Number

40

Figure 4.3 Methodology for Filtering out Bad TaME Measurements

50

4.4.2 Characterization oftheRepeatability of TaME Measurements

Now, we characterize the repeatability of the TaME methodology. To quantify the

measurement error, we spin-coat 7 wafers and measure them 7 times around the same

spot, although notexactly the same spot, since this metrology will affect thephotoresist.

Therefore, some of the variations observed in the following graphs are also due to wafer

non-uniformity. The results are shown belowin Figure4.4.

Next, we calculate the average range of each output characteristic, and determine at

the 95% level of confidence the gauge errorof theTaME method [21] [32].
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Wafer # 1 2 3 4 5 6 7

Average
Thickness (Ang.) 12727 12745 12708 12693 12722 12693 12686

Range (Ang.) 46 120 49 59 43 71 34

Average Range R =60Ang.

Gauge Error atthe 95% level of confidence =4 * E/d2 =89Ang.

Wafer # 1 2 3 4 5 6 7

Average M 0.66 0.67 0.68 0.66 0.64 0.63 0.65

Range .02 .05 .11 .06 .02 .04 .05

Average Range R = .05

GaugeError at the 95% level of confidence =4 * K/d2 =.07

Table 4.1 Determination of the Gauge Error of the TaME Method
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Figure 4.4 Thickness & PAC Measurement Repeatability
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4.4.3 Characterization ofMisalignment Effects

A major fault that causes measurement errors is misalignment of the probe with

respect to patterned features on the wafer. To determine the sensitivity of the TaME

method toward misalignment, we spin-coat 3 wafers using different recipes, in order to

obtain resist films with different properties and expose them with a blank mask, so that

each die is fully exposed. Finally, we measure the reflectance of each wafer 5 times in the

following manner. Measurement #1: the wafer is aligned so that the probe footprint is

completely on top of a die - 0% of the area is unexposed. Measurement #2: approximately

25% of the area probed is in the unexposed strip between the dies. Measurement #3: the

probe footprint falls on only 50% of a die. Measurement #4: approximately 75% of the

probe footprint falls on unexposed area. Finally, the last measurement is made completely

on the unexposed strip between the dies. The results are shown below. Clearly, aligning

the probe to the wafer is very important. This alignment problem is especially significant

when measuring PAC afterexposure. If the probe falls on the unexposed strip between the

dies, the measurement needs to be redone. One solution is to pass the wafer through a flat

finder before measuring. Then, we only need to align the probe once with the test die, and

all subsequent wafers will also be properly aligned.

-•"- (4) Footprint diameter = 2 mm

Die size = 8mm X 8mm

Figure 4.5 Descriptive Drawing of the MisalignmentExperiment
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4.4.4 Effect ofProbing Timeon Measurements

Next, we look at the effect ofextensive probing time on the resist. Since we are prob

ing the photoresist in its absorptive range, we are partially exposing it during measure

ment. This undesired effectis unfortunately necessary, since we want to measure the PAC

inside the resist. To quantify the severity of this parasitic exposure problem, weconduct

the following experiment. First, we measure repeatedly awafer on the same spot for T-j

seconds. Next, we process the wafer in aregular fashion and time how long the wafer

stays underneath the probe during an actual measurement (T0). Then, we plot the degrada

tion of PAC vs. T-j/To, which represents the number ofmeasurements. Figures 4.7and 4.8

show the* extent of the damage incurred during measurement. Figure 4.8 is a setof reflec

tance graphs, each taken with different lengths of probing time. Figure 4.7 shows the PAC

values that correspond tothese reflectance graphs vs. probing time. Clearly, an extensive

probing time can be destructive, but as long as the total dose is minimal, we do not affect

the chemical properties of the photoresist significantly.
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Finally, to minimize this and the misalignment problem, we have also taken the fol

lowing actions: we have reduced the aperture, i.e footprint of the probe and use a more

focused beam. We have attached amechanism to the source of the probe light that would

allow us to modulate the amount of light emanating from the probe. Finally, we have

developed amechanism that allows us to rapidly align the probe beam to a die. This sys

tem can be further improved by adding an automated mechanical shutter that limits the

exposure time during ameasurement, and byusing afaster computer tosupport the photo

spectrometer so that all the wavelengths can be scanned faster.
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4.5 Conclusion

In conclusion, we have developed anovel metrology for measuring photoresist film

thickness and photoactive compound concentration. This allows us to accurately charac

terize not only the physical, but also chemical properties of the resist film during photoli-
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thography. The metrology and its caveats have been fully characterized and documented in

this chapter. Next, we develop the photolithography control system.

O
C
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Wavelengths (nm)

Figure 4.8 Reflectance Graphs of the Same Wafer with Varying Prnbj^g J\m
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Chapter 5 Supervisory Control System

5.1 Introduction

The goal ofasupervisory control system is to improve the reliability and accuracy of a

process sequence without significantly increasing the cost. We achieve that task by moni

toring the process and ensuring that the outputs of all machines stay on or as close as pos

sible to their respective targets. The control system consists of a feedback mechanism

which ensures that the outputs of the current machine stay centered around their respective

target, and a feed-forward mechanism which acts on the machine downstream to correct

for variability introduced by the current machine. The feedback mechanism is described

first.

5.2 Feedback Control System

5.2.1 Goal

The goal ofthe feedback controller is to ensure that the distribution ofthe process out

puts stay centered on target. Triggered by control alarms which detect output drifts, the

feedback controller first updates the equipment models of the machine, and then finds a

new recipe to bring the machine's outputs back on target. If the machine has multiple out

puts which cannot be brought back on target by anew recipe, due to correlation among

outputs, acompromise recipe which brings all the outputs as close as possible back on tar

get will be generated.

5.2.2 Background

Although heuristic algorithms for control have been reported in the semiconductor

industry [24], wehave chosen to base our approach on formal statistical methods. Statisti

cally based algorithms offer several advantages over heuristic approaches, since they can
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be adapted to a large number of processes and, once in place, are robust enough to be use

ful in an actual manufacturing environment.

Several attempts have already been made to formalize this procedure, including the

MIT Run-by-Run Controller [25][82], Ultramax™ [26], and Texas Instrument's PCC

Controller [79][80][81].

The MIT Run-by-Run Controller offers multivariate control and model adaptation of

processes that exhibit linear relationships between inputs and outputs [25], and later ver

sions integrate more general model adaptation and multivariate applications [82]. Ultra

max is acommercial software for sequential process optimization and process control, that

can also handle multiple inputs and outputs. Although the details of its operation are pro

prietary, Ultramax uses avariant of the evolutionary operation algorithm (EVOP) [21] to

find the optimum operating point. Ultramax offers the significant advantage that no prior

model of the process is required; however, it does require continuous changes on the pro

cess in order to derive such amodel. Texas Instrument's PCC Controller is asupervisory

controller that, like our controller, isdesigned tocorrect drifting processes. Applied to the

etching process, it has proven itself experimentally to be very efficient at correcting pro

cess drifts due to equipment aging.

Although there are several similarities between the PCC Controller and ours, ours is

designed to control multiple interrelated processes, such as the photolithography

sequence, which are often currently lumped as one process and controlled as one process

in industry. As to the MIT's Run-by-Run Controller, which, like ours, also uses well

known and established statistical techniques to provide a robust process control, it cur

rently does not handle non-linear process models.
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5.2.3 Detection ofProcess Disturbances

Disturbances can be classified into two main types. The first one manifests itself

through sudden significant changes in the process output. This indicates the presence ofa

problem that needs to be corrected by an operator. This type of disturbance triggers what

we call malfunction alarms. The second type of disturbance manifests itself as a system

atic process drift, which can be corrected by an appropriate recipe change. This type of

disturbance triggers what we call control alarms. The schemes for detecting these two

types of alarm are described next.

5.2.3.1 Malfunction Alarms

Malfunction alarms identify conditions which require operator attention. These are

cases where the variation of a monitored parameter increases, or when we encounter sud

den changes that are notconsistent enough to be compensated by recipe adjustments. A

malfunction alarm is also generated if the change cannot be compensated unless one (or

more) of the controlling parameters movesbeyond its acceptable range.

These conditions can be identified with the application of a special SPC scheme that

can accommodate multiple parameters (as several process parameters are being moni

tored). This scheme must beable to ignore intentional changes inequipment settings such

as those that might occur due to control algorithms. Such a SPC scheme has been devel

oped using acombination of the Regression Chart [27] and Hotelling's T2 statistic [28].

Under this scheme, malfunction alarms are generated in two stages: first, the equip

ment models are used to predict the new measurements. Then, the difference between the

reading and the model prediction is analyzed. When the process is understatistical con

trol, this difference is a random number with a known mean and variance. This variance is

calculated using the prediction errorof the model, as well as the observed variation of the
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equipment. The method is described for univariate regression models in [27] and it has

been generalized for multivariable response surfacemodels in [29].

Let y be the p x 1 vector corresponding to p equipment outputs, each element being the

average readingof n samples. Let J be the p x 1 vector predicted by the equipment mod

els. If the process is under control, the residualvector (y - f) follows a multivariate nor

mal distribution with mean 0, and variance X. Once estimates of these parameters have

been computed (equ. (5.2) - (5.6)), the multipleresponses are merged together using the

T2 statistic [21].

T2 =n(y-J)V1(y-J) (5.1)

where n is the sample size, and S the estimated covariance matrixof a process assumed to

be in statistical control.

Usually, even processes in statistical control can change with time, which results in a

continuously changing covariance matrix S. We havechosen not to monitor the change in

S and use instead the estimated S from the analysis of the designed experiment, when the

process is assumed to be in control.

It is calculated as follows [21]: let m be the number of wafers used in the designed

experiments, we first calculate the average reading of each wafer:

n

yjk =„X yijk'i= l--n;js !,...#; k= l,...,m. (5.2)
i=l

Next, we calculate the covariance, variance, andmean response of the m wafers.

m

pj =- X yjk* j=^--p; k=1--m- (5-3)
i= 1

s2j =̂ rf£(yjk-^)2 (5-4)
i= 1
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1 m
sjh =m^nrX ^jk-yj)(yhk-yh) j=i,...,p;n=i p;j*n (5.5)

i= 1

Finally, we form the estimated covariance matrixS:

S =

Once the T statistic is calculated, it is plotted on asingle-sided control chart whose

upper control limit (UCL) can be formally set at the desired probability oferroneously

stopping agood process, by using the Fdistribution [21].

s2i •» Sip

s2

S2; S-
J JP

UCL - P(#-I)-F(P>#-P)

(5.6)

(5.7)

where fl£is the sample size during the production runs. Note that the sample size nused to

calculate S is different from the sample size#used to determine theUCL.

When the UCL is exceeded, the automated control system stops and ahuman operator

investigates the malfunction, the same way he would have investigated atraditional SPC

out-of-control condition (Figure 5.1).

Alarm Alarm

Wafer Number

Figure 5.1 Malfunction Alarm Generatinp

a = 0.27%

- UCL
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5.2.3.2 Alarms for Feedback Control

Control alarms identify process drifts and trigger the feedback control system. The

drifts are detected by a multivariate cumulative sum (CUSUM) scheme that is very effi

cient at identifying small, consistent changes, while ignoring outliers that arenot useful

for feedback corrections. This type of disturbance can be compensated by appropriate rec

ipe changes.

The alarm generation is basedon Crosier's multivariate CUSUM scheme [30]. Several

other schemes have been investigated, but noneof them seems superior to Crosier's [31]

[33]. Crosier's scheme forms a CUSUM vector directly from the residuals between the

experimental data yn and their respective model predictions J, after shrinking them by a

factor of fl-pr).

sn = 0ifCn<K (5.8)

sn =(•o-l+yn-M^-gr) ifC^K (5.9)
where Cn is the variance-normalized length of the residual CUSUM vector

(Sn.j+yn-W.i.e,

Cn = ^-l+yn-?)TS~^sn_1 +yn-?)] (5-10)
The reason for shrinking the residual CUSUM vector by (1 - -£- ], and the significance

^ Cn'
of Cn and k are fully explained in [30]. S is the same estimate of the covariance matrix

used for generating malfunction alarms and is obtained from the designed experiments,

when the process is in control.

Typically, we want a process to return to its original target. Sometimes, this is not

always possible, because the multiple outputs are not completely independent of each

other. A corollary of this is that measurements should notbe compared against fixed tar

gets, which are sometimes unattainable, since it would generate control alarms too often.
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The comparison of the experimental data to the model predictions, on the other hand,

would generate an alarm only ifthe updated models do not represent the experimental data

well. Since this is exactly what is desired, the control alarm is then set off only when the
model represents thedata inadequately.

This scheme yields an alarm when the variance-normalized length ofthe residual

CUSUM vector %isgreater than a constant T|:

Y» =A|[STS-'Sn]>T, (5.11)
The sensitivity of the alarm depends on the number ofoutput parameters p, and the

constants k and r|, which can be adjusted for the desired probability a ofstopping errone

ously a good process. Equivalentiy, we can adjust the average run length (ARL) between

false alarms when the process is in control, also called on-target ARL. The methodology

for tuning the sensitivity of control alarms is described next.

5.2.4 Methodology for Tuning the Sensitivity ofthe Control Alarm

The sensitivity of acontrol alarm can be tuned by selecting either a desired on-target

ARL, ora desired type I error a, since they are directly related by:

on-target ARL = - (5.12)

We choose to describe the tuning process, starting from adesired on-target ARL. Note

that ifthe on-target ARL is chosen too high, the alarm will not be very sensitive to an out

of control process, i.e the "off-target ARL" will be too high, which could result in many

wafers processed out-of-control. On the other hand, if the on-target ARL ischosen too

low, too many false alarms would be triggered and the operator loses trust in the alarm

detection system. Therefore the value of the on-target ARL must be carefully chosen

either from analysis ofpast historical data or by aprocess engineer.
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Given a desired value of K(which will be discussed next), the parameter T| is deter

mined directly by our choice ofan on-target ARL. Although there exists no known analyt

ical equation that links r| to ARL, we can derive the relationship from Monte Carlo

simulations [30]. As an example, we describe the process in the case that an on-target

ARL of200 isdesired. First given avalue for K, we look for alower bound on T|. Starting

with an initial guess for t\, we simulate up to 1200 runs or until an alarm signal is given.

We repeat that simulation 50 times and obtain the average ARL. If the ARL is in the range

of 200, we decrement T|, until the average ARLisbelow 200. The lower bound on Ti is

now found. Next werepeat the 50 simulations and compute the average ARL, increment

ing T| by0.1 at atime, until the average ARL is above 200. Then we fit alinear regression

through the resulting average ARL and compute the parameter T| corresponding to an

ARL of 200. Finally, we repeat the whole process again for various k. Plots of theresult

ing simulations are shown below.
600

500

I i i i' i-pw^i-pn-r^yw^v^w-n^v*

*-*^4-*+ I I I I I u*Jh^hdU-fcJ«hAJ^fc|

•ARL = 56.04396*rt
0ARL=127.1978*n.
IARL= 189.1257*n.
DARL= 318.9091*T|
♦ARL =422.5275*11
vARL = 343.8182*T|
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Figure 5.2 On-Target ARL vs. Parameters t\ and x

358.1868; K=0.25
624.7143; K=0.50
676.4789; K=0.75
946.9091; K=1.00
946.9091; K=1.25

589.3182; k=1.50

Note that the number of outputs p has been kept fixed during all simulations, because it is

characteristic of a process. A different parameter pwould result in different ARL vs. ti

relationships. In all simulations, wehave used avalue of 2 for p, because the wafer track

has 2outputs, and it is the only machine in our process sequence with multiple outputs.
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We have also used independent data with aunit variance, so that we can use the identity

matrix for S [30]. This is proper since the data is supposed to be random and normally dis
tributed [34].

Parameter k is related to the desired amount of shift in the mean vector to be detected

[30]. To detect a K standard deviation shift in the mean vector (K>0), we calculate the

noncentrality parameterd.

d- J[(Ko)T S"1 (Koj| (5.13)
where c is the standard deviation vector of y. Studies by Crosier have found that choosing

k =d/2 minimizes the off-target ARL of an out-of-control process with anoncentrality

parameter d [30]. In other words, that value of Kmakes the alarm optimally sensitive to the

amount of shift represented by the noncentrality parameter d, and minimizes the number

of wafers processed out-of-control. During actual processing however, the amount of pro

cess shift isnot known in advance. To investigate which Kisbest overall, we have plotted

the off-target ARL vs. the noncentrality parameter d for various values of k, given the

same on-target ARL value of 200 (Figure 5.3). Notice that all the graphs are very similar,

200 i i 80
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ic=0.75; ti=4.63
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Figure 5.3 ARL vs. Noncentrality Parameterd for Combinations of (n. rt such that

on-tareet ARL =200. with number of outputs p =7
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when d is greater than 0.75, whereas there are great differences when d issmall. Therefore

when the process shift is large, the choice ofa k optimized for large shifts does not result

in a significantly more sensitive alarm. Any value ofKresults in approximately the same

off-target ARL for large process shifts. On the other hand, when the process shift is small,

the choice ofakoptimized for small process shifts results in asignificantiy more sensitive

alarm. Therefore, the default value ofk in our controller isthe smallest one, which is0.25.

Finally, after specifying the desired on-target ARL and parameter K, we select the

parameter T| from Figure 5.2, and theparameters of thecontrol alarm are set.

5.3 Algorithm for Adaptively Updating Equipment Models

Although the original models offer acomprehensive representation of the process,

their accuracy decreases over time, since equipment age, components are replaced, and

environmental conditions change. Thus, it is important to develop amethodology for

updating these models to the current status of the process. In our control methodology,

adaptation occurs every time a control alarm is issued, since that signals when the model

accuracy is not tolerable anymore. The model update algorithm we have developed is

designed to work with random data, because our measurements will come from aproduc

tion line, instead offrom an off-line controlled experiment. The scheme is described next

[35] [12].

5.3.7 Terminology andData Conditioning

The model update algorithm isbased on stepwise regression, which uses matrix com

putations. The kxn input setting matrix Xcontains the n input settings of the kprocess

runs, which are then fed into akxt model term matrix T, which stores the input settings as

model terms, t corresponds to the number of terms inside the model, which can also be

understood as the number ofcoefficients in the model, excluding the constant term.
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As an example, let's assume that 2 wafers are processed by the wafer track. The first

one is processed under a spin speed (SPS) of 4600 RPM, abaking time (BTI) of 60 sec

onds, and abaking temperature (BTE) of 90°C. The second wafer is processed under the

following recipe: (SPS, BTI, BTE) =(4800, 65,90). The resist thickness model coming

out of the wafer track has the following terms: 1/(</SPS), BTI, and BTE. All that infor

mation is stored as follows:

X = 4600 60 90

4800 65 90
and T = l/(«/S600) 60 90

_l/(</4800) 65 90
(5.14)

Note that X and T do not necessarily have the same number of columns. If the resist thick

ness model also contained the term SPS, T would have had 4 columns: SPS, 1/(VSPS) ,

BTI, and BTE.

4600

T =

4800

1

«/4600
1

74800

60 90

65 90

(5.15)

Next, the algorithm applies two transformations to T to prevent it from being ill-condi

tioned. First, it centers the resulting matrix, by substracting the average of each column,

and then divides it by a range matrix D, sothat the variances of each termare of compara

ble magnitudes. D is defined as at x t diagonal matrix which contains the experimental

range of each model term. This results in a matrix Y, which is composed of unitless num

bers, with comparable magnitudes.

Y =(T-Tflve) D"1 (5.16)

The second transformation that thealgorithm applies on matrix Y is a Principal Com

ponent (PC) transformation, to ensure thateach column of Y is orthogonal to each other.

This is necessary in order to apply stepwise regression. Next, we briefly describe the PC

step.
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5.3.2 Principal Component Transformation

The principle components of a set of variables are linear combinations of the original

variables, with the special property that they are all orthogonal to each other [28]. This is

represented mathematically by the following two equations:

PC = X B (5.17)

b^bj = 0, fori * j (5.18)

where PC is the set of principle components ofvariables Xj's; each column of B,bj, con

tains the coefficients for one principle component; and Sx is the covariance matrix of the

X's.

To obtain the coefficients B for ourmatrix Y, we takethe covariance matrix of the Y's,

Sy, and find its eigenvectors:

BABT =SY (5.19)

where A is a t x t diagonal matrix containing the t eigenvalues of SY; and B contains the

columns of corresponding eigenvectors of SY. Next, we simply transform the matrix Y into

its principle components YPC as follows:

Ypc = YB (5.20)

5.3.3 Description ofthe Model Update Algorithm

Now that all the terminologies and data conditioning have been explained, we present

the model update algorithm [35] [12]. The first step of the model update algorithm consists

of entering all the machine settings intothe input setting matrix X. Since the performance

of the machine changes with time, we do not weight the outputs obtained from olderset

tings as much as that obtained from newer settings. Therefore, we have applied aforget-
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ting factor w^ to our input settings, emphasizing the more recent ones over the older

ones. (The variable kcorresponds to the number ofsets ofinput settings).

X=WX (5.21)

where Wis adiagonal matrix containing the forgetting factor w^ofeach set of input set
tings. In our implementation, the number of sets of input settings is also limited to aspe
cific number, called window size, and is based on how often the machine performance
drifts with time. Older wafers are effectively ignored by the model update algorithm.

Next, we transform the weighted input setting matrix X* into amodel term matrix T,

which we also transform into aunitless matrix Y through equ. (5.16) to avoid ill-condi

tioned matrix calculations. Then, we find the principal components of Y, Ypc.

Next, the difference between the measurements and the current model predictions,

defined by ak xpoutput discrepancy matrix Az, is calculated. As before, pis the number

ofoutput variables, and k, the number ofsets ofinput settings, i.e, the number ofwafers in

the window. The output discrepancy matrix is computed as follows for each output vari
able i, i= 1,..., p:

i = 2i, meas ~2i, model =2i, meas ~(^pc 'Y+co) (5.22)
T

where y = B D c represents the vector ofterm coefficients ofthe model, transformed

into the principal component space; c is atxl vector containing all the model coefficients;

c0 is theconstant term; and Dis therange matrix.

Finally, stepwise regression is performed, considering each PC separately, in order to

obtain avector ofcorrection term coefficients Ay. The statistical significance based on the

student-t distribution of each correction coefficient AVj (j =1,..., t) is calculated. Ifit is

greater than acertain threshold, the correction coefficient is updated to Ay-; otherwise, itis

set to zero. Next, Ypc is multiplied by the updated set ofnew coefficients Ay and sub-
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stracted from the output discrepancy vector Az. Ifthe resulting constant term Ac0 is signif

icant, it is also updated. Finally, the modified correction coefficients Ay are transformed

back to their original space, resulting in aset of correction coefficients Ac, and added to

the current model coefficients c, to result in anewly updated set of coefficients Cupdated.

cupdated =C+AC =C+D"1 •B•Ay (5.23)

C<Wd = C0 +Ac0 (5.24)

This concludes the equipment model update. The next step of the feedback controller

is to find anew recipe that will bring the machine's outputs back on target.

5.4 Automated Recipe Generation

5.4.1 Algorithm

Once the equipment model has been updated to reflect the new state ofthe process, a

new recipe is typically needed to bring the process responses back on target. That task is

mathematically formulated as follows [35] [36]:

Solve for X, such that

W)si (5.25)
Twhere f(X) =T •c+cQ , from the previous section, and ± is the desired output from

the machine.

Subject to the constraints

Em*X*EM (5.26)

where Em correspond to the set ofminimum input settings; and EM, the set ofmaximum
input settings.
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This is atypical optimization problem, which can be solved in many different ways.
Several optimizers have been studied and implemented [21] [35] [36] [18], all with similar

satisfactory results. Therefore, we have chosen the most simple one, the iterative Gauss-
Seidel algorithm [35] [36].

At iteration i, the algorithm linearizes the function f(X) as follows:

f(X)af(Xi) +Ai.(Xi+1-Xi) (5.27)

where ^ =JJ^Xj) .

Let pbe the number ofoutputs variables, and k the number of input variables, we have

three possible cases:

1. k = p. The system is well determined and either has onesolution ornone at all. If a
solution exists, it is given by:

X; +, =Xj +AX; =Xi - Af1 [f<XS) - i] (5.28)

2. k >p The system is either over-determined or well determined. If AjAjT is invert
ible, a solution to the system is given by [35]:

Xi +1=VA^ =VA^A^fWi)-*] (5.29)
3. k<p.The system is under-determined. If A^Aj is invertible, the solution to the sys

tem is given by [35]:

Xi +1 =*i +AXj =Xf - [A^f1A?[f<XS) -i] (5.30)
Derivations of these results can be found inBombay's thesis [35].

TVpically however, the output variables mustbe weighted, because their effect on the

final output are different. The input settings X are also weighted, because some settings

are more easily changed than others. LetO beap x p diagonal matrix, which contains the

weights of±, and I, ak xk diagonal matrix, which contains the weights ofX. Equation
(5.27) is now transformed as follows [35]:
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f(X)Bf(Xi) +Air(Xi+1-Xi) (5.31)

where A'; =O"1 Aj I.

As before, there are three cases.

1. k = p.The solution is still the same as before and is given by:

Xi +, =Xi +AX, =Xi - Af1 [f(X|) - 2] (5.32)
T2. k >p. If A'jA'| is invertible, the solution isgiven by:

Xi+l =Xi +AXj =Xj- IA?[A1,A?]"10"1 [f(X;) -1] (5.33)
3. k <p. If A'j A'j is invertible, the solution isgiven by:

Xi +1=Xi +AXi =Xj-IIA^Ay^A^O-^fCX^.i] (5.34)
To satisfy the constraints set byequ. (5.26), the algorithm freezes any input value vio

lating aconstraint to the value of the constraint itself, and reduces the dimension space of

the search by one. The optimization algorithm then continues the search with the other

inputs.

5.4.2 Methodologyfor Choosing the Weights for Output Variables

In the past [35], the weights ofthe output variables have been derived from the speci

fication limits:

Ai' =0"IAi =0"1[f(Xi)-2] (5.35)

where 0 = 2- min(USL -£, ±-LSL).

We believe abetter weighting scheme follows the sensitivity ofthe final process output

(in this case, CD) on the intermediate output variables. For example, if the CD is assensi

tive to a3% change in PAC_as to a 100 Achange in resist thickness, the following weights

should be used: O = 0*03
100
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More formally, the output weights 0 are chosen as follows:

dz4

O =

'final
1/

dz.

1/
dz

dz

final

P J
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(5.36)

where pis the number ofoutput variables, and Zfinal is CD for our process sequence.

5.4.3 Weights for Input Variables

Weights for input variables are needed, because some input settings have awider range

ofoperation than others, or can be changed more easily than others. Weights are then used

to favor changing the input settings that would cause less side effects to the process. For

example, changing the spin speed ofawafer track is preferable to changing the baking

temperature. Currently, the weights for the input variables are given by the inverse of the

input setting range.

5.5 Summary of the Feedback Control System

In this section, we have presented an implementation of feedback control on a semi

conductor manufacmring step (Figure 5.4). The feedback control algorithm isbased on the

formal generation ofmalfunction and control alarms, an adaptive model updating strategy,

and an automated recipe generation system. This algorithm has been implemented on var

ious machines in the Microlab and experimental results, presented in chapter 7, show that
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the capability of the process sequence is significantly improved when this control algo

rithm is applied on every machine of the sequence.

c CURRENT SETTINGS X
MODEL AND

RECIPE UPDATE

PROCESS WAFER

C
NO

r

MEASURE PROCESS

PARAMETERS

SPC )
MALFUNCTION ALARM

1
NO/ CONTROL ALARM

li

EQUIPMENT
MODEL

YES
STOP

YES

J

Figure 5.4 Schematic Representation of the Feedback Procedure.

5.6 Feed-Forward Control

5.6.1 Feed-ForwardControl Paradigm

The primary task of the feed-forward control mechanism is to adjust downstream pro

cess step(s) in order to compensate for the variability of the current machine [11). The

feed-forward controller complements the feedback controller which centers the process on

the target, by reducing the process variability. Before processing the wafer on the next

equipment, the outputs of the current step are analyzed to see if they are likely to produce

a wafer within specifications after the next step, assuming normal settings. If the analysis

comes back positive, no feed-forward control isdone on the wafer. However, if the analy

sis shows that the wafer is unlikely to meet specifications, a feed-forward alarm is trig

gered and activates the feed-forward controller which then finds acorrective recipe for the
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next machine, using the same recipe generation described in §5.4 (Figure 5.5). In highly

controllable process steps, the feed-forward controller can even compensate for inherent

variability ofprevious steps, thereby increasing the overall process capability.

SPIN COAT
&BAKE

T& PAC MEAS

STEPPER

T

STEPPER

MODEL

CALCULATES A
CORRECT DOSE/

UPDATE

RECIPE

Figure g.5 Example of the Feed-Forward Control Procedure Applied to aStepper

Currently however, feed-forward control mechanisms are not well accepted in the

semiconductor industry because ofthe high stakes involved. A corrective action that wors

ens aprocess is not tolerated. That is why we activate the feed-forward control only when

the problem is clearly confirmed. Like the feedback control mechanism, this mechanism is

also activated by a formal statistical test.

5.6.2 Feed-Forward Alarm

The feed-forward alarm is avariant of the acceptance chart, whose properties are fully
discussed in [21]. For afraction of nonconforming wafers of at most 8, the true process
mean |x is bounded by u;L and u,tj, defined below:

\iL = LSL +Z6a, and \lv = USL - Z6c (5.37)

where Z6 is the upper 100(1 - 6) percentage point ofthe normal distribution, and c is the

process variability when the process is in control. We find an estimate ofa by running the
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standard process for a significant amount of time during which the process is believed to

be in control, and then by calculating the standard deviation of the process output. Now,

given a specified type I error of a, the upper and lower control limits of the feed-forward

alarm are set at:

LCL = HL-VJprf = LSL+Z8a-ZaCpred (5.38)

UCL = fij, +Zaapred =USL - Z80 +Zaopred (5.39)

where Za is the upper 100(1 - a) percentage point of the standardnormal distribution, and

apred *s me prediction error of the equipment model of the machine. opre<i isdefined as the

average error of the fitted values J., and is calculated from Gmodel> which is the standard

error between the modeled data yj and their fitted values y. (i = 1,.., N, where N is the

number of wafers used in building the equipment model of the machine) [22].

amodel =jNTTl(yi-Ji)2 (5.40)
'v i = i

Vd =Jj5<Wi <5-41>
where t is the number of degrees of freedom used by the equipment model.

When the predicted output falls between the lower and upper control limits, no feed

forward action is taken. On the other hand, when a prediction falls outside the control lim

its, an alarm signals the feed-forward control mechanism to generate new recipe(s) for the

next machine(s) in the sequence, in order to prevent the final process output from drifting

outside the specification limits. Although the recipe generatoralways tries at first to cor

rect the error at the next step, its success is not guaranteed and may require looking at sev-
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eral subsequent steps. If the situation cannot be corrected at all, the feed-forward

controller sends the waferto be stripped and recoated.
LSL LCL

Process variability
of the machine

Prediction error of the model

Figure 5.6 Derivation of I CL for Feed-Forward Alarm

5.7 Summary

In conclusion, we have developed and implemented arobust supervisory control sys
tem that is capable of reducing the variability ofaprocess sequence, and centering the pro
cess mean back on target. It achieves these tasks by applying statistical process control

techniques on accurate equipment models. The control system consists of afeedback loop
and afeed-forward loop. The feedback loop tracks the performance ofeach machine,

using adaptive equipment models, and ensures that the distribution of the process step is
centered around its target. Then, the feed-forward loop checks if standard settings on sub

sequent process steps would result in acorrectly processed wafer. If the process outputs

are predicted to be off-target, it will correct for the shortcomings ofthe present machine
by generating customized recipes at subsequent process steps.



66 Chapter 5 Supervisory Control System

[This page is intentionally blank]



The Photolithography Diagnostic System Chapter 6 67

Chapter 6 The Photolithography Diagnostic System

6.1 Introduction

The supervisory controller described in the previous chapter is capable of correcting a

drifting process, butdoes notdiagnose theproblem that causes thedrift to occur. However,

withoutdiagnosing andthen correcting the problem permanendy, maintaining a stable, in-

control process is very difficult. There lies our motivation for adding a diagnostic system

to the controller. The goal of our photolithography diagnostic systemis to assist a quality

inspector in finding the faults that degrade the capability of the process, and is not

intended to replace troubleshooting technicians. In other words, this diagnostic system

does not find the problems that cause machines to break down, but rather those that cause

machines* performances to change.

6.2 Anatomy of a Diagnostic System

A diagnostic system typically consists of three components: an inference engine, a

knowledge base and auser interface [37] [38]. The function of theuser interface is to pro

vide an interface between the diagnostic system and the user, since all diagnostic systems

areexpected to work in conjunction with a human expert.

The knowledge base is the component that contains the expert information needed to

diagnose the problem. This information can be represented in several ways, such as a set

of rules, frames, semantic nets [38], belief networks [39], or equipment models

[53][84][85]. Typically, a set of rules is used since it is the most easily implemented and

understood, yet still efficient. A rule usually has an "if... then..." format, where the z/part is

called a symptom oran evidence, and the then part is called a fault. The expert information

stored in the knowledge base can be of different levels of reasoning. It can vary from a

shallow level, where theset of rules has been derived purely from theexperience of human
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experts, to a very deep level, where the set of rules has been derived from actual theories

related to the domain [40] [41].

Finally, the third component, the inference engine, uses the information stored in the

knowledge base to diagnose the problem, following one of several probability theories
[37] - [47].

6.3 Description OfThe Two Knowledge Base Approaches

6.3.1Deep LevelKnowledge Bases

A "deep level" diagnostic system uses models of the domain to infer thecause of the

problem. It is very powerful when these models are physically based and well known,

because deep level diagnostic systems can find the root cause of the problem by itself, by

deriving it from the theory of the domain [37][41][44]. If instead the domain model is

empirical, it is not as powerful because the model could be wrong, orthe evidence could

lie outside the experimental range of the model [53][84][85]. In either case however, a

deep level diagnostic system is still very desirable because it can find the proper solutions

in unanticipated situations, and it is not pigeon-holed into any fault.

The main disadvantage ofdeep systems lies in their difficult implementation. Most

fields seldom have acomplete theoretical foundation, and typically depend on numerous

empirical results, which can also be incomplete.

6.3.2 Shallow Level Diagnostic Systems

On the other extreme, ashallow level knowledge base comes purely from the experi

ence ofhuman experts [37]. This allows ahighly efficient diagnostic system to be built in

avery short time. The accuracy of the diagnosis depends purely on the level ofexpertise of

the human experts. MYCIN [42] and Internist [43] are good examples of well tuned shal

low level diagnostic systems.
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The disadvantage of ashallow level system, however, is that unless human experts

include a cause in the knowledge base, itwill never find that particular cause. Also, if

human experts forget to link some symptoms to some causes, the system gets pigeon

holed into a wrong fault. Finally, ifhuman experts are wrong orsimply just not knowl

edgeable enough, the knowledge base is equally faulty. In summary, ashallow level diag

nostic system depends completely on human expertise and its shortcomings reflect ours.

Our diagnostic system uses acombination of both deep and shallow level knowledge

bases. While sensors malfunctions and incorrect input settings are diagnosed from equip

ment models and measurements, environmental and maintenance related problems are

diagnosed from operator observations, machine sensor alarms, and maintenance logs.

6.4 Probability Theories Used in theInference Engine

Several formal theories have been developed for handling uncertainty. They invariably

have a methodology for combining evidences and generating a diagnosis from them.

These theories have been investigated ingreat detail [45]. Their conclusion can besumma

rized as follows.

Being the oldest theory, Bayesian theory is the most well-developed one and has

become the benchmark against which all other theories are compared [45]. There is a well

formalized procedure for implementing adiagnostic system based on Bayesian theory and
it is based on the following equation:

p(E1E2...En|Fj)xp(Fi)p(Fi|E1E2...En) = m 2 "1 ' ,i=l,...,m. (6.1)
Xp(E,E2...En|Fk)xp(Fk)

k= 1

where nis the number ofevidences and m, the number of faults. The variable Fj represents

the i-th fault, and Ej, the j-th evidence. This equation allows experts to turn the rules

around and calculate conditional probabilities of faults. Bayesian theory has afew caveats
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however: first, the values ofalarge number ofconditional probabilities must be obtained

(NCond. Prob =n*m)« Another one is that there is no explicit representation of igno
rance.

One advantage of Demspter-Shafer theory [46] is that it is possible to explicitly repre

sent ignorance, whereas in probability theory, ignorance is an implicit part ofthe probabil

ity assignments. In Dempster-Shafer theory, ignorance is defined as the difference

between the plausibility and the beliefof an event, instead ofone minus the negation ofan

event. Unfortunately, Demspter-Shafer theory requires the fault space to be even larger

than Bayesian theory. Dempster-Shafer theory lists all the faults into aconcept called

frame ofdiscernment 0, defined as an exhaustive set ofmutually exclusive events, which

resembles the fault space in Bayesian theory. However, given n faults, it can consist ofup

to 2n elements, representing all possible subsets of 0. This leads to asimilar problem

encountered in Bayesian theory, except that it is worse because human experts are

required to estimate alarger number ofbelief values. The other main caveat ofDempster-

Shafer theory is that it offers no procedure for implementating adiagnostic system [37].

Therefore, we have rejected this theory for our diagnostic system.

Finally, Possibility theory [47], an extension offuzzy set theory, handles categorical

and qualitative data well, because itrepresents their fuzziness explicitiy. However, there is

some ambiguity in the interpretation and definition of fuzzy quantifiers that need to be

studied further and resolved, and like Dempster-Shafer theory, Possibility theory also does

not have rigorous procedures for developing diagnostic systems [37].

In our diagnostic system, since our data are purely quantitative and the structure of the

domain relatively simple, we have been able to simply use basic probability theory, which

is the foundation of Bayesian theory. The mathematical formulations are well developed

and arigorous procedure exists for developing diagnostic systems from it.
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6.5 Definitions ofTerms Used inOur Diagnostic System

We define now the terms used in our diagnostic system. When aprocess goes out-of-

control, the diagnostic system runs through alist of possible faults, called fault space, and

calculates the probability of each fault. In our software implementation, the fault space of

amachine is represented as avector of faults. For example, the fault space ofthe stepper

is: fn*m {Fl, F2, F3, F4, F5, F6, F7, F8, F9, F10, Fn, F12):

Table 6.1 Fault Space of theStepper

Fault Index Fault Names

Wrong Input Thickness

Wrong Input PAC

Wrong Dose

Bad Lamp

PAC Meas. Error

Bad Lamp Strike

Damaged Filter Optics

Bad ShutterTiming Circuit

Bad LightIntegrating Circuit

'10 Environmental Temperature

11 Miscellaneous Fault

"12 No Fault

The evidence space £ used to deduce the fault consists ofa list ofpieces ofevidence.

Currently, the knowledge base of our diagnostic system contains five pieces ofevidence: £

= {E], E2, E3, E4, E5). The first four represent shallow level information, while the last

one contains deep level information, derived from equipment models.

Table 6.2 Evidence Space Description

Evidence Index Pieces of Evidence

Operator Observation
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Table 6.2 Evidence Space Description

Evidence Index Pieces of Evidence

Age of Critical Machine Component

Machine Output

Type of Alarm

Fit of the Output(s) predicted by aHypothetical
Input change, to the measurement

The information used to diagnose any machine is composed of these five pieces ofevi

dence.

Each piece of evidence is divided into aset ofdiscrete, independent variables, which

are specific to each equipment. For example, in the case of the wafer track, the piece of

evidence E3, "Machine Output", has two variables: (E31,E3 2) =("Thickness Measure

ment", "PAC Measurement").

The value spaceof each variable is discrete, i.e, the value of each variable is stored in

aspecific category with aspecific probability. The sum ofprobabilities ofall categories of

a variable equals one, i.e all the categories of a variable are mutually exclusive and

exhaustive. For example, the variable E31, "Thickness Measurement", is divided into two

categories, {E3 j, E3 j}. E3> j corresponds to athickness value greater than the value

predicted by the model, while E3 } corresponds to athickness value less than the value

predicted by the model.

Therefore, given aprocess described by mpieces ofevidence Ej (i =1,.., m), each Ej

being divided into nj discrete variables Eitk (k =1,.., n^, and each variable Eitk being

divided into qiJc categories E|f k (j=l,.., q^), the evidence space is then divided into 7i
mutually exclusive and exhaustive combinations.

m nj

Number ofcombinations = Oi = TT FT q. .
i = lk= 1

(6.2)
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We define here by combination, a vector ofcategories, each belonging toa different vari

able. For example, the data structure ofthe evidence space ofthe exposure step is shown

below:

Piece of Evidence Variables Values

Operator Observation
(E,)

Temp. Sensor
Out of Range

<Pi.i>

True

(EU+)
False

<Pi.f)

Age of Machine Component
(E2)

Lamp Age
(By)

New

<E2,f)
Old

(E2/)
Filter Age

(E2,2>
New

(E2.2")
Old

(Pw4)
Machine Output

(E3)
APAC

(E3.1)
Above Target

(E3,i+)
Below Target

(E3.D

Type of Alarm
(E4)

N/A+
Malfunction

Alarm

(E4M)

Control
Alarm

(E4C)

False
Alarm

<E4°)

Fit of Output Predicted by a
Hypothetical Input Change

to the Measurement*
(E5)

Wrong Input Thick
(E5,i)

Perfect Fit

(E5,i+)
No Fit

(E5,D
Wrong Input PAC

(E5,2)
Perfect Fit

(E5,2+)
No Fit

(E5,2")
Wrong Input Dose

(E5,3)
Perfect Fit

(E5,3+)
No Fit

Table 6.3 Data Strucmre ofthe Evidence Space of theStepper

t Note that E4 has no variable, and that E5 has as many variables as there are inputs tothe machine/The difference
between pieces ofevidence having no variable and one variable ispurely philosophical: apiece ofevidence with only
one variable can theoretically have more variables, ifmore variables are later deemed necessary for diagnostic purposes,
while apiece ofevidence having no variable will have none forever, because of the way itwas defined But mathemati
cally, formulae treat pieces ofevidence that have no variable, the same way as if they have one variable.

6.6 Calculation of Fault Probabilities

Before describing the calculations ofthe fault probabilities, we first state the assump

tions underlying the theory of our diagnostic system. All combinations of evidence are

assumed to be mutually exclusive and collectively exhaustive, i.e,

X p(Cj) = 1.0 (6.3)
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The observed evidence then gets straddled over several combinations, with a different

probability for each combination. We have assumed that any useful evidence is contained

in avariable of one of the five pieces ofevidence. Although such aclaim isprobably false

for our current evidence space of each machine (Figure 6.9 - Figure 6.11), the data struc

ture of the evidence space facilitates its update, as more useful evidence emerge.

The probability of each fault is based on the relative frequency of faults for a given

combination of evidence. The relative frequency of a fault Fj for a given combination of

evidence Cj (j =1,.., flfl is called aconditional probability and is denoted by p(FjlCj). Typ

ically, in Bayesian diagnostic systems, the conditional probabilities of faults, p(FjlCj), are

determined from conditional probabilities ofevidence, p(C-|Fi), and prior probabilities

of faults, p(Fj):

P^jIF^xpCF.)

P(F'ICJ} = PCcp (64)
We have assumed, however, that the estimates of the conditional probabilities of faults,

p(FjlCj), are given directly by machine experts (and then subsequently automatically

updated by the diagnostic system (equations (6.8) and (6.9))), avoiding the need to deter

mine prior probabilities of faults. The probability of a fault Fi (i = 1,.., NF) is then calcu

lated as follows:

X

P(Fj)= Xp(Fi|Cj)xp(Cj) (6.5)
j = l

where NF is the number of faults, and #is defined in equation (6.2). While the conditional

probabilities of faults are obtained from the database of the diagnostic system, the proba

bilities of combinations of evidence are calculated from the observed evidence (see §6.7).

The accuracy of the conditional probabilities of faults for a combinationof evidence G

improves with the number of occurrences, Nj. If acombination of evidence G has been

diagnosed and linked to afault Fj, p(Fi|C:) is updated as follows:
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NjXpCFjIC) +1
p(Fi|cP - NVl (66)

while the other faults have their conditional probabilities updated as follows:

p(Fk|Cj) = J N."l1J0'd (6.7)
However, most of the time, the observed evidence cannot belinked to just one single

particular combination of evidence. Rather, it straddles over several combinations of evi

dence, each with aprobability of p(Cj). Therefore, if fault F8 was the real fault, p(Fi|C)
is updated as follows:

NjXpCFjICpnl. +p(Cj)

P(F*ICJ) " Nj +pff) •f0faI1Ci- <«>
and the conditional probability of the other faults are updated as follows:

NjXpCFJC)
p(F"lci)= nj+P(9 -faa"cJ- <69>

The number ofoccurrences ofCj, Nj, is then updated to:

Nj,new = Nj,old +P(Cj) <610)

Clearly, Nj will not bean integer anymore, but rather areal number.

The combinations of evidence which occur more frequentiy will have their conditional

probabilities determined with more precision and accuracy. The relationship between

these three parameters is formally derived in section §6.9. In the initial implementation of

the diagnostic system though, we have no record ofdiagnosis cases beyond the experience

of machine operators. Their opinions, albeit subjective, provide the initial conditional

probabilities for each fault. We will describe how we extract initial estimatesof condi

tional probabilities from their experience, and combine their different opinions into one

single set ofconditional probabilities for the diagnostic system, in section §6.8. Before we

discuss how to obtain values for conditional probabilities, we first show how to calculate

the probability of acombination of evidence, p(G).
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6.7 Calculation of the Probability of a Combination of Evidence

The knowledge base used for diagnostic operations isbest represented by influence

diagrams. An influence diagram isa scheme developed by SRI researchers tomodel com

plex decision problems involving uncertainty [57]. An inference diagram is an acyclic

directed graph with nodes representing variables and arcs representing the relationships

between variables. More specifically, an arc going from node Ato node Brepresents the

conditional influence ofAon B. These influences are then calculated using Bayesian

probability theory. Note that what isimportant in an influence diagram isthe absence ofan

arc, rather than the presence ofone, since the latter describes only apossible dependency

ofBon A, where as the lack ofarc between Aand Bmakes astronger statement by mark

ing the independence between A and B.

The diagnostic operations described in this thesis can be represented by the following

influence diagram:

Age of Critical

Machine Components

I Alarm Category J /*"

7Y l
Alarm

Parameters

&

Combination of
Evidence Cj

Operator
Observations

[Fit ofPredicted Output from a\
Hypothetical Input Change to

the MeasurementMeasurementsvi

7
f Equipment Model)

Figure frl—Influence Diagram Describing the Evidence ftpa^
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The centerpiece of Figure 6.1 is the probability ofacombination of evidence Cj, p(G).
It corresponds to the probability of matching the observed evidence to the combination of

evidence Cj. Since all the pieces ofevidence are independent of each other, and their vari

ables are also independent ofeach other, p(Cj) is calculated by taking the product ofthe

probabilities of thevariables of thepieces of evidence. We will show nexthowto calculate

the probability of a variable of any piece of evidence.

6.7.1 Probability ofCategories of"Operator Observation9* (Ex)

The piece ofevidence "Operator Observations" consists ofobservations about physi

cal attributes of the wafer, such as "streaks on wafer" or "circular patterns on wafer", and

alarms from equipment sensors that are not connected to the computer running the control

and diagnostic systems. These alarms alert the operator directly, who in turn logs them in

the diagnostic system. Variables ofthis piece ofevidence are divided into two categories:

(El, i» El,i) =("True"» "False"). So, for example, circular patterns of photoresist on a

wafer after the spin-coat and bake step is an observation that either exists or does not. If

the observation actually occurred, then

P(ET,i> =l.andp(E"li) =0 (6.11)

If the observation has notoccurred, the probabilities are reversed.

6.7.2 Probability ofCategories of"Machine Component Age" (E^)

Each variable of the piece ofevidence "Age ofCritical Process/Machine Compo

nents" corresponds to the age of adistinct process/machine component. Each variable of

E2 is divided into two categories: (E^ i, h~2 j) =("Old", "New").

Given the age and the life distribution of aparticular component i, we calculate the

probability p( E^ .) that this component would be classified as "new", by relating p( E^ .)

to the probability of failure of thecomponent. Various life distribution functions have been
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analyzed in the literature [69][70]. We have chosen the Weibull distribution instead of any

other distribution to represent the life function ofmachine components, because itcan be

adjusted to fit most life distributions. Its mathematical form is:

R(t) =exp[-(t/n)B] (6.12)

R(t) is the probability that the component is not likely to fail, and corresponds to the prob

ability that the component is "new". Bis the shape parameter and nis the scale parameter

or characteristic life of the component, defined as the life at which 63.2% of the popula

tion has failed [70]. When B is less than 1, the failure rate decreases with time, and vice-

versa, when Bis greater than 1. In our case, machine components invariably degrade with

time, and therefore B will always be greater than 1.

The Weibull Mean Time to Failure (MTTF) is given by [70]:

MTTF = nr(l +l/B) (6.13)

where !"(•) is thecomplete gamma function.

There are several ways ofestimating the scale and shape parameters nand B [77]. The

easiest one estimates them by plotting the cumulative number of failures vs. the time of

failure, and then extracting the 16.7% (J,), 97.4% (J>2), and 63.2% (n) percentiles. The
shape factor is estimated from J, and J2:

* 2.989

B• Ei(VW (614)
and the scale factor is estimated by n.

Ifin the initial stage ofthe system implementation, there is not enough data to plot the dis

tribution of failure of the machine component, an educated guess must be made for n,

while 6 can take on avalue of 3.5, which makes the Weibull distribution approximate a
normal distribution. Other ways ofestimating nand Bare suggested in [77].
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In summary,

P(E2,i) =RA) =exp[-(t/n.)Bi] and p(E+.) =1-R^) (6.15)
6.7.3 Probability ofCategories of"Machine Outputs"(E^

The piece ofevidence "Machine Outputs" is divided into pvariables, which corre

spond to the pmachine outputs. Each variable is in turn divided into 2categories, {E? •,
£3, i ) (i =1,..., p). Let

3,i =( 3,^Measured~(E3,i)ModelPrediction <6-16)
the probabilities of the twocategories are defined as follows:

p(E3i) = p(AE3 j>0) and p(E' {) =p(AE3 .<0) (6.17)

The measurement value, E3ti, depends however on whether the operator measured the

wafer correctly or not. Let Orepresent "Operator Aptitude", which is divided into 2cate

gories {Og, Ob) ={"Good Operator", "Bad Operator"). The probability of acategory of
E3 is calculated as follows (Figure 6.2):

Figure 6.2 Influence Diagram of rfF^ j). (\ ="+" or «J*\

P(E3,i) =P(EJ3)i|og)xp(Og) +p(EJ.job)xp(Ob) ,j={"+","-"} (6.18)
P(E3 Jo ) is calculated as follows:
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Distribution of Meas.
±3c,meas error

P(E3.i°g>

Model Predicted Value Measured Value

*SJ E3.i

Figure 6.3 Determination of pfE^. Og)

Let E3 jbe the measurement value; £3> j the model predicted value; Oj, the standard

measurement error (obtained from multiple experiments at the standard setting when the

process is in-control); <!>(•), the cumulative gaussian distribution function; and erf(#), the

error function:

P(E'3J
ffe3i-E3i>\ ( /fisi-EjA ^

OJ = <&-^ hi = erf 3>1 *'' +1
1 ; V V °i^

p(E*i|0g)=l-p(E3J|0g)

/2 (6.19)

(6.20)

If the measurement E3i is incorrect, it has equal probability of being in eithercatego

ries:

P(E3,i|0b) =P(E3,i|0b) = 1/2 (6-21)
Next, we calculate p(Og) and p(Ob), where p(Og) and p(Ot,) represent the probability

that the operator performedthe measurement correctly, and incorrectly, respectively:

,q v _ , Number ofMeas. Errors
PI g) - - Total Number ofFaults

p(Ob)« l-p(0_)

(6.22)

(6.23)
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where the total number of faults is the combined number of malfunction alarms and con

trol alarms, since the diagnostic system is activated bythese alarms.

6.7.4 Probability ofCategories of"Type ofAlarm" (E^

The piece ofevidence "Type ofAlarm" has no variable, and is directly divided into

three categories: (E4 ,E4, E°) =("True Malfunction Alarm", "True Control Alarm",
"False Alarm"). All process states, which include the three categories ofE4, are shown

belowin the two VEM diagrams.

Total number of processed wafers: N

Number of wafers in-control: NIC
Number of wafers out-of-control: N<xr<

Figure 6.4 VEM Diagram Showing In-control / Qut-of-contml Wafrr?
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Y//A NCA: Number of control alarms

^^1 ^ma: Number of malfunction alarms

NCMA: Number of both control
& malf. alarms

nfcma
nfma

ntcma
NTMA

nfca: # of faJse control (only) alarms Nr^: # oftrue control (only) alarms
nfcma: # of false control &malf. alarms NTCMA: # oftrue control &malf. alarms
nfma: # of false malf. (only) alarms Nr^: #oftrue malf. (only) alarms

Type Ierror ofaControl alarm: etc =(NrcA+ NFCMA) / (NCA +NCMA)
Type II error ofaControl alarm: Pc =(Nqc - Q*TCA+NTCMA)) INqc
Type I error ofaMalf. alarm: <xM =GW m?^ /(Nma +Ncma)

Figure 6.5 VEM Diagram Showing All Possible States of an Alarm

Let Cand Crepresent the out-of-control and in-control states ofaprocess, respec

tively. We will now calculate the probability ofatrue control alarm, p(Ac, C), the proba

bility of afalse control alarm, p(Ac, C), the probability of missing acontrol alarm, p(Ac,

C), and the probability ofhaving no control alarms when the process is in-control, p(Ac,

C). Therefore, we defined these probabilities as follows:

NOC (l-aC)(NCA +NCMA)^NTCA +NtCMA^p(Ac, C) =
N

oc ;
R N-

P(AC, C) _ fNFCA +Nfcma] Njc _ac<NCA +ncma>
" I Nic ' nt " NT

P(AC, C) =

P(AC,C) = pcp(C)

i (NFCA-rNFCMA)>| Nrc_r (NFCA-rNFCMA)>j
NIC J NT " I NIC

(6.24)

(6.25)

(6.26)

P(C) (6.27)
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Ifacontrol alarm has been triggered, the probability of atrue control alarm, p(E4),

and that ofa false control alarm, p(E4), are respectively:

p(Ac, C)
P(E4) = p(Ac,C Ac) = c

P(AC) p(Ac,C) +p(Ac,C)
= 1-a, (6.28)

,iA ,a niA ^ P(ACC) P(AC,CP(E4) = p(Ac,C Ac) = ^ = =-!= = ar (6.29)
I c P(AC) p(Ac,C)-rp(Ac,C) c

Similarly, we calculate now the probability ofatrue malfunction alarm, p(AM, C), the

probability of a false malfunction alarm, p(AM, C), the probability of missing amalfunc

tion alarm, p(AM, C), and the probability of having no malfunction alarms when the pro

cess is in-control, p(AM, C).

P(AM, C) =

P(AM,C) =

P(AM. C) =

P(AM, C) =

r(1-«M)(NTMA +NTCMA)>| NQC

^Om(Ntma+N

N,OC

M^TMA + ^TCMA
N

IC

R

n N
IC

N.

^_il~aM)(N™A+N' fttM^nTMA"ri>TCMA N
OC

NTN
OC

\ «m(ntma-|-ntcma)>
I NIC

N
IC

N-

(6.30)

(6.31)

(6.32)

(6.33)

If amalfunction alarm has been triggered, the probability of atrue malfunction alarm,

p(E4 ), and that ofafalse malfunction alarm, p(E4), are given by:

P(AM, C) p(AM, C),M
P(E4) = P(AM,CAM) =

P<AM> P(AM,C) +p(AM,C)
= 1-a

M
(6.34)

«nA ^a riA x P(AM»C) P(AM,C)p(E4) =p(AM, C|AM) - __ =p(AM<g)+p(AMC) - «M (6,5)

Note that in our control system, amalfunction alarm takes precedence over a control

alarm, i.e, acontrol alarm isdefined as an alarm triggered by the control alarm mechanism

only, whereas amalfunction alarm includes alarms triggered by the malfunction alarm
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mechanism alone AND alarms triggered by both malfunction and control mechanisms.

Therefore, if both alarms are triggered, they will be treated as amalfunction alarm only.
Values for the type Ierrors of the malfunction and control alarms, ctM and etc, and the
value of the type Herror of the control alarm, Pc, are specified by the user, when activat
ing the controller.

6.7.5 Probability ofCategories ofa"Hypothetical Input Change" (Es)

The piece of evidence "Fit ofPredicted Outputsfrom aHypothetical Input Change to
the Measurements", is the only one based on deep level knowledge. Extracted from the

equipment models and measurement values, it corresponds to how well the predicted out

puts), assuming a hypothetical input change, matches the measurements. It is similar to

the algorithms used by May [53], and Saxena and Unruh [85], but instead of attributing the

probability directly to afaulty input, our algorithm attributes the probability instead to the

evidence that afaulty input could have caused the problem. Then, ifmultiple inputs could

each have caused the problem, the diagnostic system will calculate the probability of each

one, depending on their past frequency (equ. (6.5)). This piece ofevidence isdivided into

as many variables as there are inputs to the machine, because each variable corresponds to

the fit of the predicted outputs to the measurements, assuming only that asingle input has

changed. Each variable is divided into 2categories, {E5 j, E5 . }(i =1 nand nis the

number of inputs). The first category corresponds to when the outputs predicted by a

change of the input match the measurements exactiy, while the second one corresponds to

when they do not match at all. The computation of the probability of the category is based

on solving backwards the equipment models using the measurements, and then analyzing

the difference between the predicted outputs assuming the hypothetical input change and
the actual measurements.
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The problem of solving the equipment models backwards can bestated as follows. Let

pbe the number ofprocess outputs, and t the number ofmodel input terms (such as Xj, x2,
Xj , X!/x3,...), an equipment model takes the following form [53]:

Y = KX +E (6.36)

where Y is acolumn vector of pnormalized responses; X, acolumn vector of t model

input terms; K, apxt array ofregression coefficients; and E, apxl residual column vector.

Note that the p responses must be standardized to avoid ill-conditioned matrix calcula

tions, due to their widely divergent magnitudes. This becomes especially important when

their residuals will be combined together in subsequent analysis. To standardize

responses, transform them as follows:

Y =o~(y-y0) (6.37)

where y is acolumn vector of the presponses; yQ, acolumn vector of the presponses

taken at the operating point from the designed experiments; and a, the diagnonal pxp array

of standard deviations of the process outputs.

a =

al 0 0

0 ... 0

0 0 GE

(6.38)

Generally, the input terms ofan equipment model are nonlinear, consisting ofnonlin

ear combinations of input settings. To solve the process outputs' models in reverse, they

must linearized with respect to the input settings. This is achieved by approximating them

by a linear truncated Taylor series expansion.

£+At =KX +kI-XAx; ,i=1 n (6.39)
where Xj is one ofninput settings and Axj is ascalar representing achange in input X;.
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Next, equ. (6.39) is solved backwards byminimizing the sum of squares of the residu

als:

f(AXj) =(y -KX -K^-XAxj? ,i=lf....n (6.40)
Note that the residuals do not need to be weighted since the responses havebeen

already previously normalized. Thecolumn vector of residuals R is given by:

R=Y- KX - K-J-XAx; (6.41)
dXj" l

The solution to equ. (6.40) is found by setting the derivative of f(Axj) to 0, and solving

for Axj.

Ax: = —- = • (6.42)

To check the significance of the input shift Axit we check if all residuals are normally

distributed around zero. If confirmed, there is a strong probability that theoutputs' shifts

can be attributed to the faulty input parameter in question. We apply the Hotelling's T2 sta

tistic on R to determine if it is not significantly different from zero.

Ta,q.N-q - tf&VlR (6.43)
where I is the covariance matrix of the original designed experiment, i.e the one used in

developing the equipment model, and acts as an estimate of the actual covariance matrix

of the present runs. !A£is the sample size of the outputs during production runs. Finally, to

find the statistical significance that Axj has actually caused the observed output shifts, we

find the a that satisfies

q(N-l)Fa(q,N-q)
T5,q,N-q jjT^ • (6.44)

Wethen interpret that significance a as the probability that the predicted outputs match the

measurements, assuming the input change Ax$:
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p(E5i) = oj and p(E^j) -1-a, (6.45)

6.7.6 Example ofEvidence Probability Calculation

To clarify how to calculate the probability ofacombination ofevidence, we calculate

the probability ofthe combination that best fits the following example.

Acontrol alarm was triggered on the wafer track. Its etc and Pc error parameters were

5% and 20% respectively. The type I error ccM of the malfunction alarm was also set at

5%. The thickness value was 12330A. The predicted value was 12240A. The standard

deviation of the thickness during processing was 65A. The PAC value was 0.97. The pre

dicted value was 0.98. Its standard deviation was 0.023. There was no circular pattern, nor

any streak on the wafer. (These are the only relevant observable parameters for this

machine.) The reference wafer has justbeen cleaned.

Other pertinent data are: the diagnostic system has recorded up to now 31 malfunction

alarms and 102 control alarms. The number of measurement errors is 5. The number of

total processed wafers is 562. The characteristic life ofthe reference wafer is 11 days.

All the pieces of evidence for this machine, and their categories are summarized

below, with the most probable category being highlighted in bold.
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Piece of Evidence Variables Values

Operator Observation
(E,)

Circular Patterns

(Ei.i)
True (+)

prob = 0.0
False (-)

prob = 1.0
Streaks

(Ei,2)
True (+)

prob = 0.0
False (-)

prob = 1.0

Age of Machine Component
(E2)

Reference Wafer
Age(E2fl)

Old (+)
prob = 0.0

New (-)
prob = 1.0

Machine Output
(E3)

Thickness

(E3,i)
Above Target (+)
prob = 0.9614

Below Target (-)
prob = 0.0386

PAC

(E3,2)
Above Target (+)

prob = 0.335
Below Target (-)

prob s 0.665

TVpe of Alarm
(E4)

N/A
Malfunction Control False
Alarm (M) Alarm (C) Alarm (0)
prob = 0.0 prob = 0.965prob = 0.035

Fit of Output Predicted by a
Hypothetical Input Change

to the Measurement*
(E5)

Wrong Input
Spin Speed (E5J)

Perfect Fit
prob = 0.99

No Fit
prob = 0.01

Wrong Input
SpinTime(E52)

Perfect Fit
prob = 0.001

No Fit
prob = 0.999

Wrong Input
BakeTemp (E53)

Perfect Fit
prob = 0.95

No Fit
prob = 0.05

Wrong Input
Bake Time (E54)

Perfect Fit
prob = 0.01

No Fit
prob = 0.99

Wrong Input
Humidity (E55)

Perfect Fit
prob = 0.999

No Fit
prob = 0.001

Wrong Input
3otde Level (E5i6)

Perfect Fit
prob = 0.01

No Fit
prob = 0.99

Most probable combination of evidence:

o^Slf^ =P(E,« lEl'2E2' ^ 1E3.2E4EJ, 1E5,2E;, 3*5,4^,5*5,6>
,C„+

Figure 6.6 How Evidence from a Wafer Track Gets Categorized into Combinations

1. p(EM) = p(E"1>2)= 1.0
2. Cumulative distribution of the reference wafer's lifespan: (16.7 percentile, 63.2 per

centile, 97.4 percentile) = (5,11,21) days.

4.80,B =2.989/log(21/5) =4.80=>p(E2 j) =exp[-(l/lir°u] - 1.0
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3- p(E^Joj=,-41^12330A =a96562_
\ 22 J

=» p(E+ ,) =0.96562 •gZ +0.5 .JL =0.9614

4. p(E-2|og) =̂ ^f^Z) =0.6664
=» p(E- 2) =0.6664 •§Z+0.5 •̂ =0.665

5. Noc =(1-0-05)002+10) =
oc 1-0.2

=> nrES = (1-0.2)133-8
4' (1-0.2)133 +0.05 102-(1-0.05)10

6. Tsps = 0.04 => p(E5t j) =0.99

7. TgpT = 1.76 => p(E^ 2) =0.999

8. T^ =0.21 => p(E* 3) =0.95

9. TgTj = 2.01 =>p(E54) = 0.99

10. Th = 0.02 => p(E£ 5) =0.999

11. T*L =1.60 =>p(E">6) =0.99

The final probability that the observed symptoms fit this combination ofevidence is:

P(E'l, 1E'l, 2E2,1E3,1E3,2E4 E5,1E5,2E5,3E5,4E5,5E5,6> = (6-46)
111- 0.9614 •0.665 •0.965 •0.99 •0.999 •0.95 •0.99•0.999.0.99 = 0.568

6.8 Determination of Conditional Probabilities

The conditional probabilities of faults correspond to the relative frequency of faults

given acombination of evidence. They are typically obtained from the diagnosis database
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(equ. (6.8)). Initially, however, these conditional probabilities must be estimated from the

experience of machine operators. To decrease the subjectivity ofthe expert opinions and

increase the accuracy ofthe estimates, we poll several machine operators, and then com

bine their opinions into one single set ofconditional probabilities.

6.8.1 Previous Work on Information Filtering

The problem of filtering information from human experts and assessing their estima

tions has been thoroughly attacked in the past. Two versions ofthe problem have been

studied in the literature. In the first version, experts evaluate characteristics ofobjects,

such as the height of atower, or the speed ofacar [65][66][71]. The methodology then

consists of first calibrating the human experts, to see whether they tend to be overconfident

or conservative with their estimates. By asking the experts to predict several parameters

and then comparing their predictions to the actual values known to the testers, the testers

quantify the biases of the human experts. Finally, the concensus of all the estimates is

obtained by taking the most likely value from the "calibrated" experts.

In our case, such amethodology cannot be used because our problem addresses proba

bilities ofevents, whose sum must always equal one. The problem rises from the calibra

tion of the predictions. If an expert tends to be too conservative with his probability

estimates, we cannot compensate his predictions by increasing them by acertain amount.

Many papers have studied various facets of the concensus problem when the experts are

trying to predict probabilities [67] [68] [72] [73][74][75] [76]. These papers are more useful
to our work.

6.8.2 Choosing a Methodology forCombining Probability Estimates

The methodology consists of collecting subjective probability estimates from human

experts, and then combining them using either aweighted average scheme [67][72][74], or

first transforming them into their natural conjugates and then combining them using



The Photolithography Diagnostic System Chapter 6 91

Bayes' Theorem [68][72][73][75]. The weights are based on ranking the human experts,

using one of several scoring schemes, described in [72].

In order to obtain accurate estimates of probability distributions, Winkler has docu

mented amethodology for interviewing experts [75]. The questionnaire uses four different

techniques, CDF - Cumulative Distribution Function, HFS - Hypothetical Future Sample,

EPS - Equivalent Prior Sample Information, and PDF - Probability Density Function. A

distribution ofthe probability estimate is obtained from each technique. If they are widely

different, it implies that the expert did not understand one or more questions, and after

being trained on the concepts, is asked to give his/her probability distribution estimates

again. On the other hand, if the probability distributions are close to each other, they are

averaged into one single distribution.

Next, we must choose between either aweighted average (W-A) or anatural conjugate

(N-C) method to combine the probability distributions. Winkler investigated that problem

using aBernoulli process to generate data. This was done assuming that there are only two

experts, in order to simplify the situation. (The notation used in the figures below todenote

aprobability distribution is Pij(r,n). The subscript i corresponds to the fault Fj, and the sub

script j, to the j-th expert. The subscript r corresponds to the number of "successes"

observed by expert j, and nis the number ofdata experienced or observed by expert j.)

To briefly compare the two methods, we look at two examples. In the first one, two

experts with different experiences provide an estimate of a probability distribution of a

fault, call it Flt centered around 0.5, given a specific problem. The estimate of the first

expert is based on 10 observations ofthat problem, while the estimate ofthe second expert

is based on 100 observations. The combination of both probability distributions under

both W-A and N-C methods is schematically shown in Figure 6.7. Note that the N-C

method results in atighter combined probability distribution than theW-A method.
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Next, we assume divergent estimates of probability distributions between the two

experts. Both experts now claim to have observed 20 occurrences of the problem, but

while the first expert finds only 10% of the occurrences were caused by the fault Fj, the

second expert claims that 50% of the occurrences were caused by Fj. Under the W-A

method, the combination of the two probability distributions results inabimodal distribu

tion, that can lead to an unstable system. The N-C method, on the other hand, always

results in aunimodal probability distribution, which not only leads to amore stable diag

nosis system, but also follows our intuition better. Therefore, wehave chosen touse the N-

Cmethod to combine the probability distribution ofthe estimates given by our experts.

Figure 6.7 W-A and N-C Combinations of Pl 1(5 10)^ni_j>lt2(5of i00)-
with Equal Weights

W-A

Figure 6.8 W-A and N-C Combinations of Pi,i(2,2<n-SniLPi,2(lO, ™) with Eoual Weights
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6.8.3 Application ofthe Natural ConjugateCombination Method

One disadvantage of using the N-C method is that our data are generated from a mult

inomial process instead of a binomialprocess.We were unable to find in the literature, nor

could we derive from its definition,the natural-conjugatefamily related to the multinomial

function.

To circumvent this problem, we decompose a multinomial function into a series of

binomial functions. Afterall, a multinomial distribution problem which consists of three

probability distributions, pjj, p2j, and p3j, can be divided into three binomial problems.

When finding the concensus ofp2j from all the experts, the multinomial distribution prob

lem can be transformed into a binomial distribution problem, by grouping p2 j, and p3:

into one single probability p} j. Similarly, when finding the concensus of p2j, and p3j
from all the experts, the problem can be solved using the natural conjugate solution ofa

binomial process, by grouping p,j, and p3j into p2> j in the first case, and pjj, and p2j into
p3> j in the second case.

Now, we determine how to combine all the estimates of pj j,for example, given by the
experts into one single distribution plffinal. This methodology has been developed by Win

kler [72], and the reader is refered to that paper, ifamore thorough explanation is needed.

Here, we only describe the methodology. The natural conjugate function used to combine

probabilities generated from aBernoulli process is the beta distribution function.

f^frrt - (n-1)! r-1,. .n-r-l
P(P) " (r-l)!(n-r-l)!P (l '& (647)

As mentioned before, nis the number of times acombination ofevidence has been experi
enced by expert "j", and r is the number of times fault F{ has been diagnosed as the cause

by expert "j". fp(p) gives the probability that pltfinal equals the value p. These two parame
ters, (r, n), describe the beta distribution. To combine multiple beta distributions (r ,n ),
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such as the case when we want to combine the judgements ofmultiple experts, we just add
the r's and n's together:

k k

rfinal = X rm and nfinal = X nm (6.48)
m=l m=i

where k is the number of experts polled.

To deal with dependent experts, Winkler has introduced aweight for r's and n's, i.e:

rfinal =w| X rm «* nfinal =w X nm
TO = 1 / \m s 1 J

(6.49)

Ifthe experience ofthe experts originate from completely separate and distinct samples, w

equals 1. On the other extreme, if the experience of the experts originate from the exact

same sample, wequals 1/k. Beyond that guideline, the decision on the value ofwispurely

subjective.

Once we have the distribution of the final concensus of the fault probability px fina!,

which is of the form of a beta distribution with parameters (rfinal, n^), we can quantify

both the final concensus value pj final, and the uncertainty about pj final. More specifi

cally, pj final is represented by the average value E(pj final), while the uncertainty is

quantified by the variance Var(pj fmal). Both parameters are given by [77]:

a _ c^ \ - rfinal . Uar, x rfinal'nfinal ~rfinaF /i:cm
Pi, final = E(Pl, final) = Z md Var(Pl,final) = ~ (6*50)

final nfinal(nfinal+1)
Before closing, we would like to warn experts against choosing estimates of condi

tional probability values of 1.0, because they are degenerate, eventhough some faults may

have such a distinct signature that it is very tempting to give out estimates of conditional

probabilities of 1.0. Such an absolute assignment would lead to a very unstable diagnostic

system, since a conditional probability of 1.0 means that we are certain of the fault, and

that we do not need any training points to confirmit. To guard against such a scenario, our
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current diagnostic system automatically replaces any conditional probability values of 1.0

by0.99 and giving a 1%probability to the No-Fault category.

6.8.4 Unking the Beta Distributions ofthe Initial Conditional Probability Estimates to
the Binomial Distribution ofthe Conditional Probabilities

The initial estimates of the conditional probabilities* distributions given by the experts

are combined into a single beta distribution, whose average value and variance are

described by equ. (6.50). As it will be shown in the subsequent section however, condi

tional probabilities follow amultinomial distribution over time, assuming the faults are

independent ofeach other, and that their probabilities are constants. Therefore, we must

transform the beta distributions ofthe initial estimates into multinomial distributions.

The average value and variance of an initial estimate ofaconditional probability distri
bution are (from equ. (6.50)):

Pi,final =E(Pltfinal) «^ and Vr(Pl .^J =̂ .^l'h^) ^
'final nfmal + 1

The average value and variance ofasubsequendy updated estimate ofaconditional proba
bility, which follows amultinomial distribution, are (from equ. (6.58)):

E, =p, and V = N (6.52)

where Pl is the probability of fault F, and N, the total number ofall faults for that combi

nation of evidence. If we equate Pl =pu fina], the variances of the two distributions are

very close to each other. Therefore, we transform the beta distributions ofthe initial esti

mates of the conditional probabilities into multinomial distributions simply by equating:

Pl = Pl, final. and N = nfinal +1 (6>53)
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6.9 Analysis ofthe Accuracy ofFault Probability Values

Often, in addition to the given fault probabilities, operators are also interested in the

range of these values, given aspecified confidence level. Before addressing the more com

plex issue of acombination of evidence that leads to multiple faults, we first examine the

case when acombination of evidence leads to only two faults, F, and F2. Assuming that

they are independent of each other, and that their probabilities, pj and p2, are constant, the

number of occurrences of fault F,, n,, among Noccurrences of faults F, and F2, follows a
binomial distribution [21]:

p _ N! n, n2 N! n, N-n,P- nT^Pl -P2 =ni!.(N_ni)!-Pl -O-Pl) (6-54)
Note that the binomial distribution is completely determined by nj, and N. The mean and

variance of this distribution is given by [21]:

E(n,) = Np, andVOij) = NPl(l-Pl) (6.55)

In our case though, we are interested in the random variable pj, instead of nlf because
Pj is an estimate of p^

nl
£1 = m (6.56)

The probability distribution of pj is easily obtained from that of n^

p _ P _ (N-l)! n, N-n,
P-Ngni!.(N-ni)!'Pl -(1-Pl> <6-57>

Its mean and variance are [21]:

E(p,) =Pl and V(pj) =Pl <(^"Pl) (6.58)
We extend this analysis now to a multi-dimensional space, since a category ofevi

dence can lead to more than two faults. Assuming that the faults Fj (i = 1,..., k) are inde

pendent of each other, and that their probabilities ^ are constant, the number of
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occurrences of fault Fj, nj, among N occurrences of faults follows a multinomial distribu

tion [59]:

P=nit.N!.P|pt' IIPr.i-L"." Xni =N (6.59)
1 k' i=l i = l

The mean and covariance matrix ofthis distribution are given by [59]:

E(n) =N•pand V(n) =N[diag(p) - ppT] (6.60)

where pis the vector of fault probabilities. As for the estimated fault probability p•,i=1,
..., k, defined as:

ni k
ft =N'with Xni =N» (6.61)

i = l

its probability function isobtained from the multinomial distribution:

p_ P_ (N-Q! ^ n,
P"N"n1!.....njIlPi (6.62)

1 k i=l
The mean vector and covariance matrix are given by [59]:

E(p) =pand V(p) =̂ j[diag(p)-ppT] (6>63)
Now that the probability density function of the vector p is known, its upper and

lower bounds, pv and pL, can be calculated for any level ofconfidence C. If the area

under the probability density function is normalized to 1.0, Cis defined as follows:

C= l-Pr(p<^L)-Pr(p>pu) (6.64)

where Pr(p <pL) corresponds to the area under the probability density function with p
being between 0and £L, and Prtf >Pu) corresponds to the area under the probability
density function with p being between pv and 1.0.

Instead of integrating the area underneath the probability density function of p,
choose to work with the probability density function ofthe vector n, because its multino-

we
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mial distribution has been better studied in the literature. For aspecific nj, acomponent of
the vector n, the probability that nj is less than anumber njtL is given by [77][78]:

Pr(nj <n. L) - I, _pj(N -n. L+1, n• L) (6.65)

where Ix(m,n) is the incomplete beta function ratio [77]:

X

Ix(m-n) =Bobj/x,n"1(1-x)n",dx (6-66>
0

To calculate this integral, we use the following approximation [77]:

Ix(m,n) =<D(Z) (6.67)

where Z is:

Z = d ( 2 >\0-5
|n-0.5-N(l-X)| Al +1/(6N)J ' (668)

and d is:

d=n-I-^N+|j(l-X)+0.2(X/n)-(l-X)/m+i2£z2i) (6.69)
For example, the lower and upper bounds ofafault probability p: are calculated as fol

lows, given adesired confidence level of90%. There has been 50 training points for the

combination of evidence, i.e. N=50, and the current estimate of pj is 0.3.

A 90% confidence level translates into finding Zx and Z2, such that 4>(Zj) =0.05 and

0(Z2) =0.95 (equ. (6.64)). These correspond respectively to Zj =-1.64 and Z2 =1.64

[21]. Next, we find njL and njtU such that:

Pr(nj<nj>L) =I1_0.3(5°-nj,L+ l."j.L> « *&0 (6-70)

Pr(rij<nj,u) =I1_0.3(5°-nj,u+1»nj,u) =*(z2) (6.71)
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To solve for njX and njfU, we solve equ. (6.68) with (X, m, n, Z) replaced by (0.7,50 -njx
+1, njL, -1.64), and then with (X, m, n, Z) replaced by (0.7,50 -njfU +1, nj>TJ, 1.64). We
calculate Ij _03(50 - n^ L+1, n^ L), varying nj)L between 1and 50, and do the same for

njtU. We have found that njL is about 10, and that njfU is about 21. Therefore, the lower
andupperbounds on p; are:

^L^ =a2and^U-| =0.42 (6.72)

6.10 Knowledge Base

The knowledge bases ofthe three photolithography machines are shown in the figures
below.

Operator Observation

Age of Machine
Component

Machine Outputs

Type of Alarm

Fit of Outputs
Predicted by a Hyp.

Input Change to
Measurements

Streaks on Wafer
Circular Resist Patterns

Age of Reference Wafer,

Thickness Measurement
PAC Measurement

N/A (see §6.7.4)

Equipment Model

Evidence Space

Spin Speed

Spin Time

Baking Time

Baking Temp.

Bottle Level

Relative Humidity

Bad Dispenser

Defect

Meas. Error

Miscellaneous Fault

No Fault

Fault Space

Figure 6.9 Schematic ofthe Knowledge Base of the W^TjT?ry
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Operator Observation

Age of Machine
Component

Machine Outputs

Type of Alarm

Fit of Outputs
Predicted by a Hyp.

Input Change to
Measurements

Temperature
Out of Range

Age of Lamp
Age of Filter

PAC Measurement

N/A (see §6.7.4)

Equipment Model

Evidence Space

Wrong Input Thickness

Wrong Input PAC

Wrong Dose

Bad Lamp

Lamp Strike

Bad Filter/Optics

Bad Shutter Timing Circuit

BadLight Integrating Circuit

Environmental Temperature

PAC Measurement Error

Miscellaneous Fault

No Fault

Fault Space

Figure 6.10 Schematic ofthe Knowledge Rase ofthe Stepper

Operator Observation Development Quality

Age of Machine
Component

Age of Developer
Needle

Machine Outputs CD Measurement

Type of Alarm N/A (see §6.7.4)

Fit of Outputs
Predicted by a Hyp.

Input Change to
Measurements

Equipment Model

Evidence Space

Wrong Input Thickness

Wrong Input BeforeExposure PAC

Wrong Input After Exposure PAC

Wrong DevelopTime

Bad DeveloperNeedle

CD Measurement Error

Developer Tank Pressure

Low Developer Level

Bad N2Tank Pressure

Bad DeveloperTank Pressure

Fault Space

Figure 6.11 Schematic ofthe Knowledge Base of% Developer
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6.11 Conclusion

Apractical diagnostic system has been developed for photolithography equipment. Its

knowledge base uses both "shallow level"and "deep level" information for evidence,

which include operator observations, measurements, maintenance records, alarm type and

equipment models. Using basic probability theory, the diagnostic system calculates the

probability ofall the faults from conditional probabilities, initially supplied by machine

experts, and subsequently automatically updated bythe system. The procedure for com

bining the estimates ofconditional probabilities, and their convergence properties have

been discussed in detail in this chapter. Finally, the diagnostic system also determines

from the number ofdiagnosis cases and the confidence level, specified by the user, the

upper and lower bounds ofthe fault probabilities. A software implementation ofthe sys

tem has been developed and applied on the photolithography equipment in the Microlab.

Experimental results are shown in the next chapter.
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Chapter 7 Experimental and Simulated Results

7.1 Introduction

While previous chapters present the theory and implementation of the control and

diagnostic system, this chapter presents the experimental results of the system. First, we

describe how we collect data and screen for oudiers. Then we test the capability of the
process controller and diagnostic system.

7.2 Data Collection andScreening

While monitoring, not all readings are representative of the process. For example,

streaks are produced occasionally during the spin-coat and bake step. Ifa thickness mea

surement is performed on the streak, itwill be significantiy different from the mean thick

ness on the wafer. Yet that measurement is not representative of the wafer. Wide ranges of

measurements within the same sampled wafer are abnormal and are used by our screening

procedure to filter outlying measurements. After taking several measurements on the same

wafer, we apply them on aRange chart [21] (Figure 7.1). The wafer parameter of interest

is the range of the measurements, R:

R = ymax-y,nin (7.1)

where ymax and y^ correspond to the highest and lowest measurement values within the

sampled wafer. The upper control limit, UCL, of the Range chart with the usual 3-sigma
control limit is given by:

UCL =R+3^R a2)
where R is the average range within all samples. d3 is the standard deviation ofthe distri

bution of the relative range, and d2, the mean of the distribution of the relative range. Both
d3 and d2 are well documented functions of the sample size [21].
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„i LUftTlO.

T

5 10

WAFER NUMBER

(a)

Experimental and Simulated Results

5 10

WAFER NUMBER

(b)

Figure 7.1 Thickness R-chart (a) Before Rejecting Outlying Measurements, and (h\
AfterRejecting Outlying Measurements.

Ifthe range ofawafer violates the UCL, the screening program finds the measurement

that lies furthest away from the others, by going through each measurement, and calculat

ing the range of the remainder measurements. The measurement, which ifvoided, results

in the smallest range, is then replaced by the average of the other measurements. The pro

gram then checks the range against the UCL again, and if it is violated, iterates until no

more outliers are found. The caveat of this algorithm however is that the range of the mea

surements could become artificially reduced. To avoid such acase, we use ahigher than 3

sigma UCL, such as a3.3 sigma UCL or a3.72 sigma UCL instead, which corresponds to
a type I error of 0.05% or 0.01 %, respectively.

7.3 Experimental Results of the Process Controller

Next, we evaluate the overall effectiveness of the process controller, by applying it to

all three pieces of equipment: the wafer track, the stepper and the developer. First, we will

apply only the feedback controller and analyze how much it improves the process capabil-
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ity. Then, we activate both feed-forward and feedback controllers to see how much

improvement feed-forward control brings.

7.3.1 Results ofFeedback Control

In this section, we evaluate the overall effectiveness of the feedback controller, by
implementing it on photolithography equipment in the Microlab [20]. Our experiment

tests the performance ofthe wafer track, the stepper and the developer, under feedback

control and under no control. The experiment consists ofprocessing P-type 4" silicon

wafers, coated with 1000A oxide, through the photolithography sequence of spin-coat and
bake, exposure, and develop. Control has been applied on alot by lot basis instead ofon a

run-by-run basis, with each lot consisting of three wafers. The historical average of each

machine output, when the machine was in-control, was chosen to be the target for the

machine output. Each wafer is sampled four times, with the average reading being
recorded. 60 wafers were divided into 20 lots (i.e, three wafers per lot). These 20 lots were

then divided into 2groups (i.e, 10 lots per group). One lot ofwafers was processed each

day, alternating between an uncontrolled baseline lot, and one subject to feedback control.

Details of the experiment, which consist of machine outputs, alarms, and recipe changes,
are summarized in the next four figures.

A comparison ofthe final CD distribution ofthe two groups ofwafers confirms that

the feedback controller is very efficient and successful in centering the overall process on
target (Figure 7.6). This is largely due to the robustness and accuracy with which the

model update algorithm adapts the equipment models to the new process states.
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7.3.2 Simulation Results of Feed-Forward & Feedback Control

Next, we evaluate the capability of the process, when subject to both feedback and

feed-forward control actions. Due to technical difficulties in the Microlab, we could not

perform this experiment with actual wafers. Therefore, we have performed instead com

puter simulations of the process. In both baseline and controlled processes, we simulated

the following drifting process:

Wafer Track Stepper Developer

Wafer # Thickness
Drift PAC Drift PAC Drift CD Drift

1 -49 0 0 0 0

50-99 +4 A/wafer 0 0 0

100- 149 -2 A/wafer -0.001/wafer 0 0

150-199 -1 A/wafer 0 +0.002/wafer 0

200 - 249 -3 A/wafer +0.0005/wafer +0.0005/wafer 0

Table 7.1 Drift Settings of Simulated Fxpepn^t
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We did not simulate the developer drifting because the feed-forward controller would

be ineffective to correct for that, since the developer is the last machine in the sequence.

We also did not simulate sudden shifts in process performances, because our controller

was specifically designed to correct process shifts and has been demonstrated to work very

well in such cases [11]. We simulated instead process drifts, because first, they pose abig

ger challenge to our current version ofthe controller, which is not explicidy made to han

dle drifts (since time was not part of any model inputs), and because second, process drifts

occur more often than process shifts from our experience in the laboratory. The figures
below summarize the complete experiment.

We notice that afew glitches appear among the recipe changes. Upon their investiga

tions, we have concluded that although the theories underlying the control system are

sound, the robustness ofsome of its algorithms, such as the recipe generation algorithm,
could be improved.
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Figure 7.10 Developer under fa) No Control, fb) Feedback Control
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7.3.3 Summary

The experimental results of the feedback and feed-forward controllers are very

encouraging. The feedback controller is very efficient in detecting drifts and in bringing

the process back on target, while the complementing feed-forward controller is very effi

cient in reducing process variations. The combination ofboth controllers has proven to be

apowerful tool in increasing the process capability ofthe photolithography sequence.

7.4 Experimental Resultsof the Diagnostic System

7.4.1 Software Implementation of theDiagnostic System

The diagnostic system is activated onlyupon acontrol ormalfunction alarm. The rea

son is because the sensitivity of any diagnostic system is generally limited: if diagnosis

were performed on every single wafer, agreat number of misdiagnosis would occur, caus

ing people to lose trust in the diagnostic system. For that reason, we have decided to diag

nose only suspicious wafers, which are currently defined as those that have generated

either a control or a malfunction alarm.
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Upon an alarm, the diagnostic system calculates the probability of all the faults and

presents the result to the operator. The operator is then expected to confirm the problem

and enter the real fault into the computer, after which the diagnostic system updates the

file containing the conditional probability of faults for all combinations of evidence, and

the frequency of all faults. If theMiscellaneous Faults category becomes significant, i.e

the ratio of miscellaneous faults relative to the total number of faults exceeds a specified

threshold, the system suggests theuser to update the fault list. It is very important for the

diagnostic system to be adaptive, since only timeand experience can improve its effective

ness.

The initial estimates of conditional probabilities come from the FAULT database [55]

and personal experience. They are not well tuned yet, for several reasons. First, not all the

faults described by the diagnostic system are fields in the FAULT database. Some, such as

relative humidity or N2 pressure, are considered part of the regular process variations in

the laboratory. Second, we only have information on one machine of each kind, and we

have estimates of onlyone expert (me), besides thedatabase. However, since the system is

adaptive, it will ultimately converge onto the correct conditional probabilities, as more

diagnosis cases get logged.
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Figure 7.12 Example ofaResult from our Diagnostic System Implementation

7.4.2 Some Diagnosis Examples

We present now four real cases ofalarms that have been diagnosed by a technician. We

will run those four examples through our diagnostic system to see ifit would have helped

the technician identify the real problem.

7.4.2.1 Diagnosis Example#7

In the first example, acontrol alarm with atype Iand II errors of 5% and 20% was trig

gered on the stepper. The output PAC drifted up, and triggered the control alarm with a

value of0.43, while the system predicted a value of0.32 instead. The input thickness and

PAC were within specifications at 13115A, and 0.96 respectively. The input dose was

specified at the standard recipe of 167 mJ/cm2. The environmental temperature was within

tolerance. The ages of the lamp and filter optics were 67 days and 50 days respectively,

while their characteristic lives were 45 days and 120 days respectively. The technician in
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charge traced the problem to aweak lamp and replaced itwith a new one. The diagnostic

system estimated the fault probabilities as follows:

Table 7,2 Fault Probabilities ofDiagnostic Example #1

Fault Probability (%) Probability Range
(Confidence Level = 90%)

Wrong Input Thickness 3.19% 0.65%-7.23%

Wrong Input PAC 3.73% 0.94% - 8.03%

Wrong Input Dose 9.06% 4.35%-15.19%

Bad Lamp 34.73% 26.14%-44.21%

Bad Environmental Temperature 1.29% 0%-4.13%

Bad Lamp Strike 14.51% 8.49%-21.83%

Damaged Filter Optics 0.22% 0%-1.71%

Bad Shutter Timing Circuit 7.78% 3.44% - 13.55%

Bad Light Integrating Circuit 12.81% 7.15%-19.80%

PAC Measurement Error 11.26% 5.97% - 17.92%

Miscellaneous Fault 1.60% 0%-4.67%

No Fault 1.36% 0%-4.26%

7.4.2.2 Diagnosis Example #2

In the second example, amalfunction alarm with atype Ierror of5% was triggered on

the wafer track. Streaks ofphotoresist were observed on the wafer. No other pattern was

noted though. The inputs to the machine consisted ofthe normal recipe: a spin speed of

4600 RPM, aspin time of30 seconds, abaking temperature of90 °C, and abaking time of

60 seconds. The output thickness and PAC were 13658A and 0.99 respectively, and their

predicted values were 13092A and 0.97 respectively. The reference wafer had been

cleaned 1day ago, and its characteristic life between cleanings is7days. The technician in

charge traced the problem tobubbles in the photoresist dispenser tube, which was then

cleaned. The diagnostic system estimated the fault probabilities as follows:
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Tat>)e 7,3 Fault Probabilities ofDiagnostic Kxample #7

Fault

WrongInput Spin Speed

Wrong Input Spin Time

Wrong Input Baking Temperature

Wrong InputBakingTime

Different Relative Humidity

Different Bottle Level

Dust Particle

Bad Photoresist Dispenser

Measurement Error

Miscellaneous Fault

No Fault

Probability (%)

7.24%

0%

3.14%

13.49%

2.38%

5.28%

6.70%

57.36%

0.03%

0%

4.40%

Probability Range
(ConfidenceLevel = 90%)

0% - 37.22%

0%-0%

0%-26.17%

0%-49.52%

0%-23.45%

0% - 32.42%

0% - 35.98%

24.29% -100%

0%-0.05%

0% - 0%

0%-29.94%

7.4.2.3Diagnosis Example#3

In the third example, acontrol alarm was triggered on the wafer track. Its type I and

type II errors were set at 5% and 20%, respectively. There was no discernible pattern nor

any streak on the wafer. Actually, the laboratory users did not notice anything wrong with

the machine at all. The control alarm was triggered however, because the thickness and

PAC drifted to 13346A and 0.99 respectively from their expected values of 13102A and

0.97. The reference wafer was again just cleaned 2days ago, and its characteristic life, i.e,

period between cleaning, is 7days. We suspect the cause to be relative humidity and the

technician in charge agrees that relative humidity is the most probable cause. It was noted

from the sensor log that the relative humidity had indeed changed from values around 25%

to values around 50%.The diagnostic system'sestimates for this alarmare:
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Table7.4 FaultProbabilities of Diagnostic Example#3

Fault Probability (%) Probability Range
(Confidence Level = 90%)

Wrong Input Spin Speed 1.26% 0% -18.24%

Wrong Input Spin Time 0% 0% - 0%

Wrong Input Baking Temperature 3.19% 0%-26.33%

Wrong Input Baking Time 10.16% 0%-43.38%

Different Relative Humidity 63.76% 30.82%-100%

Different Bottle Level 15.07% 0%-52.24%

Dust Particle 0% 0% - 0%

Bad Photoresist Dispenser 3.11% 0%-26.09%

Measurement Error 0.11% 0%-8.12%

Miscellaneous Fault 0% 0% - 0%

No Fault 3.34% 0%-26.84%

7.4.2.4 Diagnosis Example 04

Finally, in the fourth example, a malfunction alarm occurred on the wafer track, on the

first batch of the day. The type I and type II errors of the malfunction alarm were 5% and

20% respectively. The thickness and PAC were 12032A and 0.94, which are significantly

different from their expected values of13112A and 0.97. There was no discernible pattern,

nor any streak on the wafer. The reference wafer was in need of cleaning, since it has been

10 days since its last cleaning, and its characteristic life is 7 days. The diagnostic system

calculated the following fault probabilities:

Table 7.5 Fault Probabilities of Diagnostic Example #4

Fault Probability (%)
Probability Range

(Confidence Level = 90%)

Wrong Input Spin Speed 32.54% 0% -92.88%

Wrong Input Spin Time 0% 0% - 0%
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Table 7.5 Fault Probabilities of Diagnostic Example #4

Fault Probability (%) Probability Range
(Confidence Level = 90%)

Wrong Input Baking Temperature 8.66% 0%-51.92%

Wrong Input Baking Time 3.53% 0%-36.31%

Different Relative Humidity 25.20% 0%- 82.42%

Different Bottle Level 1.12% 0%-22.55%

Dust Particle 0.10% 0%-0.15%

Bad PhotoresistDispenser 1.17% 0%-23.04%

Measurement Error 8.32% 0%-51.06%

Miscellaneous Fault 17.27% 0%-69.66%

No Fault 2.10% 0% - 29.52%

When we checked the recipe of the machine, we confirmed that the diagnosis was

indeed correct. Somebody changed the spin speed of the recipe and forgot to change it

back to its default value.

7.4.3 Simulated Example ofa False Diagnosis Converging toa Correct One

In section 6.9, we analyzed the rate ofconvergence ofthe conditional probabilities. To

improve our understanding, we have run asimulated experiment to see how many diagno

sis are necessary to make the system converge from an incorrect set ofconditional proba

bilities to the correct one.

The experiment consists ofusing the same identical set ofevidence on the diagnostic

system 300 times, and recording theresulting fault probabilities. We have used the follow

ing evidence on the wafer stepper: acontrol alarm was triggered, under atype I error of

5% and type Uerror of 20%. The input thickness, PAC, and dose were 13115A, 0.96, and

167mJ/cm2 respectively. The expected PAC output was 0.312, but the actual output turned
out to be 0.286. The environmental temperature of the chamber was within tolerance. The

ages of the lamp and filter optics were 45 and 60 days respectively, and their characteristic
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lives are 45 days and 120 days, respectively. This evidence fitted the following category of
evidence best:

Table 7.6 Evidence Spare

Evidence Category Value

Possibly wrong input thickness True

Possibly wrong input PAC True

Possibly wrong input dose True

Out-of-range environmental temperature False

Output PAC Below target

Alarm type Control alarm

Lamp age Old

Filter age New

The original estimates ofthe fault probabilities for the fault space are listed in the table

below, along with their ranges calculated ata 90% level of confidence:

Table 7.7 Original Estimates of Fault Probabilities

Fault Name

Wrong input thickness

Wrong input PAC

Wrong input dose

Bad lamp

Badenvironmental temperature

Bad lamp strike

Damaged filter optics

Bad shuttertiming circuit

Bad light integrating circuit

PAC measurement error

Miscellaneous fault

No fault

Fault Probability (%)

13.68

18.24

31.91

23.51

2.45

3.69

0.86

0.86

3.55

0.51

0.74

Fault Prob. Range (% - %)

0-34.27

0-40.69

12.68 - 57.50

6.91-47.53

0-0

0-14.04

0-17.01

0-9.04

0-9.04

0-16.67

0-7.33

0 - 8.57
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Now, we have assumed that this database is being used on a"new" machine, with no

pre-recorded history, that actually has adifferent set ofproblems. In other words, the fault

conditional probabilities in the database are incorrect for this machine. Given the same set

of evidence, we have assumed that the "true" fault probabilities of the new machine are
instead:

Table 7.8 True Estimates of Fault Probabilities

Fault Name Fault Probability (%)

Wrong input Thickness 2.00

Wrong input PAC 0.25

Wrong input Dose 7.00

Bad lamp 31.00

Bad environmental temperature 0.75

Bad lamp strike 18.00

Damaged filter optics 0

Bad shuttertiming circuit 11.00

Bad light integrating circuit 13.00

PAC measurement error 15.00

Miscellaneous fault 1.00

No fault 1.00

To force these fault probabilities onto the diagnostic system, we have generated 300

random numbers between 0and 1.0, which ultimately represent 300 diagnosis. We have

related these numbers to the various types of faults by binning the value ofthe random

number into categories, whose width is defined by the "true" probability ofthe fault.

Therefore, when we run the diagnosis case described previously 300 times, we use these

random numbers to simulate 300 faults with well defined probabilities. The database gets
updated following each diagnosis, and the converging fault probabilities are shown in Fig-
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7.5 Summary

In conclusion, we have tested both control and diagnostic systems on real and simu

lated equipment in the Microlab. The results are very promising. The combination of the

feedback and feed-forward controllers proves itself very effective at keeping the targets of

each machine within specifications, by detecting and correcting process drifts as they

occur. Meanwhile, the diagnostic system has proven itselfcapable of homing intothe cor

rect problem, and of adapting itself from an incorrect set of conditional probabilities to a

correct one.
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Chapter 8 Conclusions

We have presented in this dissertation amethodology for developing ageneric control

and diagnostic system for asequence ofinterrelated processes. The goal ofthe thesis is to

provide an economical way ofincreasing the process capability ofany sequence ofinterre

lated process steps through innovative use of statistical techniques and probability theory.

The control system consists ofafeedback loop and afeed-forward loop. The feedback

loop tracks the performance ofthe present machine, using adaptive equipment models,

and keeps the outputs ofthe machine centered around their respective target. It corrects

process drifts by detecting them and by generating new recipes to counter any significant

trends. After each process run, the feed-forward loop checks if standard settings on subse

quent process steps would result in acorrectly processed wafer. If the process outputs are

predicted to be off-target, it will correct for the shortcomings ofthe present machine by

generating customized recipes at the next process step. Together, the feedback and feed

forward loop have been proven to significantly improve the process capability ofthe pho

tolithography sequence, resulting in photoresist patterns which are closer to target and

have twice smaller variance.

The control mechanisms used in the control system are themselves not novel, but the

way they are used is. We have purposefully chosen to use well known statistical tech

niques, instead ofheuristics, to detect the process disturbances, and well known optimiza

tion techniques to generate recipes and update the equipment models. Thus, the resulting

control methodology can be applied to any machine, and its accuracy can be properly

quantified. If the equipment models were more complex, the control methodology would

still be valid, although better optimization algorithms may be needed for the recipe gener
ation and model updating algorithms.
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In summary, the theory is clearly applicable to any sequence of interrelated process

steps, and wehave chosen touse the photolithography sequence purely as ademonstration

vehicle. If future photolithography processes change from the one we have described in

this thesis, some ofthe monitoring parameters will change, but the control methodology

can still be applied to the new processes.

The control methodology can however be further improved, by fixing only the final

output(s), instead of keeping every intermediary machine target fixed. In such acontrol

methodology, the outputs ofthe intermediary processes would be dynamically adjusted,

optimizing the final process output. Such ascheme has been investigated and has resulted

in better process control. Another future direction for better process control is to actually

model the time dependencies directly, so that process drifts can becorrected more accu

rately.

We have also implemented adiagnostic system to complement this control system.

After each fault detection, the diagnostic system is activated to assist the operator in find
ing the cause of the decreased performance.

As in the case of the controller, the structure of the diagnostic system is also generic

and can be applied on any machine. The diagnostic system is based on conventional prob
ability theory, because its mathematical foundations are rigorous, and its assumptions are
valid in our domain. The main novelty of our diagnostic system is that it incorporates both
shallow and deep level information as evidence, so that any evidence can be used to diag
nose faults. Typically, current diagnostic systems only handle one type of information (i.e,
either shallow level or deep level only), which prevents them from gathering all necessary
evidence in order to properly diagnose the fault. Furthermore, it also limits their diagnosis
capabilities, since some faults can only be diagnosed from deep level information,

whereas some others can only be diagnosed from shallow level information. Currently, we
incorporate five sources of evidence: operator observations, sensor information, machine
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maintenance data, process alarms, and equipment models. From this data, and from the

conditional probabilities of faults initially supplied by machine experts (and subsequently

updated by the system), the fault probabilities and their bounds are calculated, given a

specified confidence level. The convergence of the fault probabilities has been derived in

detail in the thesis, and the procedure for combining the estimates of conditional probabil

ities given by the machine experts has alsobeen described in detail.We have implemented

a software version of the diagnostic system, and tested it on real photolithography equip

ment malfunctions and drifts.

As in the control methodology, the methodology for combining the estimates of the

conditional probabilities is not new, but comes from well known mathematical theories.

We have purposefully chosen to use them, because they leadto a robustdiagnostic system,

that can be applied to any machine, and whose accuracy can be easily quantified.

Finally, although it is often successful in diagnosing the correct fault, the diagnostic

system can use further inputs from machine experts' experiences. Other possible research

directions to improve diagnosis include better fault signature filtering, a more efficient

way of obtaining and managing the conditional probabilities of faults, and a better meth

odology for the machine to learn conditional probabilities [86].
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APPENDIX 1 Program Documentation

We present now abrief documentation ofall the files used in the diagnostic system.

• diagnosis.cc:

This is the main program ofthe diagnostic system. The inputs to this program consist

of (1) the file "machine_nameJaxL\X_mztnx'\ from which diagnosis.cc reads the fault con

ditional probabilities, the list offaults, and the list ofevidence, and (2) internal outputs of

the process controller, from which diagnosis.cc reads the type ofalarm triggered, its type I

and type II errors, measurement values, and predicted output values. For example, the

input file to the stepper, named "gcawsjault_matrix" looks as follows:

1. gcawsl2 5 3

2. Thickness_Problem 0

3. PACJBefore_Exposure_Problem 0
4. Dose_Problem 2
5. Bad__Lamp 33
6. Environment_Temperature 10
7. Bad_Lamp_Strike 1
8. DamagedJFilterJDptics 1
9. Bad_ShutterJTiming_Circuit 3
10. Bad_Light_Integrating_Circuit 2
11. PACxp_Measurement_Error 9
12. Miscellaneous_Fault 2
13. No_Fault3

14. Physical_observations 1
15. ChamberJTemp_Out_Of_Range 2
16. False True

17. Output_measurements 1
18. PACxp2
19. Below_target Above_target

20. Alarm_type 1
21. Alarm 3 562 31 102 10 8
22. Malfunction Control False

23. Machine__component_age 2
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24. Lamp_Age 2 45.0 40.0 3.5
25. New Old

26. Filter_Age 2 60.0 100.0 2.5
27. New Old

28. Equipment_model_measurement 3
29. thickness 2

30. Not_Fit Fit
31. PAC 2

32. NotJFit Fit
33. Dose 2

34. Not_FitFit

35. 7 0.000 0.000 0.714 0.000 0.000 0.000 0.000 0.000 0.000 0.286 0.000 0.000
36. 9 0.000 0.000 0.710 0.000 0.000 0.000 0.000 0.000 0.000 0.290 0.000 0.000
37. 8 0.000 0.286 0.510 0.000 0.000 0.000 0.000 0.000 0.000 0.204 0.000 0.000
38. 3 0.125 0.167 0.292 0.134 0.134 0.000 0.134 0.000 0.000 0.000 0.000 0.000
39. etc..

Line#1 contains themachine name, thenumber offaults in the fault space, thenumber

ofpieces of evidence, and the number ofinputs to themachine.

Lines #2 - #13 contain the name of a fault, and the number of times it has occurred.

Lines #14 - #34 contain the evidence data. There are five setsof pieces of evidence, as

mentioned on line#1. The name of each piece ofevidence is listed first, followed by the

number ofvariables of the piece of evidence. Let nevi be thenumber of variables, there are

afterwards nevi pairs of lines. The first of the two lines lists the name of the variable and its

number ofvalues, while the second line lists the values of the variable.

For the pieces of evidence related to the age of machine components and the type of

alarm, there are additional data. For the evidence concerning the age of machine compo

nents, three numbers follow the number of values of the variable. The three numbers cor

respond to the life of the component, its characteristic life, and its shape factor (Please

refer to §6.7.2 for details on these parameters). In the future, these numbers should be

obtained directly from the maintenance database. For the evidence concerning the type of

alarm, three numbers follow the number of variables. They correspond to the number of
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processed wafers, the number ofmalfunction alarms, and the number of control alarms

that have been triggered. The type I and Herrors ofthe malfunction and control alarms are

specified by the user through thecontroller software.

Each line from line #35 to the end of the file stores the number ofoccurrences ofapar

ticular combination of evidence (first number), followed by the conditional probability of

each fault. The numbers are listed in the same order as the faults listed between line #2 -

#13.

diagnosis.cc then calculates the probability of all combinations of evidence, the proba

bility of all the faults and their range, given aspecified confidence level, which is specified
by the user interactively through thecontroller software.

• inputcp.cc:

This program asks the machine expert for his estimates offault conditional probabili

ties. It goes through each combination ofevidence and asks the user toenter the number of

times s/he has seen that particular combination ofevidence. Then it goes through the list

of faults and asks the user how many times s/he estimates that particular fault was the

cause. From that information, it calculates the fault conditional probabilities, and stores it

in a file designated by the user.

• join_cp.cc:

This program joins all the conditional probability files from all the machine experts
into one file, using the theory described byequation (6.49).
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