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Abstract 1

Abstract

A Control and Diagnostic System for the Photolithography Process Sequence
by
Sovarong Leang
Doctor of Philosophy in Electrical Engineering and Computer Sciences
University of California, Berkeley
Prof. Costas J. Spanos, Chair

This dissertation presents a methodology for developing a generic control and diag-
nostic system for a sequence of interrelated processes. The goal of the system is to provide
an economical way of increasing process capability through innovative use of statistical

techniques and probability theory.

The control system consists of a feedback loop and a feed-forward loop. The feedback
loop improves the process capability by keeping the outputs of the process centered
around target, while the feed-forward controller improves it further, by reducing its vari-
ance. Although the control schemes are themselves not novel, the way they are used is.
Well known statistical techniques and optimization algorithms have been chosen instead
of heuristics, to support the control schemes. Then, the resulting control methodology can
be applied to any machine, and its accuracy can be properly quantified. If the equipment
models were more complex, the control methodology would still be valid, although better
optimization algorithms may needed for the recipe generation and model updating algo-
rithms. Experimental results have shown that our control system can significantly improve
the process capability of the photolithography sequence in our laboratory, resulting in pho-
toresist patterns whose variance is reduced by a factor of 2, and whose closeness to target

is limited only by measurement error and model prediction error.



2 Abstract

A diagnostic system, which complements and is activated by the control system, has
also been developed. Its goal is to assist the operator in diagnosing the cause of the
decreased machine performance. As in the case of the controller, its structure is also
generic and can be applied on any machine. The diagnostic system is based on conven-
tional probability theory, because its mathematical foundations are rigbrous, and its
assumptions are valid in most process domains. The main novelty of our diagnostic sys-
tem is that it incorporates both shallow and deep level information as evidence, so that any
evidence can be used to diagnose faults. Typically, current diagnostic systems only handle
one type of information (i.e, either shallow level or deep level only), which limits their
diagnosis capabilities, since some faults can only be diagnosed from deep level informa-
tion, whereas others can only be diagnosed from shallow level information. From the evi-
dence data, and from the conditional probabilities of faults initially supplied by machine
experts (and subsequently updated by the system), the fault probabilities and their bounds
are calculated, given a specified confidence level. Theoretical derivation show that the rate
of convergence of the fault probabilities follow a multinomial distribution. We have imple-
mented a software version of the diagnostic system, and we have tested it on real photoli-
thography equipment malfunctions and drifts. Although it is often successful in
diagnosing the correct fault, the diagnostic system can use further inputs from machine
experts. Other possible improvements include better fault signature filtering, and a more

efficient way of obtaining and managing the conditional probabiliﬁes of faults.
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Chapter 1 Introduction

1.1 Motivation

To stay competitive, semiconductor industries must develop efficient, high yielding
manufacturing facilities. One way to increase yield is to reduce and control process vari-
ability. This is a difficult task, because not only are semiconductor processes not always
well understood, they also drift with time due to equipment aging, depletion of chemicals,
or changing ambient conditions. All these compounded instabilities decrease the overall

process capability.

One approach to reduce process variation is to use a supervisory system that controls
processes on a real-time basis. Applied on modern analytical and processing equipment
that have the ability to interact with computer driven controllers, the supervisory system

collects information, and manipulates recipes to compensate for process drifts.

However, equipment controllers do not diagnose the cause(s) of the problem, and us;d
alone by themselves, could make a process become unstable. Therefore, we have devel-
oped a diagnostic system and coupled it to the controller. The diagnostic system is not
designed to replace troubleshooting technicians, but rather to help the operator diagnose

problems that degrade machine performances, so that they can be solved properly.

1.2 Thesis Objective and Contribution

This thesis describes the development and the deployment of a generic controller and
diagnostic system for a sequence of interrelated processes (Figure 1.1). The goal of the
system is to provide an economical way of increasing process capability through innova-

tive use of statistical techniques and probability theory.
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We have purposefully chosen to use well known statistical techniques and optimiza-
tion algorithms, instead of heuristics, to support the control schemes. Then, the resulting
control methodology can be applied to any process sequence, and its accuracy can be

properly quantified.

The diagnostic system, which compliments and is activated by the control system, has
also been developed so that it can be applied on any machine. It is based on conventional
probability theory, because its mathematical foundations are rigorous, and its assumptions
are valid in most process domains. The main novelty of our diagnostic system is that it
incorporates both shallow and deep level information as evidence, so that any evidence
can be used to diagnose faults. Typically, current diagnostic systems only handle one type
of information (i.e, either shallow level or deep level only), which limits their diagnosis

capabilities.

Our demonstration vehicle is the photolithography process sequence. We have imple-
mented both control and diagnostic systems on real photolithography equipment, and the

experimental results are very encouraging.

1.3 Thesis Organization

The organization of this dissertation is as follows. Chapter 2 describes the experimen-
tal setup. Chapters 3 and 4 address the monitoring system and the equipment models,
respectively'. Chapter 5 describes the run-by-run control system, and chapter 6, the diag-
nostic system. Finally, chapter 7 presents experimental results of the control and diagnos-

tic system.
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Chapter 2 Description of the Experimental Setup

2.1 Introduction

This chapter describes the experimental setup of our system. First, a short introduction
to photolithography is given, since the goal of our controller is to improve the capability of
that process. Then, each equipment of the process sequence is described along with its
inherent capabilities. Finally, the test patterns used to test the capability of our system are

described.

2.2 Brief Summary of Photolithography

Lithography is the process of transferring geometric shapes from a mask to a silicon
wafer. These shapes make up the parts of the circuit, such as gate electrodes, or metal
interconnects. In the first step of lithography, a photosensitive polymer film, called photo-
resist, is applied onto the silicon wafer and then dried. That first step is carried out here, in
the Berkeley Microfabrication Laboratory (henceforth called Microlab), by a wafer track
which spin-coats the wafer with photoresist, and then bakes it at a specific temperature for
a predetermined length of time. Next the wafer gets exposed through a photomask with the
proper geometrical patterns to ultraviolet light or other radiation. If ultraviolet light is
used, the process is then called photolithography. That step is carried out here by a wafer
stepber which steps across the wafer, and exposes a small area, called die, using a particu-
lar light wavelength, exposure time and focus. Finally, after exposure, the wafer is placed
in an ambient that develops the images in the photosensitive material. Depending on the
type of polymer used, either the exposed or unexposed areas of the film are removed in the
developing process. Since we are using a positive photoresist, the exposed areas are the
ones that are removed. The developer solution can either be gaseous (dry development) or

liquid (wet development). Our developer uses wet development. Finally, the next step is
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etching where the wafer is placed in an ambient that etches the surfaces that are left unpro-

tected by the photoresist patterns [1].

Currently in industry, the first three steps of photolithography, spin-coat and bake,
exposure, and development, are lumped together as one single process, called the photo-
lithograhy process sequence. The etching step is typically considered a separate step from
the sequence. In our work, we attempt to control the photolithography process sequence
by breaking it down into the three steps described above, and monitoring each step sepa-
rately. The monitoring equipment are described along with the process equipment in the

next section.

Wafer Track Stepper Developer
—(Spin-coat & Bake) —T—" (Exposure) —?—' (Development) ‘?—’
S~ -
———
Monitoring Stations
e w ur i

2.3 Equipment Description

This section gives a detailed operational description of the photolithography equip-

ment used in our laboratory, including their capabilities and limitations.

2.3.1 The Spin-Coat and Bake Equipment (or Wafer Track)

The first equipment in the photolithography sequence is the Silicon Valley Group
8626/36 Coater Bake Track System. It is designed to spin-coat and bake 4” wafers [2]. It
consists of a chuck that can spin wafers at different speeds, a photoresist dispenser, a hot
baking plate, and a cold plate. The duration of each step is controlled by an internal com-
puter in increments of one second. The wafers are loaded into the equipment in a cassette

containing up to 24 wafers and are processed individually one after another.
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During the coating operation, the wafer is held to the chuck by a vacuum. The spin
speed of the chuck can be set from 0 to a maximum of 7000 RPM, in increments of 100
RPM. The chuck actual spin speed is within 20 RPM of the set value. The photoresist dis-
penser can be moved so that it can dispense the resist at any radial position on the wafer.
Throughout our experiment, we dispense the resist at the center of the wafer. The hot bake
plate can be programmed in increments of 1°C, but the actual temperature is kept within
12 °C of the set value. The cold plate is set at room temperature which varies between

20°C and 27°C.

2.3.2 The Stepper

The next equipment in line is the 10X reduction GCA stepper, model 6200 [3]. It is
also configured to handle 4” wafers, which are loaded in batch mode. The wavelength of
the light source is 365 nm (I-line). The numerical aperture (NA) of the GCA 6200 is 0.32,
and its partial coherence parameter (0) is 0.5. The GCA 6200 is a fully automated stepper
that handles one wafer at a time. The stepper has an embedded controller that keeps the
dose constant throughout the life of the lamp. The inputs to the stepper are focus and
exposure time, which controls the input dose. The focus is measured in pm and is adjusted
in increments of 0.5 um. The exposure time is measured in seconds, and can be controlled

to within £0.01second.

2.3.3 The Developer

After the wafer is exposed, it is post-baked on the wafer track and then developed by
the Silicon Valley Group 8632 Developer Track [2]. Like the other two machines, it is
also made to handle 4” wafers and processes one wafer at a time, with the wafers loaded in
batch mode. Up to three liquids can be used in the wet process. The SVG 8632 can there-
fore serve as a developing station as well as a photoresist stripping station. The SVG 8632
is linked to a computer where its recipe programs are stored. Although many parameters

can be changed such as the spin speed of the chuck, only the development time has been
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varied in our control scheme. The development time can be controlled in increments of

one second.

Now that the photolithography machines have been described, the machines used in

our monitoring scheme will be discussed.

2.3.4 The Photospectrometer for Reflectance Measurement

The photospectrometer used for collecting reflectance spectrographs is the Inspector
by SC Technology [4]. The photospectrometer is run by a software called INS801UV,
stored in an accompanying 486 33 MHz personal computer. (The personal computer needs
to be at least a 386 25 MHz machine for proper operation.) The photospectrometer mea-
sures the reflectance of a wafer from 320 nm to 620 nm, using a xenon light source. It is
capable of measuring the thickness of a single layer of resist, oxide, or polysilicon film, as
well as two-layer film systems of resist, oxide, and polysilicon. The precision of the read-
ings is heavily dependent on setup operations, which include using very clean reference
wafers. The system can be set up to measure wafers in an automated fashion, by using a
trigger to start the measurement. We installed a sensor that is activated by the raising of
the cold plate of the wafer track. That activates the Inspector which measures a reflectance
spectrograph of the wafer and stores it in the hard drive of the personal computer. It is also
possible to have the data stored in a logical drive, which is what we have chosen todo. A
logical drive is a virtual drive that is linked to the drive of our system server through NFS
[5). That pe;'rnits data measured on a run time basis to be collected and stored automati-

cally in our system database.

2.3.5 The Critical Dimension (CD) Measurement Computer

The instrument used for measuring CDs is the Nanoline IV Critical Dimension Com-
puter, made by Nanometrics [6]. This instrument measures the CD by scanning horizon-

tally across a portion of the wafer. The reflectance plot is then displayed on the computer
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screen. The photoresist covered regions have higher reflectance than the rest of the wafer.
The CD is measured at the 35% level of the maximum reflectance, since for our system
parameters, measurements are least sensitive to defocus at that particular threshold. This
level can be adjusted if needed. The Nanoline system also incorporates several other spe-
cific programs, such as one that measures the pitch. The reliability of the Nanoline
depends heavily on the type of lens used. The strongest lens (100X) allows the most reli-
able data collection. The Nanoline measures the CD in pm, with a stated precision of

10.01 pm. Experimentally, we find that the Nanoline precision is limited to +0.03 pm.

2.4 Description of the Test Patterns

To obtain reliable readings, the test patterns and measurement locations must be care-
fully chosen. Although the photoactive compound concentration (PAC) is independent of
measurement location, the resist thickness is radially dependent on position. The photore-
sist is thicker in the middle of the wafer and thinner at the edges [60]. Therefore, to obtain
repeatable thickness measurements, measurements are taken at locations that lie on the

same radius (Figure 2.2).

Oxide on Si. L ir
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A 1000000c0C
21010010000
B T 10000C
0000100
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Figure 2.2 Measurement Locations on a Test Wafer.
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To obtain the above pattern, we first grew 1000 A of thermal oxide on Si wafers. Our
samples included a random mixture of both <111> and <110> wafers. These wafers were
spin-coated with a positive photoresist (OCG 820) at 4600 RPM for 30 seconds, soft-
baked at 120°C for 60 seconds, and exposed with a I-line stepper using the mask shown in
Figure 2.3. Then we post-baked the wafers at 120°C for 60 seconds, and developed the

pattern. This procedure results in a wafer patterned as in Figure 2.2.

igure 2. ask for the Wafer attern.

Before any processing, all wafers are cleaned and dehydrated in a convection oven for
30 minutes. The cleaning procedure involves fully immersing the wafers for 10 minutes in
a piranha sink, and then rinsing them in DI water for around 15 minutes, until the cleanli-

ness of the DI water exceeds 10 MQ:-cm. Finally, the wafers are dried in a spin-dryer.

Next, we develop photoresist line patterns in each die in order to measure CDs. These
line patterns contain different sets of linewidths (d = 1 pm, 2 pm, 3 pm, 4 Hm, and 5 pm
(Figure 2.4)), and each set has three different pitches. The reason is because we did not
know a priori the limitations of our processing and monitoring machines. After investigat-
ing the reliability of measuring all the line patterns, we have chosen to monitor the 2 pm

linewidth with a 4 um pitch pattern.
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2.5 Summary

This chapter described the experimental setup used to test our control and diagnostic
system, which consist of the equipment used in the photolithography sequence, and the
procedures for preparing the test wafers. The intention was to give the reader a better
understanding of the capabilities of our equipment, so that the capabilities of our control
and diagnostic system could be fully appreciated, when they are described in subsequent

chapters. Next, we describe how the equipment models are generated.
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Chapter 3 Equipment Models

3.1 Introduction

The control and diagnostic system relies on equipment models to characterize the
behavior of a piece of equipment, control it and diagnose problems affecting it. There are
two approaches to developing equipment models, an empirical one and a physical one.

Each approach has its own strengths and weaknesses.

In the first stages of this work, equipment models have been developed using the
empirical approach known as Response Surface Modeling [22]. They are easily built, and
give highly accurate predictions of the machine’s outputs [7). One caveat however is that
the empirical models do not give us much insight about the process. Another one is that
they cannot be updated when a change of a machine component has caused the machine
outputs to shift beyond the experimental range of the empirical models. In such cases,

designed experiments must be run again in order to create new empirical models. -

The merits of using a physical approach when creating equipment models include a
better understanding of the process, quicker acceptance by the process engineering world,
and improved robustness. When a new process is developed, the physical parameters that
affect it are well documented by engineers. Therefore, using those parameters in the mod-
els makes sense to process engineers. Furthermore, because physical models explain the
complete range of the process, new machine components that cause the machine outputs
to shift significantly will not render these models obsolete. On the other hand, the caveats
of the physical approach are that they are very hard to develop and sometimes, are not as

accurate as empirical models.

For our system, our philosophy has been to use physical models whenever their accu-

racy is not significantly worse than that of the empirical models. Now, since our control
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and diagnostic system is focused on photolithography, we describe the parameters used for

modeling the photolithography process.

3.2 Relevant Photolithography Parameters

To characterize the state of the wafer after each photolithography step, the following
parameters are of interest: photoresist film thickness and chemical properties, numerical
aperture (NA) of the stepper lens, exposure dose, and develop time [13). The photoresist’s
chemical properties consist of the index of refraction n, and the absorption coefficient Kk,
which depends on the photoactive compound concentration (PAC) inside the resist [15]
and Dill’s A, and B parameters [14] [15].

K = xAxPAC+B
4n

A is the net absorption of the inhibitor; B, the net absorption of the base resin; and A is the

3.1

light wavelength. Both A, and B parameters are also functions of A [16].

3.3 Photolithography Modeling Parameters

Among these photolithography parameters, we must choose a set of independent
parameters that provides a complete picture of the process status. We have chosen to
restrict our interest only to parameters that change significantly with time, to facilitate the
metrology. The other parameters are considered as fixed constants. A study of each
parameter has led us to monitor only resist thickness, Tgs, and PAC (the PAC metrology
is discussed in Chapter 4). These two parameters characterize the status of a wafer well
after the spin-coat and bake process, while the change in PAC before and after exposure,
APAC, characterizes well the exposure step. After development, we measure the linewidth

dimensions (CD).

The other parameters, namely Dill’s A, and B parameters, the films® index of refrac-

tion and the NA of the stepper lens are considered constant with respect to time. The
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dependency of index of refraction on wavelength however is being considered in the cal-

culations. Several handbooks show the following function for n [6]:

n=Na+ % (3.2

where Na and Nb are called the Cauchy coefficients of the film.

The correlation between T;os and PAC has been studied (Figure 3.1). The low correla-
tion coefficient of 0.30 confirms our belief that the two parameters are relatively indepen-
dent of each other, and therefore both should be monitored in order to track the status of

the photoresist.

16000
* L J
15000 | .
[ ] [ ]
3 . .
c
<
» 14000 | ® 1
(7]
_‘5’ o
2 1 3
F 13000 | hat el . -
B . o
&
@ P ®
12000 | * . - .
o Correlation = 0.30
11000 . . .
0.90 0.95 1.00 1.05 1.10

Relative PAC (M)

3.4 Equipment Model for the Wafer Track

As mentioned in the previous section, modeling the spin-coat & bake process, i.e mod-
eling the wafer track, can be reduced to modeling the resist thickness and PAC. In the liter-
ature, the spin-coat and bake process is typically modeled from a fluid dynamic

perspective, where the resist thickness has been solved for in terms of spin speed, acceler-
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ation, and film viscosity [60]. Although the derivation is very rigorous, the model does not
fit experimental results very well, because it has not taken into account the solvent evapo-
ration during the spinning and soft-bake processes. Therefore, an empirical response sur-
face model (RSM) was developed for characterizing photoresist thickness [22], using a
statistically designed factorial experiment. As for the PAC, since no previous work on
modeling it has been done, we have also developed an empirical RSM model for charac-

terizing it.

The inputs of the equipment models consist of the chuck’s spin speed and spin time,
the soft bake plate temperature, and the soft bake time, and the outputs are resist thickness
and PAC. Since the equipment model of the wafer track has four inputs, the factorial
experiment required 16 runs, to which we added eight runs at the standard operating point
to help determine the replication error of the process. The experimental settings are shown

in Table 3.1.

L Input Factors Lower Setting (-) | Std Setting (0) igher Setting (+)
Spin Speed 3600 RPM 4600 RPM 5600 RPM
Spin Time 15 secs 30 secs 90 secs
Soft-Bake Temperature 75°C 90 °C 105°C
Soft-Bake Time || 20 secs 60 secs 100 secs

3.4.1 Resist Thickness Model

The following regression model has been developed for resist thickness [23]:

Tpes = 1291.98 +

928233
P

=~ 1.62BTI - 19.49BTE

3.3)

where SPS represents spin speed in RPM; BTI, baking time in seconds; BTE, baking tem-

perature in degrees Celsius; and Trgg, resist thickness in Angstroms. The non-linear trans-
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formation was derived from the physical model in [60] and confirmed by residual analysis

of the spin speed parameter.

The Analysis of Variance (ANOVA) table [22] of the resist thickness model is shown
in Table 3.2. A scatterplot of the resist thickness values predicted by the model versus the
corresponding experimental values is given in Figure 3.2. The closer the experimental

data are to the y=x line, the more significant the model is.

able 3 VA Ta e e W,
Degrees of Sum of Mean . ..
Source Freedom Squares Square F-Ratio Significance
—_— ————  — ————
Total 42 24309606
Regression 3 24133278 8044426 1779.3 0
Residual 39 176327 4521
Lack of Fit | 27 170587 6318
Error “ 12 5740 478
16000
R?=0.993

Root Mean Square Error (16) = 65 A
Number of Observations = 42

Db L d : [
N w W
s & 8 &

o o o

Model predicted thickness (A)

lmo " M A -
11000 12000 13000 14000 15000 16000
Measured thickness (A)

Predicted Thick

This resist thickness model has later been improved by incorporating effects of relative

humidity and resist bottle level, using a long range monitoring experiment done by the
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Equipment Models

staff of the Microlab. The staff processed wafers using the same standard settings for one

and a half year, enabling us to study the effects of relative humidity, air temperature, and

the amount of resist left in the bottle dispenser on thickness. The effect on the PAC how-

ever could not be investigated, since its metrology has not been developed yet.
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The resulting thickness model is:

Tres = 13657.926 - 21.98H + 1.785BL 34

where H corresponds to the relative humidity in %, and BL, to the fraction of resist left in
the bottle in %. Its ANOVA table confirms that the model is indeed significant, and the
model’s fit is summarized in Table 3.5.

able 3.4 VA T e Thickn od vi e ac

Sum of Mean
Squares Square

' Degrees of

Source
Freedom

F-Ratio Significance

Total 2277974
Model 1 2 1475673 737836 - 19.31 le-5
Residual 22 802301 38205

Root Mean Square Error (16) 195 A
Number of Observations l 24

Assuming that environmental parameters do not interact with machine settings, we

have combined this mode! with the previous one developed from the machine settings:
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928233

~/SPS

The root mean square error of this model is:

2 2
. - sl'dfl+s2'df2=J652-39+1952-22
T df, +df, 39+22

where s, and s, are the standard errors of each model, and df; and df;, their respective

T = 1770.86 +

- 1.62BTI - 19.49BTE - 21.98H + 1.785BL (3.5)

= 128 A (3.6)

degrees of freedom.

To check whether it is actual resist aging or decreasing vapor pressure in the bottle that
affects resist thickness, the Microlab staff has experimented with another way of dispens-
ing photoresist: they have purchased photoresist packaged in a pouch and dispense it
upside down. This experiment also lasted a year. The scatterplot of resist thickness vs.
weight of resist pouch is shown below. Since the two variables do not show much correla-
tion, we conclude that it is decreasing vapor pressure in the resist bottle that affects the

thickness, and not resist aging.
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3.4.2 Photoactive Compound Concentration (PAC) Model

When unexposed resist is processed under normal conditions, it has a certain absorp-
tion. That absorption is quantified by Dill’s A and B parameters, assuming a relative value
of PAC, called M, of 1.0. Under different processing conditions, the absorption can

change. We model that as a change in the relative value of PAC, which can either exceed
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or drop below 1.0. From the same factorial experiment used in developing the resist thick-
ness model, we have developed the following relative PAC model for unexposed photore-
sist (the PAC metrology is discussed in Chapter 4):

M = 091+1.61. 10_3BTE-(2.10 - 10-5)SPS 3.7

Although the F-test shows that the model is significant (F(3, 37) > 7.3e-9), this PAC

model is not very precise: its R? is only 0.57.

The ANOVA table of the PAC model is summarized in Table 3.6, and the scatterplot of
predicted PAC vs. measured PAC is shown in Figure 3.7.
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able 3.6 VA Table Waf
Degrees of Sum of Mean . .
Source Freedom Squares Square F-Ratio Significance

Total 0.02044
Regression | 3 001160735 | 0.005804 | 243116 | <7.3¢-9
Residual 37 0.00883265 | 0.000239
Lack of Fit 18 0.00595487 | 0.000331

Error Jl 19 0.00287778 |  0.000151
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3.5 Equipment Model for the Stepper

As mentioned in §3.3, the relevant output from the exposure stage is the relative PAC
value (M) after exposure. Actually, M varies within the layer of photoresist, due to the
exposure intensity interference patterns. However, since our metrology effectively mea-
sures the absorption coefficient k, from which we derive M, we cannot measure M as a
function of depth, and we are limited to using an average M value for the whole film. The
inputs of the exposure model, or stepper model, include Trgs, before exposure PAC (actu-
ally M), and dose. Although defocus should also be considered among the inputs, we have
not included it yet, because we do not have an economical run-by-run sidewall slope
metrology, which is the effect of defocus on CD. Such a metrology is currently being
investigated [58] [61]. As soon as it is successful, defocus will be added as an input of the

stepper equipment model.

3.5.1 Physically-Based Stepper Model

Unlike the spin-coat and bake step, the exposure step has been rather thouroughly
investigated. Many exposure models exist, and can be found in photolithography process
simulators. For example, SAMPLE [13] employs state-of-the art physical models of expo-
sure and development, that could be very useful to our control and diagnostic system. And
if SAMPLE's outputs do not correspond exactly to our machine’s outputs, they can easily

be fitted to the machine’s measured outputs through a simple empirical model.

B85 Simple empirical model
= relating SAMPLE PAC
to experimental PAC

Figure 3.8 Schematic Representation of the Stepper Equipment Mode]

SAMPLE simulations return an M matrix which shows the amount of exposure in each

region of the photoresist. Our PAC metrology, which will be described in Chapter 4, can-
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not measure the full M matrix however, because it actually measures the absorption coeffi-
cient k and derives from it, an “average” value of M. Therefore, as a first order
approximation, we have averaged the M values given by SAMPLE and compared it to our

measured value of M. A scatterplot of the two parameters is shown below.
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The fitted regression model follows the equation below, and its ANOVA table is pre-
sented in Table 3.7:

Source | I?rire Ze:r:f SS;:I?; SL; :::rne F-Ratio Significance

Toal || 39 | o272s:er | | | ]
Regression || 3 0.20304031 0.1015 52.59 3e-13
Residual 36 0.06949436 | 0.00193
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3.5.2 Empirical Stepper Model

Since the prediction error of the model (+0.044 ) is rather large, we have tried to fit an
empirical RSM model to the data, using Tggs, Munexposed> and dose as inputs. That

approach has resulted in the following equipment model:

Myposed = Munexposea—0.64 =~ 0.000909D +0.0000112 T (3.9)

where D represents dose in mJ/cm?. Although its R? is lower, this model is more accurate
than the previous one, which is based on the physical model. We believe the reason is
because averaging the M values from SAMPLE’s M matrix does not result in the correct
“equivalent” M value. An investigation should be done to find the proper filtering method
that would result in a more correct MgampLE t0 Mpeas transformation. The empirical

model’s ANOVA table is presented in Table 3.8, and a scatterplot of the new model’s pre-

diction versus the experimental data is shown below.

able 3.8 ANOVA Table for the

Degrees of Sum of Mean . ..
Source Freedom Squares Square F-Ratio Significance
=: _
Total 39 0.12147337
Regression 3 0.07872493 | 0.039362 34.07 1.3e-10
Residual 36 0.04274844 | 0.001155
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Ultimately, although the model which uses the physical models embedded in SAM-
PLE is theoretically more robust, we have adopted the empirical one instead for our con-
trol and diagnostic system, because of its superior accuracy. Had both approaches lead to
models with similar performances, the one based on physical models would have been

-

preferred, since it is theoretically more robust.

3.6 Equipment Model for the Developer
The inputs of the developer model consist of Tggs, Mexposed» and develop time, D,.
The output of the model is CD. Ideally, the slope of the sidewalls should also be included

among the outputs, but as previously explained, we lack an economical metrology for it.
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3.6.1 Physically Based Developer Model

There exists a physical model for the develop step within the photolithography process
simulator SAMPLE, and we use it in a similar fashion as we used the physical exposure

model (Figure 3.11).

Thickness
PAC
Develop Time §

relating SAMPLE CD
# to experimental CD

Figure 3.11 Schematic Representation of the Developer ent Model

The simple regression model that links the measured CD to SAMPLE’s CD is shown
in equation (3.10), its ANOVA table is presented in Table 3.9, and a scatterplot of the
model predicted CDs vs. the measured CDs is shown in Figure 3.14.

CD = 1.286CDgppp g — 1107 (3.10)
Table 3.9 ANOVA Table for the Developer Mode] Derived from SAMPLE
Degrees of Sum of Mean . o
Source Faedom Squares Square F-Ratio Significance
Total 35 0.71265714 X
Regression 2 0.59127869 | 0.591279 160.76 9.7e-18
Residual 33 0.12137845 | 0.003678
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3.6.2 Empirical Developer Model
Now, we look into the possibility of using a pure regression model to fit the experi-

mentally measured CDs. The resulting model is:

(3.11)

CD = -3.503 + 0.00034Tgpg + 18.25M ¢y 0y~ 0.0013(Tggg - My o)

-6
=0.11(Mgyposeq - D) +7.9-10 7+ TRgg - Mmme‘j -D,

where D, represents develop time in seconds. This time, the empirical model is much

worse than the physically based one (Table 3.10). Its prediction error is 0.11 pm (Figure
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3.14), twice that of the last model’s and significantly larger than the accuracy of the CD

metrology (see §2.3.5).
1.7 "
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Source || Derees of ssc‘l‘:;r‘;i Sh:l‘::r“e F-Ratio | Significance
Total 35 | 071265714
Regression 6 0.35834366 | 0.071669 |  5.866 0.0004
Residual 29 | 035431348 | 0012218

This time, since the physically based developer model is significantly more accurate

than the empirical one, it is the one used in our control and diagnostic system.

3.7 Summary

Equipment models have been developed for each step of the photolithography
sequence. The inputs of the equipment models consist of the machine input settings, previ-
ous machine’s outputs, and modelable environmental parameters. Their outputs are eco-
nomically measurable parameters that have been carefully chosen to reflect the status of
the process. We have investigated models that are based on physical process simulators
and models that are based on stepwise regression analysis. Prediction accuracy is the main

criterion for selecting which model to use in our control and diagnostic system. In each
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case, it has been sufficient to clearly determine the superior model. The wafer track’s and
the stepper’s equipment models are based on empirical regression models, while the devel-
oper’s is based on a physical process simulator, SAMPLE [13]. If the physically based
models could predict the machines’ output(s) as accurately as the empirical models, they
would take preference, because of their robustness and insight. Next, we illustrate how we

measure the parameters used in our equipment models.
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Chapter 4 Metrology for Photolithography Process Control

4.1 Introduction

In order to build the previously described equipment models, metrologies for the pho-
toresist thickness, PAC and CD must be developed. While the first and last ones are easily
measured through a photospectrometer, a novel metrology is needed for measuring PAC.

In this chapter, we will present such a metrology and characterize its capabilities.

4.2 A New Metrology for Characterizing PAC

Presently, both photospectrometry and ellipsometry are capable of measuring resist
thickness, but not PAC [83]. To measure the latter parameter, we expand on photospec-
trometry, by improving the analysis of a reflectance spectrograph. The concept of the
metrology, depicted in Figure 4.1, is as follows: after measuring a reflectance spectrograph
of a wafer, a theoretically derived reflectance spectrograph is fitted onto it through an opti-
mizer [17]{18]. The T,gs and PAC values used in the curve that best fits the experiment;l

data constitute the measurement results.

The advantage from using this metrology for measuring thickness comes from the fact
that we are also solving for the optimal index of refraction of the photoresist, when solving
for the optimal thickness. This results in a more accurate ﬁﬁckness measurement than the
one returned by the commercial photospectrometer, which assumes a constant value for

the index of refraction of the photoresist.
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4.2.1 Determination of Photoresist Thickness

At high wavelength, the photoresist absorption of light is very close to zero, because
Dill’s A and B parameters are essentially zero (equation (3.1)). Therefore, since the level
of PAC will not alter the reflectance of the light at high wavelengths, solving for the best
curve fit at these wavelengths essentially reduces to solving for the photoresist thickness.
Besides decoupling the extraction of PAC and thickness, solving for the photoresist thick-
ness at high wavelengths also has the following advantage: photoresist thickness affects
the periodicity and values of maxima and minima of the reflectance spectrograph of a
wafer [6], and these three characteristic parameters are better defined at high wavelengths.
For the OCG 820 photoresist used in our experiment, the high wavelengths at which the
photoresist absorption is zero range from 500 to 620 nm. The full theoretical derivation of
areflectance spectrograph is presented by Born & Wolf [17] and is summarized below for
wafers with a film stack, consisting of a coating of field oxide underneath a coating of
photoresist. We have assumed that the silicon substrate is semi-infinite, i.e, no power is

transmitted past the silicon wafer.

The optical properties of a layer of film are described by its characteristic matrix M..

Both transmittance and reflectance of the layer of film can be derived from the compo-
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nents of M. Describing films through their characteristic matrix becomes very useful
when analyzing a stack of films: if two adjacent layers have characteristic matrices M,
and M., respectively, the characteristic matrix of the stack of films will be M, =
M,, * M_,. The matrix M, is given by:

|
cos(ky-n-1) —sin(k,-n-1)
M = 0 i-n" 0 @4.1)

c
*sin(kg-n-1) cos(ky-n-1)
where !

kp = &2 @2)

and 1 is the film thickness. For our two layer film system, the characteristic matrix is given

by:

[ 1.
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21 22 res .
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[ 1
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The reflectance of the stack of film is given by

2 = (m'yy +m'y, - 0G) - By — (m'yy + 'y - n;)

R = - ] ' 0 ]
(m'yy +m'p5 - ng) - ny; +(m'y; +m'y, - ny)

“4.4)

The parameters with subscript si correspond to parameters of silicon; those with subscript
res correspond to parameters of photoresist; those with subscript ox correspond to param-

eters of oxide.

The expression of reflectance described above is not the one we actually use. When

measuring reflectance, we always measure it relative to that of a reference silicon wafer.
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This silicon wafer has some native oxide on it. Therefore, when we simulate the reflec-
tance graph of our wafer, we divide the reflectance expression above by the reflectance of
a silicon wafer covered with native oxide, which is given below:

(m"y; +m"}, - ng) - ng; —(m"y; +m°y, - n)

R" = Ir|2 = " " " "
(m"; +m")) - ng) - ng; + (m"y; +m"y, - ng;)

(4.5)

- 1 . -
" " cos(ko ‘n * ] ) .—Sll'l(ko i ¢ ] )
M "o [m 11 m 12} _ 0X "nox 1- nox OoX "nox (4.6)

ml|2] mll22 n )
%sm(ko ‘N 1o.)  cos(kO- Ny, lhox)

and . is the native oxide thickness and is assumed to be 35A.

Given an initial guess of resist thickness taken from the value returned by the photo-
spectrometer [4], a theoretical reflectance curve is derived from these equations. Then, an
optimizer is used to find the theoretical curve that best fits the experimental data between
the range of wavelengths of 500 - 620 nm. The resist thickness used in that best fit is con-

sidered as the actual resist thickness.

4.2.2 Determination of PAC

PAC is derived from the absorption coefficient k of the photoresist (equation (3.1)).
Therefore it is found at shorter wavelengths, where photoresist is absorptive. The range of
these short wavelengths, given our experimental setup and our brand of photoresist, is 320
- 430 nm. 320 nm marks the low end of the spectrograph of the xenon lamp of the spec-
trometer, while 430 nm marks the high end of the wavelengths that are absorbed by the
photoresist. For the purpose of extracting PAC, we have limited our range of interest to
350 - 380 nm, in the center of which lies the exposure wavelength of 365 nm. The reason
we have ignored the 320 - 349 nm wavelengths is because the light intensity of the xenon

light source is not stable at those wavelengths; and we have ignored the 380 - 430 nm
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wavelengths, because it is a range of transition in the absorption characteristics of the pho-

toresist, where the assumptions underlying our equations are not valid.

Using the thickness value found from the previous step, we fit theoretically derived
curves to the experimental reflectance graph in the narrow 350 - 380 nm range. The PAC
value used in the best fitting theoretical reflectance graph is considered as the actual PAC
value. Theoretically, the PAC value before exposure is 1.0 and 0.0 after full exposure. Dur-
ing actual processing though, the PAC is around 1.0 or slightly less before exposure, and
significantly lower, but positive, after exposure. More specifically, we have found that the

average PAC before exposure is 0.97 and 0.32 after exposure.

Sometimes though, the extracted PAC before exposure value exceeds 1.0. The reason
is as follows: when measuring PAC, we are actually measuring the absorption coefficient k
(§3.2). Equation (3.1) shows that the measured PAC value depends on the value used for
Dill's A parameter. We have taken the A parameter value from a chemical handbook [16],
which assumes that the photoresist is processed around its normal operating point. If the
photoresist is not processed under normal conditions, its absorption coefficient can
change. When this occurs, the PAC measured using the fixed A value can exceed 1.0.
Therefore, since the measured PAC values are relative to the standard value of Dill’s A
parameter, we call them relative PAC values and denote them by the symbol M (not to be

confused with the characteristic matrix M,).

In summary, we have extended the theories underlying photospectrometry, and devel-
oped a metrology for measuring resist thickness and PAC. We call this metrology TaME,

which stands for T and M Extraction.
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4.3 Experimental Results

We evaluate now the performance of TaME by comparing experimental reflectance
spectrographs to TaME derived simulated spectrographs. Note that the TaME method has
only tried to fit the following portions of the curve: 350 - 380 nm, and 500 - 620 nm.
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Finally, before closing the discussion on the details of the TaME methodology, we
notice that the introduction of an additional “offset” parameter increases the accuracy of
the fit. This offset parameter is added to the theoretical spectrograph before fitting it to the
experimental data. The justification of such a parameter includes problems originating
from the angle of incidence of the probe which can vary slightly during processing due to
machine vibrations, or from a dirty reference wafer. Because the important signal for the
photospectrometer is the normally reflected light from the wafer, if the setup vibrates and
results in a significant change in the angle of incidence, the intensity of the reflected light

will vary, distorting the information returned to the spectrometer.
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In summary, the TaME algorithm consists of solving two minimization problems.
TRes is found by solving equation (4.7).

620nm

. 2
min 2 (Rmeaso" TRES) - (Rtheo(l’ TRES) + Roffset)) 4.7
A = 500nm
and PAC (M) is found by solving equation (4.8):

380nm

min z (Rmeas(x’ TRES’ M) - (Rtheo(x’ TRES’ M)+ Roffset))2 4.8)
A =350nm

4.4 Measurements Characterization

4.4.1 Outlier Filtering Methodology

Our installation does not work perfectly all the time. Sometimes, erroneous measure-
ments are obtained as a result of an imprecise angle of incidence of the probe. A good cri-
terion for choosing when to trust the TaME results and when not to is the error between
the best fitting theoretical graph and the experimental graph. Assuming that the errors of
the n samples of a wafer are normally distributed, there is a well-known relationship
between the range of the n errors, and the standard deviation of that distribution. The con-
trol chart based on that relationship is the range chart, and we use it to filter out all data
that lies outside the 3 standard deviations of the distribution of the n samples. The upper
control limit (UCL) of the acceptable error is determined by [21].

UCL = X+ 33)‘5 . 4.9)

d,
where X is the average error; dj the standard deviation of the distribution of the relative
range; and d, the mean of the distribution of the relative range. Both d; and d, are tabu-

lated functions of the sample size [21].

Once outliers are found, we recompute the UCL from the rest of the data, and repeat
the filtering process until no data lie beyond the UCL (Figure 4.3). The main sources of
bad TaME measurements are machine and metrology setup vibration and misalignment of

the probe relative to the die area to be measured. As an indication of the robustness of the
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method, we have shown below a sample of 50 residual errors between the TaME theoreti-
cal graphs and the experimental graphs. Each measurement was performed on a different
wafer (Figure 4.3). Clearly, one solution to our current problem is to increase the sample

size when measuring each wafer.
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4.4.2 Characterization of the Repeatability of TaME Measurements

Now, we characterize the repeatability of the TaME methodology. To quantify the
measurement error, we spin-coat 7 wafers and measure them 7 times around the same
spot, although not exactly the same spot, since this metrology will affect the photoresist.
Therefore, some of the variations observed in the following graphs are also due to wafer

non-uniformity. The results are shown below in Figure 4.4.

Next, we calculate the average range of each output characteristic, and determine at

the 95% level of confidence the gauge error of the TaME method [21] [32].
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Wafer # 1 2 3 4 5 6 7
Average
Thickness (Ang.) 12727 | 12745 | 12708 | 12693 | 12722 | 12693 | 12686
Range (Ang.) 46 120 [ 49 | 59 43 71 34
Average Range R = 60 Ang.
Gauge Error at the 95% level of confidence = 4 * R/d2 = 89 Ang.
Wafer # 1 2 3 4 5 6 7
Average M 066 |0.67 | 068 | 0.66 0.64 0.63 0.65
Range .02 05 | .11 06 02 .04 05

Average Range R = .05

Gauge Error at the 95% level of confidence = 4 * R/d2 =.07
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4.4.3 Characterization of Misalignment Effects

A major fault that causes measurement errors is misalignment of the probe with
respect to patterned features on the wafer. To determine the sensitivity of the TaME
method toward misalignment, we spin-coat 3 wafers using different recipes, in order to
obtain resist films with different properties and expose them with a blank mask, so that
each die is fully exposed. Finally, we measure the reflectance of each wafer 5 times in the
following manner. Measurement #1: the wafer is aligned so that the probe footprint is
completely on top of a die - 0% of the area is unexposed. Measurement #2: approximately
25% of the area probed is in the unexposed strip between the dies. Measurement #3: the
probe footprint falls on only 50% of a die. Measurement #4: approximately 75% of the
probe footprint falls on unexposed area. Finally, the last measurement is made completely
on the unexposed strip between the dies. The results are shown below. Clearly, aligning
the probe to the wafer is very important. This alignment problem is especially significant
when measuring PAC after exposure. If the probe falls on the unexposed strip between the
dies, the measurement needs to be redone. One solution is to pass the wafer through a flat
finder before measuring. Then, we only need to align the probe once with the test die, and

all subsequent wafers will also be properly aligned.

Footprint diameter = 2 mm

Die size = 8mm X 8mm

\4

igure 4.5 Descriptive Drawi f the Misalj en iment
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4.4.4 Effect of Probing Time on Measurements

Next, we look at the effect of extensive probing time on the resist. Since we are prob-
ing the photoresist in its absorptive range, we are partially exposing it during measure-
ment. This undesired effect is unfortunately necessary, since we want to measure the PAC
inside the resist. To quantify the severity of this parasitic exposure problem, we conduct
the following experiment. First, we measure repeatedly a wafer on the same spot for T4
seconds. Next, we process the wafer in a regular fashion and time how long the wafer
stays underneath the probe during an actual measurement (Tg). Then, we plot the degrada-
tion of PAC vs. T4/To, which represents the number of measurements. Figures 4.7and 4.8
show the extent of the damage incurred during measurement. Figure 4.8 is a set of reflec-
tance graphs, each taken with different lengths of probing time. Figure 4.7 shows the PAC
values that correspond to these reflectance graphs vs. probing time. Clearly, an extensive
probing time can be destructive, but as long as the total dose is minimal, we do not affect

the chemical properties of the photoresist significantly.
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Finally, to minimize this and the misalignment problem, we have also taken the fol-
lowing actions: we have reduced the aperture, i.e footprint of the probe and use a more
focused beam. We have attached a mechanism to the source of the probe light that would
allow us to modulate the amount of light emanating from the probe. Finally, we have
developed a mechanism that allows us to rapidly align the probe beam to a die. This sys-
tem can be further improved by adding an automated mechanical shutter that limits the
exposure time during a measurement, and by using a faster computer to support the photo-

spectrometer so that all the wavelengths can be scanned faster.
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4.5 Conclusion
In conclusion, we have developed a novel metrology for measuring photoresist film
thickness and photoactive compound concentration. This allows us to accurately charac-

terize not only the physical, but also chemical properties of the resist film during photoli-
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thography. The metrology and its caveats have been fully characterized and documented in

this chapter. Next, we develop the photolithography control system.
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Chapter 5 Supervisory Control System

5.1 Introduction

The goal of a supervisory control system is to improve the reliability and accuracy of a
process sequence without significantly increasing the cost. We achieve that task by moni-
toring the process and ensuring that the outputs of all machines stay on or as close as pos-
sible to their respective targets. The control system consists of a feedback mechanism
which ensures that the outputs of the current machine stay centered around their respective
target, and a feed-forward mechanism which acts on the machine downstream to correct
for variability introduced by the current machine. The feedback mechanism is described

first.

5.2 Feedback Control System
5.2.1 Goal

The goal of the feedback controller is to ensure that the distribution of the process out-
puts stay centered on target. Triggered by control alarms which detect output drifts, the
feedback controller first updates the equipment models of the machine, and then finds a
new recipe to bring the machine’s outputs back on target. If the machine has multiple out-
puts which cannot be brought back on target by a new recipe, due to correlation among
outputs, a compromise recipe which brings all the outputs as close as possible back on tar-

get will be generated.

5.2.2 Background

Although heuristic algorithms for control have been reported in the semiconductor
industry [24], we have chosen to base our approach on formal statistical methods. Statisti-

cally based algorithms offer several advantages over heuristic approaches, since they can
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be adapted to a large number of processes and, once in place, are robust enough to be use-

ful in an actual manufacturing environment.

Several attempts have already been made to formalize this procedure, including the
MIT Run-by-Run Controller [25]{82], Ultramax™ [26], and Texas Instrument’s PCC
Controller [79][80][81].

The MIT Run-by-Run Controller offers multivariate control and model adaptation of
processes that exhibit linear relationships between inputs and outputs [25], and later ver-
sions integrate more general model adaptation and multivariate applications [82]. Ultra-
max is a commercial software for sequential process optimization and process control, that
can also handle multiple inputs and outputs. Although the details of its operation are pro-
prietary, Ultramax uses a variant of the evolutionary operation algorithm (EVOP) [21] to
find the optimum operating point. Ultramax offers the significant advantage that no prior
model of the process is required; however, it does require continuous changes on the pro-
cess in order to derive such a model. Texas Instrument’s PCC Controller is a supervisory
controller that, like our controller, is designed to correct drifting processes. Applied to the
etching process, it has proven itself experimentally to be very efficient at correcting pro-

cess drifts due to equipment aging.

Although there are several similarities between the PCC Controller and ours, ours is
designed to control multiple interrelated processes, such as the photolithography
sequence, which are often currently lumped as one process and controlled as one process
in industry. As to the MIT’s Run-by-Run Controller, which, like ours, also uses well
known and established statistical techniques to provide a robust process control, it cur-

rently does not handle non-linear process models.
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5.2.3 Detection of Process Disturbances

Disturbances can be classified into two main types. The first one manifests itself
through sudden significant changes in the process output. This indicates the presence of a
problem that needs to be corrected by an operator. This type of disturbance triggers what
we call malfunction alarms. The second type of disturbance manifests itself as a system-
atic process drift, which can be corrected by an appropriate recipe change. This type of
disturbance triggers what we call control alarms. The schemes for detecting these two

types of alarm are described next.

5.2.3.1 Malfunction Alarms

Malfunction alarms identify conditions which require operator attention. These are
cases where the variation of a monitored parameter increases, or when we encounter sud-
den changes that are not consistent enough to be compensated by recipe adjustments. A
malfunction alarm is also generated if the change cannot be compensated unless one (or

more) of the controlling parameters moves beyond its acceptable range.

These conditions can be identified with the application of a special SPC scheme that
can accommodate multiple parameters (as several process parameters are being moni-
tored). This scheme must be able to ignore intentional changes in equipment settings such
as those that might occur due to control algorithms. Such a SPC scheme has been devel-

oped using a combination of the Regression Chart [27] and Hotelling’s T2 statistic [28).

Under this scheme, malfunction alarms are generated in two stages: first, the equip-
ment models are used to predict the new measurements. Then, the difference between the
reading and the model prediction is analyzed. When the process is under statistical con-
trol, this difference is a random number with a known mean and variance. This variance is

calculated using the prediction error of the model, as well as the observed variation of the
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equipment. The method is described for univariate regression models in [27] and it has

been generalized for multivariable response surface models in [29].

Let y be the p x 1 vector corresponding to p equipment outputs, each element being the
average reading of n samples. Let § be the p x 1 vector predicted by the equipment mod-
els. If the process is under control, the residual vector (§-§) follows a multivariate nor-
mal] distribution with mean 0, and variance Z. Once estimates of these parameters have
been computed (equ. (5.2) - (5.6)), the multiple responses are merged together using the

T2 statistic [21].

T2 = n(5-9)'S"(5-9) (5.1)

where n is the sample size, and S the estimated covariance matrix of a process assumed to

be in statistical control.

Usually, even processes in statistical control can change with time, which results in a
continuously chan ging covariance matrix S. We have chosen not to monitor the change in
S and use instead the estimated S from the analysis of the designed experiment, when the

process is assumned to be in control.

It is calculated as follows [21]: let m be the number of wafers used in the designed

experiments, we first calculate the average reading of each wafer:

n
_1 .
n Z yuk’ i=lL.,nj=1..pk=1..m (5.2)

i=1
Next, we calculate the covariance, variance, and mean response of the m wafers.

=

m
- 1 - .
¥, = o 2 Yixd= L,..pk=1,.m. (5.3)

m
82j = . 2 (yjk_s-,j)Z 54
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m
Sih = 57 2 T T)Gue=Tn)  oj=lepih=Lopizh  (55)
Finally, we form the es:ir-n;ted covariance matrix S:
§2; ... 8,
S= s% Sip
S2
Once the T2 statistic is calculated, it is plotted on a single-sided control chart whose

p
(5.6)

upper control limit (UCL) can be formally set at the desired probability of erroneously

stopping a good process, by using the Fdistribution [21].

UucL = - (N - ]f:['_Fr(’Ps A -p) (5.7)

where A(is the sample size during the production runs. Note that the sample size n used to

calculate S is different from the sample size Alused to determine the UCL.

When the UCL is exceeded, the automated control system stops and a human operator
investigates the malfunction, the same way he would have investigated a traditional SPC

out-of-control condition (Figure 5.1). -
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5.2.3.2 Alarms for Feedback Control

Control alarms identify process drifts and trigger the feedback control system. The
drifts are detected by a multivariate cumulative sum (CUSUM) scheme that is very effi-
cient at identifying small, consistent changes, while ignoring outliers that are not useful
for feedback corrections. This type of disturbance can be compensated by appropriate rec-

ipe changes.

The alarm generation is based on Crosier’s multivariate CUSUM scheme [30]. Several
other schemes have been investigated, but none of them seems superior to Crosier’s [31]
[33]. Crosier’s scheme forms a CUSUM vector directly from the residuals between the
experimental data y, and their respective model predictions §, after shrinking them by a

X
factor of (l - é_)

n
s, = 0ifC <x (5.8)

sp= G+, -9(1-8) ifCu2x (59)

n
where C;, is the variance-normalized length of the residual CUSUM vector

(Sp_1+¥,—-9) .ie,

= T -1
Cn = J[(Sn_1+yn—y.) ) (sn—l+yn-9)] (5.10)
The reason for shrinking the residual CUSUM vector by (1 - CL) , and the significance
n

of C, and x are fully explained in [30]. S is the same estimate of the covariance matrix
used for generating malfunction alarms and is obtained from the designed experiments,

when the process is in control.

Typically, we want a process to return to its original target. Sometimes, this is not
always possible, because the multiple outputs are not completely independent of each
other. A corollary of this is that measurements should not be compared against fixed tar-

gets, which are sometimes unattainable, since it would generate control alarms too often.
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The comparison of the experimental data to the model predictions, on the other hand,
would generate an alarm only if the updated models do not represent the experimental data
well. Since this is exactly what is desired, the control alarm is then set off only when the

model represents the data inadequately.

This scheme yields an alarm when the variance-normalized length of the residual
CUSUM vector s, is greater than a constant :

Y, = [ST g1 sn] > (5.11)

The sensitivity of the alarm depends on the number of output parameters p, and the
constants X and 7, which can be adjusted for the desired probability o of stopping errone-
ously a good process. Equivalently, we can adjust the average run length (ARL) between
false alarms when the process is in control, also called on-target ARL. The methodology

for tuning the sensitivity of control alarms is described next.

5.2.4 Methodology for Tuning the Sensitivity of the Control Alarm

The sensitivity of a control alarm can be tuned by selecting either a desired on-target

ARL, or a desired type I error o, since they are directly related by:

on-target ARL = é (5.12)

We choose to describe the tuning process, starting from a desired on-target ARL. Note
that if the on-target ARL is chosen too high, the alarm will not be very sensitive to an out
of control process, i.e the “off-target ARL” will be too high, which could result in many
wafers processed out-of-control. On the other hand, if the on-target ARL is chosen too
low, too many false alarms would be triggered and the operator loses trust in the alarm
detection system. Therefore the value of the on-target ARL must be carefully chosen

either from analysis of past historical data or by a process engineer.
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Given a desired value of x (which will be discussed next), the parameter 1) is deter-
mined directly by our choice of an on-target ARL. Although there exists no known analyt-
ical equation that links n to ARL, we can derive the relationship from Monte Carlo
simulations [30]. As an example, we describe the process in the case that an on-target
ARL of 200 is desired. First given a value for x, we look for a lower bound on 7M. Starting
with an initial guess for 7, we simulate up to 1200 runs or until an alarm signal is given.
We repeat that simulation 50 times and obtain the average ARL. If the ARL is in the range
of 200, we decrement 7, until the average ARL is below 200. The lower bound on nis
now found. Next we repeat the 50 simulations and compute the average ARL, increment-
ing 1 by 0.1 at a time, until the average ARL is above 200. Then we fit a linear regression
through the resulting average ARL and compute the parameter 1 corresponding to an
ARL of 200. Finally, we repeat the whole process again for various x. Plots of the result-

ing simulations are shown below.
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Note that the number of outputs p has been kept fixed during all simulations, because it is
characteristic of a process. A different parameter p would result in different ARL vs. n
relationships. In all simulations, we have used a value of 2 for p, because the wafer track

has 2 outputs, and it is the only machine in our process sequence with multiple outputs.
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We have also used independent data with a unit variance, so that we can use the identity
matrix for S [30]. This is proper since the data is supposed to be random and normally dis-
tributed [34].

Parameter x is related to the desired amount of shift in the mean vector to be detected
[30]. To detect a K standard deviation shift in the mean vector (K > 0), we calculate the

noncentrality parameter d.

d= J[(K T s (KG)] (5.13)

where G is the standard deviation vector of y. Studies by Crosier have found that choosing
x = d/2 minimizes the off-target ARL of an out-of-control process with a noncentrality
parameter d [30]. In other words, that value of k makes the alarm optimally sensitive to the
amount of shift represented by the noncentrality parameter d, and minimizes the number
of wafers processed out-of-control. During actual processing however, the amount of pro-
cess shift is not known in advance. To investigate which x is best overall, we have plotted
the off-target ARL vs. the noncentrality parameter d for various values of x, given the

same on-target ARL value of 200 (Figure 5.3). Notice that all the graphs are very similar,
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on-target ARL = 200, with number of outputsp= 2.
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when d is greater than 0.75, whereas there are great differences when d is small. Therefore
when the process shift is large, the choice of a x optimized for large shifts does not result
in a significantly more sensitive alarm. Any value of x results in approximately the same
off-target ARL for large process shifts. On the other hand, when the process shift is small,
the choice of a x optimized for small process shifts results in a significantly more sensitive

alarm. Therefore, the default value of x in our controller is the smallest one, which is 0.25.

Finally, after specifying the desired on-target ARL and parameter X, we select the

parameter 1) from Figure 5.2, and the parameters of the control alarm are set.

5.3 Algorithm for Adaptively Updating Equipment Models

Although the original models offer a comprehensive representation of the process,
their accuracy decreases over time, since equipment age, components are replaced, and
environmental conditions change. Thus, it is important to develop a methodology for
updating these models to the current status of the process. In our control methodology,
adaptation occurs every time a control alarm is issued, since that signals when the model
accuracy is not tolerable anymore. The model update algorithm we have developed is
designed to work with random data, because our measurements will come from a produc-

tion line, instead of from an off-line controlled experiment. The scheme is described next

[35] [12].

5.3.1 Terminology and Data Conditioning

The model update algorithm is based on stepwise regression, which uses matrix com-
putations. The kxn input setting matrix X contains the n input settings of the k process
runs, which are then fed into a kxt model term matrix T, which stores the input settings as
model terms. t corresponds to the number of terms inside the model, which can also be

understood as the number of coefficients in the model, excluding the constant term.
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As an example, let’s assume that 2 wafers are processed by the wafer track. The first
one is processed under a spin speed (SPS) of 4600 RPM, a baking time (BTI) of 60 sec-
onds, and a baking temperature (BTE) of 90°C. The second wafer is processed under the
following recipe: (SPS, BTI, BTE) = (4800, 65, 90). The resist thickness model coming
out of the wafer track has the following terms: 1/ (./Sﬁ) , BTI, and BTE. All that infor-

mation is stored as follows:

X = [4600 6090] and T < |17(J/3600) 60 90 5.14)
4800 65 90 1/(J4800) 65 90

Note that X and T do not necessarily have the same number of columns. If the resist thick-
ness model also contained the term SPS, T would have had 4 columns: SPS, 1/ (JSPS) ,
BTI, and BTE.

4600 —— 60 90

T = /4600 (5.15)

4800 —— 65 90

4800
Next, the algorithm applies two transformations to T to prevent it from being ill-condi-
tioned. First, it centers the resulting matrix, by substracting the average of each column,
and then divides it by a range matrix D, so that the variances of each term are of compara-
ble magnitudes. D is defined as a t x t diagonal matrix which contains the experimental
range of each model term. This results in a matrix Y, which is composed of unitless num-

bers, with comparable magnitudes.

Y=(T-T_)-D"! (5.16)

ave
The second transformation that the algorithm applies on matrix Y is a Principal Com-
ponent (PC) transformation, to ensure that each column of Y is orthogonal to each other.

This is necessary in order to apply stepwise regression. Next, we briefly describe the PC

step.
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5.3.2 Principal Component Transformation

The principle components of a set of variables are linear combinations of the original
variables, with the special property that they are all orthogonal to each other [28]. This is

represented mathematically by the following two equations:

PC=X-B (5.17)
b;S,b; = 0,fori#j (5.18)

where PC is the set of principle components of variables X;’s; each column of B, b;, con-

tains the coefficients for one principle component; and S, is the covariance matrix of the

X’s.

To obtain the coefficients B for our matrix Y, we take the covariance matrix of the Y’s,

Sy, and find its eigenvectors:

B-A-B' =5, (5.19)

where A is a t x t diagonal matrix containing the t eigenvalues of Sy; and B contains the
columns of corresponding eigenvectors of Sy. Next, we simply transform the matrix Y into

its principle components Ypc as follows:

5.3.3 Description of the Model Update Algorithm

Now that all the terminologies and data conditioning have been explained, we present
the model update algorithm [35][12]. The first step of the mode] update algorithm consists
of entering all the machine settings into the input setting matrix X. Since the performance
of the machine changes with time, we do not weight the outputs obtained from older set-

tings as much as that obtained from newer settings. Therefore, we have applied a forge:-
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ting factor wyy to our input settings, emphasizing the more recent ones over the older

ones. (The variable k corresponds to the number of sets of input settings).

X =W-X (5.21)

where W is a diagonal matrix containing the forgetting factor wyy of each set of input set-
tings. In our implementation, the number of sets of input settings is also limited to a spe-
cific number, called window size, and is based on how often the machine performance

drifts with time. Older wafers are effectively ignored by the model update algorithm.

Next, we transform the weighted input setting matrix X’ into a model term matrix T,
which we also transform into a unitless matrix Y through equ. (5.16) to avoid ill-condi-

tioned matrix calculations. Then, we find the principal components of Y, Ype-

Next, the difference between the measurements and the current model predictions,
defined by a k x p output discrepancy matrix Az, is calculated. As before, p is the number
of output variables, and k, the number of sets of input settings, i.e, the number of wafers in
the window. The output discrepancy matrix is computed as follows for each output vari-

ablei,i=1,..,p:

T
Azi = zx’, meas ~ zi. model = zi, meas (ch Y+ c:O) (5.22)

where y = BT.D. C represents the vector of term coefficients of the model, transformed
into the principal component space; € is a tx1 vector containing all the model coefficients;

Cp is the constant term; and D is the range matrix.

Finally, stepwise regression is performed, considering each PC separately, in order to
obtain a vector of correction term coefficients Ay. The statistical significance based on the
student-t distribution of each correction coefficient AY; G =1, ..., t) is calculated. If it is
greater than a certain threshold, the correction coefficient is updated to Ay;; otherwise, it is

set to zero. Next, ch is multiplied by the updated set of new coefficients Ay and sub-
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stracted from the output discrepancy vector Az. If the resulting constant term Acy is signif-
icant, it is also updated. Finally, the modified correction coefficients Ay are transformed
back to their original space, resulting in a set of correction coefficients Ac, and added to

the current model coefficients ¢, to result in a newly updated set of coefficients Cupdated:

Cypdated = C+AC = c+D.B. Ay (5.23)

cowmed = Co+ Ac0 (5.29)

This concludes the equipment model update. The next step of the feedback controller

is to find a new recipe that will bring the machine’s outputs back on target.

5.4 Automated Recipe Generation
5.4.1 Algorithm

Once the equipment model has been updated to reflect the new state of the process, a
new recipe is typically needed to bring the process responses back on target. That task is

mathematically formulated as follows [35][36]:
Solve for X, such that

fX)=2 (5.25)

where f(X) = ) € +c , from the previous section, and £ is the desired output from

the machine.

Subject to the constraints

E,<X<E, (5.26)

where E,, correspond to the set of minimum input settings; and E), the set of maximum

input settings.
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This is a typical optimization problem, which can be solved in many different ways,
Several optimizers have been studied and implemented [21] [35] [36] [18], all with similar

satisfactory results. Therefore, we have chosen the most simple one, the iterative Gauss-

Seidel algorithm [35] [36].
At iteration i, the algorithm linearizes the function f(X) as follows:

£(X) =£(X;)+A; - (X; , - X.) (5.27)

where A, = -gix(xi) .

Let p be the number of outputs variables, and k the number of input variables, we have

three possible cases:

1. k=p. The system is well determined and either has one solution or none at all. If a
solution exists, it is given by:

X;\1 = X;+AX; = X, AT [£(X;) - 2] (5.28)

2. k>p. The system is either over-determined or well determined. If AAT is invert-
ible, a solution to the system is given by [35]:

-1
Xi 1 = X;+AX; = xi‘A;r[AiA;r] [f(X,)-2] (5.29)

3. k< p. The system is under-determined. If AiTAi is invertible, the solution to the sys-
tem is given by [35]:

-1 T
Xi, 1 = X;+8X; = X;~[AJA,]” A, [f(X,) - 2] (5.30)

Derivations of these results can be found in Bombay’s thesis [35].

Typically however, the output variables must be weighted, because their effect on the
final output are different. The input settings X are also weighted, because some settings
are more easily changed than others. Let O be a p x p diagonal matrix, which contains the
weights of £, and I, a k x k diagonal matrix, which contains the weights of X. Equation

(5.27) is now transformed as follows [35]:
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£(X) =£(X,) + A’ - (X;

i+

-X,) (5.31)

where A, = ol.A. .l

i
As before, there are three cases.
1. k=p. The solution is still the same as before and is given by:
X;,1 = X;+AX; = X, A, [£(X,)-2] (5.32)
2. k>pIf A'iA';r is invertible, the solution is given by:
Xy, = X;+AX; = X~ 1ATA AT 07 [£(X,) - 8] (5.33)
3. k<p.If A';TA'i is invertible, the solution is given by:
X, = X;+AX; = X,~IATA, " aTo (X, - 2) (5.34)

To satisfy the constraints set by equ. (5.26), the algorithm freezes any input value vio-
lating a constraint to the value of the constraint itself, and reduces the dimension space of
the search by one. The optimization algorithm then continues the search with the other

inputs.

5.4.2 Methodology for Choosing the Weights for Output Variables

In the past [35], the weights of the output variables have been derived from the speci-

fication limits:

Az = 07'A2 = 07 [f(X,)-2) (5.35)

where O = 2. min(USL-2,2-LSL).

We believe a better weighting scheme follows the sensitivity of the final process output
(in this case, CD) on the intermediate output variables. For example, if the CD is as sensi-
tive to a 3% change in PAC as to a 100 A change in resist thickness, the following weights

should be used: O = 0.03 .
100
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More formally, the output weights O are chosen as follows:

0Zgpna)
1/e—
azl

o=| _ (5.36)

OZgy g
/52
| %%p

where p is the number of output variables, and Zgna is CD for our process sequence.

5.4.3 Weights for Input Variables

Weights for input variables are needed, because some input settings have a wider range
of operation than others, or can be changed more easily than others. Weights are then used
to favor changing the input settings that would cause less side effects to the process. For
example, changing the spin speed of a wafer track is preferable to changing the baking
temperature. Currently, the weights for the input variables are given by the inverse of the

input setting range.

5.5 Summary of the Feedback Control System

In this section, we have presented an implementation of feedback control on a semi-
conductor manufacturing step (Figure 5.4). The feedback control algorithm is based on the
formal generation of malfunction and control alarms, an adaptive model updating strategy,
and an automated recipe generation system. This algorithm has been implemented on var-

ious machines in the Microlab and experimental results, presented in chapter 7, show that
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the capability of the process sequence is significantly improved when this control algo-

rithm is applied on every machine of the sequence.

MODEL AND
C CURRENT SETTINGS RECIPE UPDATE
v
PROCESS WAFER
l EQUIPMENT
MODEL
MEASURE PROCESS
PARAMETERS

I '

( SPC )
__< MALFUNCTION ALARM >——o STOP

v
N0< CONTROL ALARM > YES

4 _Schematic Represe

5.6 Feed-Forward Control
5.6.1 Feed-Forward Control Paradigm

The primary task of the feed-forward control mechanism is to adjust downstream pro-
cess step(s) in order to compensate for the variability of the current machine [11]). The
feed-forward controller complements the feedback controller which centers the process on
the target, by reducing the process variability. Before processing the wafer on the next
equipment, the outputs of the current step are analyzed to see if they are likely to produce
a wafer within specifications after the next step, assuming normal settings. If the analysis
comes back positive, no feed-forward control is done on the wafer. However, if the analy-
sis shows that the wafer is unlikely to meet specifications, a feed-forward alarm is trig-

gered and activates the feed-forward controller which then finds a corrective recipe for the
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next machine, using the same recipe generation described in §5.4 (Figure 5.5). In highly
controllable process steps, the feed-forward controller can even compensate for inherent

variability of previous steps, thereby increasing the overall process capability.

L ]
SPIN COAT
& BAKE

T & PAC MEAS;

y

Currently however, feed-forward control mechanisms are not well accepted in the
semiconductor industry because of the high stakes involved. A corrective action that wors-
ens a process is not tolerated. That is why we activate the feed-forward control only when
the problem is clearly confirmed. Like the feedback control mechanism, this mechanism is

also activated by a formal statistical test.

5.6.2 Feed-Forward Alarm

The feed-forward alarm is a variant of the acceptance chart, whose properties are fully
discussed in [21]. For a fraction of nonconforming wafers of at most §, the true process

mean [ is bounded by j; and py, defined below:

K = LSL+Zs6,and py; = USL-Z;0 (5.37)

where Z; is the upper 100(1 - 8) percentage point of the normal distribution, and & is the

process variability when the process is in control. We find an estimate of ¢ by running the
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standard process for a significant amount of time during which the process is believed to
be in control, and then by calculating the standard deviation of the process output. Now,
given a specified type I error of a, the upper and lower control limits of the feed-forward

alarm are set at:

LCL =y - th'.spred = LSL+Zz;0- chpred (5.38)
UCL = py+Z,0pg = USL-Z50+Z,0,,4 (5.39)

where Z is the upper 100(1 - o) percentage point of the standard normal distribution, and
Opred is the prediction error of the equipment model of the machine. Opyeq is defined as the
average error of the fitted values §., and is calculated from G041, Which is the standard
error between the modeled data y; and their fitted values 9, (i=1, .., N, where N is the

number of wafers used in building the equipment model of the machine) [22].

N
Omodel = Jﬁ Y (v;-9,)? (5.40)

i=1

t
opre:d = N/I% Omodel (5.41)

where t is the number of degrees of freedom used by the equipment model.

When the predicted output falls between the lower and upper control limits, no feed-
forward action is taken. On the other hand, when a prediction falls outside the control lim-
its, an alarm signals the feed-forward control mechanism to generate new recipe(s) for the
next machine(s) in the sequence, in order to prevent the final process output from drifting
outside the specification limits. Although the recipe generator always tries at first to cor-

rect the error at the next step, its success is not guaranteed and may require looking at sev-
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eral subsequent steps. If the situation cannot be corrected at all, the feed-forward

controller sends the wafer to be stripped and recoated.

LSL LCL
: i
|
7 Zs6 : >
§ | z' ao' pred
|

Process variability
of the machine

[~ ]

Prediction error of the model

5.7 Summary

In conclusion, we have developed and implemented a robust supervisory control sys-
tem that is capable of reducing the variability of a process sequence, and centering the pro-
cess mean back on target. It achieves these tasks by applying statistical process control
techniques on accurate equipment models. The control system consists of a feedback loop
and a feed-forward loop. The feedback loop tracks the performance of each machine,
using adaptive equipment models, and ensures that the distribution of the process step is
centered around its target. Then, the feed-forward loop checks if standard settings on sub-
sequent process steps would result in a correctly processed wafer. If the process outputs
are predicted to be off-target, it will correct for the shortcomings of the present machine

by generating customized recipes at subsequent process steps.
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Chapter 6 The Photolithography Diagnostic System

6.1 Introduction

The supervisory controller described in the previous chapter is capable of correcting a
drifting process, but does not diagnose the problem that causes the drift to occur. However,
without diagnosing and then correcting the problem permanently, maintaining a stable, in-
control process is very difficult. There lies our motivation for adding a diagnostic system
to the controller. The goal of our photolithography diagnostic system is to assist a quality
inspector in finding the faults that degrade the capability of the process, and is not
intended to replace troubleshooting technicians. In other words, this diagnostic system
does not find the problems that cause machines to break down, but rather those that cause

machines’ performances to change.

6.2 Anatomy of a Diagnostic System

A diagnostic system typically consists of three components: an inference engine, a
knowledge base and a user interface [37] [38]. The function of the user interface is to pro-
vide an interface between the diagnostic system and the user, since all diagnostic systems

are expected to work in conjunction with a human expert.

The knowledge base is the component that contains the expert information needed to
diagnose the problem. This information can be represented in several ways, such as a set
of rules, frames, semantic nets [38], belief networks [39], or equipment models
[53][84][85]. Typically, a set of rules is used since it is the most easily implemented and
understood, yet still efficient. A rule usually has an “if... then...” format, where the if part is
called a symptom or an evidence, and the then part is called a fault. The expert information
stored in the knowledge base can be of different levels of reasoning. It can vary from a

shallow level, where the set of rules has been derived purely from the experience of human
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experts, to a very deep level, where the set of rules has been derived from actual theories

related to the domain [40] [41].

Finally, the third component, the inference engine, uses the information stored in the
knowledge base to diagnose the problem, following one of several probability theories

[37] - [47).

6.3 Description Of The Two Knowledge Base Approaches
6.3.1 Deep Level Knowledge Bases

A “deep level” diagnostic system uses models of the domain to infer the cause of the
problem. It is very powerful when these models are physically based and well known,
because deep level diagnostic systems can find the root cause of the problem by itself, by
deriving it from the theory of the domain [371[41][44]. If instead the domain model is
empirical, it is not as powerful because the model could be wrong, or the evidence could
lie outside the experimental range of the model [53][(84][85]. In either case however, a
deep level diagnostic system is still vefy desirable because it can find the proper solutions

in unanticipated situations, and it is not pigeon-holed into any fault.

The main disadvantage of deep systems lies in their difficult implementation. Most
fields seldom have a complete theoretical foundation, and typically depend on numerous

empirical results, which can also be incomplete.

6.3.2 Shallow Level Diagnostic Systems

On the other extreme, a shallow level knowledge base comes purely from the experi-
ence of human experts [37]. This allows a highly efficient diagnostic system to be built in
a very short time. The accuracy of the diagnosis depends purely on the level of expertise of
the human experts. MYCIN [42] and Internist [43] are good examples of well tuned shal-

low level diagnostic systems.
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The disadvantage of a shallow level system, however, is that unless human experts
include a cause in the knowledge base, it will never find that particular cause. Also, if
human experts forget to link some symptoms to some causes, the system gets pigeon-
holed into a wrong fault. Finally, if human experts are wrong or simply just not know}-
edgeable enough, the knowledge base is equally faulty. In summary, a shallow leve] diag-

nostic system depends completely on human expertise and its shortcomings reflect ours.

Our diagnostic system uses a combination of both deep and shallow level knowledge
bases. While sensors malfunctions and incorrect input settings are diagnosed from equip-
ment models and measurements, environmental and maintenance related problems are

diagnosed from operator observations, machine sensor alarms, and maintenance logs.

6.4 Probability Theories Used in the Inference Engine

Several formal theories have been developed for handling uncertainty. They invariably
have a methodology for combining evidences and generating a diagnosis from them.
These theories have been investigated in great detail [45]. Their conclusion can be summa-

rized as follows.

Being the oldest theory, Bayesian theory is the most well-developed one and has
become the benchmark against which all other theories are compared [45]. There is a well
formalized procedure for implementing a diagnostic system based on Bayesian theory and

it is based on the following equation:
P(E,E,...E_|F.) x p(F.)
P(F|EE,) ) = — 2" W70 Gy 6.1)

2. P(E,E,...E |F) X p(F,)
k=1

where n is the number of evidences and m, the number of faults. The variable F, represents
the i-th fault, and E;, the j-th evidence. This equation allows experts to turn the rules

around and calculate conditional probabilities of faults. Bayesian theory has a few caveats
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however: first, the values of a large number of conditional probabilities must be obtained

(NCond. prob = 1 - m). Another one is that there is no explicit representation of igno-

rance.

One advantage of Demspter-Shafer theory [46] is that it is possible to explicitly repre-
sent ignorance, whereas in probability theory, ignorance is an implicit part of the probabil-
ity assignments. In Dempster-Shafer theory, ignorance is defined as the difference
between the plausibility and the belief of an event, instead of one minus the negation of an
event. Unfortunately, Demspter-Shafer theory requires the fault space to be even larger
than Bayesian theory. Dempster-Shafer theory lists all the faults into a concept called
frame of discernment @, defined as an exhaustive set of mutually exclusive events, which
resembles the fault space in Bayesian theory. However, given n faults, it can consist of up
to 2" elements, representing all possible subsets of ©. This leads to a similar problem
encountered in Bayesian theory, except that it is worse because human experts are
required to estimate a larger number of belief values. The other main caveat of Dempster-
Shafer theory is that it offers no procedure for implementating a diagnostic system [37].

Therefore, we have rejected this theory for our diagnostic system.

Finally, Possibility theory [47], an extension of fuzzy set theory, handles categorical
and qualitative data well, because it represents their fuzziness explicitly. However, there is
some ambiguity in the interpretation and definition of fuzzy quantifiers that need to be
studied further and resolved, and like Dempster-Shafer theory, Possibility theory also does

not have rigorous procedures for developing diagnostic systems [37].

In our diagnostic system, since our data are purely quantitative and the structure of the
domain relatively simple, we have been able to simply use basic probability theory, which
is the foundation of Bayesian theory. The mathematical formulations are well developed

and a rigorous procedure exists for developing diagnostic systems from it.
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6.5 Definitions of Terms Used in Our Diagnostic System

We define now the terms used in our diagnostic system. When a process goes out-of-
control, the diagnostic system runs through a list of possible faults, called fault space, and
calculates the probability of each fault. In our software implementation, the fault space of
a machine is represented as a vector of faults. For example, the fault space of the stepper

is: ftepperz {Fl' Fz, F3, F4, Fs, Fﬁ, F-], Fs, Fg, FIO' F", Fu}:

Table 6.1 Fault Space of the Stepper

Fault Index " Fault Names

| F, ~ Wrong Input Thickness
F, L Wrong Input PAC
F3 Wrong Dose
| N Bad Lamp
Fs PAC Meas. Error
Fg Bad Lamp Strike
F, " Damaged Filter Optics
Fg Bad Shutter Timing Circuit -
Fy q; Bad Light Integrating Circuit
Fio Environmental Temperature
Fii Miscellaneous Fault
Fi2 No Fault

The evidence space Eused to deduce the fault consists of a list of pieces of evidence.
Currently, the knowledge base of our diagnostic system contains five pieces of evidence:
= {Ej, Ey, E3, E4, Es}. The first four represent shallow level information, while the last
one contains deep level information, derived from equipment models.

vidence

Evidence Index - Pieces of Evidence

%
Operator Observation
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Pieces of Evidence

Age of Critical Machine Component

E; " Machine Output
E, Type of Alarm
Fit of the Output(s) predicted by a Hypothetical

Es ,

Input change, to the measurement

The information used to diagnose any machine is composed of these five pieces of evi-

dence.

Each piece of evidence is divided into a set of discrete, independent variables, which
are specific to each equipment. For example, in the case of the wafer track, the piece of
evidence E3, “Machine Output”, has two variables: (E3,1,E3 ) = (“Thickness Measure-

ment”, “PAC Measurement”).

The value space of each variable is discrete, i.e, the value of each variable is stored in
a specific category with a specific probability. The sum of probabilities of all categories of
a variable equals one, i.e all the categories of a variable are mutually exclusive and
exhaustive. For example, the variable Ej ;, “Thickness Measurement”, is divided into two
categories, {E;, 1 E;, 1} E;’ ) corresponds to a thickness value greater than the value
predicted by the model, while E3 1 corresponds to a thickness value less than the value

predicted by the model.

Therefore, given a process described by m pieces of evidence E; (i = 1, .., m), each E;
being divided into n; discrete variables E; y (k = 1, .., n;), and each variable E; \ being
divided into q; y categories E{ x (=1, -., g;x), the evidence space is then divided into A
mutually exclusive and exhaustive combinations.

m DN
Number of combinations = A = H H Qi x (6.2)
i=lk=1



The Photolithography Diagnostic System Chapter 6 73

We define here by combination, a vector of categories, each belonging to a different vari-

able. For example, the data structure of the evidence space of the exposure step is shown

(Ey)

Malfunction %ntml False

below:
Piece of Evidence Variables Values
Operator Observation Temp. Sensor True False
E;) °“‘(‘§l‘f§“g° E1,1") Ei1)
Lamp Age New Old+
Age of Machine Component (E2,1) (Ez,1) (Ez,1")
(E2) Filter Age New Old
(Ez2) Ez2) E227)
%
Machine Output APAC Above 'I;arget Below Target
(E3) (Es,1) (Es3,17) (Es;1)

Wrong Input Thick Perfect_* Fit _
Fit of Output Predicted by a (Es,) Es,") (Es,1)
Hypothetical Input Change || Wrong Input PAC| Perfect Fit No Fit
to the Measurement! (Es ) (Es ") (Es2)
(Es) Wrong Input Dose| Perfect Fit No Fit
(Es3) (Es3") (Es,3)
able 6.3 a e Evi

t Note that E, has no variable, and that Es has as many variables as there are inputs to the machine The difference

between pieces of evidence having no variable and one variable is purely philosophical: a piece of evidence with only
one variable can theoretically have more variables, if more variables are later deemed necessary for diagnostic purposes,
while a piece of evidence having no variable will have none forever, because of the way it was defined. But mathemati-
cally, formulae treat pieces of evidence that have no variable, the same way as if they have one variable.

6.6 Calculation of Fault Probabilities
Before describing the calculations of the fault probabilities, we first state the assump-
tions underlying the theory of our diagnostic system. All combinations of evidence are

assumed to be mutually exclusive and collectively exhaustive, i.e,

X
2, P(C)) = 1.0
j=1

(6.3)
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The observed evidence then gets straddled over several combinations, with a different
probability for each combination. We have assumed that any useful evidence is contained
in a variable of one of the five pieces of evidence. Although such a claim is probably false
for our current evidence space of each machine (Figure 6.9 - Figure 6.11), the data struc-

ture of the evidence space facilitates its update, as more useful evidence emerge.

The probability of each fault is based on the relative frequency of faults for a given
combination of evidence. The relative frequency of a fault F; for a given combination of
evidence C; (j = 1, .., A} is called a conditional probability and is denoted by p(F;IC)). Typ-
ically, in Bayesian diagnostic systems, the conditional probabilities of faults, p(F;ICy), are
determined from conditional probabilities of evidence, p(C j|Fi) , and prior probabilities
of faults, p(F;):
p(C;|F;) X p(F;)

p(C)

We have assumed, however, that the estimates of the conditional probabilities of faults,

p(F;|C;) = (6.4)

P(F;IC;), are given directly by machine experts (and then subsequently automatically
updated by the diagnostic system (equations (6.8) and (6.9))), avoiding the need to deter-
mine prior probabilities of faults. The probability of a fault F; (i = 1, .., Ng) is then calcu-
lated as follows:

N
P(F)) = 3, p(F;|C;)xp(C)) (65)
i=1
where N is the number of faults, and A(is defined in equation (6.2). While the conditional

probabilities of faults are obtained from the database of the diagnostic system, the proba-

bilities of combinations of evidence are calculated from the observed evidence (see §6.7).

The accuracy of the conditional probabilities of faults for a combination of evidence G
improves with the number of occurrences, N;. If a combination of evidence C; has been

diagnosed and linked to a fault F;, p(Fi|C j) is updated as follows:
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Nj X p(FiICj)old +1

p(FiICj) = N 71 (6.6)
J
while the other faults have their conditional probabilities updated as follows:
N. xp(F,|C.)
p(FkICj) = 3 l J’old 6.7

N i+
However, most of the time, the observed evidence cannot be linked to just one single
particular combination of evidence. Rather, it straddles over several combinations of evi-
dence, each with a probability of P(C;). Therefore, if fault F; was the real fault, p(FiIC j)
is updated as follows:
Nj X p(F;|Cy) 14+ P(Cy)
N it p(C j)

and the conditional probability of the other faults are updated as follows:

P(Filcj) = , for all G (6.8)

N; % p(Fy|C;)
N;+p(C))

The number of occurrences of C;, N;, is then updated to:

old

P(Fklcj) = , for all G;. (6.9)

Nj, new Nj. old"'p(cj) (6.10)

Clearly, N; will not be an integer anymore, but rather a real number.

The combinations of evidence which occur more frequently will have their conditional
probabilities determined with more precision and accuracy. The relationship between
these three parameters is formally derived in section §6.9. In the initial implementation of
the diagnostic system though, we have no record of diagnosis cases beyond the experience
of machine operators. Their opinions, albeit subjective, provide the initial conditional
probabilities for each fault. We will describe how we extract initial estimates of condi-
tional probabilities from their experience, and combine their different opinions into one
single set of conditional probabilities for the diagnostic system, in section §6.8. Before we
discuss how to obtain values for conditional probabilities, we first show how to calculate

the probability of a combination of evidence, P(C)).
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6.7 Calculation of the Probability of a Combination of Evidence

The knowledge base used for diagnostic operations is best represented by influence
diagrams. An influence diagram is a scheme developed by SRI researchers to model com-
plex decision problems involving uncertainty [57]. An inference diagram is an acyclic
directed graph with nodes representing variables and arcs representing the relationships
between variables. More specifically, an arc going from node A to node B represents the
conditional influence of A on B. These influences are then calculated using Bayesian
probability theory. Note that what is important in an influence diagram is the absence of an
arc, rather than the presence of one, since the latter describes only a possible dependency
of B on A, where as the lack of arc between A and B makes a stronger statement by mark-

ing the independence between A and B.

The diagnostic operations described in this thesis can be represented by the following

influence diagram:

Age of Critical
Machine Components

Combination of Operatfx
Evidence Cj Observations

Fit of Predicted Output from a
Hypothetical Input Change to
(Measurements the Measurement

Alarm J
Parameters @quipment Mod@
ure 6.1

ja, ibj vidence Spa

Alarm Category

State of
Process
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The centerpiece of Figure 6.1 is the probability of a combination of evidence G, p(C).
It corresponds to the probability of matching the observed evidence to the combination of
evidence C;. Since all the pieces of evidence are independent of each other, and their vari-
ables are also independent of each other, P(C;) is calculated by taking the product of the
probabilities of the variables of the pieces of evidence. We will show next how to calculate

the probability of a variable of any piece of evidence.

6.7.1 Probability of Categories of “Operator Observation” (Ey)

The piece of evidence “Operator Observations” consists of observations about physi-
cal attributes of the wafer, such as “streaks on wafer” or “circular patterns on wafer”, and
alarms from equipment sensors that are not connected to the computer running the control
and diagnostic systems. These alarms alert the operator directly, who in turn logs them in
the diagnostic system. Variables of this piece of evidence are divided into two categories:
(E';’i R E;,i ) = (“True”, “False”). So, for example, circular patterns of photoresist on a
wafer after the spin-coat and bake step is an obéervation that either exists or does not. If

-

the observation actually occurred, then

P(E] ;) = 1,and p(E; ;) = 0 6.11)

If the observation has not occurred, the probabilities are reversed.

6.7.2 Probability of Categories of “Machine Component Age” (Ey

Each variable of the piece of evidence “Age of Critical Process/Machine Compo-
nents” corresponds to the age of a distinct process/machine component. Each variable of

E, is divided into two categories: (E;, i E.z,i ) = (“0ld”, “New”).

Given the age and the life distribution of a particular component i, we calculate the
probability p( E;’ i ) that this component would be classified as “new”, by relating p( Ei i)

to the probability of failure of the component. Various life distribution functions have been
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analyzed in the literature [69][70]. We have chosen the Weibull distribution instead of any
other distribution to represent the life function of machine components, because it can be

adjusted to fit most life distributions. Its mathematical form is:

R(t) = exp[(t/n)] (6.12)

R(t) is the probability that the component is not likely to fail, and corresponds to the prob-
ability that the component is “new”. B is the shape parameter and n is the scale parameter
or characteristic life of the component, defined as the life at which 63.2% of the popula-
tion has failed [70]. When B is less than 1, the failure rate decreases with time, and vice-
versa, when B is greater than 1. In our case, machine components invariably degrade with

time, and therefore B will always be greater than 1.

The Weibull Mean Time to Failure (MTTF) is given by [70]:

MTTF = nI'(1+1/B) (6.13)

where I'(e) is the complete gamma function.

There are several ways of estimating the scale and shape parameters n and B [77]. The
easiest one estimates them by plotting the cumulative number of failures vs. the time of
failure, and then extracting the 16.7% (y,' ), 97.4% (92 ), and 63.2% (fi ) percentiles. The

shape factor is estimated from $,and 9,:

_ _ 2989
log(9,/9,)

and the scale factor is estimated by fi.

(6.14)

If in the initial stage of the system implementation, there is not enough data to plot the dis-
tribution of failure of the machine component, an educated guess must be made for fi,
while B can take on a value of 3.5, which makes the Weibull distribution approximate a

normal distribution. Other ways of estimating n and B are suggested in [77].
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In summary,

] B,
P(E; ;) = Ry(t;) = exp[—(ti/ni) ] and p(E; ;) = 1-R(t,) (6.15)
6.7.3 Probability of Categories of “Machine Outputs” (E3)

The piece of evidence “Machine Outputs” is divided into p variables, which corre-
spond to the p machine outputs. Each variable is in turn divided into 2 categories, { E;,i ,
E31 }Gd=1,..,p). Let

AE3,i = (B3, Dneasured = B3, miodel Prediction (6.16)
the probabilities of the two categories are defined as follows:
P(E3 ;) = P(AE; ;>0) and p(Ej ;) = p(AE; ;<0) ©.17)

The measurement value, E3;, depends however on whether the operator measured the
wafer correctly or not. Let O represent “Operator Aptitude”, which is divided into 2 cate-
gories {Og, Op} = {*Good Operator”, “Bad Operator”}. The probability of a category of

E; is calculated as follows (Figure 6.2):

Good/Bad Operator | _ Value of Meas. Catego: Ej .
s

Eigure 6.2 Influence Diagram of p(Ej ; ). (i= “+" or “-”

B(E} ) = () 00) xp(Op) + p(E |0 xp(0y) Lj= (4" ") (a.18)

p(E:-i,,’ i IOg) is calculated as follows:
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Distribution of Meas.

30”35 etror

P(E;;, i Og)

Model Predicted Value Measured Value
Es,; Esj

Let E3 ; be the measurement value; E3’i the model predicted value; 0, the standard
measurement error (obtained from multiple experiments at the standard setting when the
process is in-control); ®(e), the cumulative gaussian distribution function; and erf(e), the

error function:

. E3i-E; ; E;,i-Ey ;
P(E; ;|0p) = ¢(T] = (en{v]+ 1]/2 (6.19)

p(E;,ilog) = 1-p(E; i|Og) (6.20)

If the measurement Ej ; is incorrect, it has equal probability of being in either catego-
ries:

P(E3 ;[Oy) = P(E;;[Op) = 172 (6:21)

Next, we calculate p(Og) and p(Oy), where p(Og) and p(Oy,) represent the probability
that the operator performed the measurement correctly, and incorrectly, respectively:
Number of Meas. Errors

Total Number of Faults
p(0,) = 1-p(O,) (6.23)

pP(O,) = 1- (6.22)
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where the total number of faults is the combined number of malfunction alarms and con-

trol alarms, since the diagnostic system is activated by these alarms.

6.7.4 Probability of Categories of “Type of Alarm” (Ey)

The piece of evidence “Type of Alarm” has no variable, and is directly divided into
three categories: (Er, Eg:, Eg) = (“True Malfunction Alarm”, “True Control Alarm”,
“False Alarm”). All process states, which include the three categories of E4, are shown

below in the two VEM diagrams.

Total number of processed wafers: Ng—
Number of wafers in-control: Nyc -}
Number of wafers out-of-control: Nocwe

igure 6.4 iagra wing In- -contro] W.
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[/ .
Nca: Number of control alarms 7//‘7 /
NN\N Njpa: Number of malfunction alarms ; é. 2 s
B Ncaa: Number of both control :,Z ‘f 2z
& malf. alarms //y/
7
NFCMA NTCMA
NFMA NTMA
Bc

Ngca: # of false control (only) alarms Ntca: # of true control (only) alarms
Necma: # of false control & malf. alarms  Nyea: # of true control & malf. alarms
Npya: # of false malf. (only) alarms Ntma: # of true malf. (only) alarms

Type 1 error of a Control alarm: 0 = (Npea+ Npema) / (Nca +Neoma)
Type Il error of a Control alarm: B = Noc - NTca+Ntema)) / Noc

Type I error of a Malf. alarm: oy = (Ngya +Npema) /0Nma +Nema)

Let C and C represent the out-of-control and in-control states of a process, respec-
tively. We will now calculate the probability of a true contro] alarm, p(Ac, C), the proba-
bility of a false control alarm, p(A¢, C), the probability of missing a control alarm, p(Ac,
C), and the probability of having no control alarms when the process is in-control, p(Ac,

C). Therefore, we defined these probabilities as follows:

- Npca+N N (1-a)(Neas + Nepsa)
P(AcC) = ( A TCMA)- N = CA~_CMA (6.24)
ocC T T
Npca+N N 0~(Nca + Nena)
FCA FCMA I1C C\V''CA CMA
P(Ac, C) = [ J = _ (6.25)
C Nic N Ny
P(Ac,C) = Bc-p(C) (6.26)
- (Neca +Neepa)) N (Npep + Ny 1)
P(AC,C)=[I- FCA —TMA ] R = |1- A FEMATL p(c) (627)
IC T IC
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If a control alarm has been triggered, the probability of a true control alarm, P(EE) ,

and that of a false control alarm, p(Eg) , are respectively:

C = p(AC’ é) P(Ac: (—:)
E,) = p(A~, C|AR) = = — =]l-0 (6.28)
P(ES) = P(Ac ClAc) P(Ac)  p(AqC)+p(Ag C) ¢
P(AC)  P(AGC)

P(Ey) = P(Ac, C|Ag) =

= = =q (6.29)

P(Ac)  p(AcC)+p(AoLC) ©
Similarly, we calculate now the probability of a true malfunction alarm, P(Ap, ©), the
probability of a false malfunction alarm, p(Ay, C), the probability of missing a malfunc-
tion alarm, p(Ay, C), and the probability of having no malfunction alarms when the pro-

cess is in-control, p(Ay, C).

= o [ =M (Ngyys +Npema)) Noc
p(Ay, ) = ( : (6.30)
M Noc Ny
M(Nrpma + Nrema)) Nic
p(Ay, C) =( : : (6.31)
M Nic N
- (1-0p)(Npyp +N N -~
p(Ryy ) = (] _(T-0)(Npmp TCMA)]_ oc 6.32)
Noc Nt
- o, (N +N N
p(Ay, ©) = [ 1- M DMA tcMa) | Nic 6.33)
Nic Ny

If a malfunction alarm has been triggered, the probability of a true malfunction alarm,

(EM) , and that of a false malfunction alarm, p(Eo) , are given by:
PLEy 4

M = P(App C) P(Ap C)
E, ) = p(Ay, ClAy) = = — =1- 34
P(ES) = P(Ay ClAy) P(AM)  p(Ay, ©)+p(Ay,, C) mom (639
P(Ay, ©) _ P(Ap ©)

P(Eq) = P(Ay, C|Ay,) = (6.35)

P(Ay)  p(Ay, C)+p(Ay,C) M

Note that in our control system, a malfunction alarm takes precedence over a control
alarm, i.e, a control alarm is defined as an alarm triggered by the control alarm mechanism

only, whereas a malfunction alarm includes alarms triggered by the malfunction alarm
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mechanism alone AND alarms triggered by both malfunction and control mechanisms.
Therefore, if both alarms are triggered, they will be treated as a malfunction alarm only.
Values for the type I errors of the malfunction and control alarms, oy and o, and the
value of the type II error of the control alarm, Bc, are specified by the user, when activat-

ing the controller.

6.7.5 Probability of Categories of a “Hypothetical Input Change” (Es)

The piece of evidence “Fit of Predicted Outputs Jrom a Hypothetical Input Change to
the Measurements”, is the only one based on deep level knowledge. Extracted from the
equipment models and measurement values, it corresponds to how well the predicted out-
put(s), assuming a hypothetical input change, matches the measurements. It is similar to
the algorithms used by May [53], and Saxena and Unruh [85], but instead of attributing the
probability directly to a faulty input, our algorithm attributes the probability instead to the
evidence that a faulty input could have caused the problem. Then, if multiple inputs could
each have caused the problem, the diagnostic system will calculate the probability of each
one, depending on their past frequency (equ. (6.5)). This piece of evidence is divided into
as many variables as there are inputs to the machine, because each variable corresponds to
the fit of the predicted outputs to the measurements, assuming only that a single input has
changed. Each variable is divided into 2 categories, { E; i E;,i }@=1,..nandnis the
number of inputs). The first category corresponds to when the outputs predicted by a
change of the input match the measurements exactly, while the second one corresponds to
when they do not match at all. The computation of the probability of the category is based
on solving backwards the equipment models using the measurements, and then analyzing
the difference between the predicted outputs assuming the hypothetical input change and

the actual measurements.
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The problem of solving the equipment models backwards can be stated as follows. Let
p be the number of process outputs, and t the number of model input terms (such as x;, x,,

xlz, X1/X3, ...), an equipment model takes the following form [53]:

Y = KX+E (6.36)

where Y is a column vector of p normalized responses; X, a column vector of t model
input terms; K, a pxt array of regression coefficients; and E, a pxI residual column vector.
Note that the p responses must be standardized to avoid ill-conditioned matrix calcula-
tions, due to their widely divergent magnitudes. This becomes especially important when
their residuals will be combined together in subsequent analysis. To standardize

responses, transform them as follows:

Y= c-l(z—

-~

1<l

o) (6.37)

where y is a column vector of the p responses; ¥ @ column vector of the p responses
taken at the operating point from the designed experiments; and o, the diagnonal pxp array

of standard deviations of the process outputs.
6,00
6=1(0..0 (6.38)
0 0c¢

Generally, the input terms of an equipment model are nonlinear, consisting of nonlin-
ear combinations of input settings. To solve the process outputs’ models in reverse, they
must linearized with respect to the input settings. This is achieved by approximating them
by a linear truncated Taylor series expansion.

Y+AY = KX+ Ké%xAxi, i=1,..,n (6.39)
i

where x; is one of n input settings and Ax; is a scalar representing a change in input x;.



86 Chapter 6 ‘The Photolithography Diagnostic System

Next, equ. (6.39) is solved backwards by minimizing the sum of squares of the residu-

als:

2
fax) = (Y-KX- K%XAxi) Ji=1,.,n (6.40)
i

Note that the residuals do not need to be weighted since the responses have been

already previously normalized. The column vector of residuals R is given by:

d

B = ¥ - KK - I(a—X!XAxl (6.41)
The solution to equ. (6.40) is found by setting the derivative of f (Ax;) to 0, and solving
for Ax;.
3 \T 3 \T
(k%) Y- (ke2X) KX
ox; ox;
Ax. = (6.42)

() )

To check the significance of the input shift Ax;, we check if all residuals are normally
distributed around zero. If confirmed, there is a strong probability that the outputs’ shifts
can be attributed to the faulty input parameter in question. We apply the Hotelling’s T2 sta-

tistic on R to determine if it is not significantly different from zero.

Teo
T2 GN-q = AR'Z IR (6.43)

where X is the covariance matrix of the original designed experiment, i.e the one used in
developing the equipment model, and acts as an estimate of the actual covariance matrix
of the present runs. Ais the sample size of the outputs during production runs. Finally, to
find the statistical significance that Ax; has actually caused the observed output shifts, we
find the o that satisfies

) q-(N-1)-F,(q,N-q)
T =
a,q,N-q N-g ’

(6.44)

We then interpret that significance o as the probability that the predicted outputs match the

measurements, assuming the input change Ax;:
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P(EE i) = 0; and p(E5 ;) = 1-q (6.45)
6.7.6 Example of Evidence Probability Calculation

To clarify how to calculate the probability of a combination of evidence, we calculate

the probability of the combination that best fits the following example.

A control alarm was triggered on the wafer track. Its o and B error parameters were
5% and 20% respectively. The type I error oy of the malfunction alarm was also set at
5%. The thickness value was 12330A. The predicted value was 12240A. The standard
deviation of the thickness during processing was 65A. The PAC value was 0.97. The pre-
dicted value was 0.98. Its standard deviation was 0.023. There was no circular pattern, nor
any streak on the wafer. (These are the only relevant observable parameters for this

machine.) The reference wafer has just been cleaned.

Other pertinent data are: the diagnostic system has recorded up to now 31 malfunction
alarms and 102 control alarms. The number of measurement errors is 5. The number of

total processed wafers is 562. The characteristic life of the reference wafer is 11 days.

All the pieces of evidence for this machine, and their categories are summarized

below, with the most probable category being highlighted in bold.
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prob = 0.0 [prob = 0.965prob = 0.035

Piece of Evidence Variables Values
- Circular Patterns | True (4) False (-)
Operator Observation (E11) prob = 0.0 prob=1.0
(Ey) Streaks True (+) False (-)
E12) prob = 0.0 prob=1.0
%
Age of Machine Component || Reference Wafer Old (+) New (-)
(E,) Age (Ep 1) prob = 0.0 prob = 1.0
%
Thickness Above Target (+)| Below Target (-)
Machine Output (Es,) prob =0.9614 | prob=0.0386
(E3) PAC Above Target (+) | Below Target (-)
(Es2) prob = 0.335 prob = 0.665
alfunctio: False
Type (‘g4';*la’m N/A Alarm (M) | Alarm (C) |Alarm (0)

Wrong Input Perfect Fit No Fit
Spin Speed (Es ;)| prob =0.99 prob = 0.01
Wrong Input Perfect Fit No Fit
Spin Time(Es ) | prob = 0.001 prob = 0.999
Fit of Output Predicted by a Wrong Input Perfect Fit No Fit
Hypothetical Input Change |{Bake Temp (Es ;)| prob =0.95 prob = 0.05
to the Measurement' Wrong Input Perfect Fit No Fit
(Es) Bake Time (Es4) | prob=0.01 prob = 0.99
Wrong Input | Perfect Fit No Fit
Humidity (Ess) | prob = 0.999 prob = 0.001
Wrong Input Perfect Fit No Fit
Bottle Level (Esg)] prob = 0.01 prob = 0.99

Max p(C

over all j

Most probable combination of evidence:

e e rt e vt 5t b ot o
i3 = P(Ey 1E} 2E) 1E3 1E3 2B4Eq Es 5Es 3E;5 4Es sEs ¢)

1. p(E’l‘]) = P(E-l,z) = 1.0

2.

centile, 97.4 percentile) = (5, 11, 21) days.

B = 2.989/10g(21/5) = 4.80 = p(E; ,) = exp[-(1/11)*¥] = 1.0

Cumulative distribution of the reference wafer’s lifespan: (16.7 percentile, 63.2 per-
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3. p(ES,|op = 1- ¢(-—1224°2‘21233°) = 096562 .

= p(E; 1) = 096562 27 405 2 = 09614

: 098097

4, p(E3,2,Og) = q)(—m—) = 0.6664

= P(E; ;) = 06664 - 27 +0.5- 22 = 0,665

_ (1-005)(102+10) _

5. Ngg = 202+ 10) - 133

= p(ES) = (1-02)133-8 0965

(1-02)133+0.05 - 102 - (1 - 0,05)10
2 _ +

6. Tgps = 0.04=p(E ) =099

7. Tipr=176= p(Ej ,) = 0.999
2 +

8. Tprp = 0.21=p(EZ ;) = 095

9. Tgm = 201= p(E; ,) =099
2 +

10. Tg = 0.02=>p(E 5) = 0.999

1. Tp = 1.60= p(Ej ¢) = 0.99

The final probability that the observed symptoms fit this combination of evidence is:

- - - + - Crt - + - + -
P(Ey, 1By, 2E) 1E3, B3 2B4Es \Es 5Eg 3E5 4Es sEs ¢) =

1-1-1-0.9614-0.665 - 0.965 - 0.99 - 0.999 - 0.95 - 0.99 - 0.999 - 0.99 = 0.568

6.8 Determination of Conditional Probabilities

89

(6.46)

The conditional probabilities of faults ¢orrespond to the relative frequency of faults

given a combination of evidence. They are typically obtained from the diagnosis database
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(equ. (6.8)). Initially, however, these conditional probabilities must be estimated from the
experience of machine operators. To decrease the subjectivity of the expert opinions and
increase the accuracy of the estimates, we poll several machine operators, and then com-

bine their opinions into one single set of conditional probabilities.

6.8.1 Previous Work on Information Filtering

The problem of filtering information from human experts and assessing their estima-
tions has been thoroughly attacked in the past. Two versions of the problem have been
studied in the literature. In the first version, experts evaluate characteristics of objects,
such as the height of a tower, or the speed of a car [651[66][71). The methodology then
consists of first calibrating the human experts, to see whether they tend to be overconfident
or conservative with their estimates. By asking the experts to predict several parameters
and then comparing their predictions to the actual values known to the testers, the testers
quantify the biases of the human experts. Finally, the concensus of all the estimates is

obtained by taking the most likely value from the “calibrated” experts.

In our case, such a methodology cannot be used because our problem addresses proba-
bilities of events, whose sum must always equal one. The problem rises from the calibra-
tion of the predictions. If an expert tends to be too conservative with his probability
estimates, we cannot compensate his predictions by increasing them by a certain amount.
Many papers have studied various facets of the concensus problem when the experts are
trying to predict pfobabilities [67][68][72][73][74][75][76]). These papers are more useful

to our work.

6.8.2 Choosing a Methodology for Combining Probability Estimates

The methodology consists of collecting subjective probability estimates from human
experts, and then combining them using either a weighted average scheme [67][72][74], or

first transforming them into their natural conjugates and then combining them using
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Bayes’ Theorem [68][72][73)[75]. The weights are based on ranking the human experts,

using one of several scoring schemes, described in [72).

In order to obtain accurate estimates of probability distributions, Winkler has docu-
mented a methodology for interviewing experts [75). The questionnaire uses four different
techniques, CDF - Cumulative Distribution Function, HFS - Hypothetical Future Sample,
EPS - Equivalent Prior Sample Information, and PDF - Probability Density Function. A
distribution of the probability estimate is obtained from each technique. If they are widely
different, it implies that the expert did not understand one or more questions, and after
being trained on the concepts, is asked to give his/her probability distribution estimates
again. On the other hand, if the probability distributions are close to each other, they are

averaged into one single distribution.

Next, we must choose between either a weighted average (W-A) or a natural conjugate
(N-C) method to combine the probability distributions. Winkler investigated that problem
using a Bernoulli process to generate data. This was done assuming that there are only two
experts, in order to simplify the situation. (The notation used in the figures below to denote
a probability distribution is p; j..,). The subscript i corresponds to the fault F;, and the sub-
script j, to the j-th expert. The subscript r corresponds to the number of “successes”

observed by expert j, and n is the number of data experienced or observed by expert j.)

To briefly compare the two methods, we look at two examples. In the first one, two
experts with different experiences provide an estimate of a probability distribution of a
fault, call it Fy, centered around 0.5, given a specific problem. The estimate of the first
expert is based on 10 observations of that problem, while the estimate of the second expert
is based on 100 observations. The combination of both probability distributions under
both W-A and N-C methods is schematically shown in Figure 6.7. Note that the N-C

method results in a tighter combined probability distribution than the W-A method.
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Next, we assume divergent estimates of probability distributions between the two
experts. Both experts now claim to have observed 20 occurrences of the problem, but
while the first expert finds only 10% of the occurrences were caused by the fault F;, the
second expert claims that 50% of the occurrences were caused by F;. Under the W-A
method, the combination of the two probability distributions results in a bimodal distribu-
tion, that can lead to an unstable system. The N-C method, on the other hand, always
results in a unimodal probability distribution, which not only leads to a more stable diag-
nosis system, but also follows our intuition better. Therefore, we have chosen to use the N-

C method to combine the probability distribution of the estimates given by our experts.

1 |
0 1
Figure 6.7 W-A and N-C Combinations of p; s, 10,204 p; 250, 100)-
with Equal Weights
o, W-A
RN -===N-C
|
1

igure 6.8 W-A and N- inatj 1,12, 201204 P; 210, 20)-Wwith Equal Weights
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6.8.3 Application of the Natural Conjugate Combination Method

One disadvantage of using the N-C method is that our data are generated from a mult-
inomial process instead of a binomial process. We were unable to find in the literature, nor
could we derive from its definition, the natural-conjugate family related to the multinomial

function.

To circumvent this problem, we decompose a multinomial function into a series of
binomial functions. After all, a multinomial distribution problem which consists of three
probability distributions, py j, p2j, and p3 j» ¢an be divided into three binomial problems.
When finding the concensus of p, j from all the experts, the multinomial distribution prob-
lem can be transformed into a binomial distribution problem, by grouping P2 and p3;
into one single probability 2% i Similarly, when finding the concensus of p, j» and p3;
from all the experts, the problem can be solved using the natural conjugate solution of a
binomial process, by grouping p; j»and p3 ; into Py, j in the first case, and p; j»and p; into

Ps ;in the second case.

Now, we determine how to combine all the estimates of P1,j» for example, given by the
experts into one single distribution P1 final- This methodology has been developed by Win-
kler [72], and the reader is refered to that paper, if a more thorough explaination is needed.
Here, we only describe the methodology. The natural conjugate function used to combine
probabilities generated from a Bernoulli process is the beta distribution function.

(n-1)! r-
-D)Im-r- 1P

As mentioned before, n is the number of times a combination of evidence has been experi-

"a-pyr-1 (6.47)

fp(P) =

enced by expert *j”, and r is the number of times fault F; has been diagnosed as the cause

by expert “j”. fg(p) gives the probability that P1,fina) €quals the value p. These two parame-

ters, (r, n), describe the beta distribution. To combine multiple beta distributions (Tm» D),
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such as the case when we want to combine the judgements of multiple experts, we just add

the r’s and n’s together:

K K
Tfinal = Z Tm @nd ng ) = ): L (6.48)

m=1] m=1
where k is the number of experts polled.

To deal with dependent experts, Winkler has introduced a weight for r’s and n’s, i.e:

k k

Tfinal = w( )y rmJ and ng , = w[ Y nm) (6.49)
m=1] m =1

If the experience of the experts originate from completely separate and distinct samples, w

equals 1. On the other extreme, if the experience of the experts originate from the exact
same sample, w equals 1/k. Beyond that guideline, the decision on the value of w is purely

subjective.

Once we have the distribution of the final concensus of the fault probability p; gnal.
which is of the form of a beta distribution with parameters (rgpa1, Ngnar), We can quantify
both the final concensus value D), final» and the uncertainty about ﬁl, final - More specifi-
cally, f:)], fina] 1S Tepresented by the average value E(pl’ final) » While the uncertainty is

quantified by the variance Var(p; g,.) - Both parameters are given by [77]:

. Tfinal _ Tfinal(Mfinal ~ final)
P1, finat = E(Py fina)) = ;— and Var(p; gp,) = =5 (6.50)
final Dinal (Rfinal + 1)

Before closing, we would like to warn experts against choosing estimates of condi-
tional probability values of 1.0, because they are degenerate, even though some faults may
have such a distinct signature that it is very tempting to give out estimates of conditional
probabilities of 1.0. Such an absolute assignment would lead to a very unstable diagnostic
system, since a conditional probability of 1.0 means that we are certain of the fault, and

that we do not need any training points to confirm it. To guard against such a scenario, our
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current diagnostic system automatically replaces any conditional probability values of 1.0

by 0.99 and giving a 1% probability to the No-Fault category.

6.8.4 Linking the Beta Distributions of the Initial Conditional Probability Estimates to
the Binomial Distribution of the Conditional Probabilities

The initial estimates of the conditional probabilities’ distributions given by the experts
are combined into a single beta distribution, whose average value and variance are
described by equ. (6.50). As it will be shown in the subsequent section however, condi-
tional probabilities follow a multinomial distribution over time, assuming the faults are
independent of each other, and that their probabilities are constants. Therefore, we must

transform the beta distributions of the initial estimates into multinomial distributions.

The average value and variance of an initial estimate of a conditional probability distri-

bution are (from equ. (6.50)):

T
a - .. _final
Py, final = E(Py, fina) = -

b (1-p )
and Var(pl,'ﬁnal) = 1, final 1, final (6.51)

final Dfina) + 1
The average value and variance of a subsequently updated estimate of a conditional proba-
bility, which follows a multinomial distribution, are (from equ. (6.58)):

p;-(1-p;)
N

where p; is the probability of fault F; and N, the total number of all faults for that combi-

E,=p and V= (6.52)

nation of evidence. If we equate p, = ﬁl’ fina] » the variances of the two distributions are
very close to each other. Therefore, we transform the beta distributions of the initial esti-

mates of the conditional probabilities into multinomial distributions simply by equating:

P1 = Py, finapo@d N = ng . +1 (6.53)
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6.9 Analysis of the Accuracy of Fault Probability Values

Often, in addition to the given fault probabilities, operators are also interested in the
range of these values, given a specified confidence level. Before addressing the more com-
Plex issue of a combination of evidence that leads to multiple faults, we first examine the
case when a combination of evidence leads to only two faults, F; and F,. Assuming that
they are independent of each other, and that their probabilities, p; and p,, are constant, the
number of occurrences of fault Fy, n;, among N occurrences of faults F; and F,, follows a

binomial distribution [21]:

_ N o m N! n, N-n,
P= n,!n,! Py 'Py = n]!'(N—n"_l)! p; -(1-py) (6.54)

Note that the binomial distribution is completely determined by ny, and N. The mean and

variance of this distribution is given by [21]:

E(n;) = N-p; and V(n;) = N-p, - (1-p,) (6.55)

In our case though, we are interested in the random variable P, ., instead of n;, because

P; is an estimate of p;:

ny
pl = N (6.56)

The probability distribution of P, is easily obtained from that of n;:

5_P__(N-1)t o _  N-n
P=N=at-(Nony P (1-p) €57
Its mean and variance are [21]:
., _Ppp-(1-py)
E(p)) = py and V(py) = ——L (6.58)

We extend this analysis now to a multi-dimensional space, since a category of evi-
dence can lead to more than two faults. Assuming that the faults F; (i = 1, ..., k) are inde-

pendent of each other, and that their probabilities p; are constant, the number of
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occurrences of fault F;, n;, among N occurrences of faults follows a multinomial distribu-

tion [59]:

k k

N! n . _
P=oray IIpti=tk& 3o =N (659
i=1 i=1

The mean and covariance matrix of this distribution are given by [59]:
E(n) = N-p and V(n) = N[diag(p)-pp'] (6.60)

where p is the vector of fault probabilities. As for the estimated fault probability p, ,i=1,
..., k, defined as:
k

P = %’Wi‘h 2n =N, (6.61)
its probability function is obtained from thc:l :n:ltinomia] distribution:
k
p=§=H‘HP? (6.62)

i=1
The mean vector and covariance matrix are given by [59]:
E(p) = p and V() = X(diag(p) - pp] (6.63)

Now that the probability density function of the vector P is known, its upper and
lower bounds, py; and Py , can be calculated for any level of confidence C. If the area

under the probability density function is normalized to 1.0, C is defined as follows:

C=1-Pr(P<PL)-Pr(p>Ppy) (6.64)

where Pr(Pp <p;) corresponds to the area under the probability density function with p
being between 0 and P, , and Pr(p > pyy) corresponds to the area under the probability
density function with P being between py; and 1.0.

Instead of integrating the area underneath the probability density function of p,we

choose to work with the probability density function of the vector n, because its multino-
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mial distribution has been better studied in the literature. For a specific n;, a component of

the vector n, the probability that n; is less than a number 0L is given by [77][78]:

Pr(nj<nj'L) = Il-pj(N'“j,L"' 1=“j,L) (6.65)

where Ix(m,n) is the incomplete beta function ratio [77):

X
_ 1 m-1 n-1
Ix(mn) = ¢ o (j) X" (1-x)"" Tdx (6.66)
To calculate this integral, we use the following approximation [77):
Ix(m, n)=®(Z) (6.67)
where Z is:
d 2 0.5
Z= In-0.5-N(1-X)| '(1 + l/(6N)) ’ (6.68)
(V)
n-0.5 m-0.5
[(n -O.S)Iog{N(l—_x)}+ (m—O.S)log{ NX }]
and d is:
=n-t_(N+1)1- —(1- (X-0.5)
d=n-1 (N + 3)(1 X)+02(X/n) - (1-X)/m + =0 (6.69)

For example, the lower and upper bounds of a fault probability p; are calculated as fol-
lows, given a desired confidence level of 90%. There has been 50 training points for the

combination of evidence, i.e. N = 50, and the current estimate of p;is 0.3.

A 90% confidence level translates into finding Z; and Z,, such that ®(Z,) = 0.05 and
®(Z,) = 0.95 (equ. (6.64)). These correspond respectively to Z; = -1.64 and Z,=1.64

[21]. Next, we find n;; and n; y such that:

Pr(nj<mn; ;) = 1;_¢3(50-n0;; +1,n; ;) = &(Z)) (6.70)

Pr(nj<nj’U) = 11_0.3(50-nj,u+l,nj'u) = ¢(22) (6.71)
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To solve for n; and n; y» we solve equ. (6.68) with (X, m, n, Z) replaced by (0.7, 50 - np
+1,m;)., -1.64), and then with (X, m, n, Z) replaced by (0.7, 50 - njy +1, 0y, 1.64). We
calculate I, _,4(50-n Lt IL,n i L), varying n;; between 1 and 50, and do the same for
n; y- We have found that n; is about 10, and that n;y is about 21. Therefore, the lower

and upper bounds on p; are:

10 21
B35 = 02 and = 0.42 (6.72)

»UT 5D
6.10 Knowledge Base

The knowledge bases of the three photolithography machines are shown in the figures

below.
Operator Observation Streaks on Wafer Spin Speed
Circular Resist Patterns Spin Time
Age of Machine Age of Reference Wafer, Baking Time
[ — _.Cgfnl’oﬂe“_t _______________ Baking Temp.
Machine Outputs Thickness Measurement Bottle Level
___________ PACMeasurement_ _ _ | | Relative Humidit
Type of Alarm N/A (see §6.7.4) =2 ‘.,e .
- - -Ft—c-) f-("_) qu_ts ——————————————— Bad Dispenser
i .
Predicted by a Hyp. | EQuipment Model Defect
Input Change to Meas. Error
Measurements .
Miscellaneous Fault
No Fault
vidence Space : It Space
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erator Observation| Temperature
Op Out of Range
Age of Machine Age of Lamp
Component Age of Filter
Machine Outputs PAC Measurement
Typeof Alarm | N/A (see §6.7.4) |
Fit of Outputs
Predicted by a Hyp. )
Input Change to Equipment Model
Measurements
vidence Spac

Wrong Input Thickness
Wrong Input PAC

Wrong Dose

Bad Lamp

Lamp Strike

Bad Filter / Optics

Bad Shutter Timing Circuit
Bad Light Integrating Circuit
Environmental Temperature
PAC Measurement Error
Miscellaneous Fault

No Fault

Operator Observation | Development Quality
Age of Machine Age of Developer
Component Needle
Machine Outputs | CD Measurement
| Typeof Alarm | N/A (see §6.74) |
Fit of Outputs
Predicted by a Hyp. )
Input Change tg Equipment Model
Measurements
e ac
igure 6. emati e

Wrong Input Thickness

Wrong Input Before Exposure PAC
Wrong Input After Exposure PAC
Wrong Develop Time

Bad Developer Needle

CD Measurement Efror

Developer Tank Pressure

Low Developer Level

Bad N, Tank Pressure

Bad Developer Tank Pressure

Fault Space
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6.11 Conclusion

A practical diagnostic system has been developed for photolithography equipment. Its
knowledge base uses both “shallow level”and “deep level” information for evidence,
which include operator observations, measurements, maintenance records, alarm type and
equipment models. Using basic probability theory, the diagnostic system calculates the
probability of all the faults from conditional probabilities, initially supplied by machine
experts, and subsequently automatically updated by the system. The procedure for com-
bining the estimates of conditional probabilities, and their convergence properties have
been discussed in detail in this chapter. Finally, the diagnostic system also determines
from the number of diagnosis cases and the confidence level, specified by the user, the
upper and lower bounds of the fault probabilities. A software implementation of the sys-
tem has been developed and applied on the photolithography equipment in the Microlab.

Experimental results are shown in the next chapter.
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Chapter 7 Experimental and Simulated Results

7.1 Introduction

While previous chapters present the theory and implementation of the control and
diagnostic system, this chapter presents the experimental results of the system. First, we
describe how we collect data and screen for outliers. Then we test the capability of the

process controller and diagnostic system.

7.2 Data Collection and Screening

While monitoring, not all readings are representative of the process. For example,
streaks are produced occasionally during the spin-coat and bake step. If a thickness mea-
surement is performed on the streak, it will be significantly different from the mean thick-
ness on the wafer. Yet that measurement is not representative of the wafer. Wide ranges of
measurements within the same sampled wafer are abnormal and are used by our screening
procedure to filter outlying measurements. After taking several measurements on the same
wafer, we apply them on a Range chart [21] (Figure 7.1). The wafer parameter of interest

is the range of the measurements, R:

R = Ymax = Ymin (7.1)
where ypax and yp, correspond to the highest and lowest measurement values within the
sampled wafer. The upper control limit, UCL, of the Range chart with the usual 3-sigma
control limit is given by:

_ dy_
UCL = R+3-2R (7.2)
d2

where R is the average range within all samples. d; is the standard deviation of the distri-
bution of the relative range, and d,, the mean of the distribution of the relative range. Both

d3 and d, are well documented functions of the sample size [21].
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If the range of a wafer violates the UCL, the screening program finds the measurement
that lies furthest away from the others, by going through each measurement, and calculat-
ing the range of the remainder measurements. The measurement, which if voided, results
in the smallest range, is then replaced by the average of the other measurements. The pro-
gram then checks the range against the UCL again, and if it is violated, iterates until no
more outliers are found. The caveat of this algorithm however is that the range of the mea-
surements could become artificially reduced. To avoid such a case, we use a higher than 3
sigma UCL, such as a 3.3 sigma UCL or a 3.72 sigma UCL instead, which corresponds to
a type I error of 0.05% or 0.01%, respectively.

7.3 Experimental Results of the Process Controller
Next, we evaluate the overall effectiveness of the process controller, by applying it to
all three pieces of equipment: the wafer track, the stepper and the developer. First, we will

apply only the feedback controller and analyze how much it improves the process capabil-
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ity. Then, we activate both feed-forward and feedback controllers to see how much

improvement feed-forward control brings.

7.3.1 Results of Feedback Control

In this section, we evaluate the overall effectiveness of the feedback controller, by
implementing it on photolithography equipment in the Microlab [20]. Our experiment
tests the performance of the wafer track, the stepper and the developer, under feedback
control and under no control. The experiment consists of processing P-type 4” silicon
wafers, coated with 1000A oxide, through the photolithography sequence of spin-coat and
bake, exposure, and develop. Control has been applied on a lot by lot basis instead of on a
run-by-run basis, with each lot consisting of three wafers. The historical average of each
machine output, when the machine was in-control, was chosen to be the target for the
machine output. Each wafer is sampled four times, with the average reading being
recorded. 60 wafers were divided into 20 lots (i.e, three wafers per lot). These 20 lots were
then divided into 2 groups (i.e, 10 lots per group). One lot of wafers was processed each
day, alternating between an uncontrolled baseline lot, and one subject to feedback control.
Details of the experiment, which consist of machine outputs, alarms, and recipe changes,

are summarized in the next four figures.

A comparison of the final CD distribution of the two groups of wafers confirms that
the feedback controller is very efficient and successful in centering the overall process on
target (Figure 7.6). This is largely due to the robustness and accuracy with which the

model update algorithm adapts the equipment models to the new process states.
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7.3.2 Simulation Results of Feed-Forward & Feedback Control

Next, we evaluate the capability of the process, when subject to both feedback and
feed-forward control actions. Due to technical difficulties in the Microlab, we could not
perform this experiment with actual wafers. Therefore, we have performed instead com-

puter simulations of the process. In both baseline and controlled processes, we simulated

the following drifting process:

Wafer Track Stepper Developer

Wafer# | Thickness | pacprif PAC Drift CD Drift
1-49 0 0 0 0
50-99 | +4 A/wafer 0 0 0
100 - 149 | -2 A/wafer | -0.001/wafer 0 0
150 - 199 | -1 A/wafer 0 +0.002/wafer 0
200-249 | -3 A/wafer | +0.0005/wafer || +0.0005/wafer 0

able ift Settings imulated iment
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We did not simulate the developer drifting because the feed-forward controller would
be ineffective to correct for that, since the developer is the last machine in the sequence.
We also did not simulate sudden shifts in process performances, because our controller
was specifically designed to correct process shifts and has been demonstrated to work very
well in such cases [11]. We simulated instead process drifts, because first, they pose a big-
ger challenge to our current version of the controller, which is not explicitly made to han-
dle drifts (since time was not part of any model inputs), and because second, process drifts
occur more often than process shifts from our experience in the laboratory. The figures

below summarize the complete experiment.

We notice that a few glitches appear among the recipe changes. Upon their investiga-
tions, we have concluded that although the theories underlying the control system are
sound, the robustness of some of its algorithms, such as the recipe generation algorithm,

could be improved.
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7.3.3 Summary

The experimental results of the feedback and feed-forward controllers are very
encouraging. The feedback controller is very efficient in detecting drifts and in bringing
the process back on target, while the complementing feed-forward controller is very effi-
cient in reducing process variations. The combination of both controllers has proven to be

a powerful tool in increasing the process capability of the photolithography sequence.

7.4 Experimental Results of the Diagnostic System
7.4.1 Software Implementation of the Diagnostic System

The diagnostic system is activated only upon a control or malfunction alarm. The rea-
son is because the sensitivity of any diagnostic system is generally limited: if diagnosis
were performed on every single wafer, a great number of misdiagnosis would occur, caus-
ing people to lose trust in the diagnostic system. For that reason, we have decided to diag-
nose only suspicious wafers, which are currently defined as those that have generated

either a control or a malfunction alarm.
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Upon an alarm, the diagnostic system calculates the probability of all the faults and
presents the result to the operator. The operator is then expected to confirm the problem
and enter the real fault into the computer, after which the diagnostic system updates the
file containing the conditional probability of faults for all combinations of evidence, and
the frequency of all faults. If the Miscellaneous Faults category becomes significant, i.e
the ratio of miscellaneous faults relative to the total number of faults exceeds a specified
threshold, the system suggests the user to update the fault list. It is very important for the
diagnostic system to be adaptive, since only time and experience can improve its effective-

ness.

The initial estimates of conditional probabilities come from the FAULT database [55]
and personal experience. They are not well tuned yet, for several reasons. First, not all the
faults described by the diagnostic system are fields in the FAULT database. Some, such as
relative humidity or N, pressure, are considered part of the regular process variations in
the laboratory. Second, we only have information on one machine of each kind, and we
have estimates of only one expert (me), besides the database. However, since the system is
adaptive, it will ultimately converge onto the correct conditional probabilities, as more

diagnosis cases get logged.
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Figure 7.12 Example of a Result from our Diagnostic Svstem Implementation

7.4.2 Some Diagnosis Examples

We present now four real cases of alarms that have been diagnosed by a technician. We
will run those four examples through our diagnostic system to see if it would have helped

the technician identify the real problem.

7.4.2.1 Diagnosis Example #1

In the first example, a control alarm with a type I and II errors of 5% and 20% was trig-
gered on the stepper. The output PAC drifted up, and triggered the control alarm with a
value of 0.43, while the system predicted a value of 0.32 instead. The input thickness and
PAC were within specifications at 131154, and 0.96 respectively. The input dose was
specified at the standard recipe of 167 mJ/cm?. The environmental temperature was within
tolerance. The ages of the lamp and filter optics were 67 days and 50 days respectively,

while their characteristic lives were 45 days and 120 days respectively. The technician in
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charge traced the problem to a weak lamp and replaced it with a new one. The diagnostic

system estimated the fault probabilities as follows:

Fault Probabilty (%) | corioraon ) ok )
Wrong Input Thickness 3.19% 0.65% - 7.23%
Wrong Input PAC 3.73% 0.94% - 8.03%
Wrong Input Dose 9.06% 4.35% - 15.19%
Bad Lamp 34.73% 26.14% - 44.21%
Bad Environmental Temperature 1.29% 0% - 4.13%
Bad Lamp Strike 14.51% 8.49% - 21.83%
Damaged Filter Optics 0.22% 0% - 1.71%
Bad Shutter Timing Circuit 7.78% 3.44% - 13.55%
Bad Light Integrating Circuit 12.81% 7.15% - 19.80%
PAC Measurement Error 11.26% 5.97% - 17.92%
Miscellaneous Fault 1.60% 0% - 4.67%
No Fault 1.36% 0% - 4.26%

7.4.2.2 Diagnosis Example #2

In the second example, a malfunction alarm with a type I error of 5% was triggered on
the wafer track. Streaks of photoresist were observed on the wafer. No other pattern was
noted though. The inputs to the machine consisted of the normal recipe: a spin speed of
4600 RPM, a spin time of 30 seconds, a baking temperature of 90 °C, and a baking time of
60 seconds. The output thickness and PAC were 13658A and 0.99 respectively, and their
predicted values were 130924 and 0.97 respectively. The reference wafer had been
cleaned 1 day ago, and its characteristic life between cleanings is 7 days. The technician in
charge traced the problem to bubbles in the photoresist dispenser tube, which was then

cleaned. The diagnostic system estimated the fault probabilities as follows:
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Fault Probability (%) (Cox;r::::inlz\iﬂg;o%)

Wrong Input Spin Speed 7.24% 0% - 37.22%
Wrong Input Spin Time 0% 0% - 0%

Wrong Input Baking Temperature 3.14% 0% - 26.17%

Wrong Input Baking Time 13.49% 0% - 49.52%

Different Relative Humidity 2.38% 0% - 23.45%

Different Bottle Level 5.28% 0% - 32.42%

Dust Particle 6.70% 0% - 35.98%

Bad Photoresist Dispenser §7.36% 24.29% - 100%

Measurement Error 0.03% 0% - 0.05%
Miscellaneous Fault 0% 0% - 0%

No Fault 4.40% 0% - 29.94%

7.4.2.3 Diagnosis Example #3

In the third example, a control alarm was triggered on the wafer track. Its type I and
type II errors were set at 5% and 20%, respectively. There was no discernible pattern nor
any streak on the wafer. Actually, the laboratory users did not notice anything wrong with
the machine at all. The control alarm was triggered however, because the thickness and
PAC drifted to 13346A and 0.99 respectively from their expected values of 131024 and
0.97. The reference wafer was again just cleaned 2 days ago, and its characteristic life, i.e,
period between cleaning, is 7 days. We suspect the cause to be relative humidity and the
technician in charge agrees that relative humidity is the most probable cause. It was noted

from the sensor log that the relative humidity had indeed changed from values around 25%

to values around 50%. The diagnostic system’s estimates for this alarm are:
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Table 7.4 _Fault Probabilities of Di icE e #3
Fault Probability (%) (Cogg:::fig‘i?’fgo%)
Wrong Input Spin Time 0% 0% - 0%
Wrong Input Baking Temperature 3.19% 0% - 26.33%

Wrong Input Baking Time 10.16% 0% - 43.38%

Different Relative Humidity 63.76 % 30.82% - 100%
Different Bottle Level 15.07% 0% - 52.24%
Dust Particle 0% 0% - 0%

Bad Photoresist Dispenser 3.11% 0% - 26.09%
Measurement Error 0.11% 0% - 8.12%
Miscellaneous Fault 0% 0% - 0%

No Fault 3.34% 0% - 26.84%
7.4.2.4 Diagnosis Example #4

Finally, in the fourth example, a malfunction alarm occurred on the wafer track, on the
first batch of the day. The type I and type II errors of the malfunction alarm were 5% and
20% respectively. The thickness and PAC were 12032A and 0.94, which are significantly
different from their expected values of 13112A and 0.97. There was no discernible pattern,
nor any streak on the wafer. The reference wafer was in need of cleaning, since it has been
10 days since its last cleaning, and its characteristic life is 7 days. The diagnostic system

calculated the following fault probabilities:

able ilitie j j le #4
Fault Probability (%) (Co:ggl’::i‘g‘mggo% )
D e —
Wrong Input Spin Speed 32.54% 0% - 92.88 %

Wrong Input Spin Time 0% 0% - 0%
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able ] iliti i i #4
Fault Probability (%) (Co:gg::‘c’fﬁmggo% )
| Wrong Input Baking Temperature | 8.66% | 0%.5192% |

Wrong Input Baking Time 3.53% 0% - 36.31%

Different Relative Humidity 25.20% 0% - 82.42%
Different Bottle Level 1.12% 0% - 22.55%
Dust Particle 0.10% 0% - 0.15%

Bad Photoresist Dispenser 1.17% 0% - 23.04%
Measurement Error 8.32% 0% - 51.06%
Miscellaneous Fault 17.27% 0% - 69.66%

No Fault 2.10% 0% - 29.52%

When we checked the recipe of the machine, we confirmed that the diagnosis was
indeed correct. Somebody changed the spin speed of the recipe and forgot to change it

back to its default value.

7.4.3 Simulated Example of a False Diagnosis Converging to a Correct One

In section 6.9, we analyzed the rate of convergence of the conditional probabilities. To
improve our understanding, we have run a simulated experiment to see how many diagno-
sis are necessary to make the system converge from an incorrect set of conditional proba-

bilities to the correct one.

The experiment consists of using the same identical set of evidence on the diagnostic
system 300 times, and recording the resulting fault probabilities. We have used the follow-
ing evidence on the wafer stepper: a control alarm was triggered, under a type I error of
5% and type II error of 20%. The input thickness, PAC, and dose were 131 154, 0.96, and
167ml/cm? respectively. The expected PAC output was 0.312, but the actual output turned
out to be 0.286. The environmental temperature of the chamber was within tolerance. The

ages of the lamp and filter optics were 45 and 60 days respectively, and their characteristic
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lives are 45 days and 120 days, respectively. This evidence fitted the following category of

evidence best:

Table 7.6 _Evidence Space

Evidence Category Value
Possibly wrong input thickness True
Possibly wrong input PAC True
Possibly wrong input dose True
Out-of-range environmental temperature “ False
Output PAC Below target
Alarm type Control alarm
Lamp age Old
Filter age " New

The original estimates of the fault probabilities for the fault space are listed in the table

below, along with their ranges calculated at a 90% level of confidence:

able 7. ti itie
Fault Name I Fault Probability (%) | Fault Prob. Range (% - %)

" Wrong input thickness 13.68 0-34.27
Wrong input PAC 18.24 0-40.69

Wrong input dose 31.91 12.68 - 57.50

Bad lamp I 23.51 6.91 - 47.53
Bad environmental temperature 0 0-0

Bad lamp strike I 245 0-14.04
Damaged filter optics 3.69 0-17.01
Bad shutter timing circuit | 0.86 0-9.04
Bad light integrating circuit 0.86 0-9.04
PAC measurement error 3.55 0-16.67
Miscellaneous fault 0.51 0-7.33
No fault 0.74 0-8.57
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Now, we have assumed that this database is being used on a “new” machine, with no
pre-recorded history, that actually has a different set of problems. In other words, the fault
conditional probabilities in the database are incorrect for this machine. Given the same set
of evidence, we have assumed that the “true” fault probabilities of the new machine are

instead:

Fault Name Fault Probability (%)

Wrong input Thickness 2.00
Wrong input PAC 0.25
Wrong input Dose 7.00
Bad lamp 31.00

Bad environmental temperature 0.75
Bad lamp strike 18.00

Damaged filter optics 0

Bad shutter timing circuit 11.00
Bad light integrating circuit 13.00
PAC measurement error 15.00
Miscellaneous fault 1.00

No fault 1.00

To force these fault probabilities onto the diagnostic system, we have generated 300
random nun‘mbers between 0 and 1.0, which ultimately represent 300 diagnosis. We have
related these numbers to the various types of faults by binning the value of the random
number into categories, whose width is defined by the “true” probability of the fault.
Therefore, when we run the diagnosis case described previously 300 times, we use these
random numbers to simulate 300 faults with well defined probabilities. The database gets

updated following each diagnosis, and the converging fault probabilities are shown in Fig-
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7.5 Summary

In conclusion, we have tested both control and diagnostic systems on real and simu-
lated equipment in the Microlab. The results are very promising. The combination of the
feedback and feed-forward controllers proves itself very effective at keeping the targets of
each machine within specifications, by detecting and correcting process drifts as they
occur. Meanwhile, the diagnostic system has proven itself capable of homing into the cor-
rect problem, and of adapting itself from an incorrect set of conditional probabilities to a

correct one.
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Chapter 8 Conclusions

We have presented in this dissertation a methodology for developing a generic control
and diagnostic system for a sequence of interrelated processes. The goal of the thesis is to
provide an economical way of increasing the process capability of any sequence of interre-

lated process steps through innovative use of statistical techniques and probability theory.

The control system consists of a feedback loop and a feed-forward loop. The feedback
loop tracks the performance of the present machine, using adaptive equipment models,
and keeps the outputs of the machine centered around their respective target. It corrects
process drifts by detecting them and by generating new recipes to counter any significant
trends. After each process run, the feed-forward loop checks if standard settings on subse-
quent process steps would result in a correctly processed wafer. If the process outputs are
predicted to be off-target, it will correct for the shortcomings of the present machine by
generating customized recipes at the next process step. Together, the feedback and feed-
forward loop have been proven to significantly improve the process capability of the pho-
tolithography sequence, resulting in photoresist patterns which are closer to target and

have twice smaller variance.

The control mechanisms used in the control system are themselves not novel, but the
way they are used is. We have purposefully chosen to use well known statistical tech-
niques, instead of heuristics, to detect the process disturbances, and well known optimiza-
tion techniques to generate recipes and update the equipment models. Thus, the resulting
control methodology can be applied to any machine, and its accuracy can be properly
quantified. If the equipment models were more complex, the control methodology would
still be valid, although better optimization algorithms may be needed for the recipe gener-

ation and model updating algorithms.
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In summary, the theory is clearly applicable to any sequence of interrelated process
steps, and we have chosen to use the photolithography sequence purely as a demonstration
vehicle. If future photolithography processes change from the one we have described in
this thesis, some of the monitoring parameters will change, but the control methodology

can still be applied to the new processes.

The control methodology can however be further improved, by fixing only the final
output(s), instead of keeping every intermediary machine target fixed. In such a control
methodology, the outputs of the intermediary processes would be dynamically adjusted,
optimizing the final process output. Such a scheme has been investigated and has resulted
in better process control. Another future direction for better process control is to actually
model the time dependencies directly, so that process drifts can be corrected more accu-

rately.

We have also implemented a diagnostic system to complement this control system.
After each fault detection, the diagnostic system is activated to assist the operator in find-

ing the cause of the decreased performance.

As in the case of the controller, the structure of the diagnostic system is also generic
and can be applied on any machine. The diagnostic system is based on conventional prob-
ability theory, because its mathematical foundations are rigorous, and its assumptions are
valid in our domain. The main novelty of our diagnostic system is that it incorporates both
shallow and deep level information as evidence, so that any evidence can be used to diag-
nose faults. Typically, current diagnostic systems only handle one type of information (i.e,
either shallow level or deep level only), which prevents them from gathering all necessary
evidence in order to properly diagnose the fault. Furthermore, it also limits their diagnosis
capabilities, since some faults can only be diagnosed from deep level information,
whereas some others can only be diagnosed from shallow level information. Currently, we

incorporate five sources of evidence: operator observations, sensor information, machine
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maintenance data, process alarms, and equipment models. From this data, and from the
conditional probabilities of faults initially supplied by machine experts (and subsequently
updated by the system), the fault probabilities and their bounds are calculated, given a
specified confidence level. The convergence of the fault probabilities has been derived in
detail in the thesis, and the procedure for combining the estimates of conditional probabil-
ities given by the machine experts has also been described in detail. We have implemented
a software version of the diagnostic system, and tested it on real photolithography equip-

ment malfunctions and drifts.

As in the control methodology, the methodology for combining the estimates of the
conditional probabilities is not new, but comes from well known mathematical theories.
We have purposefully chosen to use them, because they lead to a robust diagnostic system,

that can be applied to any machine, and whose accuracy can be easily quantified.

Finally, although it is often successful in diagnosing the correct fault, the diagnostic
system can use further inputs from machine experts’ experiences. Other possible research
directions to improve diagnosis include better fault signature filtering, a more efficient
way of obtaining and managing the conditional probabilities of faults, and a better meth-

odology for the machine to learn conditional probabilities [86].
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APPENDIX 1 Program Documentation

We present now a brief documentation of all the files used in the diagnostic system.
* diagnosis.cc:

This is the main program of the diagnostic system. The inputs to this program consist
of (1) the file “machine_name_fault_matrix”, from which diagnosis.cc reads the fault con-
ditional probabilities, the list of faults, and the list of evidence, and (2) internal outputs of
the process controller, from which diagnosis.cc reads the type of alarm triggered, its type I

and type II errors, measurement values, and predicted output values. For example, the

input file to the stepper, named “gcaws_fault_matrix” looks as follows:

1. gcaws 1253

2.  Thickness_Problem 0

3. PAC_Before_Exposure_Problem 0
4. Dose_Problem 2

5. Bad_Lamp 33

6.  Environment_Temperature 10

7. Bad_Lamp_Strike 1

8.  Damaged_Filter_Optics 1

9. Bad_Shutter_Timing_Circuit 3
10. Bad_Light_Integrating_Circuit 2
11. PACxp_Measurement_Error 9
12. Miscellaneous_Fault 2

13. No_Fault 3

14. Physical_observations 1
15.  Chamber_Temp_Out_Of_Range 2
16. False True

17.  Output_measurements 1
18. PACxp2
19. Below_target Above_target

20. Alarm_type 1
21. Alarm 356231102108
22. Malfunction Control False

23. Machine_component_age 2
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24. Lamp_Age245.040.03.5

25. New Old
26. Filter_Age 2 60.0 100.0 2.5
27. New Old

28. Equipment_model_measurement 3
29. thickness 2
30. Not_Fit Fit

31. PAC2
32. Not_Fit Fit
33. Dose?2

34. Not_Fit Fit

35. 70.0000.000 0.714 0.000 0.000 0.000 0.000 0.000 0.000 0.286 0.000 0.000
36. 90.000 0.000 0.710 0.000 0.000 0.000 0.000 0.000 0.000 0.290 0.000 0.000
37. 80.0000.286 0.510 0.000 0.000 0.000 0.000 0.000 0.000 0.204 0.000 0.000
38. 30.1250.167 0.292 0.134 0.134 0.000 0.134 0.000 0.000 0.000 0.000 0.000
39. etc..

Line #1 contains the machine name, the number of faults in the fault space, the number

of pieces of evidence, and the number of inputs to the machine.
Lines #2 - #13 contain the name of a fault, and the number of times it has occurred.

Lines #14 - #34 contain the evidence data. There are five sets of pieces of evidence, as
mentioned on line #1. The name of each piece of evidence is listed first, followed by the
number of variables of the piece of evidence. Let ng,; be the number of variables, there are
afterwards n,,; pairs of lines. The first of the two lines lists the name of the variable and its

number of values, while the second line lists the values of the variable.

For the pieces of evidence related to the age of machine components and the type of
alarm, there are additional data. For the evidence concerning the age of machine compo-
nents, three numbers follow the number of values of the variable. The three numbers cor-
respond to the life of the component, its characteristic life, and its shape factor (Please
refer to §6.7.2 for details on these parameters). In the future, these numbers should be
obtained directly from the maintenance database. For the evidence concerning the type of

alarm, three numbers follow the number of variables. They correspond to the number of
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processed wafers, the number of malfunction alarms, and the number of contro] alarms
that have been triggered. The type I and II errors of the malfunction and control alarms are

specified by the user through the controller software.

Each line from line #35 to the end of the file stores the number of occurrences of a par-
ticular combination of evidence (first number), followed by the conditional probability of
each fault. The numbers are listed in the same order as the faults listed between line #2 -
#13.

diagnosis.cc then calculates the probability of all combinations of evidence, the proba-
bility of all the faults and their range, given a specified confidence level, which is specified

by the user interactively through the controller software.
* inputcp.cc:

This program asks the machine expert for his estimates of fault conditional probabili-
ties. It goes through each combination of evidence and asks the user to enter the number of
times s/he has seen that particular combination of evidence. Then it goes through the list
of faults and asks the user how many times s/he estimates that particular fault was the

cause. From that information, it calculates the fault conditional probabilities, and stores it

in a file designated by the user.
* join_cp.cc:

This program joins all the conditional probability files from all the machine experts

into one file, using the theory described by equation (6.49).



138 Appendix

[This page is intentionally blank]



References Chapter 9 139

Chapter 9 References

[1] S.M. Sze, “VLSI Technology”, 2nd Edition, McGraw Hill Book Co., 1988.
[2] Silicon Valley Group, Inc., 2240 Ringwood Ave., San Jose, CA 95131- 1716.
[3] GCA, 3111 Coronado, Santa Clara, CA 95054.

[4] SC Technology, Inc., 51 Whitney Place, Fremont, CA 94539.

[5] Sun Microsystems, Inc., 2550 Garcia Ave., Mountain View, CA 94043-1100.
[6] Nanometrics Inc., 690 East Arques Ave., Sunnyvale, CA 94086, 1990,

[7] Zhi-min Ling, Sovarong Leang, and Costas Spanos, “A Lithography Workcell Moni-
toring and Modeling Scheme”, Micro-Electronique 1990, Leuven, Belgium, Sept.
1990.

[8] Zhi-min Ling, Sovarong Leang and Costas Spanos, “In-Line Supervisory Control in a
Photolithographic Workeell”, SPIE, Symposium on Microelectronic Processing Inte-

gration, Santa Clara, Sept. 1990.

[9] Sovarong Leang and Costas Spanos, “Application of a Supervisory Control to a Pho-
tolithography Sequence”, Advanced Semiconductor Manufacturing Conference, Bos-

ton, Oct. 1992.

[10] Sovarong Leang and Costas Spanos, “Statistically Based Feedback Control of Photo-
resist Application”, Advanced Semiconductor Manufacturing Conference, Boston,

Oct. 1991.

[11] Sovarong Leang and Costas Spanos, “Application of Feed-Forward Control to a
Lithography Stepper”, International Semiconductor Manufacturing Science Sympo-

sium, San Francisco, June 1992.

[12] Sovarong Leang, “Supervisory Control System for a Photolithographic Workcell”,
M.S. Thesis, University of California at Berkeley, Memorandum No. UCB/ERL M92/



140 Chapter 9 References

70, July 1992.

{13] Andrew Neureuther et al, “SAMPLE”, University of California at Berkeley, Memo-
randum No. UCB/ERL MS82, 1982.

[14]) F. H.Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, “Characterization of Posi-
tive Photoresist”, IEEE Transactions on Electron Devices, Vol. ED-22, No.7, July

1975.

[15] F.H.Dill et al, “Modeling Projection Printing of Positive Photoresist”, IEEE trans. on
Electron Devices, vol. ED-22, No. 7, p.456, July 1975.

[16] Edward D. Palik, “Handbook of Optical Constants of Solids”, Vol I & II, Academic
Press, Maryland, 1991.

[17]) Max Born and Emil Wolf, “Principles of Optics - Electromagnetic Theory of Propaga-
tion, Interference and Diffraction of Light”, 6th Edition, Pergamon Press, 1980.

(18] M.1.D. Powell, “A Fast Algorithm for Nonlinearly Constrained Optimization Calcula-
tions.”, Proceedings of Dundee Conference on Numerical Analysis, 1977.

[19] OCG Chemicals Company, Address.

[20] Shang-Yi Ma, “Experimental Verification of the Sequential Optimization Methodol-
ogy”, M.S. Thesis, University of California Memorandum No. UCB/ ERL M93, 1993,

[21] Douglas C. Montgomery, “Introduction to Statistical Quality Control”, 2nd ed., New
York: John Wiley & Sons, 1990.

[22] G.Box, W. Hunter & S. Hunter, “Statistics for Experimenters: an Introduction to
Design, Data Analysis, and Model Building” 1st ed., New York, John Wiley & Sons,
1978.

[23] SAS Institute Inc., JIMP Version 2.0.2, Box 8000, Cary, NC 27512, 1989.

[24] Richard Guldi, C.D. Jenkins, G.M. Damminga, T.A. Baum, and T.A. Foster, “Process
Optimization Tweaking Tool (POTT) and its Application in Controlling Oxidation
Thickness”, IEEE trans. on Senﬁconductor Manufacturing, Vol.2, No. 2, pp. 54-59,



References Chapter 9 141

May 1989.

[25] Emanuel Sachs, R.S. Guo, S. Ha, and A. Hu, “Process Control System for VLSI Fab-
rication”, IEEE Trans. on Semiconductor Manufacturing, Vol. 4, No. 2, Pp. 134-144,
May, 1990.

[26] ULTRAMAX, Version 4.1, by ULTRAMAX Corp., 1990.

[27] B.J. Mandel, “The Regression Control Chart”, Journal of Quality Technology, Vol.1,
No.1, pp. 1-9, Jan. 1969,

[28] Richard Harris, “A Primer of Multivariate Statistics”, Academic Press, 1975.

[29] Sherry Lee, “A Strategy for Adaptive Regression Modeling of LPCVD Reactors”,

Special Issues in Semiconductor Manufacturing, Pp-69-80, University of California,

Berkeley / ERL M90/8, January 1990.

[30] Ronald Crosier, “Multivariate Generalizations of Cumulative Sum Quality-Control
Schemes”, Technometrics, Vol. 30, No. 3, Aug. 1988.

[31] William Woodall and Matoteng Ncube, “Multivariate CUSUM Quality-Control Pro-
cedures”, Technometrics, Vol. 27, No. 3, Aug. 1985.

[32] Mario Perez-Wilson, “Machine/Process Capability Study”, Advanced Systems Con-
sultants P.O. Box 1176, Scottsdale, AZ 85252-1176, 1989. |

[33] Crid Yu, “A Multivariate Exponentially Weighted Moving Average Control
Scheme”, Special Issues in Semiconductor Manufacturing I, University of California

at Berkeley, UCB Memorandum No. UCB/ERL M92/84, 1992.

[34] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery,
“Numerical Recipes in C”, 2nd Edition, Cambridge University Press, 1992,

[35] Bart Bombay, “The BCAM Control and Monitoring Environment”, University of Cal-
ifornia at Berkeley, M.S. Thesis, Memorandum No. UCB/ERL M92/1 13, 1992.

[36] Gene H. Golub, Charles F. Van Loan, “Matrix Computations”, 2nd Edition, John
Hopkins University Press, Baltimore, 1989.



142 Chapter 9 References

[37] Keung-Chi Ng and Bruce Abramson, “Uncertainty Management in Expert Systems”,
IEEE Expert, Vol. 5, No. 2, April 1990.

[38] D.A. Waterman, “A Guide to Expert Systems”, Addison-Wesley, Reading, MA
1986.

[39] 1. Pearl, “Probabilistic Reasoning in Intelligent Systems”, Morgan Kaufmann, Palo
Alto, CA, 1988.
[40] P.Hart, “Directions for Al in the Eighties”, Fairchild Technical Report No. 612, 1982.

[41] Y. Pan, “Qualitative Reasonings with Deep-Level Mechanism Models for Diagnoses
of Dependent Failures”, Ph.D dissertation, University of Illinois at Urbana-Cham-
paign, CSL Report T-132, 1983.

{42] B.G. Buchanan and E.H. Shortliffe, “Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project”, Addison-Wesley, Read-
ing, MA, 1984.

[43] R.A. Miller, H.E. Pople, Jr., and J.D. Myers, “Internist-1: An Experimental Com-
puter-Based Diagnostic Consultant for General Internal Medicine”, New England J.
Medicine, Vol. 307, No. 8, 1982, pp. 468-476.

[44] Jeff Yung-Choa Pan and Jay M. Tenenbaum, “P.LLE.S: An Engineer’s “Do-It-Your-
self” Knowledge System for Interpretation of Parametric Test Data”, Proceedings of
the 5th National Conference on Artificial Intelligence, pp. 836-843, 1986.

[45] B. de Finetti, “Theory of Probability”, John Wiley & Sons, New York, NY. 1974,

[46] Glenn Shafer, “A Mathematical Theory of Evidence”, Princeton University Press,
1976.

[47] L.A. Zadeh, “Fuzzy Sets as a Basis for a Theory of Possibility”, Fuzzy Sets and Sys-
tems, Vol. 1, No.1, pp. 3-28, 1978.

[48] M. A. Kramer, “Malfunction Diagnosis Using Quantitative Models with Non-Boolean

Reasoning in Expert Systems”, Journal of the American Institute of Chemical Engi-



References Chapter 9 143

neers, Vol. 33, No. 1, January 1987.

[49] B.N. Grosof, “Evidential Confirmation as Transformed Probability: On the Duality of
Priors and Updates”, in “Uncertainty in AI”, L.N. Kanal and J.F. Lemmer, eds.,
Elsevier, New York, NY, pp. 137-152, 1986.

[50] D. E. Heckerman and E.J. Horvitz, “On the Expressiveness of Rule-Based Systems
for Reasoning under Uncertainty”, Proceedings of 6th National Conference on Al,
Morgan Kaufmann, Palo Alto, CA, pp. 121-126, 1987.

[51] R.O. Duda, P.E. Hart, and N.L. Nilsson, “Subjective Bayesian Methods for a Rule-
Based Inference System”, Proceedings of National Computer Conference, Vol. 45, pp.
1075-1082, 1976.

[52] Norman H. Chang and Costas J. Spanos, “Continuous Equipment Diagnosis Using
Evidence Integration: an LPCVD Application”, IEEE Transactions on Semiconductor
Manufacturing, Vol. 4, No. 1, February 1991,

[53] Gary Stephen May, “Automated Malfunction Diagnosis of Integrated Circuit Manu-
facturing Equipment”, Ph.D dissertation, University of California at Berkeley, Memo-
randum No. UCB/ERL M91/33, April 1991.

[54] G.A.Bamnard, “Control Charts and Stochastic Processes”, Journal of the Royal Statis-
tical Society, (B), Vol. 25, 1959.

[55] David Mudie and Norman Chang, “FAULTS: An Equipment Maintenance and Repair
System Using a Relational Database”, Proceedings of the 1990 IEEE/CHMT Interna-
tional Electronics Manufacturing Technology Symposium, October, 1990.

[56] R.P. Lippman, “An Introduction to Computing with Neural Nets”, IEEE ASSP Mag-
azine, April 1987.

[57) A.Rege and A. M. Agogino, “Knowledge-based Expert Systems for Manufacturing”
ASME-PED Vol. 24, pp. 67-83, 1986.

[58] Pamela Tsai, “A Neural System for Calibrating a Lithography Wafer Stepper”, M.S



144 Chapter 9 References

Thesis, UC Berkeley, CA, June 1994,

[59] K.V. Mardia, J.T. Kent, and J.M. Bibby, “Multivariate Analysis”, Academic Press,
1979.

[60] Warren Flack, David Soong, Alexis Bell, and Dennis Hess, “A Mathematical Model
for Spin Coating of Polymer Resists”, Journal of Applied Physics, Vol. 56, pp. 1199-
1206, Aug. 1984.

[61] K.C. Hickman, S. M. Gaspar, K. P. Bishop, S. S. H. Nagvi, J. R. McNeil, G. D. Tip-
ton, B. R. Stallard, and B. L. Draper, “Use of Diffracted Light from Latent Images to
Improve Lithography Control”, Journal of Vacuum Science & Technology, Vol. B10,
p. 2259, June 1992,

[62] R. Azari et al, “Dynamic Statistical Process Control”, SPIE vol.921, p.258, 1988

[63] W.G. Oldham et al, “A General Simulator for VLSI Lithography and Etching Pro-
cess”, IEEE trans. Electron Devices, vol. ED-27, p.717, 1979.

[64] Costas J. Spanos, Sovarong Leang, and Sherry F. Lee, “ A Control and Diagnosis
Scheme for Semiconductor Manufacturing”, American Control Conference, Vol. 3,

pp- 3008-3012, June 1993.

[65] Peter A. Morris, “Combining Expert Judgements: A Bayesian Approach”, Manage-
ment Science, Vol. 23, No. 7, pp. 679 - 693, March 1977.

[66] Robert F. Bordley, “A Multiplicative Formula for Aggregating Probability Assess-
ments”, Management Science, Vol. 28, No. 10, pp. 1137 - 1148, October 1982.

[67) Christian Genest and Mark J. Schervish, “Modeling Expert Judgments for Bayesian
Updating”, The Annals of Statistics, Vol. 13, No. 3, pp. 1198 - 1212, 1985.

[68] S.R. Dalal and W.J. Hall, “Approximating Priors by Mixtures of Natura]l Conjugate
Priors”, Journal Royal Statistical Society Series B, Vol. 45, No. 2, pp. 278 - 286, 1982.

[69] Patrick D.T. O’Connor, “Reliability and Quality Engineering”, Encyclopedia of Phys-
ical Sciences and Technology, Vol. 12, Academic Press, Inc., pp. 128-146, 1987.



References Chapter 9 145

[70] Harry F. Martz, “Reliability Theory”, Encyclopedia of Physical Sciences and Tech-
nology, Vol. 12, Academic Press, Inc., pp. 147-163, 1987.

[71] Max B. Mendel and Thomas B. Sheridan, “Filtering Information from Human

Experts”, IEEE Transactions on Systems, Man and Cybemetics, Vol. 36, No.1, pp. 6-
16, January/February 1989.

[72] Robert Winkler, “The Concensus of Subjective Probability Distributions”, Manage-
ment Science, Vol. 15, No. 2, pp. B-61 - B-75, October 1968.

[73] Edmund Eisenberg and David Gale, “Concensus of Subjective Probabilities: The Pari-
Mutuel Method”, Annals of Mathematical Statistics, Vol. 30, 1959, pp. 165-168.

[74] Frederick Sanders, “On Subjective Probability Forecasting”, Journal of Applied
Meteorology, Vol. 2, No. 2, pp. 191-201, April 1963.

[75] Robert Winkler, “The Assessment of Prior Distributions in Bayesian Analysis”, Jour-
nal of the American Statistical Association, Vol. 62, pp. 776-800, 1967.

[76] Howard Raiffa and Robert Schlaifer, Applied Statistical Decision Theory, Harvard
University, Division of Research, Graduate School of Business Administration, Bos-

ton, 1961.

[77]) Norman L. Johnson and Samuel Kotz, Continuous Univariate Distributions, Vol. 1 &

2, Houghton Mifflin Co., Boston, 1970.
[78] N. L. Johnson, “An approximation to the multinomial distribution: some properties
and applications”, Biometrika, Vol. 47, pp. 93-102, 1960.

[79] J. McGehee, J. Hebley, and J. Mahaffey, “The MMST Computer Integrated Manufac-
turing System Framework”, IEEE Transaction on Semiconductor Manufacturing, Vol.
7, p.107, May 94.

[80] Michael Sullivan, Stephanie Watts Butler, Judith Hirsch, and C. Jason Wang, “A
Control-to-Target Architecture for Process Control”, IEEE Transaction on Semicon-

ductor Manufacturing, Vol. 7, p.134, May 94.



References Chapter 9 146

[81] Stephanie Watts Butler and Jerry A. Stefani, “Supervisory Run-to-Run Control of
Polysilicon Gate Etch Using In Situ Ellipsometry”, IEEE Transaction on Semiconduc-
tor Manufacturing, Vol. 7, p.193, May 1994,

[82] A.Hu, E. Sachs. A/ Ingolfsson, and P. Langer, IEEE/SEMI Int. Semiconductor Man-
ufacturing Science Symposium, pp. 73 - 78, 1992.

[83] Sik-Lam Wong, “Measurement of Refractive Index / Film Thickness by Ellipsome-
try”, M.S Dissertation, University of California at Berkeley, 1973.

[84] Sherry Lee, “Semiconductor Equipment Analysis and Wafer State Prediction System
Using Real Time Data”, Ph.D thesis Dissertation, University of California at Berkeley,
Memorandum No. UCB/ERL M94/104, 1994.

[85] S. Saxena, and A. Unruh, “Diagnosis of Semiconductor Manufacturing Equipment
and Processes”, IEEE Transaction on Semiconductor Manufacturing, Vol. 7, p.220,

May 1994.

[86] Alice M. Agogino, Ming-Lei Tseng,and Punit Jain, “Integrating Neural Networks
with Influence Diagrams for Power Plant Monitoring and Diagnostics”, Neural Net-
work Computing for the Electric Power Industry: Proceedings of the 1992 INNS
Workshop (International Neural Network Society), Lawrence Erlbaum Associates,

Publishers, Hillsdale, NJ, pp. 213-216.



	Copyright notice 1995
	ERL-95-69

