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Abstract

Estimation Techniques to Guide Low-Power Resynthesis Algorithms for
Combinational Random CMOS Logic

by

Christopher Kevin Leonard

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor A. Richard Newton, Chair

Existing resynthesis techniques for theminimization ofpower consumption in ran
dom combinational CMOS logic are limited by their inadequate prediction of expected
change in global network power. An abstraction hierarchy for the estimation of global
power change is developed in this dissertation. Within this hierarchy the maximum accu
racy of estimation can be defined for decisions made at any point in the synthesis design
fiow. If the effect of change in a specific network property is not predictable at one level
of the hierarchy, then synthesis choices have to be made insensitive to that property or
restricted in such a way as to make estimation more accurate.

Three properties are used to define the form of a resynthesis step: change in func
tion, change in spurious dynamic activity and change in delay. The prediction techniques
developed herein for change in global power due to change in functionality and change in
spurious dynamic activity are accurate at high levels ofabstraction. While prediction of
the effective change in power due to change in delay is not as accurate, the magnitude of
effect ofdelay on power is the least critical ofthe three properties.

Professor A. Richard ..
Dissertation Committe
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Chapter 1

Introduction

Low-power design is fast becoming an issue as critical to digital chip design as the

optimization for area and speed have been for the last decade. The search for optimality in

this domain is motivated by the proliferation of portable electronics and the ever increasing

device density on silicon.

Portable electronics must have self contained energy sources, the primary choice

for this purpose being batteries. Batteries are bulky items, sometimes contributing more

than 50% of the entire mass of hand-held devices such as cellular phones. Continuous

operation of many portable electronic devices will draw sufficient current to deplete the

energy source in less than the length of a standard working day. However, there is a demand

for increased sophistication of portable applications and this is creating a need for faster

and more computationally complex operations. As all the companies which compete in

the development of portable electronics have access to the same battery technology, market

share will primarily be increased by improving power efficiency of the products. Design

specifically for the reduction of power consumption has consequently become an issue of

vital importance at all levels of the design process, from system architecture and software

optimization to combinational and sequential structure and device-level technology choices.

1.1 Structure of the Low-Power Design Problem

Techniques for reduced power consumption must be applied at every level of de

sign abstraction. A simplified representation of the various levels of design abstraction for

digital systems is depicted in Fig. 1.1. Note that a discussion of synchronous (clocked) vs.



asynchronous (not clocked) design is not presented here. Theory for synchronous design

is currently more advanced than corresponding theory for asynchronous networks. Syn

chronous design strategies are likely to remain prominent for many years to come.

Task Partitioning

(Software, Hardware,...)

Technology

(CMOS, ECL,

Design Space

Specific
Implementation

Hardware Architecture

(Parallel,Serial, Data, Control,...)

Supply Voltage
(3.2v, 2.5 V,...)

Figure 1.1: The High-Level Design Flow

The goal of a designer using the representations shown in Fig. 1.1 is to find an
optimal implementation from all of the possible designs which correctly implement the
input/output relations for the desired rate of throughput, while also minimizing average
power consumption. Each section "cut" from the design space at a higher level is the set
of designs within that space which satisfy specific decisions which are made. For the work
presented in this dissertation, it is assumed that the architecture (for example, parallel or



serial processing, degree of data path pipelining, etc.), technology and power supply have

been chosen (e.g. [12]). In particular, fully-static Complementary MOS (CMOS) logic is

the technology assumed. This logic is the most common technology used in micro-processor

and prototype ASIC designs. The properties which make this logic so prevalent are its high

immunity to noise, robustness and ease of design and small dc power consumption. The

material in this dissertation addresses the final stage of the design process - the extraction

of a logic description which best implements the desired functionality.

The final optimization step which extracts logic gates from a description of func

tionality has two parts:

1. Optimization of Structured Logic. Structured logic has a recognizable operation on

which a designer can utilize specific optimization techniques. Structured logic includes

adders, multipliers, parity checkers, etc.

2. Optimization of Random Logic. Random logichas an input/output relation which can

not be described abstractly by anything other than its boolean functionality. Random

logic is often associated with chip control functions. These functions vary significantly

between applications.

There is a large body of work completed in the area of optimization of structured

logic for reduced powerconsumption. These techniques reduce the number of power-hungry

operations by optimizing the representation of arithmetic expressions. This is summarized

extensively in [6].

Input

Present
State
Variables

i ^

i—,

Clock

Output

Next
State
Variables

Figure 1.2: Synchronous Mealy State Machine

The optimization of synchronous random logic hsis two major phases: state encod

ingand implementation of the combinational logic block. The state of the synchronous logic

is implemented by clocked latches, the combinational logic block is an interconnected set of



logic gates which determine the functionality associating the next state with the previous

state and input variables (Refer to Fig. 1.2). The problem of finding an optimal encoding

is tightly linked with the ability to predict the power consumption of combinational logic

block. Although it is desirable to choose an encoding which minimizes the total number of

state bits changing when moving from one high probability state to another (thereby mini

mizing the transition power in the latches), the savings gained can be offset by an increase

in power consumption within the combinational logic. The empirical evidence presented in
[11] supports this observation. This motivates the necessity to develop an understanding of
considerations important to optimization of the combinational logic block of a sequential

network.

The automated design ofa combinational logic block for a controller which does

not take into account the correlation between present and next input states is referred

to as Combinational Random Logic Synthesis (CRLS). Optimization without sequential

correlation is the precursor to Sequential Random Logic Synthesis (SRLS) which is needed
to evaluate the power optimality ofa state encoding. Study ofcombinational random logic
synthesis for low-power is a relatively recent pursuit (the earliest papers addressing the
problem were published in 1992, such as [20]). Any decision which is made to improve
optimality depends upon accurate estimation of the influence of a synthesis decision upon
network power. It is in this area that the material of this dissertation contributes.

1.2 Estimating Power Dissipation

CMOS logic implies logic gates for which the function is implemented both in
nMOS and pMOS transistors. When the output is 1 (0), at least one path through the
pMOS (nMOS) logic has all transistors in an ON state implying gate inputs 0 (1), and all
paths in the nMOS (pMOS) logic contain at least one transitor OFF with gate input 0(1).
This situation is portrayed for a 2-input NAND gate in Fig. 1.3

Power is consumed in CMOS logic as a consequence of three factors:

• Leakage Current. The path from the voltage supply rail to ground has a finite resis
tance, even when every path contains at least one OFF transitor.

• Short-Circuit Current. Input transitions to a gate take a finite time. During the

transition, there may exist a period where a path from supply to ground has a small



y = ab

'DD

pMOS logic

nMOS logic

Figure 1.3: Complementary Logic Example

resistance. The current which flows directly from supply to ground as a consequence

of this effect is known as Short-Circuit Current.

• Capaciiive Charging Current. During an input transition, some transitor capacitances

will be charged up, others discharged. The current consequently drawn from the

supply is the Capacitive Charging Current.

The capacitive charging current is generally the most dominant effect in modern

CMOS circuits. Power consumption due to leakage makes an almost negligible contribution

to total power when a CMOS circuit is actively switching at typical clocking rates. Short-

circuit current is only significant at a gate if the input transition time is very slow relative

to the output transition time. Slow transition times arise as a consequence of excessive

fanout loading of particular gates in the network. This is undesirable in a design as it

makes accurate prediction of circuit delay difficult by requiring detailed analog analysis of

digital circuit elements. It may therefore be assumed that such slow transitions are unlikely

in well-designed networks. This eliminates the need to compute the power contribution

from short-circuit current.

There are five major parasitic capacitances which must be modeled to describe

accurately the dynamic behavior of a MOS transitor; the capacitance from gate to drain

Cgd-) gate to source C55, gate tosubstrate Cgb, drain tosubstrate Cdb and source to substrate
Csb- All of these capacitancevary with voltage, but to a first order approximation the input
capacitance, Cg = 2* Cgd + Cgs + Cgb-> is constant. This constant capacitance assumption



is not as valid for the output which has contributions from Cdb ^ind Cab but, in general, the

intrinsic output capacitance ofa gate is dominated by external loading effects. This implies

that, to first order, the dynamic behavior of a CMOS gate can be described by a lumped

capacitance model [9]. The transitors in a CMOS gate are then modeled as ideal voltage
controlled current sources driven by a capacitively loaded input signals.

Even for this simpler model, the complexity of computing the average power con

sumption is extremely high. An estimate of average power requires that a network be

simulated with a large number ofinput vector pairs or that expressions describing the en
tire functionality beestablished (Refer to Sec. 1.2.1). Handling the highly non-linear output

response of a gate in this context is very difficult. A linearization of the output response

is a further simplification which can be made. In this case, the current drive of a transitor

is assumed constant when it is switched on, thereby generating ramp outputs. However,

the general model for gate behavior in a digital network can be reduced even further. This

model, known as the timing models describes the output behavior after an input change

as constant until after a specific gate delay at which point the output may transition in

stantaneously. That is, the gate is modeled as an ideal switch with delay d. The delay, d,

corresponds to the time taken for the analog gate output to cross the half-way point be

tween the ground and voltage rail. The behavior description for these three simple models

relative to an inverter is illustrated in Fig. 1.4.

The timing model is simple, but has also demonstrated itself to be sufficiently

accurate for synthesis which optimizes network speed [21]. The accuracy is a property of

the fact that a gate can be viewed as an open-loop amplifier withextremely high gain. When

an input transition passes the input sensitivity point, the gate quickly limits to maximum

current drive which will charge or discharge the output capacitance. The sensitivity point

for a gate is usually designed to be close to halfway between the source voltage and ground.

This reduces the dependence of network delay on the strongly non-linear behavior of the

actual output waveform near the voltage source and ground, as well as improving noise

immunity. Consequently, information concerning onlythe half-way crossing can be used to

estimate timing quite well. This timing model is used in a large number of powerestimators,

the simulators described in [5] [7] [15] [23] being four-highly regarded examples.

The limited behavioral information contained in a timing model of a gate can re

sult in an error in predicting the total transition count and transition timing at a node in

a network when input transition arrival times are similar but not simultaneous. For



(1): Full Transitor Model (2): Lumped Capacitance Model

T

(3): Constant Current Drive Model (4): Timing Model

•i <4

r

Input a changes from0 to V in a ramp,
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Symbol Key:
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Figure 1.4: The Timing Model for a CMOS Inverter
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example, consider the analog output waveforms x(i)jy(i) for the circuit shown in Fig. 1.5

for the full transistor model of the gates. The transitions on input b occur soon after a

transition on input a. The delay between the input transition arrival times is similar to the

timing delay, dj^ANDi of the NAND gate. The output of the gate does not complete full

transitions between the Vdd and ground in response to each input change. It effectively

reacts faster to the transitions on input b than it would if that input alone changed. This

is a consequence of the output state not being at a voltage rail when the input transi

tion arrived. However, the simple timing model for the gate is constructed from the gate

response assuming simultaneous input transitions so it assumes that the gate has settled

before an input change occurs. This is an invalid assumption when the delay between the

input transition arrival times is similar to the timing delay of the NAND gate. The simple

timing model therefore has an inherent error for these complex arrival configurations. The

error can propagate through transitive fanout gates, such as the inverter in this example.

There is a technique in timing simulation for reducing the over-estimate of transi

tion activity. It uses a principle know as inertial delay modelingwhich is a post-processing

(non-causal) filtering of transition activity. If the output transitions using the timingmodel

are closer together than the delay of the gate, then the transitions are removed. However,

as shown in Fig. 1.5, the best this technique can do is bound the possible signal delay.

Either the earlier or later two output transitions of the NAND gate could be assumed non-

plausible and so be filtered out. An empirical study performed in [11] for a vector-driven

power simulator shows that varying the filtering approach in this way can alter the power

estimate by up to 10%. In general, estimation of average power using the timing model

described previously does not perform inertial delay filtering. Although this may result in

an over estimate of the transition activity, it identifies points within the network which are

highly sensitive to network delays. That is, nodes for which the functionality alone is not

sufficient to filter out spurious dynamic activity. This is useful information to guide syn

thesis tools and most synthesis routines are tested using simulators based upon this simple

timing model (e.g. [20], [10], [2], [22], [24]). This timing model for gate behavior is used

throughout this dissertation.

In summary, the assumptions in the simplified CMOS model are: (1) all capaci

tance is lumped at the output node of a gate; and (2) current flows only from the supply

rail to the load capacitor, or current flows from the load capacitor to the ground rail;

(3) all voltage changes are full swings from the supply rail to the ground rail voltage.
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or vice-versa; and (4) input/output transition time constants for a gateare the same order

ofmagnitude. The energy consumption ofa CMOS circuit is directly related to the switch
ing activity when this simplified model ofenergy consumption is used. For a well-designed
gate, the above assumptions are reasonable [8].

For a digital system with input latches clocked at a fixed frequency /, the power

drawn from the supply by transitions at gate gi is given by:

Pi =\-Ci-V^D-f-Ti (1-1)
where Pi denotes the average power dissipated by gate 5,-, C,- is the load capacitance at the

output of gate p,-, Vdd is the supply voltage, and Tj is the average number of gate output

transitions per clock cycle. Given a technology-mapped circuit or a circuit layout, all ofthe

parameters in Eqn. 1.1 can be determined, except for T,, which depends on both the logic
function being performed and the statistical properties of the primary input signals.

1.2.1 Previous Work in Power Estimation

There are several techniques which have been developed for estimating average

switching activity in combinational networks. They can essentially be divided into three
categories:

• Symbolic Analysis. [7]

• Probabilistic Analysis. [15] [23]

• Statistical Analysis. [5] [11]

Symbolic analysis is a technique which obtains an exact result for transition ac

tivity given the simple timing model for gate behavior. AU gates have a delay which is an
element of the rationals, so thereexists a non-zero largest common divisor, docD-, for these

delays. This can be used to discretize time as it guaranteed that any transition must occur
on an integer multiple ofdacD- The functionality for the network for each time interval
in the discretization can then be computed. A transition occurs if the functionality of a

node in one time interval is not the same as that in an adjacent interval. To reduce the

computational complexity, an implementation ofthe algorithm uses event-driven construc

tion of equations. For example, with a gate of delay d, if no input transition occurs at

time t then there can be no output transition at time (t + d). This estimation strategy was
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first proposed in [7]. The timed functionality is obtained by constructing a network with

an output representing the functionality each node for every timing interval. The outputs

representing adjacent time intervals for the same node are then XOR'ed together. The

output of the XOR gates is therefore the functionality of any transition activity between

the intervals which its inputs represent. From the construction of output functions for this

network, the transition probabilities are computed. This analysis uses ordered Binary Deci

sion Diagrams (BDDs) to represent the functionality. The BDD is an implicit graph-based
functional representation [1] which is provably canonical when an ordering is applied to the

variables [4]. This representation has been found empirically to be efficient for network

synthesis. However, the complexity of full symbolic analysis for power estimation is stiU

too high for use on large industrial networks.

Probabilistic analysis describes the set of techniques which use probability rather

than functionality to describe average transition activity. For example, consider a two-

input AND gate of delay d with inputs {o,6) where any transition on a arrives at least

delay d later than any transition on 6. If input a has a probability 0.5 of being 1 at a

time 1 when input 6 has a probability of 0.5 of a transition, then the probability of an

output transition at time {t -1- d) could be estimated as: 0.5 x 0.5 = 0.25. Because this

is an arithmetic rather than logical manipulation, these algorithms generally have much

smaller computational complexity than full symbolic simulation. However, the accuracy

and complexity of the algorithm strongly depends upon the ability to account for correlation

between inputs. Suppose for the example stated that the probability of a being 1 given that

input b transitions is only 0.25. This implies that the actual output transition probability

at time (f+ d) is 0.25 x 0.5 = 0.125, the error in the previous estimate being a property ofan

input independence aissumption. There have been several estimation techniques proposed

which account for input correlation with varying degrees of accuracy. The work of [15]

models waveforms as independent strict sense stationary ergodic processes. They suggest

a partitioning of a network into tightly interconnected modules. Inside these modules,

their waveform model is invalid so more complex estimation strategies must be used. They

found that most networks easily partition into small modules which are very well suited

to the independence assumption. The estimation strategy proposed in [23] can be applied

within networks with high correlation between internal nodes. In this case, the steady-

state functional correlation between nodes in the network is computed. This correlation is

assumed over all time during dynamic transition activity. From the results in this paper
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it is claimed that an error of less than 4% in the estimation of average network power and

speedup of about a factor of 10 can be obtained relative to the exact symbolic simulation

tool of [7]. There are no computationally inexpensive probabilistic analysis techniques which

can account for input correlation exactly. Exact correlation requires accurate information

regarding network functionality overall time. If such data wereavailable, then this technique

would be comparable to symbolic analysis in its complexity.

Statistical analysis techniques are based upon fast timing simulators. Random

input vectors are selected and applied to the input of the network. The power computed

in the simulation is then added to that of previous tests and averaged. The routine stops

when the average network power converges to within a certain variance. The Monte-Carlo

simulation method of [5] has demonstrated quite rapid empirical convergence properties.

The advantage of these techniques is their simplicity and their ability to easily be modified

to handle more complex gate models. However, the average network power is the sum of

the averages for every node in the network. The convergence within suitable error for total

power is therefore much more rapid than for similar error tolerances on the estimate for any

specific node.

Exact symbolic simulation for power estimation is the technique used to establish

the results of this dissertation. Although the size of networks which can be analyzed in

this way is limited, this simulator is used because of its precision in being able to define

the accuracy of the estimation strategies presented here. Probabilistic analysis estimators

are not used as they already make heuristic correlation approximations. Even though the

error for the overall network power may be small, the error for any specific node may

be significantly higher. Statistical analysis estimators also do not have the accuracy at

every network node required for the testing of the theory proposed in this dissertation.

Furthermore, neither estimation approach provides exact functionality of dynamic activity,

a property which is required to test the validity of estimation abstractions. (Refer to

Chap. 5).

1.3 Low-Power Synthesis for Combinational Networks

The design flow for synthesis of combinational networks is shown in Fig. 1.6. The

problem may be expressed as the mapping of a set of two-level Boolean functions (logical

sum of products or product of sums) onto a restricted set of atomic logic functions, these
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Figure 1.6: The Combination Synthesis Design Flow

functions represented by the gates within the technology library. The first step in the

procedure is the extraction of a set of common subexpressions which minimizes a specific

cost function. For example, the optimization for area attempts to minimize the literal

count by maximizing logic sharing [3], the optimization for speed attempts to reduce logic

depth and gate loading on the longest paths [21]. This step is followed by mapping onto

the specific gate library. An example of this procedure for area optimization of a simple

function mapped to a library of two-input gates is also presented in Fig. 1.6.

An important part of the synthesis process at aU points in the design flow is the

ability to simplify logic expressions. For example, the expression: / = abc + cd -H bed may

also be written: / = db be ed. The simplification process can further be enhanced

through use of Don't Care (DC) sets. Don't Care sets consist of parts of the functional

space which can be manipulated without affecting circuit operation. There are two types

used in combinational synthesis:

Satisfiability DC (SDC). The set of input, or intermediate variable, combinations
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Figure 1.7: The Internal SDC and ODC Sets

which cannot functionally occur.

• Observability DC (ODC). The set of input, or intermediate variable, combinations

which do no affect the circuit output functionality.

Both forms of DC sets may have components from internal and external contributions.

The external DC set is formed from knowledge about the environment in which the circuit

is embedded. At the input it is the set of all combinations of input logic states which

will not occur, and at the output it is the combination of functions which are equivalent

with respect to the environment. The internal DC set is a consequence of the specific

circuit configuration. To explain the internal DC set further, consider the simple example

of Fig. 1.7. The local inputs to the solid black node have functionality x = ab, y = a b
implying that the condition xy cannot occur. This is the Satisfiability DC function. The

circuit output z can only be influenced by the output of the solid node iff input c is high.

This implies that the ODC set for this node is c.

The non-satisfiability of certain local functionality implies that simplification of

an expression which uses this does not affect the probability that the overall expression

evaluates high. This permits modification of a region of a network which affects only the
transition activity and capacitance (therefore power) within that region (modulo changes in

delay). The ODC set, on the other hand, can also be used to improve the optimality local
to a region of a network but this can affect onset probabilities throughout the transitive
fanout of the region so an improvement in power locally does not guaranteean improvement

overedl. However, the ODC sets in most networks are typically very large and have been

shown to provide significant synthesis freedom for improved optimality during synthesis for

area [17] and speed [21]. It is therefore desirable to be able to make use ofthis in synthesis
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for low-power.

The research results presented in this dissertation relate to the prediction of when a

/oca//yoptimum decision translates to a globallyoptimnm solution in synthesis for low-power.

In particular, the problem of modifying functionality within the ODC set is addressed, as is

the ability to predict the influence on network power associated with changes in delay. The

work is presented in the framework of resynthesis, which is incremental synthesis applied to

networks previously optimized for another constraint such as speed or area. It is restricted

to this class of synthesis as signiflcant information is available regarding the transitive fanin

and fanout logic structure following the original synthesis pass. Network capacitances can

then account for layout parasitics providing an accurate model for delay.

1.3.1 Previous Work in Synthesis for Low-Power

It is clear from Eqn. 1.1 that with a fixed power supply and clock frequency, a

reduction of power is achieved through the reduction of network capacitance or switching

activity. There are two forms of transition activity which can be aflected during synthesis:

functional and spurious dynamic activity. Functional activity is that which occurs even

in an ideal circuit with zero delay, spurious dynamic activity is any other activity which

is solely the product of gate delays in a real network. The work published to date has a

focus on the reduction of capacitance or functional activity. No work specifically accounts

for the influence synthesis techniques have upon spurious dynamic activity, as addressed in

this dissertation.

The most straight forward approach to the reduction of power are those which do

not perform functional manipulation. These include the technology mapping (e.g. [22], [24],

[14]) and gate resizing [2] techniques. AU of the technology mapping routines are dynamic

programming optimization strategies for tree networks. At each branch in the tree, the

optimal solution can be found using the optimal solutions for the leaves. This technique

is generalized to circuits of arbitrary topology by heuristic partitioning of the network into

trees. The optimality of these techniques depends upon the zero-delay assumption for the

gates. The gate resizing algorithm finds fast paths in the network and down-sizes gates on

these paths to reduce capacitance. As it is only on the paths which do not contribute to

the latest output signal, this approach guarantees that network speed is not compromised.

Similar to the mapping techniques, however, proposed gate resizing algorithms have not
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taken into account the effect that a change in path delays can have upon transition activity

throughout the network. In private communication with Iris Bahar, author of [2], this

effect was claimed to account for several network optimizations which were less fruitful

than expected.

There have been several attempts at logic restructuring for low-power. In general

these algorithms are based upon very simple heuristics for estimating the power consump

tion within a logic block before that block is technology mapped. The reported reduction

in power has been small in all cases, around 10 to 20%. In the work reported in [16], sub

expression extraction is performed using the simple heuristic of maximizing logic sharing

while minimizing the input loading for inputs with high switching activity. In [20], subex

pressions are extracted according to their probability of evaluating high. The functional

transition activity is given by: 2(1 - p)p for a signal with probability p of evaluating high,

so better candidate subexpressions have p far from 0.5. The ODC set is used to expand

(contract) the logical function if it evaluates 1 (0) with a probability greater than 0.5. There

is also a heuristic for the minimization of spurious dynamic activity based on collapsing sec

tions of the network with short paths. These two-level functions when technology-mapped

generally evaluate slower than multi-level representations. This tends to balance paths
throughout the network. A recent publication [10] extracts subexpressions according to

output activity of a subexpression but also according to the primary input variable support

required to implement the function. The Don't Care set is used to find a support which

has minimal switching activity. For example, consider the function f = ab with ODC a ®6

where a has a higher switching activity than b. The function / may be expressed f = a

or / = 6, so it is more optimal to choose f = b. They also address the problem of a local

change in functionality affecting the functionality throughout the transitive fanout by re
stricting the ODC set construction. However, the ODC set is restricted in such a way that

any local synthesis step is guaranteed to not increase the power at any point throughout

the transitive fanout (Refer to Sec. 3.1). In fact, it is a general statement regarding all

synthesis procedures presented in the literature that local optimization of functionality is
made without considering the amount ofinfluence upon power consumption throughout the

transitive fanout circuitry. These logic restructuring 'techniques may therefore be assumed

random changes within the ODC set relative to the structure of the transitive fanout. The

theory and statistical evidence presented in this dissertation verifies that there exist sim

ple estimation strategies which can account for this effect. This provides a technique for
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improving the global optimality of existing synthesis routines.

1.4 Dissertation Outline

The concept of prediction of change in power expected in a resynthesis step is

outlined in detail in Chap. 2. In particular, a estimation abstraction hierarchy is described.

This is related to the form of information available for the most accurate possible prediction

ofglobal effects on power external to a resynthesis region. Chap. 3 contains an examination
of estimating the effect of resynthesis on transitive fanout power in a zero-delay network.

It is shown that the expected change in onset probability at the output of the resynthesis

region is sufficient for construction of a highly accurate estimate of this effect. In Chap. 4,

this material is generalized to networks with arbitrary delay elements. Here it is shown

that it is not possible to use the bounds on transition arrival time to predict the sensitivity

of transitive fanout power to changes in delay. However, the delay insensitive estimator

which is developed has an accuracy similar to that of the estimation technique proposed

for zero delay networks. The problem of estimating delay sensitivity is further examined in

Chap. 5. It is shown that for combinational networks, delay sensitivity is generally a minor

effect. Furthermore, it cannot be estimated without full simulation of the possible delay

conditions. In Chap. 6 a summary of the dissertation is presented and an outline of the

areas which appear to be the most profitable extensions for the formulation of a low-power

synthesis strategy are described.

1.5 Definitions

Consider node n embedded in a digital circuit. The circuit has a set of primary

inputs I = -Mis}- Let V(/) be the set of all possible pairs of input vectors. It is

assumed that the circuit is allowed to settle completely after application of any input vector.

Time <= 0 may now be set as the application time of the second vector in any input vector

pair, V. Let P^, be the probability that vector pair u € V(I) occurs. Over the set, V(/), the

earliest arriving transition at node n occurs at time the latest at time

Tn{t) denotes the functionality (subset of V(/)) for a transition to occur at the

output of node n at time i. Let TJ be the function relating the number of transitions

(Total Transition Activity) at the output of node n to space V(/). Forevery v € ViJ)-,
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T^{v) at node n is the number ofall0 —» 1,or 1 0, transitions in the interval

The average total transition activity at n, |rj|, is given by:

iTj|= Y,
v€V(o)

Definition 1.5.1 The Functional Activity of node n is

|rf|= E P..\f^-{v)-Fr'\v)\ (1.2)
v€V(a)

where: Fl{v) is the logic value of node n at time t under input vectorpair v.

This is equivalent to the activity at node n under the zero-delay model for all nodes.

Definition 1.5.2 The Spurious Dynamic Activity of node n is

|rf| = |T„'"|-|T„'='| (1.3)

The following naming conventions are used throughout the dissertation:

Definition 1.5.3 fn{Z) is the static logic function at the output of node n in terms of

variables in set Z.

Definition 1.5.4 /n(^)|z is the boolean co-factor of logic function fn(Z) with respect to

z €

Definition 1.5.5 0.z{f) is the set of minterms of the function f contained within the space

defined by the variables Z. A minterm is product term containing a literal from every input.

A literal is the input variable (e.g. ij) or its complement (ij ).

There are two forms of probability notation in common use here. Consider set

A C B where |A|,|B| are the cardinalities of the respective sets. The following relative

probabilities are defined:

Definition 1.5.6 Pr(A\B) = ^

Definition 1.5.7 CntPr{A\B) =

If all elements in set B have the same probability of occurrence, these are equiva

lent.
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Chapter 2

Motivation

The ability to estimate power dissipation in a CMOS network depends upon the

accuracy of modeling the functionality of the inputs to each node over all time. The com

plexity of the estimation increases with the accuracy of this information. There have been

many techniques developed to explore this tradeoff including exact symbolic simulation [7],

probability approximation heuristics ([15], [23]) and statistical Monte Carlo approaches [5].

Comparison of the accuracy/complexity of the methods suggests that significant reduction

in error can be achieved over simplistic methods (such as assuming fully independent tran

sition activity) with a small increase in complexity, but absolute accuracy comes at a high

price as illustrated conceptually in Fig. 2.1. However, none of the techniques developed so

Total
Error

Estimator
Complexity

Figure 2.1: Accuracy/Complexity for Full Estimation of Activity-

far provide a way of predicting circuit power when aspects of the activity are bounded but

not known exactly. This is the problem associated with the prediction of overall change

in network power which wiU result from a resynthesis operation. This global prediction is

needed in the formulation of resynthesis decisions.
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The minimization of error in the estimation techniques presented in the papers

listed above has shown that simultaneous transition arrival and node input correlations are

very important for accurate power estimation. During a resynthesis procedure, however,

only minor changes are made to the original network. In many cases the correlations and

simultaneous arrival properties of a node inputs are unlikely to change significantly. This

fact can be exploited to allow information gained from an initial simulation to be used to

improve the accuracy ofsimple estimation strategies applied during the resynthesis process.

In fact, it is possible that when certmn variables are not known exactly, prediction of a

change in activity based upon a simple estimation technique may be more accurate than
a complex strategy. This is a consequence of the addition of errors resulting from the

uncorrelated approximation of many terms within a complex expression. On the other

hand, too simplistic an estimation scheme will be poor for even small changes in activity,

due to error inherent in the method. This suggests that under the conditions where certain

information cannot be fully specified, the accuracy/complexity trade-off curve looks more

like that in Fig. 2.2.

Error in
Predicting
Incremental
Change

Estimator
Complexity

Figure 2.2: Accuracy/Complexity for Estimating Change in Activity

2.1 Activity: The Levels of Abstraction

The construction of estimation strategies based upon restricted knowledge about

the change in the network requires that the levels ofabstraction involved in estimation be
defined. The complexity of an estimation strategy decreases with increased abstraction, as

does the ability to achieve better than a certain accuracy of estimation. This provides a
framework for assessing whether there exists an estimation strategy which will be able to

predict global effects without first preforming a synthesis step.
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Figure 2.3: Abstracting Timing and Activity Information

An estimation strategy for activity is defined by the way in which it handles

functionality of the transition activity, and the accuracy of the timing information asso

ciated with this. Both the functionality and timing abstractions have two variables re

quiring approximation. The functional abstraction is specified by the description of ac

tivity as the functionality of transitions (T^) or just the amount |r^| (|r^|). Tim-
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iiig is specified by a distribution of transition timing for each input vector pair, one of

{D{T^^T^)^Db{T^and overall switching distributions, one of {D^Db}-
The notation here is defined: D{x) the switching distribution for each vector pair in which

condition x occurs; D the overall switching distribution describing the probability of transi

tion activity at any time over all input vector pairs; Db{,^) the timing bounds on transition

activity for each vector pair in which condition x occurs; and Db the bounds on the overall

switching distribution. So, Db{T^iT^) is a timing abstraction which corresponds to being

able to bound activity under any input vector pair application in which spurious dynamic

or functional activity occurs. If this bound is to be tight enough to be useful, it implies

knowledge of the functionality of the spurious activity. Db{T^), on the other hand, only

implies knowledge of the earliest and latest transition times corresponding to a change in

state. An example of these concepts is shown in Fig. 2.3 for describing the activity at the

output of the AND gate for the three example input vector pairs listed in the figure. For

the purposes of illustration, the overall distribution, jD, shown in the example is only over

the three vector pairs described.

Fig. 2.4 depicts the general abstraction levels for activity estimation. An increase in

the functional abstraction reduces knowledge of the association between activity and input

vector pairs. As level of abstraction is increased for timing, less information is maintained for

each vector pair. Moving from ti^ to T4g, loss of timing information is: (ri^ -> Ti^) exact

timing for each input vector pair; (ri^ T2) bounds on timing for any input vector pair;

{t2 Tz) bounds on timing for any input vector pair resulting in a functional change; (ra

T4^) specific times for any transition activity; and (74^ —> 74^) bounds on any transition

activity. The functionality and timing information abstraction describe any form of activity

estimation scheme. For example, an estimation scheme based purely upon the amount of

activity at the inputs to a node (therefore neglecting correlation) and an approximation

of all transition times is at activity abstraction level A3, timing abstraction level ra (e.g.

[1.5]). Estimation schemes which associate time and functionality at every time point for

any input vector are at level Ai,ri^ (e.g. [7]).

Notice that there are four shaded regions in Fig. 2.4. These regions dictate what

are viable combinations of activity and timing abstractions. Any timing abstraction can be

combined with an activity abstraction from the same region or below (lower abstraction).

Any activity abstraction can be combined with a timing abstraction from the same region

or above. The converse situations do not hold. For example, A3 cannot be combined
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Figure 2.4: Abstracting the Concept of Activity Estimation

with timing abstraction r2 as having the distribution bound estimates for each functional

transition implies that the functional transition equations must be known.

Although accuracy of an overall estimation scheme will increase with decreasing

abstraction, this may not be true for estimation schemes involving small changes relative

to an initial network simulation as depicted in Fig. 2.2. To determine the applicability of a

certain level of abstraction for estimating global effects in resynthesis, it is necessary to test

several abstraction levels and determine a vector of improvement. When the error increases

with change in abstraction level, no further estimation strategies need to be examined. (This

assumes that the second derivative of the error/complexity tradeoff curve has at most one

zero crossing.) The following section outlines how the levels of abstraction are related to

the prediction of the global effects of resynthesis on power dissipation, and how the testing

was made complete for the work in this dissertation.,
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2.2 Resynthesis for Low-Power

Resynthesis procedures generally use compatible subsetsof the Observability Don't

Care (CDC) set [18] during global optimization. The GDC allows the function of a node

to be altered without the change being observable at the output, while the compatibility

permits synthesis of separate sections of the network without one modification affecting

another. Any section of the network can then be changed without having to recompute the

ODC set for any nodes in the transitive fanout of the modified section.

In a resynthesis procedure, the goal is to provide maximal synthesis freedom to

a restricted set of nodes which are judged 'highly non-optimal'. The selection of a set of

target nodes aUows the definition of a node input ordering for optimizing the construction

of a compatible ODC subset. For the target nodes, this ODC subset should be larger than

that used in the original global synthesis pass, thereby increasing resynthesis freedom at

these critical points in the network.

In general, resynthesis of a network region is preceded by coUapsing the output

nodes of the region backinto a two-level functional representation for a subset of the transi

tive fanin nodes. A multi-level synthesis routine is then applied to this two-level subnetwork.

Although there may be multiple outputs to a region, this just a generalization of the single

output case for which the resynthesis region is a 'cone'of fanin logic with a single fanout

point at its apex. This restricted case is directly analyzed in this dissertation. However,

all the approximation techniques are extended to handle simultaneous changes in activity

to multiple inputs of a node. This provides a technique for the generalization of the single

output theory.

The selection of an appropriate region for resynthesis must consider four effects.

These effects are listed below, and pictorially represented in terms of their regions of influ

ence in Fig. 2.5.

1. Cone Power Change: This is the difference in power between the new resynthesized

region of network, and the nodes which it replaces.

2. Functional Transitive Fanout (TFO) Effect: Functional activity is the activity which

occurs even in a zero-delay network model. A change in functionality of a node in

the network alters the onset probability, thereby changing the probability of switching

and power consumption. If the Observability DC set is used in resynthesis, the func-



tionality of the nodes in the transitive fanout of the cone fanout may change. This

change may increase circuit power even if the Cone Power Change is negative.

3. Spurious Dynamic Activity TFO Effect: Spurious Dynamic Activity is any activity

which is not Functional Activity. Any change in activity or delay at the cone fanout

may change the spurious dynamic activity throughout the cone's TFO. The change

in node sensitivities due to the Functional TFO Effect also influences the Spurious

Dynamic Activity TFO Effect.

4. Delay Affected Spurious Dynamic Activity: Resynthesis may alter the capacitance at

the inputs to the cone. This change in loading of the nodes driving the cone inputs

affects network delays. This can alter spurious dynamic activity in circuitry other

than just the TFO of the cone.

Apex Node

Resythesized
Cone of Logic

Network

Figure 2.5: Resynthesis Effects

The resynthesis of a region within a network is constrained by the ODC set and

the maximum delay allowed for the network. In more general terms, it can be stated that

any resynthesis algorithm must have control over the possible change in functionality, the

path lengths within the resynthesized region and the loading effect of the region on its

inputs. None of these properties are fully predictable prior to application of resynthesis as

any such optimization routine is a heuristic approach to an NP-complete problem. This

makes it infeasible to find the optimum change in functionality, path lengths or loading

effects. Improved optimality in resynthesis is dependent upon the assignment of costs to

design choices which it can control. If these costs can be assigned without restricting
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the design choices to a set for which the global effect can be estimated, then this global

information is very likely to improve the optimaJity of resynthesis. On the other hand, a

restriction implied by global constraints can significantly reduce local resynthesis options.

The difficulty in predicting the severity of this effect implies that the global restrictions may

worsen the final result rather than improve it.

The material in this dissertation does not address specific optimization of the

resynthesis region, the Cone Power Change. Consequently, complete resynthesis results for

the optimization of power are not presented. The work completed is a thorough analysis of

the ability to predict the other three effects of local resynthesis upon global circuit power,

regardless of the resynthesis algorithm used. This answers the question:

What information is required to estimate certain global power properties?

The final change in functionality at the output of the resynthesis region can be

influenced by any design choice during the resynthesis process. Computation of the exact

Functional TFO Effect for every possible design choice at any point in this procedure is not

a useful approach. Beyond issues of computational complexity, optimum decisions made at

every point of the resynthesis process does not even guarantee an improved solution due

to the heuristic nature of the cost function used for optimality detection. The measure

of the Functional TFO Effect which can be used to guide the resynthesis process needs

to use the magnitude of a change of functionality. To make the technique more specific,

the magnitude of the Functional TFO Effect within a class of functions which partition

the space can be computed. For example, the expected Functional TFO Effect can be

computed for conditions of a functionality change within the space ik-, or space where

ik a network input. An estimation scheme based upon the magnitude of the change in

functionality corresponds to the activity abstraction and this is the material of

Chap. 3. The results of the estimation scheme outlined there correlate to measured changes

in power extremely well, thereby demonstrating that the Functional TFO Effect can be

used to optimize resynthesis decisions without functional restriction.

Prediction of the effect of resynthesis on spurious dynamic activity at the output

of the resynthesis region is more complex than prediction of the change in functionality.

Estimation of spurious dynamic activity requires knowledge of both timing and functionality

at every node in the resynthesis region. The lowest (most accurate) level of functional

abstraction which can be used to estimate the expected Spurious Dynamic Activity TFO



Effect without restricting the design choices is therefore that which uses magnitudes of

functional and spurious dynamic activity, A3. The formulation of estimation strategies

which are maximally accurate for this level of functional abstraction, as depicted in Fig. 2.6

by the heavily outlined boxes, is the material of Chap. 4. It is shown that there is an increase

in the error with decreasing timing abstraction due to the complexity of the estimation

required. This is shown by the construction and testing of estimators for timing abstractions

and r4g.

Activity
Abstraction

cT

Timing
Abstraction

K .MM i < tt ' 'i

Increasing
Error

Figure 2.6: Spurious Dynamic Activity TFO Effect Abstractions

The contents of Chap. 5 concerns prediction of the Delay Affected Spurious Dy

namic Activity. As changes in network activity outside the resynthesis regions themselves

will be small, it can be assumed that the activity at the input to any region can be es

timated with a high degree of accuracy. That is, the functionality of the transitions over

all time should be predictable. The estimation of Delay Affected Spurious Dynamic Activ

ity is consequently at the functional abstraction levfel Ai. The local effect of the loading

changes at the resynthesis region inputs is the problem of estimating spurious dynamic ac

tivity at the output of a node when input delays are changed. An optimal input loading



for a resynthesis region is one which affects delays in such a way as to maintain, or reduce,

power in the parts of the network which are influenced. It is shown that even when the the

functionality of the dynamic activity is known exactly, the optimality attainable cannot be

adequately predicted for timing abstractions beyond 73, and that any timing abstraction be

low 72 requires a computational complexity equivalent to full simulation of all possible delay

configurations (Fig. 2.7). A statistical examination of the significance of delay dependence

shows that delay sensitivity will not be a dominant effect during resynthesis. Furthermore,

a better delay-dependent estimator for the Spurious Dynamic Activity TFO Effect than

that of Chap. 4 requires restricting synthesis to permit estimation at levels of functional

abstraction better than A3. Sensitivity to delay of the output of a region is therefore not

important in the formulation of an adequate cost function for low-power resynthesis.

Activity/
Abstraction

s- "V.-

Timing
Abstraction

Error Too Laraefor
Detection of Optimal
Delay Configurations.

Complexity Equivalent
to Fully Simulating Ail
Delay Configurations.

Figure 2.7: Delay Affected Spurious Dynamic Activity Abstractions

The estimation techniques presented in this dissertation can be used directly to

further optimize any existing resynthesis routine as they do not restrict the design space.

Alternatively, they can be used to guide the development of resynthesis algorithms based

upon properties shown to be statistically significant and predictable.
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Resynthesis of a region to reduce power locally may influence the output func

tionality of that region. Such a change in functionality may alter the power dissipation

throughout the transitive fanout. The work described in this chapter involves analysis of

this specific issue.

The development and empirical test of a simple probabilistic model which can be

used to predict expected change in TFO power are presented. The necessity for such an

estimator is motivated in Sec. 3.1, and Sec. 3.2 contains an the theoretical development and

justification of the basic estimation strategy. The applicability of a probabilistic averaging

technique for this problem is the basisof Sec. 3.3, and 3.4 are the results of empirical testing.

For the basic estimation scheme, using simple approximations for the input probabilities

and ODC set, a data correlation of 0.99 between theory and experiment illustrates the

usefulness of the method. In the latter part of this chapter, Sec. 3.5 and Sec. 3.6, the two

simplifying approximations are removed from the theory and a tradeoff between method

accuracy and complexity presented. This extends the work first presented by this author

in [13]. A technique for utilizing this method to optimize ODC construction is also covered

here.
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3.1 The Effect of Functionality Change on TFO Power

To motivate the need for a study into the effect of functionality change on TFO

power, it is first necessarily to iUustrate the mechanism by which a decision based upon

local optimality considerations may be bad in a global sense.

The cost function relating power to onset probabilities is not linear. In the case of

a circuit with zero-delay elements, it follows from Eqn. 1.1 that the power consumption at a

node a is proportional to Pr(a).Pr{a) = Pr(a).(l - Pr(a)) where Pr(a) is the probability

of node a being 1. The trivial example of Fig. 3.1 demonstrates a case in which a local

improvement results in an overall increase in power for the circuit.

Power / Switching Activity

Pow(b)

0.5 —

0.4

0.3 —

0.2 —

0.1 —

P(a) = 0.4
P(b) = 0.5
P(2) = 0.3

Decrease P(b) to 0.4 to
reduoe power oonsumptnn
at b.

Ons^
Prob.

0 0.2 0.4 0.6 0.8 1.0

Figure 3.1: A Decrease In Input Power Offset By An Increase In TFO Power

In this example, the NOR gate inputs are independent and the capacitance at

each node is assumed equivalent. The power consumed at input b is the highest power

consumption at any of the three nodes. Consider the case in which this element is embedded

in a larger circuit. Assume that the ODC set associated with node b allows the probability

of b being one to be reduced to 0.4. This reduces the power consumption local to 6.
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However, as a consequence the probability of z being one increases from 0.3 to 0.36. The

corresponding increase in power dissipation at the output z more than offsetsthe reduction

in power dissipation at input 6.

A small change in the on-set probability of a node with high functional activity

is more likely to result in a change in the transitive fanout power which offsets the local

optimization. A nodewith smaller functional switching activityis less likely to have as much

DC set freedom for a locally beneficial resynthesis step. However, any change in functional

power which can be made has a lower probability of being overwhelmed by detrimental

effects in the transitive fanout. This introduces a key insight, essential to the generation

of a resynthesis routine targeting low-power. Power consumption at nodes with the highest

functional switching probability is the least sensitive to small changes in onset size.

In this context, choosing a node for resynthesis becomes far less obvious than it

might initially appear. In some cases, nodes with low switching probability may be more

favorable choices in a resynthesis algorithm than those of high probability. This realization

motivates a need for a technique to estimate the change in power of the transitive fanout

of a node due to local changes in node function.

It is possible to restrict the construction of the ODC in such a wayas to guarantee

that a local resynthesis step does not detrimentally influence the TFO [10]. However, this

may not not desirable. For example, consider the situation depicted in Fig. 3.2. The node
m has been selected for resynthesis. This node is the input to nodes p and q within a

network. Nodes p and q are both AND gates so that an addition to the the onset of input

m in resynthesis wiU increase, or not change, the onset probability of these gate outputs.

From fanout loading effects, node qeffectively drives a much larger capacitance than node p.

The critical functions in this analysis are shown by the shaded regions within the rectangles

representing the Boolean space, fl/, in Fig. 3.2.

The functional switching probability of p is very low as the onset probability

Pp < 0.5. Nodes m and q have high switching probability as Pm and Pg are marginally
greater than 0.5. Assume that the ODC set for node m is entirely contained within the
offset of the original function. To reduce the switching at node m, the onset probability of

node m must be increased. A change in functionality of node 9 as a consequence of this

will also result in further power reduction, so this node does not restrict good functional

choices at m. On the other hand, an addition to fm will increase power at node p except

in the case where it does not affect the functionality at p. To ensure that no TFO node is
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Figure 3.2: Severe Over-Restriction of the DC Space

influenced such that the power local to that node increases, the set of viable functions has to

be the intersection of those viable for all TFO nodes. The possible change in functionality

is limited by the most severely restricted node p even though the reduction in power at the

high-load node q would dominate this effect.

More generally, it may be stated that the problem with a functional restriction

technique such as that of Iman et. al. [10] is that it does not take into account the relative

changes in power throughout the TFO, so cannot predict the likelihood that a local change

in functionality is globally beneficial, even if that change does not influence all TFO nodes

in a beneficial way. Even though the example of Fig. 3.2 is somewhat contrived, the results
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of this chapter show that there are a limited number of conditions under which a functional

restriction is necessary. The estimation technique developed here is useful in identifying

these occurrences.

3.2 Estimating the Expected Change in TFO Activity

A node n is a good candidate for resynthesis if a local change in activity, plus the

change in activity throughout the transitive fanout of the node, reduces the overall power

consumption. A functional activity change is achieved by altering the function of n locally

within the bounds of the observability DC set.

It is not possible to pre-determine how a node will be resynthesized as local delay

and area considerations influence this step. Furthermore, the functionality of the TFO

nodes does not influence a local decision. It may be assumed that any change within the

bounds of the GDC is random relative to the TFO. A node is deflned to be a good candidate

in a statistical sense if there is a high expectation of a significant decrease in total power

resulting from a local change in functional activity.

A method for determining the expected change in activity throughout the transi

tive fanout of n is outlined in the following section. This technique will be shown to predict

an exact average for circuits without reconvergent fanout. For mathematical simplicity, all

inputs are assumed to have Pr{l) = 0.5 which implies that all minterms in the input space

have the same probability. Furthermore, the analysis presented in this section assumes the

entire Boolean input space, fi/, as a bound on the ODC set at a node. Extension of the

theory beyond these assumptions is the subject of Sec. 3.5 and Sec. 3.6.

3.2.1 The Single Fanin Change

Consider the circuit element of Fig. 3.3. The diagonally shaded regions indicate

the original function onsets. The set of nodes is embedded in a circuit with a tree graph

structure. Assume that node Ui is changed in a resynthesis step such that a set of minterms,

An,, is added to the original onset of the node. A„, is disjoint from the original onset of

Ui. Assume that the size of A„, is known, but that the exact elements which compose the

set are not.

Define the set of inputs to n, An = {Tii,n2,...,nj}.
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m

Figure 3.3: Single Input Change

Elements within the set of i4„, may be added to, removed from, or not propagated

through to the onset /n(-f) of the node n.

Lemma 3.2.1 The set of elements added to fn{I) due to the addition of a set of elements

Am to /„j (/) is determined by the relation:

An(Am) =a/(5P(ni))n^„,

= n/(/n(An)lnj •/n(An)|n7) ^ An\

5P(ni) is the positive-phase sensitivity at n with respect to n\.

Proof; For simplicity, consider a function / with local input a. We may express

/ as the logical sum ofits algebraic co-factors with respect to a; /o,/a and remainder f^.

f —fa-O- + /tt'O + f^

An minterm x added to the onset of a is added to / if x € € fti(/o) and

^ € fl/(/a)

i.e. X € ^lUaH'f^)

= fi/(/|a.7k)
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Hence, for a set of minterms Aa added to a, the set added to the onset of / is

^jif\a'f\a)^Aa. Q

Similarly:

Lemma 3.2.2 The set of elements removed from /n(/) due to the addition of a set of

elements Am to /„, (/) is determined by the relation:

Rn{Am) = ^l{Sn(ni)) n Am

5^'(ni) is the negative-phase sensitivity at n with respect to ni.

S^{ni) and 5^(ni) are disjoint. The standard definition of node sensitivity is

derived from the union of these functions:

5„(ni) = 5;(ni) + 5P(nO

To address the problem of determining the size of an expected change in /n(-f)» the

following proposition is required:

Proposition 3.2.1 Consider a set of points C which contains a subset B. Consider the

random selection o/ |i4| points from C. If any point in C is chosen with equal probability,

the average number of chosen points which are also elements of B is

The proof of this proposition follows from basic probability theory.

The expected change in /n(/) can be computed by considering Am ^ the random

choice \Am \ points within the set n/(/„j). By definition: ) n Q/(/„) = 0.

Fig. 3.4 depicts the situation, where functions fn{I) and fni (/) are the same as that shown

in Fig. 3.3. The dark solid line depicts the set within which the probabilities are computed.

The expected size of the solid black set A„ is computed from Prop. 3.2.1 and Lemma. 3.2.1

as:

E{\AniAm)\) = CntPr(S!^(n,) \JnMAm

!"/(/«, )l= l-^ni
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Figure 3.4: Overlap with the Sensitivity Set

Similarly:

£(|i?„(A„.)|) = CntPT(Sl(n,)\U,).\An,\ (3.1)

The effect of a decrease in the onset size of node n\ may also be computed. The

relevant lemmas are:

Lemma 3.2.3 The set of elements added to /„(/) due to the removal of of a set of elements

Rm f^om fn^il] is determined by the relation:

= (3.2)

Lemma 3.2.4 The set of elements removed from /n(/) due to the removal of a set of

elements Rn^ from /„,(/) is determined by the relation:

RniRm) = fi/(5P(ni))ni2„,

It follows that:

Ei\Rn{Rn, )|) = CntPr(5S(ni) I

E(\An{Rn,)\) = CniPr{S^{ni)\fn,).\Rn,\
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Sets Am and J?„, are disjoint by definition. Consequently, for the case in which

there is both a set of points added to and removed from /„, the expectations may be

summed.

£:(M„|) = CntPr(SS(n,) |7;7).1A„,| + CntPr(S;(ni) | (3.6)

) = CniPr(s;;(n,)1I+ cmPHSSM | /„. | (3.7)

These relations may be applied recursively throughout the transitive fanout of the

original changed node, ni.

Claim 3.2.1 Consider a circuit with a tree graph structure. Assume that an arbitrary set of

minterms X (Y) is added to (removed from) node a, and that the size ofX(Y) isfixed. The

technique outlined above correctly predicts the expected change in the onset size throughout

the transitive fanout of a.

Proof: By definition of the structure of a tree graph, no node in the circuit has a

in more than one transitive fanin path. The claim then follows from the fact that the sum

of the averages is equivalent to the average of the sum. •

To translate this result to an expected change in power, the following assumption

is made:

Assumption 3.2.1 Consider a node a with a transitive fanout node 6. Let m be the number

ofpossible ways of adding(removing) a set ofX (i"^) minterms relative to the original onset

ofa. Let A = {6i(6),62(^)1he the set of changes in the size of the onset of node
bfor the m possible changes at a. Assume that the standard deviation of the elements in A

is sufficiently small such that the following approximation holds:

EdPHh) + Pr{St))^) « (PrUb) + E(PT(Si))f (3.8)

The functional activity power consumption of node n obeys the proportionality

relation:

P(n) a Pr(/„).(1 - Pr(/„))
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The assumption aJlows the following approximation to be made:

A(P(n)) oc (£;(Pr(«„)) - 2.Pr(f„).E(Pr(i„)) - (£:(Pr(«„)))') (3.9)

These local changes in power may be summed over the transitive fanout to deter

mine the total expected change in power. Afunctional power sensitivity can be formulated

by linearizing the expression prior to summation.

3.2.2 The Multiple Fanin Change

In a general circuit structure, it is necessary to examine the effect of changes to

multiple inputs to a single node. Even in the case of resynthesizing a single node in the

network, this situation may arise as a consequence of reconvergent fanout. Furthermore,

this is a necessary extension of the theory to account for resynthesis of a region with multiple

outputs.

s;(n,).fa) rt J-VW X-

Points added to the onset
of node n.

9 These points are not
necessarily added.

Figure 3.5: Multiple Input Change

Consider the example depicted in Fig. 3.5. Node n is in the transitive fanout of

a. Node a is altered in a resynthesis step. In this case, inputs 1 and j are changed, their

onsets being increased by sets A„i and An^ respectively. Consider just the elements in

Am which wiU also be added to x € A„, n Anj HQ/(5^(ni)) will be added, but
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X€ An, n Anj n n/(5P(ni)) may not be. Sensitivities for multiple input changes can be
calculated, but these computations are exponential in the number of fanins to the node.
This motivates the use of an approximation scheme, such as the following:

Approximation 3.2.1 Half the points within the intersection ofsetAnj, An, flndn/(iS^(ni))n

Qi{fn)) are assumed to be added to the onset of /n.

This is extended to handle more than two input changes in a straight forward

manner. For example, if two inputs, along with Ui are altered, the points added to

the sensitivity set are half those in the union of those An, and An^ which also lie in the set

fi/(5P(ni)) n f2/(/„)). So the increase in the probability of the sensitivity to input n,- due

to An,, Anj is estimated as:

(1 - CniPr(Sl{ni)\T;;))ACntPT{Anf) +CntPr(A„J - ^.CntPT(An,)-CntPr{An,))
Toobtain the general expressions, the change in the sensitivity set dueto reductions

in the onset also needs to be considered. The application of the same assumption for Rnj

as for A„j implies that the two changes can just be added and handled as a total change.
For example, the expression above for increase in the sensitivity set when inputs n,-,nj are

arbitrarily effected becomes:

(1 - CntPr{Si{ni)\7;^)). (C7itPr(A„.) + CntPr(Rn,) + CntPr{An,) + CntPr{Rn,)

-l{CntPr{An,)-\- CntPr{Rn,)UCntPr(An,) + CntPr{Rn,)))

Similarly, for those inputs changing, the reduction in the sensitivity set is:

Cn<Pr(5P(7i.) it;;;). iCntPT{An,)'\- CntPr(Rn,) + CntPr(An,) + CntPr(Rn,)

-^.{CniPr(An,) + CntPr{Rn,MCntPr(An,) + CntPriRn,)))

These two terms can be added to determine the total change in probability of the

sensitivity set. To formulate the arbitrary case, let B{i) be the binary representation of

i £ J"*", Bj{i) the digit. Let fi^{i) be B{i) with'O placed in the digit, all original

binary values in positions > j in B(i) right shifted by one. eg. If B{i) = 101101, then

P^{i) = 1010101. Let IP^OI number of I's in P(i).
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E{\Ar,{An,)\)= (CntPr(5S(nOI/nJ (3.10)

+ (1 - 2.CntPr{Sfl(ni) \J^))
2lAn|—l_l

•{ E (y)'®'""- n (C»<Pr(4„J +CntPKJinj/iW))
i=l nfc€An\ni

Similar equations can beformulated for£?(|>l„(i2„,)|), £(|iln(^n<)|) and E{\Rn(Rn,)\)'

These equations could be made more precise by considering the cases under which certain

added and removed sets cannot overlap. For example, if the onset of one input is contained

in the oifset of another, there cannot be overlap in the added onsets of these two inputs. The

complexity involved in performing such estimation increases exponentially with number of

inputs as it requires that the overlap between all input onsets/offsets be computed. It is

demonstrated through the accuracy of the empirical results presented later in this chapter

that there would be little to gain by using this more complex approach.

3.3 Predicting the Average as an Estimation Technique

Sec. 3.2 contains an estimation scheme based upon predicting the expected change

inglobal power when a region ofa network is resynthesized. However, the standard deviation

of the estimator results has not been considered. If the standard deviation is large relative

to predicting the effect ofa specific resynthesis step then the method is not useful. It would

imply that there has to be a many resynthesis steps performed on a circuit to guarantee an

overall reduction in circuit power with a rezisonable degree of confidence. This is undesirable

as each resynthesis step is itself an event with a statistical likelihood of success with respect

to local power reduction. The complexity of the issues involved in a priori estimating the

possible reduction in power local to the resynthesis region implies that there will be only

a small percentage of the entire network predicted suitable for resynthesis. Improvement

in the results of resynthesis obtained by formulating a cost function from an estimator of

large standard deviation but correct expectation could only be observed by averaging the
algorithm performance overa large number of networks.

To make the discussion of this concept somewhat simpler, consider a reduction

of the problem to the overlap of two sets A and B in a space C. It was outlined in

the previous section how this problem is equivalent to the determination of the expected
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Set (AnB)
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Figure 3.6: Overlap Variation for Two Sets A, B where Pr(A) = Pr(B) = 0.5

overlap between a change in functionality at a node input and the sensitivity set for that

input within the GDC set. A is chosen at random by the synthesis algorithm, B is ^ fixed

set representing the sensitivity. In Fig. 3.6 the possible variation in overlap for the case

where Pr{A) = Pr{B) = 0.5 is illustrated. The entire space C consists of four elements of

equal probability. Note that the maximum error in assuming the average is actually equal

to the average, but there are four cases which generate the average only one case each for

the two possible extremes.

A change in functionality (corresponding to a subset of the GDC) which occurs

during local optimization of a network region is chosen independently of the sensitivity

sets throughout the TFG. Consequently, the probability that a change in functionality

chosen during resynthesis has a certain overlap with the sensitivity set is equivalent to the

proportion of total possible function choices which have that overlap. For the example of

Fig. 3.6, the probability of an overlap of probability of 0.25 is the probability of zero

overlap or overlap of0.5 are | each.
The size of the set C determines the peaking of the overlap distribution. The larger

the set, the more pronounced the peaking, and the smaller the resultant standard deviation

relative to the expected change in TFG power. Fig. 3.7 depicts the probability of set overlap

for Pt{A) = Pt{B) - 0.5, \C\ G{20,60,100} points respectively. These three curves show
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the increase in peaking with the increase in the size of the set C. The standard deviation

for the three curves is respectively: 0.057, 0.033 and 0.025. For |C| = 100, the standard

deviation has already been reduced to 10% of the average.

In Fig. 3.8, and 3.9 graphs for the generalization of the concept discussed for

Pr{A) = Pr{B) = 0.5are presented. These twofigures represent data for |C| € {20,100} re

spectively. They are graphs of the ratio of the standard deviation to the actual average. The

cases tested correspond to Pr{A) € {0.1,0.2,0.3,0.4,0.5}, Pr{B) € {0.0,0.1,0.2,..., 1.0}.

The two graphs show how the standard deviation relative to the average set overlap de

creases with increasing |C|.

There is a linear relationship between the natural log of the maximum ratio of

standard deviation to average for a specific (denoted SDmax) and ln(\C\), Fig. 3.10

depicts this for different Fromthis, it is concluded that for fixed: ln{SDmax) «

(-0.5)./n(|C|). i.e. SDmax oc Consequently, the error in estimating a specific change

in power using an averaging technique reduces exponentially with the number of circuit

inputs. A standard deviation of less that 2% of the average for e [0.05,0.95]
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Figure 3.10; In(^f^) vs. ln(|C|) for six fixed € {0.02,0.05,0.10,0.20,0.30,0.40}

is achieved with a network of 15 or more inputs. This justifies the use of an averaging

technique and also validates the assumption of Eqn. 3.8. The small standard deviation is

observed in the results of the foUowing section.

3.4 The Functional Activity Change Estimator Accuracy

A program was written to empirically verify the theory of Sec. 3.2. The program

randomly selects a set of nodes from a network. Every node in this set is resynthesized

several times, each time with a random expansion or contraction of the onset of the node

which guarantees a local change in functional activity. To imitate the behavior of a syn

thesis algorithm which intentionally changes the functionality (not just uses the flexibility

of functionality within the ODC as resynthesis for area or timing will do), the change in

function was implemented by the functional inclusion of a random set cubes from the BDD



Power Change Occurrence Estimation

LOCAL GLOBAL Actual Est. Detected Incorrect

Decrease Increase 0.21 0.21 0.91 0.07

Decrease < 0.5a; 0.27 0.29 0.99 0.07

Decrease > 2a: 0.17 0.17 0.91 0.06

Decrease > 5x 0.06 0.05 0.77 0.10

Increase Decrease 0.09 0.08 0.84 0.05

Table 3.1: Functional Activity Estimation
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representing the local onset or offset of a network node. The local onset/offset BDD is a

representation of the node functionality relative to intermediate network nodes, not neces

sarily the primary inputs. These intermediate nodes are chosen by iteratively stepping back

in levels from the test node until the onset/offset BDD representations explicitly contain

10 or more cubes. These BDD's are fairly small and are optimally ordered for compact

ness using the standard BDD variable ordering techniques offered in SIS[19]. A change in

functionality using random selections of BDD cubes mimics the form of functional change

likely in resynthesis in so far as eliminating functional changes which require major network

reconfiguration.

Full symbolic simulation of the circuit using a technique based on the principles

outlined in [7] is performed before and after each modification. This allows a direct com

parison between actual change in power and that which the estimator predicts. Accuracy

of the estimator relative to the actual change in power demonstrates the suitability of the

theory for use in computing sensitivity of the TFO to node activity changes.

Fifteen circuits from the ISCAS '89 [25] benchmark set were examined in this

experiment. They varied in size from 187 to 1005 literals. The circuits were initially

mapped into the msu gate library and optimized using script .rugged[19] within SIS.

In Tab. 3.1 the results for functional activity change estimation are presented.

The first two columns are the form of the statistic. The first column indicates whether the

change in power local to the resynthesized node was decreased or increased. The second

column indicates the actual global effect on power. A multiplier in this column indicates a

bound on the global change in power relative to the local change. For example, < 0.5x in

Row 2 of the table implies that the beneficial change in the local power is reduced by more
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than a factor of 0.5 by the corresponding increase in transitive fanout power. Column 3 is

the probability of actual occurrence of the event indicated by the first two columns; and

Column 4 is the estimated probability of this occurrence. Columns 5 and 6 indicate the

accuracy of the estimator. Detected is the percentage of actual occurrences correctly

detected; Incorrect is the percentage of the estimated points for this occurrence which

are incorrect estimates (eg. 0.10 in this column for a particular event implies that in 10%

of the predicted occurrences, a different event actually occurred).

Each row of the table presents a condition which would influence the suitability

of node for resynthesis. Rows 1 and 2 are conditions under which a node becomes less

suitable, while Rows 3, 4 and 5 are the converse. In particular, the nodes counted in

Rows 3 and 4 are excellent candidates for resynthesis due to the strongly beneficial influence

the local improvements have upon power throughout the transitive fanout. The estimator

demonstrates an ability to predict better than 90% of the casesin which resynthesisbecomes

less suitable, and is only 7% overly conservative. More than 77% of the increased optimality

conditions were detected with less than a 10% possibility of error.

Fig. 3.11 depicts the the strong correlation of the functional estimator to simu-
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Ckt.AreaPl/PO/latchCorrel.Ckt.AreaPl/PO/latchCorrel.

s3442139/11/150.98s82045818/19/51.00

s3861877/7/61.00s83245318/19/50.99

s4002593/6/210.97s83844934/1/321.00

s4442543/6/210.96S119685114/14/180.98

s51037819/7/60.95S123883814/14/181.00

s5262903/6/210.98S148810048/19/61.00

s64124935/23/171.00S149410058/19/60.99

s71325335/23/171.00
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Table3.2:EstimateCorrelationforChangeinFunctionalTFOPower

latedchangesinpower.They-axisistheestimatedfunctionalpowerchange,thex-axisthe

actualfunctionalpowerchange.Eachpointcorrespondstotheresultofadifferentpossible

resynthesisstep.Thepowerhasbeenscaledrelativetoa20MHzinputvectorarrivalfre

quencyandsupplyvoltageof5V.Aunitonthegraphcorrespondsto1/zVF.Thecorrelation

coefficientforthefunctionalestimatoris0.99.

TheresultsshowninTab.3.1andFig.3.11areaggregatestatisticsforaUthe

circuits.Theoverallstatisticsareveryrepresentativeofthoseobtainedforeachindividual

circuit.ThisisevidentfromtheindividualcorrelationcoefficientslistedinTab.3.2.Inthis

table,Areareferstotheliteralcountforeachnetworkwhichisagoodhigh-levelestimate

ofarea,Pl/PO/latcharetheprimaryinput/outputandlatchcounts.Inthisexperiment

forcombinationalnetworks,thelatchesaretreatedasprimaryinputs.

3.5ModifyingtheTheoryforArbitraryInputProbabilities

ThetheoryofSec.3.2,Sec.3.3andtheempiricalresultsofSec.3.4justifythe

accuracyofthebasicestimationtechnique.Itdemonstratestheabilitytopredictthechange

inthesizeoftheonsetsthroughouttheTFOintermsofthenumberofmintermscontained

ineachonset.Aconsequenceoftheassumptionthatallinputshaveaprobability0.5of

beingoneisthatallmintermsinthespaceareofequalprobabilitysoachangeinthenumber

ofmintermsinanonsetrelatesdirectlytothefunctionalpowerconsumptionatthatnode.

However,thisstatementdoesnotgeneralizetothecasewhereinputprobabilitiesarespread.

ConsiderasimpleBooleanspacedescribedbytwovariables{a:,y}wherePr(x)=0.2and
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Pr{y) = 0.4. There are four minterms which describe this space: {xy^xy^xy^xy} which

have respective probabilities: {0.48, 0.32, 0.12, 0.08}. For this example there are no two

minterms with the same probability of occurrence. The theory outlined previously would

stiU correctly predict the expected change in power as the average minterm probability is

always ^ for a Boolean space described by |/1 variables. However, the standard deviation
wiU be unacceptably large.

The material of this section is an outline of how the distribution of minterm prob

abilities throughout the Boolean space can be used to generalize the theory. The space is

fully partitioned into a set of mutually exclusive classes each class containing minterms

of similar probability. Within each class, the estimation technique can then be applied to

obtain for each C,- € ip- The total probability added to (removed from) the onset

of node n is then given by the sum over the different class contributions:

E(PT{An)) = E
C.€v 1^*'

E(Pt(r„)) = Y,
C.€v '

The accuracy/complexity trade-off depends upon the number and functional com

plexity of the classes. The worst accuracy, smallest complexity case places all the minterms

in a single clsiss and assumes a single minterm average, but this has no control over the

error. The smallest error, highest complexity case splits the space into classes containing

only minterms of exactly the same probability which in the worst case could generate a class

for every single minterm. This also does not provide information useful to the selection of

a suitable region for resynthesis as it is not possible to predict which specific minterms

will define to the change in functionality occurring in resynthesis. The classes need to be

sufficiently large to provide useful information on expected trends.

The form of the information useful to a resynthesis algorithm is that which sep

arates the probability space into a limited number of classes, each of which contains a

significant proportion of the total probability space and has an acceptable error for es

timation. In the four minterm example outlined ab*ove, a possible partioning would be:

{C\ = {xy.xy},C2 = {xy^xy}}. Class Ci encompasses 80% of the probability space and

has an average minterm size 0.40; Class C2 encompasses 20% with an average 0.10. Ci has

a maximum error of 0.08 relative to the average minterm size for that class, while C2 has
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a maximum error of 0.02, giving the total maximum error of 0.10 if these two classes are

analyzed separately by the techniques of Sec. 3.2. This reduces the error from an original

possible maximum of 0.30, considering the entire space with just a single average, (i.e. A

minterm average with respect to the entire space is 0.25, and so Pr(xy) + Pr{xy) = 0.80

would be estimated as 0.50. )

To generalize this concept, it is necessary to define a methodical technique for the

generation of suitable minterm classes. There are six steps involved in the defining of these

classes. Each of these are addressed separately:

• Restricted Discretization of the Input Probabilities. Inputs are grouped by

similar probability. This minterm class construction is exponential in the number of

separate groups.

• Minimizing the Classes within an Error Bound

1. Construction of Error Curves. For each discrete input probability, an error

curve is constructed for the different possible classes.

2. Construction of Probability Independent Classes. The minimum set of classes

is chosen for the desired maximum error by fixing the same error in each class.

3. Reducing Error through Probability Dependent Classes. The probability of the

classes is used to improve the overall error by reducing the error in the large

probability classes, increasing it in the small classes.

• Minimizing the Classes with Error Penalty

1. Reducing Number of Small Probability Classes. Following the previous step, it

is likely that the error is smaller than necessary. This allows a tradeoff curve to

be established for the number of classes against minimal error.

2. Combining Classes of Similar Average. Any classes with the same average

minterm size can be combined without affecting error. Classes with similar aver

age can be combined by paying an error penalty. This is the last step to reduce

the total number of classes to within a fixed bound.
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3.5.1 Restricted Discretization of the Input Probabilities.

In terms of the minterm probabilities in the space, it is only necessary to consider

the smaller ofthe onset/offset probabilities ofan input. That is, an input x with Pr{x) = 0.2

or Pr(x) = 0.8 results in the same statistical minterm probability spread. Without loss of

generality it may be assumed that a each network input has Pr(l) < 0.5.

Consider the casein which all input probabilities constitute a set of discrete prob

abilities P in the interval [0, 0.5]. Let the subset of inputs which have onset probability

p € P be /p. It will be shown empirically that a there is a simple tight bound on the error

of predicting onset probability when the set of minterm classes are the product of classes

chosen within every space defined by an /p,p 6 P. The simplicity of this bound behooves

the approximation of the continuous probability space with a discrete set. As |/1 is finite,

such a set always exists by default, but the number of classes is possibly exponential in the

number of discrete probabilities. For example, if |/| = 10 but all the input probabilities are

the same, the maximum set of useful classes is 11. However, if all input probabilities are

different, there are 2^^ possible classes. (This wiU be explained further in the error curve

construction of Sec. 3.5.2.)

In general, as the number of discrete probabilities chosen to represent the entire

set of input probabilities is reduced, so too is the accuracy of the power estimation. The

restricted set of discrete probabilities needs to be chosen to minimize the RMS error of

estimating the entire set of input probabilities. This loss of accuracy can be estimated by

simulating the network with the restricted set of discrete input probabilities and comparing

with the true simulated power. A restricted discretization is sufficient if the power estimate

error is much smaller that the reduction in power regarded as 'significant' for resynthesis.

For example, if a 10% or greater reduction in simulated power is found to translate reliably

to a reduction in the power dissipation of the production silicon, then an acceptable error

in the estimation is 1% or less.

3.5.2 Minimizing the Classes within an Error Bound

In general, it is not possible to test every set of input classes to determine those

which are the most optimal. This makes an exact error/complexity tradeoff curve difficult

to establish. Usually, only a limited error in the estimation is tolerable. A more practical

approach to finding a set of classes is based upon the determination of a minimal set of
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classes for a specific error, then examining the error/complexity tradeoff around that point.

Construction of Error Curves.

The error in a class C,- is defined as: max^cc^ |(Pr(A)- \A\.)I» The maximum

error is used as opposed to standard deviation as the distribution of minterms within a class

cannot be approximated by a Gaussian distribution. Consider the set of inputs Ip,P € P.

The minimal set of classes will be generated from error curves for each of these input sets.

Every minterm in the space Q/^ is oneof (|/p{ +1) possible sizes, those sizes being described

by the set: 5/^ = {(1 - € {0,.., |/p|}} = The minimum set of classes

which fuUy partition the space Qsuch that each class has zero error, 9/^,is the set defined
by the minterm classifications of 5/p. Let 9/^ = {Ci,C2,...} be a set of classes chosen from

the union of classes in = {Ci,C2,The maximum error will be minimized if the

subset of (p^ corresponding to any C, £ <pip is contiguous with respect to indicies of <p^ .
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Figure 3.12: Probability Contained in Zero Error Classes: \Ip\ = 10



EirorProb.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

10

p = 0.1

pts03
P a 0,3
psb.4

No. of Classes

52

Figure 3.13: Error vs. Number of Classes: \Ip\ = 10

eg. Ci = CfUCj, C2 = C3 UCj wiU have smaller error than Ci = Cf UCj,C2 = Cj UCj.
Generation of9/^ for minimal error then becomes equivalent to the optimal selection ofa
set of contiguous, mutually exclusive subsets of A heuristic technique to do this is the

selection of the subsets of in order to maximize the uniformity of the total probability

contained in each of the final classes.

A large proportion of is contained within a small subset of the classes in

. Fig. 3.12 depicts the cumulative probability contained in the sets Ui<jCf against j,
p € {0.1,0.2,0.3,0.4}. For increasing p, the curves are ordered right to left. The sharp
gradient over a limited range in this graph implies that the final classes cannot actually be

very uniform in total probability unless the total number of final classes is much smaller

than |/p|. For example, if one class in probability 0.3, it is not useful to break up
this zero-error class to ensure that if there are 8 classes in (pj^ all have a probability around

0.125. An approach which sensibly exploits the zero-error classes while still maximizing

uniformity of the final classes and ensuring that theseclasses are contiguous with respect to
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is a greedy algorithm based upon grouping together the classes of maximum probability.

Classes from are added together until the probability of the new class exceeds the total

probability remaining divided by the number of classes yet to be assigned. A plot of the

total error (which is the sum of the error for each class) against the total number of classes

for this class assignment strategy is shown in Fig. 3.13. For each curve, \Ip\ = 10.

Construction of Probability Independent Classes.

The technique above generates a class/error tradeoff curve for a single p. However,

in general, there are multiple probability discretizations, P. It is therefore desirable to find

a minimal set of classes for the entire input space through utilizing the easily generated

class/error tradeoff curves for each p £ P.

Consider the set of classes described by the Boolean product of classes chosen for

each input subset /p. The total number of classes for the overall space is then: np€P Iv/pl-

As each set of classes covers the entire space with mutually exclusive sets, the overaU

set of classes formed from the product maintains this necessary property. Let Cp be the

total error for the set of classes <p/p. An upper bound on the error for the set of classes on

1 defined by the product is given by:

€=1-

p€P

The tightness of this bound is illustrated in Fig. 3.14. The data on this graph is

generated from a series of statistical tests for input probabilities p € {0.1,0.2,0.3,0.4} with

\Ip\ chosen randomly from [2,10] and |v/p| from [0, \Ip\]. The bounding technique is clearly

sufficiently accurate for use when the total error is small.

It is necessary that the global error be small, so it may be written:

peP

The global error can then be partitioned amongst the Ip and a minimal set of

classes chosen using the class/error tradeoff curve. A positive (negative) error sensitivity^

^^(€)(6p (c)) is defined for each Ip by computing the increase (decrease) in error corre
sponding to decreasing (increasing) \ipjj,\ by 1. Similarly, each has a positive (negative)

class count sensitivity with respect to the increase (decrease) in the total number of classes

in the product, ^p (|<r'/|)(^p (|<p/|))' The total number ofclasses can further be minimized by



lU

.g-

0.2 0.3 0.4 0.5 0.6
ActualMaximum Possible Probability Error

Figure 3.14: Actual Global Error vs. Product of Errors Estimate
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first reducing error by increasing for Ip with the greatest then exploiting this

error slack by decreasing |<^/p| for Ip with the smallest The procedure continues

until the increase in classes needed for sufficient error slack to decrease any \^ip\ exceeds

IVCI^/DI-
As an example, consider a network with P = {0.1,0.2,0.3,0,4} and \Ip\ = 10 for

all p £ P. For zero error, the total number of classes required is 10^. However, with an

allowable 10% error can be chosen respectively as: { 5, 6, 5, 6 } (From Fig. 3.13).

There are 900 classes in this product, a reduction of over a factor of 10.

Reducing Error through Probability Dependent Classes.

The probability independent classes constructed from a product of the ipj^ can be

minimized by the techniques described above. However, this does not take into account the

probability contained in each class. It is likely that for the same error bound, many of the

small classes can effectively be combined if even a single large class is partitioned further.

Consider the example of a circuit with 11 inputs, input a with p = 0.1, the others inputs

with p = 0.4. For less than 10% error, |(p/o j | = 2, = 4 so |<p/| = 8. However, the set

of all classes for which d is true consume 90% of the probability space. Suppose that for d.
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\^h AI increased to 5. This reduces the error within this set of classes from 8.5% to 3.5%,
the total error by (0.9 x5.0) = 4.5%. The set ofall classes for which ois true axe 10% ofthe
total probability space. The 4.5% error slack allows an increase in the error within these
classes by 45% without increasing the total error above that of theoriginal product. This
allows Iv'/o^l for these classes to be reduced to 1. This configuration has then maintained
the error of the original configuration, but reduced the total number of classed from 8 to 6.

The construction of a global optimization routine based upon this strategy re

quires a estimate for the error within each class in terms of the errors for each /p. Let
F{C) be the boolean function which describes class C. Let P = {l>i,P25=

error in class C,(pjt) be ^Ci{vk)' ^ ^ product ofthe
classes in the set = {C,(pi),Cj(p2)i —iC'„(pm)}- i-e- F{C) = P(C,(pi)).P(Cj(p2))—P(C'n(Pm))-
An upper bound on the error of the class is:

cc = 1- (1 - «C.(pi))-(l - ^C,(w))-(1 - «C„(pm))

0.2 0.3 0.4 0.5 0.6 0.7
Maximum Error Within Each Class NormaBzed to Class Size

Figure 3.15: Actual Class Error vs. Product of Errors Estimate

The accuracy of this technique as a bound for the error within specific classes is

shown in Fig. 3.15. The data is generated from the same test as that for Fig. 3.14,but the

errors shown are scaled by the probability of each specific class. The data points shown are
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only those for the non-trivial cases when there is more than one class in of non-zero

error. With few exceptions, the bound on the error within a class is within 20% of the true

error. This implies that the error curves for the independent Ip can be used to optimize the

error for any specific product class.

The optimization of the total number of classes requires that there be a sensitivity

established with respect to for each class in |y>/|. Define the set ofclasses ^/\/p on I
with Ip excluded. For each C € V7\/p» is the subset of v>/p defined by all C{Ip) which
occur in the subset of y?/ which maps into to C. This is a uniquely defined set of classes. For

example, suppose vp/ = {Ca,C6,Cc} where Ca = {Co(pi),Co(p2)}A = {Co(pi),Ci(p2)}

and Cc = {Ci(pi),D/pJ. Then - {{Co(pi)},{Ci(pi)}} and let C!^ = {Co(pi)},

C'n ={Ci(pi)}. Then ={Co(p2),Ci(P2)} and 9^ ={D/^}.
A positive (negative) error sensitivity can be defined with respect to the set of

classes in 9 '̂. Asimilar method to that described for optimization of the probability
independent class construct can then be applied to minimize the class count while remaining

inside the specified bound on maximum total error.

3.5.3 Minimizing the Classes with Error Penalty

The techniques presented in Sec. 3.5.2 may not be sufficient to reduce the number

of classes to within acceptable limits. The following techniques allow a class/error tradeoff

curve to be established for the entire probability space. Resynthesis can then be attempted

for various numbers of classes until the reduction in power being observed does not justify

further time expenditure.

Reducing Number of Small Probability Classes.

The technique for optimizing error through the use of probability dependent classes

can be extended to the formulation of the overall class/error tradeoff curve. Each point on

this curve is found by computing the global error after reducing the number of classes

described by the minimum ratio of positive error to negative class count sensitivity. This

procedure is repeated until the error is too large to make the method usable, or the total

number of classes is reduced below an acceptable number.

Combining Classes of Similar Average.

At each point of the class/error tradeoff curve, the total number of classes can be
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reduced trivially without increased error by combining those classes with identical average

minterms. This technique can also be extended to combine classes with different but similar

averages. This incurs an error penalty bound by the change in the size of average minterm

for each combined class multiplied by the total number of minterms in each class. This

technique is useful if there is a fixed bound on the total number of classes desired. For

each point which exceeds this bound on the class/error tradeoff curve, classes of similar

average can be combined until the number of classes is acceptable. The configuration which

generates the minimum error can then be chosen.

3.6 Ordering Inputs to Maximize GDC Set Flexibility

Prior to resynthesis, it is necessary to establish the GDC sets for each class and

at every node in the network. For simplicity, the discussion which follows assumes just a

single cla^s for the entire space Qj. In general, the technique outlined can be applied within

the subset of the Boolean space described by each class. This generalization is presented at

the end of this section.

The construction of a compatible set of GDC subsets requires that a node input

ordering be established [18]. A node input ordering which maximizes the GDC subsets for

the most highly non-optimal nodes maximizes resynthesis flexibility. However, the non-

optimality of a network region is a combination of both the resynthesis flexibility, and the

expected gain obtained if that region of the network is resynthesized. Consequently, the

choice of non-optimal nodes within a network has to precede the construction of a node

input ordering. This motivates the definition of node non-optimality in terms of a bound

on the possible size of the compatible GDC subsets.

An increase in the bound of the compatible GDC set at a node increases the

expected flexibility. However, not all functional changes are useful options for the reduction

of power. The determination of which options are likely to be benefldal requires theory or

empirical evidence which directly relates the operation of a specific resynthesis algorithm

to the network and GDC functionality. Without making an assumption about the form of

the resynthesis algorithm the size of the GDC is the. only possible measure of resynthesis

flexibility.

The maximum compatible GDC subset which may be used for resynthesizing the

input to a node is derived assuming that all other inputs to that node are held fixed. This
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Figure 3.16: Increase in Compatible ODC for First Input of Input Order

corresponds to being the first input selected in the node input ordering, an example of which

is depicted in Fig. 3.16. For this two input AND gate, suppose inputs a, 6 might be changed

to a', b' but the output functionality is not to change. The compatible ODC for input a

assuming b is fixed is: 6. These are the conditions under which the output is not sensitive

to input a. However, this allows a new input a' = a + d6 so the only possible change in the

other input can be to: b' = ab. The compatible ODC for 6 when input a has first order is

therefore: ab. Conversely, if input 6 is first in the ordering, the compatible ODC sets for

inputs a and 6 are a6,d respectively. Rigorously, if the ODC at the output of n is ODC(n),

then a bound on the ODC at input node n,- is:

ODCr'M = ODCin) + 5„(n.) (3.11)

In the computation of expeciednon-optimality, it is not statistically relevant whether

(n,) contains, or is contained within, the corject ODC for a node. This allows the

the effect of reconvergent fanout to be neglected resulting in the very simple concatenation,

expressed in Eqn. 3.12.
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ODCr'M = ODC'^irii) + 5„(n.) (3.12)

If an input n; fans into a set of nodes {n}, the OI?C'""(ni) is given by:

OOC^^Cn.) = n ODCS"(n.) (3-13)
m€{n}

ODC" '̂̂ '̂ {n) is an estimate ofthemaximum function space which can be exploited
in the resynthesis of node n. In Sec. 3.2, the entire function space Qj was assumed avail

able for resynthesis. The modification of the theory presented there is the computation of

probabilities within rather than fi/. For example, assuming a single class for

the entire input probability space, Eqn. 3.1 becomes:

£;(|fin(^n.)l) = Cn/frCJSCm) I(7;:7.0£IC'"-"=(ni))).|4„.| (3.14)

It is necessary to show that this probability of propagation of a change is correct

with respect to the ODC at the output of node n so that if there is an overlap between the

functionality change at n, and the sensitivity set within ODC(n,), this is the only possible

change in functionality at n and, furthermore, this change is within ODC{n). The former

condition is straightforward as the change in functionality at the output requires sensitivity

to input n,. To prove the latter, consider the converse. This implies that there exists a

subset of the ODC{ni) which overlaps the sensitivity set and is outside ODC(n). However,

if the node n is sensitive to input n,- outside ODC{n)^ this is by definition in the care set

of n,, hence in ODC{ni). This is a contradiction, proving the original assertion.

3.6.1 Finding the Highly Non-Optimal Nodes

For the establishment of an expectedhenefiioi resynthesizing a node, an approxima

tion has to be made correlating the sizeof the sets to the size of the expected

change in functional activity after resynthesis. This approximation can be constructed from

an empirical study of the specific resynthesis algorithm.

To illustrate the concept of expected benefit^ it might be assumed that the proba

bility of the final resynthesized onset of a node varies as a linear function of distance from

the pre-resynthesized probability of the node function being 1, and the distance to the prob

ability of /n.0J9C"*°^(Ti) and This is represented in Fig. 3.17. The change
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Figure 3.17: Resynthesis Probabilities

of transitive fanout power corresponding to various changes in onset size can be computed

and scaled by the probability of the event occurring. The summation of these probability

scaled power changes with the expected local resynthesis cost is a measure of the expected

benefit, or non'Opiimality, C(n), of the node.

Although this operation must be performed recursively throughout the transitive

fanout of each node in the network, it is not expensive. Once the node sensitivities and

GDC subset bounds have been calculated, all other operations are algebraic. Furthermore,

a study of the results from the experiment outlined in Sec. 3.4 have shown that 90% of the

power change throughout the TFO occurs within just five levels of logic depth.

The expected benefit computation for each node assumes no changein other nodes

within the circuit. To allow resynthesis of multiple regions in one pass, an independence

graph for the network needs to be built. This construction is established directly from

the expected benefit computation as that analysis predicts the expected influence of one

node upon another. The set of nodes best for resynthesis is the Maximal Independent

Set extracted from the independence graph. An overall network resynthesis step would

be repeated several times, each time generating a new set of expected benefits and an

independence graph. The iterations would continue until no further improvement occurs.
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3.6.2 Ordering the Compatible DC Set Construction

Subsets of the ODC subsets used to resynthesize the nodes identified as non-

optimal need to be maximized and compatible. This implies an ODC construction similar

to Savoj et al. [18]. The input ordering presented in that work is a partial order implied
by parsing the network structure in reverse topological order. This ensures that the ODC
is calculated at a node only after the ODC has been computed at all its TFO nodes,
thereby ensuring a maximal construction. However, this input ordering is not unique to
this processing order.

Non-Optimal
Node

Topology Based Input Ordering
of HamidSavoj

Figure 3,18: Node Input Ordering for ODC Construction

Node Input Ordering^to Maximize the
ODC Set for Non-Optimal Nodes.

Consider the example of Fig. 3.18. The nodes are labeled in reverse topological
order of the ODC construction, the edges numbered with respect to the input ordering
applied toeach node. In the left-hand figure, the node processing order is used todetermine
the input ordering as proposed in [18]. When the ODC is computed at a node, it ^calls'
the construction of the ODC contribution from each output then takes the logical product
of these functions. In this example, node 6has been identified as being the most highly
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non-optimal, therefore most desirable for resynthesis. Note how the inputs on the fanout

of 6 do not all have the optimal order for maximal ODC freedom. The ODC at node 6 is

restricted by an increase in the ODC set at nodes 4 and 5 where flexibility is not required for

resynthesis. A more desirable ordering is that indicated in right hand network of Fig. 3.18.

This inputorder can be maintmned in the framework ofthe reverse topological processing by

computing input ODC contributions rather than the total ODC at each node from scratch.

For example, consider a node n. The ODC contribution of each input n,- of n to its famn

node can be computed given an arbitrary input ordering. When the node connecting to n,-

is finally scheduled for processing using the reverse topological order, all ofits fanout nodes

have been processed so the contributions from each has been computed. The ODC at this

node is then the logical product of all these functions. The ODC contributions from each

fanin will then be maximal in the same way as defined in [18].

To optimize the resynthesis flexibility the node input ordering needs to be based

upon:

• Non-Optimaliiy. The greater the expected gain for resynthesizing a node, the higher

priority it should be assigned in the node input ordering.

• Proximity. When close to a highly non-optimal node, this node should dominate the

ordering strategy.

The node input ordering is established by assigning a weight Wm to the inputs in

the following fashion. Let T, be the set of nodes selected for resynthesis which are in the
transitive fanin of n. For x eTi,dx is the number of levels (excluding buffers, inverters and

XOR's) between x and n.

C(x)

x^Ti

The input order is in reverse order of the weights, the higher weighted input

assigned the highest priority, and so on.

If the space is separated into a set of classes y)/, the non-optimality ofeach node

may be different for each class Ci € For each class, a set ofweights can be established
and the subset of the ODC within each class computed according to this ordering. This

ensures that if two regions do not have the same classes within which the bulk of their
non-optimality (i.e. their best resynthesis choice) lies, then the ODC for each region will
be optimally emphasized within the respective classes.

"'n. =E ^ (3.15)
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3.7 Summary

In this chapter the concept of using averaging as a suitable estimation technique

for predicting the change in functional TFO power is presented. An averaging technique is

important as there is only restricted information available prior to resynthesis of a region

of a network. Even though the estimation strategy effectively neglects correlation between

the original network node functionality and the specific expected change, it is shown that

the standard deviation of such a method is small. This follows from the fact that the

vast majority of functional changes of a fixed size at a node have similar overlap with

sensitivity sets throughout the TFO of that node. Even though the extreme possible error

condition relative to the predicted average may be significant, the statistical likelihood

of such an occurrence is extremely small. This theoretical result is well supported by

statistical evidence obtained though testing of the theory against actual changes in an

extensive benchmark set. The spread of the predicted change in power relative to the

actual simulated changes is sufficiently smaU to justify the use of this estimation strategy

in improving the resynthesis choices for low-power resynthesis algorithms.

The estimation theory has been extended to formulate a technique for guiding of

a resynthesis algorithm. The framework consists of three parts:

• Class Definition. A set of functions (classes) are defined which partition the space

into regions of similar minterm probability. This minimizes the error of the estimation

technique.

• Specific Resynthesis Statistics. The statistical relationship between the size of the

ODC and useful local resynthesis options is used to determine the non-optimality of

a network region.

• Node Input Ordering. Within each class, the node inputs are ordered in such a way

as to maximize the resynthesis freedom for the highly non-optimal nodes.

The second of these three steps was presented in conceptual form only as it is a property

of specific resynthesis approaches. The heuristic approach to Class Definition described in

this chapter provides a technique for isolating a minimal number of classes for a specific

error bound and a technique for the establishment of a class count/error tradeoff curve. The

presentation concerning Node Input Ordering contains the outline of a definition for node

non-optimality without having to first establish fixed compatible ODC sets. This definition

is then used to establish a cost function for the compatible ODC node input ordering.
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Resynthesis of a network node affects not only the functionality of the apex node

as addressed in Chap. 3, but also affects the spurious dynamic activity in the network. This

change in spurious dynamic activity results from changes in both delay and functionality

within the resynthesis cone.

The significance of changes in spurious dynamic activity throughout the TFO of

the apex node is critical in deciding suitability of a region for resynthesis. High sensitivity

of the spurious dynamic activity in the TFO of a node to changes in delay, function or

dynamic activity at the node restrict the resynthesis options which are globally beneficial.

On the other hand, a node which does not have good resynthesis options in a local sense may

become suitable for resynthesis if it can be shown that local changes in dynamic activity or

delay can produce global reductions in dynamic power.

This defines the main issue which is addressed in this chapter. In particular, a

theoretical and empirical study is made of the problem of estimating the sensitivity of the

spurious dynamic activity in the TFO of a node to resynthesis of that node. The three

aspects of this problem are presented separately:

• Delay Sensitivity (Sec. 4.2)
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• Dynamic Activity Sensitivity (Sec. 4.3)

• Functional Spurious Sensitivity (Sec. 4.4)

The sensitivity to delay determines whether it is more beneficial to delay or speed

up the output of the resynthesis region. A high sensitivity to dynamic activity implies
that in structuring the resynthesized region, it is desirable to minimize path imbalance.

Functional Spurious Sensitivity (as opposed to the topic of Chap. 3 which is Functional

Sensitivity) determines whether a change in function is likely to affect the sensitivities of
nodes in the TFO in such a way as to increase or decrease power.

In this chapter, it will be shown that a sensitivity with respect to bounds on delay

does not provide useful information to guide resynthesis. Toestimate the effect of delay on

power, accurate estimates of the functionality of spurious dynamic activity and its precise

arrival times are required. The inability to estimate these effects implies that a sensitivity

to delay cannot be established for the output of a resynthesis region. Furthermore, it is

shown that a change in the amount of spurious activity at the output of the resynthesized

region, in combination with the Functional Spurious Sensitivity, arethe dominate factors in

the determination of a change in the spurious dynamic activity of the TFO. The estimation

techniques of Chap. 3 are shown to be very accurate at estimating the Functional Spurious

Sensitivity as well.

4.1 Effects Upon Dynamic Activity

The three aspects which affect spurious dynamic activity are illustrated here by

example. In the estimation of dynamic sensitivity of the TFO of a node, aU three aspects

have to be accounted for simultaneously. However, they are presented here separately.

The effect of delay upon spurious dynamic activity relates back to the very defi

nition of spurious dynamic activity as presented in Chap. 1.5. In Fig. 4.1, under the input

conditions shown and delays di > d2 ^ spurious pulse is generated at the output. If di < d2

a similar pulse is produced for the opposite input vector pair, but if di = ^2? no such

pulse is observed under any input conditions. Changein the delays alone can influence the

functionality which cause spurious transitions. The effect of producing spurious dynamic

activity from non-spurious input functions is denoted Spurious Activity Generation.
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Figure 4.1: Spurious Output from Non-Spurious Inputs

A further example of the influence of delay upon spurious activity is shown in

Fig. 4.2. In this circuit configuration, the only spurious activity at the output of ANDl

occurs when input pair (a, 6) changes from (1,0) to (0,1). For simplicity assume that the

delay of all gatesexcept BUFF2 is unity. If ^2 < 1, when the spurious activityat the output

ofgate ANDl occurs, there is a 1 present at the other input to AND2. This guarantees that

this undesirable activity passes through to the output, li d2 > 1, it is logically guaranteed

that the spurious activitydoes not propagate. This effect of propagation or non-propagation

of spurious activity from the input of a gate the the output is denoted Spurious Activity

Transmission. The total spurious dynamic activity at a node is the sum of the Spurious

Activity Transmission and Spurious Activity Generation contributions from each input.

a(t)

b(t^

u

x(t)

•

BUFF1

0 1

AND1

BUFF2f-i

d

AND2

"y

d= 1

Output for two possible delays on BUFF2:

y(t)

L—^^
0 12 3 4

y(t)
d = 2

Figure 4.2: Spurious Output from Spurious Input

To distinguish between Dynamic Activity Sensitivity and Functional Spurious Sen

sitivity, consider an AND gate with inputs a and b. Assume that there is spurious dynamic

activity on input a, but none on input 6. Input 6 always arrives after input a, even following

the changes described below.
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As an example of Dynamic Activity Sensitivity, consider a change in the functional

or spurious activity of input a while input 6 remains unchanged. Any increase or decrease

in the spurious dynamic activity of a when 6=1 will be reflected in the output of the AND

gate.

As an example of Functional Spurious Sensitivity, consider changes in the function

ality of input 6 without introducing spurious activity at this input. This change in function

alters the conditions under which a is observable from the output of the AND gate, con

sequently affecting the conditions for transmission of spurious activity. Furthermore, an

increase in the correlation between a and 6 will increase the probability of generation of

spurious activity at the output of the AND gate.

4.1.1 Defining Generation and Transmission

The definitions of Spurious Activity Transmission (Spurious Transmission) and

Spurious Activity Generation (Generation) must be made rigorous. In particular, what

constitutes spurious dynamic activity should be defined and separated from functional ac

tivity.

® ^ ® r-
\ / V—-t \ / I

(iii) A (iv)

i / •. t~A / \

Figure 4.3: Types of Spurious Dynamic Activity

Consider Fig. 4.3. In cases (i) and (ii)^ both transitions are clearly spurious as there

is no final change in state. In cases (iii) and (iv)^ either transitions 1 and 2, or transitions

2 and 3 may be regarded as spurious. In general, although the amount of spurious activity

can be computed, a specific set of spurious transitions cannot be uniquely identified. In

fact, this ambiguity brings into question the motivation for defining the concepts of Spurious

Transmission and Generation, which are themselves based upon a definition of spurious and

functional transitions.

The definition of Spurious Transmission and Generation becomes important in
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the context of the design of an estimator which can be used to guide resynthesis with the

limited information predictable prior to an optimization. The estimation strategy outlined

in Chap. 3 is able to predict the expected change in functional power to a very high degree

of accuracy, even in a circuit with arbitrary node input correlations. The work of [15] and

[23] has demonstrated the need for estimation to consider such correlations so it is desirable

to have a strategy for estimating changes in the amount of spurious activity alone. This

result can then be concatenated with the functional activity estimator.

Consider the form of the activity at the output of the resynthesized section of the

network. Before a resynthesis step is taken, an estimate of the dynamic activity which incor

porates both function and timing information is considerably more difficult than estimating

the final functional activity alone. This estimate would require a prediction of the structure

of the resynthesized region which even incorporates loading effects. The determination of

the applicability of a node for resynthesis must therefore be founded in variables which can

be predicted and controUed. These variables are:

• Delay Bounds The resynthesis step can be controUed in such a way as

to bound the earliest and latest arriving output signals. However, the exact form of

arrival time distribution is unable to be estimated prior to resynthesis. [jBliBu] is

denoted the Activity Interval.

• Amount ofSpurious Activity (|T" |̂). By balancing the paths, the amount ofspurious
activity at the output of the resynthesized region is Ukely to be reduced. However,

the functionaUty of the spurious dynamic activity cannot be predicted a priori.

• Expected Change in Functionality (|r^|). As outlined in the previous chapter, it may

be possible to predict the ability for a low-power resynthesis technique to change the

probabiUty of the resynthesis region output being one. However, it is not possible to

predict the exact change in functionaUty which is the optimal choice for resynthesis.

An example of how these variables relate to actual activity is shown in Fig. 4.4 for

a single waveform. For example, Bl is the earUest time for any transition to be seen at the

node, By is the latest. In general, these variables summarize the behavior of the node for aU

input vector pairs. Within this restricted setofdescribing variables, {(Bl, By), |T^|, |T^|},

the concepts of Spurious Transmission and Generation are weU defined.
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Generation is defined in terms of the probability that one input nj to node n has

resolved to its final state after application of a input vector pair before, after or during

a change in state of the other inputs {wj}. If the change in state of rij is propagated

through the node and changes the output to a state different to the known final output

state, this is Generated spurious activity at the output. The concept is illustrated for two

cases of a three input AND gate in Fig. 4.5. In this example, the contribution to generated

activity at the output of the AND gate due to input a is under consideration. In the first

case presented, input a arrives after any transition on input b and before any transition

on input c. The original state of each input is indicated by lower case, the final by upper

case. Clearly, if Be = 1, any positive transition on a is propagated through the gate.

However, if C = 0, then the final state of the output is 0. This impbes that the activity

propagated from input a under these conditions is not necessary, consequently spurious.

This condition generates two spurious output transitions, one transition which incorrectly

changes the output phase, and one which corrects it. In the second case, a and b may arrive

simultaneously. The conditions for which a generates spurious activity are the same as that

for the first example. However, for the generation conditions under which both a and b has

positive transitions, the contribution from a is halved. This allows independent summation

of Generated Activity contributions for each gate input.

The alternative to defining Generated Activity contributions from each input

would be to associate the total output activity to a unique input arrival order. This is of

the same complexity as the Generated Activity construction, but does not have a straight

forward simplification to a pairwise correlation approximation.
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Consider the contribution to Generation from input a:
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If C but B.c and a.A

=> y(A.B.C)= 0 but transition -T on input a
is transmitted to output y as: -T

=> J L which implies two spurious transitions
generated by input a at output y

t_ = tl,. t >t„
a b c a

If C but c and (a + b) and A.B

=> y(A.B.C)= 0 but transition J~on input a
is transmitted to output y as: -T

=> J L is generated at output y

However, one condition is the simultaneous switching
of inputs a and b, another is a changing alone.

For the condition of a changing alone, all Generation
is contributed by input a (i.e. 2/1=2 transitions)

For the condition of inputs a and b changing together,
the contribution is shared equally by both inputs,
(i.e. 2/2 = 1 transition)
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Figure 4.5: Example of Diiferent Generation States

Spurious Transmission is defined in the context of the following two assumptions:

Assumption 4.1.1 Spurious dynamic activity at an input to a node is independent of the

spurious dynamic activity at the other inputs.

Assumption 4.1.2 A spurious transition on one input does not arrive simultaneously with

a spurious transition on any other input.

These assumptions are a direct consequence of the formulation of the set of three
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variables {{Bl, Bu), \T% |r^|} to be used in the estimation. The first assumption does not
increase the error ofthe estimator beyond the information already lost in the formulation of
the three activity describing variables. This assumption follows from the fact that prior to

resynthesis it is not possible toestimate how spurious dynamic activity will be related to an
input function. The second assumption uses the fact that if the spurious dynamic activity
is assumed independent, the probability of simultaneous spurious transitions on multiple
inputs is the product ofeach occurring separately. This is a low probability event, soit can

be assumed to not occur without increasing the first order error of the estimate.

The Spurious Transmission at the output of a node contributed by a specific input

is given by multiplying the amount of spurious activity at the input by the probability that
the node is sensitive to that input. The total Spurious Transmission and Generation at a

node is formed by summing the contributions from the individual node inputs. Spurious

Transmission and Generation produce exact estimates in the case where no input to a

node has spurious dynamic activity, or in the case where the spurious dynamic activity is

independent on all the inputs and these input activity intervals do not overlap.

4.2 Sensitivity to Delay

In this section, a mathematical formulation of the concepts of generation and

transmission is presented. There are two levels of approximation. The first assumes that

functional input transitions pass through a gate with a probability independent of that

function so the sensitivity of the node to an input is independent of that input. The second

level of approximation is an exact formulation for a twoinput gate network. In both cases,

the theory presented is generalized to multiple input gates using a pairwise correlation

assumption.

It is shown that the concept of transmission and generation is only useful under the

conditions where time is very coarsely discretized. When time is discretized as recommended

in [7] for sufficient accuracy of power estimation, the transmission/generation estimation

technique is unable to detect optimality. This implies that delay bounds are insufficient

measures for computing delay sensitivity. It is therefore shown that optimality obtainable

through delay manipulation requires estimates of the functionality and time distribution of

the spurious dynamic activity. This is the basis of the material in Chap. 5.
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4.2.1 The Functionally-Independent Delay-Sensitive (FIDS) Model

The pairwise correlation formulation is derived from theory based on the assump

tion that only two inputs actually change.

Theory for Gates with Two Inputs Changing

Consider node n with inputs A„ = Assume that the two inputs

which change are inputs rij and The total amount of Spurious Transmission at the

output of n, is given by:

|rf'-|= E /''•(5„(n.))-|r„'?l (4.1)
nie{nj,nfe}

For Generation, the functional input transitions are considered. A functional input

transition is passed though the node n as a spurious transition if it changes the node output

to the incorrect final state. The probability of Generation is computed separately with

respect to the two possible input transitions - high to low, and low to high.

Assume that input nj has a functional transition from high to low. This transition

is propagated as a spurious transition if it is transmitted with negative phase and the final

output of n is 0, or it is transmitted with positive phase an the final output is 1. This is

summarized in the two terms of the following equation:

P^Hnj) = Pr(5J(nj)).Pr(^.7;; i;^) + l^) (4.2)

Similarly, for an input transition from low to high:

Pf(n^) = Pi-(5;(n,)).Pr(/„,./„ !/„,)+ Pr(5S(n,)).Pr(/„,.^| /„,) (4.3)

OveraU, these may be summed to give a total probability of a functional input

change being propagated as a spurious transition:

J'̂ (ni) = '̂̂ *("i) + ^f(ni) (4-4)

The amount of Generated activity at the output of node n contributed by input

Tij is then obtained by multiplying the result of Eqn. 4.4 with the probability that there
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is a functional transition on n^, and that this input arrives early. Summing over the two
inputs which change, the total generated activity is obtained:

=\ E Pi{ni).P.arty(ni).\Tl\ (4.5)
n,€{nji,nfc}

The probability that a transition arrives early is computed assuming that the
functional transitions in the interval [Bi,{ni)iBu{ni)] s-re uniformly distributed amongst
the discrete time points. The uniform distribution assumption is a consequence ofthe lack
of more accurate information prior to a resynthesis step. Peariyi'f^i) actually consists of
two terms: the probability that a functional transition occurs on theother changing input;
and the probability that the functional transition on n,- precedes the other given that both
inputs transition. This is outlined following the generalization ofthe two input theory.

Generalizing to Gates with Arbitrary Input Changes

To generalize the theory for two-input gates multiple input changes, it is assumed
that the probability that functional transitions occur on more than two gate inputs is much
less significant than the probability ofa single input pair changing. For example, consider
a gate with three independent inputs, each with a probability of changing of 0.5. The
probability that a pair of inputs change is 0.475, and the probability that three inputs
change is 0.125. Hence, 75% of the multiple input change conditions is associated with
just input pairs. The applicability ofthis approximation depends strongly upon the input
correlation, but for the pairwise approximation it is taken as a general assumption.

The formulation of Spurious Transmission is the same for an arbitrary gate as for

a gate with only two inputs changing, except the sum is now across all inputs.

irfn = E P'-(5n(n.)).|r„ |̂ (4.6)
*li€An

For Generation the probability that an input Uj arrives earlier than another gate

input njfc is approximated using pairwise correlation. The probability that a transition
on input nj arrives earlier than some other input is equivalent to the probability that it
doesn't arrive later or at the same time as other gate inputs, i.e. Pearly = ^~Piate~Paame —

1- Plate,same- To uotate this, two further symbols are defined: ct, is the condition under
which input ni has a functional transition, P^^riyi^j) the probability that a functional
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transition on input Uj arrives earlier than a functional transition on n, given that both

inputs transition.

Platt,samt{nj) = I I )
n,€A„\nj

This is then used to generate a scaling factor A'eor/y(wj) for the sum of the indi

vidual Pe^ar/yC'̂ i)-

j. / \ f •P/a<e,5ame(^j)
I<,.).Cw,{«i)

Eqn. 4.5 is then modified by summing the contribution to Generation from each

input relative to every other input. is the probability that a functional change

on input n, is propagated as a spurious transition assuming all inputs other than nj remain

fixed.

|rf'=| =iE( E (4.7)
nt€An nj€An\ni

This results in what is refered to hereafter as the Functionally-Independent Delay-

Sensitive (FIDS) model.

4.2.2 Testing the Functionally-Independent Delay-Sensitive (FIDS) Model

The FIDS model has been tested on networks with the unit delay gate model.

The results show that the technique can be used to drive an algorithm which inserts delays

to balance network paths thereby minimizing the amount of spurious dynamic activity

generation. Although the approach of inserting power consuming delay elements would

be a bad technique in practice, it is a theoretical demonstration of the accuracy of the

estimation routine. The test demonstrates the ability of the estimator to predict whether

an expected change in transitive fanout power more than offsets the power consumed in the

buffers required in a balance step.

The concept of path balancing is shown in the example of Fig. 4.6. Assume that

this is a small circuit embedded in a larger network. Let the set of inputs {a,6,c} resolve

to {A,B,C}. For the purpose of illustration, consider the balancing of AND2. In the

original circuit, a glitch is generated at the output of AND2 under the logical conditions:
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Switching conditions leading togeneration d output glitch:
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Figure 4.6: The Concept of Balancing Path to Reduce Activity

cCab{AB + B). By inserting two unit delay buffers on input AND22, the arrival of the

transition cC at this input is simultaneous with the signal transition abAB at input AND2i.

Consequently, this transition does not generatea spurious output transition. The conditions

for a Generation at AND2 are now: abBcC. If this reduction in spurious output activity

when propagated throughout the TFO of AND2 reduces network power consumption by

more than the power dissipation of the inserted buffers, the balance is a valid optimization.

The estimation of the change in power both local to a ^ate and throughout the TFOis to be

performed using the FIDS estimation technique. In this test, the paths axe only balanced

to the latest arrival time of the node inputs. (Note that when the delay intervals are finite,

the concept of 'balancing' two paths is not weU defined.)
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The change in delays caused by balancing paths makes it necessary to estimate

the change in activity intervals throughout the TFO. Upper and lower time bounds are

handled in a similar manner, so the heuristic used is described here only for the upper

bound. In Fig. 4.7, a gate with delay d has three inputs with delay bounds illustrated:

Bu{n3) < Bu(n\) < Bu{n2). Let the delay of input n2 be adjusted either positively or
negatively, and let (Bu{n)-d) be in the interval {Bu{ni\Bu(n2)) such that {Bu(n)-d) =
(Bu{n2) - 6(n2)). Let Bu(n2) be changed to B{;(n2). The new upper bound on theoutput
activity interval Bfjin) is then estimated: By{n) = max{(By(n2)-^(n2)),Bi;(ni)} + d. In
general, = max„,gA„{(5i7(n,)-6(ni))}+d, where ^(n,) = 0if (Bu{n)-d) > Bu(ni).

Pr(trans n^)

1
Pr(trans Hg)

Pittransrig)

delay d Pr(trans n)

But")

Bu(n) - d

Figure 4.7: Estimating the New Delay Bounds

The balancing algorithm works forward from the primary inputs through to the

primary outputs. For each node output, strings ofunit delay bulfers are constructed which
balance this signal for each fanout gate. This is iUustrated in the example ofFig. 4.8. The
gate interconnection on the left hand side of the figure is presented against a balancing
time scale for four different cases of buffer strings balancing zero, one, two or all three

fanouts. Each possible buffer string is analyzed for its contribution to overall network power
consumption. The optimum length buffer string is then chosen. The power consumption of
each buffer is assumed equivalent to an inverter with minimum sized transistors.

The insertion of a buffer string is made before it is known whether further buffers

will be inserted in the TFO. This, however, does not add error to the testing of this estima

tion technique. The buffers in the TFO will only be added if their insertion further reduces
overall network power consumption. Their cost is therefore accounted for at their time of
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Figure 4.8: Finding the Optimal Buffer String
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Case 4

insertion and this does not influence the accuracy of earlier decisions.

The program based upon this algorithm was run on several networks from the

ISCAS '89 benchmark set [25]. The networks were first synthesized for low-power using a

technique similar to that presented by A. Shen et al. [20]. The buffer insertion experiment

was then run on these low-power synthesized circuits, and these results are presented in

Tab. 4.1.

The four experiments presented in Tab. 4.1 are: Area Opt. for an areaoptimized

circuit, Power Opt. for a network synthesized for low-power. Delay Insert, for the buffer

insertion to reduce spurious activity, and Delay/Area for buffer insertion under area con

straints. In this final case, the area constraint is that the percentage increase in circuit area

as a consequence of buffer insertion has to be less than four times the percentage decrease

in power. The circuit areais measured in terms of the literal count, the power is in fiW for
a supply of 5V and clocking frequency of20MHz. The power and area results of the Power

Opt. experiment is scaled relative to the area optimized circuit, the results of the Delay

Insert, and Delay/Area experiments are scaled relative to the power optimized circuit.



Area Opt. Power Opt. Delay Insert. Delay / Area
Ckt. Area Pow. Area Pow. Area Pow. Area Pow.

s27 18 54 1 0.88 1.11 0.99 1 1

s344 203 800 1.01 0.89 1.27 0.89 1.20 0.89

s382 216 855 0.99 0.89 1.32 0.96 1 1

s420 247 922 1.03 0.76 1.28 0.98 1.02 0.97

s444 210 1061 0.99 0.71 1.30 0.95 1 1

s510 377 1606 1.01 0.80 1.42 0.95 1.19 0.95

s526 322 1571 1.03 0.75 1.28 0.97 1.11 0.98

s641 243 1056 1.07 0.89 1.30 0.90 1 1

s713 240 1130 1.03 0.80 1.27 0.91 1.19 0.93

s820 465 1895 0.99 0.73 1.41 0.92 1.20 0.94

Table 4.1: Optimization with Unit Delay Model Power Estimation

78

The results show that the FIDS estimation model is able to predict the expected

change in power relative to changes in delay. This is demonstrated by the ability of the buifer

insertion routine to select balancing strategies which ensure that the global reductions in

power more than offset the local increases. It should be noted that the Insertion of buffers

to fully balance all paths increased network power between 10 to 20% in all cases. The

operation of the algorithm within the constraints of a power/area tradeoff further illustrates

that the method is able to make accurate predictions for unit delay model power estimation.

The large reduction in area for the same power gain in the majority of cases shows that

a significant percentage of balance choices made without an area constraint have global

reductions in power almost identical to the power consumption of the inserted buffers. In

the four cases where no improvement in power can be made under the area constraint, it

is clear that each original balance condition only contributed a marginally power saving.

Consequently, the area constraint makes all possible balance conditions nonviable.

The program was modified to operate on circuits with arbitrary delay. However,

no balancing occurred for any benchmark example tested. In Sec. 4.2.3 this is explained in

a consideration of the accuracy of the Functionally Correlated Delay Sensitive estimation

technique. The balancing effect observed for unit delay networks was strongly dependent

upon two properties not present under the arbitrary delay model assumption. These prop

erties are:
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1. Coarse Time Discretization. This increases the probability that transitions are es

timated to occur simultaneously so exaggerates the reductions possible in generated

spurious dynamic activity.

2, No Fanout Loading. This increases the probability that the balancing of the input

to one gate also balances an input to another. For the arbitrary delay model, the

loading effect can vary gate delays significantly making this multiple-balancing effect

less probable.

4.2.3 The Functionally-Correlated Delay-Sensitive (FCDS) Model

The problem with the estimation strategy of the previous subsection is that is does

not take into account the correlation between a node input n,- and the sensitivity of the

node to that input. Consider the example of Fig. 4.9.

AND2

y = a.a.b = 0

AND1

Figure 4.9: The Correlation of an Input to its Sensitivity

Assume that all gates have unit delay, and that a and 6 are primary inputs on

which transitions arrive at time < = 0. A glitch will be generated at the output of AND2

under the conditions where there is a transition from 0 to 1 on input a which is propagated

through the gate. The logical function of the output is 6aa = 0, so any propagation of a

transition from input a is spurious. The probability that input AND22 is 1 is 5. Therefore,

P'r{SAND2{AND2i)) = However, under the conditions where a = 0, the output of ANDl

is 1 iflft = 1. Hence, under the conditions of a positive transition on input a, the probability

oferroneous propagation is actually ^. The estimation scheme ofthis subsection takes into
account this correlation.

Theory for Gates with Two Inputs Changing

In order to construct a formulation for the probability of generated activity which



80

has correct conditional probabilities, it is necessary to itemize the elements which define

Generation. Assume that the two inputs to node n which change are Uj and Tijk. Input nj

generates a spurious output transition if:

1. There is a functional transition on nj.

2. There is a functional transition on Uk.

3. The functional transition on nj arrives earlier than that on n^.

4. The transition on Uj is transmitted through the node.

5. The result of the transmission of the transition on Uj opposes the final state of the

output.

The estimation scheme of the previous subsection correctly took into account ef

fects (1), (2) and (3), but assumed independence in the estimation of (4). To account for

the conditional probabilities, the estimate is broken down into the four different cases:

frij'fnic frij-frik

frij 'Ink fnj-Ink

fnj 'Ink frij -Ink

frij 'frik fnj -fuk

The first of these two cases give rise to the following formulation:

= PriUk IfnjY {Pr{SP(nj) \/„,./„J.Pr(/n 15S(n,)U,.7n:.7n:) (4.8)
-HPr(5J(n,) 1fnjJnk)-Pr(7: \^SCn.Oln.-Tn'.T;:)}

-fPr(/nfc 1frij)' {P''('S'n(^i) Ifnj-fnk)'PHfn \'S'n('̂ i)lnfc./nj./nfc)

+PK5';(ni) IfnjlZ)'P<TnI5S(n,)fe.7n;./nJ}

From the latter two cases, the following is derived:

Pf(n,) = PrUnk iTn;). {Pr(5S(n,) l7n;./nJ.PK7n ISl{ni)U,.Snji:'k) (4.9)
+Pr(5;(n,) l7n;./„J.Pr(/„ 1Sliui^k-InjlZ))

+P^(/nfc Ifnj)- {P'*('̂ n('̂ i) Ifnj-fnk)'P^{fn 1S^{''̂ j)\nk'fnj-fnk)

+Pr(s:i{nj)\jrj-Trk)-Pr{fn Is:{nj)\r^.fnj-fnk)}
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To explain this expression, consider an example term, in particular:

Pr(fn, Ifn,yPr(Sfl(nj) \ | S;i(nj)\n,j:;7Z)

Pr{fnf, 1/nj) is the probability that input Uk is one given that rij is 1; | fnyfnk) is
the probability that the output is sensitive to input nj given that nk,nj are originally one;

and Pr{fn \^J(wi)|nfc-/nj-/nfc) is a term contributed from effect (5) in the list enumerated
above. For this particular example, this term is the probability that the nodeoutput settles

to logic 1 given that Uj and Uk settle to logic 0, and that the functional transition on input

Tij was propagated through the gate as a negative output transition. These definitions for
Pi^iuj) and PiHnj) can be substituted directly back into Eqn. 4.4 and the subsequent
formulae.

Generalizing to Gates with Arbitrary Input Changes

The technique for the generalization of the two-input gate theory to multiple input

gates is identical to that presented in Sec. 4.2.1 with P^^(nj) and P^^(nj) replaced by the
more accurate formulations presented in this section.

4.2.4 Accuracy of the Functionally-Correlated Delay-Sensitive Model

The FCDS model was tested for absolute accuracy and also for its ability to deter

mine sensitivity to changes in network delays. The test of absolute accuracy was performed

by comparing the results of exact simulation of a network to the predictions of the esti

mator. For each node in the network, the node output activity was estimated given the

node input activities and their delay bounds. The sensitivity to delay is tested by balancing

the node input arrival times to the latest input arrival time. After balancing, the network

is simulated again and the total change in power is compared to that estimated by the

FCDS method. Both tests were performed on networks from the ISCAS '89 benchmark set,

first optimized with script .rugged[19] and mapped to the msu.genlib gate library. The

arbitrary gate delay model is used for the power simulation.

The absolute accuracy of the FCDS model is presented in Fig. 4.10. This graph is

a plot of estimated spurious dynamic activity against the actual spurious dynamic activity

for every node in the tested networks. The estimator is well correlated to simulation with

a correlation coefficient of 0.98. It is worth noticing that the correlation is better when

the amount of spurious dynamic activity is small. The increase in error is a result of the
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Figure 4.10: The Accuracy of the FCDS Method: Estimate vs. Actual Activity
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estimate becoming dominated by transmitted activity when spurious dynamic activity is

large. The Spurious Transmission is not as accurate an estimate as Generation due to

the fact that it assumes independence between the spurious input activity and other node

inputs.

In Fig. 4.11, the proportion of the spurious dynamic activity at a node which is

Generation is plotted against the total amount of spurious dynamic activity. Fig. 4.12 is a

running averageof the same data computed with a minimum step sizeof 0.01, and minimum

data count per averageof five points. In the case where spurious dynamic activity exceeds

0.25, less than half of this activity is accounted for by Generation effects.

The results of the balancing test are depicted in Fig. 4.13 . The same results are

presented in Fig. 4.14with all the trivial balancing casesremoved. (A trivial balancing case

is one in which the input activity intervals are of zero width so that node balancing reduces

the node output spurious dynamic activity to zero.) In both cases, the estimator predicted

change in activity is plotted against the actual change in spurious dynamic activity. From

these graphs it is clear that an estimator based upon the concepts of Spurious Transmission

and Generation does not have sufficient accuracy to predict changes in activity with changes



cc

.2
•D
<

o

^ <to «

o o
« ,

0.4 0.6 0.8
Node Average Transition Activity

1.2

Figure 4.11: Generation Relative to Total Spurious Activity

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

o '

♦ o

^ o<*^<» «
o o ^

0.2

e

«
♦ ♦

0.4 0.6 0.8
Node Average Transition Activity

1.4

1.2

Figure 4.12: Average Generation Relative to Total Spurious Activity

83



84

in delay despite the overall estimator accuracy depicted in Fig. 4.10.

In Fig. 4.14, there are significant clusters of points on or near both the x- and

y-axes. The cluster of points along the x-axis are conditions which the estimator fails to

predict. The independence assumption associated with the estimate of Spurious Transmis

sion accounts for this lack of identification of optimality conditions. To improve the ability

to estimate these changes, it is necessary to have information about the functionality of

the spurious dynamic activity. The points clustered on the y-axis are conditions which

the estimator predicts but which don't actually occur. Generation is the only part of the

FCDS estimate affected by delay. Hence, the over prediction of changes in activity is a

consequence oferror in the Generation estimate, and this error therefore implies that the

uniform distribution model within activity bounds is insufficient.

The results of these tests show that sensitivity to delay cannot be predicted in the

absence of:

• An accurate estimate of the activity distribution

• An estimate of the functionality of the spurious dynamic activity

These properties cannot be predicted effectively prior to the resynthesis of a region. It is
not possible therefore to determine the sensitivity of global network power to the output
delay ofa network region being resynthesized. The sensitivity to delay under theconditions
where an estimate of the switching activity distribution and functionality can be obtained

is the focus of Chap. 5.

4.3 Sensitivity to Dynamic Activity

Sensitivity to dynamic activity is the sensitivity of the network to changes in to

tal activity at a node, neglecting delay effects. The estimation technique of the previous
section incorporates terms for both a change in functional and spurious dynamic activity
at a node inputs. However, the majority of the complexity of the estimate is associated
with the computation of spurious Generation. The empirical results have shown that the
concept of Generation does not adequately account for delay effects in the absence ofac
curate switching distribution estimates. Consequently, this term can be removed from the
estimation technique without affecting accuracy with respect to modeling Dynamic Sensi
tivity. During resynthesis, changes in the network are incremental so statistical properties
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relating the input activity to the output spurious dynamic activity at any specific node

are unlikely to change significantly. The original state of the network can then be used

to establish how a change in spurious dynamic activity will globally affect network power

dissipation.

4.3.1 The Delay-Insensitive (DI) Model

An example of a very elementary estimator for activity at the output of node n

with input activities {T^} is:

IJ'JCesOl = E /''•(5„(n.)).|r |̂ (4.10)
n,€A„

The general problem with this approximation is that it neglects correlations be
tween the inputs. However, from an initial network simulation a ratio can be computed
which relates the actual spurious dynamic output activity to the input activities. A change

in spurious dynamic activity at an input to a node is assumed independent of the other
inputs. Hence, the sensitivities, 5„(n,), may be viewed as a measure of how significant a
change in the dynamic activity of input n, is to a change in the spurious dynamic output

activity.

For the estimation strategy of Eqn. 4.10, the ratio of original output spurious

activity to input dynamic activity is:

nD u 11)

" " (En.€A„^K5n(nO).|Tr(orip)|
Establishing the ratio of the spurious output activity to the estimate ofEqn. 4.10

forms a distinction between functional and spurious dynamic output activity estimation.

This allows the result of the estimation strategy of Chap. 3 to be coupled with the spurious

dynamic estimate. In this way, a good approximation offunctional correlation is maintained.
To estimate a change in activity at the output of a node given a change in the spurious
dynamic activity at the inputs, the ratio is assumed constant giving:

I) = RS-{ E /'r(5„(n.)).«(|rjl)) (4.12)
n,€An
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4.3.2 Accuracy of the Delay-Insensitive (DI) Model

The accuracy of the DI model was examined for the same circuits as the test for the

FCDS model. This test is actually performed on the estimation technique for overall activity

presented in Eqn. 4.10. Note that the the DI model uses scaling, so its true accuracy is only

defined with its ability to predict changes in activity, not absolute values (See Sec. 4.5).

However, the accuracy of Eqn. 4.10 in predicting total spurious activity is still interesting.

This test demonstrates the validity of the assumption that node sensitivity can be used as

measure of the statistical significance.
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Figure 4.15: The Accuracy of the DI Method

The results of this test are shown in Fig. 4.15. Compared with Fig. 4.10, it

is observed that for large spurious dynamic activity the FCDS and DI techniques have

similar accuracy. This arises from the fact that the two approximation methods become

almost equivalent whenSpurious Transmission dominates. This occurs for spurious dynamic

activities greater than 0.2 (Fig. 4.12).The results of this test suggest that the accuracy of

the DI method in predicting changes in spurious dynamic activity will be limited when

spurious dynamic activity is small, but it will improve as the spurious dynamic activity

increases.
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4.4 Sensitivity to Functional Spurious Activity

Sensitivity to functional spurious activity involves estimating how node sensitiv

ities are affected by expected change in input functionality. All of the terms in the ap

proximation schemes of Sec. 4.2.3 and Sec. 4.3.1 can be estimated using the techniques of

Chap. 3. The function describing each probability in these expressions has the same inputs

as the original node. The sensitivities of these functions with respect to each input may be

established, allowing the expected change in function to a change in input onset probability

to be computed.

The problem with such an approach is that each term is averaged independently.

The correct expected change in output activity is derived from the average of the product,

not the product of the averages. Taking into account the correlation between the individual

terms of the expressions to compute the average of the product is extremely difficult. Con

sequently, the product of the averages is used as an approximation. The empirical results

show that this simplifying approximation makes the FCDS model less accurate at estimat

ing Functional Spurious Sensitivity and Dynamic Sensitivity than the DI model. Increasing

the complexity of analysis used in the FCDS model could only improve accuracy for the

small measures of spurious dynamic activity for which the FCDS technique is more accurate

than the DI estimate. There is little to be gained by such a pursuit.

The DI model has a very simple first-order approximation to the combination of

Functional Spurious and Dynamic Sensitivity expressed in the foUowing equation:

^(ITfl) = Yi Pr{Sn{ni)).S{\Tl\) +S(Pr{Sn(ni})).\Tl(orig)\) (4.13)
ni€An

4.5 Overall Sensitivity Results

The results of this section demonstrate the accuracy of estimating changes in power

consumption using Functional Spurious and Dynamic Activity Sensitivities. The program

to generate test cases is the same as that outlined in Chap. 3 and the experiment is run on

the same circuits from the ISCAS '89 benchmark set*. Following the selection of a random

change in function ofa network node, this nodeis resynthesized locally using script .rugged

and mapped into the msu.genlib library. This resynthesis and remapping changes delay,

function and topology ofthe affected region. This provides a suitable platform for testing of
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Figure 4.17: Spurious Dynamic Activity Estimation without Dynamic Activity Sensitivity
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the accuracy of the estimation techniques of this chapter. The changes in power measured

from full simulation are compared against thosepredicted by the estimation techniques. The

scale of the graphs presented here is normalized to a 20MHz input vector arrival frequency,

supply voltage of 5V. A unit on the graph corresponds to IfiW.

Fig. 4.16 is a graph of the results of the expected change spurious dynamic TFO

power against actual change, but without accounting for Functional Spurious Sensitivity.

(This is using the DI model without updatingthe Pr(Sn{ni)) terms.) The results show that

without estimation of the changein functionality throughout the TFO, Dynamic Sensitivity

alone is a very poor estimation strategy. The correlation coefficient is only 0.56. In Fig. 4.17

the results of the DI estimator are presented for Functional Spurious Sensitivity alone.

Dynamic Sensitivity neglected. Again the correlation is poor, this time with a correlation

coefficient of 0.73.

In Fig.4.18 and Fig. 4.19 the resultsof the FCDS and DI models respectively with

full analysis of aU sensitivities modeled by each scheme is shown. (Fig. 4.18 shows results

from an earlier test which ran fewer iterations than the final testing of the more accurate DI

model.) The problem with neglecting the correlation between the sensitivities of the more

complex FCDS model is immediately obvious. The correlation coefficient for this model is

only 0.67, whereas the DI scheme exhibits a correlation of 0.93. This is a clear example of
how application of simple approximation techniques to a complex model can actually make

the complex model less accurate for incremental estimation. In this case, the error of the

simple model in predicting change is suitably accurate for use in a synthesis routine. As

sensitivity to delay has been shown to depend upon both an accurate timing distribution,

and the functionality of the spurious dynamic activity, a spurious activity estimator for use

in guiding synthesis routines cannot be expected to improve significantly beyond the error
obtained with the DI model.

The contents of Tab. 4.2 are the results of estimator correlation for the DI model

on each individual circuit examined. The column headed Old Sens. Correl. gives the es

timator correlation when Functional Spurious Sensitivity is neglected, Est. Sens. Correl.

is the estimator correlation with this effect approximated. Estimation without Functional

Spurious Sensitivity can produce correlations of less than 0.4 for a number of circuits, but

full estimation always produces a correlation of better than 0.9 . The accuracy of the full

estimation strategy is not strongly influenced by either the accuracy ofthe estimation with

out Functional Spurious Sensitivity accounted for, or the size of the circuit.
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Figure 4.18: Spurious Dynamic Activity Estimation with the Full FCDS Model
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Figure 4.19: Spurious Dynamic Activity Estimation with the Full DI Model



Ckt.

Old Sens.

Correl.

Est. Sens.

Correl. Ckt.

Old Sens.

Correl.

Est. Sens.

Correl.

s344 0.72 0.91 s820 0.91 0.97

s386 0.79 0.92 s832 0.20 0.98

s400 0.81 0.93 s838 0.83 0.90

s444 0.31 0.97 S1196 0.63 0.90

s510 0.39 0.92 S1238 0.52 0.98

s526 0.61 0.98 S1488 0.68 0.91

s641 0.39 0.94 S1494 0.70 0.92

s713 0.65 0.95

Table 4.2: Estimate Correlation for Change in Sp. Dynamic TFO Power

Power Change Occurrence Estimation

LOCAL GLOBAL Actual Est. Detected Incorrect

Decrease Increase 0.13 0.11 0.57 0.32

Decrease < —0.5a: 0.09 0.07 0.58 0.30

Increase Decrease 0.11 0.043 0.37 0.02

Increase < —0.5a: 0.08 0.02 0.24 0.04

Table 4.3: Total Activity Estimation without Node Sensitivities Prediction

Power Change Occurrence Estimation

LOCAL GLOBAL Actual Est. Detected Incorrect

Decrease Increase 0.13 0.13 0.79 0.20

Decrease < —0.5x 0.09 0.08 0.78 0.17

Increase Decrease 0.11 0.12 0.86 0.15

Increase < —0.5x 0.08 0.08 0.89 0.11
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Table 4.4: Total Activity Estimation with Node Sensitivities Prediction

The results of Chap. 3 are combined with those of the DI model in Fig. 4.20 and

Fig. 4.21. The first of these two figures shows the total change in power consumption
estimated with Functional Spurious Sensitivity ignored, and the second includes this sen

sitivity. Estimation of Functional Spurious Sensitivity improves the estimate correlation
from 0.82 to 0.97. The ability of the estimator to detect overall optimality conditions is
presented in Tab. 4.3 and Tab. 4.4. The improvement in the results of Tab. 4.4 over Tab. 4.3
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Ckt.

Old Sens.

Correl.

Est. Sens.

Correl. Ckt.

Old Sens.

Correl.

Est. Sens.

Correl.

s344 0.84 0.96 s820 0.94 0.99

s386 0.93 0.98 s832 0.73 0.99

s400 0.91 0.96 s838 0.93 0.97

s444 0.68 0.98 S1196 0.87 0.93

s510 0.62 0.96 S1238 0.85 0.99

s526 0.70 0.99 S1488 0.92 0.97

s641 0.87 0.99 S1494 0.91 0.98

s713 0.96 0.99
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Table 4.5: Estimate Correlation for Change in Total TFO Power

is a result of Functional Spurious Sensitivity estimation. Tab. 4.5 contains results of esti

mator correlation for each circuit tested.

The results of Tab. 4.4 show that the optimality predictions of the overall activity

estimator are only about 10% less accurate than those of the functional activity estimator

results ofChap. 3. This isa good result given extremely complex phenomena being modeled.

The importance of modeling the overaU activity change is made clear by a comparison of

Fig. 3.11 with Fig. 4.21 which indicates that the spurious dynamic activity can alter the
overall change in power consumption by a factor of three or more relative to functional

activity change alone. From Tab. 4.5 it is observed that the accuracy of the estimator

including sensitivity prediction does not appear to be related to the size of the circuit.

4.6 Summary

In this chapter, three concepts important to the influence of resynthesis upon

spurious dynamic network power have been isolated. These three concepts are:

• Sensitivity to Delay

• Sensitivity to Dynamic Activity

• Sensitivity to Functionality (Functional Spurious Sensitivity)

Prior to synthesis, the only estimate of these quantities which can be made is bounds on

delay, the amount ofspurious dynamic activity (zis opposed to knowing its precise function-
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In this chapter, the ability to predict changes in activity due to changes in delay

is addressed in detail. Chap. 4 includes an analysis of this property in the context of simple

delay bounds which might be used to guide resynthesis. The object of the material in this

chapter is the development of theory and empirical evidence which relates the ability to

determine delay sensitivity to the necessity for accurate estimation of transition distributions

and spurious transition functionality.

The theory presented in this chapter applies to routines which perform changes in

delay with minor or no changes in network functionality. This is the case during transistor

resizing for reduced power consumption, and also in the prediction of the effects of change

in fanin loading of a resynthesis region. The theory addressing this concept could also be

used to guide resynthesis of a region if the resynthesis options are sufficiently limited to

allow accurate prediction of output transition distributions and spurious functionality. It

is shown in the results presented here that delay sensitivity is not a very accurate premise

in the absence of exhaustive enumeration of the possible delay combinations. Without

simulating every delay combination, the accuracy in predicting a change in activity cannot

be improved beyond a correlation of 0.8.

This chapter has three sections. In Sec. 5.1 several different activity types are
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ality), and the expected change in the probability of node onsets (from Chap. 3).

Two estimation strategies have been proposed. The first uses a measure of sensi

tivity to delay, the second is independent of this quantity. The estimation scheme which is

sensitive to delay incorporates the concept of simultaneous arrival for state transitions and

their correlations. Consequently, this model is as accurate as possible under the constraints

on the information indicated above. Empirical verification of this model has shown that

sensitivity to delay cannot be formulated without accurate estimates of both the switching

distribution and the functionality of the spurious dynamic activity.

The spurious dynamic activity model which is delay insensitive is based upon

the fact that during resynthesis, network correlations are unlikely to change significantly.

Consequently, properties from an initial simulation of the network are used to determine the

expected statistical significance of incremental changes. Empirical tests show that changes

predicted using this estimator correlate very well with simulation results. The examination

of results for the Dynamic and Functional Spurious Sensitivity estimates alone demonstrate

that both effects are almost of equal importance. Furthermore, the final accuracy of this

model shows that sensitivity to delay is by far the least significant effect.

The combination of the delay insensitive estimation scheme with the results of the

functional activity estimator is able to predict overall changes in network power very weU.

The correlation of overall estimate to experiment is 0.97.
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isolated, and estimation techniques for those which can bepredicted without full simulation
are presented. This section also contains an outline of the form ofthe empirical testing
strategy used for establishing the results in this chapter. In Sec. 5.2 and Sec. 5.3, the two
effects which can be estimated without fuU simulation are addressed. The results for the

different estimators are combined in Sec. 5.4, and summarized in Sec. 5.5.

5.1 Isolating Activity Types

There are three effects which determine the amount of spurious activity at the

output of a node. These effects are:

• Simultaneous Reduction. If one input transition to a gate arrives simultaneously with

another input transition, the number ofoutput transitions is less thanorequal to the
number of transitions which occur if the transitions are not simultaneous.

• Functional Tvunsmission. If a transition occurs on an input n,' to gate n at a time

when all the other inputs have not transitioned or have settled to their final state, the
transmission of the signal on input n,- can be computed from the previous and next

state input variables.

• Non-Functional Transmission. If a transition on an input Ui to gate n occurs at

a time when one or more other inputs have transitioned but have not yet settled,

the transmission of the signal on input n,- may not be able to be computed from a

combination of previous and next state input variables.
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Figure 5.1: Example of Functional Transmission
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The first of these effects is obvious and has been discussed in Chap. 4. The concept

of Functional Transmission is illustrated by an example introduced in Chap. 4, duplicated

here in Fig. 5.1. The generation of spurious dynamic activity on x uniquely defines input

conditions on (a, 6) as an initial state (1,0) and final state (0,1)- This implies that if the

other input to AND2 is correlated to the previous state of 6 when the glitch is produced
on a;, it cannot propagate. On the other hand, correlation to the next state of bguarantees

that the glitch will propagate. Because the propagation ofthis activity depends solely upon

the previous and next state functions of 6, this is denoted Functional Transmission.

An example of Non-Functional Transmission is shown in Fig. 5.2 . In Case (i),

spurious activity occurs on input a while the other input is also under the influence of
unnecessary transitions. Consequently the output transitions even though the next and

final state of both inputs is 0. In Cases (ii) and (iii), input b does actually have a state

change. The propagation of the glitch on input a is correctly predicted iffthe result is
correlated against the correct state (next or previous) of input 6. However, determining

the correct state depends upon knowledge of the topology (timing, not just the function) of

the fanin logic. Consequently, this is defined Non-Functional Transmission as it requires
knowledge of the specific gate mapping of the network.

Assume a zero delay gate

AND

Case (i); a(t)

b(t)

7 \ •

Case(ii) a(t)

J~V
b<t)i

J \.f^

Case (iii) a(t)

r\ .
b(t)

r\ A.

y(t)

y(t)

y(t)

Figure 5.2: Example of Non-Functional Transmission

iZi

O.



99

The reduction in activity due to Simultaneous Reduction must be separated from

the Functional Transmission and Non-Functional Transmission. This can be achieved by

defining a measure ofactivity without simultaneous arrival and then the difference between

this measure and the actual activity is the Simultaneous Reduction (SR).

Assume Untt Delay of all gates

1r~-^ND

Case (I)

Case (ii)

ANQ,(t)

AND^)

ANC^d)

AN0,(t)

AND^)

ANC^d)

y{t)

A

V

\
y(t)

r^f
0 1

Figure 5.3: Defining Non-Simultaneous Activity and Simultaneous Reduction

Activity without simultaneous arrival {Nan-Simultaneous Activity or NSA) can be

defined through the application of an arbitrary arrival order to gate input signals which
arrive at the same time. Consider the example of Fig. 5.3. Let a and b be independent

inputs with Pr{l) = 0.5. From fuU simulation, the AND gate output has a functional
transition with probability 2.|.| = |, and has no spurious dynamic activity. Inputs ANDi
and AND2 arrive simultaneously at time t = 0, input AND3 arrives at time t = 1 (assuming

unit delay). To estimate activity without Simultaneous Reduction, let the arrival times for
AND gate inputs (1) and (2) be ti and <2 respectively. If <1 < <2^ when (a,5) changes state
from (0,1) to (1,0), AND3 = 1so the glitch is seen at theoutput. The amount ofamount of
Non-Simultaneous Activity for this ordering istherefore: | +2.g = |, giving a Simultaneous
Reduction of If, however, ii > <2 then no spurious activity is generated and the Non-

Simultaneous Activity is | with Simultaneous Reduction of 0. It is shown through this
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example that ifan arbitrary arrival order for the simultaneous input transitions is assumed,
Non-Simultaneous Activity is a function of this order. To form a input order independent

measure ofNon-Simultaneous Activity, it is defined withrespect to the average ofaWpossible

orderings ofsimultaneous input arrivals. For this example, there are two possible orders
producing a measure ofNon-Simultaneous Activity as g = ^ and Simultaneous Reduction
is i15 g.

Consider an arbitrary gate n with inputs An = set of

all possible input orderings being Perm{An). The set of all input transition times is r =
and let \Tn^{ti)\ be the amount of output activity at n caused by input

transitions at time t,- if they are made to arrive in order Oj. Non-Simultaneous Activity is

then defined:

irerm^AnJl ^ OjePerm(A„)

The Simultaneous Reduction (which is alwaysless than or equal to zero) is defined:

it;®"! = \Tl\ - (5.2)

When there is no simultaneous input transition arrival, the output transition activ

ity is exactly the sum the amount of Functional Transmission and Non-Functional Trans

mission. The Non-Simultaneous Activity construct allows optimality to be defined with

respect to the three forms of activity separately. The material of this chapter is focused

on the detection of optimality attainable through estimation of the changes in Functional

Transmission and Simultaneous Reduction. No estimator is presented for approximation of

Non-Functional Transmission effects alone. This is because prediction of Non-Functional

Transmission requires estimation of signal functionality over all time. With estimation of

signal functionality over all time, the problem of finding optimality becomes equivalent to
full simulation of all possible input delay conditions.

A statistical testing strategy is required to empirically test the relative impor

tance of optimality obtained through a different activity types. The results presented in

this chapter are extracted from the simulation of a gate before and after input delay permu

tations. Delay permutations are randomly selected from the set of all possible input delay

permutations which impose different input switching orders. In the example of Fig. 5.4

which illustrates this concept, only the delay of input his changed as it is the relative delay



Pr(a trans)

l+U
Pr(b trans)

I, I .
"" 5 i 3 4 Ti

x>>

Considering just delay change relative to input b

Case (i): Pr(atrans)

4t4
Pr(b trans)

IttI
Case (ii): Pr(atrans)

4tt+
Pr(b trans)

Ad^=+3

TTT i iI^ I'

Case (iii); Pr(a trans)

44tt+t
Pr(b trans)

TTTItt4-
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A new delay
configuration 7

YES

YES

NO
(Same as the original

configuration)

Figure 5.4: Defining Suitable Test Delay Permutations

conditions which are critical, not the absolutes. The first two cases shown represent valid

delay permutations for a test. In Case (i), there is now simultaneous arrival at time 2, and

in Case (ii) the order of the switching distributions has changed. In Case (iii), however, a

delay of 1 does not change the input switching order relative to the original. Consequently,

this is the same test permutation as the original arrival configuration. It may be noted

here that under some conditions Case (i) or Case (ii) will not change the input arrival time

order. Taking Case (ii) as an example, a transition at time 5 on input a may never occur

when a transition at time 3 on the original input b has occurred. However, being able to

compute this requires explicit knowledge of the association between transition functional

ity and time. As the object is to test the estimator validity when this information is not

considered, testing an estimate for that change in the input switching distribution order

is actually very important. For every gate tested, the number of permutations chosen for

testing is the lower of the total number of possible permutations and 10.



Power Change Occurrence
Factor

0.50x

0.80X

0.90X

0.95x

1.05x

l.lOx

1.20x

1.50X

Actual

0.004

0.024

0.108

0.209

0.101

0.046

0.014

0.001

Est.

Tm
0.014

0.060

0.139

0.113

0.051

0.015

0.001

Estimation

Detected

0.54

0.58

0.56

0.66

1.00

1.00

1.00

1.00

Incorrect

Table 5.1: Detection of Optimality using Non-Simult. Activity

•1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Change in Node Activity Relative to Original Activity

Figure 5.5: Accuracy of Optimality Detection using Only Non-Simultaneous Activity

In this empirical study, delay permutations are only tested for non-trivial cases

in which at least one of the inputs to the gate has a non-zero activity interval. In the

other cases, the association between transition functionality and time is trivial as input

distributions are single time points so Functional Transmission and Simultaneous Reduction

describes all the behavior. The results in this chapter are proportional changes relative to

original activity.
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The results of empirically testing 13 circuits from the ISCAS '89 benchmark set

for the effect input delay permutation on gate output activity is plotted in Fig. 5.5. This

is a graph of the change in activity predicted using only the change in Non-Simultaneous

Activity against the actual simulated change in activity. The correlation is 0.85. (Note
that the results always lie on or above a 1-to-l correspondence line due to the fact that

Simultaneous Reduction is always zero or negative.) The ability to predict optimalityusing

just a measure of the Non-Simultaneous Activity is summarized in Tab. 5.1. Columns 2

and 3 show the proportion of total tests for which a change in power given by the factor

in Column 1 occurs or is predicted to occur. Column 4 is the proportion of cases correctly

predicted, Column 5 is the proportion of predictions of the occurrence which are incorrect.

The results of this table are influenced by the skew evident in Fig. 5.5. An increase in

activity is over-estimated by Non-Simultaneous Activity, a decrease under-estimated. In

fact, Non-Simultaneous Activity alone only accounts for between 50 and 70% of the total

optimality attainable. This implies that theSimultaneous Reduction effect is almost equally
important.

In Fig. 5.6, the change in Simultaneous Reduction is plotted as a proportion of
the change in Non-Simultaneous Activity and Fig. 5.7 is a running average of this data.
The running average seems to show that contributions from Simultaneous Reduction would
be expected to influence the result of the Non-Simultaneous Activity analysis by 10% or
less. However, this is not the case as the error in prediction of optimality conditions using

Non-Simultaneous Activity alone is affected by the form of distribution of the number of

cases relative to the absolute change predicted. This relationship is illustrated in Fig. 5.8.

Consider the case of being able to predict the conditions for which the the total

change in transition activity relative to the original Simulated Activity is x. Let Pr'{y)
be the probability that the magnitude of the change in Simultaneous Reduction is greater

than {x - y) where y is the amount of change in the Non-Simultaneous Activity. Further,
let AVs(j/) be the number of conditions detected for Non-Simultaneous Activity change y.

The number of points for which the Simulated Activity is scaled by a factor of less than

(1 -f- x) relative to the original activity is given by N{< i):

N{<x)= f Pr'{y).NNs(y)'dy+ f NNs{y)'dy (5.3)
Jx J—oo

Consider i < 0 (i.e. A reduction in activity). The first term of the above
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Figure 5.8: Proportion of NSA Points vs. Change in NSA

expression gives the number of points for which Non-Simultaneous Activity does not cor

rectly estimate that the actual change in activity is larger than lx|. The sharp gradient
depicted in Fig. 5.8 in the region of (0.01 < |x| < 0.15) illustrates that Nj^s{y)'̂ y ^

Jloo^Nsiy) for X< -0.05. Although Fig. 5.7 suggests that the Pr®(y) term is generally
quite small there is still a measurable number ofpoints for which the change in Simultane
ous Reduction is a significant proportion ofthe total activity change (Fig. 5.6). Thestrong
inequality in the total number ofpoints before and after \x\ for |x| > 0.05 implies that the
first term of Eqn. 5.3 is significant relative to the second. This accounts for the size of the

error noted in Tab. 5.1.

5.2 Non-Simultaneous Activity

The formulation of an estimation strategy based upon the concept of Functional

Transmission is covered in this section. The overall goal is to test the importance of the as

sociation between functionality and time. That is, an examination ofwhethera reduction in

the amount of Non-Simultaneous Activity can be predicted without explicit knowledge of the
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time/function correlation. Inability to predict changes in activity without this knowledge

implies that explicit simulation of input arrival times is required to detect optimality.

The estimation strategy is formulated by testing the accuracy for increasing levels

of assumption. As the level of assumption increases, the ability to predict optimality de

creases but the formulation becomes simpler. The simpler the formulation, the easier it is

to find an optimal condition predicted by the estimator. The levels of assumption are:

• The Early/Late Functional Transmission Construct. Drops knowledge about exact

functionality at any time by considering only those transitions which lead to a final

change in state. (Equivalent to T2 in Fig. 2.4)

• Time Independence. Dissociates the functionality from the transition distribution

completely. (Equivalent to tz in Fig. 2.4)

• Single Input Derivative. Establishes a gradient for the expected change in activity

when one input arrives earlier than another, thereby approximating input correlation.

The consideration of the validity of an approximation method needs to take into

account a measure of complexity. Complexity is measured by the number of BDD computa

tions required relative to exact symbolic simulation. Consider full simulation of every possi

ble input delay configuration of node n with inputs A„ = {ni, n2, na,...., n,„}. Suppose each

input Ui has T!r„, transition times. A BDD operation is required for every input switching

time so for Non-Simultaneous Activity thecomplexity is ^^nJVdlniCAn
This corresponds to every possible transition time ordering excluding those which re-order

transition times for any particular input.

5.2.1 The Early/Late Functional TVansmission Construct

The Early/Late Functional Transmission (ELFT) construct usesinformation about

the earliest and latest functional transitions on each gate input. It therefore tests the ability

to estimate Non-Simultaneous Activity using just previous and next state conditions of input

signals. How this concept models a signal is illustrated in Fig. 5.9 for four different cases

exhibiting spurious dynamic activity. In Case (i) (Case (ii)) there is no change in state, so

the signal is assumed to be logic 0 (1) for the entire activity interval. In Case (iii) (Case

(iv)) there is a change in state from 1 0 (0 —» 1). The change in state may be assumed

to occur before or after the activity interval, so during the activity interval t € [0,3] the
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Figure 5.9: Approximating a Signal Using Early/Late Functionality

function is approximated by considering both the previous and next state. That is, the

signal is assumed equally likely to be a logic 1 or logic 0 during the activity interval.

TheEarly/Late Function approximation ofa signal x{t) produces a relation Reil{^W)

expressing conditions for logic 0 (1) at time i. Let If{^) = {(iii A)i(*2)-f2)5 —be

set of primary input pairs for which signal x changes state, other primary input

pairs. Let be the earliest (latest) time for a signal change on x under

application of input vector pair {ij,Ij) € If{^)' For static input 7, let the function of x be

expressed as /(/). The Early/Late Function signal approximation is then given by:

RE/L{x{i)) = fiij) for{ijJj) e Inf{x)

= fiij) for{{{ijJj) € lF{x))and(tE{ijJj) > <))}

= f{Ij) e lF(x))and(tL{ijJj) < <))}

= {1,0} otherwise

From this relation, two functions may be extracted to describe the Early/Late

Function signal approximation. These are denoted x^^^j^{t) for the mapping to1and
for the mapping to 0 within the activity region. To illustrate how these functions are

used to determine an activity approximation for a gate, consider a gate n with inputs



An = {^1, —i^m} • Consider just the contribution to activity from a input rij at time t.

Sn^^\nj) is the sensitivity of the output to Uj at time t given inputs with functions N{t).
Let B(?) be the binary representation of number i, Bj{i) is the j"* digit. The contribution
to activity is then approximated by averaging over all possible input conditions described

by the Early/Late Functional input relations:

u

1 -0.2

|T„(t)l =;^ £ (5.4)
" 1=0

This equation embodies the operation of averaging between all possible input con

ditions described by the Early/Late Functional input relations. This form of approximation

correctly predicts all the optimality obtainable through Functional Transmission consider

ations. However, the estimate also includes a contribution from an approximation of Non-

Functional Transmission. The accuracy of this part of the estimate tests the validity of the

activity interval approximation scheme used in this estimation construct. The complexity

ofanalysis ofthis estimate is equivalent to that offull simulation due to the association of
time and functionality.

'lAnl-lt')

•0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.6 1
Actual Change in NSA

Figure 5.10: ELFT Approximation vs. Non-Simultaneous Activity



Power Change
Factor

Occurrence Estimation

Actual Est. Detected Incorrect

0.50X 0.002 0.000 0.08 0.00

O.SOx 0.013 0.007 0.42 0.29

0.90X 0.058 0.066 0.59 0.47

0.95X 0.134 0.192 0.71 0.50

1.05X 0.112 0.131 0.63 0.46

l.lOx 0.050 0.063 0.68 0.46

1.20x 0.014 0.022 0.77 0.52

1.50X 0.001 0.002 0.83 0.44
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Table 5.2: Detection of Non-Simult. Optimality using Early/Late Func. Trans.

This construct has been tested on the ISCAS '89 benchmark set. The aggregate

results are plotted in Fig. 5.10 for the ELFT estimator against the Non-Simultaneous Ac

tivity. A correlation coefficient of 0.66 is obtained, and the results of using this to predict

optimality is summarized in Tab. 5.2. It is interesting to note that there are points clustered

along the y-axis corresponding to a change in activity being estimated when there is actu

ally no change. However, there is no such cluster on the x-axis. The error mechanisms for

points which lie on the x- or y-axis exclusively are described in Fig. 5.11. Thefirst case will

Case (i):

Case (ii):

Input Signals

a(t)

b(t)

a(t)

b(t)

rui1—r
1 2 3 4 S 6

1 1 • I n r
1 2 3 4 S 6

-i—I—I—r
1 2 3 4 5 6

-h=T 1 r
12 3 4 5 6

Early/Late Func. Trans.
Approx. for a(t)

a(t)

a(t)

"T 1 1 1 1
1 2 3 4 5 6

"I—I—I—I—I—r
1 2 3 4 5 6

Approx. vs Actual;

Let a(t) be delayed 5 units

=> No change Inoutput activity

Early/Late Func. Trans. Approx.
predicts a reduction of one
transition transmitted from b(t).

(i.e. 1 -> 0 trans.)

Let a(t) be delayed 3 units

=> Reduction of two transitions
transmitted from b(t).

Early/Late Func. Trans. Approx.
predicts no change intransmitted
activity.

(I.e. 0 -> 0 trans.)

Figure 5.11: Errors with the ELFT construct
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generate a point on the y-axis. The approximation of the activity interval using either the

previous or next state implies that there wiU be a change predicted by the ELFT construct

when there is no change in Non-Simultaneous Activity. The second case is the converse of

this with no output activity change predicted but a change in actuality. The fact that there

is not a strong clustering of points along the x-axis similar to the y-axis implies that the

error incurred by neglecting totally spurious activity (activity when there is no change in

state) is not as significant as that incurred by assuming that either the previous or the final

state is equally likely during the activity interval.

The results show that the accuracy of the ELFT construct is not sufficient for use

in detection of Non-Simultaneous Activity optimality. However, it is not expected that an

estimator based upon an independence of switching distribution and functionality will be

able to predict optimality significantly better than this construct can (Sec. 5.2.2).

5.2.2 The Time Independence Assumption

When time and function are dissociated, the ability to estimate the correlation

between inputs over all time is severely compromised. Fig. 5.12 is an illustration of this

point. Two transition probability distributions are presented for activity on an input x(t),

one distribution for the positive transitions and one for the negative. For the same previous

and next state correlation, there are seven different activity types which these distributions

could describe. Clearly, if two inputs to a gate were actually the same, this correlation of

1.0 over all time is no longer detectable. This motivates the need to describe activity using

more than just absolute transition distributions.

An estimate of the correlation between lines can be improved by extracting dis

tributions which describe the time of a change in state given that a change in state occurs.

The distribution gives the probability that a state change has occurred prior to some time

i. For example, suppose Case (i) in Fig. 5.12 is the correct activity type. A distribution

of the earliest possible change in state has a probability of 1.0 at time < = 1 for both a

positive and negative change in state. The only cases which satisfy this are Case (i). Case

(v), Case (vi) and Case (vii). Consider now a distribution of the latest possible change in

state. The positive and negative distributions have a probability of 1.0 at time t = 3. Now

the only applicable activity type which satisfies both these is Case (i). These two distribu

tions are defined as the Early Functional Distribution {Early FD), and the Late Functional
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Figure 5.12: The Loss of Correlation with Time/Function Dissociation

Distribution {Late FD).

In general, the Early FD, Late FD and Transition Distribution together do not

uniquely specify a satisfying activity type. Fig. 5.13 iUustrates what is actually predicted
through the use of these distributions. Consider the cases for which the earliest positive

state transition occurs at time t = 3, an event of probability 0.3 given that a positive state

transition does occur. The total probability of the latest functional transition occurring

after this time is 0.7. The late functional distribution thereby encompasses three possible

events with a activity intervals of 0, 3 and 5 respectively. The probability of each event

is the probability that the early functional transition occurs at t = 3 multiplied by the



Transition Distributions tor Positive Transitions

Pr(trans)+

2 3 « 5 6 1

Pr(Late Func. Trans \ Func. Trans)*

The following are examples of transition
structures for a positive state change
according to these distributions.

These examples are for an Initial state
change at time ts3.

Pr(event) = 0.2

Pr{event) = ((0.3 - 0.2) x (0.3/0.7))
= 0.043

Pr(event) = ((0.3 - 0.2) x (0.4/0.7))
= 0.057

Figure 5.13; Specifying and Activity Type using Early/Late Function Distributions

probability that a late functional transition then occurs at times <= 3,6 or 8 respectively.

The dissociation of functionality from the Early/Late Distributions implies that

the probability computed for a certain width of activity interval is not exact. However, the

independence allows the distributions to be taken separately. At time the probability

that a line changes state earlier (later) than / is given by the Early FD (Late FD) at t. The

transmission results obtained from the average of considering each distribution separately

is then exactly the ELFT construct with time and function dissociated, denoted here the

Time Independent Early/Late Functional Transmission (TI-ELFT) approximation. The

ELFT construct has already been shown to be inadequate. This suggests that perhaps

more complex probability descriptions need to be made. However, it will be shown from

the results of this section that the dissociation of time and function alone is expected to

incur an error penalty which is of the same order as the ELFT construct, regardless of the

complexity of the probabilistic estimation strategy. This is a conclusion derived from an



examination of how well the TI-ELFT approximation estimates the ELFT construct. As

these activity models are identical except for the fact that one uses the dissociation oftime
and function, this is a test of the validity of that particular concept.

The distributions described establish the probability that state transitions occur

on the inputs toa gate in a certain order. To establish an estimate of the output activity of
a gate n due to a transition on an input n,- at time i, it is necessary predict the probability
of transmission given the input switching order probabilities. It was established in Chap. 4
that such an estimate needs to depend upon the functionality of the spurious activity. This

is approximated by first computing the transmitted activity from each input under every
possible input ordering assuming separate activity intervals. The concept is depicted in
Fig. 5.14. For each input order, the amount of activity transmitted from each input can be
computed exactly. From this, a probability of transmission can be established for each input
given a state transition ordering on the other gate inputs. The complexity of the analysis
required to compute the separate activity interval configurations is 0(|An|!.

Pr{a trans)

t LJlJ

Pr{b trans)

i

Pr(c trans)

i 1 Ic

Separate Input Interval Orderings;

I < I < I
a b c

I < I < I
a c b

I < I < I
D a c

< I < I
I c a

I < I < I
cab

I < I < I
c b a

Figure 5.14: Testing All Separate Activity Interval Configurations

The activity estimate computation is summarized in the following equation. For

input n,- € A„ at time the arrival of a state transition on another input is indicated by
a 0for earlier, 1for later. PS^{t)\E (-Pn/Ok) is the probability that a state transition wiU
occur earlier (later) than t on input nj using the Early FD. (-Pnj(^)U) is similarly

D/jL\

defined for the Late FD. TnM) is the total amount ofactivity on n,- at time i, Fr^rons("«)
be the probability oftransmission from n,' under input state transition order B{k) relative



to n,. Assume time discretization t 6 ••••}•

\T„\=E( E irn,(t.)i4( E n p^: '̂Hti)\E+ n
n|€An\njt=0 nj€An n|€An\nj

Eqn. 5.5 involves only numerical computation. Consequently, the complexity of

the entire estimation method in terms of BDD manipulations is determined by the sep

arate activity interval configuration analysis and construction of the Early and Late FD

(second term of the following complexity expression). This gives a total complexity of

0((|An|!. HmeAr, TTn,) + 2. En.GAn The number of numerical operations required to
find the optimum delay configuration is the same as the BDD operation complexity for full

simulation, namely 0((En.eA„ ^^"JVdln.eAn

The accuracy of this approximation has been tested on the ISCAS '89 bench

mark set. The aggregate results are plotted in Fig. 5.15 for the TI-ELFT approximation

against the Non-Simultaneous Activity. The correlation coefficient for the data is 0.72. The

prediction of optimality is summarized in Tab. 5.3.

•1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Actual Change in NSA

Figure 5.15: TI-ELFT vs. Non-Simultaneous Activity



Power Change
Factor

0.50X

0.80x

0.9Qx

0.95x

1.05X ~
l.lOx

1.20x

1.50X

Occurrence

Actual I Est.

0.002

0.013

0.058

0.134

0.112

0.050

0.000

0.004

0.037

0.094

0.069

0.024

0.014 0.007

0.001 0.000

Estimation

Detected I Incorrect

Table 5.3: Detection of Non-Simult. Optimality using Time Indep. Approx.

The results of this estimator are actually slightly better aX predicting the optimality

of Non-Simultaneous Activity than the ELFT construct which this technique approximates.

This is a consequence of the probability estimation effectively 'smoothing out' the error con

ditions indicated in Fig. 5.11. Specifically, the ELFT construct still associates functionality

with time which can generate particular functional associations which are quite erroneous.

t:
UJ 0.2

9 %

* V *

-0.2 0 0.2
R^dided Change in NSA Using ELFT

Figure 5.16: ELFT vs. TI-ELFT



The dissociation of time and function eliminates construction of such particular error con

ditions, thereby suppressing them.

It needs to be emphasized, however, that the accuracy of the Tl-ELFT approxi

mation is not limited by the fact that it essentially models the ELFT construct. Fig. 5.16is a

plot oftheELFT construct against theTI-ELFT. This then shows how well a time/functionality
dependent construct can be explicitly approximated when time and functionality are disso

ciated. The data correlation is only 0.68. The implication here is that the dissociation of

time and functionality absolutely restricts the accuracy of an estimate of change in activity

due to change in delay to an error of this significance.

5.2.3 The Single Input Dependent Derivative Approximation

The estimation strategies outlined in the previous two subsections require testing

of all possible delay configurations in the determination of optimality. The best framework

for detection of optimality without having to test so many casesis one which makes possible

a statement about whether increasing or decreasing delay with respect to any other single

input is beneficial or detrimental. The TI-ELFT approximation associates the detection of

optimality with a specific delay ordering applied over ail inputs, not relative timing between

Pr(n, trans)

_!*
Pr(f^ trans)

i

Pr(i^ trans)
i

Pr(n^ trans)

// / ^21)\^

// W\
'̂1 ^WI V'^x
1
\
\\Aa/
\\M/

The cost of the input order shown
is the sum of the weights on the
solid arcs of the graph.

Figure 5.17: Single Input Dependent Derivative with Separate Input Activity Intervals
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input pairs. The desired framework for detection ofdelay optimality is depicted in Fig. 5.17.

This example assumes separate input activity intervals.

The graph of Fig, 5.17 represents the activity change with change in the input

arrived order. Each input is associated with a node which represents the total activity

transmitted from that input when it arrives earliest. From each graph node there is an

edge to every other node. A directed edge < Cn,»^nj > represents a change in transmitted
activity from input n,- when it arrives later than functional transitions on node nj. In

this example, the solid arcs represent the cost C{order) of the input ordering, namely
C(ni, 112,713,714) = A21 + A31 + A32 + A43 + A42 + A41 . Finding an optimal transition

arrival order is then equivalent to finding a node ordering on the graph of minimum cost,

the cost being the sum of all edges from higher to lower order nodes.

For a general case with overlapping input activity intervals, the cost function is

the sum of edge weights scaled by the probability that one input transitions earlier than

another. The goal then is to find a relative timing which maximizes the scaling factor on

edges with the greatest negative weight. This forms the basis ofa simple heuristic to find
optimality without having to exhaustively test all possible input delay configurations.

The accuracy of the Single Input Dependent Derivative Approximation {SID-TI-

ELFT) has been investigated. To establish the approximation, an 0(2.|A„p.$2„.£j^^ TrnJ
method was used, as compared to the 0(|A„|!. 5Zni€A„ coniplexity of the separate

input activity interval configuration computation of Sec. 5.2.2. The number of cases to

be analyzed is reduced by only considering the following separate input activity interval

configurations relative to each input 7i,-:

1. 71, is later (earlier) than aU other inputs

2. Ui is later (earlier) than all inputs except nj^j ^ i

From these test cases, an estimate of the average change in activity can be established for

delay conditions which swap the arrival order of any two inputs 7i,-,7ij.

Fig. 5.18 depicts the correlation between the SID-TI-ELFT approximation and

the TI-ELFT approximation. The correlation coefficient is 0.83. Tab. 5.4 summarizes

the overall use of the method in the detection of Non-Simultaneous Activity optimality. It

should be noted from the table that the accuracy of the detection of optimality conditions is

similar for this method and the TI-ELFT approximation, however the number of conditions
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Figure 5.18: SID-TI-ELFT approximation vs. TI-ELFT approximation

Power Change Occurrence
Factor

0.50x

0.80x

0.90X

0.95X

1.05X

l.lOx

1.20x

1.50x

Actual

0.002

0.013

0.058

0.134

0.112

0.050

0.014

0.001

0.000

0.002

0.025

0.069

0.046

0.016

0.005

0.001

Estimation

Detected I Incorrect

Table 5.4: Detection of Non-Simult. Optimality using Single Input Depend. Deriv. Approx.

detected is significantly reduced. This property can be seen in the distribution of points in

Fig. 5.18 which consists of points clustered along the line a: = y, and other points clustered

along the x-axis which corresponds to zero sensitivity. In combination with the limited

accuracy predicted for any time/function independent approximation (Sec. 5.2.2), it cannot

be expected a method which does not account for input correlation exactly will be sufficient
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for detection of delay dependent optimality in combinational networks. A discussion of the

heuristics which may be applied to the SID-TI-ELFT approximation has therefore been

omitted.

5.3 Simultaneous Reduction

The analysis of Sec. 5.2 dealt with approximating activity assuming no simul

taneous switching. This section outlines an approach to the estimation of Simultaneous

Reduction when time and functionality are dissociated. A description of the problem in the

form of a probability relation is first needed. To aid in the construction of this formulation,

consider the case of separating the arrival times for simultaneous transition times on the

inputs to a gate. This concept first described in Sec, 5.1 is illustrated by example for one

possible ordering in Fig. 5.19.

Pr(nj trans)

Pr(iv trans)

Pr(^ trans)

Pr(n. trans)
4

.+25

+35

At time tQ, there is simultaneous arrival at
all inputslo node n

Time displacement to
order input transitions

Pr(n transr Pr(n trans)**

^ -Uiu-' -U+14
0 5 25 3S 0 5 25 35

Output switching distributions from
time displaced input

Figure 5.19: Formulation of Simultaneous Reduction

For a given transition ordering, distributions for the positive and negative output

transitions can then be computed from complete simulation or the TI-ELFT approximation.

To formulate of the Simultaneous Reduction {T^^) let Pr,(|j) (Pr,(|j)) be the probability

of a positive (negative) output transition at time U -I- j.6, U £ } the actual
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set of possible output transition times allowing simultaneous input arrival and j.6 added to

the timing to make arrivals non-simultaneous. (Pr,(i<j)) is the probability of a

positive (negative) transition at time Uafter output transition times

are coUapsed back into one another.

I T<o_,)) + Pr.(Ti)

OO |An|—1

irf"! = E E I l<i)-Pr,(|<,) + Pri(l; I l<j).Pri(T<i)) (5.6)
1=0 j=0

Eqn. 5.6 requires that the correlation between transitions at different times be

known. The dissociation of these properties reduces the above equations to the following:

Pr,(T<i) = P'-.(T<o-i)).P'-i(ij) + Pri(Tj)

Pr,•()<,) = Pr.(i<o.,)).Pri(T,) + Pr,(ij)

OO |An|-l

l^n"! = E E ( '̂•.•(T;)-Pn(l<i) + Pr.(i,).Pr.(T<j)) (5.7)
t=0 J=0

The results of two tests of Simultaneous Reduction estimation are presented here.

The first test uses the results of the TI-ELFT approximation to estimate the relevant

switching distributions. The second test assumes that the sign of the output transition

has not been approximated, so the probability of a positive or negative transition is half

the total transition probability at that time. This demonstrates how the accuracy of the

Simultaneous Reduction estimate is severely penalized by the lack of a good estimate of

output transition sign. This fact detrimentally affects the usefulness of averaging techniques

such as the SID-TI-ELFT approximation which are much less accuracy at predicting sign

than the TI-ELFT approximation. Fig. 5.20 and Tab. 5.5 refer to the first test, Fig. 5.21

and Tab. 5.6 to the second.

The estimate which uses transition sign information has a correlation of 0.96, as

compared with the 0.73 for the estimator which does not have good transition sign predic

tion. This test shows that the TI-ELFT approximation is clearly sufficient for estimation

of the Simultaneous Reduction even though it has demonstrated limited accuracy in the

determination of optimality relative to Non-Simultaneous Activity. The improved accuracy

here is a consequence of the fact that Simultaneous Reduction depends upon the absolute





Power Change
Factor

Occurrence Estimation

Actual Est. Detected Incorrect

-0.50X 0.001 0.001 0.88 0.00

-0.20x 0.007 0.008 0.92 0.16

-O.lOx 0.044 0.047 0.92 0.15

-0.05X 0.080 0.089 0.88 0.22

Table 5.5: Detection of Simult. Reduction using Time Indep. Approx. with Sign

Power Change
Factor

Occurrence Estimation

Actual Est. Detected Incorrect

-0.50X 0.001 0.001 0.38 0.00

-0.20X 0.007 0.002 0.21 0.27

-O.lOx 0.044 0.024 0.44 0.19

-0.05X 0.080 0.052 0.52 0.20

Table 5.6: Detection of Simult. Reduction using Time Indep. Approx. with Sign
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amount of Non-Simultaneous Transition activity, whereas the results of the previous section

reflect the ability to detect incremental changes in this quantity.

5.4 Overall Optimality Prediction

The results of the previous two sections are combined here to demonstrate the

accuracy of the time/functionality independence assumption. The Non-Simultaneous Ac

tivity is estimated using the TI-ELFT approximation of Sec. 5.2.2, and the Simultaneous

Reduction using the output sign sensitive approximation of Sec. 5.3. Overall, a correlation

of 0.85 between estimate and empirical data was found. The aggregate data is presented

graphicaUy in Fig. 5.22 and is summarized in Tab. 5.8.

The results shown in Tab. 5.8 demonstrate that the usefulness of such an approx

imation scheme is limited. Although the optimality conditions predicted by this estimator

are reasonably accurate (better than 75%percent of points selected for any particular opti

mality condition are correct), the sensitivity of the method is not sufficient. Less that 50%

of the delay conditions which correspond to an increase of activity are correctly categorized.



Ckt.

Non-Simult.

Correl.

Simult. Red.

Correl.

Overall

Correl.

s344 0.81 0.80 0.80

s386 0.96 0.98 0.97

s400 0.81 0.82 0.80

s444 0.90 0.89 0.86

s510 0.85 0.90 0.87

s526 0.78 0.93 0.83

s641 0.43 0.98 0.55

s713

s820

s832

s838

S1196

S1238

Non-Simult. Simult. Red. Ove

Correl Correl. Cor

Table 5.7: Correlation for Time Independent Model

This is also true for reduction in activity of greater than 10%.

In Tab. 5.7 the significant dependence of estimator accuracy upon the specific

circuit is shown, in particular with respect to the estimation of Non-Simultaneous Activ

ity changes. This is quite different to the stable statistical properties exhibited for the

estimation techniques presented in Chap. 3 and Chap. 4. The statistical variabiDty is a

consequence of the strong dependence of the optimality sought upon the functionality and



Power Change
Factor

Occurrence Estimation

Actual Est. Detected Incorrect

0.50X 0.004 0.001 0.33 0.00

O.SOx 0.024 0.014 0.48 0.19

0.90x 0.108 0.092 0.70 0.18

0.95X 0.209 0.192 0.75 0.19

1.05X 0.101 0.066 0.46 0.24

l.lOx 0.046 0.021 0.36 0.24

1.20x 0.014 0.008 0.44 0.22

1.50x 0.001 0.001 0.43 0.25
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Table 5.8: Detection of Optimality using Time/Functionality Independence

precise delays in the network. The importance of correctly estimating signal properties

such as those depicted in Fig. 5.11 can vary in significance between different circuit con

figurations. This influences the applicability of an activity approximation scheme which

dissociates time and functionality.

5.5 Summary

The material described in this chapter completes a thorough study of the ability

to dissociate time and functionality while still being able to estimate optimality. The

presentation describes the three effects which contribute to delay dependent changes in

gate activity. These effects are:

• Simultaneous Activity

• Functional Transmission

• Non-Functional Transmission

These effects are isolated by first splitting the total activity into the sum of two activity

types: Non-Simultaneous Activity and Simultaneous Reduction. Estimation techniques for

both activity types have been outlined.

Optimality detection for Non-Simultaneous Activity requires estimation of both

Functional and Non-Functional Transmission. Even if Functional Transmission is estimated
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well, it has been demonstrated empirically that the lack of a good Non-Functional Trans

mission estimate restricts accuracy to a correlation of less than 0.70. However, a good

estimate of Non-Functional Transmission requires information about the association be

tween functionality and time. This implies that any Non-Simultaneous Activity change

estimator based upon a decoupling of time and functionality has severely limited accuracy.

Changes in Simultaneous Reduction are generally less significant than the opti-
mality attainable from changes in Non-Simultaneous Activity. However, it is more suited to

prediction by a model ofactivity which dissociates time and functionality. A model of this
form has been proposed and tested. The accuracy ofthis model in predicting Simultaneous

Reduction is high with a correlation of 0.96. It has also been shown that lack of good
transition sign estimation severely degrades the usefulness of this estimate. This limits the
simplicity of suitable models.

The best delay-sensitive estimation technique proposed has a total computational

complexity of0(1A„1!. En,eA„ where |A„| is the total number ofinputs tonode n,TTm
the number of possible transition times on input Tij. This is compared to the total number

of BDD operation required for fuU simulation of all possible delay configurations which is

<^((En.eA„ ^^nJVCrin.eAn^^n,!)). The Coefficient of correlation for this model averaged
over all the benchmark circuits is 0.85. However, it has been shown that the applicability of

the model can vary significantly between specific networks and that sensitivity for detection

of optimality is insufficient for practical use.

In conclusion, through the construction and test of these estimation strategies it

has been verified that the decoupling of time and functionality reduces the ability to detect

optimal delay conditions beyond acceptable limits. Furthermore, the amount ofoptimality
which can be obtained, and the complexity of simulating to find optimal delay conditions

eliminates the value of further research in this area. It is therefore justified to ignore

sensitivity to delay at the input cutset and output nodes of a resynthesis region.
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Chapter 6

Conclusions

In this dissertation the concept of estimating transition activity effects in a re

stricted information environment is presented. The concepts outlined are specifically ap

plicable for guiding resynthesis algorithms which target reduced power consumption for

CMOS combinational networks. The accuracy of the estimation strategies has statistically

validated the dominance of changes in different circuit parameters during restructuring.

In the process of resynthesis, it is necessary to select network regions for restruc

turing based upon global circuit properties. Local restructuring can influence the zerodelay

(functional) and delay dependent (spurious dynamic) activity. The use of the Observabil

ity Don't Care (ODC) set during resynthesis can, in turn, influence the functional activity

throughout the transitive fanout (TFO) of the resynthesis region, as well as the spurious

dynamic activity due to changes in node sensitivities. The TFO activity is affected also by

changes in the circuit structure within the resynthesis region which affect the amount and

functionality of the spurious dynamic activity at the region outputs. There may also be

changes in signal arrival times which are a consequence of changes in the timing of paths

internal to the resynthesis region, or changes in the capacitive load of the region inputs on

the network. The spurious dynamic activity at any dependent parts of the network could

change as a result. The material presented in this dissertation is a detailed theoretical and

empirical study of all these effects.

The determination of whether a network region is an good choice for restructuring

is made before resynthesis can be performed. The definition of the most non-optimal re

gions allows construction of the compatible ODC to be directed for maximizing resynthesis

freedom. However, without actually performing resynthesis the optimal change in function-
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ality, or internal structure, cannot be predicted exactly. A cost function for region selection

should therefore incorporate statistical propertiesextracted fromobserving a specific resyn-

thesis algorithm operating upon a large collection ofnetworks. Global sensitivities to delay,

functionality and the amount ofspurious dynamic activity are measures ofhow constrained

a resynthesis operation must be.

The sensitivity to changes in functional activity requires that an estimation strat

egy be based upon the expected size of the functional change at a region outputs as exact

change in function which wiU result from resynthesis is not known a priori. A probabilistic

estimation scheme based upon predicting the global change in functional TFO activity given

only information about the expected size of the change in functionality is the material of

Chap. 3. This estimation technique correlates extremely well with simulation with a corre

lation coefficient of 0.99 for circuits with input switching probabilities of 0.5. The technique

assumes independence between the functionality of the change, and the functionality of the

TFO nodes (except in so far as that the change is made within the CDC set). This is a gen
erally valid assumption for resynthesis operations. The small standard deviation observed

is a consequence of the probability distribution corresponding to the overlap of a set de

scribing the random change in functionality relative to the fixed sensitivity sets throughout

the TFO. This distribution is very strongly peaked about the average implying that a pre

diction ofexpected change in activity correlates extremely well with most specific changes.

The results presented in Chap. 3 for zero-delay power show that TFO effects can offset a

decrease in power at the output of a resynthesis region in 21% of total cases. This reduces

viable resynthesis options. On the other hand, it is also shown that a local increase in power

can be offset by a global decrease (9%), and that a local improvement can be enhanced by a

factor of5 when considering TFO effects (6%). All of these effects are accurately predicted

using the simple estimation strategy proposed. The estimation technique has been general
ized for networks with arbitrary input switching probabilities. This consists of a technique

for partitioning the space into regions of similar minterm probabilities. Within each region

the standard deviation of the estimator results will com'pare to that shown for networks for

which the uniform 0.5 input switching probabilities assumption holds. The ODC can then

be optimized in such a way as to emphasize the flexibility within each partition for which a

beneficial TFO influence is predicted. The change in function at the output of a resynthesis

region also affects sensitivities, and this change can be predicted in an analogous fashion to

the change in TFO functionality.
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The sensitivity to changes in the spurious dynamic activity determines the form

of path imbalance within the resynthesis region which is tolerable. If there is a high sen

sitivity, then the resynthesis step has to attempt to minimize this variable either through

balancing of path timing, or functional elimination of spurious activity. Chap. 4 contains

the results of an analysis of this problem. As the results of resynthesis are unknown it

is necessary to establish a sensitivity based upon the amount of spurious dynamic activ

ity at the outputs, not its functionality. The estimation strategy proposed is based upon

a very simple transition estimation technique which assumes input functional and tem

poral independence. Although these assumptions are generally not sufficient for accurate

power estimation, they are appropriate in estimating activity changes during resynthesis.

Resynthesis incrementally adjusts the network so the results of a single accurate activity

simulation completed prior to resynthesis can be used to scale probabilities for the simple

activity model. This then provides an estimation technique which is delay independent, and

embodies terms for both the sensitivity to spurious dynamic activity, and the sensitivity to

changes in sensitivities throughout the TFO (resulting from a functional change). Again,

this technique correlates well with simulation producing an overall correlation coefficient of

0.93. The worst correlation on a specific network for this estimator is 0.90. Similar to the

functional sensitivity estimation, there does not appear to be a strong influence of circuit

size upon estimator accuracy. The accuracy of this delay independent estimation supports

the conclusion that sensitivity to changes in function and the amount of spurious dynamic

activity at the output of a resynthesis region dominate delay effects when predicting global

changes in network activity. Combined with the functional activity estimation strategy,

the prediction of the total change in power throughout the TFO with a delay insensitive

estimator is 0.97.

The sensitivity to changes in delay defines how critical it is for path timing within

the resynthesis region to meet specified bounds. Furthermore, it can be used to define the

effect of loading at the region inputs. Not only is this the least dominant of the effects,

it is also the most complex to handle. In Chap. 4 this problem is addressed by assuming

knowledge about the amount of spurious dynamic activity at the outputs, and bounds on

the signal arrival times corresponding to changes in state. Ensuring that more detailed

information is known would be very constraining upon the form of resynthesis. It is shown

that this additional complexity actually results in an estimator which performs worse than

the delay insensitive estimate. This is a consequence of having to estimate the changes in
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many correlated terms of the describing expression. In this case, it is better to construct an

estimate by scaling the results of a simpler approximation technique rather than suffering

the error accumulation from the more complex approximation. Given that bounds on the

delay are insufhcient to describe delay sensitivity, the question then arises as to what knowl

edge of the timing and functionality is required to estimate delay sensitivity accurately, the

subject of Chap. 5. There are two aspects to be considered relative to delay sensitivity:

Functional Transmission and Simultaneous Switching. Functional transmission is the effect

whereby the initial or final state ofan input to a node ensures that spurious activity is guar

anteed to, or not to, pass. As optimality related to this effect depends upon signal arrival

time inequalities, this could be a feasible source of optimality. Simultaneous switching, on

the other hand, is a property of exact equality in the delay of convergent paths. This is a

constraint which is too difficult to satisfy with general layout heuristics. In Chap. 5, it is

shown that even just the decoupling of time and functionality is sufficient to lose signifi

cant estimator accuracy for functional transmission (correlation coefficient of around 0.75).

Consequently, sensitivity of the output of the resynthesis region to delay (where change in

functionality and exact timing cannot be predicted) is not a feasible computation during

resynthesis. However, it is also shown that the influence of delay insertion at the inputs of

a node upon its output activity (excluding simultaneous switching) affects the activity by

less than 10% in eighty-five percent of possible cases, less that 20% in ninety-four percent

of possible cases. The overaU probabilistic estimation strategy proposed which combines

functional transmission and simultaneous switching estimates achieves a correlation coef

ficient of better than 0.80 on most circuits. However, optimality can only be detected by

testing all possible delay conditions. The magnitude of the effect and the complexity of the

estimation required eliminates the need to formulate delay sensitivity in the detection of

highly non-optimal regions for resynthesis.

6.1 Future Work

The material of this dissertation can be summarized as the development and test

of three estimation strategies useful for resynthesis for low-power. Considering relative

importances of the effects analyzed and the complexity of the estimation required, two of

these should prove to be useful strategies for construction of global cost functions.

The functional activity estimator can be used to determine the expected influ-
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ence on zero-delay power consumption throughout the TFO when a node is resynthesized.

Combined with statistical properties relating the local functionality and bounds on the

compatible ODC set, the non-optimality of a node can be defined. Clusters of these nodes

can be collapsed into viable resynthesis regions, and the construction of the ODC directed

in such a way as to maximize flexibility. This concept is outlined in detail in Chap. 3.6.

The construction of the ODC can also be directed according to the optimality within dif

ferent partitions of the Boolean space, each partition corresponding to minterms of similar

probability. The results of this analysis wiD statistically establish the complexity/accuracy

tradeoff corresponding to the definition of the partitions. (Definition of these partitions to

minimize error is the subject of Chap. 3.5).

During each step of a resynthesis procedure, choices which are identical relative to

the zero-delay activity cost function can be separated by their estimated impact on spurious

dynamic activity by using the delay-insensitive dynamic activity estimation strategy. The

spurious dynamic sensitivity should not be primary in the decision makingprocess, however,

due to the inherent limitations of the timing model. The functional activity and delay-

independent dynamic sensitivity estimation strategies can be modified to encompziss the

properties of specific resynthesis approaches. If the resynthesis is known to perform only

limited changes relative to the original function, then the probability space describing the

range of possible changes can be restricted to improve accuracy.

The probability formulations presented here need to be extended to the domain

of sequential networks. In particular, the problem of delay sensitivity should be examined

further to determine whether the relationship between states makes the functional trans

mission effect more dominant. If not, then it can generally be stated that sensitivity to

delay is a minor effect in the formulation of a global cost function for low-power resynthesis

of CMOS logic.
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