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TAO: A Transformation Framework

for DSP Algorithm Optimization

Abstract - This report proposes aframework aimed at the optimization ofspeed, area, orpower

consumption of custom DSP designs through algorithmic transformations. The framework uses a

generic methodology to select and order the transformations needed for the optimization of a

given cost-function. This methodology combines bottleneck analysis (why the transformations

should beapplied), transformation ordering (the order in which the transformations are applied),

algorithm partitioning (which parts ofan algorithm should be transformed), transformation pre

diction/selection (which transformations to apply), and transformation execution (how to apply

the selected transformations). Assisted by this framework, designers can easily and quickly

exploit the optimizing transformations to explore the algorithmic design space to reach better

designs.



TAO: A Transformation Framework

for DSP Algorithm Optimization

1 Introduction

In the past few years, numerous researchers in high-level synthesis have successfully exploited different

transformations in optimizing a design with respect to avariety of objectives, including speed [1-9], area [10-

16], power [17], and memory [18]. Most approaches consider only individual or small sets of transformations.

Since the applicability of an individual transformation is oftenrestricted, it is desirable to integrate a large

number of transformations. While thisenhances theeffectiveness, it may, however, greatly increase the com

plexity of the optimization process.

Given a set of transformations, determining which transformations to apply, where to apply them, and in

what order is a non-trivial task. A commonly used approach is to provide an interactive userinterface which

requires users tomake all the decisions by themselves. This approach has thedisadvantage of being ad hoc and

might not work in cases where the cost-function is non-obvious, such as in area minimization. Another

approach is to develop a dedicated algorithm (often withheuristics) whichintegrates all the transformations

into one. This approach has little tono extensibility interms of adding new transformations. As alarge number

of transformations exist,the above approaches are neither practical norefficient.

The above issues have been studied for quite some time in the compiler world. Most of these studies have

focused onloop transformations [19-21]. Whitfield [22] proposed an interesting idea to order the transforma

tions by investigating the properties of transformations over abenchmark set. In high level synthesis, these

issues were little addressed. Potkonjak [5] brought up the idea ofenabling transformations for ordering. Huang

[8] and Janssen [12] furthered the application of enabling transformations in ademand-driven fashion. In addi

tion to the transformation ordering, predicting the cost and performance of transformations is another impor

tant task. Estimation helps to distinguish transformations and select appropriate ones for application. Rim [23]

proposed a similar idea which employs some estimation techniques for loop transformations.

While many research efforts inhigh level synthesis are devoted toexplore newindividual transformations (or

new algorithms for the known transformations), it is becoming more and more compelling to have a CAD

environment that integrates a large setofthe existing transformations, has the flexibility ofadding new ones,

and then systematically makes use of them. To ourbest knowledge, there exists no suchenvironment. This

report, instead of introducing new transformations, proposes one such framework, named TAO (Transforma

tion for Algorithm Optimization), which systematically determines which transformations toapply, where to

apply them, and in what order. This framework can help designers effectively exploit avariety of optimizing
transformations to improve their designs.
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To substantiate these concepts, we will use the area optimization for custom DSP chip design as an example.
Area optimization using transformations has been little addressed in high level synthesis. The problem with
area optimization isthat the impact ofasingle transformation isoften ambiguous; area (in contrast totime) isa

global variable and local transformations often do not work. Typically, the interplay between many transforma

tions is needed to get asubstantial area improvement. For functional units, [10] and [12] proposed two differ

ent approaches - improving the resource utilization and reducing operation count The fundamental concepts

and differences will become apparent inthe course ofthis paper. The proposed framework isalso extensible to
othercost-functions, e.g. speed and power.

In the next section we propose ageneric methodology toapply optimizing transformations. This methodol

ogy translates into atransformation framewo±that isdiscussed inSection 3. The effectiveness ofthe approach

is demonstrated in Section 4 with a number of examples. The paper concludes with adiscussion of future

developments and a summary.

2 Methodology

Figure 1shows ageneric methodology for applying optimizing transformations. The inputs tothe optimiza

tion process are adesigner's algorithm represented as acontrol/data flowgraph (CDFG), design constraints

such as time, area, or power, and apredefined transformation set. This methodology is composed of aset of

sub-tasks including bottleneck identification (why transformations should be applied), algorithm partitioning

(which parts of the algorithm as aCDFG should be transformed), transformation ordering (the order in which

certain transformations are applied), transformation prediction and selection (which transformations could be

effective and should beconsidered), and transformation execution (how toapply the selected transformations).

A design produced directly from agiven algorithm instance might not meet all the specified constraints. The

factors that violate the constraints are called the bottlenecks ofthe design. For example, if adesign cannot meet

the timing constraint (e.g., sample period for DSP applications), the execution time is the bottleneck; the

resources dominating the area are the bottlenecks when area constraints are not met. The resources can be

functional units (multipliers, ALUs, etc.), registers, interconnect, or memory units. Similarly, the bottlenecks

for power are those resources that consume significantly more power than others. Given aCDFG and design
constraints, the bottleneck identification module locates the potential bottlenecks. The objective of the optimi

zation process is then to apply those transformations that specifically address theidentified bottlenecks.

To achieve this goal, the transformation module can resort to a predefined set of transformations. Since the

order in which these transformations are applied has asignificant impact on their effectiveness [22], an appro

priate ordering among the transformations, based on the bottlenecks and the properties of transformations, is

established in the transformation ordering module. As the transformation set determines the scope of the

design space and hence the potential improvement range, it is desirable that the set is sufficiently large. This
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when to apply a
transformation

why to apply
transformations

where to apply
transformations

which transformation:

should be applied

how to apply the
transformations

Figure 1: Methodology fortransformation-based optimization

however leads to a large number of possible permutations among transformations. It is therefore important to

reduce the search space so as to improve the efficiency. One technique for pruning the search space is algo

rithm partitioning — considering onlythesubgraph of theCDFG that is related to thecurrently selected bottle

neck. Transformations which are notapplicable in the subgraph are omitted because they cannot improve the

bottleneck. Another technique for pruning a large transformation space is to predict the potential impact of

transformations (transformation prediction) and select only the transformations that are capable of optimizing

the given bottleneck (transformation selection). Afterordering, partitioning, prediction, and selection are

done, we have determined which transformations to apply, where to apply them, and in what order. The last

step is executing the transformation task. After the selected transformations are applied, the transformed

CDFG is fed back for re-evaluation. This optimization process is repeated until all constraints are satisfied or

no further improvement can be achieved.

3 Transformation Framework

Based on the above methodology, a transformation framework, TAO, aimed at the optimization for speed,

area, or power of DSP applications is established (Figure 2). In this framework, a setof prediction models (P-
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models) and a transformation library (T-lib) are predefined (Section 3.1 &Section 3.3, respectively). The bot

tleneck analyzer takes these P-models to identify bottlenecks (Section 3.2). These P-models are also used to

characterize transformations (Section 3.4). The characteristics oftransformations, e.g. ordering among trans
formations, are represented as aset ofT-graphs which will be discussed in Section 3.5. T-graphs are the pri
mary object through which the modules in the framework communicate with each other. This representation
enables ourframework a flexibility of adding new transformations in thefuture.

With the identified bottlenecks and the set ofT-graphs, the transformation manager performs algorithm
partitioning, transformation prediction, and transformation selection (Section 3.6). It determines which trans

formations should be applied and where to apply transformations. The selected transformations are represented
as arefined T-graph. Finally, the transformer module applies these transformations inan order dictated by the

T-graph onto the subgraphs (Section 3.7). The transformed CDFG is then sent back to the bottleneck analyzer
to evaluate the result. If nothing bettercanbe achieved, thebestsolution achieved so far is returned to the user.

Otherwise, a new bottleneck is identified for the next iteration.

In the rest ofthis section, we will discuss each module in more detail. To substantiate the concept, we use

area optimization as an example. The experimental results on a number ofreal-life examples will follow in
Section 4.

3.1 Prediction models (P-models^

Rabaey et al. [24] have shown that there exist strong correlations between the performance metrics ofa

design and a number ofstructural properties ofthe algorithm. For example, the length ofcritical paths is a
good measure for the execution time, the concurrency ishighly related to the chip area, and the number of

G'
taken actions

Transformation

characteristics

—I—

G"
bottleneck

feedback

T-graph *s

Transformation
manager

G*
bottleneck
T-graph*

transformer

G: original CDFG
G': transformed CDFG
G": CDFG to be optimized
G*: partitioned CDFG
Gopt optimized CDFG
T-graph*: refined T-graph

Gopt

Figure 2: Structure of the TAO framework
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accesses (count) correlates to power consumption. These high-level properties can beused to derive the P-

models.

Our framework currently provides a setof structural-property-based P-models. These P-models are used to

identify the bottlenecks as well as to characterize transformations. Besides, due to their low complexity, these

models also serve as the cost functions inthe transformer module. Although our framework provides the flexi

bility ofusing other more accurate P-models [27-30], this however will trade efficiency for accuracy.

For area optimization, a setof layered P-models are derived. These P-models predict the area costs of

resources which can be functional units (FlTs), registers, and interconnect busses. For simplicity, We will use

FlTs as an example. The P-model forFU's contains three submodels (Figure 3), each of which reveals differ

ent degree of information. The first layer is the simplest one. It only considers the count information (number

of operations). This submodel determines theabsolute min-bound1 on the amount of resources. Since different

types of operations usually have different costs, the second layer of the model considers boththe number of

operations as well as their weights. The corresponding sub-model isthe weighted sum. A further refinement of

the model is to account data dependencies as well. The submodel at this layer turns outto be the maximal

height ofthe distribution graph. The concept ofusing distribution graphs for prediction has been proposed and

discussed in [24-26,11]. Figure 4 shows an example ofadistribution graph. There are 3multiplications in the

flowgraph, and each ofthem takes 1clock cycle to execute. Given the available time of4clock cycles, Mj and
M2 must be executed at cycle 1, and M3 could be in cycle 2or 3. We assume that M3 isequally likely to be exe

cuted in either cycle. It's obvious that both M} and M2 need amultiplier at cycle 1. But M3 potentially only

needs 0.5 multiplier at cycle 2 and 3. This builds up adistribution graph as shown in Figure 4. The height of

the distribution graph predicts the required amount ofmultipliers. In this example, 2multipliers are needed.

Similar models can also bederived for other resources like registers and interconnect busses. Given the dis

tribution graphs, the bottleneck analyzer can quickly predict the area cost of all resources and identify which

resource should be optimized. The layered P-models later will be used to characterize transformations in Sec

tion 3.4.

Layered P-model Effects

count Wop) abs-min-bound

weighted sum I(#op,- * weighty weighted abs-min-bound

height of distribution graph I(#opi * weighty utilization

Figure 3: Layered P-models

1. The absolute min-bound of aresource is defined as the minimum amount of the resource which is needed under the assumption that
the full utilization can be achieved.
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3.2 Bottleneck analyzer

To identify thebottlenecks, the bottleneck analyzer is associated with a setof P-models asdiscussed in Sec

tion 3.1. The identified bottlenecks will later be optimized using transformations. According to design con

straints, there could be avariety ofbottlenecks, each ofwhich may need different transformations. Optimizing

all bottlenecks inadesign simultaneously ishardly possible. A divide-and-conquer strategy is used in our

framework. The bottleneck analyzer picks the dominant one and defers others to later iterations. This allows

the optimizer toeliminate the bottlenecks one byone. A general strategy tohandle different bottlenecks isto

assure a feasible solution first (e.g. satisfying the time constraints) and then minimize the design cost (area or

power,according to designer's preference).

For area reduction, the resources that dominate the chip area are the bottlenecks ofinterest. Among these, the

onewhich has the highestpotential to get improved is selected to be the bottleneck and others are deferred to

later iterations. The potential can be identified by analyzing the distribution graphs. For example, the distance

between the height ofthe distribution graph and the absolute min-bound roughly shows the potential improve
ment range.

In the divide-and-conquer strategy, the bottleneck analyzer is also responsible for the control of the overall

optimization flow and to ensure that all the potential bottlenecks are addressed. To accomplish this, the ana

lyzer must have the capability of memorizing the history ofbottlenecks, actions taken for optimization, and

improvements. The analyzer evaluates the solution after each iteration —ifanew version is not acceptable due
to too much overhead (side effects), the analyzer will either provide feedbacks tothe transformation manager

to adjust its selections (e.g. avoid certain transformations) or reject the new solution and step back to the previ
ous CDFG.

One advantage ofsuch adivide-and-conquer approach isthat itsupports dynamic optimizationflow. Based on

identified bottlenecks, different transformations might be applied in different orders through the optimization
process. This benefit cannot be realized byany dedicated algorithm which has built-in static optimization flow.
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3.3 Transformation library fT-liM

The considered transformation set is defined in the T-Lib. Because the scope of the design space is deter

mined by the transformation set,it should be reasonably large and versatile. Bacon [31] summarized dozens of

existing optimizing transformations in software compilers. Some of them are of no use in our framework

because our transformations are applied to a CDFG instead of statements. In addition, for the experimental

purpose, weonlyconsider thetransformations which are mostimportant in ourapplication domain. For exam

ple, algebraic transformations and retiming/pipelining are of critical importance in DSP applications due to

their computation-intensive nature and temporal property. The T-Lib in our framework consists of algebraic

transformations (associativity, distributivity, reverse distributivity, commutativity, algebraic identity, algebraic

inverse, constantfolding, constant multiplication expansion, and a few other specific ones), temporal transfor

mations (retiming, pipelining, time-loop unfolding), loop transformations (loop unrolling, loop fusion, loop

distribution) and some generic transformations (common sub-expression replication!elimination, dead code

elimination, loop invariant code motion).

3.4 Transformation characteristics

With such a large setof transformations, the characteristics of transformations can help us understand their

capabilities and interactions. This is important for transformation ordering and selection. In order to character

izetransformations, werelate their effects onaCDFG (algorithm) tothe layered P-models proposed inSection

3.1. In the case of FU's being the bottleneck, wecan classify transformations into the following categories:

(1) operation reduction [count] — This is themost often used technique for area reductioa Transformations

in this category can reduce the numberof operations, therefore the absolute min-bound. Possible transforma

tions are common sub-expression elimination (CSE), reverse distributivity (also known as factoring), constant

folding, algebraic identities, andloopinvariant codemotion.

(2) operation conversion (or strength reduction) [weighted sum] — This technique trades expensive opera

tions for cheaper ones so as to reduce the overall weighted sum. This however may increase the total operation

count. The weight of an operation is the module area given inthe hardware library. A representative transfor

mation for thiscategory is constant multiplication expansion (CM).

Layered P-model Behavior ofT's Effects

count Wop) op reduction reducing abs-min-bound

weighted sum I(#0Pi * weight) op conversion reducing weighted abs-min-bound

height of distribution H#Of>i * weight) op reordering improving utilization

Figure 5:Layered P-models vs. Behavior of transformations (for FU's)
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(3) operation reordering [height ofadistribution graph] —This class oftransformations improves the utili
zation ofhardware resources bychanging the computational order of the operations and therefore their distri

bution. Possible transformations in this category are associativity, distributivity, retiming, pipelining, loop
fusion/distribution and loop unrolling.

(4) none ofthe above: There are also transformations that cannot directly improve the area of FU's, for
example, commutativity and common sub-expression replication (CSR). They might however enable the
application of transformations of classes 1-3.

With the above characterization, asimple bound on the potential improvement of each transformation can be

obtained. Transformations of the operation-reduction class can reduce the operation count, therefore the abso

lute min-bound. Operation conversion directly reduces the weighted sum, but the total operation count is

bounded. The operation-reordering transformations improve the resource utilization by reducing the height of
adistribution graph, but their potential improvements are bounded by (weighted) absolute min-bound. The

transformations at the lower layer have amore direct impact on the area, but those at the higher layer may lead
to abetter solution. Transformations should therefore be ordered in atop-to-bottom fashion. At first, operation

reduction is used to reduce the absolute min-bound. Ifpossible, operation conversion follows to trade expen
sive operations for cheaper ones such that the weighted min-bound is reduced. This is the best possible solution
we can eventually achieve. Ultimately, operation reordering achieves the final resource requirement as close as

possible to the absolute min-bound by improving the resource utilizatioa Ifthe height ofthe distribution graph
is already close to the min-bound (i.e. the utilization is very good), operation reordering is ofno use and could

be skipped. Similarly, if all operations have the same weight in area, e.g. ALU for all operations, operation
conversioncould be disregarded.

Based on the layered P-models, we characterize transformations into different categories. This helps us dis

tinguish transformations. This layered characterization is one ofthe major contributions in this paper. With this

characterization, we are able to order transformations in amuch cleaner way and effectively predict potential
improvement of a transformation.

3.5 Transformation Ordering

When aset of transformations are available, the order in which they are applied often affects their effective

ness [32, 33]. In our framework, the ordering among transformations is represented as atransformation graph
(T-graph), where each node stands for atransformation and adirected edge represents dependency relation
between input and output node (Figure 6). Because transformation ordering varies with different objectives (P-
models or submodels), different T-graph's are provided for each ofthem. These T-graphs are predefined in a
generic fashion, and will be refined bythe transformation manager, according to the design context. The final

T-graph is used to drive the transformer module. T-graphs are the primary object in our framework through
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which the modules communicate with the others. This representation enables our framework a flexibility of
adding new transformations later.

For deriving ordering among transformations, one common approach is using the enabling principle [5].

However the enabling principle by itself isnot sufficient because many transformations mutually enable the

others. Furthermore, different parts of aCDFG may resort todifferent orderings [22].

In Section 3.2, we presented abottleneck analyzer that dynamically determines abottleneck tooptimize. The

associated P-models are used to characterize transformations. As in Section 3.4,we characterized transforma

tions for area reduction (FU's) into three categories. In each category, there typically exist only a few transfor

mations thatcan directly address the designated goal. They are called kernel transformations. Those kernel

transformations may not be sufficient due to their limited application space. Usually there exist some other

transformations that can enable theapplicability of acertain kernel transformation, and are therefore called the

enabling transformations. With this classification, each node in aT-graph is tagged as an either kernel or
enabling transformation.

Since akernel transformation may also enable other kernel ones, we can derive the primary (partial) ordering

among kernel transformations. The primary ordering determines the order in whichkernel transformations are

applied. As to enabling transformations, they will be invoked as demanded by the kernel ones (demand-

driven). With this approach, we can avoid the infinite transformation loop; for example, CSE vs. CSR. CSE is

thekernel transformation for countreduction and CSR is an enabler for otherkernel ones.CSE does not enable

CSR inthestrict sense, and CSRwill be invoked only if it can enable other kernel ones to reduce thecost. Thus

in our framework, CSR and CSE do not enable each other. A similar idea applies to the distributivity and
reverse distributivity.

For (FU's) area optimization, we have derived the T-graphs for count reduction, operation conversion, and

operation re-ordering, respectively. Due tothe lack of space, the details of the T-graphs are not elaborated here.

commutativity I

r:x.T
I associativity !

_Li • 1

I retiming L — — "~

Figure 6: Partial T-graph for operation reduction
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Apartial T-graph for operation reduction is shown in Figure 6. Constant folding, algebraic identity and the

inverse, CSE, and reverse distributivity are the kernel transformations. Commutativity, associativity, retiming,
and CSR are only enabling transformations.

3.6 Transformation manager

Given the identified bottleneck and T-graphs, the transformation manager is to determine which transforma

tions should be applied and where to apply them. The manager takes as input the CDFG, a set ofT-graphs, and

the bottleneck. According to tiie identified bottleneck, the corresponding T-graph isselected. Inthe case ofarea

optimization, the selected T-graph may contain three sub-Tgraphs; one for count reduction, one for weighted-

sum reduction, and one for utilization enhancement, in that order. The transformation manager will process the
sub-Tgraphs one by one.

The transformation manager inour framework consists ofthree sub-modules: the algorithm partitioner, trans

formation analyzer, and transformation selector (Figure 7). These sub-modules will be briefly discussed in the

following sections. The primary responsibility of the T-manager is to reduce the search space and thus improve
the efficiency.

3.6.1 Algorithm partitioner

Based on a given bottleneck, tiie partitioner extracts the trouble spots ofagiven CDFG. Transformations will

be applied only to these subgraphs. These transformations which are not applicable in these subgraphs are

omitted because they cannot improve the bottleneck. This reduces the transformation space. For reducing the

Transformation

characteristics
/ T-graph's
evaluation routines

(bottleneck analyzer)

G"
bottleneck

Algorithm partitioner

G*
bottleneck

Transformation analyzer i

T-graph'I bottleneck

Transformation selector

T-graph' G*

bottleneck

c transformer D
Figure 7: Structure of the transformation manager
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count or the weighted sum of a certain resource, the subgraphs are composed of operations which impact the

resource. Alternatively, if the goal is to improve the utilization of a certain resource, the operations contribut

ingto themaximal height of the distribution graph are thecandidates. Amongthese, the operations with small

slacks are of special interest because they have higher contribution and their movement may produce larger

gain. In this case, the subgraphs basically consist of the paths covering those candidates that haverelatively

small slacks.

3.6.2 Transformation analyzer

The transformation analyzer predicts thepotential improvements (benefits) of transformations and their pos

sible side effects (costs). This will beused by the transformation selector to do theselection. The purpose is to

avoid the redundant transformations and thus improve the efficiency. Since only kernel transformations

directly affect the bottleneck, potential improvements from them are of amajor concern. In our framework,

each kernel transformation in aT-graph has amodel (as an associated evaluation routine).

Rim [23] presented somemodels to predict performance of some loop transformations. We also have estab

lished models for algebraic transformations. For the always-win transformations, likeconstant folding ordead

code elimination, the associated evaluation routines are trivial. We are currently working on models for other

transformations. Due to thelack of space, wecannot enumerate theobtained models here. One example is con

stant multiplication expansion. It canbe evaluated with linear multiplications and the associated coefficients.

For a kernel transformation, if the associated evaluation routine is not yet defined, this transformation will

always be selected by the transformation selector. Theapplication of such atransformation is controlled only

by thetransformer module. This may create redundancy and reduce theefficiency of the transformer module.

3.6.3 Transformation selector

Based onthe predicted performance of the transformations, asetof kernel transformations with high priority

(high potential improvement plus low side effects) are selected for the final execution. Since enabling transfor

mations are used to enable kernel transformations, they will be applied in a demand-driven fashion (to avoid

the redundant enablers). There is no need to preselect them. This selection results in a refined T-graph. The

heuristic currently used by the transformation selector in our framework is rather straightforward; a kernel

transformation is selected if its potential improvement is greater than some (dynamic) threshold.

3.7 Transformer

After the transformation manager has done its job, the bottleneck together with thepartitioned CDFG and the

refined T-graph are passed to the transformer module to guide the transformation task. The transformer applies

selected transformations onto the subgraphs. These transformations are applied inthe order dictated by the T-
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graph. For those "mutually enabled' kernel transformations, they will beapplied together. The cost function is

provided by the associated P-model.

The transformer in our framework exploits two classes oftechniques. One is using adedicated approach. Our

framework gives a preferential treatment to such an approach, if one exists in the T-lib that matches the cost

function and covers the transformations to be applied. The dedicated approaches have ahigher priority due to

their efficiency and prowess. On the other hand, if there exists no matched dedicated approach, generic local-

move-based optimization techniques, e.g. simulated annealing, steepest descent method, etc., are then used.

A generic technique requires that each kernel transformation in aT-graph has an associated identification

routine and action routine. Identification routine isused to set upthe search space of local moves, and action

routine is to execute the certain transformation on aselected move. To avoid the redundant enablers, enabling

transformations are handled inademand-driven mode. The idea of the postponing principles has been inte

grated into the identification routines, which relax the conditions under which a kernel transformation can be

applied. Whenever an enabler isneeded, the action routine will automatically invoke it for enabling.

3.8 Bow of the transformation-based optimization process

In summary, our framework takes as input aCDFG and user-defined design constraints. A set of structural-

property-based P-models and a transformation library (T-lib) are predefined. The transformations in the T-lib

are characterized into aset ofT-graphs, each ofwhich isassociated with acertain P-model (or asub-model).

The bottieneck analyzer takes the set ofP-models to identify the prime bottleneck, which is then passed to the

transformation manager. The manager selects the appropriate T-graph and locates the trouble spots in the

CDFG. After that, it predicts the potentials of transformations and suggests an appropriate set to apply. The

selected set of transformations is represented as arefined T-graph. Finally, the bottleneck, the partitioned

CDFG, and the refined T-graph are passed to the transformer. The transformer module applies the selected

transformations in an order dictated bythe T-graph onto the partitioned subgraph. After execution, the trans

formed CDFG plus the actions taken for optimization (as the refined T-graph) are sent back to the bottleneck

analyzer to evaluate the result If nothingbettercanbe achieved, the best solution is returned to the user. Oth

erwise, the bottleneck analyzer inspects the history ofbottlenecks/improvements and picks up one CDFG for

further optimization. This is often the most recent one unless itwas rejected. If possible, some feedback is pro
vided to the transformation manager to adjust its selections. Of course, a new bottleneck is identified for the

next iteration.

4 Experimental Results

So far, wehave formulated the transformation-based optimization process inasystematic fashion, and devel

oped an integrated framework. In this section, we present preliminary results on several examples. The
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assumed objective is tominimize design cost(area) of functional units without violating given throughput con

straint.

4.1 Second-order Volterra filter

The first example is a 2ndorder Volterra filter whose structure is shown in Figure 8(a). We assume thata fast

and bigmultiplier is used. Bothmultiplications and additions are unit-cycle operations, but thecost (area) of a

multiplier is 16 times larger than that of an adder. We also assume that all the constant coefficients are differ

ent.

The critical path of the original structure is 12 clock cycles. Given a sample period of 12 clockcycles, any

solution needs atleast 2 multipliers and 1adders (absolute min-bound). Since themultipliers are expensive, the

common approach is to trade big multipliers for cheaper adders/shifters by using constant multiplication

expansion (CM). After the expansion, the critical path islonger than the sample period, and thus speed optimi

zation techniques have tobeinvoked. Since aVolterra filter has variable multiplications, at least one multiplier

isneeded. In addition, extra adders and shifters will beneeded due tothe expansion. It is therefore by nomeans

clear that this approach is adesirable one, especially since no other transformations have been considered yet.

With our framework, we can systematically resolve this area optimization problem. Figure 9 shows the work

ing flow of ourframework. It illustrates oneiteration of theoptimization flow asdescribed in Section 3.

With the P-models discussed in Section 3.1, the bottleneck analyzer predicts 5 multipliers and 1adder may

berequired (the distribution graph for multiplications is shown inFigure 8d). Multipliers are thus identified as

the bottieneck resource in area. According to the layered P-models, the optimization process iterates through 3

rounds. The first round isoperation reduction. Theonly applicable kernel transformation, reverse distributivity,

enabled by the associativity and the commutativity, successfully reduces the number of multiplications from 17

to 11 as shown inFigure 8(b). The absolute min-bound of multipliers is reduced from 2 to 1(Figure 8e).

The next round is operation conversion, which trades multipliers for adders/shifters. Due to the existenceof

variable multiplications, at least one multiplier isneeded. Because the current absolute min-bound of multipli

ers is already one, CM cannot reduce it any further. The potential improvement of CM predicted by transfor

mation analyzer is zero (ignoring the extra overhead of the additional adders/shifters). Since no good

transformation is available atthis level, this round is skipped.

The third round is utilization improvement. Thedistribution graph predicts 2 multipliers (the height is 1.51)

might beneeded, butthe absolute min-bound shows that only 1multiplier is definitely required. Transforma

tions ofoperation reordering to improve the resource utilization are considered. In this case, the algorithm par

titioner has noeffect because the whole structure should beconsidered. Applicable kernel transformations are

retiming, associativity, and distributivity. Among them, distributivity is undesirable because it may increase

the absolute min-bound from 1to 2. Also, the potential improvement of associativity is very small due to the
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Figure 9: Working flow of the TAO framework

lack of along multiplication (addition) chain. The transformation manager suggests that only retiming has

good potential. The transformer follows and successfully reduces the predicted number of multipliers from 2 to

1(the height is 1.14 as shown inFigure 8f) with retiming. The final structure shown inFigure 8(c) only needs
1 multiplier and 1 adder.

This optimization process saves 1multiplier without adding extra units, which is about 50% reduction in the

datapath. This result is superior to any of the existing approaches. Speed optimization techniques are not

needed either. Throughout this process, only capable and applicable transformations are considered at each

stage and only the appropriate transformations are applied. This methodology systematically determines what

to optimize (with the layered P-models) and which transformations to use (based on the characteristics of
transformations), and quickly reaches abetter solution. One thing worth to notice is that CM is not needed in

this case at all, although constant multiplications still exist in the final structure. This example also shows the

effectiveness of the transformation ordering. If we apply CM first, we are hardly able reach the best solution.
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Applying the transformations in an appropriate order not only can reach agood solution faster, but also may
achieve a better one.

4.2 5th order elliptic wave, fijfrr

The second example is a5th order elliptic wave filter. This example has been used as abenchmark for high
level synthesis [34]. The general assumption is that amultiplication takes 2clock cycles and an addition takes

1clock cycle. Given the sample period of 17 clock cycles, the optimal solution needs 2multipliers and 3
adders. The existing best solution by using transformations is 2multipliers and 2adders [36]. To compare the
result with other approaches, we intentionally disable the constant multiplication expansion by assuming that a

multiplier is only 2 times larger than an adder. (Note that different results might beobtained with different
sample period and resourcecosts.)

The flow of the optimization process isvery similar to the previous example. With the associativity and

retiming (enabled byCSR), the predicted multipliers are reduced from 4 to 2. In the final design, 1multiplier

and 2 adders are needed, which isabout 43% reduction in the area of datapath.

4.3 Tree search vector quantizer (distance computation^

The third example isTSVQ. Figure 10 repeats amanual transformation process as described in [35]. The

objective is to reduce the number ofaccesses to multipliers and memory units in order to lower the power con
sumptions.

15 15

*«*.»« I (V*i)2-X<*.-*!>2
i o 0 i = 0

15

1=0 v /J

( 15 f \ 15 "\

vi =o ; =o '

Figure 10: Transformations (TSVQ-1)

expansion

regrouping

This calculation isto get the difference between the distances of the input vector X from two other constant

vectors A and B. In theoptimization process, loop fusion is first applied to combine the two summations. It is

then followed bythe expansion of the quadratics. The last step is to simplify and regroup the computations.

The number ofmultiplications is reduced from 32 to 16. However, this gain is not clear until the final expres
sion is obtain. It is nearly impossible to predict the improvement during the process. Also, regrouping after the
expansion is often not aneasy task to automate.
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Figure 11 shows asimilar result obtained from our framework. A new transformation isintroduced here: (x2-

y2) =(x+y)(x-y), denoted by Tj. This transformation trades one multiplication for one addition (operation con
version). The bottieneck analyzer first identifies the number of accesses to multipliers is the dominant factor

(we assume the access to multipliers is more expensive). The transformation manager suggests Tj to apply.

Following this, the transformer attempts to execute this decision. However, it is not applicable because of the

summations (loops). The enable transformation, loop fusion, is invoked for enabling. (In our system, a loop is

represented as a hierarchy node in the CDFG. A legal loop fusion can be recognized by matching the loop vari

ables of two loopsand checkingthe array dependencies. A kernel transformation which canbe enabled by loop

fusion can be easily recognized by ignoring the loop boundaries andjust checking the loop bodies of two

loops.)

After theconversion, thenumber of multiplication is reduced to 16. If tiie number of access to multipliers is

the only concern, the optimal solution is reached and the process is done. Otherwise, second iteration is

invoked to reduce the access to adders (or memory units). Because (/*,+£,), (ArB-), (A^B^ArBi), and 2(Ar

Bj) can be precomputed, theconstant folding enabled by distributivity is applied. Finally, a similar result as

obtained in [35] is reached. During the whole process, the gain at each step can bepredicted because only

capable transformations are considered and enabling transformations are applied only if they are demanded by
the kernel ones.
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*««.*« I <v*i>2-X (*/-*,->2
i = 0 i o0

15

= X^.-x,)2-(*,-x,)2]
i = 0

loop fusion(enabling)

15

= X[^-*.) +(V*/)](v*i)
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«= 0 J

r 15 15 \
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Figure 11: Transformations (TSVQ-2)

conversion

constant folding
enabled by distributivity

constant folding (loop)
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4.4 Summary

In summary, we have systematically gone through afew simple examples and demonstrated some promising
results. In addition to these examples, we also have done some other experiments on afew digital filters. The
optimization process on these simple examples took from negligible up to 30 seconds on aSUN SPARC 2. The
actual run-time complexity depends on the number ofapplicable transformations and the number of iterations.

UsuaUy agood solution can be obtained within 1second. We are currently working on more experiments on
largerexamples.

At last, we conclude this section with an observation. It is clear that all the optimization processes on the
above examples can be translated into simple but dedicated global approaches. This is actually the beauty of
our framework. Since all these shown examples require different set of transformations with different order-

ings, itis hardly possible to develop dedicated approaches by enumerating all the possibilities. With our frame
work, however, an appropriate transformation set can be easily detected and applied in ageneric fashion.

5 Future work

We have developed atransformation framework for area optimization. Promising results have been obtained.

To make this framework more effective and efficient, more efforts need to be devoted to enhance the evalua

tion routines for the transformation analyzer. We also plan to incorporate additional transformations into the

framework. Some experiments on larger examples willbe done as well. In addition, ourmainattention so feu-

hasbeen focused on the optimization of datapath resources such as FU's, registers, and interconnect. Since

many real-time DSP applications are memory-intensive, memory-related issues should also be considered.

This extension will require the introduction of a larger setof loop transformations.

6 Conclusion

Inthisreport, we haveconstructed the TAO system, an integrated framework for optimizing transformations.

This framework, based on a generic methodology, can systematically choose appropriate transformations to

apply atthe right place and in the right order. We have proposed a layered prediction model for area, and clas

sified transformations into three different categories (for FU's). Some techniques, like the enabling/postponing

principles, are integrated to enhance the framework. The proposed framework is extensible, in thatnew cost

functions and newtransformations can be easily integrated, and supports dynamic optimization flow.

Since algorithm developers seldom take into account the implementation cost, and hardware designers rarely

consider the merits of various algorithm instances, there exists agap between the algorithms conceived by the

software developer and those used byhardware designers. The TAO framework can bridge the gap byassisting

hardware designers, under their specific design constraints, to exploit optimizing transformations to easily and

quickly explore thealgorithmic design space and attain better designs.
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