Copyright © 1995, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

VIDEOSTATION: A COMPOSITION PLATFORM
FOR ADVANCED VIDEO SERVICES

by

Wen-lung Chen

Memorandum No. UCB/ERL M95/7

25 January 1995

VIDEOSTATION: A COMPOSITION PLATFORM
FOR ADVANCED VIDEO SERVICES

Copyright © 1994

by

Wen-lung Chen

Memorandum No. UCB/ERL M95/7

25 January 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

VIDEOSTATION: A COMPOSITION PLATFORM
FOR ADVANCED VIDEO SERVICES

Copyright © 1994
by

Wen-lung Chen

Memorandum No. UCB/ERL M95/7

25 January 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

VideoStation: A Composition platform for Advanced Video

Services

by
Wen-lung Chen

Doctor of Philosophy in Engincering—Electrical Engineering and Computer Science
University of California at Berkeley

Professor David G. Messerschmitt, Chair

The advancement of the computer technology, broadband networking, and video compres-
sion technology makes it possible to support advanced video services such as video tele-
phony, multi-party video conference, tele-seminar, distant learning, video on demand,
interactive TV, full motion video games, and virtual reality. In these advanced video ser-
vices, video materials are generated and/or stored distributively over the network, and
shared and retricved by many users over the network in real-time. To support advanced
video scrvices, one important issuc is the integration of all pieces of primitive video infor-
mation from multiple points on the network to produce the final results suitable for per-
sonal use. With ail the fundamental real-time video supporting technologies today, one
missing picce for supporting advance video services is the high-level structure of the video
integration that enables efficicnt use and manipulation of the video elements. This integra-

tion process of video materials, called video compositing, is the main topic of this thesis.

In this thesis, we propose a structured video model 10 provide a framework to support all
kinds of video information compositing. It represents the composited video scene in a
hierarchical tree structure while at the same time keeps all the video clements logically
separate over the network until the very last stage of video compositing at the users work-
station. By doing this, the whole data structurc is maintained in a very clean, structural

way. All the video clements can also be kept in a simple form that can be most efficient for

d 1 1 tY . - .
ata compression. video material sharing and reuse. This makes the nctwork management
and the network resource utilization more efficient. The structured video model also pro-

vi . : el . .. I] .
ides means to support interactive control for real-time compositing ol video information.

Bascd on the structured video model, we have explored various aspects of the realization
of structured video. We have explored both spatial and temporal compositing issues L0
realize the structured video model. We also designed a real-time compositing plaudorm
called VideoStation to demonstrate the feasibility of the structured vidco model under the
limitation of today’s supponiing technologics. We propose a pipelinc architecture for Vid-
eoStation to address the memory bandwidth and processing capability bottlenecks in
today’s memory and processor technology. To explore various video supporting technolo-
gies, the VideoStation is implemented in two diffcrent approaches — the programmable
video signal processing and ASIC design. We have compared the results of these two
implementations, and discuss the improvement of video signal processor design to support
general real-time video signal processing al ms cfficiendy.

ANk N R

David G. Messerschmitt

Committee Chair

to

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION 1

1.1 Motivations |

1.2 Thesis organization 6

CHAPTER 2

ADVANCED VIDEO SERVICES 8

2.1 Advanced video services and their requirements 10

2.1.1 Advanced video services 10
2.1.2 Media characteristics 11

2.2 Review of the current technology in three major components 13
2.2.1 Mullimedia workstation 13

222 Network 15
ATM technology 16
Video support of ATM network 18
2.2.3 Multimedia information server 20
Requirements 21
Technologics in multimedia information server 22

2.3 Conclusion 26

CHAPTER 3

STRUCTURED VIDEO MODEL 29

31 Objecuves 31
3.2 Review of today's standard in multimedia information representation 34
3.3 The definition of a structured video model 39
3.3.1 Video Object 42
Propertics of video objeet 43
3.3.2 Compositing tunction 47
3.3.3 Basic compositing functions 49
Spatial aspeet S0
Temporal Aspect 52
334 Constraints 56
335 [vents S8
3.3.6 Representation of structured video 59
Spatial representation 59
‘Temporal representation 60
34 Advantages of structured video 62
35 Conclusion 66
CHAPTER 4

STRUCTURED VIDEO REALIZATION ISSUES

4.1

4.2

43

Spatial compositing 70

411 Anti-aliasing 70

4.1.2 Compositing algorithm 72

4.1.3 Distributed implementation of structured video 73
Re-structuring of compositing function 76

4.1.4 Possible cfficicnt implementation in spatial compositing 82

Temporal compositing (synchronization) {6

4.2.1 Synchronization buckground 87
422 Clock ratc matching 90
Brief review 90
Gilobal clock for structured video 92
4.23 Many-tw-onc type synchronization in structurcd video 93

Conclusion 96

CHAPTER §

THE VIDEOSTATION — A PLATFORM FOR VIDEO COMPOSITING 99
5.1 Objecuves 100
52 Today's technology for video display 101
5.2.1 Today's memory components 103
5.2.2 Today's display processors 107
5.3 Architecture consideration 109
5.4 VideoStation design 111
541 Anintegrated compositing algorithm 111
5.4.2 Pipeline architecture 113
5.4.3 A modificd approach to avoid presorting 116
5.5 Conclusion 121
CHAPTER 6
VIDEOSTATION PROTOTYPE 123

6.1 System Perspective 124

6.1.1 Graphic Stages 125
6.1.2 Isochronous object stage 126
6.1.3 Control 129

6.2 Compositing processor implementation with programmable VSP

6.2.1 Programmablc VSP overview 130
6.2.2 Philips architecture. 131
6.2.3 Implementation result and discussion 133
6.3 Compositing processor implementation with ASIC 137

6.3.1 Design environment 137
6.3.2 Design methodology 137
6.3.3 Simufation. fabrication and testing 140

6.4 Conclusion 141

130

vi

CHAPTER 7

CONCLUSION 144
7.1 Summury of rescarch result 144
7.2 Puture Direction 148
REFERENCES 150
Appendix A
Video compositing processor implementation with Philip
VSP 156
A.1 VSP-8 hardware connection graph(Hard Draw) 156
A2 Video compositing algorithm signal flow graph (Soft Draw) 157
Appendix B
Video compositing processor implementation with ASIC
approach 161

B.1 Chip functional diagram 161

B.2 VCP finite state machine block implementation 164
B.3 VCP combinational logic block implementation 171
B.4 VCP scanning register path for testing 172

B.5 VCP chip pin diagram 173

Acknowledgments

[would like (o thank many people who helped me on this Ph.D. work. 1 could not have
finished this dissertation without all of their valuable contributions. First of all, I would
like to thank Professor Messerschmitt for his advising, constant support and patience. [
would also like to thank Paui Haskell, Shih-Fu Chang, Louie Yun, Chung Sheng Li. Ho-
Ping Tseng, Chuen-Chieh Lee and many other friends for their valuable discussions. Paul
Haskell also wrote a software emulator for the VideoStation compositing model. Louie
Yun contributed a lot of his valuable time to design the VideoStation board using the ASIC
chip.

I'appreciate the assistance of Philips and Signetics in providing access to the VSP pro-
cessor and its softwarc tools in the VideoStation prototype design. Kees Vissers and
Arthur van Roermund of Philips Rescarch Laboratorics have been generous with their
time in assisting the project. I also appreciate the Asahi Chemical Co. for fabricating the
video compositing chip that I designed. T also thank Mr. Arakawa and his colleague for

their valuable time for communicating with us and doing the chip fabrication and testing.

' would like to thank also w my colleagues at Pacific Bell. Yuet Lee. Hon So. and Tom
Soon for their support and understanding. Hon So. especially gives me his full support Lo

help me finish this dissertation writing.

Finally T would like to thank my wife Esther and my parents for their constant help and

considerate. Without their help, I would not be able to finish this. Thanks'

Wen-lung Chen

vii

CHAPTER 1

INTRODUCTION

1.1 Motivations

Today's technology has tinally come to a point that multimedia applications are pos-
sible both on the desktop environment and over the network. The technologies for gener-
ating, manipulating, and distributing the tremendous volume of data involved in
multimedia information are becoming available. Typical examples of multimedia applica-
tions are video telephony, multi-party video conferencing, tele-seminars. distant learning,
video on demand, interactive TV, full motion video games. virtual reality, etc. Since the
definition of ‘multimedia’ is still somewhat vague, we will use the term advanced video
services to represent the services we have in mind. The ultimate goal of advanced video
services is to make it casy 1o present. share, manipulate. and reuse various kind of media
information. mainly full motion video. in an efficient way among all users over the net-
work. The triggering technologies for this advanced video service consists of three wech-

nologics: computers , broadband networks. and data compression.

2

In computer technology, the increasing capacity of storage devices and increasing pro-
cessing capability make it possible to store/retricve and manipulate multimedia informa-
tion more casily. CPU processing capability and memory device capacity increase every
year. thanks mainly to the advances in very large scale integrated (VLSI wchnology. In
addition to the advance of VLSI technology, parallel architectures are also important,
especially whenever the processing speed of the CPU or the bandwidth of the memory
device cannot keep up with the need for suppornting real-time full motion video. Examples
are the design in video read/write access memory (VRAM), and the redundant array of
inexpensive disks (RAID), which use special architectures to provide the bandwidth that
silicon devices or conventional mechanical magnetic disks cannot achieve.

In broadband network technology, the asynchronous transfer mode! (ATM) newwork
has been adopted by CCITT as the standard for broadband integrated services digital nct-
work (B-ISDN). Most of today’s network systems suffer from many disadvantages in sup-
porting multimedia due to the tremendous bandwidth requirement and the variety of tratfic
involved in multimedia. Advanced video services, by our definition, will include various
kinds of media. Each different medium may have different requirements when it is trans-
miticd over networks. For example, full motion video has a higher requirement for net-
work handwidth and delay jitter. However. it may be able to tolerate some crrors in
transport. Transmission of computer data requires very reliable transport. but is not as crit-
ical in the delay requirement. Audio strcams, on the other hand, are very sensitive to net-
work delays. All these different media impose different requirements. Today's network
cither does not support sufficicnt bandwidth for real-time full motion video. or is not tlex-
ible enough to support different kinds of traffic. The ATM network is basically a service
independent network. Its virtual circuit concept makes it possible to support any kind of
media transport or a combination of them in a quite etficient way. This kind of network

will be most usetul for transporting all the video, audio, graphics. ctc. The ATM network

I'ranster mode 1s a term used in telecommunications to describe multiplex and switchiog techniques

3
also provides a very high handwidth. The currently available ATM network supports
tratfic of 155 Mbps ((XC-3 rate) or even up o 600 Mbps (OC-12 rate) on one port. This is
equivalent to a bandwidth of about 100 to 400 video streams with MPEGI I compression
technology of the average bit rate from 1.2 Mbps 10 1.5 Mbps. The huge amount of band-
width capability and the flexibility for supporting multimedia make it the choice for a
futurc B-ISDN standard.

The third important technology is video compression. The uncompressed video infor-
mation takes a huge amount of bandwidth to ransmit. A CCIR 6012 video takes a band-
width of 216 or 270 Mbps for a word length of 8 or 10 bits, respectively. With no
compression. a single video stream cannot even it into one 155 Mb/s ATM port. With
compression. however, the video stream can be reduced to a much lower rate for transmis-
sion through the network. There are currently various compression standards used for var-
ious applications. For low-quality video conferencing, the H.261" standard can compress
the video down to p x 64 Kbps. The video quality is barcly acceptable when p is low.
MPEG I can be compressed down to 1.2 - 1.5 Mbps with VHS quality. It is used mainly
for application using storage devices. The algorithm is designed such that fast forward or
reverse is possible. MPEG 11 is aimed at entertainment. or even higher quality applica-
tions. The data rate is varying from 4 - 15 Mbps for a format conforming to CCIR 601
standard. 1o 60 Mbps tor high definition TV (HDTV).

A diagram of the advanced video service environment is given in Figure 1-1. illus-
trating how the different technologies work together. In this figure. all users are connected
with a broadband ATM network for sharing multimedia material. Any informaton.
including video. audio. graphics. still images. and text. are transmitted through the ATM

network in a very flexible manner. At the user location. basic features would include video

! ISONECHATCISC29/W Gi1E MPEG working group

)

T SMPTE recommendations 601. 2 tormat standard for studio quality video.
k) .
ITU-T/CCITT Recommendation 11.201. “Video Codec tor Audiovisual services at p x 63 Kbps.

J

Figure 1-1. Advanced video service environment.

compression/decompression. shooting real-time video sequences with a video camera.
retricving/saving multimedia information from/into a local storage device on the network.
composing multimedia information, and transmitting information over the network. Sev-
eral kind of devices can be provided on the network for serving all the users. such as a
large multimedia information scrver accessible by all users, video bridging or transcoding
for providing video stream merging and format conversion.

Even though this kind of service has heen discussed for quite a long time. it was never
as promising as it is today. The cost of equipment to support them is also decreasing.
which helps to make it practical. Today. people are proposing for a sct top box for interac-
tive TV with a price around $300. Such a set top box will include fcatures such as network
interface, video decompression, interactive control capability, and remote control capa-
hility. Among all the supporting blocks for multimedia. one single piece whose cost has
not come down is the production of the contents - mainly video materials. This is mainly
due to the difficulties in accessing and reusing existing video materials. Today, we can
very casily edit text and graphics information with even a very primitive personal com-
puter. Any single graphic object can be used over and over again in different documents.

However. it is usually more difficult to reuse and compose video materials. especially for

5
casual users. Most of today’s video composing activities are performed in video studios
with very expensive equipment.

The reason for this difficulty in reusing video material actually lies in the structure of
the video information itself. Unlike computer graphics which start from structural manner
for ctficicnt presentation. oday s video technology develops from guite a different origin.
The video technology today hasically puts all the information in one primitive video
stream with a rectangular screen shape. This single video strcam may include many dif-
ferent picces of information tightly intcgrated. A more structured format is needed in
order to utilize cxisting video material more casily. The need for a structured format actu-
ally already appears in the audio format in Japanese “Karaoke™ equipment. In Karaoke.
the sound of the original singer is separated trom the background music such that we can
choose to either hear the original singer’s voice or substitute our own voice for his voice.
This is a good example of how audio information nceds (o be more structured to have flex-
ibility in the presentation. A similar situation happens in video. Without any structural
information in this primitive video stream, it is usually very hard to retrieve cach indi-
vidual piece of information for rcuse. The whole video stream consisting of many pieces
of information has less chance to be reused than cach individual picce of information
because it is less generic for reuse.

The objective of this thesis is 1o study the structural approach for multimedia informa-
tion, mainly video information. We will try to use a structural model to make the presenta-
tion of video information more efficient, in terms of either representation. transmission,
and case of rcuse. With this objective. we propose a structured video model, which we
belicve will achieve these goals. In addition to better video material reuse. arranging the
video material in a structural manner also brings other advantages such as better compres-
sion. more efficient resource utilization. Starting trom this model. we also look into the
current technology that can actually implement the structured video model. Three major

components are required to support structured video. They are the workstation, used for

6
compositing and presenting structured video information: the storage system. used for
storing video information: and the network. used for ransporting video information. This
thesis will focus on the efficient implementation for the video display subsystem of a
workstation. which we call a VideoStation. We propose a pipeline architecture that can be
implemented with current technology to support real-time compositing and presentation of
structured video. We ailso implement the VideoStation with hoth an application specific
integrated circuit (ASIC) and a programmable video signal processing approach to get

more insight into the current technology.

1.2 Thesis organization

The organization of this thesis is as (ollows. In the second chapter. we describe in
more detail the advanced video scrvices that we have just outlined. and study their
requirements in terms of handwidth, processing, quality, ctc. We bricfly review today’s
technologics in regard (o the three major componcents for the support of advanced video
services — the workstation, the storage, and the network. We also discuss the relationship

of the three componcents to each other for efficient implementation.

In the third chapter. we describe the structured video model that we propose to facili-
tate efficient video information presentation and reuse. Some major components in the
model. such as video objects. compositing functions. constraints. and ¢vents are detined.
The compositing properties of these components are studied in detail. in both spatial and
temporal compositing aspects. Then we discuss the advantage and disadvantage of this

structured video model.

In the fourth chapter. we describe the implementation issues of the structured video
model. In the spatial compositing aspect. we discuss the anti-aliasing issuc. and derive the
algorithms for all the compositing functions of interest. We also study the propertics of

compositing functions to enable restructuring and other ways for more cfficient imple-

7
mentation. In the temporal compositing aspect. we study the synchronization issues. This
includes clock rate matching and synchronization among multiple video objects.

In the fifth chapter. we describe the VideoStation that we propose for real-time com-
positing and presentation for structured video. We start with a review ol today's display
technology, and describe the hottleneck in this compositing platform. Then we propose
our architecture — the pipeline architecture — to enable real-time compositing. We also
describe the design of the VideoStation. and some optimization issues.

In the sixth chapter. we describe our prototype of VideoStation. We use two quite dif-
ferent approaches for this implementation. In the first case. we use a fully dedicated
approach to show the efficiency of the VideoStation architecture. In the second case. we
usc a programmable video signal processing approach to get a better understanding of
today’s video supporting technology. The programmable approach also enables faster
implementation and casier debugging. We also discuss the advantages and disadvantages

of the architecture of the VSP chips.

In the last chapter, we summarize the results, and describe some important issues in

this ficld that will require further study in the future.

CHAPTER 2

ADVANCED VIDEO SERVICES

As we described in chapter 1, the technologies in computer. broadband network, and
data compression together bring up possibilitics to support advanced video services such
as video telephony, multi-party video conference, tele-seminar., distant leaming, video on
demand, interactive TV, full motion video games, virtual reality, ctc. In our definition,
advanced video services are video services that provide people with an casy way to
retricve, share. use. and present various kinds of information over the network. The media
that we consider are mainly full motion video sequences. but also includes audio.
graphics. images, and text. The ultimate goal is to allow people at different locations to

casily interact and collaborate among one other.

When advanced video services arce commonly used. it can significantly change the way
people interact. Full motion video not only lets people present their ideas more flexibly.
but also make people feel like the person were in front of them ceven though they are not.
This is most imponant for human interaction services such as video telephony. video con-

ferencing, and distance leamning.

9

There are three major components to advanced video services — the workstation that
processes and presents the information. the network that transports the information. and
the storage device that stores the information. Designing these components is a challenge
to support all kinds of media, especially full-motion video sequences. On top of these
components, an even more important issue is how various kinds ol media are organized in
a most efficient way to ease the information transport, process and presentation. This
includes specitying basic components of information materials and to define the data
structure of the basic components best fit for all advanced video services. This information
structure issuc is a major part of this thesis. and we will postpone the discussion about this
untl later chapters.

When all these components are put together on the network. there are also issues
regarding distributed processing. For example. whether should we store a picce of infor-
mation locally or remotely 1o make the overall process and transport most cfficient: how
the processing is allocated distributively such that the resources on the network are effi-
ciently used, ctc. These aspects allow further optimization when we address cach specific
service. To do this design, we need a better understanding of the characieristic of the infor-

mation that we want to support.

In this chapter. we give a general review of the advanced video services and the tech-
nologics in the three major components. In section 2.1, we list some advances video ser-
vices, and describe the characteristics of the media involved in these services. Then we

briefly review the technologies in each of the three components to support advanced video

services in scection 2.2.

10
2.1 Advanced video services and their requirements
2.1.1 Advanced video services
The advanced video services are categorized into two classes from the users environ-

ment as listed in Table 2-1 — the business applications and the home applications. Typical

TABLE 2-1:Advanced video services.

Type of application Application

Video tclephony/Multi-party video conference

Tele-seminar/Corporate training/Distant lcaming

Business
Open/share workspace/Remote Colluboration
Vidco mail
Video on demand/interactive TV
Bulletin board service/Home shopping service
Home

On-line multimedia magazine

Full motion vidco game

Virtual reality/Virtual trip

business applications include video telephony, multi-party video conferencing., open/share
workspace. tele-seminar, corporate training, distant learning, video mail. cete. Video tele-
phony and muiti-party video conferencing allow people to interact through the network
without moving to the same place. Tele-seminar, corporate training. and distant learning
allow people to attend a seminar or a class in either realtime or non-realtime manner. In
realtime. people can attend the seminar from different places: have two way communica-
tions between the audience and the speaker; and also can have subgroup discussions. In a
non-realtime manner. people access the seminar material pre-recorded in some informa-
tion server. and simultancously they may ask questions through a connection to the
speaker. or have discussions with cach other. The class material may involve video. slides.

or some interactive exercises. with all various media integrated in a graceful way. The

1
open/share workspace and remote collaboration are applications that allow people o work
on the same project from different sites. 1t provides a virtual workspace that has the project
material accessible to all the participating people. Any changes of the project material by
any participant will be retlected to all the rest of people in real-time. Video mail is an
extension of the current electronic mail and voice mail. It allows people to compose. store.

and distribute video message casily.

In a home user environment. video on demand allow people to order a video directly
from the network instead of walking into the video tape rental store. while allows people
to still have VCR-like control feature. such as pause. fast forward. cie.. over the displayed
video program. It also allows people to start watching the movie any time without wor-
rying about the movie schedule. The bulletin board and the home shopping service allow
people to browse through the catalogs ol many stores in real time. do research about the
quality and price of some merchandize, and finally place the order. The virtual reality and
virtual trip usc 3-D video to enable people to tour a place with a real sense of personal par-

ticipation.

2.1.2 Media characteristics

Various kinds ol media are involved in the applications described above — video.
audio, still images. binary data. interactive data. and their combination. The characteristics
of all these data types vary and cover the full spectrum ol possibilities. Technically, it is
quite a challenge to support all kinds of media and integrate them in a graceful way. The
characteristics that are of interest are the data rate, the total data volume. and the burstiness
of the traffic. Burstiness of the traffic is defined as the ratio between the maximum and the
average information rate. There are also characteristics that are application-dependent or
implementation-dependent. ¢.g., the sensitivity to the transport delay or delay jitter. For
example. some applications require intermediate response with little delay. while others

allow a long delay. The acceptable delay is determined by applications. not by the media

12
involved. Delay jitter. the variation of a delay. can usually be maintained to be under some
limit at the price of some butfering scheme and a longer delay.

All media can be categorized into two classes — non-realtime and realtime. The non-
realtime class includes ASCII files, binary data, still images. etc. The non-realtime media
has no hard time limit on when it should be available after we issue the access request.
Usually, we simply want to make the access as fast as possible for this class of media.
Since there is no hard-time limit on the access, the data rate and the burstiness vary,
depending on the application and the implementation. Typically, the burstiness of this
class of media is high hecause of the design of the storage device. For example. the
accesses of data from hard disk are always by a whole block. This causes the data tratfic to
be more bursty. The total data volume of this class of media also van'cs. They can be a
small ASCII file of several bytes. or a very large image file of several mega bytes. Today's

computer technology primarily focuses on this class of media. and can support them quite

well.
The rcaltime class includes data types that are usually accessed in a rhythmic way
instead of being accessed abruptly in as a short time as possible. They are access periodi-

cally with a certain data rate. and have a hard-time limit on when it is available. If some

TABLE 2-2:Real-time media and their data rate.

Types of media Data rate Burstincss
Voice 32 kbil/:— — 2
Interactive data 1-100 kbit/s 10
High quality video tclephony ().2-2 Mbit/s 5
Standard quality video 1.5-15 Mbiv/s 2-3
High dcfinition TV 15-150 Mbivs 1-2

data arc available after this hard-time limit, it becomes uscless. The transport delay jitter

therefore has imporant impact on the media in this class. The data types included in this

13
class are video. audio. interactive data. cte. The data rate and burstiness vary depending on
the media. as shown in Table 2-2. The typical data volume of this type of media is large.

In essence. the media involved in advanced video services have characteristics that
cover the full spectrum of possibilities. To implement advanced video services, we need Lo
support both real-time or non real-time data types. We need to handle the data rate from
several kbits/sec up o hundreds of Mbits/sec. The total data volume can be from bytes up
to gigabytes. The burstiness also varies a lot. The components that store. transport. and

display these media need o handle this heterogeneity in an efficient way.

2.2 Review of the current technology in three major components

In this section, we review today’s technology in terms ol presenting. transporting and
storing the media for advanced video services. Today’s computer technology starting from
non-realtime data environment has no problem with the non-realtime media. The chal-
lenge occurs when the data rate grows higher and when the data volume grows very large.
This is mainly introduced by full-motion video. Therefore we will focus on the support of
video streams when we discuss the three components. We will also briefly mention how

the current technology handles the heterogeneity of media types.

2.2.1 Multimedia workstation

One major component for advanced video services is the multimedia workstation that
users dircctly reach. Through this workstation. a user can access. view. and compose a
multimedia material. The function of this multimedia workstation is to receive and decode
various kind of media either from a local storage device or from the network. combine the
media according to some specified data structure. and present them on the display screen.

There are three components in the multimedia workstation — the media interface that
receives and decodes the media, the human interface that eases the manipulation of var-
ious media. and the compositing display that combines the media. The media interface

relies on existing standards. For full motion video, there are several video compression

14
formats available for various applications. H.261. motion JPEG. MPEG 1. and MPEG 2
are some examples. H.261 is a constant bit rate video compression standard for video tele-
phony application. Motion JPEG (MJPEG) is a video extension of the JPEG still image
standard. It is preferable to some applications that need w support video editing features
because of its intra-frame compression algorithm. MPEG 1 is originally proposed for
video storage related applications with roughly VHS video quality. MPEG 2 is a higher
quality proposed for video entertainment quality. It includes video resolution from NTSC
video quality to high definition TV. No mauer what standard is used. the media interface
should provide appropriate decompression according o the nature of the media.

The human interface is important for multimedia presentation because of the com-
plexity involved. Traditional mono-media applications. ¢.g., the voice phone. have a very
clearly defined media and function and are casy to handle. When the application involves
multiple media. however, there are all kinds of combinations and possibilitics. The com-
plexity will go beyond people’s ability 1o handle if a proper human interface is not avail-
able. One basic principle of designing the human interface is to use the analogy to
conventional way of doing things. For example, H. Kamata et. al. proposed in their MON-
STER muitimedia system a human interface hased on the conventional paper document
system that people are most familiar today[29). In addition. the technology in today’s
computer system should also be incorporated. ¢.g.. the hyper-linking technigue that allows
casy access to related material by specifying their relationships through a link. The
authoring capability allowing users to easily compose a multimedia material is also impor-

tant. Currently, commercial multimedia authoring systems arc alrcady available on the

market. 1

The compositing display system that combines the media and shows the material on

the display is a major bottleneck in a multimedia workstation. Most of today’s worksta-

I For example. Giain Momentum trom Gain Fechnolopy lnc.

15
tions cannot support full-motion video. With special hardware. some workstation can sup-
port very limited full-motion capabililics'. Most of the existing special hardware of
workstation supporting {ull-motion video simply replaces the original frame bulfer with a
faster one such that one (or two) rectangular full-motion video window can show on the
display. The big disadvantage of this approach is the scalability — they cannot he
expanded to accommodate more video streams. In advanced video services, multiple
simultaneous video streams are essential. One solution o this is to use a video bridge to
merge all the video streams into one stream in advance. such that the user need only o
receive and display one video stream. This approach. however, has a very big limitation on
the use and manipulation of cach individual stream of video material to get the best result
ol presentation.

[n advanced video services, we want o support multiple video streams and manipulate
each individual one independently. To maximize the flexibility of video composition and
presentation in advanced video services, we also want the video streams to be arbitrarily
shaped instead of rectangular such that the video strcams can be easily put together and
composed into a new video scene. To do this, the compositing display system need to be
greatly cnhanced to support more claborated compositing operations for arbitrarily shaped
video streams. One goal of this thesis is t define structured video model based on arbi-
trarily shaped video streams to case the use and composition of video materials. and to
demonstrate the implementation ol compositing display system for the structured video.

All these aspects will be discussed in detail in later chapters.

2.2.2 Network

In this section. we will review the network technology, mainly asynchronous transfer
mode {ATM) technology, which supports the requirements of advanced video services. To

support advanced video services. the network needs to handle any kind of information.

. For example. X Video card trom #arallax lnc. tor Sparc stations and Video Blaster card trom Creative Lab
for PCs.

16
such as voice. data. image, text. and video. in an integrated manner. The network not only
needs to support the required bandwidth of the media. but also to support the heteroge-
neity of the services — bursty and continuous traffic. interactive and distributive services.
connection-oriented and connectionless, point-to-point and multipoint-to-multipoint con-
nections — all be integrated gracefully. The use of highly reliable liber systems can pro-
vide the necessary high bandwidth for advanced video services. To support heterogeneous

traffic, the transter mode of the network need to be considered.

Transfer mode. according to CCITT. is the technique used for transmission. multi-
plexing, and switching data information over the communication network. To support het-
crogencous traific. the transfer mode must be very flexible to transport a wide range of
natural bit rates and cope with services that have fluctuating characteristics in time. The
asynchronous transfer mode (ATM)[9][12] technology has been recognized to be the best
one to support the heterogeneous requirement. In this section, we will emphasize on the

ATM network technology.

2.2.2.1 ATM technology

ATM is a connection oriented packet switching technology that uses packet switching
with minimal functionality in the network to allow fast and efficient processing of the
switched information. The term “asynchronous™ is used because it allows asynchronous
operations between the sender and the receiver using independent clocks. In ATM. user
information is transmitted between communicating entities using fixed-sized packets
(called cells) of 53 bytes. By choosing such a small and fixed cell size, all constant bit
rate(CBR) and/or variable bit rate(VBR) services can be easily multiplexed together to
share the network resources. Small cell size also allows us to reduce the butfer size in the
switch to limit the buffer queuving delays. A low queuing delay is necessary to satisfy the
requirement of real time services. The buffer management and switching fabric design are
also simplificd with this small fixed cell size. There is no link-by-link error protection or

flow control in the ATM network. All the error detection and flow control mechanisms,

17
when necessary. are pushed up to the end-to-end transport layer to keep the switch system
simple and fast. With highly reliable fiber transmission, crror protection can he omitted
without causing much problem.

Today’s ATM newworks can provide the OC-3 rate of 155 Mbps. and most possibly up
to the OC1-12 rate of 622 Mbps soon. With this rate. the ATM network supports multiple
standard quality video streams or cven high definition TV quality video streams casily
with all other audio. data, images. Because of this, ATM has been adopted by CCITT as

the standard for the future broadband integrated services digital network (B-ISDN).

Since an ATM netwwork is a service independent network platform. it can be tuned to
support specific characteristics ol a connection on the network. Similar to the OSI layered
reference model. an ATM protocol reference model is also defined by CCITT. Among all
the layers in the reference model. the ATM adaptation layer (AAL) is defined to adapt var-
ious service information o the ATM streams to provide the required quality of ser-
vice(QoS) to services. The basic lunction of AAL includes scgmenting/reassembling the
information strcam into/from cells, maintaining the time/clock recovery information. com-

pensating variable delay and loss cells. clc.

Four AALs are currenuly defined by CCITT for four different classes of service. The
services are classified using three parameters: the timing relationship (realtime or non-
realtime), the bit rate (variable or constant bit rate), and the connection mode (connection-
less or connection-oriented.) The [our AALSs are:

* AALI: constant bit-ratc connection-oriented services with timing relation
between source and destination. Examples of this class of services are the
emulation of constant bit rate channels such as 1.5 Mbits T-1 connections
and constant bit-rate video coded connection (e.g., k x 64K).

* AAL2: variable bit-rate connection-oriented services with timing relation
between source and destination. Variable bit-rate video coded connection is

an example.

18

* AAL3/4: variable hit-rate connection-oriented/connectioniess data transter
services that are sensitive to loss, but not to delay. These are detined for
typical data communication.

e AALS: variable hit-rate connectionless data transfer services. This layer is
defined to olfer hetter error detection and less overhead then AAL3/A. The
typical scrvice of this class is also data communication.

Although ATM has alrcady heen deployed in public networks, there are still issues that
need to be resolved to really achieve the goal of serving as a high performance service
independent plattorm. The major issue is currently in the traflic management — how to
monitor the tratfic. to perform the admission control and traffic policing to avoid the con-
gestion in the network and guarantee the quality of the services for cach connection. The
other issuc is the routing — to select a best path in the network and maintain the correct-
ness, simplicity, robustness, stability, fairness, and reliability.
2.2.2.2 Video support of ATM network

In terms of supporting full motion video over ATM, the major issues are the clock
recovery/synchronization and error detection/correction/concealment. The clock recovery
deals with the different clock frequency at the video source and the destination. As the
name implies. ATM is asynchronous. meaning that the clock at different nodes can be
independent. This would cause the receiver o expect data at a faster or slower rate than it
is being transmitted. If the receiver runs at a faster clock rate, the bulter may be underflow
and the cells are thought to be lost. I the receiver runs at a slower clock rate. then the
buffer may be overflow and the cells are discarded. In either case. the quality of video is
degraded. To solve this problem, some timing information stamped in the data stream is
needed. Using the time stamp. we can recover a clock at the receiver to tightly lollow the
clock at the transmitter. In this way. the data consumption rate at the receiver and the data

generation rate at the transmitter will be roughly the same.

19

Besides using the recovered clock o avoid butter underflow/overflow. the recovered
clock is also used to generate the NTSC the video signal after the received data stream is
uncompressed. The current NTSC specilication for video has a very tight requirement on
the drift of the recovered clock. Consequently, MPEG 11 specifies the acceptable clock
drift 1o be under 0.075 Hafsee. 1t was shown by simulation by Divicom inc.! that the
recovered clock has a clock deviation as large as 10 Hz/see tor a 40-tap digiwl phase lock
loop filter, and 70 H#/sec tor a 20-tap filter, assuming a uniform i.i.d. jitter with a peak-to-
peak jitter of I msec. This is still two order of magnitude lower than the MPEG require-
ment. How to tind an economical way for clock recovery is currently still a research topic.

Synchronization among multiple video sources at the same receiver is also an issue to
be resolved. Using the clock recovery technique, the receiver can only keep track of one
video source. How 10 make all the video sources synchronized is yet to be solved. In this
thesis, we will discuss this issue in more detail later in chapter 4.

Error detection/correction and concealment are also important issues for video traffic.
Over ATM. the bit error rate is usually low (less than 10°®) duc to the use of fiber system,
and the link-by-link crror correction can be omitted without much impact on the perfor-
mance. However, some error correction on a per cell basis at the AAL layer is still needed
to satisfy the requirement of various video services. A similar situation applies o the ceil
loss ratio. Typical cell loss rate for a single ATM switch range from 10810 10711 Table 2-

3[10] and Table 2-3 |11} show some recommendations [or the requirement on bit error

TABLE 2-3: Recommended BER values for some video applications.

Application Bit rate BER" BER™

Videophone 2 Mbps 3x 1071 1.3x 0% |
Videoconterence 5 Mbps 1! 1.8x 100
TV Distribution | 20-50 Mbps | 3 x 10713 6x 107

I “Comments on Clock Recovery an the Presence of Jitter™. 1993 ISO/MPEG meeting paper.

20

TABLE 2-3: Recommended BER values for some video applications.

- *
Application Bit rate BER'! BER
MPEG 1 X 25x 100

1.5 Mbps 4x 10
MPEG 2 10 Mbps o x 10712 1.5 x 100

1y, . .
Without error haadling in AAL.

d N T
Single-hit ¢error correction on cell basis and additional cell luss cor-
rection in AAL.

TABLE 2-4: Recommended CLR values for some video applications.

Application Bit rute Cell loss ratio? | Cell Inijﬁraliu*
"~ Videophone 2 Mbps s % x 1070
Videoconference 5 Mbps 4x 107 5x 100
TV Distribution | 20-50 Mbps 10°10 8 x 107
MPLG 1 1.5 Mbps 103 95x 10
MPEG 2 10 Mbps 2x 1079 4x 100

oy . .
Without error handling in AAL.

* it . ccti
Single-hiterror correction on cell basis and additional cell loss correction
in AAL,

rates and ccll loss rates of various video applications. After applying the bit error correc-
tion and cell loss correction, some error concealment technique is used to make the uncor-
rected bit errors or cell losses Iess noticeable. Retransmission is usually not possible lor
video application over ATM because of the large bandwidth of the video traffics and the

delay of the transport.

2.2.3 Multimedia information server

The multimedia information server is a very important component for advanced video
services. Most of the advanced video services that we described in section 2.1.1, such as
video mail, video on demand. bulletin board service, and on-line multimedia magazine,
need a large information server 1o make them realizable. In this section, we discuss the
requirements on a server Lo support advanced video services. We also review the important

issues in the realization of such a multimedia information server.

21
2.2.3.1 Requirements

To support advanced video services. the information server has quite ditferent require-
ments {rom a conventional computer file server. These requirements are mainly in three

aspects: the storage capacity, the access bandwidth. and the media access mode.

Capacity requirement
The storage capacity needed for full motion video sequences is usually very large. An
hour of MPEG 1 video information can casily consume about | GBytes of storage space.

Typical data storage of a two-hour long video material in various applications is shown in

TABLE 2-5:Data volume of various video applications.

Application Bit rate Data volume ot 2 hOEi of video
Videophone Zl\-;hps m—l—i& GBytes R
Videoconference SMbps 4.5 (iBytes
TV Distribution 20 - 50 Mbps 18 GBytes - 45 GBytes
MPEG 1 1.5 Mbps 1.35 GBytes
MPE(2 10 Mbps 9 GBytes

Table 2-5. Depending on the application. an information server may need Lo store several
hundred picces of video information. This makes a total capacity requirement on an order
of several hundred gigabytes to several terabytes. This is extremely high as compared with

today’s data file servers.

Bandwidth requirement

The bandwidth requirement on the video server is also usually high. Table 2-5 also
shows the access bandwidth requirement on cach video stream. As a scrver. it is necessary
to support multiple simultancous accesses. For example. in video on demand application.
a video server may need to support up to. say, 500 homes. This make the total access band-

width up to 94 MBytes/sce sustained rate. assuming MPEG 1 video streams arc used.

22
Media access requirement

The media access ol a multimedia server is quite different from the conventional data
server. First. it nceds to support access of multiple media. Media such as wxt. graphics.
images. audio, and video streams are all stored in one server. Secondly. it need to support
real-time access for all media. To do this, a server needs o record both the incoming data
stream and the incoming traffic pattern, then replicate the same traffic pattern when the
piece of information is retricved. Without this traffic pauern replication capability, the
retricved information may be uscless for realtime application. This is especially important
with variable bit rate video streams.

Note that not only the accesses of video/audio streams have the real-time constraint.
the access of text and graphics/images also need to satisty similar real-time constraint such
that the text and graphics are available at a time synchronized with the accompanying
video and audio. This kind of VO regulation/scheduling capability is one important feature
of realtime servers. In a conventional data file server, the server reads out a file as fast as
possible when the file access command is received. In a multimedia server, however, the
server only rcads out the file (or video/audio streams) at a certain time with a specified
rate, cven though it can do it earlier or faster. All these real-time access requirements make
the multimedia server quite different from the conventional data file server.

To meet all three requirements described above is a major challenge in multimedia
information server design. Typically the requirements are beyond the capability of any
storage device available today. Under this situation, multiple devices running in parallel
are necessary (o satisfy both the space and the bandwidth requirements. In the next sec-
tion, we will review the architecture and the major technologies involved in a multimedia
server design.
2.2.3.2 Technologies in multimedia information server

A typical multimedia information server has an architecture shown in Fig. 2-1. In this

architecture. there are four major components: the storage device, the server processor. the

23

Server processor Buffer memory

>

System bus

-

Storage device /0 interface

I/0 streams

Fig. 2-1. Typical muitimedia server architecture.
buffer memory. and the I/0 interface. The storage devices are the memory storage devices
such as magnetic disk. tape, and semiconductor memory, which keep the data. The server
processor is in charge of the receiving /0 access requests from outside the server. per-
forms real-time scheduling, and issue commands to ship data between the /O interface.
the buffer memory, and the storage device. The I/Q) interface is the data interface between
the server and the outside world. The buffer memory is used by the server processor to reg-
ulate the I/O traffic from more bursty one at the storage device into a smooth one. or vice
versa, at the /O interface and the outside world. The buffer memory can also be used to
optimize the hard disk performance by keeping the disk access block as large as possible
Lo reduce the disk heads movements. Among these components. the storage device and the

server processor are more involved, and we will discuss about them in more detail.

Storage devices

The first issue in the design of multimedia information server is 10 have a storage
device that satisfies the handwidth and the capacity requirements described previously.

There are various storage devices available today with different capabilities. as shown

24

in.Table 2-6. Among these devices. semiconductor memory devices provide the fastest

TABLE 2-6:Typical parameters of various storage devices available today.

Storage Device Access lime Bandwidth Capacity per unit Cost per
MByte
SRAM 5-50 ns 1 -4 Mbit/chip $80-120
DRAM 50-100 ns 4-16 Mbit/chip $32-40
Magnectic hard 20 ms - 2.5-4 MBytes/see 20 Mbytes to sev- $1-7
drive eral GBytes'
Magnetic*lape 3 Mbyies/see 2400 GBytes $0.25
drive
Optical drive 19-90 ms 5-15 Mbivsee Up o 1.3 GBvtes $5-8
(R/'W)
Optical drive 40 - 90 4-8 Mbit/scc 600-940 MBytes $6
(WORM)

" Disk drives range from 1.37 to 10",
.
IBM 3480/90 tape drive.

access time and the highest data transfer throughput. However, they are small in capacity
and expensive in cost. The magnetic hard drive is slower than the semi-conductor memory
device. but with a larger space and lower cost. The magnetic tape drive provides the largest
storage space and least cost per megabyte. However, it is also the slowest.

Note that there are tradeotfs hetween the bandwidth capability and the capacity/cost
per megabyte. A faster storage device usually has a smaller capacity and a higher cost.
Under the constraint of these tradeoffs between the bandwidth, capacity, and cost, memory
caching hicrarchy provides a way to reduce the overall cost while also satisfics the band-
width and capacity requirement. This is done by placing the less frequently accessed data
in a lower speed but larger space magnetic tape drive. and swaps the more {requently
accessed material from the tape drive into faster devices such as magnetic disk and semi-
conductor memory buffer. Once the data are placed in the faster devices. they can be repet-

itively used until they are swapped out of that device when other data are swapped in. In

25
this way, most of the /O access will only go 1o the faster device. and therefore reduce the
actual I/O access o the low speed devices. This kind of realization is typical in woday's
video server for video-on-demand applications.

Among all the storage devices in the memory hicrarchy for a video server, magnetic
hard disks are the most important o provide multiple real-time video accesses. Note that
magnetic tape drive can only support sequential access due to its tape storage. This is not
feasible for applications requiring very fast response with very small delay. The sequential
access naturc also prohibits multiple simultancous accesses to the same video material.
Magnetic hard disks are more appropriate o support simultancous real-time video
accesses in terms of the bandwidth. capacity, random access capability. and the cost.

To provide enough bandwidth and capacity with hard disks. an array of parallel disks
is usually used to expand the bandwidth and capacity. The disadvantage is that a disk array
usually has a much higher failure rate than cach individual disk. The failure of any indi-
vidual disk will cause the whole array system to fail. Redundant array of inexpensive disk
(RAID)[13][14] technique is very uscful to make the disk array more reliable. The idea is
to provide redundancy in the disk array system such that a failure in a disk can be recov-
ered from the information on the rest of the disks. In this way, the RAID technique can
provide a large capacity storage device using arrays ol inexpensive disks while also pro-

vide the reliability higher than a single large and expensive disk.

Server processor

As described previously, the server should support realtime access, record and repli-
cate certain /O pattern. These are all accomplished by the server processor. In essence, the
lunction of the server processor is o provide real-time control to ship the information
around between the VO interface. butfer memory, and the storage device at a correct time.
To do this, a real-time operating system running on the server processor is needed to main-

tain the realtime operations correctly. The VxWork by Windriver Inc. and the Irix real-

26
time operating system by Silicon Graphics. Inc. are two of the realtime operating systems
currently available on the markel.

The other task of the server processor is the scheduling. Scheduling is used to solve
the contention among multiple simultancous accesses on the common resources such as
bus, disk. buffer mémory, and /O interfaces. Scheduling is important in real-time aceess
because the access has a deadline to meet. A good scheduling algorithm will schedule 1/0
tasks to satisfy the deadlines of most of the accesses. and optimize the performance. The
scheduling of real-time video access is still a rescarch topic. More details can be found in
[15].

The server processor is usually implemented with general purpose CPUs, When the
processing requirement of this server processor exceeds the capability of a single central
processing unit (CPU), a multiple processors’ approach can be used to enhance the pro-
cessing capability. Under this situation, several processors can cither locate on the same
bus in Fig. 2-1. as is done in the Silicon Graphics Challenge series of video servers. or be
interconnected in a more complicated way, such as the N-Cube approach in Oracle video
servers. Exactly which architccture to use depends on the performance requirement and
the cost. A single bus approach apparently can be implemented with a lower cost. On the
other hand. a more claborate link N-Cube can provide a higher performance and cxpan-

sion capability.

2.3 Conclusion

In this chapter. we briefly review the technologies used to build the components in an
advanced video service environment. The emerging advanced video services impose many
requirements on the workstation. the network, and the storage server. It requires the three
components to have high bandwidth/capacity, high processing capability. real-time opera-
tion capability. and the capability 1o handle heterogeneous media traffic. These require-

ments make the three components quite different from their conventional counterpart.

27
They all need to be re-designed and enhanced to support the required capability. This is
one major bottleneck that prohibits the multimedia services {rom growing last. However,
most ol the needed technologies in these components are getting mature. The cost and per-
formance will also improve quickly.

Besides the optimization in cach of the workstation. network transport. and the infor-
mation scrver. system level optimization arises when all the three components are inte-
grated together. When these components are connected through the network. it becomes a
fully distributed cnvironment. All the distributed processing issues. such as resource man-
agement and load balance, appear in this environment too. There are also tradeolls
hetween the capability of these three components. That is. the performance of one compo-
nent can affect the requirements on other components. For example., using a more pow-
erful compression workstation. we can reduce the network bandwidth requirement,
however. at the cost of longer delay. Using a local storage device to save frequently used
and less frequently changed material can also save the bandwidth on the network. It can
also save the capacity and bandwidth requirement on the remote server. How to allocate
the distributed processing resources over the network to optimize the overall network
resource utilization is also an important issuc in the system design.

A basic issue that we have not described so far is the information structure that speci-
fies the relations among heterogencous media Lo enable cefficient information transport.
processing, and presentation. This includes specifying basic components of information
materials and defining the data structure of the combination of all basic clements for
advanced video scrvices. All the components that we reviewed so far need to rely on this
information structure to realize the muitimedia information support. For example. the
workstation nceds to use this structure to present various media to the user correctly. The
storage server must have this structure built in to efficiently store and retrieve related
information. The network also needs to use this structure to satisfy the rcal-time transport

requirements. Apparently this information structure is very important and needs to be

28
studicd in detail. We will explore this issuc in detail in the next chapter. and propose our

structured video model.

29

CHAPTER 3

STRUCTURED VIDEO MODEL

The advanced video services described in the previous chapter require a multimedia
workstation to receive various information, cither video. audio, pictures. graphics. or text,
[rom any resource aceessible on the network, and integrate them in a way suitable to per-
sonal use. Among these features, the integration of visual information onto a single dis-
play (usually a CRT monitor in today’s workstation) is most interesting because of the
high processing and bandwidth requirements for visual information. especially full motion
video sequences. This integration process, which we call video compositing, combines
several video sources into a single display stream. Typical compositing includes overlap-
ping, clipping (possibly 10 non-rectangular shapes), scaling, blending, translation. etc.

In conventional broadcast video, compositing can only be performed in a video studio
for video program production. All video elements (c.g., foreground news reporter. back-
ground weather map, text.) are combined into a single rasterscan stream in the video

studio before the signals are sent out for broadeasting. For advanced video services, video

30
compositing can be done not only in a video studio. but also at any place on the network or
locally at the uscr’s display. In addition. users want to have control over the pictures they
manipulate and view. For example. in multi-way video conferencing. a user may want o
display only part of the participants, or he/she may want to enlarge the image size of a par-
ticipant. and simultancously display another video sequence from a database. while the
other user may want to arrange the information in a totally different way.

For this purposc. the most tlexible choice is to keep the visual clements logically sepa-
ratc and usc a structural representation for the final composed result shown on the user's
display. In this structural representation, the compositing operations can be assigned casily
10 any cxisting resource. from the video sources through the network to the user’s end.
The representation also provides an interactive interface to allow the user to dynamically
change the structure of the visual information, and thereby change the displayed scenc.
The structural representation can also be used for efficient performance analysis, resource
allocation, network administration, and system implementation. There have been some
efforts to standardize the coding and exchange formats for multimedia representations and

documents, but not for performance analysis and mapping to practical implementations in

networks.

In scction 3.1, we [irst discuss the objectives of the representation model for com-
posite video. Then in section 3.2 we review several existing representation standards
developed for multimedia applications, including ODA!|4], HyTime|3]. and
MHEGZI 11[3]. In section 3.3, we propose our structured video model with some detailed
description of its components, functionality, and representation. In section 3.4, we discuss
various advantages of the structured video model. Then we give a brief conclusion in

section 3.5.

g ISO ¥6123: Office Document Architecture.

2 ISONEC JTCI/SC2/W G112, known as Multimedia and Hypermedia information coding Expert tiroup
tabbrev. MHEG).

31
3.1 Objectives
In this section. we describe the objectives/features of the representation model we
have in mind. There are basically six main goals. as listed below.
* Real-time presentation and interchange.
* Logically separate visual information with structural representation.,
* Use of video materials as casy as the use of graphics and text.
¢ Common coding and representation.
* Primitive compositing functions.

* Performance analysis and implementation optimization.

Real-time presentation and interchange

The model will support the presentation of full motion video compositing in real time.
In order to achieve this. it will require as little processing as possible (o have the final dis-
played scene. It is not intended for a {ull featured editing purpose such as standards like
ODA or HyTime. which requires a lot of processing to solve the cross-referencing or
hyper-linking before the final presentation is available. It is not intended for co-editing
cither. On the other hand. the representation model will provide limited cditing capability
to allow users to interactively change the appearance of the displayed scenc in real time.

In addition. the representation model also supports real-time interchange. That is.
when a composite scene is to be displayed. ail the elements of the composite scene are
retricved in real-time. The element may be available locally, or may be called up through a
network connection from a remote site. This is quite ditferent from the document inter-
change format such as ODA which collects all kinds of information into one single docu-

ment. and this is then exchanged as a single entity.

Logically separate visual information from structural representation.

32

To allow users to flexibly arrange the displayed scene. all the visual elements are kept
logically separate with the relationships among the various clements specified in some
structural representation. Keeping visual clements logically separate has several advan-
tages. First, users can easily change the structure or the relation (o rearrange the scene.
Second. it allows the flexibility of reusing and editing video information. Usually there are
more chances (o reuse a simple visual element than o reuse a complicated composite ele-
ment. Third. it could be more etficient io compress visual informations of different charac-
teristics separately instead of compressing the composite resultf7]. Keeping the visual
clements logically separate does not imply anything in implementation. The actual com-
positing operation can be performed at either video source. some nodes on the network. or

at the user’s end, according to the actual network resources constraint.

Use of video materials as easy as the use of graphics and text

Conventionally, the support mechanism for manipulation and presentation of video
and computer graphics comes from two very different technologies. The former one is
basically image oriented, with its information arranged in a rasterscan format of some
fixed frame rate, to be displayed in fixed sized rectangular windows. such as NTSC or
PAL standards. The latter one is data oriented. and is basically generated and manipulated
by computers. With the video material arranged in conventional format. it is usually hard
to reuse and cdit without the special equipment found in a video studio. Today. the
merging of video and computer technologies requires a more flexible use of video mate-
rials.

To achieve this. the representation model will support arbitrarily shaped full motion
video sequences. For example, a piece of video information can be a moving person
without his accompanying background scene. The shape and size of the video sequence

can also change from frame o frame. With this kind of representation. the video material

33
can be casily reused by overlaying it with some backeround scene to suit a special need.

just as we do with graphics and text today.

Common coding and representation

The representation model will provide a common coding representation tor the visual
clements such that they can be interchanged casily no matter from what pladorm/applica-
tions these visual elements are generated. To be a uselul visual information representation.
it must be extensive o cover all possible visual clements, such as bitmap pictures, graphs.
lexts, video sequences. and flexible enough 1o allow all possible compression algorithms.

The object oriented approach can be useful in the visual clement representation.
Instead of standardizing the encoding of every kind of information (i.e.. every mono-
media piece of information), object oriented methodology can encapsulate data in a flex-
ible way, hide the internal details of various visual elements and provide a uniform higher
level interface to the user. It allows the flexibility of using any kind of encoding/compres-
sion algorithm as long as the way to access the visual information is described with a
“method.” The inheritance property of object oriented methodology also allows sharing of
common behavior among the contents of different objects. Almost all the current stan-

dards use the object oriented approach for object formatting.

Primitive compositing functions

Defining standardized compositing functions makes the use of common modular hard-
warc and software components possible across a varicty of applications. On the other
hand, it is feasiblc 1 keep only the primitive functions that can be realized in real time.
considering the constraint of supporting full motion video sequences. Many complicated
compositing functions can he realized by the use of combinations of primitive ones. For
cxample, a panning function can be implemented by dynamically changing the translation

distance of the translate function, possibly together with the scale function.

34
Performance analysis and implementation optimization

For a given displayed scene. there are usually different implementations. The repre-
sentation model will allow us (o analyze the performance of the compositing system. It
will also serve as a wol 1o optimize the implementation according o the actual network
and hardware resource constraints. and can also be used to help network management and
process allocation.

There is at present some elfort to standardize the representation of multimedia infor-
mation| 1,2.3,4]. Most of today's standardization cfforts place their major emphasis only
on some of the goals described above, especially on the coding representation. but not all.
So far, there is not any model that is intended as a tool for performance analysis/optimiza-
tion. With these considerations in mind. we propose a structured video model. which
defines a logical model for any visual presentation in a hierarchical structure. As a logical
model, this model does not specify how the compositing system is implemented. Instead.
it provides the flexibility of performing the implementation in different ways. The optimi-
zation of implementation involves some restructuring of the logical model graph such that
it is more cfficiently mapped to the existing network with real physical locations. We will
describe the model itself in this chapter. and leave the implementation issues to later chap-

lers.

3.2 Review of today’s standard in multimedia information representation

In this section, we review some of today's standardization activity, and discuss its rela-
tion to the structured video model that we propose. We will review three standards —
ODA[4], HyTime|3], and MHEG[1,3). The various standards proposed represent the com-
munity they originate from. In the community of computer users. people are more inter-
ested in the hypermedia and the clificiency found in an interactive user interface. In tele-
communication community, the emphasis is on high speed communication and synchroni-

zation. In publishing, there is more interest in the database structure. In addition to these

35
standards. there are also proposals for multimedia information structures [2.5.6.71. Inter-
ested readers may refer 1o the references.

There are some common issues in the multimedia information representation — object
formatting, hyper-linking, and synchronization. Object formatting is important in multi-
media applications which use various kinds of information with diffcrent characteristics.
Object formatting not only standardizes the format for information interchange, it also
hides the internal details of various kinds of information and provides a common interface
to the user. For this purpose. it is common 0 use the ohject oriented methodology, which
is uscful in providing a standard for the object format to represent visual clements as
described in the last section. Hyper-linking is used to combine related information and
provide interactive capabilitics to the user. Bibliographic cross referencing is a simple
example which allows the user 1o search the linked information. More complicated hyper-
linking will pop-up the linked information from a window (e.g., on-line help or contextual
linking) or play some kind of audio and video streams. Synchronization is used to keep the
logical rclations in time or space among scveral pieces of information. The lip sync
between the audio and images in a movie is an example of time synchronization. Another
example is the triggering of the start of a picce of information by the ending of a second
one. The page layout in a document is an example of space synchronization.

All of the standards proposcd need to cope with all these three basic issues for multi-
media information representation. Depending on its focus, however. cach standard may

use a simple scheme in some issues and use a complicated scheme for others.

Office document architecture (ODA)

ODA is a multimedia document standard issued by ISQ. The ODA document is pro-
posed to facilitate the interchange of documents consisting of text. image, graphics. and
sound. It is intended 1o be used for document preparation. storage, interchange, and pre-

sentation of @ multimedia document on the page or on a video display. The basic concept

36
in ODA is strucrures. ODA uses two different structures — logical structure and layout
structure. In the logical structure. a document is subdivided into smaller parts according (o
its meaning. Examples of logical objects are chapters. sections. figures. and paragraphs. In
the layout structure. the document is subdivided on the basis of its layout. Examples of
layout objects are pages and blocks. Basically, the logical structure is used for input and
_editing, and the layout structure is used for final presentation. The layout structure is actu-
ally a synchronization mechanism — mainly space synchronization for page layout, but
also a discrete version of time synchronization by the concept of pages. Using both the
logical structure and layout structure atlows very complicated editing capabilities and at
the same time casy presentation.

The use of both logical and layout structures also creates some disadvantages. There is
usually some processing required to convert the document from its logical structure to the
layout structurc for presentation. The more complicated the logical structure, the more
powerful cditing features it can support. while at the same time morce processing is
required for preparing the logical structure into a layout structure. This may not be fca-
sible for rcal-time interactive editing purposes. Also. the ODA standard docs not support

full motion video so far.

HyTime

HyTime is a standardized infrastructure for the representation of integrated open
hypermedia documents by the Music Information Processing Standards (MIPS). It is
derived from a standard music description language (SMDL) developed for music pub-
lishing. Because of this, important features in music description such as synchronization
and hyper-linking (¢.g.. repeats and codas in music) are emphasized in HyTime.

For synchronization. HyTime places objects in bonding structurcs known as events
which occur at some point in an ordered list known as a schedule. Synchronization is the

alignment of events within the schedule. The timing model is based on a virrual rime.

37
which specifies the duration of ohjects relative (o a master time reference. When the dura-
tion of the master time reference is changed. the timing of all the objects are also changed.
The same idea also applies to the space domain. To render an object. the model simply
places it into a virtual space. called Cosm. and then performs the projection to convert the
abject from one space to another. Again. the axis of the virtual space can use a relative
scaling unit. For hyper-linking. HyTime allows all information to be linked. whether or not
it was explicitly prepared for linking. Also, link addressing is independent of file manage-
ment or the network architecwre of any particular platform. In addition to a regular linking
like bibliographic referencing, HyTime also allows an indirect link similar to the pointer
constructs in C language.

Similar 10 ODA. HyTime is also intended to be a document interchange standard
whereby all the information is collected into a single entity. In contrast to the input/editing
capability in ODA. HyTime places its emphasis on claborate synchronization and the
hyper-linking mechanism. Similar to the limitation of ODA, a complicated mechanism for
synchronization and linking may compromise its rcal-time presentation performance

under system limitation.

MHEG!

MHEG is a standard under development by the CCITT/ISO. It is intended to be a
generic layer for objects used by a wide range of applications. Therefore. it is a standard
for representing objects. not a document processing or interchange standard. Many appli-
cations. such as HyTime and ODA, may use MHEG objects as their basic elements.
MHEG allows many data types. such as text. graphics, video. digital audio. to be repre-
sented as objects. Each object is manipulated as a single entity. As a standard developed

from CCITT. the MHEG standard reflects a communication-oriented way of thinking,

L ISONEC JTCHSC2/WG 2, known as Multimedia and Hypermedia information coding Expert Group
tabbrev. MIIEG).

38
which focuses on the multimedia services used in a communication environment such as
the interchange of multimedia information through (elecommunication networks or by
means ol a digital storage medium. Under this sitwation. the real-time presentation. inter-
change of the objects are the major considerations in MHEG:

* Recal-time presentation — MHEG objects are intended for real-time inter-
active presentation. This requires the support of some real-time synchroni-
zation mechanism. Also. the objects are represented as a linal form for
direct presentation without the additional processing on their structure.,
such as conversion from the logical structure to the layout structure in
ODA.

* Real-time interchange — MHEG is intended to provide mechanisms for
real-time interchange with minimum buffering. A scrialization mechanism
is used to arrange the coding of several related objects in a certain sequence
such that the delay is acceptable when objects are interchanged through a
limited throughput medium.

Even though MHEG is intended primarily for object representation. it allows each
object to go beyond a mono-media object. This is done hy the so-called composite object,
which designates an ohject containing some component objects and the inter-object rela-
tionship structure. The composite object can grow recursively with the component object
itself a composite ohject. The inter-object relations hasically deal with the synchronization
specifying where the component objects are to be placed on the time axis and in the space

domain.

Structured video and the standards

Among the three standards described above. MHEG is most similar 1o our structured
video model. The hasic objective ol structured video is to provide a final presentation tor
real-time multimedia information integration from the network. This is similar to MHEG
in that all ohjects are to be interchanged and presented across the telecommunication net-

work in real-time. On the other hand. the focus on the integration and final presentation of

39
structured video makes it different irom MHEG. MHEG is only for object representation
at a lower layer. while structured video can sit on a higher application layer which uses
MHEG just like ODA or HyTime does. On the other hand. structured video will not sup-
port complicated hyper-linking features such as ODA or HyTime. Instead. strucwred
video will only support limited features that are good enough for general multimedia ser-
vice use and also simple cnough for real-time realization. This is similar 1o the MHEG
composite object, which actually goes beyond the MHEG layer to a higher layer speci-
fying the structure and the relations of several component objects. The features in a com-
posite object are also limited. Structured video defines more involved inter-object relations
using primitive compositing functions for output representation as compared with the
composite object of MHEG.

Contrasted to the two structures used in ODA. structured video will use one single
structure for both input and output. In this way, we avoid the process of converting from
the logical structure to the layout structure before presentation. Of course, a single struc-
ture may limit the cditing capability. Considering that structurcd video is used for multi-
media presentation on the CRT display, the complicated logical structure used in ODA is

not nceded.

3.3 The definition of a structured video model

In this section. we describe our proposed structured video model. Structured video can
be thought of as an extension to the previously proposed structured graphics|16]. When
the model is extended from still images to full motion video, not only does the compos-
iting in the spatial domain need to be considered as is the case in structured graphics. but
temporal domain properties and modelling are also very important. Spatial and temporal
domains are the two facets of the structured video. Both need to be carefully considered.

We first illustrate structured video in figure 3-1. In the picture. the composite scene

consists of video objects ol reclangular-shaped bitmaps (a football background). irregular-

Fig. 3-1. A sample composited picture of structured video.

shaped bitmaps (a news reporter), graphics. and ext. The news reporter is opaquely over-
lapped with the background object, while the graphic object is overlapped with the back-
ground in a semi-transparent way. This picture shows only the spatial aspect ol
compositing. With the temporal aspect. not only is the football background a full motion
sequence, but the news reporter is talking as well, with her shape changing from frame (o
frame. Her location may change from time to time to avoid obscuring important scenes in
the background. The graphics and text can appear for a short period of time, and then dis-
appear. Given a set of video objects. there are many different ways to composite them into
a displayed scene. both spatially and temporally. It is the goal of our structured video

model to define efficient representations for video objects and their compositing rules.

41

_____ Composite video object (A)
- - - - — -
- ~
-~ ~
- ~
- Compositing Function / Event
i N
s N
/ N
/ \
/ - © \
N Video Object
\ / N |
\ ’ -~ \ Video Sequence 2 /
V4
\ (D) (E) /
AN / .
\ Video Oblject Video Object / V4
~ . : e
~ - Jideo Sequence 1 Graphice Text _ e
~ ~ - —
~ ~ - -

Fig. 3-2. A composited video object in the structured video model.

The structured video model starts with primitive video objects. cach of which is a
piece of visual information that is gencrated from a single source. and cannot be further
subdivided at downstream sites. Composite video objects are formed by combining several
video objects (cither primitive video objects or other composite video objects) into a
single video object with a compositing function. In this way, any complex video object can
he represented hierarchically with sets of video objects and compositing functions. An
example ol a composite video object is shown in figure 3-2. Again. this figure shows only
the spatial aspect of the structured video model. When it is expanded in the temporal
domain, the graph becomes a 3-D graph, as shown in Fig. 3-3. In these ligures. the com-
posite video object consists of a graphic video object and another composite video object.
which again consists of two video objects (video sequences) and a text video object. The
compositing function specifics how the child video objects are composited. ¢.g., trans-
parent or non-transparent, scaling, relative locations, synchronization. ctc. In addition to
video ohjects and compositing function. a constraints system (not shown in the figure) and

events are also used in the structured video model. The constraints system is used to main-

42

Compositing Function -

~,

video Object)
_—(-

Video Sequence 2

|

Fig. 3-3. Structured video model expressed in both spatial and
temporal domain.

tain the binding relationship among video objects. and the events are used to handle the
user interactive inputs (from keyboard or mouse) or exceptions and maintain temporal
relations among all the compositing functions. In the following subsections, we will
describe the above mentioned components of the structured video model in more detail.
Once we understand more about all the components, we will describe the representation of
4 composite object using a graph such as Fig. 3-3. A 3-D graph is actually difficult 10
handle. Our approach is to model the spatial and temporal domain separately in two
graphs. Fig. 3-2 is an cxample for the strucwred video graph in the spatial domain. We

will describe hoth spatial and temporal graphs later.

3.3.1 Video Object

First of all. we define the term video object. A video object is the visual representation
of part of some physical or logical object such that the entire part can be composited using
the same rules. For example. any graphics or text in a video sequence can be a video object
as long as any subregion within the video object is composited in the same way as the
remaining parts of the video object when the video object is composited with others. If for

any entity in the video sequence. a subregion must be composited differently from the rest

43
of the entity, then such an entity must he segmented into more than one video object. For
example, the representation of a person’s hand could consist of separate video objects for
cach finger and the paim. or could consist of just one object if the whole hand moves as a
single unit. A video object can be chosen o be the largest possible unit that can be com-
posited with the same rule 1o reduce the overhead required for the representation and
manipulation of objects. For example. if a person’s hand does move as a single unit then it
should be described with just one video object. Of course. the number of video objects
used to represent any real-world object may change as the object interacts with its sur-
roundings.

In addition to segmenting an entity into multiple video objects in the spatial domain. it
is also possible o segment an entity in the time domain or the frequency domain. Segmen-
lation in the time domain is frequently found within the video clips in video cditing. If seg-
ments of video streams arc to be played at different times, they need to be treated as
separate video objects. Segmentation in frequency domain is less obvious. The basic idca
of this scgmentation in the frequency domain is from sub-band coding. For example, a real
object can be separated into video objects of “high frequency band object.” “low fre-
quency band object.™ In this way, the quality of the object can be changed by cither com-
positing both video objects together or simply by use of one video object tlow frequency

hand object).

3.3.1.1 Properties of video object

To clearly define a video object, we discuss the property of a video object from three
aspects — spatial domain, temporal domain, and general properties. From these proper-
ties, we will define basic parameters that are needed to specify such a video object. A list
of these parameters are as follows:

* Spatial domain parameters — pixel content. shape description. size. etc.
* Temporal domain parameters — frame rate, time stamp, life span.

* General parameters — object type, coding format.

44
The spatial domain is orthogonal to the wemporal domain. Therefore. the spatial
domain parameters may vary from instance to instance. On the other hand. the temporal

domain parameters usually do not change with spatial location.

Spatial related properties

One spatial related property is the shape of the video object. A video object need not
be in rectangular shape. They can be aAny arbitrary shape such as head and shoulder ol a
person. It will be wo restrictive on video object manipulation and reusability il we assume
that all video objects are rectangular. Most graphics and text objects today are non-rectan-
gular. but most video objects from a video camera are rectangular. There are wechniques to
generate an arbitrarily shaped video object from rectangular-shaped video sequence such
as the chroma key technique. In this thesis, we will not discuss how to generate an arbi-
trarily shaped video object here. Instead, we only assume that a video object can be any
shape, and it has the information nceded to describe its shape.

Parameters related to spatial domain properties are the pixel contents and the shape
description (if video sequences), graphic description file (if graphic), or the text content
and fonts (if text). Other parameters are also needed to ease the compositing operations.

such as the video ohject size.

There are also other parameters which are not inherent in video objects: however. they
will be needed in compositing operations. For cxample. these parameters may be the
object location in the composite object, the scale factor for the scaling function. the trans-
parent factor for transparent overlapping, etc. These parameters need not be in the video

object. When they are put into the video object. they can be used as default values.

Temporal related properties

From the temporal domain perspective, video objects can be classified into different

categories: isochronouslanisochronous and rerrievable/non-retrievable. Isochronous video

45
objects are the objects that must satisty certain timing constraint in order to make the pre-
sentation meaningtul. For example. movies are constant 24 frames per second picture
sequences. If the presentation does not abide with the 24 frames/see timing constraint. the
movie is distorted. The timing constraint may or may not be fixed frame rate as in the
movie case. They can also be non-constant rate. ¢.g. the computer animation case. This
non-constant rate type is useful in describing video objects that does not changes very
often.

Retrievable video objects are video objects that are stored in some device. They can be
played at any starting time without any difficulty. The life span of the video object is usu-
ally known in advance. The video stored in cassette tape or in disks are examples of
retricvable video objects. The non-retrievable video objects are objects that need to be pre-
sented at the time they are received. or they are lost. The viewer has no control on the
starting time or the length of the presentation. The broadcast TV is an cxample of the non-
retrievable video object. Although the difference between retrievable and non-retrievable
video objects scems to be trivial, it makes differences when we consider video compos-
iting.

In video compositing, all the video objects need to be presented at a certain starting
lime for a certain period of time o make the presentation meaningful. In this compositing
process, we are under various kind of timing constraint from video sources. For some
objects, we have no control on the starting time without using a large and cxpensive buffer.
For others, we cannot change the presentation frame rate. Also. the timing relationship
among vidco objects need to be maintained. For example, the end of a video object trig-
gers the start of the other video object. To maintain all these timing relationship while at
the same time satisfy the timing constraints of the video objects is an issue to explore in

this disscrtation.

General properties

46

General properties include all information that is related to whole video object, regard-
less of the time instance or spatial location. Examples are the video object type and the
representation format of the video object. The video object type specifies that cither the
video object is a retricvable isochronous object, non-retricvable isochronous object. or an-
isochronous video object. The representation format specifies what kind of format it is
using. A video object can use any format for its content. as long as it is specified and the
receiver/user’s end recognizes it. For example, a video can use either plain pixel values. or
some compressed format, such as JPEG. MPEG. or H.261 [17,18.19]. Graphics can usc

postscript format or others.

Since video objects are intended to be arbitrarily shaped. the coding mechanism may
be non-conventional. The simplest solution of describing arbitrarily shaped video objects
i to surround the video ohject with centain pixel values in order to make it a rectangle.
Then we can use the conventional compression scheme to code the video object. Appar-
ently it is not efficient to arbitrarily choose the pixel values to be filled. Some studics have
been donc on the compression algorithm on the content and the edge of an arbitrarily
shaped video object.[28] Segmentation coding methods[42] can also be used to code arbi-
trarily shaped video objects. even though they were not originally proposed for that pur-

pose.

Several video objects can be combined into a single composite video ohject through a
compositing function. In this situation. the composite video object is treated as a single
video object that can bhe used for further compositing to form an cven more complex
object. A new sct of spatial. temporal, or general parameters will be generated to retlect
the actual sitvation of the composite video object. Basically, a composited video object is
just like a primitive video object. with one exception. The way a composited video object
appears can always he changed through an interactive event sent to the compositing func-
tion, because the representation of a composited video object actually consists of the rep-

resentations of child video objects and a compositing function. Keeping the composited

47
video object structure gives users the lexibility ol manipulating the child video objects

separately.

3.3.2 Compositing function

A compositing function can be used o change/composite one or several video objects
(either a composited video object or a primitive one) into one single composite video
object. The function describes the way the child objects are changed/composited. Exam-
ples of compositing functions arc clipping, scaling, blending, translation. delay. ctc. The
number of child video objects (the video objects that the compositing function operates
on) can be one or more. When there is only one child video object. it is a conversion of the
video object to a new one of different format or property. An examplie of this unary oper-
ator compositing function is the scaling function. which resizes the video object.

We can use a symbolic notation to stand for a compositing functionas V = f(V,, V...,
vary, vary...), where Vy, V... are child video objects: varl, var2.. are variables used by
the compositing function to decide how the video objects are composited: and V is the
composited video object. There are two classes of variables in the compositing function.
One is the variables that appear in all compositing function. Examples are locations L (to
determine the location of child objects with respect to the parent one) and the start time T
(to determine the timing delay of child objects with respect to the parent timing). Every
compositing function requires a set of such parameters for cach video object. Because of
this, these parameters can be put into video objects as default parameters to simplify the
representation of the compositing function. For example, an overlap function combines
one video object above the other according to the location L and timing T represented as
over (V1. Vo Ly, Ly Ty T2) can be simplificd as over(V,. V), where V; represents the
video ohject V; with default setting of (L, T;). However. we must note that even though the
parameters Lj. T; are put into a video object. they are not characteristics of the video object
Vi They are simply default values used when V; is composited with other video objects

and are meaningless if' V; stands alone. The other class is the variables that appear only in

48
certain compositing functions. Some examples are the ransparency (used to determine the
transparency of objects in transparent overlapping) and scale (to determine the scaling
factor in a scaling function). A transparent compositing function can be represented as
transparent (V 1,V 1, T), where T,, T, represent the transparency factors.

The compositing result of the compositing function is still a video object. The compos-
iting function not only generates the pixel information of the composited video object. it
also generates all the parameters inherent in all video objects. such as the representation
format. size. described in the last section. In this way, a composited video object can be
hicrarchically structured from a compositing function and several child video objects.

where the child objects themselves in tumn are composited video object. Table 3-1 lists

TABLE 3-1:Examples of basic compositing functions

Name Description
unarv transtation (V, 1.) Change the location from the default value by /..
delay (VT) Change the time trom the default value by T.
scale (V. x) Re-scale object V with the scaling factor s.
scale_x (V. s) Re-scale object V in the x-direction with the scaling factor s.
scale_y (V. s) Re-scale object V in the y-direction with the scaling tactor s.
Nlip_x (V) Flip the object V in x-direction.
Slip_y (V) Flip the object V in y-dircection.
rotate (V. r) Rotate ohject V clockwise by r degrees.
hinary over(VaVp Put object A over object B.
in(VpoVp Display the pixels of object A inside object B.
out (Vo Vp Display the pixels of object A outside object B.
transparent (V4, Vi 1. T» | Composite object A and B transparently according to Ty, Ta.
multiple sequence (VA Vg V) Combine video objects which are non-overlapped in time
domain into one single video object.

some uscful compositing functions. A more detailed description of the compositing func-

49

, tad in (V3oseale (Va 1.3
s .
; t

i nl
Triangle LLs e

v -
3 (h) out (over (scale (V. 1.5), scale (V2. 1L3), V3)

Fig. 3-4. Examples of composited video objects using basic
compositing functions in Table 3-1.
tions and their cquations is discussed in Chapter 4. Figure 3-4 shows some examples of

composited video objects using the basic compositing functions in Table 3-1. Most of the
other complex compositing functions of interest can be implemented with the combination
of these basic compositing functions. A zooming function, for example. can bhe imple-
mented by dynamically changing the scale size s from frame to frame using the scale
function. Similarly, a fading {unction can be implemented by dynamically changing the

transparent factor t using the transparent tfunction.

3.3.3 Basic compositing functions

In this scction. we discuss basic compositing functions that are useful in video object
compositing. We listed the functions in Table 3-1 in the previous section. Here, we show
how we came up with the basic compositing functions. The functions in the table basically
fall into two categories — transformation functions, and compositing functions. Transfor-
mation functions are the unary functions listed in Table 3-1 that are basically used for
changing propertics of a video object. such as translation. delay, scaling. and format trans-
coding. We are more interested in the compositing functions that have multiple video

objects involved and only this class of compositing functions will be discussed here.

50

Again. the compositing function involves both spatial and temporal aspects. Every

compositing function must consider both aspects in order to produce a correct compos-

iting result. We will discuss these two aspects separately o clearly define cach compos-
iting {unction.

3.3.3.1 Spatial aspect

| over(), in(), out()

In conventional computer graphics, Porter and Dull [35] listed the twelve spatial com-
positing results between two objects by the way the objects contribute to the four intersect
areas. i.c., ANB, AnB. ANB. and ANB. Only one ohject can contribute to cach of the
intersection arcas. In this way, there are 3 possibilitics in AnB. 2 possibilitics cach in
AnB and ANB. and only | possibility in the arca of AnB. The total number of combina-

tions is therefore 3x2x2x 1 = 12. Table 3-2 shows the twelve spatial compositing

TABLE 3-2:Spatial compositing results in conventional computer graphics.

Operation Diagram
==
=
A over B <]
Bover A S
Ain B T~
BinA
Aou B (Z]
B out A
Aatop B

B atop A

AxorB | >

51
resuits derived in this way. Some of these compositing functions are of interest primarily
for specialized graphics eftect. and some of them are also useful in the compositing of full
motion video objects. For example, we may find the use of the function A in 8 in real life
when object B shows up through a window opening A. However, we may not lind any use

of A xor B in real life.

The twelve spatial compositing results of Table 3-2 can be simplificd into five binary
compositing functions, over(), in(), out(), atop(), and xor(). Any compositing functions in
Table 3-2 are covered by these five functions with proper operand exchange. Among thesc
five compositing functions. arop() and xor() are less usetul and are left out in Fig. 3-1.
Choosing only the subset of the compositing function does not limit the flexibility. The
atop() and xor() can still be achieved by the combination of the basic functions. For

example,

atop (A.B) = over(in((A.B),B)) (3-1)

and

xor(A, B) = over(out (A, B),vut (B,A)) (3-2)

In addition to the binary compositing functions. we are also interested in multiple
object compositing functions. Unlike the binary compositing functions. which has only
twelve functions. multi-operand compositing functions are more complex. The number of
compositing functions of a three-object compositing can be shown o he 864, and the
number of compositing functions grows rapidly as the number of objects increase. Among
the 864 functions, most of them are of no practical use. It is not possible to exhaustively
implement all different functions. One possibility is to assume that most ot them can be
represented as the combination of binary compositing functions. For example.
over(A,B,C) can be represented as over(A, overfB,C)) or overfover(A.B), C). In this way,
most of the useful multi-operand compositing functions can be implemented through basic

binary compositing functions. Note that some of the multi-operand functions arising from

52
the combination of binary functions are redundant. This issuc will be discussed later in the

restructuring of structured video in 3.4.2

transparent()

Table 3-2 lists all binary compositing functions where cach interseetion arca consists
of only one object. When we consider the case that both objects can contribute to the same
area, we come Lo transparent composﬁing. The transparent compositing function has been
used a lot on TV programs which overlay graphics onto the full motion video background
without fully blocking the video background. It is also useful for the case such as looking
through a window glass which is not completely transparent. Porter and Dutl defined a
simple transparent function with a simple plus lunction, i.c.. plus(A, B) = Ps + Pg To
make the transparent compositing function more versatile, we define the transparent com-

positing function with an extra transparent weighting factor . That is,

T,P,+1,P
AT A B" B
transparent (A. B) = ——— (3-3)
T, +1p

While o values (to be defined in the next chapter) less than 1 could he used to describe
semitransparent vidco objects. they are different from the transparent weighting factor T in
cquation (3-3). The T value is helpful in describing semitransparent video objects. such as
windows, glass. and fog, in that the T value applies to an entire video object rather than to
just one pixel.
3.3.3.2 Temporal Aspect

While considering the spatial results of the compositing functions. it is also important
to consider the temporal aspect. Every compositing function needs to take care of both the
spatial and temporal aspects. Similar to the 12 spatial compositing operations hetween two
video objects shown in Table 3-2, we can also list all the possible compositing relations in
the temporal domain. Given any two intervals, there are thirteen distinct ways in which

they can be related in time, as described by J. F. Allen[62]. We list only seven out of the

53

thirteen relations in Table 3-3. The remaining six are simply the inverse of these relations.

TABLE 3-3:Temporal relations from any two intervals.

Operations Diagram
AbeforesB | T A B
A meets B [AT B ¢
Aoverlap B | [A3
A during B fl L2
| B |
A starts B >
{ B i
Afinish B | Lol A]
| B 1
Aequals B | | A f
I B |

Note that the spatial and temporal aspects are orthogonal to each other. Combining both
spatial and temporal aspects, we will have to define 4 x 7 = 28 compositing {unctions.
(That is. 4 from the spatial aspects. as described [rom the previous section, and 7 from the
temporal aspect in Table 3-3.)

Instead of performing this combination dircctly, we choose a simpler way. We will
assume a global timing available to all the compositing processors and the sources of the
video objects. Each compositing function simply specifics the starting time of the video
objects, and uses the life span of the video object to determine how long the object will be
shown on the composite result. With global timing, the temporal relations are implicitly
specificd by the start-time and the life span of all the objects. When only one object is
present. the compositing function passes the object to the composite output. When both
objects are present. then the compositing function performs the actual spatial compositing.

The life span of the composite result is the interval that covers the life span of all the

54

[A, [| [A ! ' !
r* ™ ™ | " | I
! =g B | | g I i
! ! | | | | ! i
[jover(A,B) | | Temporal | jover(A,B) | |
4 A A \ 4 4) t
v f, “a - ‘-
! / \E/ B B Spatial (A null B
(a) (h)

Fig. 3-5. over(A,B) results under different temporal relations.
(@) Temporal relation: A overiap B. (b) Temporal relation: A
before B.

inputs. Under this condition, one spatial compositing function can cover all kinds ol tem-
poral relations. The composite results, however, are different depending on the actual tem-
poral relations of the input video objects. For example. the outputs of the over(A,B)
function shown in Fig. 3-5 are dependent on the (emporal relations of the two input
objects.

The lifc span of the compositing result is also shown in Fig. 3-5. The life span not only
indicates the duration of the composite object. but also shows how long the compositing
resources are occupied. This is important in scheduling when the structured video tree is
mapped into physical compositing resources, which we will discuss in later sections. Note
that Fig. 3-5(b) shows a composite result that has a null result in its life span. This is a con-
dition that may not effectively utilize the compositing resource: however, it is a permis-

sible condition.

sequence()

One compositing function that have not been mentioned in Table 3-1 is the sequencef).

This is a useful compositing function that serializes the input video objects into a sequence

55

over()

/)
/,\.”‘\ sequence()
over() (o)} .

/ M //'(B ./,{\\' 0
over() Kc) \i/&_/"\// /

// AN

(a) (h)

Fig. 3-6. A composite object structure of slide show (a) with
and (b) without using sequence() function.

7

in the time domain such that a video object always starts immediately after the previous
object, i.c., the emporal relations meet() and before(). Since the life spans of all the input
video objects do not overlap one other, sequence() can be used to maintain the temporal
relations without needing any spatial compositing capability. One possible use of the func-
tion is to organize a slide show. in which the function maintains the slides in some proper
sequence. The slide show composite object can still be achieved without using the
sequence() function. as shown in Fig. 3-6(a). Use of the sequence() function. however. will
make the tree structure more compact (Fig. 3-6(b)). Also, the use of the sequence() func-
tion may avoid wasting the spatial compositing resources.

There is one limitation in the use of the sequence() function. Since our assumption
about using the sequence() function is knowing the life spans of all input video object,
non-retrievable isochronous objects with an undetermined life span cannot be used as the

input of the sequence() function.

56
3.3.4 Constraints

While doing compositing, there are usually some binding relations that must be main-
tained among the video objects in a composited video object. We call this a constrainr of
the composited video object. For example. suppose that in a weather report program. a
weather man is pointing to a map describing the temperature or air pressure. 1f the weather
man and the map are two separate video objects. then the relative location of the two video
objects must be maintained, otherwise the weather man may point to the wrong place, and
the combination of the two video objects makes no sense. Other examples of constraints
are synchronization (time relation), the priority relation (which object is at the top. which
one is at the bowom). and scale relation (all child video objects must be kept in the same
scale). We will call the video object property specified in the constraint. such as size and
location, the constraint variable in the following discussion.

In implementation, these constraints are specified and maintained by a constraint
system. With the constraints specified, any changes in the constraint variables of a video
object (e.g., size, location) will also change the same constraint variables of the whole
composited video object, or other video objects bound with this video object. The con-
straint system is very similar to the constraint model in computer graphics [20,21]. The
constraint system keeps track of constraint variables ol logically bound video objects and
makes the appropriate changes accordingly whenever it detects any changes in any of the
bound video objects. With this constraint system, we can relieve the burden of maintaining
constraint relations from the compositing functions. Compositing functions simply follow

the variables the constraints system generates for it.

There are many ways to model a constraint. We can literally describe the constraint
with a list of rules and their related video objects. or we can use a certain data structure to
describe the constraint. In order to clearly describe the way in which the video objects
interact with each other in our proposed structured video model. we use a tree structure to

represent a constraint, which specifies the related video objects and their associated com-

57

scale-A location-A!

S

£ A

location-B (\D

AY
(Vb) (VE)
N —— N——

(a) (b)
Fig. 3-7. Constraint representation examples for the
composited video object shown in figure Fig. 3-2.

positing functions. as shown in Figure 3-7. Each constraint tree specifies one constraint.
For example. Figure 3-7 shows (wo constraint trees for the composited video object shown
in Figure 3-2, one for “scale™ and another for “location.” The constraint tree is a tree
reduced from the original tree structure of the structured video, and includes only the
related video objects specified in the constraint. Each rectangular block represents a rela-
tion among the constraint variables of the video objects linked to it. The literal descrip-
tions of the constraint relations (c.g., scale-A. scale-B, location-A) can actually be
considered as mathematical functions, which we call constraint Sunctions. of the constraint
variables. The constraint function produces new constraint variables if any of its inputs
change. The new constraint variables will in wrn change other constraint variables if they
are linked to other constraint functions. and the effect of the change will be propagated
through the whole tree. Each constraint function is associated with one compositing func-
tion in the original tree structure of structured video. For example. the scale-A in Figure 3-
7(a) represents the scale relation among child video objects Vg and Vi of compositing
function A. In case the scale variable of object Vchanges, the constraint function scale-A
calculates the corresponding scale change that Vg should take. and sends the value to

object Vg The constraint function scale-B receives the new scale variable of Vg, generates

58
new scale variables ol its child objects Vp, Vg and Vpaccordingly, and then sends them to
corresponding source sites respectively.

A constraint can bind child video objects of either the same compositing function or
different compositing functions. It can bind cither ail or a subset of child video objects of a
compositing function. In Figure 3-7(a), all three child video objects Vp, VE VEol compos-
iting function B are constrained with another video object Vo In this case. we encircle the
composited video object Vg with the constraint function scale-B. meaning that Vg is not
only constraincd by scale-A. but also by scale-B. This offers an implementation flexibility.
The constraint system can either change the composited result at the output of compos-
iting function B. or it can change the child video objects Vp VE and Vgseparately. On the
other hand. in Figure 3-7(b), Vgdoes not appear with the constraint function scale-B. This
means the constraint function location-A does not operate on the whole composited video
object. Instead, it simply operates on the two child video objects Vpand Vg Under this sit-
uation, the constraint can only change Vpand v ; separately, and does not change object
Vpor VR

Note that the arrows of the constraint system are bidirectional. The constraint function
must also be bidirectional; namely, it can receive the parameters from any child video
wbject and make changes to other child video objects. For example. the change of Vewill
cause Vpand Vgto change in Figure 3-7(a), and the change of Vp(or Vg will cause Vto

change also.

3.3.5 Events

Once a composited video object is constructed, some method is needed to interactively
change the compositing, 10 handle exception conditions, and to synchronize the video
objects. For these purposes. events are used to communicate between the end user, the
constraint system. and the compositing processors. For example. when a uscr interactively

changes the compositing location of a video object, he sends an event signaling this

59
change (o the constraint system. The constraint system then scearches through its constraint
trees. and sends all the corresponding changes o all related compositing functions. An
event can also be used to start a new video object or to delete an existing video object. It
can also be used to handle the exception condition when the network or the system breaks
down. Another use of events is the communication between the compositing functions and
the video object sources for synchronization. To reduce the possibility of buffer over-
flow/undertlow in the transport, a synchronization mechanism is needed 10 maintain an
optimum starting time and frame rate at the video source. For non-retrievable isochronous
objects, an event can also bhe used to notify the receiver of the end of the video object.
More details about the synchronization mechanism will be discussed in the next chapter.
3.3.6 Representation of structured video

Ideally, the only way to represent the relations among video objects is to use a 3-D
graph such as the one in Fig. 3-3. In a 3-D graph. one axis is used to represent the temporal
relations. The rest of the two dimensions are used to represent the spatial compositing
relations of the video objects. A 3-D representation graph, however, is difficult to generate
and show correctly in a 2-D environment. Our approach is to project the 3-D graph onto
the spatial (x-y axis) and temporal domain (2 axis) scparately. This scction briefly
describes both spatial and wemporal representation brictly. The implementation details and
their optimization will be delayed until the next chapter.
3.3.6.1 Spatial representation

A spatial representation has been described briefly and is shown in Fig. 3-2. Basically,
the spatial representation uses directed arcs to represent the dependences between all the
components such as video objects, compositing functions. and events. and it forms a tree
structure. A compositing function is pointed to by all its operand objects through the

directed arc. The compositing function together with all the child video objects pointing to

it forms a composite video object.

60

Static or dynamic nature of representation

Since the spatial representation is basically a projection from the 3-D graph, ideally
the spatial representation shows all the components involved. no matter when they actu-
ally show up. This will form a static tree structure that never changes. A static representa-
tion has the advantage of case of implementation in terms of resource allocation and
scheduling. Most of the interactive operations are still available. such as a change in the
object location, size, or the delay of a certain video object for a certain period of time. On
the other hand. a static representation cannot cover all the situations. From time to time,
some interactive operations may add new video objects onto the existing tree structure, or

they may change the compositing and change the overall tree structure.

We can adopt the spatial representation in two different ways (0 handle the dynamic
changes of the tree structure. The first is to assume the spatial representation is static.
When there is a major change in the tree structure. we terminate the current video object,
and start a new one with the new structure. This would case the implementation of
resource allocation and scheduling. However, it has a disadvantage in that it may not sat-
isfy the real time requirement. because tearing down the original ohject and establishing
the new section must be made in real time with no temporal gap. The sccond way is to
assume the spatial strucwre is actually dynamically changing. In this case. the spatial
structure may change when some major interactive operation is issued. The disadvantage
of this approach is that the implementation of the dynamic scheduling and allocation may

be complicated.

3.3.6.2 Temporal representation

The assumption of the existence of a global clock makes the temporal representation
much easier. Based on the this clock. all the video object sources can generate video
objects at some rate and at a specific starting time. There are other proposals for the timing
model that use the fully event driven concept, such as the Object Composition Petri-Net

(OCPN)I59] model proposed by Thomas Little and Arif Chafoor for a multimedia storage

fro=TTEoososToomoomscoaerea

A | Video Object Yy ,

transparent() ' .

B | (_Video Object) I

| I]

. o | CCemmmmm)
ooooooooooooo '

"0 over2d) D (_Video Object ‘}'

T T E . (Video Objecd) ,
overy() Q:/) TN g - S I I
| KE/> (= overy) f= |
>\ S)
(D o il
|]

overy() f !

transparent() | -

(@ ®)

Fig. 3-8. The spatial representation (a) and its corresponding temporal
representation (b) of a composite video object.

server. Such a model has the disadvantage of too much overhead in maintaining the syn-
chronization of full motion video sequences with the frame rate. There is no demonstrated

video player/display that can maintain synchronization in such a fashion.

Based on the global clock, an example of the temporal representation is shown in
Fig. 3-8(b). Its corresponding spatial representation is shown in Fig. 3-8(a). In this repre-
sentation, the temporal properties (starting time. duration, eic.) are specified by the posi-
tion and the length of object. The left edge of the video object represents its starting time.,
and the length of the video object represents its life span. A composite object is repre-
sented by a dashed rectangle surrounding all its child video objects. Also shown is the
duration of every compositing function. This temporal representation is not especially
useful in the resource allocation and scheduling of the compositing functions. For
example, Fig. 3-8(b) shows that both over() and overy) can share the same compositing

hardware since their intervals do not overlap.
Similarly to the spatial representation. a temporal representation may not be static.
Interactive operations can change the temporal relations without changing the spatial rep-

resentation. or vice versa. For non-retrievable isochronous objects without a pre-specified

62
life span known in advance, the end time of the video object is unknown. The temporal
representation should allow this kind of video object as a (tee-running object which has an
indeterminant ending time. The actual end time will he specified at run time by an event

sent by the video object source.

3.4 Advantages of structured video

Structured video offers considerable advantages as a model for provisioning of
advanced video services. We can divide the service provision into three distinct aspects:
the vendor or vendors which provide the video object (of course they may also be locally
stored), the transporr or network connection from the vendor, and the user who interac-
tively manipulates the video. The essence of structured video is (o keep the video objects
logically scparate, cven if they share a common storage or transport, and to support the
lexibility of compositing them at later stages throughout the network, such as at the inter-
mediate network node or the user display. The efficient hicrarchical structure of the pro-
posed structurcd video model and the generic representation of the compositing functions
enable cfficicnt adaptation of hardware allocations to dynamically changing user

resources and application requirements.

Strucwred video can represent video images over a wide range of applications. for
example. a) full-motion high-definition television video. b) conference video. ¢) videotex.
d) interactive video, ¢) windowing and graphics computer display interfaces, and combi-
nations of these types of representations. A standardized representation enables imple-
mentation of display signal processing using a set of common modular hardware and
software components across a variety of applications. thereby achieving economies of
scale and lower costs. Further. one video display can support a variety of services,

depending on the hardware and software modules placed in it.

Similar to the OSI model of data communications. structured video can provide a

common model of video shared between vendors. transport networks, and users. Specitic

63
services and applications are provisioned readily by simply parameterizing this model.
greatly simplifying the administration of telecommunications networks. A vendor can
request the network resources necessary (o provision the service. and similarly can query
the user’s display plattorm to determine the standardized resources it has and request the

resources it needs.

From the perspective of a vendor. keeping video objects separate should cnable much
greater flexibility and reusability, for example in composing different scenes that reuse
common video objects. From the perspective of a user. keeping video objects logically
separatc all thc way to the display cnables instantancous interactive configuration. for
cxample in moving or resizing the participants in a multi-way video conference. The use
of standard formats for many image types can support interactive services very easily.
Users can combine and customize images from many different people and vendors
without requiring that the sources interact at all. A single video stream can be used differ-
ently by everyone who receives it without the end users intertering with one other. The
control traffic necessary to implement this same interactive functionality at the vendor is

climinated.

Structured video has the potential o enable more efficient compression of complex
video representations for storage or transport. Data compression is more effective if done
on the separate types of video signals because compression algorithms can be tailored to
match the statistics of each data type. It is becoming common to separate video into dif-
ferent regions according to classification algorithms for more efficient compression, but
this is avoided if the video objects are kept logically separate in the first place [7,22). It
may also be possible to add to the structured video representation additional semantic
information available at the source. such as panning and zooming information. to simplify
and improve the compression. Further. if natural scenes are not overlaid with the high-fre-
quency signals caused by text and graphics then standard video compression techniques

are more effective. Of course. text and simple graphics can be described very efficiently by

64
semantic descriptions (fonts, lines. rectangles. arcs) rather than by bitmaps. Graphics and
animation sequences can be transmitted much more efficiently by sending the procedure
required to generate them rather than the generated images. il there are sulficient pro-
cessing resources at the user display to execute those procedures.

Structured video can also serve as the basis Tor adapting services to varying network
and user resources. which is an important practical issue. One video display may have lim-
ited resources and be targeted at a limited set of services because of the specific hardware
and software modules it contains. For example. while an interactive full-motion videotex
system would require text, graphics, windows, pull-down menus. and full-motion video
mixed together. a computer workstation attached to a low-bandwidth network might
require only text. graphics. and windows. The vendor and transport will be able to adjust
to varying hardware resources at the display. For example, at the expense of interactive
flexibility, object compositing can be done at the vendor or within the transport if the dis-
play does not possess sufficient processing capability. This can be done through restruc-
turing of the compositing functions for optimal mapping mentioned in section 3.4.2. In the
limiting case. the minimal display can at lcast accommodate a single rectangular raster-
scanned video, which is also supported by structured video.

The computational resources for the (inal presentation of video can be partitioned arbi-
trarily along the entire path from production to final presentation, thereby adjusting to eco-
nomic constraints for a particular service as well as to the available transmission or storage
bandwidth. Distribution or broadcast services will tend to place more processing nearer
the source. whereas point-to-point or specialized services will generally place more pro-
cessing near the display. The representation will adapt easily to a) different transmission
media (satellite. fiber. cable). b) display devices with varying processing resources.
ranging from simple television displays that present only the pixel map representation. 1o

complex workstations that can process all the representations. and ¢) vendors with widely

65
varying processing resources ranging from reading pixel maps ftom storage devices
through display and graphics engines.

The subjective quality of presentation also can be adjusted to the transport bandwidth
resources. A lower quality can be provided by using only “*higher” semantic and graphics
representations. with quality up o and including full-resolution HDTV available with the
expenditure of additional processing and bandwidth. We also postulate that where limited
bandwidth is available. higher subjective quality can be achieved by compressing some
video objects more heavily than others. for example in retaining full resolution on a head
and shoulders while limiting the resolution of the background.

Structured video also has disadvantages. One disadvantage is the higher cost of display
platforms, although as mentioned previously even minimal existing platforms can support
a degenerate form of structured video. Another is the expansion of data required to trans-
port the hidden portion of video objects, although this can be reduced with more sophisti-
cated flow-control protocols [8]. There arc some limitations in the structured video model
relating to its inhercntly two-dimensional representation (like video itself), as described in

more detail in {23].

In summary, the structured video concept of keeping the components used to generate
video logically separate past the production process. all the way to the final video presen-
tation if that makes economic sense. is very simple yet powertul. In particular. it will ofter
flexibility to reuse and modify video material at the user display or at any earlier point.
Where pictures are actually assembled from different components (foreground. back-
ground, text. graphics. ctc.), as will be increasingly the case in the future, it is potentiaily
much more efficient 1o compress the components before combination than after. Further.
structured video allows flexibility to adjust the subjective quality to handwidth and pro-
cessing resources (for example substituting a graphically-generated background when
handwidth is not available for a camera-generated background), and the flexibility to

adjust processing resources hetween provider and user (for example in adjusting to band-

66
width resources). Finally. structured video is consistent with many interactive forms off
video, where components gencrated remotely can be combined casily with locally gener-
ated clements to form the final video presentation. Centralized interactive services will
segment complex tasks into a) time-critical tasks done locally (graphics and animation). b)
rcading of high-bandwidth background video too expensive to store locally from a central

database, and ¢) non-data-intensive tasks such as billing performed remotely.

3.5 Conclusion

In this chapter. we propose a structured video model that defines the video material
composition in an efficient hierarchical way. The objective is to provide a model such that
video information can be casily exchanged. reused. and composed for real-time presenta-
tion. The model provides a powertul framework for the provision of advanced interactive
multimedia services which can be adapted efficiently based on the varying needs of net-
works, services, and users. Essentially, the structured video model keeps all the displayed
video objects logically separate from sources to the final display. thus cnabling instanta-
neous interactive video configuration, reuse of video objects. and possibly more efficient
compression. The model also provides a way for efficient implementation of the compos-
iting system. This is achieved through introducing the basic compositing functions for
modular implementation and the restructuring capability of the composite object. The
details of composite object restructuring capability has not been discussed yet, but will be

studied later in this thesis.

After reviewing the three current existing standards for multimedia information com-
position. we define the structured video model in section 3.3. We introduced the basic ele-
ments of structured video including video objects and compositing functions. We studied
video objects and compositing functions from both spatial and temporal aspects to reflect
the special requirements of the full motion video compositing. Some compositing func-
tions are listed in Table 3-1 as basic modules. We also introduced a constraint system o

maintain the binding relations between separate internal video objects. and events to

67
handle interactive user inputs. exceptional conditions. and synchronization. Structured
video representation graphs in both the spatial and temporal domains are also presented.
These graphs are a good means for resource allocation and scheduling in distributed net-
work implementation. In the last section. we also discussed the advantages and limitations

of the structured video model.

68

CHAPTER 4

STRUCTURED VIDEO
REALIZATION ISSUES

In chapter 3. we discussed the structured video model for video information integra-
tion and presentation. In realization. we want to composite all video information (video
objects) in the way specified by the model. The compositing function is used to describe
how the video objects are actually integrated. In this chapter. we focus on the compositing
function realization issuecs. When we integrate multiple pieces of video information
together, video objects must be composited correctly both spatially and temporally. Spa-
tial compositing means 10 composite the video objects with correct physical locations on
the display. and also to composite according to the rules desired. Temporal compositing
defines how to maintain the video objects’ temporal relations as described in the last
chapter. Related video objects. for example a moving weather reporter in the foreground

pointng at the background animated weather map, should be combined with correct

69
timing and frame rate for meaningful presentation. Temporal compositing could also be
called svachronization.

Spatial and temporal compositing are needed not only in visual information. They are
also used for sound information. Spatial compositing in sound refers to the mixing of sev-
cral audio streams in some proper way. It usually involves gain adjustment before the sig-
nals are mixed together. Synchronization is needed between video objects and audio
information. Lip sync between the video sequence of a person and his\her sound is an
cxample. Synchronization is also needed between video objects and the events that control

the appearance of the composited result.

In the spatial compositing implementation. we first study the anti-aliasing, which is
needed for compositing arbitrarily shaped video objects in order to have an acceptable
video quality in scction 4.1.1. Then we discuss the algorithms of the basic compositing
function in the structured video model in scction 4.1.2. We also study distributed implec-
mentation of structured video in section 4.1.3. There may be different ways of video com-
positing to achieve the same compositing result. One way of compositing may be
performed more efficiently than others under the constraint of compositing resources dis-
tributed over the network. The study of the distributed implementation discuss how to con-
vert from one way of composiling representation o another to best 1it the cexisting
resources. We call this process of compositing representation conversion restructuring. In
order to do this, we study the generic representation of the primitive compositing func-
tions and their associated propertics. Through the study of these compositing functions,
we can derive the rules for restructuring. In section 4.1.4, we discuss other alternatives that

make the spatial compositing more efficient.

In the temporal compositing or synchronization implementation. we first study the
implementation of the global time clock. which is assumed to be available in the structured
video model. We also discuss how the synchronization can be maintained among multiple

video objects. and propose a synchronization mechanism.

70

Fig. 4-1. Aliasing effect due to insufficient resolution.
4.1 Spatial compositing
4.1.1 Anti-aliasing
Anti-aliasing is important in video object compositing of arbitrarily shaped objects.
Due to insufficicnt resolution on the display, objects appear jagged at the edge. like a stair-
case, which we call aliasing. An example of this aliasing effect is shown in Fig. 4-1. Porter
and Dutf proposed a four-parameter (r g b o) compositing algorithm for arbitrarily shaped

images compositing [12] to reduce the subjective impairment of the aliasing cffect. Here.

we will review their compositing algorithm.

To represent arbitrarily shaped objects placed over an arbitrary background. Porter and
Duff12] usc an additional o channel to represent a pixel in addition to the three colors
(cither RGB. YUV. or any other format.) The o value indicates the percentage that an
object covers a specific pixel location. An o of () indicates the object does not cover that
specific pixel and an o of 1 means the object fully covers the pixel. At the boundary of an
object, an o between) and 1 is used to reflect the partial coverage. The shape of a video
object can be derived from its o values: the boundary is the area where o becomes greater

than 0. An example of the o mask of a triangle is shown in Fig. 4-2.

In essence. the o value is a mixing factor used to control the linear interpolation ol
foreground and hackground colors so that the boundary appears smooth. The best choice

for this mixing factor is the percentage of a pixel that a video object would cover if we

7

giojolojlojojlojolo] ojojon
ojojolotololo] 2] ofojo
ojolofolo]o ,yﬁ;s.ﬁ ojolo
oflololofolsd o] 1|78 olofo
olojojo O 1| 1|8y ololo
Q0| 0L/ 1 | 1 111 josjojo
ofo BRI Nn
olg ol e Nl oto
ojolXpad ot tlifplo]o
ololololosT g8 1] Molo
oloJololololol 2B Aolo
ojojolojolojololo)ololo

Fig. 4-2. a mask of a triangle.

knew its edge’s position with sub-pixel resolution. The resolution of a should be compa-
rable to the color channels. The compositing rule that produces a composited pixel P from

two overlapping video objects is

¥

,('ompo.mrd = uForegraundI,F:}rlnraund + (1 "l'orvwounu" unuceruundpllackground (4- l)
This can also be extended casily to composite a set of video objects.
I’Cam”mM =P+l) Py + (- a) [P+ (1) {...111 (4-2)

Through the use of equation 4-2. the Porter and Duif algorithm requires that video objects
be depth-ordered betore compositing can begin. Also, the form of equation 2 implics that

the compositing function is a lincar function of the pixel values and o.

The derivation of the o value may not he simple. For objects for which we know the
exact position of the boundaries. such as the algorithmically generated text and graphics.
we can calculate o values from the prespecified algorithm. For bitmap pictures, we need to
first identify the boundary of the video object by some means. such as chroma kev{43], the
region growing and split and merge techniques used in the segmentation-hased
coding[42], or some other edge detection methods. Once the boundary is determined. we
can calculate the o value directly if the boundary is not limited by the pixel resolution
(c.g., the edge is identified through the feature of the video object.) If the boundary is lim-

ited by the pixel resolution. filtering techniques(44] can be used to smooth the edge of the

72
object and generate the o values at the same time. In this thesis. we will not explore fur-
ther the derivation of o, and simply assume that it is available together with the pixel

values.

4.1.2 Compositing algorithm
Following the 4-channel method by Porter and Dull. we can derive the compositing

algorithms for the binary functions in Table 3-1.

«C = over(A,B)
Wappt (1w)uyp,
CT el agay (4-3)
U =g+ (1)y
«C = in (A, B)
P = p:\ (4_4)
1‘. = u"uu
«C = out (A, B)
Pe =P,
¢ (4-5)
a. = u,‘(l)
«C = transparent (A, B)
_ aTaPa TPy
Pe = Uy Ty + 1Ty (4-6)

e =1 b an(l-uy

In the above equations, we also generate the o value of the composited result. so that
the composited object can be further composited with other objects. This derived o value
represents the overall portion occupied by the composited pixel. There are some approxi-
mations used in the derivation of equations 4-3 (o 4-6. First, the derivations of the o values
are only approximations. Actually, without knowing the detail edge information inside a

pixel. we cannot get the exact o value of the composited result anyway. Our assumptions

73

are shown in table Table 4-1. Let a4 and oy be the a value of pixel A and B. The intersec-

TABLE 4-1:u value derivation assumptions

| Label | pixel o value
A oy
] Op
AnB o0,
Aub [-(1-04)01-0tg)

tion of the portions occupied by both pixels are a0t The union of hoth pixels is /-(7-
oy f-0g). This is an orthogonal relationship assumption between the edge of the two

pixels. Similar results can be derived for the cases of A~ B and A B.

Similarly, without knowing the detail edge information of the pixels, we cannot get an
exact result for transparent compositing, cither. The assumptions in Table 4-1 can apply to
the transparcnt compositing function. However, it makes the ¢quation quite complicated
because it segments a pixel into four portions and calculates the result separately. In equa-
tion 4-6, we use another simple assumption that contributions from both pixels are not
only determined by the transparent factor t,, T,. but also by o4 and oy We are using the
product of o and 1. i.c.. 04T, and 0tpTy as the weighting factors. The reasoning behind this
is that a pixel occupies a larger area (larger o) and ends up contributing more in this trans-
parent compositing function. The simulation result shows that both of these approxima-

tions arc quite acceptable.

4.1.3 Distributed implementation of structured video

In this section, we discuss the flexibility of structured video implementation in a dis-
tributed network system. The structured video model is general enough to represent any
kind of video compositing, and is useful in allocating hardware resources for implementa-

tion in a distributed environment. In distributive implementation. components of the struc-

74
tured video model. such as the video objects. compositing functions. and events. are
mapped to physical nodes or transmitted on links in a network. There are different map-
pings (and therefore different implementations) under the existing resource and network
configuration constraint. The performance of cach mapping can be determined by the
usage of communication links and the compositing resource.

For example. in figure 4-3, we show a simplc model of 3-way video conferencing.
Figure 4-3(a) shows the composited video objects to be displayed. Figure 4-3(b) shows
the mapping to three different implementations. In Figurc 4-3(a) a single compositing
function is performed at a certain location only. The same composited result is broadcast
o all participants. Any change of the compositing from any user will change the compos-
ited results on all other user displays. This is cxactly the situation for video sharing/co-
editing. In Figure 4-3(b) three different compositing functions are performed at the same
location. Each produces a composite scene for a user. In this situation. three compositing
functions arc used, implying 3 times the hardware complexity as compared with Figure 4-
3(a). However, cach user is given the flexibility to fully control histher composited video
objects. The transmission bandwidth of this implementation is roughly the same as the
(b.1) case, as shown by the arrows of the graph. The only difference is that in (b.1) the
composited result is broadcast back to three users, while in (b.2) three different compos-
ited results are sent separately to the users. Broadcasting may save some network resource
as compared with using three different transport entitics. In (b.3) three compositing func-
tions are put at the user cnds. The hardware complexity (by counting the number of com-
positing function blocks) is the same as that for case (b.2). However. the required
transmission bandwidth may exceed that for case (b.2). |

There arc two different approaches to optimizing the mapping of structured video into

a distributed network. The first is to optimize the compositing function scheduling. In

ICase (b.2) nceds 2-N links while case (h.3) nceds N-(N-1) links. where N is the number
of users.

75

event -
wanpamting Navetion

(a)

el

/* ...‘;,;\ } ,\‘\ . x“.‘\“

(h.2)

(b.1)

HEOOT B

(b3)

Fig. 4-3. A 3-way video conferencing example. (a)the structured
video representation (b.1-b.3) three different mappings to networks.

structured video, most of the composite objects have a limited life span. That is. the com-
positing processors arc used only for a certain period of time. It is possible to schedule
several compositing functions into the same compositing processor. as long as the inter-
vals of the compositing functions do not overlap. This scheduling is a very difficult
problem. and has been studied extensively in the digital signal processing ficld. We will

not go into much detail regarding scheduling except to make the comment that both static

76
and dynamic scheduling are of use in structured video scheduling. The choice of cither
static or dynamic scheduling depends on what kind of video objects are being composited.
As described in previous sections. there are various kinds of video objects. For retrievable
isochronous objects and an-isochronous objects whose life spans are known in advance.
static scheduling is useful. For applications which use nonretrievable isochronous objects
or which have a lot of interactive operations, dynamic scheduling is required because no
prescheduling can be done until run time. Combining both static and dynamic scheduling
may make the scheduling of structured video a very challenging issue.

The sccond way of optimizing the mapping is through hierarchical tree restructuring.
As described in section 3.3.3.1. multiple-operand compositing functions can be formed
witt! the combination of many binary compositing functions. In such a process. several
different combinations may have the same final result. In other words, there are possibili-
ties that several different hierarchical trees of composite objects have the same compos-
iting output, and therefore represent the same composite object. On the other hand,
different hierarchical trees can provide us with different views of mapping, and also
improve the performance. In this section, we will focus on this restructuring issue. To do
this, we will study the properties of every compositing function listed before, and find the
restructuring rules. In this way. we can enable cificicnt manipulations of the compositing
functions for optimizing the mapping performance.
4.1.3.1 Re-structuring of compositing function

Given a set of video objects. {Vi}, a compositing function, F, maps them into a com-
posited object, Vamm‘uxi = F (V}, V..., varj, vars,...), as described in section 3.3.2.
When this compositing function is performed with the combination of multiple unary and
binary compositing functions. there can be many ways to complete the compositing tunc-
tions. For example. overlapping of three objects can be completed with either the first two
or the last two objects overlapped first. as shown in Fig. 4-4. Mathematically, this can rep-

resented as overfover(A.B),C) for case (b) and over(A,over(B.C)) for case(c) in Fig. 4-4.

77

(A
el C over Q) over
AN o¥o

(a) (b) (c)

Fig. 4-4. Different implementations for the same composited video
object and their tree representations

The mathematical representation will help us analyze the propertics of a compositing
function in a more systematical way. An cxample of a more complicated compositing

funcdon is shown in the following cquation.
Vcompasited = Over(scale(over(V), Va)), over(scale(V3), scale(Vy)) (4-7)

The parenthescs indicate the processing order for completing the whole compositing
function. It is this stiff restriction we want to break in order to support the flexibility for
cfficicntly adapting implementations to the dynamically changing application require-
ments and network configurations. We achieve this flexibility by exploring the character-
istic propertics of the generic representations for compositing functions, such as
associative, commutative, and distributive properties of the compositing functions. Bascd
on these properties. we can restructure the compositing process so that the final structure
implies the optimal implementation. For cxample, the composited object shown in equa-
tion 4-7 can be restructured to a simpler one as follows (if we assume all scaling factors

are the same.)
Voompasited = scale(over(over(over(Vy, Va), V3), V) (4-8)

[n the following, we discuss these important properties for restructuring the compos-
iting process and their possible effects on the implementation.
A binary compositing function, F. is associative if

F(F(V1, V), V3) = F(V|, F(V2, V3) (4-9)

78
Examples of associative compositing functions are over(), transparent(), and in(). The
compositing function oul(), is not associative. The significance of the associative property
is that it allows trade-olfs hetween sequential vs. paratlel implementations. For example. il
video components are generated incrementally along a bus network. it is most natural to
composite these components objects one by one sequentially. On the other hand. if sources
of component objects are grouped into several locations. parallel compositing may be
more efficicnt. In terms of hardware complexity, sequential compositing may facilitate
efficient implementations like pipelined compositing architectures. But if the sequential
compositing process is distributed among many different locations, the end-to-end latency

will be long.
A binary compositing function, F, is commuzative it
F(V|, V) = F(Vy, V)) (4-10)

An cxample of commutative compositing functions is transparent(). Qverlap, A in B,
and A out B are not commutative. When pombincd with the associated property, the com-
mutative property can determine whether or not multiple video objects can be composited
in any arbitrary order. This is important since video objects may come from many different
remote locations and their geographic location does not necessarily match the specified
compositing order. If the specified compositing order is unchangeable. video objects may
need to be send to a central node for compositing, or some distant video objects may nced
to be sent to the same node and composited together before they are transmitted to another
distant location. Note, for unary operations, that the commutative property implies
UL(U2(V)) = U2AU1(V)), where Ul and U2 can be the same operation. For example,
scaling and translation arc commutative.

The distributive property is defined upon a unary or binary function with respect to a
binary function. Operation U is distributive with respect to a binary function. G. if

U(G(V |, V9) = G(U(V)), U(V9) (4-11)

79

Binary function. F. is distributive with respect to a binary function. G. if
F(G(V,V2), V3) = G(F(V,V3), F(V2,V3) (4-12)

and
F(V}, G(V2. V) =G(F(V,Va). F(V|,V3) (4-13)
The first advantage of using the distributive property is the reduction of redundant
vperation by extracting the common operations shared by two video objects. This means
the reduction of computations in most cases. although the actual amount of computation
reduction depends on the specific operations applicd. For example, simple nonoverlap
combinations of two objects does not reduce the total data and thus does not reduce com-
putations when a common operation is extracted. On the other hand. using the distributive
property to apply the same operation on both component objects before they are compos-
ited together may he advantageous in some cases. For example, scaling down the compo-
nent video objects before they are transmitted to a network node for compositing can save
some transmission bandwidth compared to transmitting the full-sized video components
and doing down-scaling at the network node.
A table summarizing the basic properties of the compositing functions is shown in

Table 4-2. These basic of associative. commutative, and distributive properties show us

TABLE 4-2:Basic properties of compositing functions for restructuring. A: associative. C:
commutative (Cp, for binary, Cy for unary), D: distributive (F or Uwrt. G)

Binary (G) Unary
Over Transpa In Out Scale Tran'slal Rotatc Flip
rent ¢
-B-inary Over A D D D (not defined)
F) Transparent | D A, Ch D D
In D D A D
Out) D D ¥

80

TABLE 4-2:Basic properties of compositing functions for restructuring. A: associative, C:
commutative (C, for binary, C, for unary), D: distributive (F or Uwrt. G)

Binary (&) Unary
Over Transpa In Out Scale 'l'l’:ll’fslul Rotate Ilip
rent ¢
Unary | Scale D D D n Cu Cy Cy
O Translate D D | D D Cy Cy Cy
Rotate D D D D Cu Cu
Flip D b D D Cy Cy Cy Cy

(ST ourS2) 0utS3 = S1 out (S2 over $3) or 1 vt (53 over 82).

out !
ov{% scale é
l scale l scale over
\,
@ G5 &
(a) (b)
Fig. 4-5. The corresponding action of applying distributive

property on the implementation tree, from (a) to (b) — merging,
from (b) to (a) — splitting.

various possibilitics for implementing the same compositing operation in different tree
structures. A more efficient mapping can be found through this restructuring process using
these propertics. Basically, the associative property allows the moving of a compositing
block from one branch to another branch of a node. The commutative property allows the
switching of two objects under a compositing block or the switching of two compositing
blocks on top of a single video object. The distributive property is cquivalent to merging
two identical undemeath blocks into a single block on the top of another hinary compos-

iting block. as shown in figure 4-5. or the other way around (splitting).

81
These basic properties for restructuring the compositing lunctions also lacilitate an
efficient and systematic approach to maiching the structured video implementations to
dynamic application requirements. For example. if transmission bandwidth is the most
important resource. we should pertorm compositing at nodes closer to the sources and
complete rate-reducing operations (e.g., down scaling) as carly as at the source sites. If the
computational complexity is of most concern, then finding the simplest computation form
should be pursued. On the other hand, if users want the most responsive control, then
keeping video objects separate all the way down to the user sites should be most beneti-
cial.
Besides these considerations. there is the challenging issuc of optimizing the mapping
of several structured video representations for many different scrvices at the same time. A
suboptimal mapping for single-user services may become the optimal mapping when mul-
tiple services are considered together. In a multi-user heterogencous-service situation,
these restructuring techniques are useful for finding the sharable compositing processes

among different users and different services to reduce the overall implementation cost.

To provide more flexibility for restructuring, it is possible to change the basic proper-
ties of the composting functions through different definitions of the compositing function.
For example. the definition of over(A.B) places object A at the top of object B. Theretore it
is not commutative. However, if we define a new function over(A,B,z4, zp) which cither:
places A over or under B depending on the priority values z4 and zg then over() becomes
commutative. Note that other properties may also change through this new definition. In
order to keep the over() function associative. the priority value : needs to be per-pixel
based, instead of per-object based. If it is per-pixel based. the composite object has the
same priority for the whole object, and the associative property cannot be maintained.
This can be seen from the fact that in over(over(A.B), C) the overfA,B) is first performed
then composited with object C. Once over(A,B) is performed, it becomes one single video

object. We cannot tell the portion in A from the portion in B because a single priority value

82
is used for this composited object. Under this sitation. C cannot be inserted hetween A
and B. This is apparently different from over(A, over(B,C)) in the case that A over placed
over B over C. By assigning a priority to cach single pixel. we can maintain both associa-
tive and commutative property for over(). Since over() is the most frequently used among
all compositing functions. maintaining both commutative and associative properties will
provide a great advantage in implementation. It also provides a means to avoid presorting
the video objects acording to object priority. We will discuss this later in the discussion of

the pipelined architecture of the VideoStation.

4.1.4 Possible efficient implementation in spatial compositing

The algorithms described in the last section are a direct implementation of video com-
positing in the plain pixel map domain. There are ways to make the compositing more effi-
cient to reduce the processing requirement and/or reduce the transmission bandwidth
requirement. One possibility is a technique called compression domain compositing
[261[27]. The other is to use the flow control method. In this section. we will brietly
review the compression domain compositing technique, then we discuss the flow control

algorithm.
Compression domain compositing

It is common today to use some kind of compression method to reduce the data rate
required for video information. With the reduced data rate in compressed domain. it is
possible that the compositing takes less processing because there are less data to be pro-
cessed. On the other hand, when all the inputs and the output of the compositing are in the
same compressed domain, e.g., compositing to be performed at some node on the net-
work, performing the compositing in the same compressed domain can reduce the over-
head of format conversion which is required if the compositing in performed in the plain

pixel map domain.

83

Compressed domain compositing has been studied in some detail in [26]1271. A bricf

review of the results shows that efficicney depends on the compressed algorithm, the char-

acteristics of the video objects. and the assumption on the input/output tormat. Compos-

iting in a simple DCT transform domain is usually more ctficicnt than compositing in the

pixcl domain. The motion-compensated DCT transform. however. may or may not be
more efficient depending on the compression rate. More details can be found in [26][27].

Flow control technique

The other possibility is to use some kind of flow control technique o save the total
transmission bandwidth requirement. Usually a composited object consists of objects
overlapping cach other. There are usually some portions of objects that are obscured and
cannot be scen. If it is possible to send this obscurity information to the video object
sources. then the obscured portion nced not be sent in the first place. This can save some

transmission bandwidth.

The basic idea of this flow control technique is to use the information about an object
being partially obscured to save the transmission bandwidth required for the video com-
positing. Our discussion will base on a simple model shown in Fig. 4-6. Fig. 4-6(a) shows
a composited object C consisting of object A and B with the compositing function C =
over(A,B). Fig. 4-6(b) shows the video sources S A Spof object A. B respectively, the com-
positing processor Ce and the connection links between them Ly, Lp The use of the flow
control technique is to reduce the total transmission bandwidth requirement on the link Lg,
and Lg With this simple modeling, the bandwidth usage are B4, Bgon link Lg, and Lp
respectively. Let's use a weight function W; to represent the cost of the link i.The total cost

function F of the transmission will then be:
F=WB,+WgB, (4-14)

The idea is to inform each video source that some portion of its video object will not

be seen, and therefore need not be sent. For example. object B is partially obscured by

84

Cc

L \53
é)/ s

()

N—
(a) (b)

Fig. 4-6. A simple model for flow control scheme using object
obscuring information. (a) The composited result. A portion of
object B is obscured by object A. (b) The network configuration of
video sources Sp, Sg and Compositing processor Cc, They are

connected with links La, Lg The results will be sent out through
Lc
object A. With the obscurity information, instead of sending an object B to compositing

processor C, video source B sends to C the object out(B, A), the unshaded portion of object
B in Fig. 4-6(a), where our() is the compositing function described in the last chapter. Let
B/, represent the bandwidth usage of out(B, A). The total transmission cost using the flow

control will be:
F=WB +WiB +WB, (4-15)

Equation 4-15 assumes the weighting factors of sending information in both directions on
link Lgare the same, i.e., Wg. Bpis the bandwidth of the obscurity information sent from
C to B. In order for the flow control mechanism to be useful. the cost function F must be

less than F. That is,
BB—BB,—B(,>() (4-16)

The left-hand side of equation 4-16 represents the final bandwidth saved from sending
only the nonobscured portion. including the overhead of the obscurity information. This

bandwidth saving must be greater than zero in order for this flow control mechanism to be

85
useful. The first two terms. Bg - Bp:, arc roughly cqual to the data rate of the unshaded
portion of object B. The third term. Bo, equals the data rate of the edge information of
abject A. The exact value of the bandwidth saving depends on the video itsell. the over-
lapped sizc of the video objects. and the algorithms uscd to code the video object content
and cdge information. It is hard to give an exact value for the bandwidth saving. In gen-
eral, however. the data ratc of the code for video object content is scveral times higher

than the code of edge information. Table 4-3 shows some typical ratios of the data rate

TABLE 4-3:Data Ratio of Video Object Content/Edge!

Content coding/Edge coding m)’; [il(:) :Y) : 2{0 l‘(,‘),xx l*({);)
[uncompress/uncomprossed bitmask | 16 6 | 16|
JPEG/Run-I ength-Coding 11.82 7.12 1.492
MPEG/Run-1.cngth-Coding 4.55 2.7 0.574

¥ Assuming the compression ratio of JPEG and MPEG are 10 and 26. respectively.

between the video content and the edge. It shows that for uncompressed video objects. the
edge code is only 1/16 of the content codes. If we use run-iength coding for the cdge, the
exact value depends on the size of the video object. Table 4-3 shows three different sizes
of video objects. Note that the width and height of the video object shown in Table 4-3
only roughly describe the shape of the video object. because the video objects are arbi-
trarily shaped instead of a rectangle. The figure in Table 4-3 shows that. for most cases, the
data rate of edge information is several times less than that of the content. and it is worth-

while to send edge information to trade for the saved bandwidth from the overlapped
shaded portion.
The model described above for flow control is actually oversimplified. Practically

there are still issues remaining to be considered:

86

* First. there are some processing overhead at the video sources to derive the
object out(A,B). To make it simple, instead of sending the exact shape of
the object A, we may want to send only a rectangle describing the area to
be covered by object A. This reduces the processing complexity, and also
reduces the bandwidth used to carry the video object edge information. On
the other hand. this also decreases the unsent portion of object B,

* The synchronization of both video objects in time needs to be solved. From
the model in Fig. 4-6, object B cannot be sent to compositing processor C
until object A has arrived at C and the edge information of object A is sent
from C to B. This causes a delay of object As being displayed. and requires
more buffer for object A. A possible solution of this problem is that all
video objects send their edge information several frames in advance. so
that this edge information can be sent to video sources in time to do the
{low control. This is reasonable because many coding algorithms today usc
interframe compression, ¢.g., MPEG and H.261. To derive the current
frame, we need the frames in the past or in the future. It is therefore possi-
ble for the coder to put the edge information several frames in advance
without much difficulty. In the next section, we will discuss video object
synchronization issues further.

4.2 Temporal compositing (synchronization)

Synchronization in general means 1o maintain events in some temporal order. Struc-
tured video uses a temporal representation 1o maintain this synchronization among all the
video objects involved in a structured video compositing. Under the structured video
model, all objects are distributed all over the network, and are transported over to the com-
positing processor when needed. In such a distributed environment, it is important to study
the issues concerning how the temporal relations are kept in a most cfficicnt way. In this
section. we first review some background of network delay and svnchronization, and dis-
Cuss a source control mechanism that can be used to maintain the synchronization among
all video objects, and also minimize the buffer requirement at the receiver. Then we will

discuss the global clock timing recovery that is needed for the structured video model.

87

Compositing function | 'composte

L
(A_\/(B tanron
N——

Fig. 4-7. Delays for structured video.

4.2.1 Synchronization background

In a distributed network, delays and delay jitters are inevitable due o the nature of the
network. Delay is the duration between the time the signal is sent from the transmitier to
the time when the receiver receives the signal. A long delay is not acceptable in applica-
tions that require fast response time o interactive operations. The delay jitter results from
the changes of the delay. Delay varies due to rcasons such as queueing, different routing,
retransmission due to error, ctc. Because of variable dclay, buffers are used to keep the
information that cannot be used immediately, and also regulate the traffic into a smoother
pattern. The goal of synchronization is threefold: (1) to maintain the correct temporal rela-
tions among all video objects, (2) to minimize the overall delay and delay jitter at the
receiver. and (3) to minimize the buffer size required at the receiver.

In the structured video model, we can model the delay of any link from video object to
the compositing functions. as in the following equation. The corresponding graph of the

structured video is shown in Fig. 4-7.

t (4-17)

ldela_v = Lsource * link * t(‘ompositing

In this cquation. the ryy,., is the time used to generate the video object. It includes the
query evaluation. scek. and access time (if it is saved in a storage device), the coding time
(if it nceds to be coded before it is sent to the compositing function), and the packetization

time. The 7y is the time used to send the video object to the compositing function

88

Y Bufter
E""“"““"_E:ED—" Receiver

Recewver

© @

Fig. 4-8. 4 types of synchronization: (a) one-to-one. (b) one-to-

many. (c) many-to-one. (d) many-to-many.
through the transport. It includes the transmission delay and the queucing delay (if it is
buffered at any switch in the transport). The ! wnpusiting is the time uscd to composc the
video object. It includes buffering delay, depacketization, decoding, and the compositing
processing time. In all these different delays, we will make no assumption about the
source coding, packetization/depacketization. the link or the compositing processing. The
emphasis of our discussion is placed on how to reduce the buffer and buffering delay in
the last term Lompusiting

There are basically four types of synchronization. They are one-to-one, one-to-many,

many-to-one, and many-to many-synchronizations as shown in Fig. 4-8. The one-to-one
type is the most basic that any communication link needs to consider. Among all the four
types of synchronization, the many-to-one type of synchronization best fits into the struc-
tured video model in that many sources (transmitters) send their video objects to the com-
positing function (receiver) for compositing. All objects need to arrive at the same time in

order to reduce the required buffer. The many-to-many is also possible when video objects

89

overy out

\/

\9) overpy
4
N
OO
Fig. 4-9. Structured video model sharing the same
composite object for a different compositing function.

are shared for some reason. Fig. 4-9 shows an example of a many-to-many type of syn-
chronization. In this case the compositing result of object A and B (over))is shared
between two receivers (overj() and our()) to save the compositing resource. This case is
different from the multiple many-to-one type of synchronization because only one copy of
object A and B are sent out.

Two important issues need to be studied. The first is the clock rate matching between
the ransmitters and the receiver. When the clock rates are different, the buffer between the
transmitter and the receiver will overtlow or underflow. There are mechanisms for this rate
matching. In the structured video model, we assume there is a global timing clock avail-
able. It is required that the structured video model use some kind of mechanism to main-
tain a global clock among all the sources. destinations. and any intcrmediate compositing
processors so they all use a common clock and timing. In section 4.2.2 we will discuss this

clock rate matching and global timing issuc.

The second issue is the synchronization among all video objects sent to the same com-
positing function. This is required in both many-to-one and many-to-many types of syn-
chronization, which are the cases that apply 1o structured video. With either type of
synchronization, video objects should arrive at their destination just on time. If an object
arrives oo early as compared with other video objects to be composited. this video object
should be kept in the buffer at the destination. Similarly, if it arrives too late. it keeps other

video objects waiting. Under this situation, some kind ot source flow control mechanism

90
is needed 1o maintain the best timing for video objects arriving at the destination 1o mini-
mize the buffer requirement between the video sources and destinations. Without using the
timing control mechanism. a very large buffer may he required because the data rate of full
motion video sequences is usually very large. In scetion 4.2.3, we will discuss this source

flow control mechanism.

4.2.2 Clock rate matching
4.2.2.1 Brief review

In a distributed system, there is usually no single clock available to all nodes on the
network. Usually, cach node operates on its own local clock. If the clock rate drifts from
node to node. problems appear. For example. when the transmitter transmits a video
stream at a rate slightly higher than the rate that the receiver can consume, the video
stream accumulates at the buffer, and the butfer periodically overflows no matter how
large the buffer size is. Similarly, when the transmitter transmits at a lower rate, the buffer
periodically underflows, and the receiver is always waiting for the video stream data.

There are basically four solutions that can be used to solve this clock rate discrepancy

problem.

The first is so called “slip buffering.” The idea is not to change the clock at either the
transmitter or receiver. Instead. the receiver throws away frames when the buffer over-
llows, and repeats the previous frame when the butfer underflows. In this way, the receiver
can always catch up the clock rate of the transmitter. The disadvantage of this approach is
the degradation of the video quality. For example, with a 0.01% drift in the crystal clock. a
frame is slipped cvery 6.5 minutes, assuming the video sequence is 30 frames/sec. There is
a goal in the MPEG community that no more than one glitch appear every 15 minutes!.

That is a much more stringent requirement because the “glitch™ includes any single bit

I From ATM forum SA A group e-mail discussion.

91
crror. In slip buffering, every time the buffer overflows. it is not a small glitch: it is a
freeze or jump of the whole frame.

The second approach is to monitor the occupancy of the butfer at the receiver and send
this information back to the transmitter to adjust its transmission rate accordingly. This
mechanism. however, mily not be useful for real time video when the delay on the link g7,
is large. With such a large delay. the receiver alrcady accumulates a lot of data before the
transmitter begins to correct its rate. The buffer needed at the receiver may become too
large. In the one-to-many type of synchronization. rate matching through monitoring the
butter is not viable because different receivers may run at a different rates. and the trans-

mitter can only match the rate of one of the receivers.

The third approach is to send the time stamps together with the video sequence, and
recover the clock rate at the recciver end. This approach does not need any feedback from
the receiver, and is implementable for real-time video. MPEG I and T both use this
approach to recover the clock at the receiver. However. this syncronization mechanism lct
a transmitter determine the clock by its own. When multiple transmitters arc involved, dif-
ferent clocks arc used. In this way. it does not work for the many-to-one type of synchroni-
zation becausc the receiver can only recover the clock rate of one transmiter. For
structured video. many-to-one synchronization is most representative. Matching only the

clock of one transmitter results in a sacritice of video quality ol other transmitters.

The fourth approach is to provide a global clock available to all components. This
approach is appealing to applications with complicated structure such as the structured
video model. Providing an exact global clock to all distributed components may not be
casy. however. providing “approximate™ global clocks based on the same reference clock,
however. is possible. In the distributed computation system. a system using a global clock
is called a svachronous system. In fact. a global clock can be implemented cven in the
presence of failures{631[64][65]. In the next subsection, we will describe our global clock

approach for structured video.

92

(ctock master) (clock master)

overyq overy

) 7N
A 4 \

overs Q) overy

VRN 2N
Y d \) o
@ @ @
T T T = = time stamp tlow

= ° ° =% video data tiow (a) (b)

Fig. 4-10. Global clock time stamps flow in two steps: (a)
establishment session and (b) compositing session.

4.2.2.2 Global clock for structured video

Our solution to synchronization for structured video is to provide a global clock avail-
able to all the components in the tree structure. By *global clock.” is meant only global to
the whole tree, not the whole network. The clock rate between different trees can be dif-

ferent. This is different from creating a totally synchronous distributed system in

[63][64][65].

The golbal clock syncrhonization process includes two steps: the establishment ses-
sion and the compositing session. The global clock must be provided before the normal
compositing starts. To do this. an initial establishment session is used to exchange clock
information hefore the normal compositing starts. In the establishment session. we assign
the root compositing function of the tree as the clock master. as shown in Fig. 4-10. The
clock master sends out time stamps through the tree structure to all the components in the
tree. The time stamps are sent out continuously from the start of the establishment session
until the end of the compositing session. All the components in the tree then recover a

local clock based on this reference clock.

Note that this time stamp is not sent directly from the root to all the leaves. Instead. it
is sent through the intermediate level of compositing functions. then to the leaves. In this

way, the synchronization can be done from link to link in a more distributed manner. and

93
also the children nodes can maintain a better synchronization with their intermediate
parent node. This mechanism can also cover the many-to-one synchronization, in which
the clock master can be assigned 10 one of the root compositing functions in the structure.
This clock master sends the time stamps to all the rest of the roots. Each root then sends
the time stamps to all the components in its own tree. Note that this approach is different
from the MPEG approach, in which the time stamps are ecmbedded in the video signals.
Our approach uses a separate channel for time stamps going in the opposite direction of
the video signals. The extra channel may or may not use more communication resources.
For cxample, in an ATM network, all the transports are in logical virtual channels. An

extra channel does not cost anything except an extra identitier (VCI).

The rate of the reference clock can be chosen according to the need of applications.
When possible. a lower rate can be used to save the bandwidth for transmission of the time
stamps. This is depending on the application, though. For cxample. the reference clock
rate in MPEG I is 90 KHz, while MPEG II uses a 27 MHz clock. The global clock derived
in this way is only an approximation of the reference clock due to the diffcrent delays of

time stamps (delay jitter). This approximated clock, however, will keep the buffers nceded

to a limited amount.

4.2.3 Many-to-one type synchronization in structured video

The second issue in synchronization is the arriving time matching among all the video
objects of the same compositing function. Using more buffer at the receiver is not a good
solution for this problem because of the immense amount of data involved in real time
video. A better way is to do some kind of source control at the establishment session so
that the video sources send out the data at the exact time to guarantee that data from all
video sources arrive at the receiver at roughly the same time. To achieve this. it seems
obvious that two parameters need to be decided. One is the relative difference between the
origins of the time basis of the components. The other parameter is the delay measurement

of the links in the tree. These two parameters are related to each other. To derive onc

94

[
compositing function
%
\
\
A}
- -
- ~
f 8 v
A , Ve e e = = = - - - —e-e-e-
Te=-- tic
. Ha
(a) (b)

Fig. 4-11. Relative origin and delay determination. (a) Tree
structure. (b) Time trace of the negotiation process.

parameter. we need to know the other. and vice versa. In this section. we show a very

simple method to make video objects svachronous without knowing these two parameters.

Before we describe the detail. we will first make some assumptions about delay. In our
discussion. we assumc that delays are constant throughout the whole compositing process.
Apparently, the source control to synchronize the arriving time handles only the first order
characteristic of delay. It will not handle delay jitler. However, it is reasonable to make
such an assumption on this source control model if the delay jitter issue is handled by the
rate matching mechnism described in the previous section with some buffers. Secondly,
we assume the delays in two directions on the same link may be different. This is a reason-
able assumption because both directions may use different routing. and may undergo dif-
ferent traffic situations. Thirdly, we assume that the only unknown delay is the link delay.
The processing delay such as coding/decoding, compositing, and accessing delays are all
known to the local device. We can ignore such delays in our discussion. Taking them into
consideration is easy since those delays are explicitlly known.

Under these assumptions. we consider the model shown in Fig. 4-11. Here, we study
synchronization on one link of Fig. 4-11(a), i.c., the link between C and A. A similar result

applies to the link between C and B. Also note that in Fig. 4-11, component C may or may

95
not be the clock master. When it is not the clock master. it receives the reference clock
from its parent and passes it on to the child nodes.

The global clock described in the previous section only gives all components a correct
clock rate. It does not tell the transmitters when 1o start sending video. In fact. it is very
common for every component to have its own origin for its time base. as is shown in
Fig. 4-11(b). In this figurc. 0p and 04 represent the origins of the time basis of A and C.
respectively. In the figure, it is assumed that component A assigns an origin when it first
reccives the message (time stamps) from C at the origin of time basis of C. It is difficult to
discover the discrepancy between these origins hecause the transmission delays between
the two components are unknown. However, it is still possible to make objects synchro-

nous without knowing both their time origin and their delay.

Take a closer look at Fig. 4-11(b). A packet sent from A at time 0 Ain A's time basis
arrives at the time tycof C's time basis. Similarly, any packet sent at time tp in A's time
basis will arrive at 1p+tjcin C’s time basis. This is actually enough information tor us to
make video objects synchronous at the receiver. To make video objects synchronous. we
only need to know the sending time in A's time basis and the armiving time in C's time
basis. It does not matter what the sending time is in C’s time basis or the arriving time in
A’s ume hasis. Theretore, whenever compositing function C requests a video object o
arrive at time oin C's time basis. the video source A simply sends out the video object at
time (LtyQ) in A's time basis. This value tic van be taken as a logical delay (ty) com-
bining the cffect across different time bases and link delay. Such a logical delay can be
derived casily in the initial setup of the global clock in three passes of message passing, as
shown in Fig. 4-11(bh).

The overall tree synchronization can he done easily through the global clock recovery
and the logical delay. To achieve synchronization. we need to derive the logical delay for

cvery link in the whole tree. The process of the whole tree synchronization is as follows:

96
I Initialize the global clock as described in the last section. All the compo-
nents recover their clock base on the same global reference clock. so that
all the components proceed at roughly the same rate.
2. Once the global clock is available. the components chose their origin of
time basis as follows:

(i) Starting from the root, the root determines it own time origin arbi-
trarily.

(i) Once the time origin of the root is determined. it passes messages to
all its immediate children nodes.

(iif) The children node sets its origin of time basis when it receives this
message from its parent. Then it sends a message back to its parent
notifying its receiving of the message. At the same time. it sends mes-
sages to all its children nodes to initiate their time basis origin.

(iv) When the parent node receives the response from its children node, it
records the arriving time of this message. This arriving time is the log-
ical delay between itself and this children node. Then it sends this log-
ical delay back to this children node.

The steps in 2.(iii) and 2.(iv) are performed recursively until all the components in the
tree have heen set up correctly. Once the time basis and the logical delay is determined at
all components, the synchronization at the parent node can be easily maintained. Note that
this process can be done in a fully distributive manner. It starts from the root, and spreads

serially to all the leaves.

4.3 Conclusion

In this chapter. we discuss most of the important issues in the implementation of struc-
tured video compositing. In spatial compositing, we start with Porter and Duff’s anti-
aliasing algorithm, extend it. and derived the compositing algorithm of all the compositing

functions that we listed in the previous chapter. We also study the implementation flexi-

97
bility of the structured video model in allocating video compositing functions to a distrib-
uted network environment. The structured video can provide a means for studying various
possibilities of implementation. and provides as a tool for its performance analysis and
optimization. To do this, we explored the generic structure of compositing functions and
their uselul properties such as associative. commutative, und distributive. which enable
easy manipulations of the compositing functions and restructuring of the structured video
representation of a video service and its associated implementation. More discussion
regarding the actual mapping of the tree structure into a physical network configuration

and the trade-offs can be found in |32].

In temporal compositing, we discuss two important synchronization issucs. which are
the clock rate matching and the multiple object synchronization. In rate matching, we pro-
pose to usc a global timing clock for all the components in a composite video object. This
kind of global clock mechanism uses scparate channels for transmitting timing signals.
and may use more network bandwidth. However, this bandwidth usage is small when
compared with the bandwidth of full motion video sequences. With the complexity of a
tree structure. it is difficult to usc traditional methods such as slip buffcring or the buffer
monitoring method to match the clock rates among all the components. Since the goal of
structured video is to support real-time full motion video. it is best to use a global clock to
allow cach component to run freely without other intervention. To maintain the synchroni-
zation among multiple video objects. we usc a simple mechanism to set the origin of the
time basis of all the components, and measure the delay of the links in the composite

object structure.

In a distributed implementation. we did not study optimization of resource allocation
in this thesis. We only study properties that enable more flexible resource allocation. The
scheduling is another issuc that needs to be solved. The temporal representation proposed
in chapter 3 can be used as a foundation for scheduling. However. the scheduling can actu-

ally be more involved because structured video includes not only limited life span video

98
objects. but also undetermined life span objects and interactive operations. It is sure that
some kind of dynamic scheduling scheme is needed. When the optimization considers
both the resource allocation in the spatial domain and the scheduling in the temporal
domain. it becomes a very challenging problem. and deserves further detailed study in the

future.

99

CHAPTER 5

THE VIDEOSTATION — A
PLATFORM FOR VIDEO
COMPOSITING

Today’s displays, such as the video subsystems of high-performance workstations,
cannot implement the video compositing algorithm of structured video in real-time. In

particular,

* Workstation displays are designed to support an-isochronous objects only,
with the assumption that each pixel is updated only infrequently. Rectangu-
lar video windows can be placed on the screen using an analog RGB
switch, which is very inflexible because it does not allow even simple oper-

ations like imposing a text label onto a video window.

* Televisions are designed under the assumption that only a single rectangu-

lar object is displayed, although they do update each pixel with each frame.

100

While workstations can implement structured video successfully in software, video
compositing must be implemented in hardware with today’s technology because of its
high processing rates. In this section, we examine the nature of the limitations of today’s
display architectures. Then, as an example of an architecture that can support structured
video compositing in real time with very few limitations, we present our VideoStation
hardware architecture. As a demonstrative example, the VideoStation will cover only part
of the compositing functions listed in chapter 3. We use a compositing algorithm modified

from the algorithms in chapter 4 to cover the chosen compositing functions.

5.1 Objectives

Today’s display systems can do a reasonable job with an-isochronous objects. in the
sense of updating the display within reasonable human visual system response times, but
are inadequate to handle isochronous objects without severe limitations. As a compositing
display platform for structured video, we envision a display which can support compos-
iting functions of any kind of video objects, including computer graphics as well as video
in various combinations. Some useful display objectives, if they can be achieved at an

affordable cost, would include the following:

* It can display a combination of isochronous and an-isochronous objects,
with full update speed for isochronous objects.

* There should be no architecture-imposed limit on the number of arbitrarily-
shaped video objects. More video objects can be supported by simply
inserting more hardware.

* Parameters in compositing functions can be interactively changed in real
time. For example, parameters such as the location (L) in the function
translation(), the overlapping priority (z) of the function over(), and the
transparent factor (1) in the function transparent(), etc., can all be changed
easily from frame to frame.

101

* A variety of compositing functions can be realized in real time. In our first
implementation, we only implement four basic compositing functions in

table 3-1, i.e. over(), transparent(), translation(), and delay().

* The rest of the unary functions in table 3-1 can be performed individually
on each video object before compositing, and therefore are not included in
this compositing platform.

In essence, the implementation of compositing functions deals with the placement and
combination of multiple video objects at proper spatial locations and temporal timing on
the display according to the compositing algorithms as described in chapter 3. Since video
objects are full motion objects with their location changing from frame to frame, the com-
positing processor must guarantee real time operation such that the location of the video
objects appears correctly in every frame. This is difficult in conventional display because
of the limitation of processing capability and memory bandwidth. The fact that only the
window boundary shows up when we select and move a window in today’s workstation
reveals the limitation to supporting full motion videos in conventional display. In addition,
the video objects require the support of compositing arbitrarily shaped objects, which
requires more processing. To properly handle the compositing, we need a special design
on the display architecture and implementation. In this chapter, we deal with these pro-
cessing and memory bandwidth limitations and propose an architecture which enables real
time compositing. Before presenting our architecture, we first review the technology limi-

tations in today’s video display technology.

5.2 Today’s technology for video display

The single frame buffer display is the most popular display architecture used today as
is shown in Fig. 5-1. In this architecture, any point on the display screen corresponds to a
pixel value stored in the frame buffer. The frame buffer holds a 2-dimensional memory
array module with its size equal to the size of the display. The video refresh controller con-

stantly reads out the data stored in the frame buffer and repeatedly scans the CRT monitor

102

Conwolter

Flg. 5-1. Display Architecture with single frame buffer.

at a typical refresh rate of 30 times or 60 times per second. In this architecture, objects are
rasterized and written into certain address of the frame buffer by the display processor to
show up at the corresponding location on the display. The display processor can be either
a general purpose CPU, or a special hardware which enhances the rasterization of fre-
quently used objects such as lines, rectangles, etc. The frame buffer also records an image
data structure that is used by compositing operations. For example, to perform a transia-
tion() operation, the display processor uses the image data structure to remove the original

object from the frame buffer, and then write it into a new address.

This kind of single-frame buffer architecture is well suited to the display of an-isoch-
ronous video objects, such as graphics and texts, which are only updated very infre-
quently. Under this condition, most of the frame buffer bandwidth is used by the video
refresh controller. To support full motion video compositing, it is apparent that the frame
buffer bandwidth needs to be high enough to support the 30--frames-per-second updates
of the video objects. The display processor needs also to be fast enough to process the
compositing when the video objects changes from frame to frame. When the number of
video objects involved in the compositing increases, the requirement on both frame

memory bandwidth and processing capability becomes even more stringent.
It is the limitations of frame memory bandwidth and the display processor capability

that prohibit the direct implementation of the structured video compositing algorithm in

this kind of single-frame buffer architecture. There are actually some trade-offs between

103
the frame memory bandwidth requirements and display processor requirements. For
example, to perform the over() function of two objects, we can either first write the object
at the bottom into the frame buffer, and then write the object at the top to overwrite the
portion at the bottom. Or we can write only the unobscured portion of the bottom object
and top object into the frame buffer. The former approach requires more frame buffer
bandwidth, but is easier done. The latter approach saves the frame buffer bandwidth usage
but requires more capable display processor to calculate what is the obscured part of the
bottom object — which may be very complicated. With this trade-off, it may be possible
to apply this single frame buffer architecture directly if we have either very fast frame
buffer, or a very fast processor. However, both frame memory bandwidth and processing
capability are limited to support real-time full motion video compositing with today’s
technology, not to mention the compositing of arbitrarily shaped video objects. The next
two subsections review the memory components and processors available as the candi-

dates for implementing video compositing display.

5.2.1 Today’s memory components

In traditional single frame buffer display systems, the limited memory bandwidth of
the frame buffer is tolerable because of its asymmetric access pattern between read and
write. Most of the memory access bandwidths are used by the video controller for
refreshing. To support full-motion video objects, however, each pixel value is updated
every 1/30 to 1/60 of a second. The access pattern becomes symmetric between read and
write. In fact, it is quite possible that the write accesses to the memory be higher than the
read ones in multiple video objects compositing. Under this situation, the bandwidths of

the frame buffer are shared by the frame buffer update and the video refresh. To invest-

TABLE 5-1:Video timing for various video format

Visible Area
Pixels x Lines

512 x 485

Pixel time in ns Pixel Times in ns
(30Hz refresh rate, interlaced) (60 Hz refresh rate, non-interlaced)

104

TABLE 5-1:Video timing for various video format

640 x 485 82.3 38.73
512x 512 96.7 45.14
1024 x 768 32.37 16.52
1024 x 1024 22.57 11.42
1280 x 960 19.62 9.95
1280 x 1024 18.06 9.13

gate the bandwidth requirement on the frame buffer, we list the video timing for various
video formats in table 5-1[57]. The number in the table shows the access requirement for
the video refresh purpose only. We can take the full motion video bandwidth requirement
on the frame buffer as two times the bandwidth listed in table 5-1 when the update access

is comparable to the video refresh access. The typical specification for the capacity and

TABLE 5-2:Typical specifications of commercial memory products as of 1992,

Memory Type Capacity | Configuration | Operating | Accesstime! | Cycle time*
(Words X Bits) mode (ns) (ns)
DRAM 256K 262,144x1 Page mode 120 230
65.536x4 Page mode 120 220
M 262,144x4 | High speed 80 160
page mode
4aM 1,048,576x4 | High speed 80 140
page mode
SRAM 16K 2,048x8 - 100 100
64K 8,192x8 - 100 100
256K 32,768x8 - 100 100
IM 131,072x8 - 100 100
FIFO 4.5K 512x9 - 15 -
9K 1024x9 - 15 -
16K 256x36x2 - - 25
VRAM IM 276,480x4 for EDTV 50 60
IM 189,360x8 for VCR 65 88

105

¥ Access time is the minimum time required for data to become valid at the output of the chip after the
chip is addressed. . '

* Cycle time is the minimum time between successive accesses to the same chip. Depending on the oper-
ating mode, there may be multiple words of access in one cycle time.))
accessing speed of today’s memory components (from data book of 1992) in commercial
products is shown in table 5-2[66] The current existing memory components basically
include dynamic RAM (DRAM), static RAM (SRAM), video RAM (VRAM), and first-

in-first-out memory (FIFO).

Among all the memory components, DRAM is the most used in today’s display
system. It is the least expensive one, and can support more capacity than other types of
memory component. The low cost makes it the most common one for a frame buffer. The
access time of the DRAM, however, is also the longest. From table 5-2, we find that
DRAM actually cannot keep up with the video refresh time of any video format listed in
Table 5-1. To catch up with the pixel time, it is very common to use multiple chips so that
multiple pixels are accessed simultaneously. A DRAM needs to periodically refresh the
chip so that the data stored in the chip is not lost due to charge leakage. This is done by
accessing every memory cell on the chip periodically. This chip refresh is different from
video fresh. In video systems, the video refresh that accesses every location of memory for
display can easily meet this chip refresh requirement. Therefore, chip refresh is usually

not an important issue in a display system.

SRAM provides a faster cycle time than DRAM because it does not need to refresh the
memory periodically. On the other hand, it consumes more power and the capacity is usu-
ally smaller. The cost is also much higher than with the DRAM. Considering that chip
refresh is easily satisfied when DRAM is used as a frame buffer, SRAM does not provide
too much advantage over DRAM when used as a frame buffer. However, SRAM is still
faster and is still used in some high performance graphic stations. FIFO has the fastest
access time with smallest capacity. It is too expensive to be used as a frame buffer. Its

capacity is also too small. To be used as a frame buffer, many chips are needed since dis-

106
play systems usually require a large frame buffer. These limitations in capacity and cost

prohibit the use of FIFQ in any display system today.

VRAM is a memory specially designed for a frame buffer purpose. It is a dual-port
DRAM that allows random access from one port, and serial access from the other one. A
shift register is used at the serial port to shift out the data serially. To access through the
serial port, a whole row of memory data is moved from DRAM to the shift register. Once
the data resides in the shift register, it can be shifted out at a much faster cycle time than
accessing the DRAM. At the same time, the random access port can still read/write data
into the DRAM. The contention between two ports occurs only when the data is being
moved from DRAM to the shift register. VRAM is very useful for a video refresh con-
troller that requires periodical access of serial data. However, VRAM is designed mainly
for graphics applications. The random access port bears a bandwidth much lower than the
serial port. It cannot support the update access which is used as the frame buffer for full
motion video display. The cost of VRAM lies between the SRAM and DRAM while its
capacity is a little bit less than DRAM.

Comparing the figure from both table 5-1 and table 5-2, we find that DRAM cannot
satisfy the pixel time requirement of any video format. Even SRAM, VRAM and FIFO
can only barely make it, depending on the video format. To support full-motion video
compositing, the update access requires a comparable amount of bandwidth, or even
higher as listed in table 5-1. None of the memory components listed in table 5-2 except
FIFO can support twice the bandwidth of the video refresh rate in table 5-1 to cover a
comparable video update. Even the VRAM cannot support either. Another popular
VRAM from Texas Instruments has a 33 MHz burst rate, which is marginally fast enough
to handle one real-time video object but certainly not more[13]. As the number of full-
motion objects that a system displays increases, the system'’s memory bandwidth require-

ment increases proportionally.

107

Today’s memory technology advances in three directions — to improve the memory
size, to improve the speed, and to lower the power consumption. The advances of size
expansion have progressed much faster than the other two. Since today’s frame buffer uses
multiple parallel chips to enhance the bandwidth capability, the size improvement is actu-

ally a drawback because it reduce the number of chips needed for simultaneous access.

5.2.2 Today’s display processors

The job of the display processor is to update the frame buffer. The major functions of
the display processor are address generation, pixel block transfer (bitblt), window clip-
ping, and object generation. Some of the functions not only involve write access to the
frame buffer, but also read access. For example, a pixel block transfer includes read-
modify-write operation. These functions can be performed by a general purpose processor
(CPU), or with a separate display processor controlled by a CPU to accelerate the update
speed. A general purpose CPU may be slow for all these functions, and is becoming rare

today. Use of the separate display processor is most common.

The display processor used depends on the actual applications. Most of today’s display
processors are for graphics purposes. They accelerate the generation of a range of geo-
metric objects, such as lines, circles, text characters, polygons, filled objects, and also the
bitblt. The general purpose CPU uses simple I/O commands to instruct the display pro-
cessor to generate a specific object and update the frame buffer. Today, a graphic display
processor can be implemented in one single chip which includes all the video refresh con-
troller, memory interface, and graphic generation function. These processors, however,

usually only support graphics and texts in a non real-time manner.

With the speed pushed to the extreme, some of the graphic display processors can also
support full-motion video overlay. This video card does not get the video stream from the

CPU. Instead, it receives the video streams directly from the external interface. The dis-

108
play processor maintains a pixel-by-pixel mask (a single bit o value), and uses a special

mechanism to filter the video stream through the mask, and overlay on other graphics.

This kind of video card is available today on both personal computers’ and worksta-
tions. The weakness of these boards is twofold. First, they can overly only rectangular
video windows. The display processor does not consider arbitrarily shaped video objects
when it generates the mask. The screening mask is generated in a non real-time sense. The
mask does not depend on the content of the video stream, and does not change frequently.
When the shape of the video objects changes from frame to frame (which is required by
the structured video), the mask also changes from frame to frame. The mask generation
becomes a real-time job, and is not affordable with the display processor described above.
The second drawback is the expandability problem. Using a single frame buffer with
single display processor limits processing capability. This kind of architecture does not
have the flexibility to be expanded to accommodate more video objects. For example, the

XVideo board from Parallax can process only two video objects, and no more.

The nature of the video objects in structured video is more like graphic objects
updating from frame to frame. To compose video objects, the display processor cannot
simply put them on top of all the rest of graphic objects without considering their contents.
Following the approach described above, the display processor needs to read in the con-
tent of the video objects and generate a mask for every video object from all the informa-
tion read in. All this needs to be done in a single-frame period of time, only achievable

through a multi-processors approach.

Thus, both memory bandwidths and display processors have limited capability to sup-
port structured video compositing. A multi-chip frame buffer and multi-processor display

processor approach are required. With these considerations in mind, the next question is

! For example, the Video-Blaster board from Creative labs.
Z For example, the Xvideo board from Parallax.

109
what architecture can best organize all the memory chips and the processors. In the next

section, we will discuss this issue.

5.3 Architecture consideration

For real time video compositing, it is obvious that our display system must use an
architecture with multiple hardware compositing modules — i.e., multiple compositing
processors (or display processors) and memory modules to break the bottleneck described
in previous sections. In this section, we discuss how the compositing function and/or the
display processor can be decomposed into multi-processing modules and their architec-
ture. There are basically three different ways to decompose. The first is space division,
meaning that the space on the display screen is divided into multiple separate areas. Each
area has an associated display processor and frame buffer to process the compositing of
any portion of objects fallen into that area.[68](69][70]. The extreme of this approach is to
associate a processor with each memory chip[69] or even a pixel[70] in the frame buffer.
The second approach is the Jfunction division, meaning to divide the processing from the
function domain. For example, in high speed graphic display, the function of transforma-
tion, polygon drawing, edge processing, etc., are pipelined and put into separate mod-
ules.[71]. The third way is object division, meaning to divide the processing into multiple
modules with each module handling different video objects. Out of these three
approaches. only the third is expandable to accommodate the increasing number of video
objects involved in compositing. The first two approaches will reach their limits when the
number of objects increases. For this reason, we will use the third approach in our Video-
Station. It is also possible to apply functional division and object division simultaneously
when many complicated compositing functions are used. That is, we decompose the pro-

cessing into multiple modules so that every module handles only one compositing func-

tion and one video object.

There are two basic architectures base on the object division — linear array and tree-

based architecture as shown in Fig. 5-2. Tree-based architecture covers many different

110

l I" Compostting Block Compositing Block Compositing Block Compositing Block Compositing Block

[[[[

Vi Vg vy A A Ve

(a) A Linear Array Architecture

c«wmmo&‘—'-.

Compositing Block
——
Icompodm Block I_-

Composting Block

Compositing Block [~

N

(b) A Tree-Based Compositing Architecture

Fig. §-2. Two modular architectures for objects division compositing.

variations. Linear array is actually also a special case of tree-based architecture. We
simply call any variation which is not linear array tree-based. These architectures decom-
pose the compositing function into multiple binary compositing blocks. Each compositing
block is a binary compositing function. We choose binary compositing function as basic
compositing elements just for simplicity. In general cases, it is possible that a compositing

block composes N objects instead of only two.

To compare the two architectures, we consider two factors: compositing image quality
and complexity/cost. The image quality is basically the same for both cases as long as the
same compositing algorithm is used, except for latency. The tree-based system performs
compositing with less delay than the linear array because each input is processed by
O(log(N)) compositing stages rather than O(N). However, the delay of each compositing
stage is on the order of a multiple pixel duration when a fully pipelined implementation is

used. So, both tree-based and linear array compositing systems should yield latencies

111
much shorter than a single-frame time. The cost includes the compositing processor com-
plexity, the memory size, the I/O bus, and also the design cost. Simply comparing the
number of compositing blocks used reveals that both architectures use the same number of
blocks (N-1). However, this does not reflect the actual complexity/cost. Basically, the
compositing block in linear array architecture is simpler than the tree-based architectures
in terms of compositing processor complexity and the memory size. This is because one of
the inputs of the compositing block in linear array is always a simple video object, instead
of composite video objects as in the case of tree-based architecture. To combine a video
object onto a composite video object can be made simpler than combining two composite
video objects. For example, the tree-based architecture compositing block needs to buffer
both inputs. In the linear array case, it is possible to feed one of the inputs directly from
the previous stage without buffering by treating this input as a full-screen size rasterscan

stream to make the synchronization easier, and therefore to save one buffer memory.

5.4 VideoStation design
5.4.1 An integrated compositing algorithm

To design the VideoStation base on the linear array architecture, it is important to for-
mulate the compositing function in a way that best fits in the architecture. With object-
based linear array, it is possible to have an extensible architecture that can accommodate
more video objects by simply inserting more hardware, and also keeps the complexity
low. In this section, we develop a compositing algorithm based on the compositing func-

tion algorithms described in chapter 4. We try to define one integrated algorithm that

covers several compositing functions.

In our first prototype of the VideoStation, we only implement over(), transpareni(),
and the unary compositing function translation(). The discussion hereafter will focus only
on the algorithms of these two binary compositing functions only. For simplicity, we intro-

duce a parameter in addition to the 4 channels (r.g,b,0) used by Porter and Duff. It is the

112

object priority 2, which is used simply to keep track of which objects cover other objects.

The priority z is similar to the z value in z-buffering 3D rendering systems (4, 6], but our z

value is simply a depth priority, not a distance. Also, our z value describes a whole video

object, while the z value in z-buffering can change with every pixel in an object. Objects

with larger z values will be composited in front of other objects with smaller z values.

The z value is also used to control the way in which video objects are composited.

Instead of specifying explicitly what compositing function is to be performed, we assume

that transparent() is performed whenever the z value of the operands are the same, other-

wise over() is performed. Under this assumption, we will merge both over() and trans-

parenit() in equation 4-3 and 4-6 into the equation as follows.

P = aP,+(1-ay) Py
C” Ta,+(l-a,)a
A A’ %8

gc=a,+(l-a)a, 4”7
Zc = ZA

P, = QTP +agt Py .

GpTp + 05T if z, =2
G = 1=(l-ay) (1-ap)
Zc = ZA = 28

Pc - aghPp + (1-ag)a,P, . <s

ag+(l-ag)a, A~ B

as = agt+(l-ag)a,

ic=1

(5-1)

This equation can be easily extended to multiple objects. First we composite objects

with equal z values as follows.

Y oTP;
5" z o

jey

@, =1- I (1-a)

Jezs

Then we composite these results.

(5-2)

(5-3)

113

To
Display
Sync Compositing Compositing Compositing
Gen Processor Processor Processor
‘ r
Butfer Buffer Buffer
video object video object video object
Fig. 5-3. A pipeline architecture for structured video
compositing.
P.omposited = @, P, +(1 -m,')[m,f’,a +(1- ul=) (1] (5-4)

5.4.2 Pipeline architecture

VideoStation uses a pipeline architecture based on the linear array. The compositing
processor is decomposed into multiple processing units organized in a pipeline, as shown
in Fig. 5-3. In this architecture, each pipeline stage consists of two parts — a compositing
processor and a buffer memory. Each buffer stores a video object from its stage’s input
port, which is connected either to external networks or local video devices such as cam-

eras, video disks, or graphics generators.

This architecture gets rid of the frame buffer which has fixed mapping to the pixels on
the display. Instead of keeping the pixel structure in a physical frame buffer, it maintains
the display pixel structure implicitly in the raster scan signals passing from stage to stage
in the pipeline architecture. The raster scan is a pattern that the electron beam in a cathode
ray tube (CRT) sweeps out to generate frames of 2-dimensional images through a series of
horizontal lines moving from the top to the bottom of the image and from left to right on
each line, as shown in Fig. 5-4. With raster scan, the pixels of any 2-dimensional images
are arranged into 1-dimensional pixel streams with some additional synchronization sig-
nals specifying the horizontal and vertical retracing. To maintain the pixel structure

implicitly, the pipeline architecture uses a synchronization generation unit (SYNC GEN in

114

s ————
D ———
~=====—_" "
...._--—\———‘-'—:_:
e e e e == T T
— e s e SRy e e o=
e e
______ —— =

PR —— et
-‘-———————‘-S—
————— — T
———————— ~
_—— = —— — — — N
SCAN LINE

T T T THORIZONTAL RETRACE
— T T T VERTICAI RETRACE

Flg. 5-4. The typical raster scan pattemn used in cathode ray
tube (CRT).

Fig. 5-3) at the first stage of the pipeline to continuously generate the raster scan synchro-
nization signals —vertical and horizontal retrace signals. This raster scan signal is then
passed dowﬂ the pipeline from stage to stage, so that every module is able to maintain the
pixel structure correctly without having to access some frame buffer. When this raster scan
signal goes down the pipeline stages, each compositing module performs the compositing
by inserting video objects into the raster scan data stream at some correct timing. In this
process, to place a video object at a certain location on the display is a matter of inserting
the video object at the corresponding timing in the raster scan stream. In order to insert the
video objects at any location (therefore at any arbitrarily timing), some buffer is required
at each stage to keep the video objects. A double buffering approach is required so that
when one buffer is used for video object input, the other buffer can be used for simulta-
neous output. The detailed operation of the compositing processor module is shown in

Fig. 5-5.

115

Rasterscan stream (A) I
from previous stage -
Rasterscan stream (C)
to the next stage
p—
p—
Py
/
prenem—
oy
Video object from local stage (B)

Flg. 5-5. Compositing processor module in a
pipeline stage

This architecture shows a feasible way of distributing processing into multiple mod-
ules and also of avoiding the single big frame buffer, thus breaking display processing and
memory bandwidth bottlenecks. Using the raster scan signal as the implicit pixel structure
has several advantages. First, it avoids the single big frame buffer which is the source of
the memory bandwidth bottleneck. With a traditional frame buffer approach, video objects
are put into the frame buffer simply to place it at some correct location in the display pixel
structure. For this simple purpose, all the video objects must go in and out of the same
frame buffer, and therefore require high bandwidth on the frame buffer. With our
approach, the pixel structure is not associated with a memory device. It is embedded
implicitly in the raster scan signal. The memory bandwidth requirement is therefore much
less. In pipeline architecture, we don’t have a frame buffer. But we still need some buffer
at every stage to regulate the input/output traffic of video objects. The memory bandwidth
needs to support only the I/O of the video objects. This bandwidth requirement is quite
different from the frame buffer case, in which the data need to be read out for display con-

tinuously.

116

Secondly, some compositing operations can be performed on the fly without cost. For
example, to perform a translation operation in a traditional frame buffer approach, we
need first to remove the object from the frame buffer, then write the object into a new
address. With our pipeline approach, we don’t need to remove the object from the frame
buffer because there are no precomposed data stored in any memory device. All the com-
positing operation are performed dynamically. To change the location of a video object,
we simply change the parameter in the compositing processor, where the change will be
performed by inserting the video object at the new timing corresponding to the new posi-
tion.

Third, the buffer memory usage is more efficient than the single frame buffer
approach. In our pipeline architecture, each buffer memory need not be large enough to
store an entire screen of video data as would a frame buffer. Instead, each must hold only
the area where its video object exists. The total sum of all the buffer memory can be less
than the size of entire screen when the video objects occupy only a portion of the display
screen; the total buffer size can be smaller than the screen size. Also, since the buffer is
not directly mapped to the physical size or location of the display, the buffer can be
arranged flexibly to accommodate various sizes of objects. For example, a 10 K pixels
buffer can be used to hold objects of various sizes, such as 100x100 object, 200x50,
500x20, etc. There are no presumptions about the shape of video objects, as long as the
size of the video object can be fit into the buffer. If some video object is larger than one
single buffer can hold, the video object can be split up and stored in different stages. Also,
if a system needs to composite many small video objects, it can process several nonover-
lapping objects in a single stage.

5.4.3 A modified approach to avoid presorting
The compositing algorithm described in the previous section has some limitations.

Apparently, the multiple objects in equation (5-2), (5-3), and (5-4) must be sorted

according to the priority value (z) in advance in order to be performed correctly. When we

117
modularize the compositing function into the pipelined architecture, we also assume that
all the video objects are sorted in advance. The reason why compositing order must con-
form to the object priorities is that the composited pixels are the sum of pixels of two input
video objects. Once two objects are composited, it is hard to insert the third object
between them because the pixel data from each single object are lost, and only the com-
posited pixel data are available. Sorting the video objects in advance prohibits the possi-

bility of inserting the third video object into any two composited objects.

Presorting video objects, however, is not preferable. First of all, it is expensive. To sort
video objects by priority is possible (with a self-routing network for example) but would
require more processing than to composite them, and to sort the objects would limit the
ability of this architecture to change objects’ priorities or dynamically add new objects.
Secondly, when the compositing is performed distributed over the network, the presorting
problem becomes even more serious. Every time the object priority changes, the network
connections must be closed, the compositing function mapping on the network must be

redone, and then the new connections must be re-established according to the mapping.

One brute force method to avoid sorting video objects by priority is to have each pipe-
line stage pass both its composited result and also its local video signal to the next stage.
The local object information can be used in later stages to undo the compositing if a video
object at a later stage is found to have a priority value between that of the composited
pixel and the local pixel. However, this solution requires that the number of video objects
passed down the pipeline becomes larger further down the pipeline. The complexity of
systems based on this method would increase rapidly with the number of video objects to
be composited. This solution increases the compositing processing load of the down-
stream pipeline stages, which might result in the need to undo several compositings and
then do several compositings again to derive a correct result. The extreme case of this
solution is that all the video objects are passed to the last stage which does all of the com-

positing itself.

118

Fg_in (plxel, 7, , z Compostting Fg_oOut
Bg_In ——— processor | Bg_Out

|

Lecal_In (pixel, t, a, 2)

Flg. 5-6. A three-object compositing stage.

The solution we propose is a rhree-object compositing algorithm — in each pipeline
stage we composite a foreground, background, and local object. As shown in Fig. 5-6, we
pass two raster scan streams down the pipeline instead of one. The two streams passed
down consist of video objects with the two highest priorities. The one with largest z is
called the foreground stream and the one with second largest z is called the background
stream; these two are not composited together until the last pipeline stage. At the pipeline
stage, the compositing processor compares the priority of the local object with the priori-
ties of the foreground and backgfound streams. If a pipeline stage’s local object has a
lower z value than both the foreground and background streams, then the local object is
discarded. If a local object’s z value is between those of the foreground and background
streams, then the background object is replaced with the local object. If a local object’s z
value is higher than those of the foreground and background objects. then the background
object is replaced with the foreground object and the foreground is replaced with the local
object. At the last stage, the final display result is derived by combining the background

stream into the foreground.

This solution changes the algorithm described in equation (5-2) to (5-4) somewhat.
Previously we assumed that any combination of X overlapping video objects was compos-
ited with the same linear equation. With the three-object compositing method we assume
that for any number K overlapping objects, the linear function for compositing the objects

only gives non-zero weight to the two objects with highest priorities. We have simulated

119

both the original algorithm and three-object compositing algorithms and have found that

images produced with the modified algorithm are perceptually indistinguishable from

images composited with the original algorithm. In fact, only the few pixels that lie on the

crossing points of the boundaries of three or more video objects give different results from

the two algorithms.

To simplify the design, the parameters passing between pipeline stages are not the final

pixel and o values. Instead, we define several parameters as:

P = T.P.
Z aj‘r}l’l
J€ 2

o=J](-0

i€z

With these definitions, the equations for each pipeline stage are:

P'fg. in
’ — ’ 3
P raous =) P in* %ocar¥ocaiPiocar if

P

alacalrlocal local

t'fg. in
’ = , 3
t fe, out T f8,in * %ocailocal if

u'Iot:al":local

alfg. in
’ - , .
®gom =] @ f3.in (1- %ocal) if

1- %ocat

Zfa.in > 2local
zfg. in = %local

zfg. in < %local

zfg, in” Zlocal
zfg, in = Zlocal

zfg. in < %local

g, in > Zlocal
zfg. in = Zlocal

zfg, in < Zlocal

(5-5)

(5-6)

(5-7)

(5-8)

(5-9)

(5-10)

¥4 .
2fe, our = { forin

zlocal

P'fg. in
P'bg. in
P

’
bg, our = ®ocat®iocail tocal

’
p bg, in + o‘localtlocalp local

4
\ ° bg,in

T f8,in
’

T bg, in

’

T bg,out ~

’
T bg, in + %ocaitlocal

’
(T bg,in

4

® 15, in
’

o bg, in

a' - * .
bg, out 1- O cal if

’
o bg, in (1- alocal)

’
[@ bg, in

%fg.in
2z = 3 zbg in if
bg,out = ’ 1

zlacal

’
| & bg, in

alocaltlocal if

120

if zfg, in 2 Zlocal (5-11)

zfg. in < %local

%z, in < Zlocal

zfgv in = %local

Zfe,in >210cal” 2y in (5-12)
Zbg,in = %local

zbg. in> Zlocal

%fg,in <2jocal

zfg' in = Zlocal

20 in> 2local > Pbg, in (5-13)
258- in = %local

zbg. in> %local

zfg. in <Zlocal

zfg, in = %local

zfg, in~ %local > zbg, in (5-14)
zbg, in = Zlocal

zbg. in> 2local

zfg, in <Zlocal

e . =2

/8. in local (5-15)
zfg, in> %local 2 zbg, in

zbg. in > Z1ocal

Using the foreground and background objects, the final display result can be derived at

the last stage of the pipeline using the following equation:

’

P
- ’ !&, out ’
Pcomposited =(l-a /8, out) T ta

fe, out

P'bg. out

/8 ou“c’bg (5-16)

out

121

The implementation of equation (5-8) to (5-15) is much more efficient than using
direct implementation as shown in the 2-object compositing case in the last section, Using
the direct implementation in the last section, even the 2-object compositing requires at
least 5 muldplications, 5 additions, and 1 division in every stage. With the optimization in
the parameters passed between stages, a stage can be implemented in 3 multiplications. 5
additions, and no division. The only division operation is in the last stage where the fore-
ground and background objects are combined. This reduces the implementation com-
plexity considerably in the pipeline stages. Also, equation (5-14) is actually not necessary
because only the two highest priority objects are kept. This is reflected by the fact that
a'bg. our 40€S NOt show up in equation (5-16). One more thing to note is that even though
the priority value 1 is a per-object based parameter, it becomes a per-pixel based parameter
and must be passed from stage to stage because both the foreground and background result
includes pixels from objects of different priorities. The cost is the extra channel required
between the stages. The size of the memory buffer of the pipeline stage is not affected

because the priority value of the local video object is still per-object based.

5.5 Conclusion

In this chapter, we describe the design detail of a video compositing platform - Video-
Station that supports real time compositing for structured video. We first reviewed the bot-
tlenecks for the implementation with today’s technology. There are mainly two of these
bottlenecks — the memory bandwidth and the processing capability bottlenecks. Today’s
memory devices advance every year mainly in capacity rather than in speed or bandwidth.
This does not help to provide the high memory bandwidth that is required by most video
applications. On the contrary, it actually makes the problem more serious because a larger
size of memory is put into a package that has the same limited bandwidth. It is very
common in traditional graphies display to use multiple memory chips in parallel to pro-
vide sufficient bandwidth. This approach is less efficient with the larger size memories.

With full motion video. the memory bandwidth is much more critical than the graphics

122
bandwidth because the full motion video requires balanced read/write access to the frame
buffer. A traditional frame buffer using vertical/horizontal retrace for write update is not
enough for full motion video update. With the increase in the number of objects involved
in compositing, the write update bandwidth needed may even be higher than the read
operadon. The display processor used by traditional graphic stations is also not well suited
for full motion video display. Most display processors today optimize some specific oper-
ations, such as bitblt operations. More advanced processors enhance the performance by
providing a pipeline of various functions, such as transformation, clipping, etc. This
approach can only enhance the processing capability to some extent. The architecture is

not expansible to accommodate more objects when the number of objects increases.

We propose a pipeline architecture for the VideoStation. The basic idea is to get rid of
the single frame buffer so that there is no more fix mapping between the memory address
and the display physical location. The advantage of this is to provide more flexible map-
ping between the memory address and the display, thus making the frame buffer usage
more efficient. The translations such as bitblt can be performed on the fly without any dif-
ficulties. It also allows a much easier method of expansion to accommodate more video
objects. The buffer memory required at each stage need not to be as large as the whole
frame buffer. Instead, the buffer memory needs only to be large enough to hold the local
video object. To avoid the presorting requirement in the compositing, we also proposed a
3-object compositing mechanism which does not perform the actual compositing until the
last stage. The function of each pipeline stage is to select the two highest priority objects
and pass down to the next stage. With this 3-object compositing, any dynamic changing of
priority values can be done without difficulties. By choosing proper parameters passing
between the stages, we also make the operations in each pipeline stage as simple as pos-
sible. As compared with direct implementation, which requires division operations in
every stage, the optimized approach pushes the division to the last stage. All the rest of the

stages need only addition/multiplication, and some simple logic operations.

123

CHAPTER 6

VIDEOSTATION PROTOTYPE

We have designed a prototype of the VideoStation architecture, to understand better its
hardware complexity and to demonstrate the implementation of the structured video algo-
rithms. In this chapter, we discuss the prototypes that we have implemented. We aiso study
various implementation alternatives available today for real-time video applications.
There are two basic ways for full-motion real-time video implementations. One is to use
programmable video signal processors with software coding. The other is to use fully

custom design hardware. We will discuss both approaches in this chapter.

Programmable video signal processors have advantages of more flexibility in design,
fast prototyping, easy debugging, easy modification, etc. There are currently some video
signal processors available for real-time video processing[72]{73][75]. Most of them are
designed for some specific applications, especially video compression algorithms. For
example, Integrated Information Technology (IIT) developed a VCP chip(72] for discrete
cosine transformation (DCT) based video compression/decompression. NEC also devel-
oped 2 VSP chip[73] for motion compensation. Among these, the programmable video
signal processor(VSP)[75][76] produced by Philip is aimed for general purpose video

signal processing. It uses an architecture that allows parallel processors to expand the pro-

124
cessing capability of the chips. We have designed a prototype of VideoStation using the
Philip VSP processor. The prototype uses 8 VSP chips to implement one pipeline stage of
VideoStation. In this chapter, we will describe the Philip VSP processor in detail, then we
describe the implementation of VideoStation using the Philip VSP. Through our design,
we also discuss the strength and weakness of the Philip VSP chip and possible improve-

ment of the Philip VSP as a general purpose video signal processor.

The fully custom hardware design is possible with the aid of today’s VLSI computer
aided design (CAD) tools. We have designed an application specific integrated circuit
(ASIC) for the core of the VideoStation. The chip is designed with Berkeley LagerIV
CAD tools using 1.6 um CMOS technology. In this approach, the function of 8 VSPs and
many control and glue logics used in the previous approach is put into one single ASIC

chip. This reduces the system complexity a lot.

The organization of this chapter is as follows. We describe the system perspective of
the prototype system in the first section. In the second section, the programmable
approach of our implementation is described. The third section shows our implementation

using the ASIC approaches. In the last section, we give a brief conclusion.

6.1 System Perspective

In this section, we describe the system aspects of the VideoStation prototype. The pro-
totype uses the pipeline architecture shown in Fig. 5-3 with each pipeline stage per-
forming the 3-object video compositing operations described in Fig. 5-6 and equation (5-
5) through (5-15). A schematic of the VideoStation hardware is shown in figure 6-1. The
VideoStation consists of two different pipeline stages. One is the graphic stage for an-iso-
chronous video objects, the other is the real-time video stage for isochronous video
objects. Figure 6-1 shows a VideoStation with one graphic stage and two video stages.
The number of graphics and realtime video stages is determined by the number of graphic

and realtime video objects to be composited. More pinepline stages can be easily inserted

125

Sun 3/50
: VME Bus
et ey B e tiet oo i ppiuinininiek it ' To
| | IMRace | ! ' | VME Interface : E VME Interface '\ Display
]| ' Lo ' o
!
, | Frame ' \ . VRAM| « , . : Post
! Buffer | , | Compositing .| Compositing '
! L _— —{Process
' 4 X v 1 Processor - Processor] |
]
| comR 601 [| — R b= ;
, | Adapor [T \ [FrFo '+ [FIFo !
b mmemee . S St S e .
Graphics Stage 1 From Video Sources I

Fig. 6-1. System Diagram of the VideoStation system.

in the pipeline architecture to support more video objects. All the pipeline stages are con-
nected to a master computer through a VME bus for control purpose. In the following, we

will describe the graphic stage, the realtime video stages and the control, separately.
6.1.1 Graphic Stages

The first stage in Fig. 6-1 is a graphic stage that holds all an-isochronous video objects
such as text and graphics video objects. The graphic stage performs two functions. As the
first stage in the pipeline, it generates the video synchrnization clock signals and provide it
for use of the subsequent stages. Secondly, it performs the compositing operations of all
an-isochronous graphic and text objects according to the 3-object compositing algorithm

to generate the foreground and background objects to be passed down the pipeline stages.

An-isochronous video objects, by definition, have no hard time limit on when they
must be shown on the display. Also they usually change only very infrequently. There-
fore, the memory bandwidth and the compositing processing requirements are very low.
One frame buffer with a single CPU is usually sufficient to handle all the graphics and
texts shown on the display in one stage. The video compositing operations can all be dne

through software by the CPU. This is exactly the way implmented in today's workstation

126
to handle graphics and texts. In case the number of graphic objects become over the capa-
bility of the single frame buffer and the single CPU, it is still possible to add more graphic
stages with frame buffer and CPU into the pipeline architecture to increase the bandwidth

and the processing capability.

The implementation of the graphic stage is quite similar to the traditional frame buffer
display. The difference is that the output of the frame buffer is not a completely compos-
ited video stream. Instead, it generates. the foreground and background video object com-
ponents as required by the 3-object compositing algorithm. To do this, the single frame
buffer is modified into two frame buffers to accomodate both foreground and background
video objects. Each frame buffer stores four components of video objects: the pixel value
p, the o value, the priority value z, and the transparent value t. The frame buffer is
updated using the 3-object compositing algorithm described in the last chapter by the CPU
in the SUN workstation through the VME bus. The frame buffer update can be done asyn-
chronously. The output of the frame buffer, however, is read out synchronously at the 27
MHz clock rate. The video synchronization signals such as vertical and horizontal blanks
and headers are embeded in the foreground video stream following the CCIR 601 video
format by a display processor. The detailed diagram of a graphic stage is shown in Fig. 6-
2.

6.1.2 Isochronous object stage

The second type of pipeline stage is for isochronous video objects. For isochronous
video objects, the compositing operations are performed in real-time at 30 frames per
second. A functional diagram of the isochronous object stage is shown in Fig. 6-3. In iso-
chronous stages, the local object is composited with the foreground and background video
objects in a synchronous sense that objects can be updated only between the frame period
of 1/30 second. In order to keep this synchronization, frame sync control signuls are gen-
erated from the foreground pixel stream in the compositing processor block. Also, a FIFO

is used to buffer the local object from the input such that it can be synchronized with the

127

VME Bus Clock 27 MHz clock signals
i Generator
Foreground Object T
Update y
VME Foreground Objects CCIR 601 Mg
nterfa Frame Buffer Adaptor Qg
2y
Background Object
Update
Pog
VME Background Objects CCIR 601 Thg
nterfa Frame Buffer Adaptor Opg
Zyg
Fig. 6-2. The graphic stage implementation
27 MHz clock 27 MHz clock
Fg_in Fg_out
Video Compositing
Bg_in Processor Bg_out
,4' RAFO_RD ,4 14
RAFO_FuLL VRAM VRAM
FIFO
P K t
I VRAM Controller

Flg. 6-3. The isochronous object stage functional block.

recovered frame sync control signals. A double buffer (VRAMs) scheme is used in this

design such that when one VRAM is storing the data from the FIFO, the other one can

output the data into the compositing processor. In this design, , the isochronous object

stage can only support one video object from the input to be composited with the fore-

ground and background video stream. To allow multiple objects per stage, a more compli-

cated control and memory management is needed.

All the compositing operations are performed in the video compositing processor

(VCP) block. The detailed block diagram of the VCP is shown in Fig. 6-4. It consists of

128

)
Yn?m.m%,u To VME Bus FIFO_IN VRAM1| VRAM2
FSM MEMORY REGISTERS
P Ut L [ZXI2RXXR)
Frame sync e Compare & control
signals generation logic
¥

F’.:'" Fg_out
Bg_In Compositing computation sg_::z

Flg. 6-4. The video compositing processor block diagram

several blocks: a compositing computation block, a frame sync signals generation block, a
compare and control logic block, a finite finite state machine (FSM), a memory module,
and some registers. The compositing computation block performs all the compositing cal-
culations over the foreground and background input video streams according to the equa-
tions shown in (5-5) through (5-15). The frame sync signals generation block generates
the video frame synchronization signals such as start of frame signal, start of vertical
blank signal and start of horizontal signal from the foreground video stream. It also gener-
ates the current raster scan location address for use in the compare & control logic block.
The compare & control logic block uses the current raster scan location and other compos-
iting parameters, together with the parameters of the local video object to generate the
control signals to instruct the compositing computation block to perform proper calcula-
tion. The finite state machine coordinates the operations among all the blocks in the VCP.
In addition, it also coordinates the read/write operations between the FIFO, the two

VRAMs, and VME bus interface.

Our portotype design effort emphasizes on the isochronous object stage. In implemen-

tation, the VME bus arbitration and VRAM interface is handled with one Xilinix 6400-

129
gate field-programmable logic device (FPLD) per stage. The VCP is a more complicated
part. We have two alternatives for the implementation of the compositing processors in
pipeline stage. One is to use the programmable video signal processors, the other is to
design a application specific integrated circuit (ASIC). Both methods are able to provide
real ime video compositing cjapability. A detailed description of both implementations

will be described in later sections.

6.1.3 Control

All the pipeline stages are connected and controlled by a Sun workstation through a
VME bus. The main function of the Sun workstation is to keep track and update the com-
positing parameters of every video objects, such as the object size, localtion, priority, and
transparency. The Sun workstation also provide users with an interface to interactively
change the way the compositing is performed, such as to move a video object, to modify
video objects’ compositing parameters z and . Once a request is sent to the Sun worksta-

tion, it will update the parameters through the VME bus accordingly.

Note that the Sun workstation is performing real-time control operations over all the
pipeline stages. All read/modify operations of the compositing parameters should be per-
formed in every 1/30 second. Except these real-time control operation, the Sun worksta-
tion does not perform any real-time compositing operation. The VME bus does not send
any of the real-time video objects pixels either. Under this condition, a single CPU with a
VME bus is sufficient for all the operations. In the case of graphic stages that use the Sun
workstation as the compositing engine, the Sun workstation loads all the graphics and text
pixels according to the compositing algorithm through the VME bus into the graphic
stage. Since these are none real-time oeprations, these oeprations can be given a lower pri-

ority than the real-time control such that all the real-time control operations are done in

time.

130

6.2 Compositing processor implementation with programmable VSP
Use of programmable video signal processors (VSP) have several advantages. From
the design perspective, it provides an easier way to implement an experimental system. It
is easy to debug and modify the programmed algorithms. The design time is also much
shorter. The disadvnatage is less flexibility in the design, more glue logic, less compact.
and higher cost as compared with a full customed designed hardware or application spe-
cific integrated circuit (ASIC) chip. From the processing capability perspective, a pro-
grammable processor is more efficient in the implementation of complicated, control
intensive algorithms. A staightforward discrete transformation algorithm, for example,
may be implemented efficiently with an ASIC as well as a programmable chip. A very
complicated control algorithm, however, can be programmed in a programmable pro-

cessor much easier than in ASIC design.

6.2.1 Programmable VSP overview

Today, there are basically two classes of programmable processors available for video
signal processing. One class is designed for some pre-specified applications. The other is
for general purpose video signal processing. For example, ITT’s VCP chip[72] is designed
for discrete cosine based video compresion algorithms. The NEC’s VSP chip[73] is for
motion compensation purpose. These processors fall in the first class. With pre-specified
applications, the processors are optimized to the applications by providing modules spe-
cific for the applications. For example, the IIT VCP chip has modules for Huffman
decoding/encoding. The processor architecture is also designed such that some functions

are most easily mapped into the processor.

The processors in the second class support general purpose video signal processing.
They can only be optimized according to the general characteristics of video signals. For
example, all video streams consume a lot of bandwidth, and need a lot of processing
power. They can usually be parallelized very easily because of the large arrays of pixels in

each frame. Therefore the processors in this class can be designed using heavily parallized

131

Cross-bar switches Cross-bar switches Cross-bar switches
. _] | o - -
lnputs %= p— — — %x
[2 . 2 — ey
ALE 1 2 3 ME 1 2 OB1 3| 4|5 l

Outputs

2 o] 1 sf] =={w] 7))]

Fig. 6-5. Philip's VSP architecture

architecture to provide the required bandwidth and processing capability. Some generic
functions are needed for any video signal processing, such as the frame data collection,
frame sync recovery, etc. These functions can also be put into the video signal processor to
ease the use of the processor. The Philip’s VSP chip[75][76] falls into this category.
Whether a particular processor is good or not depends a lot on the application to be imple-
mented on the processor. In our implementation we choose Philip’s VSP, which we will

describe in the next section.

6.2.2 Philips architecture.

The Philip VSP chip[75][76] is an all digital. general purpose programmable processor
chip designed for real-time video signal processing. A VSP chip contains a number of pro-
cessing elements that operate in parallal. A complete VSP system can contain many of
such chips. The architecture of the VSP architecture is shown in Fig. 6-5. The Philips
VSP chip consists of several basic components: 3 arithmetic and logic elements (ALEs)
and 2 memory elements (MEs), 5 output buffers(OBs), S input ports (12 bit wide each),
and 5 output ports. The ALEs performs generic arithemetic and logic operations such as
addition, substraction, multiplication, and, or, and compare operations. The MEs are

memory modules of size 512 words by 12 bits. They are mainly used to provide the table

132

>
4—m
(2]
>
—

SIC

SHA SHB SHC

MUX

KB TRC From P S_’éé l

MUX MUX MUX

- RAM
V4 —_— MWX 512°12
ALY PLA sic

(a) (b)
Flg. 6-6. Block diagram of (a) arithmetic and logic element (ALE)
and (b) memory element (ME).

look up capability and to implement large number of delays that OBs cannot support. The
OBs maintain a variable delay to synchronize the data at the output ports. A detailed dia-

gram of the ALEs and MEs is shown in Fig. 6-6.

The whole chip is fully pipelined at a clock rate of 27 MHz. The ALEs and the OBs
can read in data and generate new data at the full clock rate. The MEs can also read or
write data at the clock rate. Each of the ALEs, MEs, anci OBs has a program memory
module associate it such that it knows which operation to perform. The inputs ports and
the outputs of the ALEs and MEs are fully connected through a programmable cross bar
switch such that the output of any of ALEs and MEs can be routed to any input of them-
selves, or to the 5 OBs. The overall architecture provides a very high processing and /O
rate— up to 135MIPS, 135 M samples input and 135 M sample outputs. This cross-bar
switch architecture also make it very easy to integrate multiple VSP chips parallely on the

same task.

Programming the VSPs requires first mapping the video algorithm into a synchronous
signal flow graphs (called soft draw) with blocks of basic operations supportcd by the
ALEs and MEs. Each block in the flow graph runs at a constant clock period which is a

133
multiple of 27 MHz clock period. That is, each block runs at 27 MHz, 13.5 MHz, 6.75
MHz, etc. Once the signal flow graph is available, the graphic can be partitioned and allo-
cated to each of the processing components. The signal flow graph generation, partition,
and resource allocation are done manually. The programmer must assure the task assigned
to one processing component does not exceed the processing capability of that component.
When muitiple VSP chips are used, the programmer also specify the connections between
the VSPs in a hardware connection graph (called hard draw), and assign tasks to each
VSP chip manually. An example soft draw and hard draw graph is shown in Fig. 6-7.

Once the partition and allocation is done, an automatic scheduler is available to
schedule the partitioned result into the the instruction programs of the processing compo-
nents. The scheduler works out the correct timing of the input/output data streams among
all processing components. The automatic scheduler is a necessary tool to help the pro-

grammer design a system within a reasonable time.

6.2.3 Implementation resuit and discussion

Following the design procedure described in the last section, we are able to implement
the VCP using one VSP-8 board with 8 VSP chips on the board. The hard draw in Fig. 6-
7(b) shows how the 8 VSP chips are physically connected. The soft draw in Fig. 6-7(a) is
part of the signal flow graph design for the VCP. A complete graph of the design of VCP is
shown in Appendix A.1 and A.2. In this implementation, only part of the VCP functions
are implemented with VSPs — mainly the compositing computation block and part of the-
compare and control block. The function of the frame sync generation block, the finite
state machine, and the binary logic operations of the compare & control block are put out-
side of the VSP chips for efficient use of the VSP resource. Using the VSPs to implement
the functions such as FSM and frame sync generation block will cost many VSP chips and
meanwhile waste a lot of resource on the VSP chip. Instead, most of these functions can
be implemented efficiently by using field-programmable logic devices (FPLD), such as

the Xilinx 6400 that we use for VRAM and VME bus interface control.

134

(b)

Fig. 6-7. An example of (a) soft draw and (b) hard draw used for the
VSP chip programming.

Here, we will discuss the strength and the weakness of the Philip VSP processor based

on our implementation experience.

Strengths

[

135

The Philip VSPs are good for realizing computations that are represented
by an equation, e.g. filters. The multiple processing elements on the chip
and the capability of integrating multiple VSP chips provide a very high
processing power to satisfy the computation need of most realtime video
signal processing algorithms.

The crossbar switch provides a very flexible way of connecting the multi-
ple processing elements on the chip. It enables very efficient scheduling,
i.e., the resource utilization overhead due to scheduling is very low. It also
eases the integration of multiple VSP chips.

The VSP programming environment is reasonably easy to program. It pro-
vides a graphic user interface to input soft draw and hard draws. The auto-
matic scheduling tool is also efficient. This is far ahead of the IIT’s VCP
chip, which relies totally on manual scheduling.

Weaknesses

The Philip’s VSP is not designed for control purpose. It does not support
simple logic operations such as simple 1 bit logic operations. We can use
the 12-bit wide ALEs to perform the simple logic operations, which how-

ever wastes 11/12 of the resource.

Conditional branch operations is not supported efficiently. Unlike tradi-
tional FIR or IIR filtering algorithm, today’s video algorithms uses condi-
tional branch a lot. Examples are algorithms such as motion compensation
and conditional replenishment. The current synchronous signal flow graph
used by VSP cannot support conditional branch. Also, the VSP does not
allow multiple sets of programs stored in the program memory and execute
only one branch of the program according to previous execution results.
Currently once the signal flow graph is mapped, all branches consume pro-
cessing resource even though the branch should not be executed.

136

¢ Cross-bar switch does not support data dependent switching. Datta depen-
dent switching is possible at the cost of using ALEs as the switching ele-
ment.

* The ALE and the ME does not have equivalent bandwidth capability. The
ALEs on the VSP consume and at the same time produce data at 27 MHz
clock rate. However, the memory elements can only read or write data at
the 27 MHz rate, but not read and write simultaneously. This prohibits the
VSP chip to become a real pipeline engine that can pump data in and out at
full clock rate. It also causes a lot of programming complexity when we
need to read/write at full clock rate. It is preferrable to have the MEs to
support 27 MHz bi-directional read/write operations, even though techni-
cally it may be hard to design a memory module with 54 MHz rate.

* Itis difficult to interface with interrupt driven modules. The VSP is a fully
synchronous engine which assumes constant clock rate data pumped in and
out all the time. This causes some difficulty when it is to be integrated with
some asynchronous modules.

All the desired capabilities described above can be done in one way or another, how-
ever, with very low resource utilization efficiency. That is, it may take many VSPs to
achieve with the current VSP capability. In essence, the Philip VSP processor is very
capable for computation portion (e.g., add, multiplication.) of the video compositing algo-
rithm. However, it is less suitable to be used for control portion (e.g., conditional
branching, single bit binary logic, data dependeint switching, etc.) of the compositing
algortihm. Since our VCP compositing algorithm combines both computation and com-

positing portion, the VSP is only useful for part of the algorithm.

Actually, most of today’s video algorithm consists of both computation portion and the
control portion, it is a must that a general purpose video signal processors support both. A
good example is the IIT"s VCP chip, which uses two separate modules on the chip —
video processor and video controller. The video processor provides computation capa-

bility and the video controller provides the branching and control capabilities. [72]

137

6.3 Compositing processor implementation with ASIC
Full custom design IC chip allows most flexibility to optimize and reduce the com-
plexity. However, it is more time consuming to design a chip from scratch. Fortunately,
today’s VLSI computer aided design (CAD) tools are very powerful. They make the ASIC
design easier and more automatic. We have designed an application specific integrated cir-
cuit (ASIC) for the VCP of the VideoStation. In this chip, the whole VCP block shown in
Fig. 6-4 was put into a very compact IC chip. This is quite a remendous difference when
compared with 8 VSPs and many glue logics in the previous approach to achieve the same

functionality.

6.3.1 Design environment

We have laid out and fabricated a video compositing processor chip using the Ber-
keley’s Lager/V tools[8] in 1.6 um CMOS technology. The Berkeley’s Lager/V is a chip
design system that consists of a set of layout generation tools and a set of MOSIS SCMOS
cell libraries. The tools set includes a parameterized macrocell generator called TimLager,
a programmable logic arrary(PLA) generator called Plagen, a standard cell placement and
routing tool called Stdcell, a bit-slice data path macrocell generator called dpp, a general
purpose macrocell placement and routing tool called Flint, and other simulation tools.

This environement suffices a user to design a chip and generate and simulate the layout

automatically.

6.3.2 Design methodology

The design of the chip starts with defining the function of the chip, and come out with
a functional diagram. A functional diagram of the VCP chip is shown in Fig. 6-8. In the
functional diagram, we mainly separate the chip into two blocks — the control block and
the computation data path block, as the way we analyzed our implementation of VCP
using VSP in the last section. The control block includes all the control related sub-blocks,

such as the finite state machine, the video frame sync signal generation, binary logics. etc.

138

P_FIXEL_OUT L L. OUT

P_ALPHA ouT |—E-4lFHA OUT
ata Path ; ru ourf—tmvovr
8_TAU_OUT -

2.0 _out |—L5.oUT

8_PR1_OUT!

WU PHRSCANCERP F1Q1 PII2SCAN KEEP SCANINSCANOUT

== (111

PHIIMO2 SCAN KEEP SCANINSCANOUT VRAM SEIVRAMMNRAM i1 FHI2 SCAN KEEP SCANINSCANGUT

Note: The shading part runs at the clock rate PHI1, and PHI2.
The non-shading part runs at the clock rate of PHI1F and PHIZFD

Flg. 6-8. The VCP chip functional diagram.
The computation data path block is a data path using the foreground and background
video input streams to generate the composited output video streams. The detailed design

of th two blocks are shown in Appendix B.1.

The reason of separating the VCP chip into two blocks is because of the different char-
acteristics and requirements between the data path block and the control block. The data
path block performs operations over the incoming video samples running synchronously
at a very high speed of 27 MHz clock rate (in CCIR 601 format). The main operations are
switching, addition, multiplications, etc. On the other hand, the control blocks is much
more complicated in functionality. The speed of the control logic, however, may be much
lower than the data path block. It basically controls and coordinates operations of the
whole pipeline stage. It receives related informations from all the blocks in that stage,

including external blocks such as VME interface module, VRAM interface, and the FIFO,

139
and generates signals to control and instruct all the blocks to perform operations properly.

It interfaces with other modules in both synchronous and asynchronous way.

With these considerations, we are designing the chip using two different clock rate.
One running at the data path clock rate of 27 MHz. The other runs at a much lower clock
rate of around 9 MHz. Fig. 6-8 shows the portion of the VCP chip that runs at the lower

clock rate in the black shading. The portion without the shading are running at the 27 MHz

clock rate.

Once the functional diagram is available, the second step of the design is to map the
 functional diagram into available cells in the Lager cell libaray. An important consider-
ation here is to choose an appropriate cell and an appropriate tool to generate the macro-
cells to satisfy the functional requirement and also minimize the macrocell size. Here, we
use the data path generator (dpp) and the macrocell tiling program (TimLager) to generate
most of the macrocells in the data path block. For the control block, we are using various
tools. We use the PLA generator (Plagen) to generate the finite state machine and one of
the combinational logic macrocells (The functional description of the finite state machine
and the the comnibational logic cells are shown in Appendix B.2 and B.3.) We also use the
standard cell libaray and TimLager to generate the rest of the macrocells. Once the cells

are generated. they are connected together by using Flint as the placement and routing

tool.

In addition to using the Lager IV tools directly, we also need to redesign some of the
macrocells in the library to satisfy the speed requirement of the data path block. This is
done by putting some pipeline latches into the macrocells such that the delay between

latches is lower than the original macrocells, and can therefore run at a higher clock rate.

Making macrocells pipelined is easy for some macrocells and difficult for others. For
example, it is easy to make the macrocells generated by the data path generator (dpp)

pipelined because the dpp allows the user to specify how to insert the pipeline latch to

140
meet the requirement. Other macrocells, such as those generated by TimLager, may not
allow users to put in the pipeline latches at will. For these macrocells, we need to rewrite
the macrocell tiling program to make them pipelined and run at higher clock rate. An
example is the array multiplier macrocell generated by the TimLager. In the design of the
VCP, we created a new array multiplier macrocell that can be pipelined at every three bit-

slice to make it run at the 27 MHz clock rate without any problem.

There are also macrocells that is extremely difficult to modify to become pipelined.
The finite state machine macrocells generated by the PLA generator is an example. For
these macrocells, we have no easy way to enhance the speed. Fortunately most of these
macrocells are used for control purpose, and can actually be run at a lower rate than the
data path clock rate through a careful design. After recognizing this fact, we choose to use
2 different clock rate for different macrocells such that most of the macrocells are running
at a lower clock rate. Only those macrocells in the data path block run at the 27 MHz rate.

Through this, we can avoid the requirement to modify many macrocells to be pipelined.

6.3.3 Simulation, fabrication and testing

The simulation of the chip is done by using the simulation tools provided in LagerIV.
The tools we use are Thor, irsim and spice. Thor is used for simulation from gate level to
behavior level. The irsim is used to perform switch level simulations. It can simulate the
circuit extracted from the actual layout, and perform timing simulation to gurantee the
correct function of the layout. The spice is used to perform more accurate timing simula-
tion. The simulation time limits the use of these three different simulation tools. The
higher level simulation tools, such as the Thor, can be run at a reasonable speed to simula-
tion the whole chip without any problem. Spice simulator, however, takes a very long time
for large circuits. It can only be used to simulate the timing of some critical path. Irsim, as
a switching level simulator between Thor and spice, runs in reasonable time to simulate
large macrocells. It is possible to use irsim to simulate the whole chip. However, it takes

quite a long time to finish the job. In our design process, we did use irsim to simulate the

141
behavior of the whole chip to gurantee the correct functionality of the chip before the chip

is sent out for fabrication.

For easy testing, we also incorporate some testing circuit into the chip design. We use
scan register to implement the output of most critical macrocells such that the result of the
macrocells can be easily shifted out serially through the scan path. Since we run the chip
at two clock rates, we have two separate scanning paths for the components running at dif-

ferent rates. The two scanning paths are shown in Appendix B.4.

The final layout of the VCP chip has a die size of 12.1 x 12.1 mm. It contains 20698 n-
channel transistors and 18529 p-channel transistors. The power consumption is about 1.3
watt according to rough calculation by using the total capacitances. The designed chip has
a very large number of input/output signals, and uses a 208 pins PGA package. (See
Appendix B.5 for pin assignment.) This large pin number makes the total die size so large.
Without counting the I/O pads, the actual die size of the active circuit is actually only a

little bit more than half of the current size.

Once we finished the design, layout and simulation, the chip was sent to the Asahi
Chemical Co. in Japan for fabrication and testing. It was fabricated and passed the testing
at 27 MHz clock rate using the test vectors that we provide. After the chip is fabricated,
we also designed a board for the complete pipeline stage using the fabricated chip. More

detail about this board can be found in [25].

6.4 Conclusion

We have implemented the VideoStation video compositing processor to demonstrate
the feasibility of real-time video compositing for structured video. We use two different
approaches in this chapter — the programmable video signal approach and the ASIC
design approach. Basically the programmable video signal approach provides a faster
solution for prototyping and an easier way of debugging and redesign. It is most suitable

for lab experimental prototype implementation. In this approach, the designers are bound

142
with the limited availability of today’s programmable processors and the built-in architec-
ture of the video processor. When the capability or the architecture of the processor does
not fully fit the requirement of the specific application, some glue logic may be needed

and the implementation cost and complexity may be increased.

The ASIC design approach provides a direct way of implementation of the prototype.
The designer has more flexibility to design the whole circuit from higher level architecture
to the low level layout. The final desig;x can be compact and simple and cheaper when pro-
duced massively. However, the ASIC approach is much more difficult and time con-
suming to design from scratch. It needs carefully design from functional design, layout,
simulation to testing. Today’s VLSI CAD tools provide a way to ease the whole design
process a lot. Some of them even provide automatic layout generation from very high
level behavior description. Even with the various VLSI CAD tools available today, this
ASIC design approach is still much more complex than using the programmable signal
processor. In the future, the design complexity gap between the programmable signal pro-
cessor and the VLSI ASIC can hopefully be reduced when more advanced VLSI CAD
tools become available.

Our implementation results show that programming with the Philip’s VSP chip is not
quite an efficient way for implementing the VideoStation real-time compositing processor.
Using Philip’s VSP chip, we need 8 VSP chips (on one VSP-8 board) to implement the
data path computation portion of the VCP block. To complete the whole VCP block, we
need to use more control and glue logic to be integrated with the VSP-8 board. The result
is that we not only need to program the VSP processor, but also need to custom desgin the
external control and glue logic hardware. Under this situation, the easy prototyping advan-
tage of the programmable signal processor is reduced dramatically. Using the ASIC design
approach, on the other hand, we are able to design the whole VCP block in one single chip

of 12.1 x 12.1 mm die size. This shows the dramatically advantage on the final design

143
complexity of the ASIC design approach over the programmable signal processor

approach.

In this chapter, we also discuss the general video signal processors available today. We
discussed the reason way the Philip’s chip is not so much suitable for the real-time com-
positing implementation. First, the Philip’s VSP chip architecture is basically designed for
implementing the data intensive computations. Its capability of supporting control func-
tions and conditional branching is qute weak. While in most of today’s video applications,
both computation and control functions are equally important. Our structured video com-
positing algorithm shows this fact quite clearly. This makes the implementation using the
Philip’s VSP chip not quite efficient. Secondly, even though the Philip’s VSP is claimed to
be designed for realtime video signal processing purpose. its design is basically for any
high speed signal processing. This “high speed signal processing” is only one of the char-
acteristics of any video signal processing algorithms. There are other generic characteris-
tics of video processing algorithms that can be used to optimize the VSP design. For
example, most video signal processing requires frame sync restoration, frame delay imple-
mentation, block based data structure processing, etc. All these appear a lot in many dif-
ferent video algorithms, and should be supported efficiently. A programmable signal

processor designed for video purpose should take these into consideration, and be opti-

mized accordingly.

144

CHAPTER 7

CONCLUSION

7.1 Summary of research result

Advanced video services is becoming possible with all the fundamental video sup-
porting technologies getting mature. One missing technique to support advanced video
services is the real-time video compositing technique to allow real-time access and inte-
gration of video elements over the network. This thesis basically discuss various aspects of
real-time video compositing — from its high level video information structure to the low

level hardware implementation.

In this thesis, we first review the nature and characteristics of the advanced video ser-
vices. Then we propose a structured video model to provide a framework to support effi-
cient real-time video compositing for advanced video services. It essentially represents the
compositing video scene in a hierarchical tree structure while at the same time keeps all
the video elements logically separate over the network until the very last stage of video

compositing at the users workstation. By doing this, the whole data structure is maintained

145
in a very clean, structural way. All the video elements can also be kept in a very simple
form that can be most efficient for data compression, video material sharing and reuse.
This makes the network management and the network resource utilization more efficient.
The structured video model also allows instantly interactive control for real-time compos-
iting of video information. The model also provides a way for efficient implementation of
the compositing system. This is achieved through introducing the basic compositing func-

tions for modular implementation and the restructuring capability of the composite object.

Based on this structured video model, we study the technologies that actually support
the realization of the structured video model in chapter 4. In spatial compositing, we start
with Porter and Duff’s anti-aliasing algorithm, extend it, and derive the compositing algo-
rithm of all the compositing functions that we defined in the structure video model. We
also study the implementation flexibility of the structured video model in allocating video
compositing functions to a distributed network environment. The structured video can
provide a means for studying various possibilities of implementation, and provides as a
tool for its performance analysis and optimization. To do this, we explored the generic
structure of compositing functions and their useful properties such as associative, commu-
tative, and distributive, which enable easy manipulations of the compositing functions and
restructuring of the structured video representation of a video service and its associated

implementation.

In temporal compositing, we discuss two important synchronization issues — the
clock rate matching and the multiple object synchronization. In rate matching, we propose
to use a global timing clock for all the components in a composite video object. It essen-
tially uses separate channels for transmitting timing signals for global clock. With the
complexity of tree structure, it is difficult to use traditional methods such as slip buffering
or the buffer monitoring method to match the clock rates among all the components. Since
the goal of structured video is to support real-time full motion video, it is best to use a

global clock to allow each component to run freely without other intervention. To main-

146
tain the synchronization among multiple video objects, we use a simple mechanism to set
the origin of the time basis of all the components, and measure the delay of the links in the

composite object structure.

In chapter 5, we described the design detail of a video compositing platform - Video-
Station that supports real time compositing display for structured video. We first reviewed
the implementation bottleneck with today’s display technology. There are mainly two bot-
tlenecks — the memory bandwidth and the processing capability bottlenecks. To get
around of these bottlenecks, we proposed a pipeline architecture for the VideoStation. It
uses a multiple parallel compositing modules on a pipeline data path to provide enough
processing capability and the memory bandwidth. The basic idea of this pipeline architec-
ture is to avoid the traditional single frame buffer approach so that there is no fix mapping
between the memory address and the display physical location. The advantage of this is to
provide more fiexible mhpping between the memory address and the display, thus making
the memory usage more efficient. Some of the compositing operations, such as bitblt, can
be performed easily and efficiently with this pipeline architecture. The pipeline architec-

ture also allows a much easier method of expansion to accommodate more video objects.

To avoid the presorting requirement in the compositing, we proposed a 3-object com-
positing mechanism which does not perform the actual compositing until the last stage.
The function of each pipeline stage is to select the two highest priority objects and pass
down to the next stage. With this 3-object compositing, any dynamic change of priority
values can be done without difficulties. By choosing proper parameters passing between
the stages, we also make the operations in each pipeline stage as simple as possible. Com-
pared with direct implementation which requires division operations in every stage, the
optimized approach needs the division only in the last stage. All the rest of the stages need

only addition/multiplication, and some simple logic operations.

In the last chapter, we present our prototype design of VideoStation in two different

approaches — the programmable video signal processing approach and the VLSI ASIC

147
design approach. This basically compares the two most common implementation methods
used today for real-ime video processing. Our results shows that the implementation
using the Philip’s programmable video signal processor is not quite efficient for our real-
time compositing algorithm of VideoStation. Using Philip's VSP chip, we need 8 VSP
chips (on one VSP-8 board) to implement the data path computation portion of the VCP
block. To complete the whole VCP block, we need to use more control and glue logic to be
integrated with the VSP-8 board. Using the ASIC design approach, on the other hand, we
are able to design the whole VCP block in one single chip of 12.1 x 12.1 mm die size. This
shows the dramatic advantage on the final design complexity of the ASIC design approach

over the programmable signal processor approach.

There are several reasons why the Philip’s chip is not quite suitable for the real-time
compositing implementation. First of all, the Philip’s VSP chip architecture is basically
designed for implementing the data intensive computations. Its capability of supporting
control functions and conditional branching is quite weak. While in most of today’s video
applications, both computation and control functions are equally important. Our structured
video compositing algorithm shows this fact quite clearly. This makes the implementation
using the Philip’s VSP chip not quite efficient. Secondly, even though the Philip’s VSP is
claimed to be designed for real-time video signal processing purpose, it is actually
designed basically for any high speed signal processing. This “‘high speed signal pro-
cessing” is actually only one characteristic of any video signal processing algorithms.
There are other generic characteristics of video processing algorithms that can be used to
optimize the VSP design. For example, most video signal processing requires frame sync
restoration, frame delay implementation, block based data structure processing, etc. All
these appear a lot in many different video algorithms, and should be supported efficiently.
A programmable signal processor designed for video purpose should take these into con-

sideration, and be optimized accordingly.

148

7.2 Future Direction
We have followed a very straightforward thinking of real-time video compositing
issues of advanced video services — starting from the high level information structure to
the low level hardware implementation. Along this line, the extent that we covered is still
quite limited. There are a lot more to pursue in the future. Here, we would like to point out

some major ones.

In the discussion of the structured video model, we pointed out the possibility of using
the model to optimize the network resource allocation in a distributive network environ-
ment. We studied the properties of the compositing function in the structured video model
to enable flexible resource allocation. However, we did not study how to achieve the opti-
mization. The resource allocation algorithms using the restructuring capability of the

structured video model need to be further explored.

Along with the resource allocation optimization issue is the real-time scheduling issue
in video compositing. The temporal representation proposed in chapter 3 can be used as a
foundation for scheduling. However, the scheduling can actually be more involved
because structured video includes not only limited life span video objects, but also unde-
termined life span objects and interactive operations. It is sure that some kind of dynamic
scheduling scheme is needed. When the optimization considers both the resource alloca-
tion in the spatial domain and the scheduling in the temporal domain, it becomes a very

challenging problem, and deserves further detailed study in the future.

Once the scheduling and the resource allocation are done, another issue that needs to
be investigated is the distributive call model and its associative signalling and negotiation
protocol for this allocated tree structure. The call model not only need to handle the initial
establishment and tear down of multi-point multi-media call connection, but also needs to
handle dynamic connection establishment during the run time. There are currently many
activities in the ATM Forum on the signalling protocols for switched virtual connections

(SVC) over ATM network. The current standard adopted is one called Q.2931. This sig-

149
nalling protocol, however, supports only point to point connections. It does not support
any multi-party multi-media connection in a call, not to mention the complicated tree
structure used in the structured video model. The call model and signalling protocol of the
structured video can be built based on the current Q.2931 standard and extend it. This will

basically satisfy the need of the structured video protocol issue.

Regarding VideoStation, we have designed and optimized the architecture with respect
to a subset of compositing functions in the structured video model. Those compositing
functions includes over(), transparent, translation(), delay(), etc. There are many other
compositing functions described in chapter 3 that are of interest for general video compos-

iting applications. A more generic compositing processor implementing all these compos-

iting functions need to be further studied.

In the pipeline architecture proposed, each pipeline stage can only support one isoch-
ronous video objects disregarding how large the video object is. This is a waste of the
compositing resource considering the processing capability of each pipeline stage is far
beyond. A more flexible design to enable multiple isochronous video object compositing

in one pipeline stage is definitely another issue that need to be further pursued.

150

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

Francis Kretz and Francois Colaitis, “Standardizing Hypermedia Information
Objects”, IEEE Communication Magazine, May, 1992.

Francois Oguet, Christiane Schwartz, and Francis Kretz, “RAVI, A proposed
Standard for the Interchange of Audio/Visual Interactive Applications”, IEEE
Journal on Selected Areas in Communications, Vol. 8, NO. 3, April 1990.

Brian D. Markey, “HyTime and MHEG,” IEEE COMPCON, pp- 25-40, San
Francisco, CA, Feb. 1992,

DTAM, Document Transfer, Access and Manipulation, protocol described in
the CCITT recommendations on Open Document Architecture (ODA), T431-
Introduction and General Principles, T432-Service Definitions, T433-Protocol
Specifications, 1988.

Wataru Kameyama, Tsuyoshi Hanamura and Hideyoshi Tominaga, “A Pro-
posal of Multimedia Document Architecture and Video Document Architec-
ture,” ICC 91, pp. 511-515.

Naoki Kobayashi and Toru Nakagawa, “Multimedia Document Structure for
Dialog Communication Service,” ICC 91, pp. 526-531.

Patrick McLean, “What’s in a Picture? A Structured Approach to Video Cod-
ing,“ Intl. Symp. on Signals, Systems, and Electronics, Sept. 1992.

R.D. Gaglianello, T.B. London, B.S. Robinson, and D. Swicker, “The Liaison
Network Multimedia Workstations,” Proc. Global Commun. Conf., Phoenix,
Dec. 1991.

Martin De Prycker, Asynchronous Transfer mode - Solution for Broadband
ISDN, Ellis Horwood, 1993.

CCITT Recommendation 1.352, Network Performance Objectives for Connec-
tion Processing Delays in an ISDN, Vol. I1I, Fascicle II1.8, Blue Book, 1988.

CCITT IVS Baseline Document, SG XVIII/8, Geneva, June 1992.

(12]

[13]

(14]

[15]

(16]

(17]

(18]
[19]

(20]

[21]

[22]

(23]

(24]

(25]
[26]

151

Raif O. Onvureal, Asynchronous Transfer Mode Networks: Performance
Issues, Artech House Inc., 1994.

D. A. Pattern, G. A. Gibson and R. H. Katz, “A Case for Redundant Arrays of
Inexpensive Disks (RAID)”, ACM SIGMOD 88, Chicago, 1988.

G. A. Gibson, “Redundant Disk Arrays: Reliable, Parallel Secondary Storage”,
Ph. D. Dissertation, University of California, Berkeley, 1991.

A. L. Narasimha Reddy and J. C. Wyllie, “I/O Issues in a Multimedia System”,
IEEE Computer Magazine, March, 1994, pp. 69 - 74.

K. Lantz and W. Nowicki, “Structured Graphics for Distributed Systems,”
ACM Transactions on Graphics, vol.3, #1,January, 1984,pp. 23-51.

CCITT Recommendation H.261, “Video Codec for Audiovisual Services at
px64 kbits/s”

Standard Draft, JPEG-9-R7, Feb. 1991

Standard Draft, MPEG Video Committee Draft, MPEG 90/ 176 Rev. 2, Dec.
1990.

Pedro A. Szekely and Brad A. Myers, “A user interface toolkit based on graph-
ical objects and constraints,” SIGPLAN NOTICES, September 1988.

Ralph D. Hill, “A 2-D graphics system for multi-user interactive graphics
based on objects and constraints,” in Advances in Object-Oriented Graphics 1,
E. H. Blake, P. Wisskirchen (Eds), pp. 67-91.

H.G. Musmann, M. Hotter, and J. Ostermann, “Object-Oriented Analysis-Syn-

thesis Coding of Moving Images,” Signal Processing: Image Communication.
pp. 117-138, 1989. '

H.-D. Lin and D.G. Messerschmitt, “Video Compositing Methods and Their
Semantics, “ JEEE ICASSP 91, Ontario, Canada, 1991.

W.-L. Chen, P. Haskell, L. Yun, and D. G. Messerschmitt, “Videostation: a
hardware implementation of structured video,” in preparation.

Louie Yun, “The VideoStation Board,” Master Report, UC Berkeley, 1993.

S.-F. Chang and D. G. Messerschmitt, “A New Approach to Decode and Com-
posite Motion Compensated DCT-Based Video,” to appear on /CASSP ‘93,
Minneapolis, Minnesota, April, 1993.

271

(28]

[29]

(30]

B31]

(32]

(33]

(34]

(35]

[36]

(37]
[38]

[39]

152

S.-F. Chang, W.-L. Chen and D. G. Messerschmitt, “Video Compositing in the
DCT domain,” IEEE Workshop on Visual Signal Processing and Communica-
tions, Raleigh, NC, Sep. 1992.

S.-F. Chang, “Compositing and manipulation of video signals for multimedia
network video services”, Ph.D. Dissertation, UC Berkeley, 1993.

H. Kamata, T. Katsuyama, T. Sizuki, Y. Minakuchi, K. Yano, “Communication
Workstations for B-ISDN: Monster (Multimedia Oriented Super Termi-
nal)” JEEE Globecom, Nov. 1989, pp. 959-964.

Peter Wisskirchen and Klaus Kansy, “The new graphics standard - Object-Ori-
ented!”, in Advances in Object-Oriented Graphics I, E.H. Blake, P. Wis-
skirchen (Eds), pp 199-215.

D. Bursky, “Programmable-Architecture Parallel Processor Handles Real-Time
Video,” Electronic Design, November 22, 1990, p. 34.

W.-L. Chen, S.-F. Chang, P. Haskell, and D. G. Messerschmitt, “Structured
Video Model for Interactive Multimedia Video Services,” U.C. Berkeley, Dept.
of EECS, 1992.

S.-F. Chang, P. Haskell, and D. Messerschmiitt, ““Allocation of Video Composit-
ing Hardware in Multimedia Networks,” U. C. Berkeley Dept. of EECS, 1992.

T. Duff, “Compositing 3-D Rendered Images,” Siggraph, November 1985, vol.
19, pp. 41-44.

T. Porter and T. Duff, “Compositing Digital Images," Computer Graphics, July
1984, Vol. 18, No. 3, pp.253-259.

H. Fuchs, et. al., “Coarse-Grain and Fine-Grain Parallelism in the Next Gener-
ation Pixel-Planes Graphics System,” in Parallel Processing for Computer
Vision and Display, P. M. Dew, R. A. Earnshaw, and T. R. Heywood, editors,
New York, Addison-Wesley, 1989, pp. 241-253.

D. Hearn and P. Baker, Computer Graphics, New York, Prentice Hall, 1986.

H. Kamata, T. Katsuyama, T. Sizuki, Y. Minakuchi, K. Yano, “Communication
Workstations for B-ISDN: Monster (Multimedia Oriented Super Terminal),’
IEEE Globecom, Nov. 1989, pp. 959-964.

LagerlV Distribution 1.0: Silicon Assembly System Manual, Report of the
Electronics Research Laboratory, University of California, Berkeley, June
1988.

(40]

(41]

(42]

(43]

[44]

(45]

[46]

(471

[48]

[49]

(50]

(51]

(52]

[53]

153

“VideoWindows” and “VideoWindows HR,” New Media Graphics Corp., 780
Boston Road, Billerica, MA, 01821-5925.

T. Porter and T. Duff, “Compositing Digital Images,” Computer Graphics,
1984, vol. 18, #3, pp. 253-259.

Murat Kunt, Michel Benard, and Riccardo Leonardi, “Recent Results in High-
Compression Image Coding,” IEEE Transactions on Circuits and Systems, Vol.
CAS-34, No. 11, November, 1987.

“Digital Television”, edited by C. P. Sandbank, John Wiley & Sons, 1990.

Arun N. Netravali, and Barry G. Haskell, “Digital Pictures: Representation and
Compression”, Plenum Press, 1988.

“TMS44C251 256Kx4-bit Multiport Video RAM,” Texas Instruments MOS
Memory Databook, Commercial and Military Specifications. publication
#SMYDO008, Houston, TX.

“TARGA+,” TrueVision, 7340 Shadeland Station, Indianapolis, IN 46256.

P. Vasilopoulos, Interactive Video Services Simulated on the VideoStation Sys-
tem, M. S. Report, University of California, Berkeley Department of Electrical
Engineering and Computer Sciences, October 1990.

“DVA-4000/MCA,” VideoLogic, Inc., 245 First Street, Cambridge, MA
02142.

“Broadband ISDN and Asynchronous Transfer Mode (ATM)”, Steven E. Min-
zer, [IEEE Communication Magazine, Septerber 1989, pp. 17 - 24.

“Progress in Standardization of SONET”, Rodney J. Boehm, /EEE LCS Maga-
zine, May 1990.

Special Issue of Congestion Control in ATM Network, IEEE Network, Septer-
mber 1992, Vol. 6, No. 5.

“Congestion Control for Multimedia Services”, Ljiljana Trajkovic, and S.
Jamaloddin Golestani, /EEE Network, September 1992, Vol. 6, No. 5, pp. 20 -
26.

Thomas D. C. Little and Arif Ghafoor, “Network Considerations for Distrib-
uted Multimedia Object Composition and Communication”, /EEE Network.
November 1990, pp. 32 - 49,

(54]

[55]

[56]

571

(58]

[59]

[60]

(61]

(62]

(63]

[64]

(65]

(66]

154

Thomas D. C. Little and Arif Ghafoor, “Spatio-Temporal Composition of Dis-
tributed Multimedia Objects for Value-Added Networks”, IEEE Computer
Magazine, October 1991, pp. 42-50.

Anil K. Jain, Funcamentals of Digital Image Processing, Prentice Hall, Inc.,
1989.

Hanan Samet and Robert E. Webber, “Data Structures: Hierarchical Data
Structures and Algorithms for Computer Graphics, Part I- Fundamentals,”
IEEE Computer Graphics & Applications, pp 48 - 68, May, 1988.

Whitton, M.C., “Memory Design for Raster Graphics Displays,” IEEE Com-
puter Graphics & Applications, Vol. 4, No. 3, March 1984, pp. 48-65.

Ralf Steinmetz, “Synchronization Properties in Multimedia Systems,” /EEE
Journal on Selected Areas in Communications, Vol. 8, No. 3, April, 1990, pp.
401 - 412

Thomas D. C. Little, and Arif Ghafoor, “Synchronization and Storage Models
for Multimedia Object,” IEEE Journal on Selected Areas in Communications,
Vol. 8, No. 3, April, 1990, pp. 413 - 427.

David P. Anderson and George Homsy, “A Continuous Media I/O Server and
Its Synchronization Mechanism,” IEEE Computer Magazine, October 1991,
pp. 51 - 57.

Thomas D. C. Little, and Arif Ghafoor, “Spatio-Temporal Composition of Dis-
tributed Multimedia Objects for Value-Added Networks,” IEEE Computer
Magazine, October 1991, pp. 42 - 50.

J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun.
ACM, vol. 26, no. 11, pp. 832 - 843,

L. Lamport and P.M. Melliar-Smith, “Synchronizing clocks in the presence of
faults,” Journal of the ACM, 32(1), pp. 54-78.

T. K. Arikanth and S. Toueg, “Optimal clock synchronization,” Journal of the
ACM, 34(3), pp. 626-645.

F. Cristian, “Probabilistic clock synchronization,” Distributed computing 3, pp.
146-158.

Sharp memory databook 1991/1992.

(671

(68]

(69]

(70]

(71

[72]

(73]

(74)

[75]

(76]

155

“SunVideo and Digital Video”, technical white paper by Sun Microsystems
Corp.

S. Gupta, R. F. Sproull, and I. E. utherland, “A VLSI architecture for updating
raster-scan displays,” Computer Graphics, 15(3), pp. 71-78.

S. Demetrescu, “High speed image rasterization using scan line access memo-

ries,” Chapel Hill Conference on Very Large Scale Integration, ed. 1985, pp.
221-243.

J. Poulton, H. Fuchs, J. D. Austin, J. G. Eyles, J. Heinecke, and et. al., “Pixel
planes: Building a VLSI based graphic system,” Chapel Hill Conference on
Very Large Scale Integration, ed. 1985, pp. 35-60.

N. England, “A graphic system architecture for interactive application-specific
display functions,” JEEE Computer Graphics and Applications, Vol. 6, No.1,
January 1986, pp. 60-70.

Doug Bailey, Matthew Cressa, Jan Fandrianto, Doug Neubauer, Hedley Rain-
nie, and Chi-Shi Wang, “Programmable vision processor/controller for flexible
implementation of current and future image compression standards,” /EEE
Micro, October 1992, pp. 33-39.

Masakazu Yamashina, Tadayoshi Enomoto, Takemitsu Kunio, Ichiro Tamitani,
HidenobuHarasaki, Yukio Endo, Takao Nishitani, Masao Sato, and Koichi
Kikuchi, “A microprogrammable real-time video signal processor (VSP) for
motion compensation,” IEEE Journal of Solid-State Circuits, Vol. 23, No. 4,
August 1988, pp. 907-915.

Kevin Harney, Mike Keith, Gary Lavelle, Lawrence D. Ryan, and Daniel J.
Stark. “The i750 video signal processor: a total multimedia solution,” Commu-
nications of the ACM, Vol. 34, No. 4, April 1991, pp. 64-78.

Dave Bursky, “Programmable-architecture parallal processor handles real-time
video,” Electronic Design, November 22, 1990.

“VSP support tools user guide,” Silicon & Software System, November 30,
1992.

156

Appendix A: Video compositing processor implementation with

Philip VSP

A.1 VSP-8 hardware connection graph(Hard Draw)

f p_in

f p_in

alpha_i
alpha_i

z_in
z_in

tau_in
tau_in

location

ocal

SC

1_z_out
1_z_out

alpha_tay_0
alpha_tay 0

40

alpha_oW¢

tau_c

alpha_o

z_out
z_out

tau_out
tau_out

A

=5
=)
=)

Fig. A-1. Hard draw: This graph specifies the hardware
connection between the 8 VSPs and input/output ports on the

VSP-8 board.

A.2 Video compositing algorithm signal flow graph (Soft Draw)

-y

.
7 add3 7

alugli _//‘ mem /1Y

° logyu write
0o
8 b
Iyrid /
eton / uisiN
paranteters ,
4]] ! -/ w\|Rnsis
memul nixuli N
3 /j‘ reZln '< N
1
// 2 l
0l seroti 1 T memili mixtli
0] add1 read 2
10'

2
mem2lj mix2li
read

3

mem3li mix3li
read

memdii

read \

mem314
read

mix5li

9

andUli
log0

andlli
tog0

1

Fig. A-2. Soft Draw: part(1). This signal graph read in the
compositing parameters and store in the memory, then use the
parameters to compare with current scanning location and
generate a control signal to read local pixel values from VRAM.

157

158

7 memil Ipy mem2jpv
ey — . -
I sW&Pllk y_tau ftli / wrie |/ | read
logd um RN 2
— I__J alutl) — huxiA thy v mxd!
ISy addo [
o
) : : / !
T out Mix01t) y _tau_{mSbtli 2
vrany_p_out l um /mcrgl 1pY mem2ipv
| write y read
l | | 1
2N 2
9
Flmemt) oy pem3pyat afphidau
v e 1/ JAcad)
& Nl u
tav alpha Rt mux2 {4 et / yi / > N phafts
W L Qloed Y N 2 -
2 V]
2 2 |
12 1513

5

2 2
bl
vram_a_uutmix | 1O | aluoi? | alpha_primy1Ué/med | | 1 py mem3| pvoma?” ha
vrarg__a_out addo sub2 / wie T Tread MAlGha
{ b4
2

mixy |kgpv v

30—
axio v;)(«%kp\

! bl
- o

1
-

Fig. A-3. Soft Draw: part(2). This signal graph read local video
object from VRAM and calculate the product pat and 1- o for use
in soft draw part(3) and part(4).

(1 memidip | mem2ip ‘ J
wne [Tlread |0 muxip A_p_oytip
\ logd f_p_ylt
mix4 13
| |

I_p_y_Lp jmxlllg

2

eq

|
Ip (mixi21 L
mem| 3
write

mem3| R
read : 1 \
2~ : 2 Isrd
) +Isr3 \
S
S1_alpRa_in_Ip '“'"EHIP mcm7lWll‘llncnl€p
e = Tead l ()ﬁaj
0

P \’..:

alpfia_in wrte || logy |

2 IS 2 2

]
OMAIhha "_;—‘
MAtha -
2

Fig. A-4. Soft Draw: part(3). This signal flow graph perform
compositing calculation of foreground pixel. background pixel. and

rd

foreground a viue.

159

muxoldp |y a_outlp
lopd f_alpita_out

2

logicy)
logic/in

mux4
log3

;_d:u/

(8]

b_uu_1¢ log3

mux9

[®}

[_tauMoutlr
_tau/out

mux1Qlp Ib_tau\outlr
log3 b_tay/out

2 2

meml;[lr memo6]|
write” [] /| read
2N 2
mem 81
wri
2 2
Ise3 ~
I
1
memglr “hqem
wrte” | 5] rca
N
2\
v
em20ir | mem21)r
write read

mux]1ijir ogtlr
log3 gL

2 2

uer mux13ir dutle
log3 log3 gt
2 2 2

Fig. A-5. Soft Draw: part(4). This signal flow graph perform
compositing calculation of foreground and background t, 2z

values.

161

Appendix B: Video compositing processor implementation with
ASIC approach

B.1 Chip functional diagram

) IXEL INF AFIHA INF TAL IN F FRIIN
1t XFL IND TAL IN BIREIN

¥ PIXEL [N ATFHA INF TAG IN ¢ §%1 1
resev o M v) % PIXFL INK AU IN B OBKIIN
RoEmey ! asoEmpry RSC RSC
mAC_—‘ DTACKINY .
e F LXEL Ot
boexiL oy et
vmalS ReslD
. Reell I QIXFL ot T
+ meMODSEL w XRL (T e
-sAC x s 1 PAss F_ALPHA (KT
vmeACK ¥ ALAA O [t
I Y Control SCLaAD scLoap Data Path 1Ay ouy LEJAG oT
~esgus
n ADDR ADLR ® TAU ot gV OUT
TRE e 0 F PRI OIT
sCl F PRI OUT f——pn
s VRAM2 VRAM2 B8 PRI OUT
B B PRI OUT [
-— 52 [
L P vRAML T VRAMI
VRAM SEL o] VRAM_SEL
PDIMO2 SCAN KEBP SCANENSCANGUT PHIS PHIZSCANKHEP PHII PHI2SCAN KEEP SCANINSCANOUT
4 8 B X '}
J
\AAj
PHII PHI2 SCAN KEEP SCANINSCANOUT VRAM SEIVRAMIVRAM2 UL PHIZ SCAN KEEP SCANINSCANOUT

Note: The shading part runs at the clock rate PHIL, and P2,
The non-shading part runs at the clock rate of PHILE and PHI2E :

Fig. B-1. VCP chip block diagram

162

=% \CLOAD

; 8} (7] L sl ‘l‘-
Dl.p."- J—l —:tk‘.’": -

Dual 3] . Nusl ol
P ——of) l g S

h o— r Rt
DTACKINV: ’
.
| [:]
-l.l Dutet o) ol Uual 'JP
FF I'F
liahd TRy M JAQ
Rm—.T -] _{\- [} ! ; N Delas
= y = VRAM ML
l ¥ ——
T e Lo >ena
Reses ¢ uusserING IINC Address Counter
1 - Crabecn [|Vesecni
CrarDact2 '—4—1_""' .
n * aA)DR
.L {— RevOUT
GifoEm > :”;s FSM -l wree
vmeMOvB%EL veeMODSEL - VmeBUS
RegLD) g [e—dtes RAM
vimeAUK < s meACK
vmeERRe— vmaliRR
Solach | 1rrp
VmeRW
PHI
PHI2 l >
HFO 1N
VRAMI
VRAM2

Fig. B-2. Functional diagram of the control block in Fig. B-1.

Kidi AN
i

.atgh

Latch

A\ BN

yyYOYY

egi

Re [Rg | Ry [R3 [Ry [Ry fRo

er fia N@

|

1 4)4)

VRAM
worenl 4410 ¥

163

FASRWRAM SEVKAMI VRAM!

INVIRXELIN Al FHA

e Rety

A[AR[AH A
SHS 2
ny R ILgrLX
) T

8 SEL1)8 SE1g

M RBLRBULMULARY LRXUIY U1 X §oik FEQ BGE BEQ PASH
AL

Combination Lugic

it NELIJASF SELID F

L MXELL ALFHA

B | :
.e_yg ot *I MR ovT

F TAl 1T

Fig. B-3. Functional diagram of the data path block in Fig. B-1.

164

B.2 VCP finite state machine block implementation

PreseniState<2> . W ncxt.\:mlc<2>
PresentState< > ucxt.*ftuux 1>
PresentState<t> ncxl.\lalc<.0>
vmeState<!|> nextVmeState< !>
vmeState<ty> nextVmeState<(r>
presentStatus<!> - nextStatus<i>
presentStatus<()> nextStatus<ts>
objectReady<i> nextObjectReady< 1>
objectReady<(> nextObjectReady<0>
fifoEmpty filoRead
passin FSM registerf.D
latchMatch counterkNA
datapath ‘ counteriNC
transReq ramWrite
vmeRW rset TransRey
vmeDS passout
Ny ——— . .
vmeMODSEL _ vmeACK
counterDectl vincERR
counterDect2 dsc
reset ‘ ‘ demux
PHIL, PHI2 $

Fig. B-4. Finite state machine input/output graph.

MODLEL fsm nextState<2:0>. nextVmeState< 1:05, counterEENA. counterINC'.
ramWrite. rset IransReq, tifoRead. registerl.D), nextStatus<1:0>,
nextObjeciReady<1:0>, passout. vmeACK, vimeERR dse.demux
= passin. presentState<2:0>. fifoEpty. presentStatus<!:0>.
counterDect], counterbect2. kichMateh, datipath, transReq,
objectReady<1:0>. vineRW. vmel)S. vmeMODSEL. reset.
vmeState<|:0>;

! ransReq: vertical blank matched. request to load new parameters from
! RAM into regssters.
! rsetTransReq: Used to reset TransReq flip-flop
! Status: 0: No unused parameters in RAM vyet.
! I: New parameters in RAM. not read by host vet.
! 2: Paramelers read by host. not moditied vet.
! 3: Parameters modified by host. not loaded into registers vet.
!
ROUTINE cntl_gen:
counterENA = 0;
nextStatus = presentStatus:
nextObjectReady = objectReady:
nextVmeState = vmeState:
registerlD = 0;
counterfNC" = 1);
nextState = presentState:

ramWrite = 0;
fifoRead = 0;
demux = 0;
rsetTransReq = 0;
vmeACK = 1;
vmeERR = 1;
dsc=0;

! objectReady signify the # of valid fields in VRAM. If only one or
! less valid field data in VRAM, the data from previous stages are

! passed directly to the next stage.

! The passout signal is used to control a Flip Flop outside which is
! triggered by the vinv rising edge.

! In this way, the passin remains in a single state (1 or 0) during

| every field cycle.

passout = 1;
if (objectReady GTR 1) THEN passout = 0;

! VME response locp. This finite state machine always response
! to the interrupt from VME bus first.

if (NOT vmeMODSEL AND (((presentStatus EQL 1) AND vmeRW)
OR ((presemStars EQL 2) AND NOT vmeRW))) OR (vmeState NEQ 0) THEN
BEGIN

select vmeState FROM
[0): BEGIN
countetENA = 1;
nextVmeState = |;
END;
{1} BEGIN
IF vmeDS THEN nextVmeState = 1 ELSE
BEGIN
IF vmeRW THEN
BEGIN
vmeACK = 0;
nextVmeState = 2;
END
ELSE
BEGIN
ramWrite=1;
vineACK = 0;
nextVmeState = 3;
END;
END;
END;
[2): BEGIN
vmeACK = 0;
IF NOT vmeDS THEN necxtVmeState = 2
ELSE
BEGIN
vmeACK = 1;
IF counterDec2 THEN
BEGIN
nextStatus = 2;
nextVmeState = 0;
counterENA = 1;

END

165

ELSE
BEGIN
counterINC = 1;
nextVmeState = 1;
END;
END;
END;
(3): BEGIN
vmeACK = 0;
IF NOT vmeDS THEN nextVmeState = 3
ELSE
BEGIN
vmeACK = 1;
IF counterDectl THEN
BEGIN
nextStatus = 3;
nextVmeState = 0;
counterENA = |;
END
ELSE
BEGIN
counterINC = 1;
nextVmeState = 1;
END;
END;
END;
ENDSELECT:

END
ELSE

! Starting to fetch input from FIFO, and put put to VRAM or RAM,
! depending on the header matched or not.

BEGIN
IF NOT vmeMODSEL THEN vmeERR = 0;
SELECT presentState FROM

! This state is a state when the frontend input latch is empty.
! Fetches data from FIFO if it is not empty. Wait if FIFO is empty.

[1): BEGIN

! badingmmemsﬁomRAthmgismifmepanmemis
! alre:dymodiﬁedbydlehost.mﬂlemkeqﬂagissu

IF transReq AND (presentStatus EQL 3) THEN
BEGIN
counterENA = 1;
nextState = 2;
END
ELSE

BEGIN

IF foEPTY THEN nextState = 1 ELSE
BEGIN
fifoRead = 1;
nextState = 4;

166

(2): BEGIN

! Load the parameter into registers

! Here, assume that counter can be access and
! incrememuted at the same time.

IF counterDect] THEN
BEGIN
rsetTransReq = 1;
nextStatus = 0;
nextState = 1;
countetENA = |;
END

ELSE
BEGIN
registerLD = 1;
counterINC = 1;
nextState = 2;
END;

END;

(31: BEGIN

IF counterDectl THEN
BEGIN
rsetTransReq = 1;
nextStatus = 0;
nextState = 4;
counterENA = 1;
END

ELSE
BEGIN
registertLD = 1;
counterINC = 1;
nextState = 3;
END;

END;

(4): BEGIN

! Send 10 the data path, and at the same time fetch
! from FIFO.
IF wransReq AND (presentStatus EQL 3) THEN
BEGIN
counterENA = |;
nextState = 3;
END
ELSE
BEGIN
IF latchMatch THEN
BEGIN
IF ((presentStatus NEQ 0) OR
((passin EQL 1) AND (objectReady
EQL 2))) THEN
! Wait until the previous parameters
! are modified and consumed.
! Also wait until the VRAM are switched
! to vacate a VRAM.
nextState = 7

167

ELSE
BEGIN
SELECT objectReady FROM
[0]): nexiObjectReady = 1;
(1): nextObjectReady = 2;
[2]): nextObjectReady = 2;
ENDSELECT;
counterENA= 1;
IF RfoEPTY THEN nextState = 5 ELSE
BEGIN
fifoRead =1;
nextState = 6;
END;
END;
END
ELSE
BEGIN
IF datapath THEN
BEGIN
dsc=1;
IF fifoEPTY THEN nextState = 1 ELSE
BEGIN
fifoRead = 1;
nextState = 4;
END;
END
ELSE nextState = 4;
END;
END;
END;
[5): BEGIN
! Load an item from FIFO
IF fifoEPTY THEN nextState = 5 ELSE
BEGIN
fifoRead = 1;
nextState = 6;
END:
END;
[6]: BEGIN
IF counterDec2 THEN
BEGIN
nextStatus = 1;
IF datapath THEN
BEGIN
dsc=1;
IF ifoEPTY THEN nexiState = 1 ELSE
BEGIN
fifoRead = 1;
nextState = 4;
END:
END
ELSE nextState = 4;
counterENA = 1;
END
ELSE

BEGIN

168

169

counterINC = 1;
demux = 1;
ramWrite = |;
IF fifoEPTY THEN nexiState = 5 ELSE
BEGIN
fifoRead =1;
nextState = 6;
END;
END;
END;
73 BEGIN
! Wait until parameters are written into registers
IF ((presentStatus EQL 1) OR (presentStatus EQL 2) OR
((presentStatus EQL 3) AND NOT transReq) OR
((presentStatus EQL 0) AND (passin EQL 1) AND

(objectReady EQL 2))) THEN
nextState = 7
ELSE
! Start transfer the parameters into register.
IF (presentStatus EQL 3) THEN
BEGIN
counterENA = 1;
nextState = 3;
END
! Allow to read new parameters
ELSE
BEGIN
SELECT objectReady FROM

[0]: nextObjectReady = 1;
[1): nextObjectReady = 2;
(2): nextObjectReady = 2;

ENDSELECT;
counterENA = 1;
IF fifoEPTY THEN nextState = 5 ELSE
BEGIN
fifoRead = 1;
nextState = 6;
END:
END;
END;
ENDSELECT:;
END;
if RESET THEN
BEGIN
passout = 1;
counterENA = 1;
nextStatus = 0;
nextObjectReady = 0;
nextState = 1;
nextVmeState = 0;
registerLD = 0;
counterINC = 0;
ramWrite = 0;
fifoRead = 0;
demux = 0;
rsetTransReq = 0;
vmeACK = I;
vmeERR = 1;

dsc=0;

170

~ END;
ENDROUTINE;
ENDMODEL fsm;

171

B.3 VCP combinational logic block implementation
MODEL comb_log

SC, B_SEL13, B_SELA4S, B_SEL1345, B_SEL2, F_SEL13, F_SEL2, SEL_Y
= FLAG, CONSISTENCY, ALPHA1, ALPHAO, F_ALPHAIL, F_ALPHAIM, FGE, FEQ, BGE,
BEQ, ulx, uly, Irx, Iry, bulx, buly, birx, blry, pass, y_uv;

ROUTINE logic_gen;

STATEF_1,F_2,F_3,B_1,B_2,B_3, B_4, B_S, PRESENCE. range, FGT.
BGT, FLS, BLS, F_ALPHAI:

F_ALPHA1 = F_ALPHAIL AND F_ALPHAI1M;

SC = ulx AND uly AND Irx AND Iry;

FGT = FGE AND (NOT FEQ);

BGT = BGE AND (NOT BEQ);

FLS = NOT FGE;

BLS = NOT BGE;

range = SC AND bulx AND buly AND blrx AND biry;

PRESENCE = range AND (NOT pass) AND (NOT ALPHAO) AND
(NOT ((NOT y_uv) AND (NOT FLAG) AND

CONSISTENCY));

F_1 = FLS AND PRESENCE;

F_2 = FEQ AND PRESENCE;

F_3 = (NOT PRESENCE) OR FGT;

B_1=(FGT OR (FEQ AND ALPHA1 AND (NOT F_ALPHA1))) AND BLS AND
PRESENCE;

B_2=BEQ AND (FGT OR (FEQ AND ALPHA1 AND (NOT F_ALPHA1))) AND
PRESENCE;

B_3 = (NOT PRESENCE) OR BGT OR (FEQ AND (NOT ALPHA1) AND (NOT
B_ALPHA)));

B_4 = FEQ AND ALPHA1 AND F_ALPHA1 AND PRESENCE;

B_S = (FLS OR (FEQ AND (NOT ALPHA1) AND F_ALPHA1)) AND
PRESENCE;

F_SEL13=NOTF_3;

F_SEL2=F_2;

B_SEL13=B_1;

B_SEL45 =B_4;

B_SEL1345 = NOT (B_4 OR B_5);

B_SEL2=B_2;

SEL_Y=y_uv;

ENDROUTINE;
ENDMODEL;

172
B.4 VCP scanning register path for testing
* PHIIF, PHI2F path:

SCANINF -> VRAM_IN_PIXEL (0:7)-> L_ALPHA (0:2) -> VRAM_IN_ALPHA (0:3) ->

TAU (0:3) -> L_ALPHA (3) -> BLANK (0:1) -> L_TAU (0:6) -> ALPHA0 (0) -> BLANK (0:2) ->
L_PIXEL (0:10)-> L_X (6:10)-> L_X (0:5)->L_Y (4:8)->L_Y (0:3) -> FIN(0:3) ->BIN(0:3) ->
PRI(0:3)->SC_0->B_SEL13_0-> BLANK -> B_SEL1345_0 -> B_SEL2_0 -> F_SEL13_0 ->
F_SEL2_0 -> BLANK ->SC_1 -> B_SEL13_1 -> BLANK -> B_SEL1345_1 -> B_SEL2_1 -> F_SEL13 ->
F_SEL2_1 -> BLANK -> SCLOAD -> BLANK -> v -> BLANK -> ALPHAO -> PASS -> datapath ->

DSC -> BLANK (0:3) -> SCANOUTF

* PHII1, PHI2 path:

SCANIN -> REG_IN(0:11)-> ADDR (0:3) -> RegLD -> VmeACK -> VmeERR -> state (0:2) ->
vstate (0:1) -> status (0:1) -> objReady (0:1) -> SCANOUT

B.5 VCP chip pin diagram

Il

LII

L

L)

AL

2

OO0 3O\ & W e

173

WU U E D e g BB R B

SUTL Lk k!
- \\ /
AN . :
N
N

CHIP1_ITD
2
TR

T

Fig. B-S. VCP chip pin diagram using 208 pin PGA package.

Name

RESET

VRAMI1[0]
VRAM1(1)
VRAMI1[2)
VRAM]1(3]
VRAM1[4]
VRAMI(S]
VRAM1([6]
YRAM1(7)

3
3

855558662

VRAMI(7)
VRAMI(8]
F_PIXEL_IN(9]
F_PIXEL_IN[10)
B_PIXEL_IN[0]
B_PIXEL_IN[1]
B_PIXEL_IN[2]
B_PIXEL_IN[3]
B_PIXEL_IN[4)
B_PIXEL_IN(5)
B_PIXEL_IN[6)
B_PIXEL_IN[7)
B_PIXEL_IN(8)
B_PIXEL_IN[9]
B_PIXEL_IN[10)
PHI1

PHI2

vdd

GND
F_PIXEL_OUTY[0]
F_PIXEL_OUT(1)
F_PIXEL_OUT(2)
F_PIXEL_OUT(3)
F_PIXEL_OUT(4]
F_PIXEL_OUT(5)
F_PIXEL_OUT(6)
F_PIXEL_OUT(7)
F_PIXEL_OUT(8]
F_PIXEL_OUT(9)
F_PIXEL_OUT{10]
B_PIXEL_OUT{0)
B_PIXEL_OUT{1]
B_PIXEL_OUT[2)
NOT CONNECTED
B_PIXEL_OUT[3)
B_PIXEL_OUT4)
B_PIXEL_OUTI[S]
B_PIXEL_OUT(6]
B_PIXEL_OUT(7]
B_PIXEL_OUT(8)
B_PIXEL_OUT[9]
B_PIXEL_OUT({10]
Vdd

GND

KEEP

KEEPF

SCANF
F_PIXEL_IN[0)
F_PIXEL_IN[1]
F_PIXEL_IN[2)
F_PIXEL_IN(3]
F_PIXEL_IN[4]
F_PIXEL_IN[5)
F_PIXEL_IN(6]
F_PIXEL_IN[7]
F_PIXEL_IN[8]
VRAMI1(9)
VRAM1[10]
VRAMI(11]

222222222222222§8

SS022222222228%

174

107
108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

VRAM?2(0}
VRAM2(1]
VRAM2[2]
VRAM2(3]
VRAM2(4)
VRAM2[5)

GND

Vdd

VRAM_SEL
DELAY[0]
DELAY([1)
DELAY[2)
DELAY[3)
DELAY[4]
SCANINF
SCANOUTF
SCANOUT
SCANIN

SC1

sC2

DTACKINV
VmeACK
VmeERR
F_ALPHA_OUTI0]
F_ALPHA_OUTI[1]
F_ALPHA _OUT{2]
NOT CONNECTED
F_ALPHA_OUT(3]
F_ALPHA_OUT(4)
F_ALPHA_OUT(S]
F_ALPHA_OUT(6)
F_ALPHA_OUT{7]
F_ALPHA_OUT(8]
F_ALPHA_OUT(9]
F_ALPHA_OUT(10]
vdd

GND

VRAM2[6]
VRAM2(7]
VRAM2(8]
VRAM2(9]
VRAM2[10]
VRAM2(11]
F_ALPHA_IN{[0]
F_ALPHA_IN[1]
F_ALPHA_IN[2)
F_ALPHA_IN[3]
F_ALPHA_IN[4]
F_ALPHA_IN[S]
F_ALPHA_IN[6)
F_ALPHA_IN(7]
F_ALPHA_IN[8)
F_ALPHA_IN[9]
F_ALPHA_IN[10]
F_PR_OUT[0]
F_PR_OUT(1]
F_PR_OUT(2}
F_PR_OUT(3]
GND

175

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178
179
180
181
182
183
184
185

NOT CONNECTED
Vdd
F_TAU_IN[0}
F_TAU_IN[1]
F_TAU_IN[2]
F_TAU_IN[3]
F_TAU_IN[4]
F_TAU_IN[S]
F_TAU_IN[6]
B_TAU_OUTI[0]
B_TAU_OUTI1]
B_TAU_OUTI[2)
B_TAU_OUT[3]
B_TAU_OUT[4)
B_TAU_OUT(5]
B_TAU_OUTI(6]
B_PR_OUTI0]
B_PR_OUTT(1}
B_PR_OUT(2}
NOT CONNECTED
B_PR_OUTI3]
F_PR_IN([0]
VmeBUS([0)
VmeBUS(1]
VYmeBUS[2)
F_PR_IN[1]
F_PR_IN[2]
F_PR_IN[3]
GND

Vdd
VmeBUS[3]
VmeBUS[4)
VmeBUS[5)
VmeBUS[6]
VmeBUS(7]
VmeBUS(8]
VmeBUS[9)
VmeBUS[10]
VmeBUSJ[11]
B_PR_IN[0)]
B_PR_IN[1]
B_PR_IN[2]
B_PR_IN(3]
B_TAU_IN[0]
B_TAU_IN[1]
B_TAU_IN[2]
B_TAU_IN[3]
B_TAU_IN{4)]
B_TAU_IN(S]
B_TAU_IN(6)
FIFO_EMPTY
vdd

GND

YmeRW
VmeMODSEL
VmeDS
FIFO_POP
FIFO_IN[0)
FIFO_IN{1)

2222222573

EagzseggEE22225Ezzziggssggsssggzazgggeg

176

FIFO_IN[2]
FIFO_IN[3]
FIFO_IN[4]
FIFO_IN[5]
FIFO_IN[6]
FIFO_IN[7]
FIFO_IN[8]
FIFO_IN[9]
FIFO_IN[10]
FIFO_IN[11)
PHIIF

PHL2F

NOT CONNECTED
F_TAU_OUTY0)
F_TAU_OUT(1]
F_TAU_OUT(2]
F_TAU_OUT(3]
F_TAU_OUT{4]
F_TAU_OUTYS)
F_TAU_OUT(6]
SCAN

Vdd

GND

222222222222

177

	Copyright notice 1995
	ERL-95-7

