

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A GAME THEORETIC APPROACH TO

HYBRID SYSTEM DESIGN

by

John Lygeros, Datta N. Godbole, and Shankar Sastry

Memorandum No. UCB/ERL M95/77

12 October 1995

\

A GAME THEORETIC APPROACH TO

HYBRID SYSTEM DESIGN

by

John Lygeros, Datta N. Godbole, and Shankar Sastry

Memorandum No. UCB/ERL M95/77

12 October 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A Game Theoretic Approach to
Hybrid System Design *

John Lygeros, Datta N. Godbole and Shankar Sastry

Intelligent Machines and Robotics Laboratory
University of California, Berkeley

Berkeley, CA 94720
lygeros, godbole, sastry@robotics.eecs.berkeley.edu

Abstract

We present a design and verification methodology for hybrid dynamical systems.
Our approach is based on optimal control and game theory. The hybrid design is seen
as a game between two players. One is the disturbances that enter the dynamics. The
disturbances can encode the actions of other agents (in a multi-agent setting), the actions
of high level controllers or the usual unmodeled environmental disturbances. The second
player is the control, which is to be chosen by the designer. The two players compete
over a cost function that encodes the properties that the closed loop hybrid system needs
to satisfy (e.g. safety). The control "wins" the game if it can keep the system "safe" for
any allowable disturbance.

The solution to the game theory problem provides the designer with continuous
controllers as well as sets of safe states where the control "wins" the game. The sets
of safe sets can be used to construct an interface that guarantees the safe operation of
the combined hybrid system. In addition to design, this optimal control methodology
can also be used for the verification of hybrid systems as well as the generation of
abstractions of the lower layer behavior in terms of the higher layer language (e.g. timed
abstractions).

The motivating example for our work is Automated Highway Systems. We show how
to cast the lower level, multi-agent control problem in the game theoretic setting and
give an algorithm that can produce a safe design.

1 Introduction

The need for Hybrid Control

The demand for increased levels of automation and system integration have forced control
engineers to deal with increasingly large and complicated systems. Recent technological ad-

•Research supported by the Army Research Officeunder grant DAAH 04-95-1-0588 and the PATH program,
Institute of Transportation Studies, University of California, Berkeley, under MOU-135.

1

vances, such as faster computers, cheaper and more reliable sensors and the integration of
control considerations in the product design and manufacturing process, have made it pos
sible to extend the practical applications of control to systems that were impossible to deal
with in the past. One of the main incentives to move into the area of large scale systems is
financial: preliminary studies indicate that increased automation in air traffic management
systems, highway systems, chemical process control, power generation and distribution etc.
can lead to performance improvement in terms of fuel consumption, efficiency and environmen
tal impact. The size of these businesses is such that minor changes in performance translate
to large amounts of money gained or lost.

To deal with large, complex systems engineers are usually inclined to use a com
bination of continuous and discrete controllers. The reasons why continuous controllers are
used are many:

• Interaction with the physical plant, through sensors and actuators, is essentially analog,
i.e. continuous, from the engineering point of view.

• Continuous models have been developed, used and validated extensively in the past in
most areas that interest control engineers (e.g. electromechanical systems, electromag
netic systems, etc.)

• Powerful control techniques have already been developed for many classes of continu
ous systems. Moreover, in conjunction with the reliable continuous models proofs of
guaranteed performance can be obtained for these techniques.

An equally compelling case can be made in favor of discrete controllers, however:

• Discrete abstractions make it easier to manage the complexity of the system. It is
not an accident that most of the work on discrete controllers started in the area of

manufacturing, where complex systems were first encountered and modeled.

• Discrete models are easier to compute with, as all computers and algorithms are essen
tially discrete.

• Discrete abstractions make it easy to introduce linguistic and qualitative information in
the controller design.

We will use the term "hybrid systems" to describe systems that incorporate both continuous
and discrete dynamics. Engineers and computer scientists have been interested in the control
of hybrid systems for some years now, but there is still a lot to be learned about them. This
paper will attempt to present a rather general technique for designing hybrid controllers for
complex systems.

Multi-Agent Scarce Resource Systems

A very interesting class of systems that are naturally suited for hybrid control are multiagent,
scarce resource systems. Their common characteristic is that many agents are trying to make
optimum use of a congested, common resource. For example, in highway systems, the vehicles

can be viewed as agents competing for the highway (which plays the role of the resource)
while in air traffic management systems the aircraft compete for air space and runway space.

Typically in systems like these the optimum policy for each agent does not coincide
with the "common good". Therefore, compromises need to be made. To achieve the common
optimum we should ideally have a centralized control scheme that computes the global opti
mum and commands the agents accordingly. A solution like this may be undesirable, however,
for a number of reasons:

• It is likely to be very computationally intensive, as a large centralized computer is needed
to make all the decisions.

• It may be less reliable, as the consequences are likely to be catastrophic if the centralized
controller is disabled.

• The information that needs to be exchanged may be too large for the available commu
nication capabilities.

• The number of agents may be large and/or dynamically changing. This implies that
the solution for the optimal control strategy may be hard to obtain and will have to be
constantly updated.

If a completely decentralized solution is unacceptable and a completely centralized
solution is prohibitingly complex or expensive, an in-between compromise will have to be
obtained. Such a compromise will feature semiautonomous agent operation. In this case each
agent is trying to optimize its own usage of the resource and coordinates with neighboring
agents in case there is a conflict of objectives. Clearly such a solution is likely to be less efficient
than centralized scheme and harder to implement, in a reliable fashion, than a decentralized
scheme; it may, however, be the only feasible choice. It should be noted that semiautonomous
agent control is naturally suited for hybrid designs. At the continuous level each agent chooses
it's own optimal strategy, while discrete coordination is used to resolve conflicts. This is the
class of hybrid systems that we will be most interested in.

Hybrid Control Methodologies

A common approach to the design of hybrid controllers involves independently coming up
with a reasonable design for both the discrete and continuous parts. The combined hybrid
controller is then put together by means of interfaces, and verification is carried out to ensure
that it satisfies certain properties. Because of the complexity of the system, verification is
usually done automatically, using some specialized computer program.

This approach has been motivated by the success of verification techniques for finite
state machines and the fact that many hybrid designs already operating in practice need to be
verified, without having to redesign them from scratch. Verification algorithms for finite state
machines have been in use for years and efficientprograms exist to implement them (COSPAN
[1], HSIS [2], STATEMATE [3], etc.). They have proved very successful in discrete problems
such as communication protocols [4] and software algorithms. The push towards stronger
verification techniques has been in the direction of extending the standard finite state ma
chine results to incorporate progressively more complicated continuous dynamics. The first

extension has been for systems with clocks [5] and multi-rate clocks [6]. Theoretical results
have established conditions under which problems like these can be solved computationally
and algorithms have been developed to implement the verification process (for example timed
COSPAN [7] and KRONOS [8]). Verification of timed systems has proved useful in applica
tions such as digital circuit verification [9] and real-time software [10]. Recently the theory
has been extended to systems where the dynamics can be modeled by rectangular differential
inclusions. The results indicate that, under certain conditions, automatic verification should
also be possible for such systems [11], but most applications have been to academic examples
rather than actual systems. To our knowledge the only computer package capable of dealing
with differential inclusions, HyTech, is still under development [6].

Progress in the direction of automatic verification has been impeded by for two
fundamental reasons. The first is undecidability. To guarantee that automatic verification
algorithm will terminate in finite number of steps with an answer, the system needs to satisfy
very stringent technical requirements. It can be shown [12] that relaxing any of these require
ments makes the problem undecidable. The second problem is computational complexity.
Even relatively simple hybrid systems lead to very large numbers of discrete states when
looked at from the point of view of automatic verification. Even though efficient algorithms
(that make use of heuristics and user input to facilitate the search) exist, the the problem
may still be prohibitively large for current computers [10].

A different approach has been to design the hybrid controller so that performance
is a-priori guaranteed [13, 14, 15]. This eases the requirements on verification somewhat as
a large part of the complexity can be absorbed by careful design. The techniques presented
in this paper fit in with this way of thinking. The plan is to start by modeling the systems
dynamics at the continuous level. Two factors affect the system evolution at this level. The
first is the control, that the designer has to determine. The second is the disturbances
that enter the system, over which we assume no control. We will distinguish three classes of
disturbances:

• Class 1: Exogenous signals, such as unmodeled forces and torques in mechanical sys
tems, sensor noise, etc.

• Class 2: Unmodeled dynamics

• Class 3: The actions of other agents, in a multiagent setting.

Disturbances of Class 1 and 2 are standard in classical control theory. Class 3 will be the
most interesting one from the point of view of hybrid control. Recall that at this stage we
are merely modeling the plant, therefore we assume no cooperation between the agents. As a
result, each agent views the actions of its neighbors as uncontrollable disturbances.

In the continuous domain specifications about the closed loop system can be encoded
in terms of cost functions. Acceptable performance can be encoded by means of thresholds
on the final cost. Our objective is to derive a continuous design for the control inputs that
guarantees performance despite the disturbances. If it turns out that the disturbance is such
that the specifications can not be met for any controller the design fails. The only way to
salvage the situation is to somehow limit the disturbance. For disturbances of Class 3 this may
be possible by means of communication and coordination between the agents. The objective

then is to come up with a discrete design that limits the disturbance so that a continuous
design is feasible.

Summarizing, our approach to hybrid controller design consists of determining con
tinuous control laws and conditions under which they satisfy the closed loop requirements.
Then a discrete design is constructed to ensure that these conditions are satisfied. This process
eliminates the need for automatic verification as the hybrid closed loop system is by design
guaranteed to satisfy the specifications.

Game Theory

In this paper we will limit our attention to the design of continuous control laws and interfaces
between these laws and the discrete world. The design of the continuous laws will be optimal
with respect to the closed loop system requirements. An ideal tool for this kind of set up is
game theory. In the game theoretic framework the control and the disturbances are viewed as
adversaries in a game. The control seeks to improve system performance while the disturbance
seeks to make it worse. Games like these do not necessarily have winners and loosers. If we
set a threshold on the cost function to distinguish acceptable from unacceptable performance
we can say that the control wins the game if the requirement is satisfied for any allowable
disturbance, while the disturbance wins otherwise.

The principles involved in game theoretic design are very similar to the ones for
optimal control. Very roughly, the designer has to find the best possible control and the
worst possible disturbance. If the requirements are met for this pair, it is possible to obtain
a satisfactory design (one such design is the "best possible" control). If the requirements are
not satisfied the problem can not be solved as is, since there exists a choice of disturbance
for which, no matter what the controller does, the closed loop system will fail to satisfy the
requirements. In case of disturbances of Class 3 coordination will have to be used to limit the
disturbance.

Game theoretic ideas have already been applied in this context to problems with
disturbances of Class 1 and 2 and quadratic cost functions. The resulting controllers are the
so called #oo or L2 optimal controllers (see for example [16, 17]). We will try to extend these
ideas to the multiagent, hybrid setting. In this paper we apply this idea to two examples, the
train-gate controller and the problem of vehicle following on a highway.

Extensions: Verification & Abstraction

Optimal control and gaming ideas may prove useful in other hybrid settings. Here we touch
upon two of them, verification and abstraction. Standard automatic verification techniques
involve some form of exhaustive search, to verify that all possible runs of the systems satisfy
a certain property. As discussed above this leads to undecidability and complexity problems.
An optimal control approach to verification could be to obtain the worst possible run by
solving an optimal control problem, and verifying that the property holds for this run; then
it will also hold for all other runs.

Verification of closed loop hybrid systems is better suited for optimal control, rather
than game theory, as one of the two players (the controller) has his strategy fixed a-priori.
Therefore only the disturbances, trying to do their worst to upset the design, enter the picture.

[18] discusses the application of these ideas to the automated highway example. An interesting
class of disturbances that need to be considered in this context is:

• Class 4: Commands from the discrete controller

From the point of view of the continuous system (where the optimal control problem is to
be solved) these commands can be viewed as signals that make the continuous system switch
between control laws, fixed points etc. Optimal control can be used to determine the discrete
command sequences that force the continuous system to violate the performance specifications.
If the discrete design is such that these command sequences are excluded then the hybrid design
is verified. In this paper we use this technique to address a very simple verification example,
the leaking gas burner.

The main advantage of the optimal control point of view to verification is that,
by removing the requirement for an exhaustive search, the limitations of complexity and
undecidability disappear. It is quite likely that many hybrid systems that are undecidable from
the conventional verification point of view will be amenable to optimal control verification.
On the down side, verification using optimal control requires a lot of input from the user.
Moreover, optimal control problems will, in general, be very hard to solve analytically. It is
therefore unlikely that this approach can be applied, at least by hand, to systems with more
than a few discrete states. For the time being verification using optimal control is no match
for conventional verification techniques for those systems to which the latter can be applied.

Optimal control ideas can also be used to generate abstractions of continuous system
behavior in terms of discrete languages. For example optimal control can be used to obtain
the minimum and maximum times that a hybrid system spends in each discrete state. These
bounds can then be used as a rudimentary timed abstraction of the hybrid system. Again
the requirement for designer input limits the complexity of the problems that can be handled
analytically.

Limitations

The main limitation of the application of gaming and optimal control ideas to hybrid design
is that the resulting problems are usually very hard to solve analytically. As a result efficient
numerical algorithms are needed to apply these techniques to more complicated problems.
In addition extensive designer input is needed during the controller design, verification or
abstraction process. Hopefully it will be possible to automate the process, at least partially.
However it is still likely that extensive engineering insight will be needed to solve any realistic
problems.

This approach is best suited to address questions of "reachability". Problems like
these can usually be cast as pursuit evasion problems in the gaming framework. Fortunately
pursuit-evasion games have been extensively studied in the literature. Extensions to other
important discrete questions such as fairness, liveness and cyclicity requirements should also
be possible, however more work is needed in this direction.

2 Game Theoretic Framework

The preceding discussion illustrates that the design of hybrid controllers can be very subtle.
The difficultiesarizeat the interactionbetweenthe discrete and continuous components. They
are mainly due to inadequate abstraction of the continuous layer performance at the discrete
level. This may result in the discrete controller issuing commands that are incompatible with
the state of the continuous system. We will try to deal with this difficulty by using game
theory to generate continuous controllers and consistent discrete abstractions for the resulting
closed loop system. In the case where the continuous design has been carried out separately
optimal control will be used for generating abstractions.

2.1 Plant Model

As our starting point we will use a rather general state space model for the continuous plant.
Let x(t) € IRn represent the state, u(t) G Rm represent the input and d(t) 6 Rp represent any
disturbance that affects the dynamics, at time t.1 The plant dynamics will be described by a
differential equation and the value of the state at a given time, say to:

x(t) = /(s(i),u(t), </(*),*) (1)
x(t0) = x° (2)

The behavior of the system at time t is assumed to be monitored through a set of
outputs y(t) € Rq. Their value depends on a map:

y(t) = h(x(t),u(t),<l(i),t) (3)

Physical considerations (such as actuator saturation, etc.) impose certain restric
tions on the system evolution. We assume that these restrictions are encoded in terms of
constraints on the state, inputs and disturbances.2

x() € X C PC1 (IR,Rn) (4)
u{) e UcPC(R,Rm) (5)
d() e VcPC(R,Rp) (6)

Of particular interest is the case where the constraints can be encoded by requiring that the
state, input and disturbance lie in a certain set for all times3, that is for all i € R:

x(i) € XcEn (7)

u{t) e ucr (8)
d(t) € DCEP (9)

1The design methodology can be modified to apply to systems where the state, input and disturbance
evolve in appropriate manifolds and/or the continuous dynamics are described by difference equations. It may
also be possible to modify our approach so that it applies to systems for which the plant dynamics themselves
are hybrid (e.g. hopping robots).

2PC(-, •) denotes the set of piecewise continuous functions whereas PCl{-, •) represents the set of piecewise
differentiable functions.

3Even though this class of constraints is easier to work with it excludes certain important cases such as
non-holonomic and "isoperimetric" constraints. In its most general form a hybrid design formulation will have
to account for constraints like these.

We assume that the differential equation 1 has unique solutions.
Both inputs and disturbances are exogenous functions of time. The difference is that

the disturbances are assumed to be beyond the control of the designer and can take arbitrary
values within the constraint set V. As discussed in the introduction, the disturbances can
represent a number of factors: unmodeled dynamics or environmental inputs, the actions of
other agents or the actions of higher layers (in a multi-layered, hierarchical design). The
designer's objective is to use the inputs to regulate the outputs, despite the actions of the
disturbances. We will assume that the whole state is available for feedback. Extensions to

the case of output feedback should also be possible.
In our framework for hierarchical control the desired properties, that the system

trajectory needs to satisfy, will be specified by the discrete layers. The continuous layer
will be responsible for the regulation, i.e. the selection of inputs u to try to achieve these
properties. The interface provides communication between the two layers, providing the lower
layer with the desired properties (in continuous terms) and the higher layer with feedback on
whether the requirements can be met. Here we will primarily be concerned with the design
of the continuous layer and the interface from continuous to discrete.

2.2 Discrete Layer

In this piece of work we will not deal at all with the design of the discrete layer. In terms of
the continuous layer the outcome of the discrete design will be represented by:

• A sequence of desired way points xf that should be tracked (i is an integer).

• A set of cost functions:

Ji :RnxPCxPC—+R (10)

i = 1,..., N that encode desired properties

• A set of thresholds C,-, i = 1,..., N that specify acceptable limits on the cost functions.
An acceptable trajectory must be such that J,(:r0, u, d) < C% for all i = 1,..., N

We assume that the cost functions are ordered in the order of decreasing importance.
Qualitatively, the most important cost functions encode things such as safety, while the least
important ones encode performance aspects such as resource utilization. The design should be
such that the most important constraints are not violated in favor of the less important ones,
in other words the design should lead to J; < Ct- whenever possible, even if this means that
Jj > Cj for some j > i. It should be noted that at this stage we make no assumption about the
high level design, or even the language used at the higher level. We are merely looking at the
higher level from the point of view of the continuous plant, i.e. after the interface. Questions
about how the high level objectives, which are usually given linguistically, get parsed to way
points, cost functions and thresholds are not addressed.

2.3 Continuous Layer

We now present a technique for systematically constructing controllers which carry out the
objectives set by the discrete layer and are optimal with respect to the given cost functions.

8

2.3.1 Design Principle

At the first stage we treat the design process as a two player, zero sum dynamic game with cost
J\. One player, the control u, is trying to minimize the cost, while the other, the disturbance
d, is trying to maximize it. Assume that the game has a saddle point solution, i.e. there exist
input and disturbance trajectories, u\ and d\ such that:

Ji(x°) = maxminJi(x°, w, d)
dev ugw

= min max JAx°.u. d)
u&a dev K ' '

= J\(x ,tzj,dj)

Consider the set:

Vi = {x € Rn\Jl(x) <d}

This is the set of all initial conditions for which there exists a control such that the objective
on Ji is satisfied for the worst possible allowable disturbance (and hence for any allowable
disturbance).

u\ can now be used as a control law. It will guarantee that J\ is minimized for the
worst possible disturbance. Moreover if the initial state is in V\ it will also guarantee that
the performance requirement on J\ is satisfied. u\ however does not take into account the
requirements on the remaining Jt-'s. To include them in the design let:

Ux(x°) = {ueU\Ji{x°,u,d\) < d} (11)

Clearly:

7,,oJ=0 forsVVi
"l{X >\ ^0 for z° €Vi, as u\ GU^x°)

The set U\(x°) is the subset of admissible controls which guarantee that the requirements on
J\ are satisfied, whenever possible. Within this class of controls we would like to select the
one that minimizes the cost function J2. Again we pose the problem as a zero sum dynamic
game between control and disturbance. Assume that a saddle solution exists, i.e. there exist
u\ and d,2 such that:

J*(x°) = max min J2(x°.u.d)
lK ' deV u€Wi(x<>) v '

= min imxJ2(x0.u.d)
u€Wi(x°) dev v J

= J2(x ,1/2^2)

Consider the set:

V2 = {x € Rn\J;(x) < C2}

As the minimax problem only makes sense when U\(x°) ^ 0 we assume that V2 C Vi. V2
represents the set of initial conditions for which there exists a control such that for any
allowable disturbance the requirements on both J\ and J2 are satisfied. To introduce the
remaining cost functions to the design we again define:

U2(x°) = {ue ^(x0)!^^0^,^) < C2} (12)

i.e. the subset of admissible controls that satisfy the requirements on both J\ and J2 for any
disturbance.

The process can berepeated for the remaining cost functions. At the i+1st step we
are given a set of admissible controls Ui(x°) and a set of initial conditions VJ- such that for all
x° € Vi there exists u* € Ui(x°) such that for all d € £>, Jj(x°,u*, d) < Cj, where j = 1,..., i.
Assume the two player, zero sum dynamic game for «/,+i has a saddle solution, u*+1,d*+1:

Ji^(x°) = max min Jt+i(x°,u,d)
t+lv ' dev ueUi{x°) v

= min max Jt+i (x°, u. d)
ueUi(x°) dev *+lv '

- Ji+1 (rr°, u*i+ud*i+1)

Define:

V5+1 = {x e RVUii*) ^ c«+i}
and:

Ui+1(x°) = {ue Ui(x0)\Ji+1(x°,u,d*+1) < Ci+1} (13)

The process can be repeated until the last cost function. The result is a control
law Utf and a set of initial conditions Vn = V such that for all x° € V^v and for all d € V
Jj(x°, u*N,d) < Cj where j = 1,..., N. The controller can be extended to values of the state
in the complement of V using the following switching scheme:

u*(x) = <

u*N(x) x eV
Un-x(x) x£Vn^i\V .14j

ul(x) x€Rn\V2

The algorithm presented above is sound in theory but can run into technical diffi
culties when applied in practice:

1. There is no guarantee that the dynamic games will have a saddle solution.

2. There is no straight-forward way of computing U{(x°)

3. There is no guarantee that the sets Vf (and consequently Ui(x0)) will be non-empty.

2.4 Interface

The sets V are such that for all initial conditions in them all requirements on system perfor
mance are guaranteed. These sets impose conditions that the discrete switching scheme needs
to satisfy. The discrete layer should not issue a new command (way point) if the current state
does not lie in the set V for the associated controller. Essentially these sets offer a way of
consistently abstracting performance properties of the continuous layer.

It should be noted that, by construction, the sets Vi are nested. Therefore there is
a possibility that an initial condition lies in some Vi but not in V. This implies that certain
requirements on the system performance (e.g. safety) are satisfied, while others (e.g. efficient
resource utilization) are not. This allows the discrete design some more freedom. It may, for

10

example, choose to issue a new command ifit is dictated by safety, even though it violates the
requirements of efficiency. This construction provides a convenient way of modeling gradual
performance degradation, where lower priority performance requirements are abandoned in
favor of higher priority ones.

The design of continuous controllers using game theory as well as the extraction of
interfaces in termsofsets ofguaranteed performance will be illustrated in the next section by
means of a series of examples.

3 Examples

In this section we investigate how the approach developed in Section 2 can be useful in appli
cations. We first consider a classic example from the timed automata verification literature,
the "train gate controller". This example is ideal for our purposes because it can be easily cast
into the game theoretic framework and the equations are simple enough for complete analysis
to be carried out by hand. The second example is vehicle following on an automated highway.
Here we proceed analytically as much as possible and use computational tools to complete
the design. To simplify the notation, time dependency of the states inputs and outputs will
be suppressed unless explicitly stated.

3.1 Train Gate Controller

3.1.1 Problem Statement

The train gate problem set up is shown in Figure 1. We will work on the problem formulation
of [19]. For simplicity we will assume that the train is going around on a circular track of
length L, where L is large enough to ensure adequate separation between consecutive train
appearances. This assumption will be discussed further in Section 3.1.3. We will also assume
that the train can be approximated by a point. It is easy to extend the analysis to trains of
finite length.

The Train: The train moves clockwise around the track. Let:

L L
x2 e

_L L\
~2' 27

denote the position of the train, with the implicit assumption that x2 wraps around at L/2.
The details of the train dynamics are abstracted away by assuming that the train velocity is
bounded, i.e.:

x\ e [vuv2]

From the analysis it will become apparent that in order to guarantee that the problem is well
defined we need to assume that:

0 < V\ < v2 < oo

11

Track

Figure 1: The train-gate set up

The Gate: The crossing is located at position x2 = 0 on the train track. It is guarded by
a gate that, when lowered, prevents the cars from crossing the tracks. Let:

*ie[0°,90o]

denote the angle of the gate in degrees. Assume that the gate dynamics are described by a
first order ODE:

1
xi = --xi + u

where u is the input to be chosen by the designer of the gate controller.

The Sensor: The design of [19] is based on discrete sensor measurements. We will assume
that there are two sensors located at distances S\ and S2 respectively on the track. The sensor
at S\ detects when the train is approaching the crossing, while the one at 1S2 detects when
it has moved away. From the analysis it will become apparent that in order for the control
problem to have a solution we will need to assume that:

-- < Si < 0 < S2 < -

12

Specifications: Two requirements are imposed on the design: safety and throughput. For
safety it is required that the gate must be lowered (below a certain threshold) whenever the
train reaches the crossing. This can be encoded as:

x2(t) = 0 => xi < Ci

The value C\ = 10° will be used in subsequent analysis. For throughput it is required that
the gate should be opened whenever it is safe to do so. This is done to maximize the number
of cars that can cross the tracks.

3.1.2 Game Theoretic Formulation

The problem can immediately be cast in the game theoretic framework. The two players
(agents) are the gate controller, u and the train speed (disturbance), d. The dynamics are
linear in the state and affine in the two inputs. Let x = [x\ x2]T GR2 denote the state:

*-(T !)■♦(!)-(!)' (15)
The state is constrained to lie in the set X:

x€X ={(xux2) eR2\Xl e[0°,90°];x2 €[-|,|)} CIR2
with the understanding that x2 wraps around at L/2. The input is constrained to lie in the
set U:

U€£/ = [0,45]CR (16)

while the disturbance lies in the set D:

d€ D = [vuv2] CK

The analysis will reveal that the dynamics and input constraints automatically guarantee the
state constraints.

The two playerscompete over two cost functions J\ and J2. Ji encodes the require
ment for safety. Given initial conditions x° £ X let:

T(x°) = min{* > 0\x2{t) = 0} (17)

be the first time that the train reaches the crossing. Then the requirement for safety can be
encoded by the cost function:

J1(x°,u,d) = x(T{x°))<C1 (18)

The requirement for throughput can be encoded by a number of cost functions. A simple one

/•oo

J2(x°, «,</)= / (90° - xx{t))2dt
Jo

Minimizing J2 implies that the gate is open for as long as possible.

13

is

3.1.3 Controller Design

The system dynamics given in equation (15) are simple enough to allow us to write an analytic
expression for the value of the state at time t:

Xl(t) = e-,/2i!+fe-(t-T'/2u(r)(fT (19)
Jo

x2(t) = x% + f d(r)dT (20)
Jo

Lemma 1 If x° € X and the input constraints of 16 are satisfied, x(t) € X for all t > 0.

Proof: Under the wrap around assumption on x2 the only thing we need to show is that
xi{t) e [0,90] for all t > 0. Indeed:

Xl(t) = e-^x0^ f e-^-T^2u{T)dT
Jo

< e-^xl +ttfe-^^dr
Jo

= e-^xl + VOil-e-*'2)
< 90e-'/2 + 90(l-e-'/2)
= 90

xi(t) > e-^x*
> 0

Design for Safety

Our first goal is to find the safe set of initialconditions and the control that makes them safe.
In other words we are looking for x° £ X and u* with u*(t) GU such that for all d satisfying
d(t)eD, J{x°,u*,d)<Ci.

Because of the nature of the cost it is rather difficult to formulate this problem in the
standard optimal controlframework and tackleit with the usual tools (DynamicProgramming,
Maximum Principle, etc.). Fortunately the dynamics are simple enough to allow us to guess
a candidate saddle solution:

um(t) = 0 (21)
d*{t) = v2 (22)

The state trajectories for the candidate saddle strategy are:

Xl(t) = e-ll2x\
x2(t) = x\ + v2t

From (17) x2(T(x0)) = 0, hence T(x°) = -x°2/v2. Therefore, from (18):

JKx0) = JifcV.O = e^'^x*
Lemma 2 (u*,d*) is globally a saddle solution.

14

Proof: First fix d = d* and vary u. Then:

xtf) = e-'/2:r°+ /V<'-t»2ii(t)<*
Jo

x2(t) = x2 + v2t

Hence T(x°) = —x\jv2 again. Therefore:

jo

7o

> JT(*°)

since:

to

Now fix u = u* and vary d. Then:

Xl{t) = e-%l2x\

ti(t) 6[0,45] =» / X2/U2 e^M+T)/2u(r)dr >0
Jo

x2(t) = x°2 + f d(r)di
Jo

Let Tf(x°) be the time that the train reaches the crossing.

x2(T'(x0)) = 0=» / d(r)c*T = -*S

But d(t) £ [vi,^2] therefore:

/ dMdr < / i^t = v2t
Jo Jo

=> T'(x°)>-x°2/v2 = T

Summarizing, for any admissible (w, d):

Ji(a:0, iT, d) < JjV) < «M*°> w> <H (23)

Therefore (u*,d*) is a global saddle solution to the game. O

The saddle solution can now be used to calculate the safe set of initial conditions:

Lemma 3 The set of safe initial conditions is:

V=L° eX\x°2 >0or x°2 <2v2 ln(^) j (24)

15

20 n 1 r

15

10

-5

-10

-15

-20
10 20 30 40 50 60 70 80 SO

Figure 2: Safe Set of Initial Conditions

Proof: For sufficiently large values of L, all initial conditions with x2 > 0 are safe (the train
has already passed the crossing). For x2 < 0 safety is equivalent to:

j;(x°) = e'V^x* < &

Since v2 and x\ are positive and the exponential is monotone this is equivalent to:

*°<2t,2ln(%

The safe set for C\ —10° and v2 = Zm/s is shown in Figure 2.

Design for Throughput

As:

J2(x°,u,d)= / (90° - X!(t))2dt
Jo

and, by Lemma 1, Xi(t) < 90°, maximizing throughput (minimizing J2) is equivalent to
maximizing xi(t). From the proof of Lemma 1 this is equivalent to setting:

u{t) = 45 (25)

"Optimal" Controller

The optimal controller can be obtained by combining the designs for safe and efficient opera
tion. As safety takes precedence over efficiency the resulting controller will be:

J 0 x
W=\ 45 x

16

eSc

eS
(26)

where S = interior(V).
It should be noted that, by design, the controller of 26 will be safe. Moreover any

controller which uses S C S in the place of S will also be safe, but not as efficient in terms of
throughput. These observations are summarized below:

Theorem 1 A switching controller of the form of (26) with switching taking place at S will
be safe if S C S and x° G V.

Proof: The theorem follows directly from Lemmas 1, 2, 3 and the fact that S C S C V. •

If discontinuous controls are undesirable, the controller can be made smooth by
applying:

u = (l-/(s))45

where / is any smooth function satisfying:

/ : R2 —> R
xeS

x
esc

f 0 x
\ 1 x

As above, the resulting controller will be safe if S C S.

Discrete Controller

Due to its bang-bang nature, the optimal controller can easily be implemented by a discrete
scheme, using the discrete sensor and an appropriate actuator as an interface.

Theorem 2 The discrete control scheme will be safe if:

Si < 2v2\n(Q-)
v90°

S2 > 0

Proof: When viewed as an input-output system in the continuous domain, the combination
of the discrete controller and the interface looks like:

•-{
0 Si < x2 < S2 . .

45 otherwise ^ '

Here we assume that all discrete transitions take place instantaneously. Let S = {x € X\Si <
x2 < Si). By Theorem 1 the controller will be safe if S C 5, i.e. S2 > 0 and Si < 2t>2ln(^-)
for all xj £ [0°,90°]. As the logarithm function is monotone, the above conditions are the
same as the ones in the theorem statement. •

17

The Possible Role of Coordination

What if the sensors were placed improperly, for example Si > 2v2ln(|^). The above analysis
can not guarantee a safe controller. One solution may be to modify the hardware and provide
additional sensors. An alternative would be to obtain a promise from the train that it will
slow down once it enters the sensor range, i.e. promise that y G [uijVj] with v2 < v2. For
appropriate choices of v'2 (in particular v2 < |,gS/90o)) safe operation with a discrete controller
will still be possible. This example indicates how inter-agent communication (which can be
used to provide such promises) can bias the game in the controllers' favor and help the designer
produce an acceptable design.

Extensions

The discrete design can easily be modified to deal with multiple trains, by introducing a
counter between the sensor and the controller. The counter is incremented whenever a train

crosses Si and is decremented whenever one crosses S2. The state Train Far is interpreted
as the counter reading 0. Provided that the conditions of Theorem 1 are met and all initial
conditions are chosen appropriately the resulting closed loop design will be safe.

With small changes in the analysis, safe designs can also be obtained for systems
with delays (e.g. between the occurrence of an event and sensing it, and between command
and execution). With a bit more work designs with the additional constraint y G [01,02]
can also be obtained. We will forgo these calculations in favor of the more interesting and
challenging vehicle following calculation.

3.2 Vehicle Following

3.2.1 Problem Statement

Consider two vehicles (labeled A and B) moving along a single lane highway (Figure 3).
Assume that the vehicles have lengths La and Lb and let xa and xb denote their positions with
respect to a fixed reference on the road. Assume that vehicle B is leading, i.e. xb > xa > 0.
The problem we are interested in is the vehicle following problem: we assume no control over
vehicle B and try to control vehicle A.

XB

XA LB
•^ >•

B

Figure 3: Vehicle Following

18

Leading Vehicle: The dynamics ofthe leading vehicle will be abstracted by a second order
ordinary differential equation:

xb = d

with d(t) G [dmin,dmax] C R and -oo < dmin < 0 < dmax < oo. The values of dmin and
dmax are dictated by the road and vehicle conditions. We will use dmtn = -5ms~2 and
dmax = 3ms"2. This abstraction is justified by the laws of motion and the assumed sensor
arrangement to be discussed shortly.

To make the problem more realistic, a restriction on the speed of vehicle B is im
posed:

XB € [VminiVmax]

Forhighway operation it is assumed that vehicles will not be allowed to gobackwards, therefore
Vmin = 0 will be used. vmax is imposed by engine limitations. One objective of the controllers
wedesign will be fuel efficiency. As a consequence the engine will not have to be pushed to its
limits for maximum speed and therefore vmax will not feature in the calculations. Therefore,
we will assume vmax = oo to simplify the analysis.

Trailing Vehicle: The dynamics of the trailing vehicle will be approximated by a third
order ordinary differential equation:

xA= bA(xA,xA) + cia(xa)va

aa and bA are complicated nonlinear functions of the state with a^z*) ^ 0. The first two
derivatives on xa arise from the laws of motion. The third has to do with the operation
of the engine, which can be modeled by the throttle angle acting through an integrator on
some nonlinear dynamics (involving engine time constants, aerodynamic drag, etc.). For our
purposes the details of the nonlinear functions bA and aa are not important. Following the
designs of [20], we will assume that feedback linearization has already been carried out, i.e.:

/.x -bA{xA->XA) +u
VA^ = —th~\—Q>a\xa)

xa = u

We will design controllers for the resulting linear dynamics.
As for the leading vehicle we assume that the dynamics are constrained by the

engine, tire and road conditions. More specifically it is required that:

xa € [umtn, vmax] = [0, oo)ms_1
XA G [flminj Q>max\ ^ |.Umtn5 "maxJ

W^tJ G \JminiJmax\

The design will use amtn = —5ms~2,amax = 3ms~2, jmtn = —50ms"3 and jmax = 50ms~3.

19

Sensors: Based on current technology, it is assumed that vehicle A is equipped with sensors
that can measure its ownvelocityand acceleration, as well as relative position and velocitywith
respect to vehicle B. We will assume that the acceleration of vehicle B can not be measured
and is not communicated to vehicleA (as it is, for example, for the platoon following scenario
of [21]).

The vehicles are also equipped with communication devices. It is assumed that they
will only be used to exchange discrete messages for coordinating the agent operation. In case
the vehicle is equipped with multiple, redundant sensors or communication capabilities it will
be assumed that the necessary sensor fusion has been carried out before hand and the designer
has access to a unique and accurate measurement.

Specifications: The objective is to design a controller for vehicle A. The requirements we
impose on the design are safety, passenger comfort and efficiency. It is assumed that safety
takes precedence over the other two requirements. Comfort and efficiency will be treated as
equally important and a compromise between them will be sought. Safety will be assumed to
mean no collision between vehicles A and B, at any time4. For passenger comfort it is required
that the input u is kept "as small as possible". In the transportation literature, x\< 2.5ms~3
is often quoted as the limit for a comfortable ride. Finally for efficiency it is required that all
maneuvers (for example convergence of the vehicle spacing to a desired value) take place "as
quickly as possible". All the above statements are quantified in the next section.

3.2.2 Game Theoretic Formulation

Both the design specifications and the system dynamics are independent of the absolute vehicle
position. To completely remove the absolute position from the problem we introduce a new
variable to measure the spacing between vehicles A and B:

D = xb —xa —Lb

All pertinent information can now be encoded by the state vector:

x =

From Section 3.2.1 the dynamics are:

0

0

0

0

x =

xa " Xi '

xa

D

. D .

=
x2

X3

Xa

0 1 [01 ro i

0

1
x +

1

0
u +

0

0

o J Lo J . i .

Ax + Bu + Dd
ox(0) = x

4Different definitions of safety, for exampleno high relative velocity collisions can also be accommodated
in this framework

20

For the vehicle following problem we are interested in regulating the spacing and relative
velocity to a desired fixed point. This requirement can be encoded in terms of two outputs:

y =

D

b
=

0 0 10

0 0 0 1

= Cx

X

Note that the assumed sensor arrangement can provide full state measurements.
To complete the picture we also need to encode all the constraints in the new

coordinates. From the discussion in Section 3.2.1 it is required that, for all t:

mtnj vmax0x{t) eX = [x e R4\xt e [vmin,Vmax),x2 e [ami-„,amoJ,ar4 4- xx G[n
U(t) e U = \jminjmax]
d(t) e D = [C'n,4oi]

The analysis can be greatly simplified if the input constraints are modified somewhat to
guarantee that the state constraints are satisfied. In particular we will assume that:

u(t) e

d(t) e

{Jmin»Jmax] 11 X2 G \amintamax)
IVj Jmax] 11 x2 = amin

{Jmin j «J it x2 = amax

|«mtni 0-max\ if X4 + Xi € (umtn, vmax
[U, amax\ if X4 + Xi = Vmin
Mmin,0] if X4 + Xi = Vmax

(28)

(29)

This will ensure that the constraints on x2 and xi + x4 will never be violated if x° G X.
The only state constraint that we have to worry about is Xi € [umm>Umai]- For the

reasons discussed above we will not be concerned with the upper bound too much. We can
work around the lower bound by assuming that xa = x2 becomes zero when xi = vmin is
reached (recall that when xi reaches um,„, x2 < 0). This modification is not as far fetched as
it may seem at first, for two reasons:

1. The brake input does not have to go through the extra integration of the engine throttle
input. It effectively acts directly as the acceleration input. Even though the engine can
be used for deceleration, physical considerations imply that the brakes have to be used
if the vehicle is to stop completely in which case, x2 can be considered as playing the
role of the input (instead of x2).

2. What happens after xi reaches xm,n is not very important, at least from the safety point
of view. Recall that the constraint (29) guarantees that xb > vmin = 0. Therefore, if no
collision occurs until xi = 0 none is going to occur from then on, unless vehicle A starts
accelerating again.

The two players are the unmeasured acceleration, d, of vehicle B and the controller,
u, of vehicle A. They compete in three fronts over the cost functions:

21

1. Safety:

A safe maneuver is one where:

Ji(x0,u,d) = —mfx^t)

Ji(xQ,u,d) < Ci =0m

(30)

Allowing Ji = 0 meters makes the limiting case (where the vehiclesjust touch with zero
relative velocity) acceptable.

2. Comfort:

J2(x°,u,d) = sup \u(t)\
t>o

(31)

A comfortable maneuver is one where:

J2(x°,u,d) < C2 = 2.5ms~3

3. Efficiency:

J3(x°,u,d) =/°°(j,(t) - yd)TP(y(r) - yd)dT (32)
JO

where yd is the desired fixed point for a given maneuver and P is positive definite.

The solution to the system equations can be obtained using the variation of constants
formula [22]:

x(t) =eAtx°+ /V(t-T)£u(r)</r +/' eA{t~^ Dd(r)dT
Jo Jo

Using the formula:
.AteAt = I + At +

(Atf
2!

+ ...

and the fact that A is nilpotent (A3 = 0) we obtain:

This leads to:

x(t) =

X-% "j- 12*2

Xr

~~"L X<yl £t "J" 3?o i- 1>Xa

TX2 "T flJ^

eAt =

+
Jo

1 t 0 0

0 10 0

0 -*2/2 1 t
0 -t 0 1

t-T

1

-(t - r)2/2
-* + r

u(r)dT 4- /
./o

0

0

t-T

1

</(t)</t (33)

This equation is valid, under the assumed constraints (28, 29), as long as Xi(t) G [vmm^max]-

22

3.2.3 Design for Safety

As for the train gate problem, we will start by guessing a saddle solution. Let:

Ti =
Gmin X2

T2 =
x°i + x°4

Consider the candidate saddle strategy:

«•(*) ={
d-(t) ={

jmin if << Ti
0 if t> Tj

''min if t < 72
0 ifOTj

(34)

(35)

In other words, both A and B try to come to a stop as quickly as possible, under the given
constraints.

For the candidate saddle solution x(t) can be written explicitly:

• IfO<*<min{Ti,r2}:

AtM0x(t) = e*V +

• If 2\ <t<T2:

• *2/2 • " o •

t 0

-t3/6 Jmin i t2/2
-t2/2 t

At JOx(t) = eAtxu +

tTi - T2/2
Ti

-r3/6 + m(Ti-o/2
-tTi + T2/2

Jmin T

0

0

<2/2

• If T2<t <7\:

At„0x{t) = e*'xu +

If i>max{Ti,r2}:

t2/2
t

-*3/6
-t2/2

Jmin i

0

0

tT2-T2/2
T2

»mii

x(t) = eAtx° +

tTi - Tl/2
Ti

•T?/6 + tTi(Ti-t)/2
-tTi + T2/2

Jmin ~r

0

0

tT2-T2/2
T2

Let Tz be the stopping time for vehicle A. Then:

23

• IfO<T3<Ti:

Tijmin/2 + r3^ + X? = 0

—^2 "~ V(X2) ~~ 2jm»na;l=£. ^3 = j

Jmin

Note that the second solutionwould lead to T3 < 0 (assuming that jmin < 0 and x\ > 0).

• If Ti < T3:

(TiT3 - T2)jmin + T3x° + x° = 0
V^mtn «^2/ ^JminXi

=» T3 =
^JminQ-i

From the discussion at the end of Section 3.2.2 the times of interest are now restricted to the

interval t G [0,T3]. A simple calculation shows that:

Lemma 4 If x° e X then x(t) G A' for all t G [0,T3],

To calculate Ji(z°, u*,d*) recall that a:3(£) is a differentiable function of time, with
derivative x4(t), defined on a compact interval [0, T3]. Therefore:

Lemma 5 There exist f G[0, T3] such that:

Ji{x°,u\d*) = -x3(f)

Moreover:

fe{0,T3,{Te(0,T3)\x4(T) = 0}}

The calculations for analytically determining Ji{x°) = Ji(x°, w*, d*) fromthis lemma
are rather messy. However if the set of times T where x4(T) = 0 is finite we can easily carry
out the calculation numerically. After a few steps of algebra we can determine that:

• For 0 < T < min{Ti,T2}:

"min X2 ± y {dmin X2) -|- £>JminX4

• If Ti < T < T2:

• Ifr2<T<Ti:

IfT>max{Ti,T2}:

rp _ x4 ~^~ *IJmin/2
Q-min ^mtn

= -X°2 ±y/(x°2)* +2jmin(T2dmin +gj)

y = a} -I- T2jmin/2 +T2dr
flmir

24

-2-i

20 22 24 26 "5
aO

un

Figure 4: Safe set of initial conditions for zS = 15,20 and 25 meters

A computer program was written to calculate Jj(x°) for various values of x° and the constants
given in Section 3.2.1. It should be noted that x® only enters the calculations as a constant
offset on x3(t). Figure 4 shows the surface where Jof^0) = 0 f°r some values of x°. Any initial
condition on or above these surfaces will not lead to a collision under the strategy (u*,d*).

To complete the safety calculation we need to show:

Lemma 6 (u*,d*) is globally a saddle solution for cost Ji(x°,u,d).

Proof: For (*/*, d*) to be a saddle point we need to show that a unilateral change in strategy
leaves the player who decided to change worse off. Let x*(t) denote the state at time t under
the inputs (u*,d*).

2 ' Jo 2
(0= f 0 -t2/2 1 t]x°- [

Jo
u*(r)dT- fL-Lftffo

Fist fix u* and allow d to vary. Let x(i) denote the state at time t under the inputs (u",d).
Then:

x*(t) = [0 -i 0 l]x°- / (* - t)i**(t)<*t + / dm(r)dr
x4(t) = [0 -t 0 1]x° - I (t - r)u{r)dr + / d{r)dr

=> x4(t) - x*4(t) = f\d(T)-d*(T))dT
Jo

We need to distinguish two cases:

25

1. t < T2. The bounds on d imply that:

d(r)>d*{T) =* f\d(T)-d*(T))dT>0
Jo

=> x4(t) - x*4(t) > 0

2. t > T2. Then, by definition of T2, /„' d*{r)dT = -(x? + xj). The state constraints imply
that xi(t)-\-x4(t) > 0 (vehicle B does notgo backwards), therefore /q d(r)dr > —(xj+xj).
Subtracting, fi(d(r) - d*{r))dT > 0.

In both cases, we are able to conclude that x3(t) = x4(t) > xA(t) = £3(<). Integrating this
inequality from 0 to t and using the fact that x3(0) = x3(0) = x3:

x3(t) > x*3(t) for a\\ t
=^-infx3(*) < -mfx3(t)

t>o v ' ~ t>o JV '

=> Ji(x°,u%d) < Ji{x°,u*,d*) (36)

Now fix d = d* and let u vary. Let x(t) denote the state at time t under the inputs
(u,d*). Then:

x4(t) = [0 -t 0 l]x°- f\t-T)u(r)dT+ f d*(r)dT
=* x4(t) - x*(t) = f\t - t)(u*(t) - u(r))dT

Jo

As above we need to distinguish two cases:

1. t < T\. The bounds on u imply that:

u(t) >u*(t) => f (t- t)(u*{t) - u(r))dr <0
Jo

=> x4(t) - xm4(t) < 0

2. t > T\. Recall that d*(t) is piecewise constant, with a discontinuity at T2 (which may
be either greater or less than Ti). Therefore x4(t) and x*A(t) are piecewise differentiable,
with derivatives —x2(t) and —x2(t) respectively. By definition of Ti, x2(t) = amtn < x2(t)
in the interval of interest. Therefore, as x4(0) = xj(0) = x°, x*A(i) > x4(t).

In both cases x3(t) = x4(i) < xA(t) = i^t). Using the fact that xj(0) = x3(0) = x3 and
integrating:

x3{t) < x*3(t) for all t

=*-infx3(*) > -infant)

=> Ji{x°,u,d*) > Ji(x°,u\d*) (37)

Combining inequalities 36 and 37:

Ji(xW) < j;(x°) < Ji(x°,u,d*) (38)

for all d and u. By definition, (u*yd*) is a saddle solution. •
Lemma 6 implies that the surfaces of Figure 4 are 2D slices of the 3D boundary of

the safe set V C X for various values of x°.

26

3.2.4 Completing the Design

The analysis of the previous section provides a design that will satisfy the requirements for
safety. By construction any initial condition in the safe set (on or above the corresponding
surface of Figure 4) will not lead to a collision, if the control of equation 34 is applied. In the
interior of the safe set, where safety is guaranteed, the other performance aspects (passenger
comfort and efficiency) also become important. In order to complete the continuous design
we now need to come up with a controller that optimizes with respect to these performance
aspects in the interior of the safe set.

The safe set also provides guidelines for the discrete design. The discrete level
should be such that initial conditions outside the safe set are never encountered. Such initial

conditions may be caused for example in a multilane highway, when vehicle B changes lane
in front of vehicle A. The safe set provides requirements on the vehicle states for a safe lane
change to take place. It is up to the discrete layer to guarantee that these requirements are
satisfied.

3.3 The Leaking Gas Burner

To illustrate how optimal control ideas can be used to carry out verification consider the
"leaking gas burner" example of [6]. Even though this problem is rather simple and amenable
to other techniques for verification it highlights some of the advantages of verifying using
optimal control.

3.3.1 Problem Statement

The gas burner has two states, "normal" and "leaking". There are two rules governing the
leaking process:

1. Leaks are detected and repaired within Di seconds

2. No leak occurs within D2 seconds of the last leak being fixed.

The gas burner can be modeled by the hybrid automaton of Figure 5.

y:=0

D2<y. y:=0

Figure 5: The leaking gas burner hybrid automaton

The requirement is that the accumulated time of leakage does not exceed a% in any
interval larger that T > 0 seconds, i.e.

t > T =» x < at

27

3.3.2 Optimal Control Formulation

To cast the verification as an optimal control define:

x([a,6])G[0,l]

to be the percentage of leaking time in the interval [a,6] C R with 0 < a < 6. Let:

«*:[«!,&]—• {0,1}

be the leaking times, with d(t) = 0 being "normal" and d(t) = 1 "leaking". A typical d is
shown in Figure 6.

N N L2 N2

Figure 6: Typical leaking pattern

We will use d = {A^,Li, Ni,L2,...} to denote this sequence. The leaking rules limit
the set of acceptable u's to:

V = {d : [a,b] -> {0, l}|Lt- < Dx, N{ > D2} (39)

We will treat the leaking process as an optimization problem. In particular we will try to
solve:

t\ li\ Li + L2 + ... + Lk
max x(a, o) = max :
dev Vl ' J/ dev b — a

The requirement on the accumulated leaking time can be posed as:

x([a,6])<a for all 0<a<6 with b-a>T (40)

3.3.3 Optimal Solution

We will seek the worst possible disturbance d. First consider the case where a = 0,6 > 0,
which trivially generalizes to general a, 6. The problem is simple enough to allow us to guess
a maximizing d:

Lemma 7 A global maximizer o/x([a,6]) is

d = {0,DuD2,Du...}eV

28

Proof: Consider an arbitrary d = {N0,Li,Nu L2,...} GV. Apply the following algorithm:

• Step 1: If iVo > 0 "slide" Li left by JV0, filling up with 0 on the right. The resulting d
will be:

</i = {0,Li,JV-{,L2,...}
Note that dx G V as N[= N0 + Nt > D2.

• Step 2: If Lt < Dx "slide" part of L2 left to "fill up" Lx.

d[= {0,D1,Nfl,L,2,...}

If L2 is not enough use some of L3 and so on. Note that d\ G V as L2 = L2 —(D\ —L\) <
Dx.

• Step 3: If N[> D2 "slide" V2 left, until:

d2 = {0,DllD2,Lt2,N^...}

Note that d2 G V as N'2 = N2 + (M - £>2) > D2.

Steps 2 and 3 are repeated for the remaining L and N. Let d denote the resulting d:

d={Q,DuD2,DuD2,...,L,N}

where 0 < L < D\ and N > 0. Note that all the steps of the algorithm preserve the leaking
times therefore both d and d lead to the same x([a, 6]). If L < D\ and Af > 0, "fill up" L until
L = Di or N = 0. The resulting d will be:

d' = {0,DuD2, Du D2,..., Du N'}
or

d' = {Q,DuD2,DuD2,...,L',0}

In either case it will lead to x'([a,6]) > x([a,6]). If N' > D2 make N' = D2 and add a new
interval of leaking time. Again this will lead to a higher value of x([a,6]). The process can be
repeated until the maximizer:

d={0,DuD2yDuD2,...1L,N}

with 0 < L < Di and 0 < A^ < D2 with the restriction that L = Dx if N > 0. It should be
noted that this maximizer is not unique. Q

The above calculation trivially generalized to any a and 6. Let k be the integer part
of D6^ . Then the worst case accumulated leaking time is given by:

*n m n m (ihT^L X{b - a) - k(Dx + D2) > Dxx(a,6) = maxx(a,6) = { lh ?r°tn „;, {) ((41)

Theorem 3 77ie accumulated leaking time specification is satisfied if and only if Di,D2,T
are such that x([a,6]) < a.

The proof is a direct corollary of Lemma 7. Figure 7 shows a graph of x([a, 6]) for various
values of (Dx,D2) and T = 60 seconds (as in [6]). The dividing line between acceptable and
unacceptable designs is a horizontal plane at height a.

29

T=60

40 10

D2
D1

Figure 7: Worst case leaking percentage for D\, D2

4 Concluding Remarks

Hierarchical, hybrid system design and verification has attracted significant attention over the
last few years. In this paper we presented an approach to the design of hybrid controllers for
complex systems. Our approach fits nicely with a multiagent scenario. The starting point was
game theory in the continuous domain. The continuous design was treated as a game between
the controller and the disturbances, that can be used to model the behavior of other agents,
among other things. In addition to optimal continuous controllers the solution to the game
also provides requirements on the discrete switching policy. A hybrid controller is guaranteed
to meet certain performance specifications if the discrete part obeys these requirements.

Our approach was illustrated by means of two examples: the train-gate controller
and the vehicle following problem. We also discussed how similar ideas can be used to solve
problems of verification and discrete abstraction generation. We illustrated the application to
verification by a simple example, the leaking gas burner, a timed system with an integrator
variable.

To facilitate the application of our methodology we need to derive conditions under
which the problems are solvable (saddle and optimal solutions exist, etc.). In this respect we
hope to be able to extend older results in game theory [23] and optimal control [24]. We also
need to develop algorithms for determining the sets of guaranteed performance, V;, or at least
conservative approximations to them. Extensions of previous results may also suffice for this
problem.

The most important missing part is a technique for designing the higher (discrete)
levels. The approach presented here only gives continuous designs and switching guidelines.

30

The designer still has to come up with a discrete design that follows the guidelines. The
problem is more difficult because of the fact that even the descriptivelanguage of the discrete
layer is not specified a-priori. An interesting issue that needs to be addressed in the discrete
setting is what happens if the abstractions indicate that conflicting objectives (e.g. safety and
capacity) can not be met. As discussed in the introduction, the problem may still be solvable
in this case by using inter-agent coordination. The role of coordination is to cut down on the
set of allowable disturbances generated by other agent actions and hence bias the game in the
controllers favor. The questions of how are the higher levels to be designed to achieve sufficient
coordination and where is the line between feasible and infeasible performance requirements
are very interesting and still require a lot of work to be answered.

References

[7

[8

[9

[io:

[11

Z. Har'El and R. Kurshan, Cospan User's Guide. AT&T Bell Laboratories, 1987.

Adnan Aziz, et al., "HSIS: a BDD-based environment for formal verification," in
ACM/IEEE International Conference on CAD, 1994.

M. Heymann, "Hierarchical decomposition of hybrid systems." (preprint), 1994.

A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya, "Protocol design for an automated highway
system," Discrete Event Dynamic Systems, vol. 2, no. 1, pp. 183-206, 1994.

R. Alur, C. Courcoubetis, and D. Dill, "Model checking for real-time systems," Logic in
Computer Science, pp. 414-425, 1990.

R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, "Hybrid automaton: An
algorithmic approach to the specification and verification of hybrid systems," in Hybrid
System (R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, eds.), pp. 209-229, New
York: Springer Verlag, 1993.

R. P. Kurshan, Computer-aided verification of coordinating processes; the automata-
theoretic approach. Princeton University Press, 1994.

C. Daws and S. Yovine, "Two examples of verification of multirate timed automata with
KRONOS," in Proc. 1995 IEEE Real-Time Systems Symposium, RTSS'95, (Pisa, Italy),
IEEE Computer Society Press, Dec. 1995.

F. Balarin, Iterative Methods for Formal Verification of Digital Systems. PhD thesis,
University of California, Berkeley, 1994.

F. Balarin, K. Petty, and A. L. Sangiovanni-Vincentelli, "Formal verification of the patho
real-time operating system," in IEEE Control and Decision Conference, pp. 2459-2465,
1994.

A. Puri and P. Varaiya, "Decidebility of hybrid systems with rectangular differential
inclusions," in Computer Aided Verification, pp. 95-104, 1994.

31

121 T. Henzinger, P. Kopke, A. Puri, and P. Varaiya, "What's decidable about hybrid au
tomata," in STOCS, 1995.

131 A. Deshpande, Control of Hybrid Systems. PhD thesis, Department of Electrical Engi
neering, University of California, Berkeley, California, 1994.

141 M. S. Branicky,V. S. Borkar, and S. K. Mitter, "A unified framework for hybrid control:
Background, model and theory," Tech. Rep. LIDS-P-2239, Laboratory for Information
and Decision Systems, Massachusetts Institute of Technology, 1994.

151 A. Nerode and W. Kohn, "Multiple agent hybrid control architecture," in Hybrid System
(R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, eds.), pp. 297-316, New York:
Springer Verlag, 1993.

161 T. Basar and P. Bernhard, H^-Optimal Control and Related Minimax Design Problems.
Birkhauser, 1991.

171 J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, "State-space solutions
to standard H2 and H^ control problems," IEEE Transactions on Automatic Control,
vol. 34, no. 8, pp. 831-847, 1989.

181 A. Puri and P. Varaiya, "Driving safely in smart cars," in American Control Conference,
pp. 3597-3599, 1995.

191 A. Puri and P. Varaiya, "Verification of hybrid systems using abstractions," in Hybrid
Systems II, LNCS 999, Springer Verlag, 1995.

201 D. Godbole and J. Lygeros, "Longitudinal control of the lead car of a platoon," IEEE
Transactions on Vehicular Technology, vol. 43, no. 4, pp. 1125-1135, 1994.

211 J. K. Hedrick, D.McMahon, V. Narendran, and D. Swaroop, "Longitudinal vehicle con
troller design for IVHS system," in American Control Conference, pp. 3107-3112, 1991.

22] F. M. Callier and C. A. Desoer, Linear System Theory. Springer-Verlag, 1991.

23] T. Basar and G. J. Olsder, Dynamic Non-cooperative Game Theory. Academic Press,
2nd ed., 1994.

[24] L. Berkovitz, Optimal Control Theory. Springer-Verlag, 1974.

32

	Copyright notice 1995
	ERL-95-77

