

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

MINIMIZING COMMUNICATION AND

SYNCHRONIZATION OVERHEAD IN

MULTIPROCESSORS FOR DIGITAL

SIGNAL PROCESSING

by

Sundararajan Sriram

Memorandum No. UCB/ERL M95/90

7 November 1995

MINIMIZING COMMUNICATION AND

SYNCHRONIZATION OVERHEAD IN

MULTIPROCESSORS FOR DIGITAL

SIGNAL PROCESSING

Copyright © 1995

by

Sundararajan Sriram

Memorandum No. UCB/ERL M95/90

7 November 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

MINIMIZING COMMUNICATION AND

SYNCHRONIZATION OVERHEAD IN

MULTIPROCESSORS FOR DIGITAL SIGNAL
PROCESSING

by

Sundararajan Sriram

Doctor of Philosophy in Electrical Engineering

Professor Edward A. Lee, Chair

This thesis is concerned with embedded systems for Digital Signal Pro

cessing (DSP) that consist ofmultiple programmable digital signal processors aug

mented with custom VLSI components; we will refer to such systems bythe term

"multiprocessor." The dataflow model of computation has been widely used for

providing aformal methodology for specifying computations and mapping them to

such multiprocessor systems.

In this thesis, we focus on DSP algorithms that can be specified as Syn

chronous Data Flow graphs and its extensions. Such algorithms can be efficiently

scheduled onto multiple processing elements (a processor could be either program

mable or acustom VLSI component) at compile time - computations in the graph

are assigned to processors at compile time and the execution order of tasks

assigned to each processor isalso determined at compile time.

In such acompile-time (static) scheduling strategy, it is possible to predict

in

the run time inter-processor communication (IPC) pattern. We present two tech

niques that make use of this compile-time determined communication pattern, for

rniriimizing IPC and synchronization overhead in the parallel implementation. The

first technique is aimed at eliminating arbitration and synchronization costs when

using shared memory for IPC. We call this the Ordered Transactions strategy; the

idea is to determine the order in which processors require access to shared

resources and to enforce this order atrun time. Enforcing such an order eliminates

contention for shared resources and the need for explicit synchronization. We

describe the design and hardware implementation details of a prototype multipro

cessor boardthat was built as a proof-of-concept for the ordered transactions strat

egy.

The second technique we present in this thesis consists of efficient algo

rithms for rninimizing synchronization costs in statically scheduled multiproces

sors. These include procedures for detecting and eliminating redundant

synchronization points in the schedule and systematically adding certain synchro

nizationpoints with a view towards reducing the overall synchronization cost.

Afrvr P, my

Edward A. Lee, Thesis Committee Chairman

IV

Table of Contents

INTRODUCTION 1

1.1 The Synchronous Dataflow model 7

1.1.1 Background 7

1.1.2 Utility of dataflow for DSP 11

1.2 Parallel scheduling 13

1.2.1 Fully-static schedules 15

1.2.2 Self-timed schedules 19

1.2.3 Execution time estimates and static schedules 21

1.3 Application-specific parallel architectures 24

1.3.1 Dataflow DSP architectures 24

1.3.2 Systolic and wavefront arrays 25

1.3.3 Multiprocessor DSP architectures 26

1.4 Thesis overview: our approach and contributions 27

TERMINOLOGY AND NOTATIONS 33

2.1 HSDF graphs and associated graph theoretic notation 33

2.2 Schedule notation 35

THE ORDERED TRANSACTION STRATEGY 39

3.1 The Ordered Transactions strategy 39

3.2 Shared bus architecture 42

3.2.1 Using the OT approach 46

3.3 Design of an Ordered Memory Access multiprocessor 47

3.3.1 High level design description 48

3.3.2 A modified design 49

3.4 Design details of a prototype :..52

3.4.1 Top level design 53

3.4.2 Transaction order controller 55

3.4.2.1. Processor bus arbitration signals 55
3.4.2.2. A simple implementation 57

v

3.4.2.3. Presettable counter 58

3.4.3 Host interface 60

3.4.4 Processingelement 61

3.4.5 Xilinx circuitry 62

3.4.5.1. I/O interface 64

3.4.6 Shared memory 65

3.4.7 Connecting multiple boards 65

3.5 Hardware and software implementation 66

3.5.1 Board design 66

3.5.2 Software interface 69

3.6 Ordered I/O and parametercontrol 71

3.7 Application examples 73

3.7.1 Music synthesis 73

3.7.2 QMF filter bank 75

3.7.3 1024 point complex FFT 76

3.8 Summary 78

4 AN ANALYSIS OF THE OT STRATEGY 79

4.1 Inter-processor Communication graph (Gipc) 82
4.2 Executiontime estimates 88

4.3 Ordering constraints viewed as edges added to Gipc 89
4.4 Periodicity 90

4.5 Optimal order 92

4.6 Effects of changes in execution times 96

4.6.1 Deterministiccase 97

4.6.2 Modeling run time variations in execution times 99

4.6.3 Implications for the OT schedule .104

4.7 Summary 106

5 MINIMIZING SYNCHRONIZATION COSTS IN SELF-TIMED
SCHEDULES 107

VI

5.1 Related work 108

5.2 Analysis of self-timed execution 112

5.2.1 Estimated throughput 114

5.3 Strongly connected components and buffer size bounds 114

5.4 Synchronization model 116

5.4.1 Synchronization protocols 116

5.4.2 The synchronization graph Gs 118

5.5 Formal problem statement 122

5.6 Removing redundant synchronizations 124

5.6.1 The independence of redundant synchronizations 125

5.6.2 Removing redundant synchronizations 126

5.6.3 Comparison with Shaffer's approach 128

5.6.4 An example 129

5.7 Makingthe synchronization graph strongly connected 131

5.7.1 Addingedges to thesynchronization graph 133

5.7.2 Insertion of delays 137

5.8 Computing buffer bounds from Gs and Gipc 141
5.9 Resynchronization 142

5.10 Summary 144

EXTENSIONS 147

6.1 The Boolean Dataflow model 147

6.1.1 Scheduling 148

6.2 Parallel implementation on shared memorymachines 152

6.2.1 General strategy 152

6.2.2 Implementation on the OMA 155

6.2.3 Improved mechanism 157

6.2.4 Generating the annotated bus access list 161

6.3 Data-dependent iteration 164

6.4 Summary 165

vu

7 CONCLUSIONS AND FUTURE DIRECTIONS 166

8 REFERENCES 170

Vlll

List of Figures
Figure 1.1. Fully static schedule 16

Figure 1.2. Fully-static schedule on five processors 17

Figure 1.3. Steps in a self-timed scheduling strategy 20

Figure 3.1. One possible transaction order derived from the fully-static schedule

41

Figure 3.2. Block diagram of the OMA prototype 49

Figure 3.3. Modified design 50

Figure 3.4. Details of the"TA" linemechanism (only oneprocessor is shown) .

51

Figure 3.5. Top-level schematic of theOMA prototype 54

Figure 3.6. Using processor bus arbitration signals for controlling bus access. 56

Figure 3.7. Ordered Transaction Controller implementation 58

Figure 3.8. Presettable counter implementation 59

Figure 3.9. Host interface 61

Figure 3.10. Processingelement 62

Figure 3.11. Xilinx configuration atrun time 64

Figure 3.12. Connectingmultiple boards 67

Figure 3.13. Schematics hierarchy of the four processor OMA architecture 68

Figure 3.14. OMA prototype board photograph 69

Figure 3.15. Steps required for downloading code (tcl script omaDoAll) 70

Figure 3.16. Hierarchical specification of the Karplus-Strong algorithm in 28

voices 74

Figure 3.17. Four processor schedule for the Karplus-Strong algorithm in28

voices. Three processors are assigned 8 voices each, the fourth (Proc

1)is assigned 4 voices along withthe noise source 75

Figure 3.18. (a) Hierarchical block diagram for a 15 band analysis and synthesis

filter bank, (b) Schedule on four processors (using SnYs DLheuristic

[Sih90]) ; 77

IX

Figure 3.19. Schedule for the FFT example 78

Figure 4.1. Fully-static schedule on five processors 80

Figure 4.2. Self-timed schedule 81

Figure 4.3. Schedule evolution when the transaction order of Fig. 3.1 is

enforced 81

Figure 4.4. The IPC graph for the schedule in Fig. 4.1 83

Figure 4.5. Transaction ordering constraints 89

Figure 4.6. Modified schedules' 95

Figure 4.7. G^, actor Chas execution time /c, constant over all invocations of C

97

Figure 4.8. TST(tc) 98

Figure 4.9. G^ with transaction ordering constraints represented as dashed lines

105

Figure 4.10. TST(tc) and T01(tc) 105

Figure 5.1. (a) An HSDFG (b) A three-pro(a) An HSDFG (b) A three-processor

self-timed schedule for (a), (c) An illustration of execution under the

placement of barriers 110

Figure 5.2. Self-timed execution 113

Figure 5.3. An IPC graph with a feedforward edge: (a) original graph (b) impos

ing bounded buffers 115

Figure 5.4. x2 is an example of aredundant synchronization edge 124

Figure 5.5. An algorithm thatoptimally removes redundant synchronization

edges 127

Figure 5.6. (a) A multi-resolution QMF filter bank used to illustrate the benefits

of removingredundant synchronizations, (b) The precedence graph

for (a), (c) A self-timed, two-processor, parallel schedule for (a), (d)

The initial synchronization graph for (c) 130

Figure 5.7. The synchronization graph of Fig. 5.6(d) after all redundant synchro

nization edges are removed 132

Figure 5.8. An algorithm for converting asynchronization graph that is not

x

strongly connected into a strongly connected graph 133

Figure 5.9. An illustration of a possible solution obtained by algorithm Convert-

to-SC-graph 134

Figure 5.10. The synchronization graph, afterredundant synchronization edges

areremoved, induced by a four-processor schedule of a music syn

thesizer based on the Karplus-Strong algorithm 136

Figure 5.11. A possible solution obtained by applying Convert-to-SC-graph to the

example of Figure 5.10 137

Figure 5.13. An example used toillustrate asolution obtained by algorithm Deter-

mineDelays ; i3g

Figure 5.12. Analgorithm for determining the delays on the edges introduced by

algorithm Convert-to-SC-graph 139

Figure 5.14. An example of resynchronization 143

Figure 5.15. The complete synchronization optimization algorithm 145

Figure 6.1. BDFactors SWITCH and SELECT 148

Figure 6.2. (a) Conditional (if-then-else) dataflow graph. The branch outcome is

determined atrun time byactor B. (b) Graph representing data-

dependent iteration. The termination condition for the loop is deter

mined by actor D 149

Figure 6.3. Acyclic precedence graphs corresponding to the if-then-else graph of

Fig. 6.2. (a) corresponds to the TRUE assignment of the control

token, (b) to the FALSEassignment 150

Figure 6.4. Quasi-static schedule for aconditional construct (adapted from
[Lee88b]) 152

Figure 6.5. Programs on three processors for the quasi-static schedule ofFig.

64 153

Figure 6.6. Transaction order corresponding to theTRUE and FALSE branches .

155

Figure 6.7. Bus access list that is stored in the schedule RAM for the quasi-static
schedule of Fig. 6.6. Loading operation of the schedule counter con-

xi

ditioned on value of c is also shown 157

Figure 6.8. Conditional constructs in parallel paths 158

Figure 6.9. A bus access mechanism that selectively "masks" bus grants based

on values of control tokens that are evaluated at run time 159

Figure 6.10. Bus access lists and theannotated listcorresponding to Fig. 6.6.. 161

Figure 6.11. Quasi-static schedule for the data-dependent iteration graph of Fig.

6.2(b) 164

Figure 6.12. A possible access order listcorresponding to thequasi-static sched

ule of Fig. 6.11 165

Figure 7.1. An example of how execution time guarantees can be used to reduce

buffer size bounds 168

Xll

ACKNOWLEDGEMENTS

I have always considered it a privilege to have had the opportunity of pur

suing my Ph.D. atBerkeley. Thetime I have spent here has been very fruitful, and

I have found the interaction with the exceptionally distinguished faculty and the

smart set of colleagues extremely enriching. Although I will not be able to

acknowledge all the people who have directly or indirectly helped me during the

course ofmy Ph. D., I wish tomention some of the people who have influenced me

most during my years as a graduate student.

First and foremost, I wish to thank Professor Edward Lee, my research

advisor, for his valuable support and guidance, and for having been a constant

source of inspiration for this work. I really admire Professor Lee's dedication to

his research; I have learned alot from his approach ofconducting research.

I also thank Professors Pravin Varaiya and Henry Helson for serving on my

thesis committee. I thank Professor Messerschmitt for his advice; I have learned

from him, both in the classroom as well as through his insightful and humorous

"when I was at Bell Labs ..." stories at our Friday afternoon post-seminar get-

togethers. I have also greatly enjoyed attending classes and discussions with Pro

fessors Avideh Zakhor, Jean Walrand, John Wawrzynek, and Robert Brayton.

During the course ofmy Ph. D. research Ihave had the opportunity to work

closely with several fellow graduate students. In particular I would like to mention

Shuvra Bhattacharyya, incollaboration with whom some of the work in this thesis

was done, and Praveen Murthy. Praveen and Shuvra are also close friends and I

have immensely enjoyed my interactions with them, both technical as well as non

technical (such as music, photography, tennis, etc.).

xiii

I want to thank Phil Lapsley, who helped me with the DSPlab hardware

when I first joined the DSP group; Soonhoi Ha, who helped me with various

aspects of the scheduling implementation in Ptolemy; and Mani Srivastava, who

helped me a great deal with printed circuit board layout tools, and provided me

with several useful tips that helped me design and prototype the4 processor OMA

board.

I should mention Mary Stewart and Carol Sitea for helping me with reim

bursements and other bureaucratic paperwork, Christopher Hylands for patiently

answering my system related queries, and Heather Levien for cheerfully helping

me with the mass of graduatedivision related paperwork, deadlines, formalities to

be completed, etc.

I have enjoyed many useful discussions with some of some of my friends

and colleagues, in particular Alan Kamas (I have to mention his infectious sense of

humor), Louis Yun, Wan-ten Chan, Rick Han, William Li, Tom Parks, Jose Pino,

Brian Evans, Mike Williamson, Bilung Lee and Asawaree Kalavade, who have

made my (innumerable) hours in Cory Hall much more fun than what would have

been otherwise. I will miss the corridor/elevator discussions (on topics ranging

from the weather to Hindu philosophy) with Sriram Krishnan (the other Sriram),

Jagesh Sanghavi, Rajeev Murgai, Shankar Narayanaswami, SKI, AngelaChuang,

Premal Buch; and so will I miss the discussions, reminiscences and retelling of old

tales with the sizable gang of graduate students in Berkeley and Stanford with

whom I share my alma mater (ITT Kanpur) — Vigyan, Adnan, Kumud, Sunil,

Amit Narayan, Geetanjali, Sanjay, Vineet, Ramesh, to name a few.

While atBerkeley, I have met several people whohavesince become good

friends: JuergenTeich, Raghuram Devarakonda, Amit Lai, Amit Marathe, Ramesh

Gopalan, Datta Godbole, Satyajit Patwardhan, Aparna Pandey, Amar Kapadia. I

xiv

thank them all for their excellent company; I have learned a lot from their talents

and experiences as well.

I also wish to thank my long time friends Anurag, Ashish, Akshay, Anil,

Kumud, Nitin, RD, Sanjiv — our occasional get-togethers and telephone chats

have always provided a welcome relief from the tedium that grad school some

times tends to become.

Of course, the Berkeleyexperience in general — the beautiful campus with

great views of the San Francisco bay and the Golden Gate, the excellent library

system, the cafe's and the restaurants, the CD shops and the used book stores, stu

dent groups and cacophonic drummers on Sproul plaza, the Hateman and the

Naked Guy — has left me withindelible memories, and awealth of interesting sto

ries to tell, and has also helped keep my efforts towards aPh. D. in perspective.

Finally, I wish to thank my parents for all their support and belief in me,

and my sister, whohas aknack for boosting my morale during rough times. I dedi

cate this thesis to them.

xv

1

INTRODUCTION

The focus of this thesis is the exploration of architectures and designmeth

odologies for application-specific parallel systems for embedded applications in

digital signal processing (DSP). The hardwaremodel we consider consists of mul

tiple programmable processors (possibly heterogeneous) and multiple application-

specific hardware elements. Such a heterogeneous architecture is found in a num

ber of embedded applications today: cellular radios, image processing boards,

music/sound cards, robot control applications, etc. In this thesis we develop sys

tematictechniques aimedatreducing inter-processor communication andsynchro

nization costs in such multiprocessors that are designed to be application-specific.

The techniques presented in this thesis apply to DSPalgorithms that involve sim

ple control structure; the precise domain of applicability of these techniques will

be formally stated shortly.

Applications in signal processing and image processing require large com

puting power and have real-time performance requirements. The computing

engines in such applications tend to beembedded as opposed to general-purpose.

Custom VLSI implementations are usually preferred in such high throughput

applications. However, custom approaches have the well known problems of long

design cycles (the advances in high-level VLSI synthesis notwithstanding) and

low flexibility in the final implementation. Programmable solutions are attractive

1

in both theserespects: the programmable core needs to be verified for correctness

only once, and design changes can be made late in the design cycle by modifying

the software program. Although verifying the embedded software to be run on a

programmable part is also a hard problem, in most situations changes late in the

design cycle (and indeed even after thesystem design is completed) are much eas

ier and cheaper to make in the case of software than in the case of hardware.

Special processors are available today that employ an architecture and an

instruction set tailored towards signal processing. Such software programmable

integrated circuits are called "Digital Signal Processors" (DSP chips or DSPs for

short). The special features that these processors employ are discussed by Lee in

[Lee88a]. However, a single processor — even DSPs — often cannot deliver the

performance requirement of some applications. In these cases, use of multiple pro

cessors is an attractive solution, where both the hardware and the software make

use of the application-specific nature of the taskto be performed.

Over the past few years several companies have been offering boards con

sisting of multiple DSP chips. More recently, semiconductor companies are offer

ing chips that integrate multiple CPUs on a single die: Texas Instruments (the

TMS320C80 multi-DSP), Star Semiconductors (SPROC chip), Adaptive Solutions

(CNAPS processor), etc. Multiple processor DSPs are becoming popular because

of variety of reasons. First, VLSI technology today enables one to "stamp" 4-5

standard DSPs onto a single die; this trend is only going tocontinue in the coming

years. Such an approach is expected to become increasingly attractive because it

reduces the testing time for the increasingly complex VLSI systems of the future.

Second, since such adevice isprogrammable, tooling and testing costs ofbuilding

an ASIC (application-specific integrated circuit) for each different application are

saved by using such a device for many different applications, a situation that is-

going to beincreasingly important in the future with up to atenfold improvement

in integration. Third, although there has been reluctance in adopting automatic

compilers for embedded DSP processors, such parallel DSP products make the use

of automated tools feasible; with a large number of processors per chip, one can

2

afford to give up some processing power to the inefficiencies in the automatic

tools. In addition new techniques are beingresearched to make the process of auto

matically mapping a design onto multiple processors more efficient — this thesis

is also anattempt in thatdirection. This situation is analogous to howlogicdesign

ers have embraced automatic logic synthesis tools in recent years — logic synthe

sis tools andVLSI technology have improvedto the point that the chip area saved

by manual design over automated design is not worth the extra design time

involved: one can afford to "waste" a few gates, just as one can afford to waste

processor cycles to compilation inefficienciesin a multiprocessor DSP.

Finally, there are embedded applications that are becoming increasingly

important for which programmability is in fact indispensable; set-top boxes capa

ble of recognizing a variety of audio/video formats and compression standards,

multimedia workstations that are required to run a variety of differentmultimedia

software products, programmable audio/video codecs, etc.

The generalization of such a multiprocessor chip is one that has a collec

tion of programmable processors as well as custom hardware on a single chip.

Mapping applications onto such an architecture is then a hardware/software code-

sign problem. The problems of inter-processor communication and synchroniza

tion are identical to the homogeneous multiprocessor case. In this thesis when we

refer toa"multiprocessor" wewill imply aheterogeneous architecture that may be

comprised of different types of programmable processors and may include custom

hardware elements too. All the techniques we present here apply to such ageneral

system architecture.

Why studyapplication-specific parallel processing in the first place instead

of applying the ideas in general purpose parallel systems to the specific applica

tion? The reason is that general purpose parallel computation deals with a user-

programmable computing device. Computation in embedded applications, how

ever, is usually one-time programmed by the designer of that embedded system (a

digital cellular radio handset for example) and isnot meant tobeprogrammable by

the end user. The computation in embedded systems is specialized (the computa-

tion in a cellular radio handset involves specific DSP functions such as speech

compression, channel equalization, modulation, etc.). Furthermore, embedded

applications face very different constraints compared to general purpose computa

tion: non-recurring design costs, power consumption, and real-time performance

requirements are a few examples. Thus it is important to study techniques that are

application-specific, and that make use ofthe special characteristics of the applica

tions they target, in order to optimize for the particular metrics that are important

for that specific application. These techniques adopt adesign methodology that tai

lors the hardware and software implementation tothe particular application. Some

examples of such embedded computing systems are in robot controllers [Sriv92]

and real-time speech recognition systems [Stolz91]; in consumer electronics such

as future high-definition televisions sets, compact disk players, electronic music

synthesizers and digital audio systems; and incommunication systems such as dig

ital cellular phones and base stations, compression systems for video-phones and
video-conferencing, etc.

The idea of using multiple processing units to execute one program has

been present from the time of the very first electronic computer inthe nineteen for

ties. Parallel computation has since been the topic of active research in computer

science. Whereas parallelism within a single processor has been successfully

exploited (instruction-level parallelism), the problem of partitioning a single user

program onto multiple such processors is yet to be satisfactorily solved. Instruc

tion-level parallelism includes techniques such as pipelining (employed in tradi

tional RISC processors), vectorization, VLIW (very large instruction word),

superscalar — these techniques are discussed in detail by Patterson and Hennessy

in [Patt90]. Architectures that employ multiple CPUs to achieve task-level paral
lelism fall into the shared memory, message passing, or dataflow paradigms. The

Stanford DASH multiprocessor [Len92] is ashared memory machine whereas the

Thinking Machines CM-5 falls into the message passing category. The MIT Mon
soonmachine [Pap90] is anexampleof a dataflow architecture.

Although the hardware for the design of such multiple processor machines

— the memory, interconnect network, 10, etc. — has received much attention,

software for such machines has not been able to keep up with the hardware devel

opment. Efficient partitioning of a general program (written in C say) across a

given set of processors arranged in a particular configuration is still an open prob

lem. Detecting parallelism, the overspecified sequencing in popular imperative

languages like C, managing overhead due to communication and synchronization

between processors, and the requirement of dynamic load balancing for some pro

grams (an added source of overhead) makes the partitioning problem for a general

program hard.

If we turn away from general purpose computation to application-specific

domains, however, parallelism is easier to identify and exploit. For example, one

of themore extensively studied family ofsuch application-specific parallel proces

sors is the systolic array architecture [Kung88][Quin84][Rao85]; this architecture

consists of regularly arranged arrays ofprocessors that communicate locally, onto

which a certain class ofapplications, specified ina mathematical form, can be sys

tematically mapped. Wediscuss systolic arrays further in section 1.3.2.

The necessary elements in the study ofapplication-specific computer archi

tectures are: 1) a clearly defined set ofproblems that can be solved using the par

ticular application-specific approach, 2) a formal mechanism for specification of

these applications, and 3) a systematic approach for designing hardware from such

a specification.

In this thesis, the applications we focus on are those that can be described

bySynchronous Dataflow Graphs (SDF) [Lee87] and itsextensions; we will dis

cuss this model indetail shortly. SDF in its pure form can only represent applica

tions that have no decision making at the task level. Extensions of SDF (such as

the Boolean dataflow (BDF) model [Lee91][Buck93]) allow control constructs, so

thatdata-dependent control flow can be expressed in such models. These models

are significantly more powerful in terms ofexpressivity, but they give up some of

the useful analytical properties that the SDF model has. Forinstance, Buck shows

that it ispossible tosimulate any Turing machine in the BDF model [Buck93]. The

5

BDF model can therefore compute all Turing computable functions, whereas this

is not possible in the case of the SDF model. We discuss the Boolean dataflow

model further in Chapter 6.

In exchange for the limited expressivity of an SDF representation, we can

efficiently check conditions such as whether a given SDF graph deadlocks, and

whether it can be implemented using a finite amount of memory. No such general

procedures can be devised for checking the corresponding conditions (deadlock

behaviour and bounded memoryusage) for acomputation modelthat can simulate

any given Turing machine. This is because the problems of determining if any

given Turing machine halts (the halting problem), and determining whether it will

use less than a given amount of memory (or tape) are undecidable [Lew81]; that is,

no general algorithm exists to solve these problemsin finite time.

In this thesis we will first focus on techniques that apply to SDF applica

tions, and we will propose extensions to these techniques for applications that can

be specified essentially as SDF, but augmented with a limited number of control

constructs (and hence fall into the BDF model). SDF has proven to be a useful

model for representing a significant class of DSP algorithms; several DSP tools

have been designed based on the SDF and closely related models. Examples of

commercial tools based on SDF are the Signal Processing Worksystem (SPW),

developed by Comdisco Systems (now the Alta group of Cadence Design Sys

tems) [Pow92][Barr91]; and COSSAP, developed by Cadis in collaboration with

Meyr's group at AachenUniversity [Ritz92]. Tools developed at various universi

ties thatuse SDF and related models include Ptolemy [Pin95a], theWarp compiler

[Prin92], DESCARTES [Ritz92], GRAPE [Lauw90], and the Graph Compiler

[Veig90].

The SDF model is popular because it has certain analytical properties that

are useful in practice; we will discuss these properties and how they arise in the

following section. The property most relevant for this thesis is that it is possible to

effectively exploit parallelism in an algorithm specified in SDF by scheduling

computations in the SDFgraph ontomultiple processors atcompileor design time

rather than at run time. Given such a schedule that is determined at compile time,

we can extract information from it with a view towards optimizing the final imple

mentation. The main contribution of this thesis is to present techniques for mini

mizing synchronization and inter-processor communication overhead in statically

(i.e. compile time) scheduled multiprocessors where the program is derived from a

dataflow graph specification. The strategy is to model run time execution of such a

multiprocessor to determine how processors communicate and synchronize, and

then to use this information to optimize the final implementation.

1.1 The Synchronous Dataflow model

1.1.1 Background

Dataflow is a well-known programming model in which a program is rep

resented as a directedgraph, where the vertices (or actors) represent computation

and edges (or arcs) representFIFO (first-in-first-out) queues that direct data values

from the output of one computation to the input of another. Edges thus represent

data precedences between computations. Actors consume data (or tokens) from

their inputs, perform computation on them (fire), and produce certain number of

tokens on their outputs.

Programs writtenin high-level functional languages such as pure LISP, and

in dataflow languages such as Id and Lucid can be directly converted into dataflow

graph representations; such a conversion is possible because these languages are

designed to befree ofside-effects, i.e.programs in these languages are not allowed

to contain global variables or data structures, andfunctions in these languages can

notmodify theirarguments [Ack82]. Also, since it is possible to simulate anyTur

ing machine in one of these languages, questions such as deadlock (or,

equivalently, terminating behaviour) and detemiining maximum buffer sizes

required to implement edges in the dataflow graph become undecidable. Several

models based on dataflow with restricted semantics have been proposed; these

models give up the descriptive power of general dataflow in exchange for proper-

ties that facilitate formal reasoning about programs specified in these models, and

are useful in practise, leading to simplerimplementation of the specified computa

tion in hardware or software.

One such restricted model (and in fact one of the earliest graph based com

putation models) is the computation graph of Karp and Miller [Karp66]. In their

seminal paper Karp and Miller establish that their computation graph model is

determinate, i.e. the sequenceof tokens produced on the edgesof a given computa

tion graph are unique, and do not depend on the order that the actors in the graph

fire, as long as all data dependencies are respected by the firing order. The authors

also provide an algorithm that, based on topological and algebraic properties of the

graph, determines whether the computation specified by a given computation

graph will eventually terminate. Because of the latter property, computation graphs

clearly cannot simulate all Turing machines, and hence are not as expressive as a

general dataflow language like Lucid or pure LISP Computation graphs provide

some of the theoretical foundations for the SDF model.

Another model of computation relevant to dataflow is the Petri net model

[Peter81][Mur89]. A Petri net consists of a set of transitions, which are analogous

to actors in dataflow, and a set of places that are analogous to arcs. Each transition

has a certain number of input places and output places connected to it. Places may

contain one or more tokens. A Petri net has the following semantics: a transition

fires when all its input places have one or more tokens and, upon firing, it produces

a certain number of tokens on each of its output places.

A large number of different kinds of Petri net models have been proposed

in the literature for modeling different types of systems. Some of these Petri net

models have the same expressivepower as Turingmachines: for example if transi

tions are allowed to posses "inhibit" inputs (if a place corresponding to such an

input to a transition contains a token, then that transition is not allowed to fire) then

a Petri net can simulate any Turing machine (pp. 201 in [Peter81]). Others

(depending on topological restrictions imposed on how places and transitions can

be interconnected) are equivalent to finite state machines, and yet others are simi-

8

lar to SDF graphs. Some extended Petri net models allow a notion of time, to

model execution times of computations. There is also a body of work on stochastic

extensions of timed Petri nets that are useful for modeling uncertainties in compu

tation times. We will touch upon some of these Petri net models again in Chapter

4. Finally, there are Petri nets that distinguish between different classes of tokens

in the specification (colored Petrinets), so that tokens can have information associ

ated with them. We refer to [Peter81] [Mur89] for details on the extensive variety

of Petri nets that have been proposed over the years.

The particular restricted dataflow model we are mainly concerned with in

this thesis is the SDF — Synchronous Data Flow — model proposed by Lee and

Messerschmitt [Lee87]. The SDF model poses restrictions on the firing of actors:

the number of tokens produced (consumed) by an actor on each output (input)

edge is a fixed number that is known at compile time. The arcs in an SDF graph

may contain initial tokens, which we also refer to as delays. Arcs with delays can

be interpreted as data dependencies across iterations of the graph; this concept will

be formalized in the following chapter. In an actual implementation, arcs represent

buffers in physical memory.

DSP applications typically represent computations on an indefinitely long

data sequence; therefore the SDF graphs we are interested in for the purpose of

signal processing must execute in a nonterminating fashion. Consequently, we

must be able to obtain periodic schedules for SDF representations, which can then

be run as infinite loops using a finite amount of physical memory. Unbounded

buffers imply a sample rate inconsistency, and deadlock implies that all actors in

the graph cannot be iterated indefinitely. Thus for our purposes, correctly con

structed SDF graphs are those that can be scheduled periodically using a finite

amount of memory. The main advantage of imposing restrictions on the SDF

model (over a general dataflow model) lies precisely in the ability to determine

whether or not an arbitrary SDF graph has a periodic schedule that neither dead

locks nor requires unbounded buffer sizes [Lee87]. The buffer sizes required to

implement arcs in SDF graphs can be determined at compile time (recall that this

9

is not possible for a general dataflow model); consequently, buffers can be allo

cated statically, and run time overhead associated withdynamicmemoryallocation

is avoided. The existence of a periodic schedule that can be inferred at compile

timeimplies that a correctly constructed SDF graph entails no run time scheduling

overhead.

An SDFgraphin which every actor consumes andproduces onlyone token

from each of its inputs and outputs is called a homogeneous SDF graph

(HSDFG). An HSDF graph actor fires when it has one or more tokens on all its

input edges; it consumes one token from each input edge when it fires, and pro

duces one token on all its output edges when it completes execution. A general

(multirate) SDF graph can always be converted into an HSDFgraph [Lee86]; this

transformation may result in an exponential increase in the number of actors in the

final HSDF graph (see [Pin95b] for an example of an SDF graph in which this

blowup occurs). Such a transformation, however, appears to be necessary when

constructing periodic multiprocessor schedules from multirate SDFgraphs. There

is some recent work on reducing the complexity of the HSDFG that results from

transforming a given SDF graph by applying graph clustering techniques to that

SDFgraph[Pin95b]. Sincewe areconcerned with multiprocessor schedules in this

thesis, we assume we startwithan application represented as a homogeneous SDF

graph henceforth, unless we state otherwise. This of course results in no loss of

generality because a multirate graph is converted into a homogeneous graph for

the purposes of multiprocessor scheduling anyway. In Chapter 6 we discuss how

the ideas that apply to HSDF graphs can be extended to graphs containing actors

that display data-dependent behaviour (i.e. dynamic actors).

We note that an HSDFG is very similar to a marked graph in the context

of Petri nets [Peter81]; transitions in the marked graphcorrespond to actors in the

HSDFG, places correspond to edges, and initial tokens (or initial marking) of the

marked graph correspond to initial tokens (ordelays) in HSDFGs. We will repre

sent delays using bullets (•) on the edges of the HSDFG; we indicate more than

onedelay on anedgebya number alongside thebullet, as in Fig. 1.1(a).

10

SDF should not be confused with synchronous languages [Hal93][Ben91]

(e.g. LUSTRE, SIGNAL, and ESTEREL), which have very different semantics

from SDF. Synchronous languages have been proposed for formally specifying

and modeling reactive systems, i.e. systems that constantly react to stimuli from a

given physical environment. Signal processing systems fall into the reactive cate

gory, and so do control and monitoring systems, communication protocols, man-

machine interfaces, etc. In these languages variables are possibly infinite

sequences of data of a certain type. Associated with each such sequence is a con

ceptual (and sometimes explicit) notion of a clocksignal. In LUSTRE, each vari

able is explicitly associated with a clock, which determines the instants at which

the value of that variable is defined. SIGNAL and ESTEREL do not have an

explicit notion of a clock. The clock signal in LUSTRE is a sequence of Boolean

values, and a variable in a LUSTRE program assumes its nth value when its corre

sponding clock takes its n th TRUE value. Thus we may relate one variable with

another by means of their clocks. In ESTEREL, on the other hand, clock ticks are

implicitly defined in terms of instants when the reactive system corresponding to

an ESTEREL program receives (and reacts to) external events. All computations

in synchronous language are defined with respect to these clocks.

In contrast, the term "synchronous" in the SDF context refers to the fact

that SDF actors produce and consume fixed number of tokens, and these numbers

are known at compile time. This allows us to obtain periodic schedules for SDF

graphs such that the average rates of firing of actors are fixed relative to one

another. We will not be concerned with synchronous languages in this thesis,

although these languages have a close and interesting relationship with dataflow

models used for specification of signal processing algorithms [Lee95].

1.1.2 Utility of dataflow for DSP

As mentioned before, dataflow models such as SDF (and other closely

related models) have proven to be useful for specifying applications in signal pro

cessing and communications, with the goal of both simulation of the algorithm at

11

the functional or behavioural level, and for synthesis from such a high level speci

fication to a software description (e.g. a C program)or a hardwaredescription (e.g.

VHDL) or a combination thereof. The descriptions thus generated can then be

compiled down to the final implementation, e.g. an embedded processor, or an

ASIC.

One of the reasons for the popularity of such dataflow based models is that

they provide a formalism for block-diagram based visual programming, which is a

very intuitive specification mechanism for DSP; the expressivity of the SDF model

sufficiently encompasses a significant class of DSP applications, including multi-

rate applications that involve upsampling and downsampling operations. An

equally important reason for employing dataflow is that such a specification

exposes parallelism in the program. It is well known that imperative programming

styles such as C and FORTRAN tend to over-specify the control structure of a

given computation, and compilation of such specifications onto parallel architec

tures is known to be a hard problem. Dataflow on the other hand imposes minimal

data-dependency constraints in the specification, potentially enablinga compiler to

detect parallelism. The same argument holds for hardware synthesis, where it is

important to be able to exploit concurrency.

The SDF model has also proven useful for compiling DSP applications on

single processors. Programmable digital signal processing chips tend to have spe

cial instructions such as a single cycle multiply-accumulate (for filtering func

tions), modulo addressing (for managing delay lines), bit-reversed addressing (for

FFT computation); DSP chips alsocontainbuilt in parallel functional units that are

controlled from fields in the instruction (such as parallel moves from memory to

registers combined with an ALU operation). It is difficult for automatic compilers

to optimally exploit these features; executable code generated by commercially

available compilers todayutilizes oneand ahalf to two times the program memory

that a corresponding hand optimized program requires, and results in two to three

times higherexecutiontime compared to hand-optimized code [Zivo95]. Therehas

been some recent work on compilation techniques for embedded software target-

12

ted towards DSP processors and microcontrollers [Liao95]; it is still too early to

determine the impact of these techniques on automaticcompilation for large-scale

DSP/control applications, however.

Block diagram languages based on models such as SDF have proven to be

a bridge between automatic compilation and hand coding approaches; a library of

reusable blocks in a particular programming language is hand coded, this library

then constitutes the set of atomic SDF actors. Since the library blocks arereusable,

one can afford to carefully optimize and fine tune them. The atomic blocks are fine

to medium grain in size; an atomic actor in the SDF graph may implement any

thing from a filtering function to a two input addition operation. The final program

is then automatically generated by concatenating code corresponding to the blocks

in the program according to the sequence prescribed by a schedule. This approach

is matureenough that there are commercial tools available today, for example the

SPW and COSSAP tools mentioned earlier, that employ this technique. Powerful

optimization techniques have been developed for generating sequential programs

from SDFgraphs thatoptimize for metrics such as memoryusage [Bhat94].

Scheduling is a fundamental operation that must be performed in order to

implement SDF graphs on both uniprocessor as well as multiprocessors. Unipro

cessor scheduling simply refers to determining the sequence of execution of actors

such that all precedence constraints aremet and all the buffers between actors (cor

responding to arcs) return to their initial states. We discuss the issues involved in

multiprocessor scheduling next.

1.2 Parallel scheduling

We recall that in the execution of a dataflow graph, actors fire when suffi

cient number of tokens are present at their inputs. The task of scheduling such a

graph onto multiple processing units therefore involves assigning actors in the

HSDFG to processors (the processor assignment step), ordering execution of these

actors on each processor (the actor ordering step), and determining when each

13

actor fires such that all data precedence constraints are met. Each of these three

tasks may be performed eitherat run time (a dynamic strategy) or at compile time

(static strategy). Werestrict ourselves to non-preemptive schedules, i.e. schedules

where an actor executing on a processorcan not be interruptedin the middle of its

execution to allow another task to be executed. This is because preemption entails

a significant implementation overhead and is therefore of limited use in embedded,

time-critical applications.

Lee and Ha [Lee89] propose a scheduling taxonomy based on which of the

scheduling tasks are performed at compile time and which at run time; we use the

same terminology in this thesis. To reduce run time computation costs it is advan

tageous to perform as many of the three scheduling tasks as possible at compile

time, especially in the context of algorithms that have hard real-time constraints.

Which of these can be effectively performedat compile time depends on the infor

mation available about the execution time of each actor in the HSDFG.

For example, dataflow computers first pioneered by Dennis [Denn80] per

form the assignment step at compile time, but employ special hardware (the token-

match unit) to determine, at runtime, when actors assigned to a particular proces

sor are ready to fire. The runtime overhead of token-matching and dynamic sched

uling (within each processor) is fairly severe, so much so that dataflow

architectures have not been commercially viable; even with expensive hardware

support for dynamic scheduling, performance of such computers has been unim

pressive.

The performance metric of interest for evaluating schedules is the average

iteration period T: the average time it takes for all the actors in the graph to be

executed once. Equivalently, we could use the throughput T~ (i.e. the number of

iterations of the graph executed per unit time) as a performance metric. Thus an

optimal schedule is one that minimizes T.

In this thesis we focus on scheduling strategies that perform both processor

assignment and actor ordering at compile time, because these strategies appear to

be most useful for a significant class of real time DSP algorithms. Although

14

assignment and ordering performed at run time would in general lead to a more

flexible implementation (because a dynamic strategy allowsfor run time variations

in computation load and for operations that display data dependencies) the over

head involved in such a strategy is usually prohibitive and real-time performance

guarantees are difficult to achieve. Lee and Ha [Lee89] define two scheduling

strategies that perform the assignment and ordering steps at compile time: fully-

static and self-timed. We use the same terminology in this thesis.

1.2.1 Fully-static schedules

In the fully-static (FS) strategy, the exact firing time of each actor is also

determined at compile time. Such a scheduling style is used in the design of sys

tolic array architectures [Kung88], for scheduling VLIW processors [Lam88], and

in high-level VLSI synthesis of applications that consist only of operations with

guaranteed worst-case execution times [DeMich94]. Under a fully static schedule,

all processors run in lock step; the operation each processor performs on each

clock cycle is predetermined at compile time and is enforced at run time either

implicitly (by the program each processor executes, perhaps augmented with

"nop"s or idle cycles for correct timing) or explicitly (by means of a program

sequencer for example).

A fully-static schedule of a simple HSDFG G is illustrated in Fig. 1.1. The

FS schedule is schematically represented as a Gantt chart that indicates the proces

sors along the vertical axis, and time along the horizontal axis. The actors are rep

resented as rectangles with horizontal length equal to the execution time of the

actor. The left side of each actor in the Gantt chart corresponds to its starting time.

The Gantt chart can be viewed as a processor-time plane; scheduling can then be

viewed as a mechanism to tile this plane while minimizing total schedule length

and idle time ("empty spaces" in the tiling process).Clearly, the FS strategy is via

ble only if actor execution time estimates are accurate and data-independent or if

tight worst-case estimates are available for these execution times.

As shown in Fig. 1.1, two differenttypes of FS schedules arise, depending

15

®—Kg) /

(a) HSDFG acyclic precedence graph

Proc 1

Proc 2

B

D

I 1—r—r*-t

Proc 1

Proc2

Procl

Proc 2

Proc 1

Proc 2

D

-+* t)
B D

T=3 t.u.

(b) blocked schedule

D

B B

D 1
T = 2 t.u.

(c) overlapped schedule

Figure 1.1. Fully static schedule

on how successive iterations of the HSDFG are treated. Execution times of all

actors are assumed to be one time unit (t.u.) in this example. The FS schedule in

Fig. 1.1(b) represents a blocked schedule: successiveiterations of the HSDFG in a

blocked schedule are treated separately so that each iteration is completed before

the next one begins. A more elaborate blocked schedule on five processors is

shownin Fig. 1.2. The HSDFG is scheduled as if it executes for only one iteration,

i.e. inter-iteration dependencies are ignored; this schedule is then repeated to get

an infinite periodic schedule for the HSDFG. The length of the blocked schedule

determines the average iteration period T. The scheduling problem is then to

obtain a schedule that minimizes T (which is also called the makespan of the

schedule). A lowerbound on T for a blocked schedule is simply the length of the

critical path of thegraph, which is thelongest delay-free path in thegraph.

Ignoring the inter-iteration dependencies when scheduling an HSDFG is

equivalent to the classical multiprocessor scheduling problem for an Acyclic Pre

cedence Graph (APG): the acyclic precedence graph is obtained from the given

16

%Proc1

Proc 5/

(a) HSDFG "Gr

Tps-11

Execution Times

A.B.F

C.H

D

E

Q

Prod

Proc2| B V
Proc 3

Proc 4

Proc 5

(b) Static schedule
El -Idle

(c) Fully-staticexecution

Figure 1.2. Fully-static schedule on five processors

HSDFG by eliminating all edges with delays on them (edges with delays represent

dependencies across iterations) and replacing multiple edges that are directed

between the same two vertices in the same direction with a single edge. This

replacement is done because such multiple edges represent identical precedence

constraints; these edges are taken into account individually during buffer assign

ment, however. Optimal multiprocessorschedulingof an acyclic graphis known to

be NP-Hard [Garey79], and a number of heuristics have been proposed for this

problem. One of the earliest, and still popular, solutions to this problem is list

scheduling, first proposed by Hu [Hu61]. List scheduling is a greedy approach:

whenever a task is ready to run, it is scheduled as soon as a processoris available

to run it. Tasks are assigned priorities, and among the tasks that areready to run at

any instant, the task with the highest priority is executed first. Various researchers

have proposed different prioritymechanisms for list scheduling [Adam74], some

of which use critical path based (CPM) methods [Ram72][Koh75][Blaz87]

([Blaz87] summarizes a large numberof CPM based heuristics for scheduling).

17

The heuristics mentioned above ignore communication costs between pro

cessors, which is often inappropriate in actual multiprocessor implementations. An

edge of the HSDFG that crosses processor boundaries after the processor assign

ment step represents interprocessor communication (IPC) (illustrated in Fig.

1.3(a)). These communication points are usually implemented using send and

receive primitives that make use of the processor interconnect hardware. These

primitives then have an execution cost associated with them that depends on the

multiprocessor architecture and hardware being employed. Fully-static scheduling

heuristics that take communication costs into account include

[Sark89][Sih91][Prin91].

Computations in the HSDFG, however, are iterated essentially infinitely.

The blocked scheduling strategies discussed thus far ignore this fact, and thus pay

a penalty in the quality of the schedule they obtain. Two techniques that enable

blocked schedules to exploit inter-iteration parallelism are unfolding and retim

ing. The unfolding strategy schedules / iterations of the HSDFG together, where

/ is called the blocking factor. Thus the schedule in Fig. 1.1(b) has J = 1.

Unfolding often leads to improved blocked schedules (pp. 78-100 [Lee86],

[Parhi91]), but it also implies a factor of / increase in program memory size and

also in the size of the scheduling problem, which makes unfolding somewhat

impractical.

Retiming involves manipulating delays in the HSDFG to reduce the critical

path in the graph. This technique has been explored in the context of maximizing

clock rates in synchronous digital circuits [Lei83], and has been proposed for

improving blocked schedules for HSDFGs ("cutset transformations" in [Lee86],

and [Hoang93]).

Fig. 1.1(c) illustrates an example of an overlapped schedule. Such a

schedule is explicitly designed such that successive iterations in the HSDFG over

lap. Obviously, overlapped schedules often achieve a lower iteration period than

blocked schedules. In Fig. 1.1, for example, the iteration period for the blocked

schedule is 3 units whereas it is 2 units for the overlapped schedule. One might

18

wonder whether overlapped schedules are fundamentally superior to blocked

scheduleswith the unfolding andretimingoperations allowed.This question is set

tled in the affirmative by Parhi and Messerschmitt [Parhi91]; the authors provide

an example of an HSDFG for which no blocked schedule can be found, even

allowing unfolding andretiming, thathas a lower or equaliteration periodthan the

overlapped schedule they propose.

Optimal resource constrained overlapped scheduling is of course NP-Hard,

although a periodic overlapped schedule in the absence of processor constraints

can be computed efficiently andoptimally [Parhi91][Gasp92].

Overlapped scheduling heuristics have not been as extensively studied as

blocked schedules. The main work in this area is by Lam [Lam88], and deGroot

[deGroot92], who propose a modified list scheduling heuristic that explicitly con

structs an overlapped schedule. Another work related to overlapped schedulingis

the "cyclo-static scheduling" approach proposed by Schwartz. This approach

attempts to optimally tile the processor-time plane to obtain the best possible

schedule. The search involved in this process has a worst case complexity expo

nential in the size of the input graph, although it appears that the complexity is

manageable in practice, at least for small examples [Schw85].

1.2.2 Self-timed schedules

The fully-static approach introducedin the previous section cannot be used

when actors have variable execution times; the FS approach requires precise

knowledge of actor execution times to guarantee sender-receiver synchronization.

It is possible to use worst case execution times and still employ an FS strategy, but

this requires tight worst case execution time estimates that may not be available to

us. An obvious strategy for solving this problem is to introduce explicit synchroni

zation whenever processors communicate. This leads to the self-timed scheduling

(ST) strategy in the scheduling taxonomy of Lee and Ha [Lee89]. In this strategy

we first obtain an FS schedule using the techniques discussed in section 1.2, mak

ing use of the execution time estimates. After computing the FS schedule (Fig. 1.3

19

(b)), we simply discard the timing information that is not required, and only retain

the processor assignment and the ordering of actors on each processor as specified

by the FS schedule (Fig. 1.3(c)). Each processor is assigned a sequential list of

actors, some of which are send and receive actors, that it executes in an infinite

loop. When a processor executes a communication actor, it synchronizes with the

processor(s) it communicates with. Exactly when a processor executes each actor

depends on when, at run time, all input data for that actor are available, unlike the

fully-static case where no such run time check is needed. Conceptually, the proces

sor sending data writes data into a FIFO buffer, and blocks when that buffer is full;

the receiver on the other hand blocks when the buffer it reads from is empty. Thus

flow control is performed at run time. The buffers may be implemented using

shared memory, or using hardware FIFOs between processors. In a self-timed

strategy, processors run sequential programs and communicate when they execute

the communication primitives embedded in their programs, as shown schemati

cally in Fig. 1.3(c).

(b) Fully-static schedule

(a) HSDFG

Prod Proc 2

start start
* ♦ *-
rec %
D <& ^jfrec
* \C /& +
A ;*F B• , / \ t
send ' \ send

(c) Self-timed implementation
(schematic)

Figure 1.3. Steps in a self-timed scheduling strategy

An ST strategy is robust with respect to changes in execution times of

actors, because sender-receiver synchronization is performed at run time. Such a

strategy, however, implies higher IPC costs compared to the fully-static strategy

because of the need for synchronization (e.g. using semaphore management). In

addition the ST strategy faces arbitration costs: the FS schedule guarantees mutu-

20

ally exclusive access of shared communication resources, whereas shared

resources need to be arbitrated at run time in the ST schedule. Consequently,

whereas IPC in the FS schedule simply involves reading and writing from shared

memory (no synchronization or arbitration needed), implying a cost of a few pro

cessor cycles for IPC, the ST strategy requires of the order of tens of processor

cycles, unless special hardware is employed for run time flow control. We discuss

in detail how this overhead arises in a shared bus multiprocessor configuration in

Chapter 3.

Run time flow control allows variations in execution times of tasks; in

addition, it also simplifies the compiler software, since the compiler no longer

needs to perform detailed timing analysis and does not need to adjust the execution

of processors relative to one anotherin orderto ensure correct sender-receiver syn

chronization. Multiprocessor designs, such as the Warp array [Ann87][Lam88] and

the 2-D MIMD (Multiple Instruction Multiple Data) array of [Ziss87], that could

potentially use fully-static scheduling, still choose to implement such run time

flow control (at the expense of additional hardware) for the resulting software sim

plicity. Lam presents an interesting discussion on the trade-off involved between

hardware complexity and ease of compilation that ensues when we consider

dynamic flow control implemented in hardware versus static flow control enforced

by a compiler (pp. 50-68 of [Lam89]).

1.2.3 Execution time estimates and static schedules

We assume we have reasonably good estimates of actor execution times

available to us atcompiletime to enable us to exploit static scheduling techniques;

however, these estimates need not be exact, and execution times of actors may

even be data-dependent. Thus we allow actors that have different execution times

from one iteration of the HSDFG to the next, as long as these variations are small

or rare. This is typically the case when estimates are available for the task execu

tion times, and actual execution times are close to the corresponding estimates

with high probability, but deviations from the estimates of (effectively) arbitrary

21

magnitude occasionally occur due to phenomena such as cache misses, interrupts,

user inputs or error handling. Consequently, tight worst-case execution time

bounds cannot generally be determined for such operations; however, reasonably

good execution time estimates canin fact be obtained for these operations, so that

static assignment and ordering techniques are viable. For such applications self-

timed scheduling is ideal, because the performance penalty due to lack of dynamic

load balancing is overcome by the much smaller run time scheduling overhead

involved when staticassignment and ordering is employed.

The estimates for execution times of actors can be obtained by several dif

ferent mechanisms. The most straightforward method is for the programmer to

provide these estimates when he writes the library of primitive blocks. This strat

egy is used in the Ptolemy system, and is very effective for the assembly code

libraries, in which the primitives are written in theassembly language of the target

processor (Ptolemy currently supports the Motorola 56000and 96000 processors).

The programmer can provide a good estimate for blocks written in such a library

by counting the number of processor cycles each instruction consumes, orby pro

filing the block on an instruction-set simulator.

It is more difficult to estimate execution times for blocks that contain con

trol constructs such as data-dependent iterations and conditionals within their

body, and when the target processor employs pipelining and caching. Also, it is

difficult, if not impossible, for theprogrammer to provide reasonably accurate esti

mates of execution times for blocks written in a high-level language (as in the C

code generation library in Ptolemy). The solution adopted in the GRAPE system

[Lauw90] is to automatically estimate these execution times by compiling the

block (if necessary) andrunning it by itself in a loop on aninstruction-set simula

tor for the target processor. To take intoaccount data-dependent execution behav

iour, different input data sets can be provided for the block during simulation.

Either the worst case or the average case execution time is used as the final esti

mate.

The estimation procedure employed by GRAPE is obviously timeconsum-

22

ing; in fact estimation turns out to be the most time consuming step in the GRAPE

design flow. Analytical techniques can be used instead to reduce this estimation

time; for example, Li and Malik [Li95] have proposed algorithms for estimating

the execution time of embedded software. Their estimation technique, which

forms a part of a tool called Cinderella, consists of two components: 1) determin

ing the sequence of instructions in the program that results in maximum execution

time (program path analysis) and 2) modeling the target processor to determine

how much time the worst case sequence determined in step 1 takes to execute

(micro-architecture modeling). The target processormodel also takes the effect of

instruction pipelines and cache activity into account. The input to the tool is a

generic C program with annotations that specify the loop bounds (i.e. the maxi

mum number of iterations that a loop runs for). Although the problem is formu

lated as an integer linear program (JLP), the claim is that practical inputs to the

tool can be efficiently analyzed using a standard ILP solver. The advantage of this

approach, therefore, is the efficient manner in which estimates are obtained as

compared to simulation.

It should be noted that the program path analysis component of the Li and

Malik technique is in general an undecidable problem; therefore for these tech

niques to function, the programmer must ensure that his or her program does not

contain pointer references, dynamic data structures, recursion, etc. and must pro

vide bounds on allloops. Li and Malik's technique also depends on the accuracy of

the processor model, although one can expect good models to eventually evolve

for DSP chips andmicrocontrollers thatare popular in the market.

The problem of estimating execution times of blocks is central for us to be

able to effectively employ compile time design techniques. This problem is an

important area of research in itself, and the strategies employed in Ptolemy and

GRAPE, and those proposed by Li and Malik are useful techniques, and we expect

better estimation techniques to be developed in the future.

23

1.3 Application-specific parallel architectures

There has been significant amount of research on general purpose high-

performance parallel computers. These employ expensive and elaborate intercon

nect topologies, memory and Input/Output (I/O) structures. Such strategies are

unsuitable for embedded DSP applications as we discussed earlier. In this section

we discuss some application-specific parallel architectures that have been

employed for signal processing, and contrast them to ourapproach.

1.3.1 Dataflow DSP architectures

There have been a few multiprocessors geared towards signal processing

that are based on the dataflowarchitecture principles of Dennis [Denn80]. Notable

among these are Hughes Data Flow Multiprocessor [Gau85], the Texas Instru

ments Data Flow Signal Processor [Grim84], and the AT&T Enhanced Modular

Signal Processor [Bloch86]. The first two perform theprocessor assignment step at

compile time (i.e. tasks are assigned to processors at compile time) and tasks

assigned to a processor are scheduled on it dynamically; the AT&T EMPS per

forms even the assignment of tasks to processors atruntime.

Each one of these machines employs elaborate hardware to implement

dynamic scheduling within processors, and employs expensive communication

networks to route tokens generated by actors assigned to one processor to tasks on

other processors that require these tokens. In most DSP applications, however,

such dynamic scheduling is unnecessary since compile time predictability makes

static scheduling techniques viable. Eliminating dynamic scheduling results in

much simpler hardware withoutanundue performance penalty.

Another example of an application-specific dataflow architecture is the

NEC |iPD7281 [Chase84], which is a single chip processor geared towards image

processing. Each chip contains one functional unit; multiple such chips can be

connected together to execute programs in a pipelined fashion. The actors are stat

ically assigned to each processor, and actors assigned to a given processor are

24

scheduled on it dynamically. The primitives that this chip supports, convolution,

bit manipulations, accumulation, etc., are specifically designed for image process

ing applications.

1.3.2 Systolic and wavefront arrays

Systolic arrays consist of processors that are locally connected and may be

arranged in different topologies: mesh, ring, torus, etc. The term "systolic" arises

because all processors in such a machine run in lock-step, alternating between a

computation step and a communication step. The model followed is usually SIMD

(Single Instruction Multiple Data). Systolic arrays can execute a certain class of

problems that can be specified as "Regular Iterative Algorithms (RIA)" [Rao85];

systematic techniques exist for mapping an algorithm specified in a RIA form onto

dedicated processor arrays in an optimal fashion. Optimality includes metrics such

as processor and communication link utilization, scalability with the problem size,

achieving best possible speedup for a given number of processors, etc. Several

numerical computation problems were found to fall into the RIA category: linear

algebra, matrix operations, singular value decomposition, etc. (see

[Kung88][Leigh92] for interesting systolic array implementations of a variety of

different numerical problems). Only fairly regular computations can be specified

in the RIA form; this makes the applicability of systolic arrays somewhat restric

tive.

Wavefront arrays are similar to systolic arrays except that processors are

not under the control of a global clock. Communication between processors is

asynchronous or self-timed; handshake between processors ensures run time syn

chronization. Thus processors in a wavefront array canbe complex and the arrays

themselves can consist of a large numberof processors without incurring the asso

ciated problems of clock skew and global synchronization. Again, similar to FS

versus ST scheduling, the flexibility of wavefront arrays over systolic arrays

comes at the cost of extra handshaking hardware.

The Warp project at Carnegie Mellon University [Anna87] is an example

25

of a programmable systolic array, asopposed to a dedicated array designed for one

specific application. Processors are arranged in a linear array and communicate

with their neighbors through FIFO queues. Programs are written for thiscomputer

in a language called W2 [Lam88]. The Warp project also led to the iWarp design

[Bork88], which has a more elaborate inter-processor communication mechanism

thanthe Warp machine. An iWarp node is a single VLSI component, composed of

a computation engine and a communication engine; the latterconsists of a crossbar

and data routing mechanisms. The iWarp nodes can be connected in various single

and two dimensional topologies, andpointto pointmessage-passing type commu

nication is supported.

1.3.3 Multiprocessor DSP architectures

In this section we discuss multiprocessors thatmake use of multiple off the

shelf programmable DSP chips.

The SMART architecture [Koh90] is a reconfigurable bus design com

prised of AT&T DSP32C processors, and custom VLSI components for routing

data between processors. Clusters of processors may be connected ontoa common

bus, or may form a linear array with neighbor to neighbor communication. This

allows the multiprocessor to be reconfigured depending on the communication

requirement of the particular application being mapped onto it. Scheduling and

codegeneration for thismachine is done by the McDAS compiler [Hoang93].

The DSP3 multiprocessor [Shive92] was built at AT&T, and is comprised

of DSP32C processors connected in a meshconfiguration. The mesh interconnect

is implemented using custom VLSI components for data routing. Each processor

communicates with four of its adjacent neighbors through this router, which con

sists of input and output queues, and acrossbar that is configurable under program

control. Data packets contain headers that indicate the ID of thedestination proces

sor.

The Ring Array Processor (RAP) system [Morg92] uses TI DSP320C30

processors connected in a ring topology. This system is designed specifically for

26

speech recognition applications based on artificial neural networks. The RAP sys

tem consists of several boards that are attached to a host workstation, and acts as a

coprocessor for the host. The unidirectional pipelined ring topology employed for

interprocessor communication was found to be ideal for the particular algorithms

that were to be mapped to this machine. The ring structure is similar to the

SMART array,except that no processor ID is included with the data, and processor

reads and writes into the ring are scheduled in a fully-static fashion. The ring is

used to broadcast data from one processor to all the others during one phase of the

neural net algorithm, and is used to shift data from processor to processor in a

pipelined fashion in the second phase.

The MUSIC system [Gunz92] uses Motorola DSP96000 processors, and

has been designed for neural network simulations and scientific simulations. An

"intelligent" communication network, implemented on Xilinx gate arrays, broad

casts data generated by any processing element (PE) to all the other PEs. The PEs

are arranged in a ring topology. This kind of broadcast mechanism is suited to the

applications the MUSIC system targets: the outputs from one layer of a multi-layer

perceptron (a kind of neural net) is needed by all the "neurons" in the next layer,

making broadcasting an ideal strategywhen the different net layers areexecuted in

a pipelined fashion. The molecular dynamics example the authors provide also

benefits from this broadcast mechanism.

1.4 Thesis overview: our approach and contributions

We argued that the self-timed scheduling strategy is suited towards parallel

implementation for DSP. The multiprocessor architectures we discussedin the pre

vious section support this argument: the dataflow architectures in section 1.3.1 use

dynamic scheduling, but pay a high hardware cost, which makes them unsuited for

embedded applications. In the case of the NEC dataflow chips, parallelism is

mainly derived through pipelined execution. The dataflow model of execution that

is implementedin hardware in this chip, although elegant, is of limited use for the

27

image processing applications that this part has been designed for; the order in

which each processor executes instructions assigned to it can potentially be fixed

at compile time without loss in parallelism.

Systolic arrays normally employ a fully-static strategy. As we discussed

before, RIA specifications and theprimarily SIMD approach usedin systolic array

mapping techniques restrict their domain of applicability. The approach taken by

these techniques is to use a large number of very simpleprocessors to perform the

computation, whereas the approach we follow in this thesis is to use a small num

berof powerful processors. This enables us to handle algorithms specified as data

flow graphs where the actors are tasks with a potentially large granularity. The

parallelism we employ is therefore atthe tasklevel (functional parallelism). Such a

strategy gives up some of the optimality properties that systolic array mapping

techniques guarantee in exchange for a larger application domain. Again, utilizing

a number of pretested processor cores is economically more attractive than build

ing a systolic array implementation from scratch.

Ideally we would liketo exploit thestrategy of partitioning data among dif

ferent processors (data parallelism) that systolic techniques employ, along with

task level parallelism. There has not been much work in this direction, although

the work of Printz [Prin91], and the Multidimensional SDF model proposed by

Lee in [Lee93], are two promising approaches for combining data and functional

parallelism.

The multiple DSP machines we discussed in the last section all employ

some form of self-timed scheduling. Clearly, general purpose parallel machines

like the Thinking Machines CM-5 and Stanford Dash multiprocessor can also be

programmed using the self-timed scheduling style, since these machines provide

mechanisms for run time synchronizationand flow control.These machines, how

ever, do not attempt to make use of the fact that the interprocessor communication

pattern in a self-timed implementation is fairly predictable. In this thesis we

exploretechniques thatoptimizethe parallel implementation of aself-timed sched

ule by performing compile time analysis of the schedule to determine the pattern

28

2

TERMINOLOGY AND NOTATIONS

In this chapter we introduce terminology and definitions used in the

remainder of the thesis. We also formalize thescheduling concepts that were pre

sented intuitively in the previous chapter.

2.1 HSDF graphs and associated graph theoretic nota
tion

We represent an HSDFG by an orderedpair (V, E), where V is the set of

vertices (actors) and E is the set of edges. We refer to the source and sink vertices

of a graph edge e by src (e) and snk (e), and we denote the delay (or the num

ber of initial tokens) on e by delay (e). We say that e is an output edge of

src (e), and that e is an input edge of snk(e) .We will also use the notation

(v/t vj)» v,-» vj € V, for an edge directed from v(to v..
A path in (V, E) is a finite, non-empty sequence (ev e2,..., en), where

each et is a member of E, and snk (ex) = src (e2), snk (e2) = src (e3), ...,

snk(en_]) = src(en) .We say that the path/? = (eve2, ...,en) contains each

e% and each subsequence of (eve2, ...,en); p is directed from src(ex) to

snk (en) ;and each member of {src (e^, src (e2),..., src (en), snk (en) } is on
p. A path that is directedfrom a vertexto itselfis calleda cycle, and a fundamen-

33

tal cycle is a cycle of which no proper subsequenceis a cycle.

If P = (ei>e2> •••»e/j) 1S& Pam m Bn HSDFG, then wedefine the path de-

n

layofp, denoted Delay (p) ,by Delay (p) - V delay (e() .Since the delays on
1 = 1

all HSDFG edges are restricted to be non-negative, it is easily seen that between any

two vertices x,y£ V, either there is no path directed from x to y, or there exists a

(not necessarily unique) minimum-delay path betweenx and y. Given an HSDFG

G, and vertices x,y in G, we define pG (x, y) tobeequal tothe path delay ofa

minimum-delay path from x to y if thereexist one or morepaths from x to y, and

equal to «» if thereis no pathfrom x to y. If G is understood, then we maydrop

the subscript and simply write "p " inplace of"pG ".

By a subgraph of (V,E), we mean the directed graph formed by any

V'£V together with the set ofedges {e € E\src (e), snk (e) € V'} . We denote

thesubgraph associated with the vertex-subset V" by subgraph (V) . We say that

(V, E) is strongly connected if for each pair of distinct vertices x,y, there is a

path directed from x to y and there is a path directed from y to x. We say that a

subset V'£V is strongly connected if subgraph (V) is strongly connected. A

stronglyconnected component (SCC) of (V, E) is a strongly connected subset

V QV such that nostrongly connected subset of Vproperly contains V. If V is

an SCC, then when there is no ambiguity, we may also say that subgraph (W) is

an SCC. If C2 and C2 are distinct SCCs in (V, E), we say that Cx isa predeces

sor SCC of C2 ifthere is an edge directed from some vertex in Cx to some vertex
in C2; Cx is asuccessor SCC of C2 if C2 is apredecessor SCC of Cx. An SCC
is a source SCC if it has no predecessor SCC; and an SCC is a sink SCC if it has

no successor SCC. An edge e is a feedforward edge of (V,E) if it is not con

tained in an SCC, orequivalently, if it is not contained in a cycle; an edge that is

contained in at leastone cycle is called a feedback edge.

34

Given two arbitrary sets Sx and S2, we define the difference of these two

sets by 5j - 52 = {s € SAs£ S2} , and we denote the number of elements in a

finite setS by |5|. Also, if r is a real number, then we denote the smallest integer

that is greater than or equalto r by [r~\.

For elaboration on any of the graph-theoretic concepts presented in this

section, we refer the reader to Cormen, Leiserson, and Rivest [Corm92].

2.2 Schedule notation

To model execution times of actors (and to perform static scheduling) we

associate execution time t(v) € Z (non-negative integer) with each actor v in

the HSDFG; t(v) assigns execution time to each actor v (the actual execution

time can be interpreted as t (v) cycles of a base clock). Inter-processorcommuni

cation costs are represented by assigning execution times to the send and receive

actors. The values t (v) may be set equal to execution time estimates when exact

execution times are not available, in which case results of the computations that

make use of these values (e.g. the iteration period T) are compile time estimates.

Recall that actors in an HSDFG are executed essentially infinitely.Each fir

ing of an actor is called an invocation of that actor. An iteration of the HSDFG

corresponds to one invocation of every actor in the HSDFG. A schedule specifies

processor assignment, actor ordering and firing times of actors, and these may be

done at compile time or at run time depending on the scheduling strategy being

employed. To specify firing times, we let the function start (v, k) € Z represent

the time at which the fcth invocation of the actor v starts. Correspondingly, the

function end(v, k) G Z represents the time at which the kih execution of the

actor v completes, at which point v produces data tokens at its output edges. Since

we are interested in the k th execution of each actor for k = 0,1,2,3,..., we set

start (v, k) = 0 and end (v, k) = 0 for k < 0 as the "initial conditions". If the

kth invocation of an actor v. takes exactly t(v.), then we can claim:

end (vj, k) = start (v., k) +1 (v) .

35

Recall that a fully-static schedule specifies a processor assignment, actor

ordering on eachprocessor, and also theprecise firing times of actors. We use the

following notation for a fully-static schedule:

Definition 2.1: A fully-static schedule S (for P processors) specifiesa triple:

S = {op(v),ot(v),TFS} ,

where a (v) -» [1,2,..., P] is the processor assignment, and TFS is the itera

tion period. An FS schedule specifies the firing times start (v, k) of all actors, and

since we want a finite representation for an infinite schedule, an FS schedule is

constrained to be periodic:

start (v,k) = a, (v) + kTFS,

ot(v) is thus the starting time of the first execution of actor v (i.e.

start (v, 0) = ot (v)). Clearly, the throughput for such a schedule is TFS.

The ct (v) function and the ot (v) values arechosen so that all data pre

cedence constraints and resource constraints are met. We define precedence con

straints as follows:

Definition 2.2: An edge (v^ vt) GVin an HSDFG (V, E) represents the (data)

precedence constraint:

start (v,., k) £ end (v., k- delay ((v., v;))), V* £ delay (v., vf) .

The above definition arises because each actor consumes one token from each of

its input edges when it fires. Since there are already delay (e) tokens on each

incoming edge e of actor v, another k- delay (e) - 1 tokens must be produced

on e before the £th execution of v can begin. Thus the actor src (e) must have

completed its (k - delay (e) - 1)th execution before v can begin its kth execu

tion. The "-1 "s arise because we define start (v, k) for k £ 0 rather than k > 0.

36

This is done for notational convenience.

Any schedule that satisfies all the precedence constraints specified by

edges in an HSDFG G is also called an admissible schedule for G [Reit68]. A

valid execution of an HSDFG corresponds to a set of firing times {start (v., k) }

that correspond to an admissible schedule, i.e. a valid execution respects all data

precedences specified by the HSDFG.

For the purposes of the techniques presented in this thesis, we are only

interested in the precedencerelationships between actors in the HSDF graph. In a

general HSDFG one or more pairs of vertices can have multiple edges connecting

them in the same "direction." Such a situation often arises when a multirate SDF

graph is converted into a homogeneous HSDFG.Multiple edges between the same

pair of vertices in the same direction are redundant as far as precedence relation

ships are concerned. Suppose there are multiple edges from vertex vf. to v., and

amongst these edges the edge that has minimum delay has delay equal to dmin.

Then, if wereplace all these edges by a single edge with delay equal to dmin, it is

easy to verify that this single edge maintains the precedence constraints for all the

edges that were directed from v. to v•. Thus a general HSDF graph may be prepro-

cessed into a form where the source and sink vertices uniquely identify an edge in

the graph, and we may represent an edge e€ E by the ordered pair

(src (e), snk(e)) . The multiple edges are taken into account individually when

buffers are assigned to the arcs in the graph.

As we discussed in section 1.2.1, in some cases it is advantageous to unfold

a graph by a certain unfolding factor, say u, and schedule u iterations of the graph

together in order to exploit inter-iteration parallelism more effectively. The unfold

ed graph contains u copies of each actor of the original graph. In this case a and

g{ aredefined for allthe vertices ofthe unfolded graph (i.e. a and a, are defined

for u invocations ofeach actor); TFS is the iteration period fortheunfolded graph,

37

FSand the averageiterationperiod for the original graph is then —. In the remainder

of this thesis, we assume we aredealing with the unfolded graph and we refer only

to the iteration period and throughput of the unfolded graph, if unfolding is in fact

employed, with the understanding thatthesequantities canbe scaled by the unfold

ing factor to obtain the corresponding quantities for the originalgraph.

In a self-timed scheduling strategy, we determine a fully-static schedule,

{a (v), ot (v), TFS} , using the execution time estimates, butwe only retain the

processor assignment a and the ordering of actors on each processor as specified

by ot, and discard the precise timing information specified in the fully-static

schedule. Although we may start outwith setting start (v, 0) = ot (v), the subse

quent start (v, k) values aredetermined at runtime based on availability of data at

the input of each actor; the average iteration periodof a self-timed schedule is rep

resented by TST. We analyze the evolution of a self-timed schedule further in

Chapter 4.

38

3

THE ORDERED TRANSACTION STRATEGY

The self-timed scheduling strategy in Chapter 1 introduces synchronization

checks when processors communicate; such checks permit variations in actor exe

cution times, but they also imply run time synchronization and arbitration costs. In

this chapter we present a hardware architecture approach called Ordered Transac

tions (OT) that alleviates some of these costs, and in doing so, trades off some of

the run time flexibility afforded by the ST approach. The ordered transactions

strategy was first proposed by Bier, Lee, and Sriram [Lee90][Bier90]. In this chap

ter we describe the idea behind the OT approach and then we discuss the design

and hardware implementation of a shared-bus multiprocessor that makes use of

this strategy to achieve a low-cost interprocessor communication using simple

hardware. The software environment for this board is provided by the Ptolemy sys

tem developed at the University of California at Berkeley [Buck94][Ptol94].

3.1 The Ordered Transactions strategy

In the OT strategy we first obtain a fully-static schedule using the execu

tion time estimates, but we discard the precise timing information specified in the

fully-static schedule; as in the ST schedule we retain the processor assignment

(a) and actor ordering oneach processor as specified by ot; in addition, we also

39

retain the order in which processors communicate with one another and we enforce

this order at run time. We formalize the concept of transaction order below.

Suppose there are k inter-processor communication points

($j, rx), (s2, r2),..., (sk, rk) —where each (sif r.) is a send-receive pair—in

the FS schedule that we obtain as a first step in the construction of a self-timed

schedule. Let R be the set of receive actors, and S be the set of send actors (i.e.

R&{rv r2,..., rk] and S s {sv s2,..., sk]). We define a transaction order to

be a sequence 0= (vv v2, v3,..., v2k_v v2k), where

{Vj, v2,..., v2kV v2k} sSuR (each communication actor is present in the

sequence O). We say a transaction order O (as defined above) is imposed on a

multiprocessor if at run time the send and receive actors are forced to execute in

the sequence specified by O. That is, if O = (vv v2, v3,..., v2k_ v v2k), then

imposing O means ensuring the constraints: end(vv k) <> start (v2,k),
end(v2,k) <>start(vvk), ..., end(vk_vk) <>start(vk,k); ViteO.

Thus the OT schedule is essentially an ST schedule with the added transac

tionorderconstraints specified by O.

After an FS schedule is obtained using the execution time estimates, the

transaction order is obtained from the a, function of the FS schedule: we simply

set the transaction order to O = (vv v2, v3 v2k_ p v2k), where

a,(Vl) £a,(v2) £...<;a,(v^) £ot(v2k) .

The transaction order can therefore be determined by sorting the set ofcommuni

cation actors (SuR) according to their start times a,. Fig. 3.1 shows an example

ofhow such an order could be derived from agiven fully-static schedule. This FS

schedule corresponds to the HSDFG and schedule illustrated in Chapter 1 (Fig.

1.2).

The transaction order is enforced at run time by a controller implemented

inhardware. The main advantage ofordering inter-processor transactions is that it

40

Prod

Proc 2

Proc 3

Proc 4

Proc 5

•= H ,A N
B Id' H F\ I35

H

"6

Transaction order: (5i» ri» s2> rx SV r3' *4' r4' 55' r5' 56' r6J

Figure 3.1. One possible transaction order derived from the fully-static schedule

allows us to restrict access to communication resources statically, based on the

communication pattern determined at compile time. Since communication

resources are typically shared between processors, run time contention for these

resources is eliminated by ordering processor accesses to them; this results in an

efficientIPC mechanism at low hardware cost. We havebuilta prototype four pro

cessor DSP board, called the Ordered Memory Access (OMA) architecture, that

demonstrates the ordered transactions concept. The OMA prototype board utilizes

shared memory and a single shared bus for IPC — thesender writes data to apar

ticular shared memory location that is allocated at compile time, and the receiver

reads that location. In this multiprocessor, a very simple controller on the board

enforces the pre-determined transaction order at run time, thus eliminating the

need for run time bus arbitration or semaphore synchronization. This results in

efficient IPC (comparable to the FS strategy) atrelatively low hardware cost. As in

the ST scenario, the OT strategy is tolerant of variations in execution times of

actors, because the transaction order enforces correct sender-receiver synchroniza

tion; however, this strategy is more constrained than ST scheduling, which allows

the order in which communication actors fire to vary at run time. The ordered

transactions strategy, therefore, falls in between fully-static and self-timed strate

gies in that, like the ST strategy, it is tolerant of variations in execution times and,

like theFS strategy, has low communication and synchronization costs. These per

formance issues will be discussed quantitatively in the following chapter; therest

41

of this chapter describes the hardware and software implementation of the OMA

prototype.

3.2 Shared bus architecture

The OMA architecture uses a single shared bus and shared memory for

inter-processor communication. This kind of sharedmemory architecture is attrac

tive for embedded multiprocessor implementations owing to its relative simplicity

and low hardware cost and to the fact that it is moderately scalable — a fully inter

connected processor topology, for example, would not only be much more expen

sive than a shared bus topology, but would also suffer from its limited scalability.

Bus bandwidth limits scalability in shared bus multiprocessors, but for medium

throughput applications (digital audio, music, etc.) and the size of the machine we

are considering, a shared bus is ideal. We propose to solve the scalability problem

by using multiple busses and hierarchy of busses, for which the ideas behind the

OMA architecture directly apply. We refer to Lee and Bier [Lee90] for how the

OMA concept is extended to such hierarchical bus structures.

From Fig. 1.3 we recall that the self-timed scheduling strategy falls natu

rally into a message passing paradigm that is implemented by the send and receive

primitives inserted in the HSDFG. Accordingly, the sharedmemory in an architec

ture implementing such a scheduling strategy is used solely for message passing:

the send primitive corresponds to writes to sharedmemory locations, and receive

primitives correspond to reads from shared memory. Thus the shared memory is

not used for storing shared data structures or for storing shared program code. In a

self-timed strategy we can further ensure, at compile time, that each shared mem

ory location is written by only one processor (one way of doing this is to simply

assign distinct shared buffers to each of the send primitives, which is the scheme

implemented in the Ptolemy environment); as a result, no atomic test-and-set

instruction needs to be provided by the hardware.

42

Let us now consider the implementation of IPC in self-timed schedules on

such a shared bus multiprocessor. The sender has to write into shared memory,

which involves arbitration costs — it has to request access to the shared bus, and

the access must be arbitrated by a bus arbiter. Once the sender obtains access to

sharedmemory, it needs to perform a synchronization check on the sharedmemory

location to ensure that the receiver has read data that was written in the previous

iteration, to avoid overwriting previously written data. Such synchronization is

typically implemented using a semaphore mechanism; the sender waits until a

semaphore is reset before writing to a shared memory location, and upon writing

that shared memory location, it sets that semaphore (the semaphore couldbe a bit

in shared memory, one bit for each send operation in the parallel schedule). The

receiver on the other hand busywaits until the semaphore is setbefore reading the

shared memory location, and resets the semaphore after completing the read oper

ation. It can easily be verified that this simple protocol guarantees correct sender-

receiver synchronization, and, even though the semaphore bits have multiple writ

ers, no atomic test-and-set operation is required of the hardware.

In summary the operations of the sender are: request bus, wait for arbitra

tion, busy wait until semaphore is in the correct state, write the shared memory

location if semaphore is in the correct state, and then release the bus. The corre

sponding operations for the receiver are: request bus, wait for arbitration, busy

wait onsemaphore, read the shared memory location if semaphore is in the correct

state, and release the bus. The IPC costs are therefore due to bus arbitration time

and due to semaphore checks. Such overhead consumes of the order of tens of

instruction cycles if nospecial hardware support is employed for IPC. In addition,

semaphore checks consume shared bus bandwidth.

An example of this is a four processor DSP56000 based shared bus system

designed by Dolby labs for digital audio processing applications. In this machine,

processors communicate through shared memory, and acentral bus arbiter resolves

bus request conflicts between processors. When a processor gets the bus it per-

43

forms asemaphore check, and continues with the shared memory transaction if the

semaphore is in the correct state. It explicitly releases thebusafter completing the

shared memory transaction. A receive and a send together consume 30 instruction

cycles, even if the semaphores are in their correct state and the processor gets the

bus immediately upon request. This translates to 8% of the 380 instructions per

processor in the example of Chapter 1, section 1.4, that considered processing

samples of a high-quality audio signal at a sampling rate of 44 KHz on processors

running on a 60ns clock. Such a high cost of communication forces the scheduler

to insert as few interprocessor communication nodes as possible, which in turn

limits the amount of parallelism that can be extracted from the algorithm.

One solution to this problem is to send more than one data sample when a

processor gets access to the bus; the arbitration and synchronization costs are then

amortized over several data samples. A scheme to "vectorize" data in this manner

has been proposed by [Zivo94], where the authors use retiming [Lei91] to move

delays in the HSDFG such that data can be moved in blocks, instead of one sample

at a time. There are several problems with this strategy. First, retiming HSDFGs

has to be done very carefully: moving delays across actors can change the initial

state of the HSDFG causing undesirable transients in the algorithm implementa

tion. This can potentially be solved by including preamble code to compute the

value of the sample corresponding to the delay when that delay is moved across

actors. This, however results in increased code size, and other associated code gen

eration complications. Second, the work of Zivojinovic et. al. does not apply uni

formly to all HSDFGs: if there are tight cycles in the graph that need to be

partitioned among processors, the samples simply cannot be "vectorized"

[Messer88]. Thus presence of a tight cycle precludes arbitrary blocking of data.

Third, vectorizing samples leads to increased latency in the implementation; some

signal processing tasks such as interactive speechare sensitive to delay, and hence

the delay introduced due to blocking of data may be unacceptable. Finally, the

problem of vectorizing data in HSDFGs into blocks, even with all the above limi-

44

tations, appear to be fundamentally hard; the algorithms proposed by Zivojinovic

et. al. have exponential worst case run times. Code generated currently by the

Ptolemy system does not supportblocking (or vectorizing) of data for many of the

above reasons.

Another possible solution is to use special hardware. One could provide a

full interconnection network, thus obviating the need to go through shared mem

ory. Semaphores could be implemented in hardware. One could use multiported

memories. Needless to say, this solution is not favourable because of cost, espe

cially when targeting embedded applications.

A general-purpose shared bus machine, the Sequent Balance [Patt90] for

example, will typically use caches between the processor and the shared bus.

Caches lead to increased shared memory bandwidth due to the averaging effect

provided by block fetches and due to probabilistic memory access speedup due to

cachehits. In signal processing and other real time applications, however, there is

a stringent requirement for deterministic performance guarantee as opposed to

probabilistic speedup. In fact, the unpredictability in task execution times intro

duced due to the use of caches may be a disadvantage for static scheduling tech

niques that utilize compile time estimates of task execution times to make

scheduling decisions (we recall the discussion in section 1.2.3 on techniques for

estimating task execution times). In addition, due to the deterministic nature of

most signal processing problems (and also many scientific computation problems),

shared data can be detenriinisticalry prefetched because information about when

particular blocks of data are required by a particular processor can often be pre

dicted by a compiler. This feature has been studied in [Mouss92], where the

authors propose memory allocation schemes that exploit predictability inthe mem

ory access pattern in DSP algorithms; such a "smart allocation" scheme alleviates

some of the memory bandwidth problems associated with high throughput applica
tions.

45

Processors with caches can cache semaphores locally, sothat busy waiting

can be done local to the processor without having to access the shared bus, hence

saving the bus bandwidth normally expended on semaphore checks. Such aproce

dure, however, requires special hardware (a snooping cache controller, for exam

ple) to maintain cache coherence; cost of such hardware usually makes it

prohibitive in embedded scenarios.

Thus, for the embedded signal processing applications that we are focus

sing on, we argue thatcaches do not have a significant role to play, and we claim

that the OT approach discussed previously provides a cost effective solution for

minimizing IPC overhead in implementing self-timed schedules.

3.2.1 Using the OT approach

The OT strategy, we recall, operates on the principle of determining (at

compile time) the order in which processor communications occur, and enforcing

that order at run time. For a shared bus implementation, this translates into deter

mining the sequence of shared memory (or, equivalently, shared bus) accesses at

compile time and enforcing this predetermined order at run time. This strategy,

therefore, involves no run time arbitration; processors are simply granted the bus

according to the pre-determined access order. When a processor obtains access to

the bus, it performs the necessaryshared memory transaction, andreleases the bus;

the bus is then granted to the next processor in the ordered list.

The task of maintainingordered access to shared memory is done by a cen

tral ordered transaction controller. When the processors are downloaded with

code, the controller too is loaded with the pre-determined access order list. At run

time the controller simply grants bus access to processors according to this list,

granting access to the next processor in the list when the current bus owner

releases the bus. Such a mechanism is robust with respect to variations in execu

tion times of the actors; the functionality of the system is unaffected by poor esti-

46

mates of these execution times, although the real-time performance obviously

suffers.

If we are able to perform accurate compile time analysis, then each proces

sor would obtain access to the shared bus whenever it needed it. No arbitration

needs to be done since there is no contention for the bus. In addition, no semaphore

synchronization needs to be performed, because the transaction ordering con

straints respect data precedences in the algorithm; when a processor accesses a

shared memory location and is correspondingly allowed access to it, the data

accessed by that processor is certain to be valid. As a result, in the ideal scenario, a

shared bus access takes no more than a singleread or write cycle on the processor,

and the overallcost of communicating one data sample is two or three instruction

cycles.

The performance of this scheme depends on how accurately the execution

times of the actors are known at compile time. If these compile time estimates are

reasonably accurate, then an access order can be obtained such that a processor

gains access to shared memory whenever it needs. Otherwise, a processor may

have to idle until it gets a bus grant, or, even worse, a processor when granted the

bus may not complete its transaction immediately, thus blocking all other proces

sors from accessing the bus. This problem would not arise in normal arbitration

schemes, because independent shared memory accesses would be dynamically

reordered.

We will quantify these performance issues in the next chapter, where we

show that when reasonably good estimates of actor execution times are available,

forcing arun time access order does notin fact sacrifice performance significantly.

3.3 Design of an Ordered Memory Access multiproces-

47

sor

3.3.1 High level design description

We chose Motorola DSP96002 processors for the OMA prototype.

Although the OMA architecture can be built around any programmable DSP that

has built-in bus arbitrationlogic, the DSP96002 is particularly suited to our design

because of its dual bus architecture and bus arbitration mechanism. In addition

these processors are powerful DSPs with floating point capability [Moto89].

A high level block diagram of such a system is depicted in Fig. 3.2. Each

DSP96002 is provided with a privatememory that contains its program code; this

local memory resides on one of the processorbusses (the "A" bus). The alternate

"B" bus of all processors are connected to the shared bus, and shared memory

resides on the shared bus. The transaction controller grants access to processors

using the bus grant (BG) lines on the processor. A processorattempts to perform a

shared memory access when it executes a communication actor (either send or

receive). If its BG line is asserted it performs the access, otherwise it stalls and

waits for the assertion.

After a processor obtains access to the shared bus, it performs the shared

memory operation and releases the bus. The transaction controller detects the

release of the bus and steps through its ordered list, granting the bus to the next

processor in its list.

The cost of transfer of one word of data between processors is 3 instruction

cycles in the ideal case; two of these correspond to a shared memory write (by the

sender) and a shared memory read (by the receiver), and an extra instruction cycle

is expended in bus release by the sender and bus acquisition by the receiver.

Thus for the example of Chapter 1, less than 1% of the available 380

instructions per sample are required per transaction. This is of course in the ideal

scenario where the sender and the receiver obtain access to the shared bus upon

request. Such low overhead interprocessor communication is obtained with the

48

Local Memory

I

DSP96002 \

4

n
DSP96002

Local Memory

Local Memory

DSP96002

T
i

MAMftMIS

I

I

DSP96002

Local Memory

Bus
Grant..
lines "

. jI

Schedule Information

Transaction Controller

*t

Bus
Release

Shared
Memory

Figure 3.2. Block diagram of the OMA prototype

transaction controller providing the only additional hardware support. As

described in a subsequent section, this controller can be implemented with very

simple hardware.

3.3.2 A modified design

In the design proposed above, processor to processor communication

occurs through a central shared memory; two transactions — one write and one

read — must occur overthe shared bus. This situation can be improved by distrib

uting the shared memory among processors, as shown inFig. 3.3, where each pro

cessor is assigned sharedmemory in the form of hardwareFIFO buffers. Writes to

each FIFO are accomplished through the shared bus; the sender simply writes to

the FIFO of the processor towhich it wants tosend data by using the appropriate

shared memory address.

Use of a FIFO implies that the receiver must know the exact order in which

data is written into its input queue. This, however, is guaranteed by the ordered

49

FIFO
Buffer

Local Memory

a

JL ir

DSP96002

<;
I_l

s
X

DSP96002

z

Local Memory

Local Memory

X
DSP96002

hmuiwhmis

i
T

DSP96002

z

Local Memory

Bus
Grant
lines

Schedule Information

Transaction Controller

m Bus A
Release

I
Shared
Memory

P
•• TAline

(shared)

Figure 3.3. Modified design

transaction strategy.Thus replacing a RAM (random access memory) based shared

memory with distributed FIFOs does not alter the functionality of the design. The

sender need only block when the receiving queue is full, which can be accom

plished in hardware by using the Transfer Acknowledge (TA)* signal on the

DSP96002; a device can insert arbitrary number of wait states in the processor

memory cycle by de-asserting the TA line. Whenever a particular FIFO is

accessed, its 'Buffer Full' line is enabled onto the TA line of the processors (Fig.

3.4). Thus a full FIFO automatically blocks the processor trying to write into it,

and no polling needs to be done by the sender.Receiver read is local to a processor,

and does not consume shared bus bandwidth. The receiver can be made to either

poll the FIFO empty line to check for an empty queue, or we one can use the same

TA signal mechanism to block processor reads from an empty queue. The TA

50

mechanism will then use the local ("A") bus control signals ("A" bus TA signal,

"A" address bus etc.). This is illustrated in Fig. 3.4.

Use of such a distributed shared memory mechanism has several advan

tages. First, the shared bus traffic is effectively halved, because onlywrites needto

go through the shared bus. Second, in the design of Fig. 3.2, a processor that is

granted the bus is delayed in completing its shared memory access, all other pro

cessors waiting for the bus get stalled; this does not happen for half the transac

tions in the modified design of Fig. 3.3 because receiver reads are local. Thus there

is more tolerance to variations in the time at which a receiver reads data sent to it.

Last, a processor can broadcast data to all (or any subset) of processors in the sys

tem by simultaneously writing to more than one FIFO buffer. Such broadcast is not

possible with a central shared memory.

The modified design, however, involves a significantly higher hardware

cost than the design proposed earlier. As a result, the OMA prototype was built

around the central sharedmemory design and not the FIFO based design. In addi

tion, the DSP96002 processor has an on-chiphost interface unit thatcan be used as

<
shared addr.

decode -£
iff. full

lag

buff. _,
empty
flag

MUftKhMIS

I

local addr.

decode

'B" address/data "B'TS

DSP96002I

"A'TK "A" Add. "A" Data

Local Memory

shared
TAline

±>

Figure 3.4. Details of theTA" line mechanism (only one processor is shown).

51

a 2-deep FIFO; therefore, the potential advantage of using distributed FIFOs can

still be evaluated to some degree by using the chip host interface even in the

absence of external FIFO hardware.

Simulation models were written for both the abovedesigns using the Thor

hardware simulator [Thor86] under the Frigg multi-processor simulator system

[Bier89]. Frigg allows the Thor simulator to communicate with a timing-driven

functional simulator for the DSP96002 processor provided by Motorola Inc. The

Motorola simulator also simulates Input/Output (I/O) operations of the pins of the

processor, and Frigg interfaces the signals on the pins to with the rest of the Thor

simulation; as a result, hardware associated with each processor (memories,

address decoding logic, etc.) and interaction between processors can be simulated

using Frigg. This allows functionality of the entire system to be verified by run

ning actual programs on the processor simulators. We did not use this model for

performance evaluation, however, because with just a four processor system the

cycle-by-cycle Frigg simulation was far too slow, even for very simple programs.

A higher-level (behavioral) simulation would be more useful than a cycle-by-cycle

simulation for the purposes of performance evaluation, although we did not

attempt such high-level simulation of our designs.

The remainder of this chapter describes hardware and software design

details of an OMA board prototype.

3.4 Design details of a prototype

A proof-of-concept prototype of the OMA architecture has been designed

and implemented. The single printed circuit board design is comprised of four

DSP96002 processors; the transaction controller is implemented on a Xilinx

FPGA (Field Programmable Gate Array). The Xilinx chip also handles the host

interface functions, and implements a simple I/O mechanism. A hierarchical

description of the hardware design follows.

52

3.4.1 Top level design

This section refers to Fig. 3.5. At the top level, there are four "processing

element" blocks that consist of the processor, localmemory, local address decoder,

and some glue logic. Address, data, andcontrolbusses from the PE blocks arecon

nected to form the shared bus. Shared memory is connected to this bus; address

decoding is done by the "shared, address decoder" PAL (programmable arraylogic)

chip. A central clock generator provides a common clock signal to all processing

elements.

A Xilinx FPGA (XC3090) implements the transaction controller and a sim

ple I/O mechanism, and is also used to implement latches and buffers during

bootup, thus saving glue logic. A fast static RAM (up to 32K x 8) stores the bus

access order in the form of processoridentifications (IDs). The sequence of proces

sor IDs is stored in this "schedule RAM", and this determines the bus access order.

An external latch is used to store the processor ID read from the schedule RAM.

This ID is then decoded to obtainthe processor bus grants.

A subset of the 32 address lines connect to the Xilinx chip, for addressing

the I/O registers and other internal registers. All 32 lines from the shared data bus

are connected to the Xilinx. The shared data bus can be accessed from the external

connector (the "right side" connector in Fig. 3.5) only through the Xilinx chip.

This feature can be made use of when connecting multiple OMA boards: shared

busses from different boards can be made intoonecontiguous bus, or they can be

left disconnected, with communication between busses occurring via asynchro

nous "bridges" implemented on the Xilinx FPGAs. We discuss this further in sec

tion 3.4.7.

Connectors on both ends of the board bring out the shared bus in its

entirety. Both left and right side connectors follow the same format, so that multi

ple boardscan be easily connected together. Sharedcontrol and address busses are

53

P
E

O
n

C
E

P
A

L

P
E

S
c
h

e
d

u
le

R
A

M
4

t
i

k.
i

k

t
D

^
f
t

O

i
k

ik
iL

T

>
»

OI<OC
D

s
z

*
•*

oo"coE0o0
)

B
G

O
M

f*
B

G
2

C
A

#
J

/
8

data
B

G
d

e
c
o

d
e

P
A

L
<>

i
r

-
t

X
ilin

x

X
C

3
0

9
0

i
r

'
4

B
G

lin
e
s

r

^
i

^
r

/
3

2
d

a
ta

'
k

r

a
^

i

r

'
co

n
tro

l
(F

V
W

,T
A

,
B

A
,etc.)

i
L

t <>lid
ir.b

<>

4
i

/
i
t

u
tte

rs

r
i

i

f
i

r

'
3

2
a

d
d

ress
+

t
k

*"

s
h

a
r
e
d

A
d

d
r

d
e
c
o

d
e

B
G

3
1

B
G

1
l

G
lo

b
a

l
c
lo

c
k

R
/W
C

E

i

'
18A

d

r

L
6

J
1

8
lu

«

c
o

n
n

e
c
to

r
y

1
_

J
i

S
h

a
re

d
M

em
ory

>©Q
.

i2
P

E
P

E
3

2
D

a
ta

O
n

C
E

P
A

L
C

Optin

buffered before they go off board via the connectors, and the shared data bus is

buffered within the Xilinx.

The DSP96000 processors have on chip emulation ("OnCE" in Motorola

terminology) circuitry for debugging purposes, whereby a serial interface to the

OnCE port of a processor can be used for in-circuit debugging. On the OMA

board, the OnCE ports of the four processors are multiplexed and brought out as a

single serial port; a host may select any one of the four OnCE ports and communi

cate to it through a serial interface.

We discuss the design details of the individualcomponents of the prototype

system next.

3.4.2 Transaction order controller

The task of the transaction order controller is to enforce the predetermined

busaccess order at run time. A given transaction order determines thesequence of

processor bus accesses thatmustbeenforced at run time. We refer to this sequence

of bus accesses by the term bus access order list. Since the bus access order list is

program dependent, the controller must possess memory into which this list is

downloaded after the scheduling and code generation steps are completed, and

when the transaction order that needs to be enforced is determined. The controller

muststepthrough the access order list,andmustloop backto the first processor ED

in the list when it reaches the end. In addition the controller must be designed to

effectively use bus arbitration logic present on-chip, to conserve hardware.

3.4.2.1. Processor bus arbitration signals

We usethebus grant (BG) signal onthe DSP chip to allow theprocessor to

perform a shared busaccess, andweuse thebus request (BR) signal to tell thecon

troller when a processor completes its shared bus access.

Each of the two ports on the DSP96002 has its own set of arbitration sig

nals; the BG and BR signals are most relevant for our purposes, and these signals

55

are relevant only for the processor portconnected to the shared bus. As the name

suggests, the BG line (which is aninput to the processor) must be asserted before a

processor can begin a bus cycle: the processor is forced to wait for BG to be

asserted before it can proceed with the instruction that requires access to the bus.

Whenever an external bus cycle needs to be performed, a processor asserts its BR

signal, and this signal remains asserted until an instruction that does not access the

shared bus is executed. We can therefore use the BR signal to determine when a

shared bus owner has completed its usage of the shared bus (Fig. 3.6 (a)).

m

Processor requests bus Processor accepts bus

i
N

Bus release

I i^. >JBus grant deasserted
"any number ofconsecutive bus cycles \ «terthe bus isreleased

EG
Processorgranted bus

(a)

SOBRO BTJlEKl BG2BR2 BTJnBKh

t t T t
BK (common)

(b)

Figure 3.6. Using processor bus arbitration signals for controllingbus access

The rising edge of the BR line is used to detect when a processor releases

the bus. To reduce the number of signals going from the processors to the control-

56

ler, we multiplexed the BR signals from all processors onto a common BR signal.

The current bus owner hasits BR outputenabled onto this common reverse signal;

this provides sufficient information to the controller because the controller only

needs to observe the BR line from the current bus owner. This arrangement is

shown in Fig. 3.6 (b); the controller grants access to a processor by asserting the

corresponding BG line, andthen it waits for anupper edge on the reverse BR line.

On receiving a positive going edge on this line it grants the bus to the next proces

sor in its list.

3.4.2.2. A simple implementation

One straightforward implementation of the above functionality is to use a a

counter addressing a RAM that stores the access order list in the form of processor

IDs. We call this counter the schedule counter and the memory that stores the pro

cessor IDs is called the schedule RAM. Decoding the output of the RAM provides

the required BG lines. The counter is incremented at the beginning of a processor

transaction by the negative going edge of the common BR signal and the output of

the RAM is latched at the positive going edge of BR, thus granting the bus to the

next processor as soon as the current processor completes its shared memory trans

action. The counter is reset to zero after it reaches the end of the list (i.e. the

counter counts modulo the bus access list size). This is shown in Fig. 3.7. Incre

menting the counter as soon as BR goes low ensures enough time for the counter

outputs and the RAM outputs to stabilize. For a 33MHz processor with zero wait

states, BR width is a minimum of 60 nanoseconds. Thus the counter incrementing

and the RAM access must both finish before this time. Consequently, we need a

fast counter and fast static RAM for the schedule memory. The width of the

counter determines the maximum allowable size of the access list (a counter width

of size n implies amaximum list size of 2n); awider counter, however, implies a

slower counter. If, for acertain width, the counter (implemented on the Xilinx part

in our case) turns outto be tooslow — i.e. theoutput of the schedule memory will

not stabilize at least one latch set up period before the positive going edge of BR

57

m-

_JNo—> Schedule counter

* address
Schedule RAM

contains access list
(address: prccID)

data

Latch

I
BG decode

Decoded ill 11
BGlines TTT TT

BG0BG1 BGn

count Xad count addr.

\ I m

countup latch

box x^ y

Figure 3.7. Ordered Transaction Controller implementation

arrives — wait states may have to be inserted in the processor bus cycle to delay

the positive edge of BR. We found thata 10bit wide counterdoes not require any

wait states, and allows a maximum of 1024processor IDs in the access orderlist.

3.4.2.3. Presettable counter

A single bus accesslist implies we can only enforce one bus accesspattern

at run time. In order to allow for some run time flexibility we have implemented

the OMA controller using a presettablecounter. The processor that currently owns

the bus can preset this counter by writing to a certain shared memory location.

This causes the controller to jump to another location in the schedule memory,

allowing the multiple bus access schedules to be maintained in the schedule RAM

and switching between them at run time depending on the outcome of computa

tions in the program. The counter appears as an address in the shared memory map

of the processors. The presettable counter mechanismis shown in Fig. 3.8.

An arbitrary number of lists may, in principle, be maintained in the sched

ule memory. This feature can be used to support algorithms that display data

58

shared address bus

shared data bus

-BR 1
l> preset

Decode

count"JAA.

\
countup

count™

f
latch

RAM
addr.

preset

BE

Schedule counter.

f address

RAM
contains access list

address: procID

BGx X55L!jf

(a)

t Addr

0
1

countn.2
count^.i

count,,

Procx

Presetoperation

.

1

1
i i

Procz
Procy county

i

•

;

•

t_
(b)

Figure 3.8. Presettable counter implementation

dependency in their execution. For example, a dataflow graph with a conditional

construct will, in general, require a different access schedule for each outcome of

the conditional. Two different SDF graphs are executed in this case, depending on

the branch outcome, and the processor that determines the branch outcome can

also be assigned the task of presetting the counter, making it branch to the access

59

list of the appropriate SDF subgraph. The access controller behaves as in Fig 3.8

(b).

We discuss the use of this presettable feature in detail in Chapter 6.

3.4.3 Host interface

The function of the host interface is to allow downloading programs onto

the OMA board, controlling the board, setting parameters of the application being

run, and debugging from a host workstation. The host for the OMA board connects

to the shared bus through the Xilinx chip, via one of the shared bus connectors.

Since part of the host interface is configured inside the Xilinx, different hosts (32

bit, 16 bit) with different handshake mechanisms can be used with the board.

The host that is being used for the prototype is a DSP56000 based DSP

board called the S-56X card, manufactured by Ariel Corp [Ariel91]. The S-56X

card is designed to fit into one of the Sbus slots in a Sun Sparcworkstation; a user

level process can communicate with the S-56X card via a unix device driver. Thus

the OMA board too can be controlled (via the S-56X card) by a user process run

ning on the workstation. The host interface configuration is depicted in Fig. 3.9.

Unlike the DSP56000 processors, the DSP96002 processors do not have

built in serial ports, so the S-56X board is also is used as a serial I/O processor for

the OMA board. It essentially performs serial to parallel conversion of data, buff

ering of data, and interrupt management. The Xilinx on the OMA board imple

ments the necessary transmit & receiveregisters, and synchronization flags — we

discuss the details of the Xilinx circuitry shortly.

The S-56X card communicates with the Sparc Sbus using DMA (direct

memory access). A part of the DSP56000 bus and control signals are brought out

of the S-56X card through another Xilinx FPGA (XC3040) on the S-56X. For the

purpose of interfacing the S-56X board with the OMA board, the Xilinx on the S-

56X card is configured to bring out 16 bits of data and 5 bits of address from the

60

S-56X

H •

S-56Xcan
in Sbus serial I/O
^ T (SSI port)

OMA board

cable
XC304tf p bit address,

16 bit data)

96K S6K

1 rranan

96K 96K

Figure 3.9. Host interface

DSP56000 processor onto the cable connected to the OMA (see Fig. 3.9). In addi

tion, the serial I/O port (the SSI port) is also brought out, for interface with I/O

devices such as A/D and D/A convenors. By making the DSP56000 write to

appropriate memory locations, the 5 bits of address and 16 bits of data going into

the OMA may be set and strobed for a read or a write, to or from the OMA board.

In other words, the OMA board occupies certain locations in the DSP56000 mem

ory map; host communication is done by reading and writing to these memory

locations.

3.4.4 Processing element

Each processing element (PE) consists of a DSP96002 processor, local

memory, address buffers, local address decoder, and some address decoding logic.

The circuitry of each processing element is very similar to the design of the Motor

ola 96000 ADS (Application Development System) board [Moto90]. The local

address, control, and data busses are brought out into a 96 pin euro-connector, fol

lowing the format of the 96ADS. This connector can be used for local memory

expansion; we have used it for providing local I/O interface to the processing ele

ment (as an alternative to using the shared bus for I/O). Port A of the processor

forms the local bus, connecting to localmemory and address decoding PAL. Each

PE also contains address buffers, and logic to set up the bootup mode upon reset

and powerup. Port B of the processor is connected to the shared bus.

61

DSP96002
«-*

OnCE

port

Port B Host Interface (HI)

32

Ado/
32

Data
> ™/1

control

96 pin Euro-connector

local addr. decode t
Local Bus (M

Shared Bus (B\

Figure 3.10. Processing element

The DSP96002 processor has a Host Interface (HI) on each of its ports.

The port B HI is memory mapped to the shared bus, so that HI registers may be

read and written from the shared bus. This feature allows a host to download code

and control information into each processor through the shared bus. Furthermore a

processor, when granted the shared bus, may also access the port B HI of other

processors. This allows processors to bypass the shared memory while communi

cating with one another and to broadcastdata to all processors. In effect, the HI on

each processorcan be used as a two-deep localFIFO, similar to the scheme in sec

tion 3.3.2, except that the FIFO is internal to each processor.

3.4.5 Xilinx circuitry

As mentioned previously, the XC3090 Xilinx chip is used to implement the

transaction controller as well as a simple I/O interface. It is also configured to pro

vide latches and buffers for addressing the Host Interface (HI) ports on the

DSP96002 during bootupanddownloading of codeontothe processors. For this to

work, the Xilinx is first configured to implement the bootup and download related

circuitry, which consists of latches to drive the shared address bus and to access the

62

schedule memory. After downloading code onto the processors, and downloading

the bus access order into the schedule RAM, the Xilinx chip is reconfigured to

implement the ordered transaction controller and the I/O interface. Thus the pro

cess of downloading and running a program requires configuring the Xilinx chip

twice.

There are several possible ways in which a Xilinx part may be pro

grammed. For the OMA board, the configuration bitmap is downloaded byte-wise

by the host (Sun workstation through the S-56X card). The bitmap file, generated

andstored asa binary file on aworkstation, is read in by a function implementedin

the qdm software (discussed in section 3.5, which describes the OMA software

interface) and the bytes thus read are written into the appropriate memory location

on the S-56X card. The DSP56K processor on the S-56X then strobes these bytes

into the Xilinx configuration port on the OMA board. The user can reset and

reconfigure the Xilinx chip from a Sun Sparc workstation by manipulating the Xil

inx control pins by writing to a "Xilinx configuration latch" on the OMA board.

Various configuration pins of the Xilinx chip are manipulated by writing different

values into this latch.

We use two different Xilinx circuits (bootup.bit and momal .bit),

one during bootup and the other during run time. The Xilinx configuration during

bootup helps eliminate some glue logic that would otherwise be required to latch

and decode address and data from the S-56X host. This configuration allows the

host to read andwrite from any of the HI ports of the processors, and alsoto access

the schedule memory and the shared memory on board.

Run time configuration on the Xilinx consists of the transaction controller

implemented as apresettable counter. The counter can be preset through the shared

bus. It addresses an external fast RAM (8 nanosecond access time) that contains

processor IDs corresponding to the bus access schedule. Output from the schedule

memoryis externally latched and decoded to yield busgrant (BG) lines (Fig. 3.7).

63

A schematic of the Xilinx configuration at run time is given in Fig. 3.11.

This configuration is for I/O with an S-56X (16 bitdata) host, although it can eas

ily be modified to work with a 32 bit host.

Shared Address Bus

decode
presel

Xilinx

_ 16 bit presettable
> counter

-'16

Address

schedule RAM

I
BG latch

T
BQ0..3

Transaction controller

Shared Data Bus

I ' -'32
I RxreadJ^ Jjgtwr ±

I RxEmf TxFulI -^ Tx Re]Tx Reg (32 b)

^ 16t 16* 1ft

I/O Status .
read JSjZ-3^
(byhost)v v

T
Host Address

Rx
reg

\
I I

f 16

Host Data Bus

I/O interface

Figure 3.11. Xilinx configuration at run time

3.4.5.1. I/O interface

The S-56X board reads data from theTransmit (Tx) register and writes into

the receive (Rx) register on the Xilinx. These registers are memory-mapped to the

shared bus, such that anyprocessor that possesses thebus maywrite to theTx reg

ister orread from theRx register. For a 16 bithost, twotransactions are required to

perform aread orwrite with the 32 bitTx and Rx registers. The processors them

selves need only one bus access to load or unload data from the I/O interface. Syn

chronization on the S-56X (host) side is done by polling status bits that indicate an

Rx empty flag (if true, the host performs awrite, otherwise it busy waits) and aTx

full flag (if true, the hostperforms a read, otherwise it busy waits). On the OMA

side, synchronization is done .by the use of the TA (transfer acknowledge) pin on

64

the processors. When a processor attempts to read Rx or write Tx, the appropriate

status flags areenabled onto the TA line, and wait states are automatically inserted

in the processor bus cycle whenever the TA line is not asserted, which in our

implementation translates to wait states whenever the status flags are false. Thus

processors do not have the overhead of polling the I/O status flags; an I/O transac

tion is identical to a normal bus access, with zero or more wait states inserted auto

matically.

The DSP56000 processor on the S-56X card is responsible for performing

I/O with the actual (possibly asynchronous) data source and acts as the interrupt

processor for the OMA board, relieving the board of tasks such as interrupt servic

ing and data buffering. This of course has the downside that the S-56X host needs

to be dedicated to "spoon-feeding" the OMA processor board, and limits other

tasks that could potentially run on the host.

3.4.6 Shared memory

Space for two shared memory modules are provided, so that up to 512K x

32 bits of shared static RAM can reside on board. The memory must have an

access time of 25ns to achieve zero wait state operation.

3.4.7 Connecting multiple boards

Several features have been included in the design to facilitate connecting

together multiple OMA boards. The connectors on either end of the shared bus are

compatible, so that boards may be connected together in a linear fashion (Fig.

3.12). As mentioned before, the shared data bus goes to the "right side connector"

through the Xilinx chip. By configuring the Xilinx to "short" the external and

internal shared data busses, processors on different boards can be made to share

one contiguous bus. Alternatively, busses can be "cleaved" on the Xilinx chip,

with communication between busses implemented on the Xilinx via an asynchro-

65

nous mechanism (e.g. read and write latches synchronized by "full" and "empty"

flags).

This concept is similar to the idea used in the SMART processor array

[Koh90], where the processing elements are connected to a switchable bus: when

the bus switches are open processors are connected only to their neighbors (form

ing a linear processor array), and when the switched are closed processors are con

nected onto a contiguous bus. Thus the SMART array allows formation of clusters

of processors that reside on a common bus; these clusters then communicate with

adjacentclusters.When we connect multiple OMA boards together, we get a simi

lar effect: in the "shorted" configuration processors on different boards connect to

a single bus, whereas in the "cleaved" configuration processors on different boards

reside on common busses, and neighboring boards communicate through an asyn

chronous interface.

Fig. 3.12 illustrates the above scheme. The highest 3 bits of the shared

address bus are used as the "board ID" field. Memory, processor Host Interface

ports, configuration latches etc. decode the board ID field to determine if a shared

memory or host access is meant for them. Thus, a total of 8 boards can be hooked

onto a common bus in this scheme.

3.5 Hardware and software implementation

3.5.1 Board design

We used single sided through-hole printed circuit boardtechnology for the

OMA prototype. The printed circuitboard design was done using the 'SIERA' sys

tem developed at Professor Brodersen's group at Berkeley [Sriv92]. Under this

system, a design is entered hierarchically using a netlist language called SDL

(Structure Description Language). Geometric placement of components can be

easily specified in the SDL netlist itself. A 'tiling' feature is also provided to ease

compact fitting of components. The SDL files were written in a modular fashion;

66

Busses on different boards connected
together, to have more than four proc
essors on a single bus.

Processors on separate busses with
handshake between busses. Helps in
scalability of the system.

Figure 3.12. Connecting multipleboards

the schematics hierarchy is shown in Fig. 3.13. The SIERA design manager

(DMoct) was then used to translate the netlists into an input file acceptable by

Racal, a commercial PCB layout tool, which was then used to autoroute the board

in ten layers, including one Vcc and one Ground plane. The files corresponding to

the traces on each layer (gerber files) were generated using Racal, and these files

were then sent to Mosis for board fabrication. Component procurement was

mainly done using the FAST service, but some components were ordered/bought

directly from electronic component distributors. Table 3.1 lists the salient physical

features of the board, and Fig. 3.14 shows a photograph of the board.

67

top_level.sdl
(root file)

Manual
reset cct

resetsell

Global elk
generator

clock,sdl

Host side
connector

rightcon.sch

512KX32
SRAM

256ksram.sdl

(Global Memory)

Expansion
connector

Xilinx (XC3090)
circuitry four_proc.sdl

Shared bus
address buffers

leftcon.sdl xilinx.sdl

left.sdl

(buffers)

trans32.sdl
proc_unit.sdl

DSP96000 circuitry

256Kx32
SRAM

256ksram.sdl

(Local Memory)

Local
connector

conn.sdl

trans32.sdl

3roc_unit.sdl proc__unit.sdlproc_unit.sdl

Startup
circuitry

intmod.sdl

Figure 3.13. Schematics hierarchy of the four processor OMA architecture

Table 3.1. OMA board physical specs

Dimensions 30 cm. x 17 cm.

Layers 10 (including ground and Vcc plane)

Number of Components 230 parts + 170 bypass capacitors

sdlcode 2800 lines

Memory 512K words shared, 256K words local

68

Figure 3.14. OMA prototype board photograph

3.5.2 Software interface

As discussed earlier, we use an S-56X card attached to a Sparc as a host for

the OMA board. The Xilinx chip on the S-56X card is configured to provide 16

bits of data and 5 bits of address. We use the qdm [Laps91] software as an interface

for the S-56X board; qdm is a debugger/monitor that has several useful built-in

routines for controlling the S-56X board, for example data can be written and read

from any location in the DSP56000 address space through function calls in qdm.

Another useful feature of qdm is that it uses 're/', an embeddable, extensible, shell

like interpreted command language [Ous94]. Tcl provides a set of built-in func

tions (such as an expression evaluator, variables, control-flow statements etc.) that

can be executed via user commands typed at its textual interface, or from a speci

fied command file. Tcl can be extended with application-specific commands; in our

case these commands correspond to the debugging/monitor commands imple

mented in qdm as well as commands specific to the OMA. Another useful feature

of tcl is the scripting facility it provides; sequences of commands can be conve-

69

niently integrated into scripts, which are in turnexecuted by issuing a single com

mand.

Some functions specific to the OMA hardware that have been compiled

into qdm are the following:

omaxiload fileName .bit: load OMA Xilinx with configuration

specified by file.bit

omapboot f i 1eName. 1 od proci: load bootstrap monitor code into the

specified processor

omapload fileName. lod prod: load DSP96002 .lod file into the

specified processor

schedload accessOrder: load OMA bus access schedule memory

These functions use existing qdm functions for reading and writing values

to the DSP56000 memory locations thatare mapped to the OMA board host inter

face. The sequence of commands needed to download code onto the OMA board

and run it is summarized in Fig. 3.15.

proc omaDoAll {} {

xload # configure S-56Xboard Xilinx
omareset # reset OMA board

omaxi1oad bootup.bit # configure OMA Xilinx for booting procs
foreach i {0 1 2 3} {

omapboot $i omaMon.lod # load bootstrap monitor routine
omapload $i $icode.lod # load code (Ocodclod, lcodclodetc.)
s chedload access_order.data # loadbus access schedule into

} schedule memory
omaxi1oad momal .bit # reconfigure OMA Xilinx toimplement

Transaction Controller and I/O

load host.lod; run # run and load I/O interrupt routines onS-
56X board

synch # start all processors synchronously
}

Figure 3.15. Steps required for downloading code (tcl script omaDoAll)

70

Each processor is programmed through its Host Interface via the shared

bus. First, a monitor program (omaMon.lod) consisting of interrupt routines is

loaded and run on the selected processor. Code is then loaded into processormem

ory by writingaddress anddata values intothe HI portand interrupting the proces

sor. The interruptroutine on the processor is responsible for insertingdatainto the

specified memory location. The S-56X host forces different interrupt routines, for

specifying which of the three (X, Y, or P) memories the address refers to and for

specifying a read or a write to or from that location. This scheme is similar to that

employed in downloading code onto the S-56X card [Ariel91].

Status and control registers on the OMA board are memory mapped to the

S-56X address space and can be accessed to reset, reboot, monitor, and debug the

board.Tcl scripts were written to simplify commands that used aremost often (e.g.

Change y:fffO0x0' was aliased to 'omareset'). The entire code downloading pro

cedure is executed by the tcl script 'omaDoAll' (see Fig. 3.15).

A Ptolemy multiprocessor hardware target (Chapter 12, Section 2 in

[Ptol94]) was written for the OMA board, for automatic partitioning, code genera

tion, and execution of an algorithm from a block diagram specification. A simple

heterogeneous multiprocessor target was also written in Ptolemy for the OMA and

S-56X combination; this target generates DSP56000 code for the S-56X card, and

generates DSP96000 multiprocessor code for the OMA.

3.6 Ordered I/O and parameter control

We have implemented a mechanism whereby I/O can be done over the

shared bus. We make use of the fact that I/O for DSP applications is periodic; sam

ples (or blocks of samples) typically arrive at constant, periodic intervals, and the

processed output is again required (by, say, a D/A converter) at periodic intervals.

With this observation, it is in fact possible to schedule the I/O operations within

the multiprocessor schedule, and consequently determine when, relative to the

other shared bus accesses due to IPC, the shared bus is required for I/O. This

71

allows us to include bus accesses for I/O in the bus accessorderlist. In our partic

ular implementation, I/O is implemented as shared address locations that address

the Tx and Rx registers in the Xilinx chip (section 3.4.5), which in turn communi

cate with the S-56X board; a processor accesses these registers as if they were a

part of shared memory. It obtains access to these registers when the transaction

controller grants access to the shared bus; bus grants for the purpose of I/O are

taken into accountwhen constructing the access order list. Thus we orderaccess to

shared I/O resources much as we order access to the shared bus andmemory.

We also experimented with application of the orderedmemory access idea

to run time parameter control. By run time parameter control we mean controlling

parameters in the DSP algorithm (gain of some component, bit-rate of a coder,

pitch of synthesized music sounds, etc.) while the algorithm is running in real time

on the hardware. Such a feature is obviously very useful and sometimes indispens

able. Usually, one associates such parameter control with an asynchronous user

input: the userchanges a parameter (ideally by means of a suitable GUI on his or

her computer) and this change causes an interrupt to occur on a processor, andthe

interrupt handler then performs the appropriate operations thatcause the parameter

change that the user requested.

For the OMA architecture, however, unpredictable interrupts are not desir

able, as was noted earlierin this chapter; on the otherhand shared I/O and IPC are

relatively inexpensive owing to the OT mechanism. To exploit this trade-off, we

implemented the parameter control in the following fashion: The S-56X host han

dles the task of accepting user interrupts; whenever a parameter is altered, the

DSP56000 on the S-56X card receives an interrupt and it modifies a particular

location in its memory (call it M). The OMA board on the other hand receives the

contents of M on every schedule period, whether M was actually modified or not.

Thus the OMA processors never "see" a user created interrupt; they in essence

update the parameter corresponding to the value stored in M in every iteration of

72

the dataflow graph. Since reading in the value of M costs two instruction cycles,

the overhead involved in this scheme is niinimal.

An added practical advantage of the above scheme is that the tcl/tk [Ous94]

based GUI primitives that have been implemented in Ptolemy for the S-56X (see

"CG56 Domain" in Volume 1 of [Ptol94]) can be directly used with the OMA

board for parameter control purposes.

3.7 Application examples

3.7.1 Music synthesis

The Karplus-Strong algorithm is a well known approach for synthesizing

the sound of a plucked string. The basic idea is to pass a noise source in a feedback

loop containing a delay, a low pass filter, and a multiplier with a gain of less than

one. The delay determines the pitch of the generated sound, and the multiplier gain

determines the rate of decay. Multiple voices can be generated and combined by

implementing one feedback loop for each voice and then adding the outputs from

all the loops. If we want to generate sound at a sampling rate of 44.1 KHz (com

pact disc sampling rate), we can implement 7 voices on a single processor in real

time using the blocks from the Ptolemy DSP96000 code generation library

(CG96). These 7 voices consume 370 instruction cycles out of the 380 instruction

cycles available per sample period.

Using four processors on the OMA board, we implemented 28 voices in

real time. The hierarchical block diagram for this is shown in Fig. 3.16. The result

ing schedule is shown in Fig. 3.17. The makespan for this schedule is 377 instruc

tion cycles, which is just within the maximum allowable limit of 380. This

schedule uses 15 IPCs, and is therefore not communication intensive. Even so, a

higher IPC cost than the 3 instruction cycles the OMA architecture affords us

wouldnot allow this schedule to execute in real time ata 44.1 KHz sampling rate,

because there is only a 3 instruction cycle margin between the makespan of this

73

schedule and the maximum allowable makespan. To schedule this application, we

employed Hu-level scheduling along with manual assignment of some of the

blocks.

Out

fccrt -La

!_____—>_/*4~.

^
u^:

oa

Figure 3.16. Hierarchical specification of the Karplus-Strong algorithm in 28
voices.

74

377 instruction cycles

Figure 3.17. Four processor schedule for the Karplus-Strong algorithm in 28
voices. Three processors are assigned 8 voices each, the fourth (Proc 1) is
assigned 4 voices along with the noise source.

3.7.2 QMF filter bank

A Quadrature Mirror Filter (QMF) bank consists of a set of analysis filters

used to decompose a signal (usually audio) into frequency bands, and a bank of

synthesis filters is used to reconstruct the decomposed signal [Vai93]. In the analy

sis bank, a filter pair is used to decompose the signal into high pass and low pass

components, which are then decimated by a factor of two. The low pass compo

nent is then decomposed again into low pass and high pass components, and this

process proceeds recursively. The synthesis bank performs the complementary

operation of upsampling, filtering, and combining the high pass and low pass com

ponents; this process is again performed recursively to reconstruct the input signal.

Fig. 3.18(a) shows a block diagram of a synthesis filter bank followed by an analy

sis bank.

QMF filter banks are designed such that the analysis bank cascaded with

the synthesis bank yields a transfer function that is a pure delay (i.e. has unity

response except for a delay between the input and the output). Such filter banks are

also called perfect reconstruction filter banks, and they find applications in high

quality audio compression; each frequency band is quantized according to its

75

energy content and its perceptual importance. Such a coding scheme is employed

in the audio portion of the MPEG standard.

We implemented a perfect-reconstruction QMF filter bank to decompose

audio from a compact disc player into 15 bands. The synthesis bank was imple

mented together with the analysis part. There area totalof 36 multirate filters of 18

taps each. This is shown hierarchically in Fig. 3.18(a). Note thatdelay blocks are

required in the first 13 output paths of the analysis bank to compensate for the

delay through successive stages of the analysis filter bank.

There are 1010 instruction cycles of computation per sample period in this

example. Using Sin's Dynamic Level (DL) scheduling heuristic, we were able to

achieve an average iteration period of 366 instruction cycles, making use of 40

IPCs. The schedule that is actually constructed (Gantt chart of Fig. 3.18(b)) oper

ates on a block of 512 samples because these many samples are needed before all

the actors in the graph fire at least once; thismakesmanual scheduling very diffi

cult. We found that the DL heuristic performs close to 20% better than the Hu-

level heuristic in this example, although the DL heuristictakes more than twice the

time to compute the schedule comparedto Hu-level.

3.7.3 1024 point complex FFT

For this example, input data (1024 complex numbers) is assumed to be

present in sharedmemory, and the transformcoefficients arewritten back to shared

memory. A single 96002 processor ontheOMA board performs a 1024 pointcom

plex FFT in 3.0milliseconds (ms). For implementing the transform onall four pro

cessors, we used the first stage of a radix four, decimation in frequency FIT

computation, after whicheach processor independently performs a 256 pointFFT.

In this scheme, each processor reads all 1024 complex inputs at the beginning of

the computation, combines theminto 256 complex numbers on which it performs

a 256 point FFT, and then writes back its result to shared memory using bit

reversed addressing. The entire operation takes 1.0 ms. Thus we achieve aspeedup

76

(a)

delay blocks
A

(b)

Figure 3.18. (a) Hierarchical block diagram for a 15 band analysis and synthesis
filter bank, (b) Schedule on four processors (using Sih's DL heuristic [Sih90]).

of 3 over a single processor. This example is communication intensive; the

throughput is limited by the available bus bandwidth. Indeed, if all processors had

independent access to the shared memory (if the shared memory were 4-ported for

example), we could achieve an ideal speedup of four, because each 256 point FFT

is independent of the others except for data input and output.

77

For this example, data partitioning, shared memory allocation, scheduling,

and tuning the assembly program was done by hand, using the 256 point complex

FFT block in the Ptolemy CG96 domain as a building block. The Gantt chart for

the hand generated schedule is shown in Fig. 3.19.

Proc 1

Proc 2

Proc 3

Proc 4

1024 complex values
read by each processor

write result
(256 complex values)

/*1U
read

input
256 point FFT 7

read

input

read

input

read

input

256 point FFT

256 point FFT

256 point FFT

Figure 3.19. Schedule for the FFT example.

3.8 Summary

In this chapter we discussed the ideas behind the Ordered Transactions

scheduling strategy. This strategy combines compile time analysis of the IPC pat

tern with simple hardware support to minimize interprocessor communication

overhead. We discussed the hardware design and implementation details of a pro

totype shared bus multiprocessor — the Ordered Memory Access architecture —

that uses the ordered transactions principle to statically assign the sequence of pro

cessor accesses to shared memory. External I/O and user control inputs can also be

taken into account when scheduling accesses to the shared bus. We also discussed

the software interface details of the prototype and presented some applications that

were implemented on the OMA prototype.

78

4

AN ANALYSIS OF THE OT STRATEGY

In this chapter we systematically analyze the limits of the OT scheduling

strategy. Recall that the ST schedule is obtained by first generating a fully-static

(FS) schedule {o (v),ot(v),TFS} , and then ignoring the exact firing times

specified by the FS schedule; the FS schedule itself is derived using compile time

estimates of actor execution times of actors. The OT strategy is essentially the self-

timed strategy with the added ordering constraints 0 that force processors to com

municate in an order predetermined at compile time. The questions we try to ad

dress in this chapter are: What exactly are we sacrificing by imposing such a

restriction? Is it possible to choose a transaction such that this penalty is minimized?

What is the effect of variations of task (actor) execution times on the throughput

achieved by a self-timed strategy and by an OT strategy?

The effect of imposing a transaction order on a self-timed schedule is best

illustrated by the following example. Let us assume that we use the dataflow graph

and its schedule that was introduced in Chapter 1 (Fig. 1.2), and that we enforce the

transactionorder of Fig. 3.1; we reproducethese for convenience in Fig. 4.1 (a) and

(b).

If we observe how the scheduled "evolves" as it is executed in a self-timed

manner (essentially a simulation in time of when each processor executes actors as-

79

Prod

(a) HSDFG "Gr

Execution Times

A , B, F : 3

C.H 5

D 6

E 4

G 2

Transaction order: [syry sx r2' s3' r3' s4' r4' s5' rS' V rb)

(b) Schedule and Transaction order

Figure 4.1. Fully-static schedule on five processors

signed to it), we get the "unfolded" schedule ofFig. 4.2; successive iterations of the

HSDFG overlap in a natural manner. This is of course an idealized scenario where

IPC costs are ignored; we do so to avoid unnecessary detail in the diagram, since

IPC costs can be included in our analysis in a straightforwardmanner. Note that the

ST schedule in Fig. 4.2 eventually settles to a periodic patternconsisting of two it

erations of the HSDFG; the average iteration period under the self-timed schedule

is 9 units. The average iteration period (which we will refer to as TST) for such an

idealized (zero IPC cost) self-timed schedule represents a lower bound on the iter

ation period achievable by any schedule that maintains the same processor assign

ment and actor ordering. This is because the only run time constraint on processors

that the ST schedule imposes is due to data dependencies: each processor executes

actors assigned to it (including the communication actors)accordingto the compile

time determined order. An actor at the head of this ordered list is executed as soon

as data is available for it. Any other schedule that maintains the same processor as

signment and actor ordering, and respects data precedences in G, cannot result in

an execution where actors fire earlier than they do in the idealized ST schedule. In

particular, the overlap of successive iterations of the HSDFG in the idealized ST

schedule ensures that TST £ TFS in general.

The ST schedule allows reordering among IPCs at run time. In fact we ob

serve from Fig. 4.2 that once the ST schedule settles into a periodic pattern, IPCs in

80

Prod

Proc 2

Proc 3

Proc 4

Proc 5

Prod
Proc 2
Proc 3
Proc 4

Proc 51 h

G
i £

H ? H r f H^lif H r~~1 1, 1- f * Hgf 1—
18

Figure 4.2. Self-timed schedule

successive iterations are ordereddifferentiy: in the first iteration the order in which

IPCs occur is indeed (svrvs2, r2, sv r3, s4, r4,5-5, r5, s6, r6) ; once the schedule

settles into a periodic pattern, the order alternates between:

(s3, r3, Sp r1$ 52, r2,fy r4, j6, rfi, s5, r5)

and

V^l* rl» J3» r3' 54' r4' 52» r2> J5» r5' 56» r6' *

In contrast, if we impose the transaction order in Fig. 3.1 that enforces the

order (sv rlt s2, r2, s3, r3,54, r4, s5, r5, j6, r6) , the resulting OT schedule evolves

as shown in Fig. 4.3. Notice that enforcing this schedule introduces idle time

(hatched rectangles); as aresult, TQT, theaverage iteration period for theOTsched

ule, is 10 units, which is (as expected) larger than the iteration period of the ideal

ST schedule TST (9 units) but is smaller than TFS (11 units). In general

23 = idle time due toordering
constraint

Figure 4.3. Schedule evolution when the transaction order of Fig. 3.1 is enforced

81

TFS \> TQTt> TST: the ST schedule only has assignment and ordering constraints,

the OT schedule has the transaction ordering constraints in addition to the con

straints in the ST schedule, whereas the FS schedule has exact timing constraints

that subsume the constraints in the ST and OT schedules. The question we would

like to answeris: is it possibleto choosethe transaction ordering moreintelligentiy

than the straightforward one (obtained by sorting) chosenin Fig. 3.1?

As a first step towards determining how such a "best" possible access order

mightbeobtained, weattempt tomodel theself-timed execution itselfandtrytode

termine thepreciseeffect(e.g. increase in theiteration period) of adding transaction

ordering constraints. Note again that as the schedule evolves in a self-timed manner

in Fig. 4.2, it eventually settles intoa periodic repeating pattern thatspans twoiter

ations ofthe dataflow graph, and the average iteration period, TST, is9.We would

like to determine these properties of self-timed schedules analytically.

4.1 Inter-processor Communication graph (Gipc)

In a self-timed strategy a schedule S specifies the actors assigned to each

processor, including the IPC actors send and receive, and specifies the order in

which theseactorsmust be executed. At run timeeachprocessorexecutesthe actors

assigned to it in the prescribed order. When a processor executes a send it writes

into a certain buffer of finite size, and when it executes a receive, it reads from a

corresponding buffer, and it checks for buffer overflow (on a send) and buffer un

derflow (on a receive) before it performs communication operations; it blocks, or

suspends execution, when it detects one of these conditions.

We model a self-timed schedule using an HSDFG Gipc = (V, Eipc) de
rived from the original SDFgraph G = (V,E) andthegivenself-timed schedule.

The graph Gipc, which we will refer to as the inter-processor communication

modellinggraph,or IPC graphforshort, models thefactthatactors of G assigned

to the same processor execute sequentially, and it models constraints due to inter-

82

processor communication. For example, the self-timed schedule in Fig. 4.1 (b) can

be modelled by the IPC graph in Fig. 4.4.

critical
cycle

receive

Figure 4.4. The IPC graph for the schedule in Fig. 4.1.

The IPC graph has the same vertex set V as G, corresponding to the set of

actors in G. The self-timed schedulespecifiesthe actors assigned to eachprocessor,

and the orderin which they execute. Forexample in Fig. 4.1, processor 1 executes

A and then E repeatedly. We model this in Gipc bydrawing acycle around the ver

ticescorresponding to A andE, andplacing adelay on the edge from E to A. The

delay-free edge from A to E represents the fact that the fcth execution of A pre

cedes the k th execution of E, andthe edge from E to A with adelayrepresents the

fact that the k th execution of A can occuronly afterthe (k - 1) th execution of E

has completed. Thus if actors vp v2,..., vfl are assigned to the same processor in

that order, then G^ would have a cycle

((vpv2), (v2,v3),..., (v/J_1,v/J), (vn,Vj)), with delay((vn,v{)) = 1 (be

cause vx is executed first). If there are P processors in the schedule, then we have

P such cycles corresponding to each processor. The additional edges due to these

constraints are shown dashed in Fig. 4.4.

83

As mentioned before, edges in G that cross processor boundaries after

scheduling represent inter-processor communication. Communication actors (send

and receive) are inserted for each such edge; these areshown in Fig. 4.1.

The IPC graph has the same semantics as an HSDFG, and its execution

models the execution of the corresponding self-timed schedule.The following def

initions are useful to formally state the constraints represented by the IPC graph.

Time is modelled as an integerthatcanbe viewed asa multiple of a baseclock.

Recall that the function start (v,k) e Z represents the time at which the

Ath execution of actor v starts in the self-timed schedule. The function

end (v, k) € Z represents the time at which the k th execution of the actor v ends

and v produces data tokens at its output edges, and we set start (v,k) =0 and

end(v, k) = 0 for k< 0 as the "initial conditions". The start (v, 0) values are

specified by the schedule: start (v,0) = a, (v) .

Recall from Definition 2.2, as per the semantics of an HSDFG, each edge

(vj*v,) of Gipc represents the following data dependence constraint:

start (v., k) £ end (vjt k- delay ((v;., v.))),

V(vjt v.) € Eipc, V*;> delay (vjt v,.) (4-1)

The constraints in (Eqn. 4-1) are due both to communication edges (representing

synchronization between processors) andto edges thatrepresent sequential execu

tion of actors assigned to the same processor.

Also, to model execution times of actors we associate execution time t (v)

with each vertex of the IPC graph; t (v) assigns a positive integer execution time

to eachactor v (which canbe interpreted as t (v) cycles of abaseclock). Inter-pro

cessorcommunicationcosts canbe represented by assigning execution times to the

send and receive actors.Now, we can substitute end (v., k) = start (v.,k) + / (v.)

in (Eqn. 4-1) to obtain

84

start (vit k) 2> start (vjy k-delay ((vjt v,.))) +1 (v;) V(vjt v.) € Eipc (4-2)

In the self-timed schedule, actors fire as soon as data is available at all their

input edges. Such an "as soon as possible" (ASAP) firing pattern implies:

start (vt, k) =maxi {start (vjy k-delay ((vjt v{))) +/(v/) | (vjt v,) €Eipc})
In contrast, recall that in the FS schedule we would force actors to fire periodically

according to start (v,k) = ot (v) + kTFS.

The IPC graph has the same semantics as a Timed Marked graph in Petri net

theory [Peter81][Ram80] — the transitions of a marked graph correspond to the

nodes of the IPC graph, theplaces of a marked graph correspond to edges, and the

initial marking of a marked graph corresponds to initial tokens on the edges. The

IPC graph is also similar to Reiter's computation graph [Reit68]. The same proper

ties hold for it, and we state some of the relevant properties here. The proofs here

are similar to the proofs for the corresponding properties in marked graphs and

computation graphs in the references above.

Lemma 4.1: The number of tokens in any cycle of the IPC graph is always con

served over all possible valid firings of actors in the graph, and is equal to the path

delay of that cycle.

Proof: For each cycle C in the IPC graph, the number of tokens on C can only

change when actors that are on it fire, because actors not on C remove and place

tokens only on edges that are not part of C. If

C= ((vpv2), (v2,v3),..., (vB_pvn), (v^v,)), and any actor v^ (l<>k£n)

fires, then exactly one token is moved from the edge (v^j, vk) to the edge

(v*' v*+1) »wnere vo s vn &n^ vn +1 s vi • ^^s conserv©s the total number of

tokens on C. QED.

85

Definition 4.1: An HSDFG G is said to be deadlocked if at least one of its actors

cannot fire an infinite number of times in any valid sequence of firings of actors in

G. Thus in a deadlocked HSDFG, some actor v fires k < °° number of times, and

is never enabled to fire subsequently.

Lemma 4.2: An HSDFG G (in particular, an IPC graph) is free of deadlock if and

only if it does not contain delay free cycles.

Proof: Suppose there is a delay free cycle

C = ((v,,v2), (v2,v3),..., (vn_vvn), (v^v,)) in G (i.e. Delay(C) = 0). By

Lemma 4.1 none of the edges (vpv2), (v2, v3),..., (v^j.v^, (vn, vj , can

contain tokens during any valid execution of G. Then each of the actors vx vn

has at least one input that never contains any data. Thus none of the actors on C

are ever enabled to fire, and hence G is deadlocked.

Conversely, suppose G is deadlocked, i.e. there is one actor v2 that never

fires after a certain sequence of firings of actors in G. Thus, after this sequence of

firings, there must beaninput edge (v2, vx) thatnever contains data. This implies

that the actor v2 in turn nevergetsenabled to fire,which in turnimplies that there

must be an edge (v3, v2) thatnever contains data. In this manner wecan trace a

pathp = ((vn,vn_l)i...i (v3,v2), (v^Vj)) for n = \V\ back from vx to vn

that never contains data on its edges after a certain sequence of firing of actors in

G. Since G contains only |V\ actors,p mustvisit someactor twice,and hencemust

contain a cycle C. Since the edges of p do not contain data, C is a delay free cycle.

QED.

Definition 4.2: A schedule S is said to be deadlocked if after a certain finite time

at least one processor blocks (on a buffer full or buffer empty condition) and stays

86

blocked.

If the specified schedule is deadlock free then the corresponding IPC graph

is deadlock free. This is because a deadlockedIPC graph would imply that a set of

processors depend on data from one another in a cyclic manner, which in turn im

plies a schedule that displays deadlock.

Lemma 4.3: The asymptotic iteration period for a strongly connected IPC graph

G when actors execute as soon as data is available at all inputs is given by:

max
T =

cycle C in G

f L '(V)1visonC I ,Aji\
[Delay (C) J K* *}

Note that Delay (C) > 0 for an IPC graph constructed from an admissible sched

ule. This result has been proved in so many different contexts

(|Xung87a][Peter81][Ram80][Reit68][Renf811) that we avoid presenting another

proof of this fact here.

The quotient in Eqn. 4-3 is calledthe cycle mean of the cycle C. The entire

quantity on theright handside of Eqn. 4-3is calledthe"maximum cyclemean" of

the strongly connected IPC graph G. If the IPC graph containsmore than one SCC,

then different SCCs mayhave different asymptotic iteration periods, depending on

their individual maximum cycle means. In such a case, the iteration period of the

overall graph (and hence the self-timed schedule) is the maximum over the maxi

mum cycle means ofallthe SCCs of Gipc, because the execution ofthe schedule is

constrainedby the slowestcomponent in the system. Henceforth, we will define the

maximum cycle mean as follows.

Definition 4.3: The maximum cycle mean of an IPC graph Gipc, denoted by

MCM(Gipc) *is me maximal cycle mean over all strongly connected components

87

of Gipc: That is,

max
MCM(Gipc) =

cycle C in Gipc

L '(v)i
v is on C

Delay (C)

Note that MCM (G) may be a non-integer rational quantity. We will use the term

MCM instead of MCM(G) when the graph being referred to is clear from the

context. Afundamental cycle in G(pc whose cycle mean isequal to MCM iscalled

a critical cycle of Gipc. Thus the throughput ofthe system ofprocessors executing

a particular self-timed schedule is equal to the corresponding value.

For example, inFigure 4.4, Gipc has one SCC, and its maximal cycle mean

is 7 time units. This corresponds to the critical cycle

((B, E), (E, I), (/, G), (G, B)) . We have not included IPC costs in this calcu

lation, but these can be included in a straightforward manner by appropriately set

ting the execution times of the send and receive actors.

The maximum cycle mean can be calculated in time

OdVl^ llogjlM+D +T')) , where D and T are such that delay(e) <>D

Ve GEipc and t(v) <> T Vv GV[Law76].

4.2 Execution time estimates

If we only have execution time estimates available instead of exact values,

and we set t(v) in the previous section to be these estimated values, then we obtain

the estimatediteration period by calculating MCM. Henceforth we will assume that

we know the estimated throughput ,._,. calculated by setting the t (v) values
MCM

to the available timing estimates. As mentioned in Chapter 1, for most practical sce-

88

narios, wecan onlyassume such compile time estimates, rather than clock-cycle ac

curate execution time estimates. In fact this is the reason we had to rely on self-

timed scheduling, and we proposed the ordered transaction strategy as a means of

achieving efficient IPC despite the fact that we do not assume knowledge of exact

actor execution times.

4.3 Ordering constraints viewed as edges added to Gipc

The ordering constraints can be viewed as edges added to the IPC graph: an

edge (v.-, v.) with zero delays represents the constraint start (v., k) ^ end (v., k) .

The ordering constraints can therefore be expressed as a set of edges between com

munication actors. For example, the constraints

transaction
ordering constraints

critical cycle

Figure 4.5. Transaction ordering constraints

O = (s1,r1,s2,r2,svr3,sA,rAis5ir5,s6,r6) applied tothe IPC graph ofFig. 4.4

89

is represented by the graphin Fig.4.5. If we call these additional ordering constraint

edges E0T (solid arrows in Fig. 4.5), then the graph (V, EipcuE0T) represents

constraints in the OT schedule, as it evolves in Fig. 4.3. Thus the maximum cycle

mean of (V, Eipc u EQT) represents the effect of adding the ordering constraints.

The critical cycle C of this graph is drawn in Fig. 4.5; it is different from the critical

cycle in Fig. 4.4 because of the added transaction ordering constraints. Ignoring

communication costs, the MCM is 9 units, which was also observed from the evo

lution of the transaction constrained schedule in Fig. 4.3.

The problem of finding an"optimal" transaction ordercan therefore be stat

ed as: Determineatransaction order O suchthattheresultant constraint edges E0T

do not increase the MCM, i.e.

MCM((V,Eipc)) = MCM((V,EipcKJE0T)) .

4.4 Periodicity

We noted earlier that as the ST schedule in Fig. 4.2 evolves, it eventually

settles into a periodic repeating pattern that spans two iterations of the dataflow

graph. It can be shown that a ST schedule always settles down into a periodic exe

cution pattern; in [Bacc92] the authors show that the firing times of transitions in a

marked graph are periodic asymptotically. Interpreted in our notation, for any

strongly connected HSDFG:

3K,N s.t.

start (v,., k+N) = start (v., k) + MCM (Gipc) x N Vv,. G V, V*>K

Thus after a "transient" that lasts K iterations, the ST schedule evolves into a peri

odic pattern. The periodic pattern itself spansN iterations; we call N the periodic

ity.The periodicity depends onthe number of delays in the critical cycles of Gipc;

it can be as high as the number least common multiple of the number of delays in

90

the critical cycles of Gipc [Bacc92]. For example, the IPC graph of Fig. 4.4 has

one critical cycle with two delays on it, and thuswe see a periodicity of two forthe

schedule in Fig. 4.2. The "transient" region defined by K (which is 1 in Fig. 4.2)

can also be exponential.

The effect of transients followed by a periodic regime is essentially due to

properties of longest paths in weighted directed graphs. These effects have been

studied in the context of instruction scheduling for VLJW processors

[Aik88][Zaky89], as-soon-as-possible firing of transitions in Petri nets [Chre83],

and determining clock schedules for sequential logiccircuits [Shen92]. In [Aik88]

the authors note that if instructions in an iterative program for a VLIW processor

(represented as a dependency graph) are scheduled in anas-soon-as-possible fash

ion, a patternof parallel instructions"emerges" afteran initial transient, and the au

thors show how deterrnining this pattern (essentially by simulation) leads to

efficient loop parallelization. In [Zaky89], the authors propose a max-algebra

[Cun79] based technique for determining the "steady state" pattern in the VLIW

program. In [Chre83] the author studies periodic firing patterns of transitions in

timed Petri nets. The iterative algorithms for determining clock schedules in

[Shen92] have convergence properties similar to the transients in self-timed sched

ules (their algorithm converges when an equivalent self-timed schedule reaches a

periodic regime).

Returning to the problem of deterrnining the optimal transaction order, one

possible scheme is to derive the transaction order from therepeating pattern that the

ST schedule settles into. That is, instead of using the transaction order of Fig. 3.1,

if we enforce the transaction order that repeats over two iterations in the evolution

of the ST schedule ofFig. 4.2, the OT schedule would "mimic" the ST schedule ex

actly, and we would obtain an OT schedule that performs as well as the ideal ST

schedule, and yet involves low IPC costs in practice. However, as pointed out

above, the number of iterations that the repeating pattern spans depends on the crit

ical cycles of Gipc, and it can beexponential in the size of the HSDFG [Bacc921.

91

In addition the "transient" region before the schedule settles into a repeating pattern

can also be exponential. Consequently the memory requirements for the controller

that enforces the transaction order can be prohibitively large in certain cases; in fact,

even for the example of Fig. 4.2, the doubling of the controller memory that such a

strategy entails may be unacceptable. We therefore restrict ourselves to determining

and enforcing a transaction order that spans only one iteration of the HSDFG; in the

following section we show that there is no sacrifice in imposing such a restriction

and we discuss how such an "optimal" transaction order is obtained.

4.5 Optimal order

In this section we show how to determine an order 0* on the IPCs in the

schedule such that imposing O' yields an OT schedule that has iteration period

within one unit ofthe ideal ST schedule (TST £ TQT <> \TST~\). Thus imposing the
order we determine results in essentially no loss in performance over an unre

strained schedule, and at the same time we get the benefit of cheaper IPC.

Our approach to detemiining the transaction order O' is to modify a given

fully-static schedule so that the resulting FS schedule has TFS equal to [TST1, and
then to derive the transaction order from that modified schedule. Intuitively it ap

pears that, for a given processor assignmentand ordering of actors on processors,

the ST approach always performs better than the FS or OT approaches

(TFS > TQT> Tst) simply because it allows successive iterations to overlap. The

following result, however, tells us that it is alwayspossibleto modify any given ful

ly-static schedule so that it performs nearly as well as its self-timed counterpart.

Stated more precisely:

Claim 4.1: Given a fully-static schedule 5s {a (v),ot(v),TFS} , let TST be
the average iteration period for the corresponding ST schedule (as mentioned

before, TFS^TST). Suppose TFS>TST; then, there exists a valid fully-static

schedule S' that has the same processor assignmentas S, the same order of execu

tion of actors on each processor, but an iteration period of l"^/]. That is,

92

S' s {a (v), o't (v), r^j^l} where, if actors v,., v, are on the same processor

(i.e. ap(v,.) =op(vj)) then a/(v,)>o,(vi)^o//(v,)>a/l(vy). Further
more, S' is obtained by solving the following setof linear inequalities for o't:

o't ty) - o't (v,) <, [TST~\ xd(vjt v.) -1(v.) for each edge (vjt vf) in Gipc.

Proof: Let 5' have a period equal to T. Then, under the schedule S', the k th start

ing time of actor vf. is givenby:

start(v., k) = a', (v.) +kT (4-4)

Also, data precedence constraints imply (as in Eqn. 4-2):

start(Vp k) k start(vjt k-delay (vy, v.)) +1(vj) V(v^, v,) G Eipc (4-5)

Substituting Eqn. 4-4 in Eqn. 4-5:

o\(v^kT^o\(v^ (k-delay(v^v^T+t^p V(v.,v.) G Eipc

That is:

o't(vp-o'tlvi)ZTxd(vrvi)-tlvJ) V(v;,v.)G £1>c (4-6)

Note that the construction of G^c ensures that processor assignment constraints

are automatically met: if a (v,) = a (v) and vt is to be executed immediately

after v. then there is an edge (v., v,) in Gipc. The relations inEqn. 4-6 represent a

system of \Eipc\ inequalities in |V| unknowns (the quantities cr'̂ v,-)).

The system of inequalities in Eqn. 4-6 is a difference constraint problem that

can be solved in polynomial time (O (\Eipc\\V\)) using the Bellman-Ford shortest-

path algorithm [Law76][Corm92]. The details of this approach are well described

in [Corm92]; the essence of it is to construct a constraint graph that has one vertex

for each unknown o-'^v,) . Each difference constraint is then represented by an

93

edge between the vertices corresponding to the unknowns, and the weight on that

edge is set to be equal to the RHS of the difference constraint. A "dummy" vertex

is added to the constraintgraph, andzero weight edges are added from the dummy

vertex to each of the remaining vertices in the constraint graph. Then, setting the

value of o't (vt) to betheweight of theshortest path from thedummyvertex to the

vertex thatcorresponds to o't (v,) in theconstraint graph results in asolution to the

system of inequalities, if indeed a solution exists. A feasible solution exists if and

only if the constraint graph does not contain a negative weight cycle [Corm92],

which is equivalent to the following condition:

T> max

T>TST.
cycle C in Gipc

f E'(v)l
ve C

[D(C)
'; and, from Eqn. 4-3, this is equivalent to

Ifwe set T = |~ r5r~|, then the right hand sides ofthe system ofinequalities
in 4-6 are integers, and the Bellman-Ford algorithm yields integer solutions for

o't (v) .This is because theweights ontheedges of theconstraint graph, whichare

equal to the RHS of the difference constraints, are integers if T is an integer; con

sequently, the shortest pathscalculated on the constraint graph are integers.

Thus S' e {op (v), o't (v), \TST~\} is avalid fully-static schedule. QED.

Remark: Claim 4.1 essentially states thatanFS schedulecan be modified by skew

ing the relative starting times of processors so that the resultingschedulehas itera

tionperiod less than (TST +1) ; theresulting iteration period lies within one time

unit of its lower bound for the specified processor assignment and actor ordering.

It is possibleto unfold the graph and generate a fully-static schedule with average

period exactly TST, but theresulting increase in code sizeis usually notworth the

benefit of (at most) one time unit decrease in the iteration period. Recall that a

"time unit" is essentially the clock period; therefore, one time unit can usually be

neglected.

94

For example the static schedule S corresponding to Fig. 4.1 has

TFS = 11 >TST = 9 units. Using the procedure outlined in Claim , we can skew

the starting times of processors in the schedule S to obtain a schedule S', asshown

in (4-5), thathasaperiod equal to 9 units(Fig. 4.6). Note thatthe processor assign

ment andactor ordering in the schedule of Fig. 4.6 is identical to thatof the schedule

in Fig. 4.1. The values o't(v) are: o't(A) = 9, o't(B) = o't(G) = 2,

Proc!

Proc 5

Figure4.6. Modified schedule S'

o't(C) = 6,a',(D) = 0,a',(£) = 5,o't(F) = 8,anda',(//) = 3.

Claim 4.1 may not seem useful at first sight: why not obtain a fully-static

schedule that has aperiod \TST~\ to begin with, thus eliminating the post-process
ing step suggested in Claim 4.1? Recall that an FS schedule is usually obtained us

ing heuristictechniques that are eitherbasedon blocked non-overlapped scheduling

(which usecritical path based heuristics) [Sih91] orare based on overlapped sched

uling techniques thatemploy list scheduling heuristics [deGroot92][Lam88]]. None

of these techniques guarantee that the generated FS schedule will have an iteration

period within one unit of the period achieved if the same schedule were run in a self-

timed manner. Thus for a schedule generated using any of these techniques, we

might be able to obtain a gain in performance, essentially for free, by performing

the post-processing step suggested in Claim 4.1.What we propose can therefore be

added as an efficient post-processing step in existing schedulers. Of course, an ex

haustive search procedure like theoneproposed in [Schw85] will certainly find the

schedule S' directly.

95

We set the transaction order O" to be the transaction order suggested by the

modified schedule S' (as opposed to the transaction orderfrom S used in Fig. 3.1).

Thus O' - (sv rv s^ r3, s2, r2, sA, r4, s6, r6, s5, r5) . Imposing the transaction or

der G" as in Fig. 4.6 results in T0T of 9 units instead of 10 that wegetif the trans

action order of Fig. 3.1 is used. Under the transaction order specified by 5',

TST <. T0T £ [TST~\; thus imposing the order CF ensures that the average period is
within one unit of the unconstrained ST strategy.Again, unfolding may be required

to obtain a transaction ordered schedule that has period exactiy equal to TST, but

the extra cost of a larger controller(to enforce the transaction ordering) outweighs

the small gain of atmost one unit reduction in the iterationperiod.Thus for all prac

tical purposes O" is the optimal transaction order. The "optimality" is in the sense

that the transaction order O' we determine statically is the best possible one, given

the timing information available at compile time.

4.6 Effects of changes in execution times

We recall that the execution times we use to determine the actor assignment

and ordering in a self-timed schedule are compile time estimates, and we have been

stating that static scheduling is advantageous when we have "reasonably good"

compile time estimates of execution time of actors. Also, intuitively we expect an

ordered transaction schedule to be more sensitive to changes in execution times

than an unconstrained ST schedule. In this section we attempt to formalize these no

tions by exploring the effect of changes in execution times of actorson the through

put achieved by a static schedule.

Compile time estimatesof actor execution timesmay be different fromtheir

actual values at run time due to errors in estimating execution times of actors that

otherwise have fixed execution times, and due to actors that display run time vari

ations in their execution times, because of conditionals or data-dependent loops

within them for example. The first case is simple to model, and we will show in sec

tion 4.6.1 how the throughput of a given self-timed schedule changes as a function

96

of actorexecution times. The second case is inherently difficult; how do we model

runtimechanges inexecution times due todata-dependencies, orduetoevents such

as error handling, cache misses, and pipeline effects? In section 4.6.2 below we

briefly discuss a very simple model for such run time variations; we assume actors

have random execution times according to some known probability distribution.

We conclude that analysis of even such a simple model for the expected value of

the throughput is often intractable, and we discuss efficientiy computable upper and

lower bounds for the expected throughput.

4.6.1 Deterministic case

Consider the IPC graph in Fig. 4.7, which is the same PC graph as in Fig.

4.4 except that we have used a different execution time for actor H to make the ex

ample more illustrative. The numbers next to each actorrepresents execution times

of the actors. We letthe execution time of actor Cbe t (C) = tc, and wedetermine

the iteration period as a function of given aparticular value of tc (TST(tc)). The

Figure 4.7. Gipc, actor C has execution time tc, constant over all invocations ofC

iteration period isgiven by MCM (Gipc), the maximum cycle mean. The function

tSt(*c) is shown in Fig. 4.8. When 0£rc£l, the cycle

97

0 ! 2

Figure 4.8. Tsl{tc)

8 9

• 'C

((A, s6) (s6, rj) (r-p £) (£, -4)) is critical, and the MCM is constant at 7; when

l£fc£9, the cycle

((5,^) (jp^) (rvE) (E,s4) (sAir4) (r4,D) (D,s3) (*3,r3) (r3,C) (C,s5)
(55,r5)(r5,5))

is critical, and since this cycle has two delays, the slope of TST(tc) is halfin this

region; finally, when 9 £ tc thecycle ((C, s5) (s5, G) (G,C)) becomes critical,

and the slope now is one because on that cycle.

Thus the effect of changes in execution times of each actor is piecewise lin

ear, and the slope depends on the number of delays on the critical cycle that the ac

tor lies on. The slope is at most one (when the critical cycle containing the particular

actor has a single delay on it). The iteration period is a convex function of actor

execution times.

Definition 4.4: A function f(x) is said to be convex over an interval (a, b) if for

every ^i*^^ (a»^) an(^ O^A.^1,

f(Xx1+(l-X)x2) <L\f(xx) + (l-X)f(x2) .

98

Geometrically, if we plot a convex function f(x) along x, a line drawn between

two points on the curve lies above the curve (but it may overlap sections of the

curve).

It is easily verified geometrically that TST (tc) is convex: since this func

tion is piecewise linear with a slope that is positive and non-decreasing, a line join

ing two points on it must lie above (but may coincide with) the curve.

We can also plot TST as a function ofexecution times ofmore than oneactor

(e.g. TST (tA, tB,...)); this function will beaconvex surface consisting of intersect

ing planes. Slices of this surface along eachvariable look like Fig. 4.8, which is a

slice parallel to the tc axis, with the other execution times held constant (tA = 3,

tB = 3, etc.).

The modelling described in this section is useful for detenriining how "sen

sitive" the iteration period is to fixed changes in execution times of actors, given a

processor assignment and actor ordering. We observe that the iteration period in

creases linearly (with slope one) at worst, and does not change at all at best, when

execution time of an actoris increased beyond its compile time estimate.

4.6.2 Modeling run time variations in execution times

The effect of variations in execution times of actors on the performanceof

statically scheduled hardware is inherentlydifficult to quantify, because these vari

ations could occur due to a large number of factors — conditional branches or data

dependentloops within an actor, error handling, userinterrupts etc. — andbecause

these variations could haveavariety of different characteristics, from being period

ic, to being dependent ontheinput statistics, and tobeing completely random. As a

result thus far we have had toresort to statements like"fora static scheduling strat

egy to be viable, actorsmust not show significant variations in execution times." In

this sectionwe pointoutthe issues involvedin deterrnining theeffects of variations

in execution times of actors.

99

A very simple model for actors with variable execution times is to assign to

each actor an execution time that is a random variable (r.v.) with a discrete proba

bility distribution (p.d.f.); successive invocations of each actor are assumed statis

tically independent, execution times of different actors are assumed independent,

and the statistics of the random execution times are assumed to be time invariant.

Thus, for example, an actor A could have execution time tx withprobability (w.p.)

p and execution time t2 w.p. (l-p) .Themodel is essentially that A flips acoin

each time it is invoked to decide what its execution time should be for that invoca

tion. Such amodel could describe adata-dependentconditional branch for example,

but it is of course too simple to capture many real scenarios.

Dataflow graphswhere actors have suchrandomexecution times have been

studied by Olsderet. al. [Ols89][Ols90] in the context ofmodeling data-driven net

works (also called wave-front arrays [Kung87a]) where the multiply operations in

the arraydisplay data-dependent execution times. The authorsshow that the behav

iour of such a system can be described by a discrete-time Markov chain. The idea

behind this, briefly, is that such a system is described by a state space consisting of

a set of state vectors s. Entries in each vector s represent the kth starting time of

each actor normalized with respect to one (any arbitrarily chosen) actor:

s =

(0 >\

start (v2% k) - start (vv k)

start(v3, k) - start (v^ k)

Kstart (vn, k) - start (vvk)

The normalization (with respect to actor Vj in the above case) is done to

make the state space finite; the number of distinct values that the vector s (as de

fined above) can assume is shown to be finite in [Ols90]. The states of the Markov

100

chain correspond to each of the distinct values of s. The average iteration period,

which is defined as:

start (v i, K)
T= lim -i

can then be derived from the stationarydistributionof the Markov chain. There are

several technical issues involved in this definition of the average iteration period;

how do we know the limit exists, and how do we show that the limit is in fact the

same for all actors (assuming that the HSDFGis strongly connected)?These ques

tions are fairly non-trivial because the random process { start (vt, k)} may not

even be stationary. These questions are answered rigorously in [Bacc92], where it

is shown that:
start (v^K)

T = lim -^ = E[T) Vv,.G V.

Thus the limit T is in fact a constant almost surely.

The problem with such exact analysis, however, is the very large state space

that can result. We found that for an IPC Graph similar to Fig. 4.4, with certain

choices of execution times, and assuming that only tc israndom (takes two differ

ent values based on a weighted coin flip), we could get several thousand states for

the Markov chain. A graph with more vertices leads to an even larger state space.

The upper bound on the size of the state space is exponential in the number of ver

tices (exponential in |V|). Solving the stationary distribution for such Markov

chains would require solving a set of linear equations equal in number to the num

ber of states and is highly compute intensive. Thus we conclude that this approach

has limited use in determining effects of varying execution times; even for unreal-

istically simple stochasticmodels, computationof exact solutions is prohibitive.

If we assume that all actors have exponentially distributed execution times,

then the system can be analyzed using continuous-time Markov chains [Moll82].

This is done by exploiting the memoryless property of the exponential distribution:

when an actor fires, the state of the system at any moment does not depend on how

long that actorhas spent executing its function; the state changes only when that ac

torcompletes execution. The number of states for such a system is equal to the num-

101

ber of different valid token configurations on the edges of the dataflow graph,

where by "valid" we imply any token configuration that can be reached by a se

quence of firings of enabled actors in the HSDFG. This is also equal to the number

of valid retimings [Lei91] that exist for the HSDFG.This number, unfortunately, is

again exponential in the size of the HSDFG.

Analysis of such graphs with exponentially distributed execution times has

been extensively studied in the area of stochastic Petri nets (in [Mur89] Murata pro

vides a large and comprehensive list of references on Petri nets — 315 in all — a

number of which focus on stochastic Petri nets). There is a considerable body of

work that attempts to cope with the state explosion problem. Some of these works

attempt to divide a given Petri net into parts that can be solved separately (e.g.

[Yao93]), some others propose simplified solutionswhen the graphs have particular

structures (e.g. [Cam92]), and others propose approximate solutions for values such

as the expected firing rate of transitions (e.g. [Hav91]). None of these methods are

general enough to handle even a significant class of IPC graphs. Again, exponen

tially distributed execution times for all actors is clearly a crude approximation to

any realistic scenario to make the computations involved in exact calculations

worthwhile.

As an alternative to deterrnining the exact value of E [T] we discuss how

to determine efficiently computable bounds for it.

Definition 4.5: Given an HSDFG G = V, E that has actors with random execu

tion times, define Gave = (V, E) to be an equivalent graph with actor execution

times equal to the expected value of their execution times in G.

Fact 4.1: [Durr91] (Jensen's inequality) If f(x) is a convex function of x, then:

E lf(x)] >f(E [x]).

102

In [Rajs94] the authors use Fact 4.1 to show that E [T] ZMCM(Gave) .

This follows from the fact that MCM (Gave) isaconvex function of the execution

times of each of its actors. This result is interesting because of its generality; it is

true no matter what the statistics of the actor execution times are (even the various

independence assumptions we made can berelaxed!).

One might wonder what the relationship between E[T] and

E [MCM(G)] might be. We can again use Fact 4.1along with the fact that the

maximum cyclemeanis aconvex function of actor execution times to showthe fol

lowing:

E[MCM(G)]>MCM[Gave].

However, we cannot say anything about E [T] in relation to E [MCM(G)] ; we

were able to construct some graphs where E [T] >E[MCM(G)] , and others

where E [T] < E [MCM (G)] .

If the execution times of actors are all bounded (tmin (v) £t(v) £ tmax (v)

Vv G V, e.g. if allactors haveexecution times uniformlydistributed in some inter

val [a, b]) then we can say the following:

MCM(Gmax) ZE[T) >MCM(Gave) ZMCM(Gmin) (4-7)

where G = (V, E) is same as G except the random actor execution times are

replaced by their upper bounds (^^(v)), and similarly Gmin - (V,E) is the

same as G except the random actor execution times are replaced by their lower

bounds (rm|w(v)).

Equation (4-7) summarizes the useful bounds we know for expected value

of the iteration period for graphs that contain actors with random execution times.

It should be noted that good upper bounds on E [T] are not known. Rajsbaum and

Sidi propose upper bounds for exponentially distributed execution times [Rajs94];

these upper bounds are typically more than twice the exact value of E [T] , and

hence not very useful in practice. We attempted to simplify the Markov chain model

103

(i.e. reduce the number of states) for the self-timed execution of a stochastic HSD

FG by representing such an execution by a set of self-timed schedules of determin

istic HSDFGs, between which the system makes transitions randomly. This

representation reduces the number of states of the Markov chain to the number of

different deterministic graphs that arise from the stochastic HSDFG. We were able

to use this idea to determine a upper bound for E [T] ; however, this bound also

proved to be too loose in general (hence we omit the details of this construction

here).

4.6.3 Implications for the OT schedule

Intuitively, an OT schedule is more sensitive to variations in execution

times; even though the computations performed using the OT schedule are robust

with respect to execution time variations (the transaction order ensures correct

sender-receiver synchronization), the orderingrestrictionmakes the iteration period

more dependent on execution time variations than the ideal ST schedule. This is ap

parent from our IPC graphmodel; the transaction orderingconstraints add addition

al edges (E0T) to Gipc. The IPC graph with transaction ordering constraints

represented as dashed arrows is shown in Fig. 4.9 (we use the transaction order

O' = (Sp rp Sy r3, s2, r2, j4, r4, s6, r6, s5, r5) determined in section 4.5 and,

again, communication times are not included). The graph for TQT(tc) is now dif

ferent and is plotted in Fig. 4.8. Note that the T0T(tc) curve for the OT schedule

(solid) is "above" the corresponding curve for the unconstrained ST schedule

(dashed): this shows precisely what we mean by an OT schedule being more sensi

tive to variations in execution times of actors. The "optimal" transaction order O'

we determined ensures that the transaction constraints do not sacrifice throughput

(ensures T0T = TST) when actor execution times are equal to their compile time

estimates; O" was calculated using tc = 3 in section 4.5, and sure enough,

T0T(tc) = TST(tc) whenrc = 3.

104

Figure4.10. TS7{tc) and T07</c;

Modeling using random variables for the OT schedule can again be done as

before, and since we have more constraints in this schedule, the expected iteration

period will in some cases be larger than that for an ST schedule.

Figure 4.9. Gipc with transaction ordering constraints represented as dashed
lines

105

4.7 Summary

In this chapterwe presentedaquantitative analysis of ST and OT schedules

and showed how to determine the effects of imposing a transaction order on an ST

schedule. If the actualexecution times do not deviatesignificantly from the estimat

ed values, the difference in performance of the ST and OT strategies is minimal. If

the execution times do in fact vary significantly, then even an ST strategy is not

practical; it then becomes necessary to use a more dynamic strategy such as static

assignment or fully dynamic scheduling[Lee89] to make the best use of computing

resources. Under the assumption that the variations in execution times are small

enough so that an ST or an OT strategy is viable,we argue that it is in fact wiser to

use the OT strategy rather than ST because of the cheaper IPC of the OT strategy.

This is because we can determine the transaction order O' such that the ordering

constraints do not sacrifice performance; if the execution times of actors are close

to theirestimates, the OT schedule with O* asthe transaction order hasiteration pe

riod close to the minimum achievable period TST. Thus wemake the best possible

use of compile time information when we determine the transaction order O'.

We also presented the complexities involved in modeling run time varia

tions in execution times of actors; evenhighly simplified stochastic models are dif

ficult to analyze precisely. We pointed outbounds that have been proposed in Petri

net literature for the value of the expected iteration period, and concluded that al

though a lower bound is available for this quantity for rather general stochastic

models (using Jensen's inequality), tight upper bounds are stillnot known, except

for the trivial upper bound using maximum execution times of actors

(MCM(Gmax)).

106

5

MINIMIZING SYNCHRONIZATION COSTS IN

SELF-TIMED SCHEDULES

The previous three chapters dealt with the Ordered Transactions strategy,

which is a hardware approach to reducing IPC and synchronization costs in self-

timed schedules. In this chapter we present algorithms thatntinimize synchroniza

tion costs in the final implementation of agiven self-timed schedule, andwe do not

assume the availability of any hardware support foremploying the OT approach.

Recall that the self-timed scheduling strategy introduces synchronization

checks whenever processors communicate. A straightforward implementation of a

self-timed schedule would require that for each inter-processor communication

(IPC), the sending processor ascertain that the buffer it is writing to is not full, and

the receiver ascertain that the buffer it is reading from is not empty. The processors

block (suspend execution) when the appropriate condition is not met. Such sender-

receiver synchronization can be implemented in many ways depending on the par

ticular hardware platform under consideration: in shared memory machines, such

synchronization involves testing and setting semaphores in shared memory; in

machines that support synchronization in hardware (such as barriers), special,syn

chronization instructions are used; and in the case of systems that consist of a mix

of programmable processors and custom hardware elements, synchronization is

achieved by employing interfaces that support blocking reads and writes.

In each type of platform, each IPC that requires a synchronization check

107

costs performance, and sometimes extra hardware complexity. Semaphore checks

cost execution time on the processors, synchronization instructions that make use

of special synchronization hardware such as barriers also cost execution time, and

blocking interfaces between a programmable processor and custom hardware in a

combined hardware/software implementations require more hardware than non-

blocking interfaces [Huis93].

In this chapter we present algorithms and techniques that reduce the rate at

which processors must access shared memory for the purpose of synchronization

in multiprocessor implementations of SDF programs. One of the procedures we

present, for example, detects when the objective of one synchronization operation

is guaranteed as a side effect of other synchronizations in the system, thus enabling

us to eliminate such superfluous synchronization operations. The optimization pro

cedure that we propose can be used as a post-processing step in any static schedul

ing technique (any one of the techniques presented in Chapter 1, section 1.2) for

reducing synchronization costs in the final implementation. As before we assume

that "good" estimates are available for the execution times of actors and that these

execution times rarely display largevariations so that self-timed scheduling is via

ble for the applications under consideration. If additional timing information is

available, such as guaranteed upper and lower bounds on the execution times of

actors, it is possible to use this information to further optimize synchronizations in

the schedule. However, use of such timing bounds will be left as future work; we

mention this again in Chapter 7.

This chapter is a part of ongoing research in collaboration with Dr. Shuvra

Bhattacharyya, who is a Research Scientist at Hitachi America Ltd.

5.1 Related work

Among the prior art that is most relevant to this chapter is the barrier-

MIMD principle of Dietz, Zaafrani, and O'Keefe, which is a combined hardware

and software solution to reducing run-time synchronization overhead [Dietz92j. In

108

this approach, a shared-memory MIMD computer is augmented with hardware

support that allows arbitrary subsets of processors to synchronize precisely with

respect to one anotherby executing a synchronization operation called a barrier. If

a subset of processors is involved in a barrier operation, then each processor in this

subset will wait at the barrier until all other processors in the subset have reached

the barrier. After all processors in the subset have reached the barrier, the corre

sponding processes resume execution in exact synchrony.

In [Dietz92], the barrier mechanism is applied to minimize synchronization

overhead in a self-timed schedule with hard lower and upper bounds on the task

execution times. The execution time ranges are used to detect situations where the

earliest possible execution time of a task that requires data from another processor

is guaranteed to be later than the latest possible time at which the required data is

produced. When such an inference cannot be made, a barrier is instantiated

between the sending and receiving processors. In addition to performing the

required data synchronization, the barrier resets (to zero) the uncertainty between

the relative execution times for the processors that are involved in the barrier, and

thus enhances the potential for subsequent timing analysis to eliminate the need for

explicit synchronizations.

The techniques of barrier MIMD do not apply to the problem that we

address because they assume that a hardware barrier mechanism exists; they

assume that tight bounds on task execution times are available; they do not address

iterative, self-timed execution, in which the execution of successive iterations of

the dataflow graph can overlap; and even for non-iterative execution, there is no

obvious correspondence between an optimal solution that uses barrier synchroni

zations and an optimal solution that employs decoupled synchronization checks at

the sender and receiver end (directed synchronization). This last point is illus

trated in Fig. 5.1. Here, in the absence of execution time bounds, an optimal appli

cation of barrier synchronizations can be obtained by inserting two barriers — one

barrier across A^ and A^, and the other barrier across A^ and A5. This is illus

trated in Figure 5.1(c). However, the corresponding collection of directed synchro-

109

nizations (A l toA^, and A5 toA4) isnot sufficient since it does not guarantee that

thedata required by A6 from A1 is available before A6 begins execution.

In [Sha89], Shaffer presents an algorithm that minimizes the number of

directed synchronizations in the self-timed execution of a dataflow graph. How

ever, this work, like that of Dietz et al, does not allow the execution of successive

iterations of the dataflow graph to overlap. It also avoids having to consider data

flow edges that have delay. The technique that we present for removing redundant

synchronizations can be viewed as a generalization of Shaffer's algorithm to han

dle delays and overlapped, iterativeexecution, and we will discuss this further in

section 5.6. The other major techniques that we present for optimizing synchroni

zation — handling the feedforward edges of the synchronization graph (to be

defined in section 5.4.2), discussed in section 5.7, and "resynchronization",

defined and addressed in sections 5.9 and the appendix — are fundamentally dif

ferent from Shaffer's technique since they address issues that are specific to our

Prod start—•A

Proc 2 start

Proc 3 start—•A*

Proc 1: AVA2

Proc 2: A3, AA

Proc 3: A5,A6

(b)

Figure 5.1. (a) An HSDFG (b) A three-pro(a) An HSDFG (b) A three-proces
sor self-timed schedule for (a), (c) An illustration of execution under the
placement of barriers.

110

more generalcontext of overlapped,iterativeexecution.

As discussed in Chapter 1, section 1.2.2, amultiprocessor executing a self-

timed schedule is one where each processor is assigned a sequential list of actors,

some of which are send and receive actors, which it executes in an infinite loop.

When a processor executes a communication actor, it synchronizes with the pro

cessor^) it communicates with. Thus exactly when a processor executes each actor

depends on when, at run time, all input data for that actor is available, unlike the

fully-static case where no such run time check is needed. In this chapter we use

"processor" in slightly general terms: a processor could be a programmable com

ponent, in which case the actors mapped to it execute as software entities, or it

could be a hardware component, in which case actors assigned to it are imple

mented and execute in hardware. See [Kala93] for a discussion on combined hard

ware/software synthesis from a single dataflow specification. Examples of

application-specific multiprocessors that use programmable processors and some

form of static scheduling are described in [Bork88][Koh90], which were also dis

cussed in Chapter 1, section 1.3.

Inter-processor communication between processors is assumed to take

place via shared memory. Thus the sender writes to a particular shared memory

location and the receiver reads from that location. The shared memory itself could

be global memory between all processors, or it could be distributed between pairs

of processors (as a hardware FIFO queues or dual ported memory for example).

Each inter-processor communication edge in our HSDFG thus translates into a

buffer of a certain size in shared memory.

Sender-receiver synchronization is also assumed to take place by setting

flags in shared memory. Special hardware for synchronization (barriers, sema

phores implemented in hardware, etc.) would be prohibitive for the embedded

multiprocessor machines for applications such as DSP that we are considering.

Interfaces between hardware and software are typically implemented using mem

ory-mapped registers in the address spaceof the programmable processor (again a

kind of shared memory), and synchronization is achieved using flags that can be

111

tested and set by the programmable component, and the same can be done by an

interface controller on the hardware side [Huis93j.

Under the model above, the benefits that our proposed synchronization

optimization techniques offer becomeobvious. Each synchronization that we elim

inate directly results in one less synchronization check, or, equivalently, one less

shared memory access. For example, where a processor would have to check a flag

in shared memory before executinga receive primitive,eliminating that synchroni

zation implies there is no longer need for such a check. This translates to one less

shared memory read. Such a benefit is especially significantfor simplifying inter

faces between a programmable component and a hardware component: a sendor a

receive without the need for synchronization implies that the interface can be

implemented in a non-blocking fashion, greatly simplifying the interface control

ler. As a result, eliminating a synchronization directlyresults in simpler hardware

in this case.

Thus the metric for the optimizations we present in this chapter is the total

number of accesses to shared memory that are needed for the purpose of synchro

nization in the final multiprocessor implementation of the self-timed schedule.

This metric will be defined precisely in section 5.5.

5.2 Analysis of self-timed execution

We model synchronization in a self-timed implementation using the IPC

graph model introduced in the previous chapter. As before, an IPC graph

Gipc(V, Eipc) is extracted from a given HSDFG G and multi-processor schedule;

Fig. 5.2 shows one suchexample, which we use throughout thischapter.

We will find it useful to partition the edges of the IPC graph in the follow

ing manner: Eipc s Eint u Ecomm, where Ecomm are the communication edges

(shown dotted in Fig. 5.2(d)) that are directed from the send to the receive actors in

Gipc, and Eint are the "internal" edges that represent the fact thatactors assigned

to a particular processor (actors internal to that processor) are executed sequen-

112

ZI

C Elii

i

Prod

Proc 2

ii

Prod
Proc 2
Proc 3
Proc 4

£

Execution Time Estimates

Proc 3

(a) HSDFGS"

A, C. H, F

B.E

G,l

0 = Send
E3 = Receive
H = Idle

(b) Schedule on four processors

A II E, I A 23

i
a in

?."Mm<u U
H il

14

(c) Self-timed execution

EJ

<£P^---^--*q)£fo
Prod Proc 4

Proc 2

(F^-^--^----(|^
Proc 3

(d) The IPC graph

- ♦ ^comm

• Ejnt

Figure 5.2. Self-timed execution

tially according to the order predetermined by the self-timed schedule. A commu

nication edge e £ Ecomm in G/pc represents two functions: 1) reading and writing

of data values into the buffer represented by that edge; and 2) synchronization

113

between the sender and the receiver. As mentioned before, we assume the use of

shared memory for the purpose of synchronization; the synchronization operation

itself must be implemented using some kind of software protocol between the

sender and the receiver. We discuss these synchronization protocols shortly.

5.2.1 Estimated throughput

Recall from Eqn. 4-3 that the average iteration period corresponding to a

self-timed schedule with an PC graph Gipc isgiven by the maximum cycle mean

of the graph MCM (Gipc) . If we only have execution time estimates available

instead of exact values, and we set the execution times of actors t(v) to be equal

to these estimated values, then we obtain the estimated iteration period by comput

ing MCM (Gipc) . Henceforth we will assume that we know the estimated

throughput MCM~ calculated by setting the t (v) values to the available timing

estimates.

In all the transformations that we present in the rest of the chapter, we will

preserve the estimated throughput by preserving the maximum cycle mean of

Gipc» w*m eacn l (v) set t0 me estimated execution time of v. In the absence of

more precise timing information, this is the best we can hope to do.

5.3 Strongly connected components and buffer size
bounds

In dataflow semantics, the edges between actors represent infinite buffers.

Accordingly, the edges of the IPC graph are potentially buffers of infinite size.

However, from Lemma 4.1, every feedback edge (an edge that belongs to a

strongly connected component, and hence to some cycle) can only have a finite

number of tokens at any time during the execution of the IPC graph. We will call

this constant the self-timed buffer bound of that edge, and for a feedback edge e

we will represent this bound by Bfl,(e) . Lemma 4.1 yields the following self-

timed buffer bound:

114

Bfb (e) = mm ({Delay (Q \Cis acycle that contains e}) (5-1)

Feedforward edges (edges that do not belong to any SCC) have no such

bound on buffer size; therefore for practical implementations we need to impose a

bound on the sizes of these edges. For example, Figure 5.3(a) shows an IPC graph

where the communication edge (s, r) could be unbounded when the execution

time of A is less than that of B, for example. In practice, we need to bound the

m

(a) (b)

Figure 5.3. An IPC graph with a feedforward edge: (a) original graph (b)
imposing bounded buffers.

buffer size of such an edge; we will denote such an "imposed" bound for a feedfor

ward edge e by Bjj(e) . Since the effect of placing such a restriction includes

"artificially" constraining src(e) from getting more than Bjj(e) invocations

ahead of snk (e) , its effect on the estimated throughput can be modelled by add

ing a reverse edge that has m delays on it, where m = Bjj(e) - delay (e), to

Gipc (grey edge in Fig. 5.3(b)). Since the addition of this edge introduces a new

cycle in G(pc, it has the potential to reduce the estimated throughput; to prevent

sucha reduction, Bff(e) must be chosen to belarge enough so that themaximum

cycle mean remains unchanged upon adding the reverse edge with m delays.

Sizing buffers optimally such that the maximum cycle mean remains

unchanged has been studied by Kung, Lewis and Lo in [Kung87], where the

authors propose an integer linear programming formulation of the problem, with

the number of constraints equal to the number of fundamental cycles in the

HSDFG (potentially an exponential number of constraints).

115

An efficient albeit suboptimal procedure todetermine Bjj is tonote thatif

Bff(e) ;> V t(x)\/(MCM(Gipc))~\
holds for each feedforward edge e, then the maximum cycle mean of the resulting

graph does not exceed MCM.

Then, a binary search on Bjf(e) for each feedforward edge, while comput

ing the maximum cycle mean at each search step and ascertaining that it is less

than MCM(Gipc) » results in a buffer assignment for the feedforward edges.

Although this procedure is efficient, it is suboptimal because the order that the

edges e are chosen is arbitrary and may effect the quality of the final solution.

As we will see in section 5.7, however, imposing such a bound Bjj is a

naive approach for bounding buffer sizes, because such a bound entails an added

synchronization cost. In section 5.7 we show that there is a better technique for

bounding buffer sizes; this technique achieves bounded buffer sizes by transform

ing the graph into a strongly connected graph by adding a minimal number of addi

tional synchronization edges. Thus, in our final algorithm, we will not in fact find

it necessary to use orcompute these bounds B^.

5.4 Synchronization model

5.4.1 Synchronization protocols

We define two basic synchronization protocols for a communication edge

based on whether or not the length of the correspondingbuffer is guaranteed to be

bounded from the analysis presented in the previous section. Given an IPC graph

G, and a communication edge e in G, if the length of the corresponding buffer is

not bounded — that is, if e is a feedforward edge of G — then we apply a syn

chronization protocol called unbounded buffer synchronization (UBS), which

guarantees that (a) an invocation of snk(e) never attempts to read data from an

empty buffer; and (b) an invocation of src (e) never attempts to write data into

the buffer unless the number of tokens in the bufferis less than some pre-specified

limit Bff(e) , which is the amount ofmemory allocated to the buffer asdiscussed

116

in the previous section.

On the other hand, if the topology of the IPC graph guarantees that the

buffer length for e isbounded by some value B^ (e) (the self-timed buffer bound

of e), then we use a simpler protocol, called bounded buffer synchronization

(BBS), that only explicitly ensures (a) above. Below, we outline the mechanics of

the two synchronization protocols defined so far.

BBS. In this mechanism, a writepointer wr (e) for eis maintained on the

processor that executes src (e); a read pointer rd(e) for e is maintained on the

processor that executes snk (e); and a copy of wr (e) is maintained in some

shared memory location sv (e) . The pointers rd(e) and wr (e) are initialized to

zero and delay (e) , respectively. Just after each execution of src (e), the new

data value produced onto e is written into the shared memory buffer for e at offset

wr(e); wr (e) is updated by the following operation —

wr (e) <- (wr (e) + 1) mod Bp(e); and sv(e) is updated to contain the new

value of wr (e) . Just before each execution of snk (e), the value contained in

sv (e) is repeatedly examined until it is found to be notequal to rd(e); then the

data value residing at offset rd (e) of the shared memory buffer for e is read; and

rd (e) is updated by the operation rd (e) <- (rd(e) + 1) mod Bfl(e) .

UBS. This mechanism also uses the read/write pointers rd(e) and

wr(e), and these are initialized the same way; however, rather than maintaining a

copy of wr (e) in the shared memory location sv (e), we maintain a count (ini

tialized to delay (e)) of the number of unread tokens that currently reside in the

buffer. Just after src (e) executes, sv (e) is repeatedly examined until its value is

found to be less than Bff(e); then the new data value produced onto e is written

into the shared memory buffer for e at offset wr (e) ; wr (e) is updated as in

BBS (except that the new value is not written to shared memory); and the count in

sv (e) is incremented. Just before each execution of snk (e) , the value contained

in sv (e) is repeatedly examined until it is found to be nonzero; then the data

value residing at offset rd (e) of the shared memory buffer for e is read; the count

in sv (e) is decremented; and rd(e) is updated as in BBS.

117

Note that we are assuming that there is enough shared memory to hold a

separate buffer of size Bjf(e) for each feedforward communication edge e of

Gipc, and a separate buffer ofsize B^ (e) for each feedback communication edge

e. When this assumption does not hold, smaller bounds on some of the buffers

must be imposed, possibly for feedback edges as well as for feedforward edges,

and in general, this may require some sacrifice in estimated throughput. Note that

whenever a buffer bound smaller than Bfb(e) is imposed on a feedback edge e,

then a protocol identical to UBS must be used. The problem of optimally choosing

which edges should be subject to stricterbuffer bounds when there is a shortageof

shared memory, and the selection of these stricter bounds is an interesting area for

further investigation.

5.4.2 The synchronization graph Gs

As we discussed in the beginning of this chapter, some of the communica

tion edges in G(pc need not have explicit synchronization, whereas others require

synchronization, which need to be implemented either using the UBS protocol or

the BBS protocol. All communication edges alsorepresent buffers in shared mem

ory. Thus we dividethe set of communication edges as follows: Ecomm sEsKjEr,

where the edges Es need explicit synchronization operations to be implemented,

and the edges Er need no explicit synchronization. Wecall the edges Es synchro

nization edges.

Recall that a communication edge (v., vf.) of Gipc represents the synchro

nization constraint:

start (v., k) Zend(vjt k- delay ((vjt v,))) V* >delay (vjy v{) (5-2)

Thus, before we perform any optimization on synchronizations,

^comm - Es and Er s ty, because every communication edgerepresents a synchro

nization point. However, in the following sections we describe how we can move

certainedges from Es to Er, thus reducing synchronization operations in the final

118

implementation. At the end of our optimizations, the communicationedges of the

IPC graph fall into either Es or Er. Atthis point the edges Es u Er in Gipc repre

sent buffer activity, and must be implemented as buffers in shared memory,

whereas the edges Es represent synchronization constraints, and are implemented

using the UBS and BBS protocols introduced in the previous section. For the

edges in Es the synchronization protocol is executed before the buffers corre

sponding to the communication edge are accessedso as to ensure sender-receiver

synchronization. For edges in Er, however, no synchronization needs to be done

before accessing the shared buffer. Sometimes we will also find it useful to intro

duce synchronization edges without actually communicating data between the

sender and the receiver (for the purpose of ensuring finite buffers for example), so

that no shared buffers need to be assigned to these edges, but the corresponding

synchronization protocol is invoked for these edges.

All optimizations that move edges from Es to Er must respect the synchro

nization constraints implied by Gipc. If we ensure this, then we only need to

implement the synchronization protocols for the edges in Es. We call the graph

Gs = (V,EintuEs) the synchronization graph. The graph Gs represents the

synchronization constraints in G/pc that need to be explicitly ensured, and the

algorithms we present for rninimizing synchronization costs operate on Gs. Before

any synchronization related optimizations are performed Gs = Gjpc, because

Ecomm s Es at this stage, but as we move communication edges from Es to Er, Gs

has fewer and fewer edges. Thus moving edges from Es to Er can be viewed as

removal of edges from Gs. Whenever we remove edges from Gs we have to

ensure, of course, that the synchronization graph Gs at that step respects all the

synchronization constraints of Gipc, because we only implement synchronizations

represented by the edges Es in Gs. The following theorem is useful to formalize

the concept of when the synchronization constraints represented by one synchroni-
l 2

zation graph Gs imply the synchronization constraints of another graph Gs .

This theorem provides a useful constraint for synchronization optimization, and it

underlies the validity of the main techniques that we will present in this chapter.

119

Theorem 5.1: The synchronization constraints in a synchronization graph

Gs - IV, Eint u Es J imply the synchronization constraints of the synchroniza

tion graph Gs = I V,EintvEs \ if the following condition holds: Ve s.t.

2 A „ le € Es , e € Es , p^x(src(e),snk (e)) £ rfe/ay (e); that is, if for each edge e

2 1
that is present in Gs but not in Gs there is a minimum delaypath from src (e)

to snk (e) in Gs that has total delay of at most delay (e).

(Note that since the vertex sets for the two graphs are identical, it is meaningful to

refer to src (e) and snk (e) as being vertices of Gs even though there are edges

2 l
e s.t. e € Es , e € Es .)

First we prove the following lemma.

Lemma5.1: If there is apath p = (ev e2, e3,..., en) in Gs , then

start (snk(en), k) £ end(src (ej, k- Delay (p)) .

ProofofLemma 5.1:

The following constraints hold along such a path p (as per Eqn. 4-1)

start(snk (ej, k) ^ end(src (e^),k- delay (e^) . (5-3)

Similarly,

start (snk (e2), k) £ end (src (e2),k- delay (e2)).

Noting that src (e2) is thesame as snk (ej , weget

start (snk (e2), k) ^ end (snk (ex), k- delay (e2)) .

Causality implies end (v, k) ^ start (v, ifc), so we get

120

start (snk (e2), k) £ start (snk (ej, k - delay (e2)) . (5-4)

Substituting Eqn. 5-3 in Eqn. 5-4,

start (snk (e2), k) £ end (src (ej, k- delay (e2) - delay (ej) .

Continuing along p in this manner, it can easily be verified that

start(snk (en), k) ^ end (src (ex), k - delay (en) - delay (en _x) -
...- delay (ex))

that is,

start ((snk (en), k) £ end(src (ex), k - Delay (p))) . QED.

2 1
ProofofTheorem 5.1: If s€ Es , e G Es , then the synchronization constraint due

2 1
to the edge e holds in both graphs. But for each e s.t. 8 € Es , e $ Es we need to

show that the constraint due to e:

start(snk(e), k) > end(src(e)tk- delay (e)) (5-5)

holds in Gs provided p , (src (s), snk(e)) ^ delay (e), which implies there is
Gs

atleast onepath p = (e^, e2, e3,..., en) from src (e) to snk (e) in Gs

(src (e^ = src(e) and snk (en) = snk (s)) such that Delay (p) £ delay (s) .

From Lemma 5.1, existence of such a path p implies

start ((snk (en), k) ^ end (src (ej, k - Delay(p))) .

that is,

start((snk(e), k) ^ end(src(e),k- Delay (p))) . (5-6)

If Delay (p) £ delay (e), then

121

end (src(e),k- Delay (p)) ^ end (src (e),k- delay (s)) . Substituting this in

Eqn. 5-6 we get

start((snk(e),k) ^end(src(e),k- delay (e))) .

The above relation is identical to Eqn. 5-5, and this proves the Theorem. QED.

The above theorem motivates the following definition.

Definition 5.1: If Gs =yV,EintuEs J and Gs =yV,EintuEs J are syn-
1 2

chromzation graphs with the same vertex-set, we say that Gs preserves Gs if

Ve s.t. e € E2, e t Ex, we have p , (src (e), snk (e)) <, delay (e) .
G5

Thus, Theorem 5.1 states that the synchronization constraints of IV, £IW/ u £5 J

imply the synchronization constraints of IV, Eint u £5 J if IV, £/nr u£, J pre

serves IV, Eint u Es J .
Given an IPC graph G^,c, and a synchronization graph Gs such that Gs

preserves Gipc, suppose we implement the synchronizations corresponding to the

synchronization edges of Gs. Then, the iteration period of the resulting system is

determined by the maximum cyclemean of Gs (MCM(GS)). This is because the

synchronization edges alonedetermine the interaction between processors; a com

munication edge without synchronization does not constrain the execution of the

corresponding processors in any way.

5.5 Formal problem statement

We refer to each access of the shared memory "synchronization variable"

sv (e) by src (e) and snk (e) as a synchronization access1 to shared memory.
If synchronization for e is implemented using UBS, then we see that on average,

4 synchronization accesses are required for e in eachiteration period, while BBS

122

implies 2 synchronization accesses per iteration period. Wedefine the synchroni

zation costofa synchronization graph Gs tobethe average number of synchroni

zation accesses required per iteration period. Thus, if n** denotes the number of

synchronization edges in Gs thatarefeedforward edges, and n*h denotes thenum

ber of synchronization edges that are feedback edges, then the synchronization

cost of Gs can be expressed as (4w«-+ 2^) . In the remainder ofthis paper we

develop techniques that apply the results and the analysis framework developed in

sections 4.1 and sections 5.2-5.4 to minimize the synchronization cost of a self-

timed implementation of an HSDFG without sacrificing the integrity of any inter

processor data transfer or reducing the estimated throughput.

We will explore three mechanisms for reducing synchronization accesses.

The first (presented in section 5.6) is the detection and removal of redundant syn

chronization edges, which are synchronization edges whose respective synchroni

zation functions are subsumed by other synchronization edges, and thus need not

be implemented explicitly. This technique essentially detects the set of edges that

can be moved from the Es to the set Er. In section 5.7, we examine the utility of

adding additional synchronization edges to convert a synchronization graph that is

not strongly connected into a strongly connected graph. Such a conversion allows

us to implement all synchronization edges with BBS. We address optimization cri

teria in performing such a conversion, and we will show that the extra synchroni

zation accesses required for such a conversion are always (at least) compensated

by the number of synchronization accesses that are saved by the more expensive

UBSs that are converted to BBSs. Finally, in section 5.9 we outline a mechanism,

which we call resynchronization, for inserting synchronization edges in a way that

1. Note that in our measure of the number of sharedmemory accesses required for synchro
nization,we neglect the accessesto sharedmemory that areperformed while the sink actor
is waiting for the required data to become available, or the source actor is waiting for an
"empty slot" in the buffer. The number of accessesrequired to perform these "busy-wait"
or "spin-lock" operations is dependenton theexact relativeexecution times of the actor in
vocations. Since in our problem context this information is not generally available to us,
we use the best case number of accesses — the number of shared memory accesses required
for synchronization assuming that IPC data on an edge is always produced before the cor
responding sink invocation attempts to execute — as an approximation.

123

the number of original synchronization edges that become redundant exceeds the

number of new edges added.

5.6 Removing redundant synchronizations

The first technique that we explore for reducing synchronization overhead

is removal of redundant synchronization edges from the synchronization graph,

i.e. finding a minimal set of edges Es that need explicit synchronization. Formally,

a synchronization edge is redundant in a synchronization graph G if its removal

yields a synchronization graph that preserves G. Equivalently, from definition 5.1,

a synchronization edge e is redundant in the synchronization graph G if there is a

path p*(e) in G directed from src(e) to snk(e) such that

Delay (p) £ delay (e) .

Thus, the synchronization function associated with a redundant synchroni

zation edge "comes for free" as a by product of other synchronizations. Fig. 5.4

shows an example of a redundant synchronization edge. Here, before executing

actor D, the processor that executes {A,B,C,D} does not need to synchronize

with the processor that executes {E,F,G,H} because, due to the synchroniza

tion edge Xj, the corresponding invocation of F is guaranteed to complete before

each invocation of D is begun. Thus, x2 is redundant in Fig. 5.4 and can be

removed from Es into the set Er. It is easily verified that the path

124

- - •• synch, edges
—• internal edges

Figure 5.4. x2 is an example of a redundant synchronization edge.

p = ((F,G),(G,H),xv(B,C),(C,D)) is directed from src(x2) to

snk (x2) , and has apath delay (zero) that isequal tothe delay on x2.

In this section we develop an efficient algorithm to optimally remove

redundant synchronization edges from a synchronization graph.

5.6.1 The independence of redundant synchronizations

The following theorem establishes that the order in which we remove

redundant synchronization edges is not important; therefore all the redundant syn

chronization edges can be removed together.

Theorem 5.2: Suppose that Gs = (V, Eint u Es) is a synchronization graph, ex

and e2 are distinct redundant synchronization edges in Gs (i.e. these are edges that

could be individually moved to Er), and Gs =(V, Eint u (E- {ex} jJ. Then

e2 is redundant in Gs. Thus both ex and e2 can bemoved into Er together.

Proof: Since e2 is redundant in Gs, there is apath p * (e2) inGs directed from

src (e2) to snk (e2) such that

Delay (p) £ delay (e2) . (5-7)

Similarly, there isapath p'* (e^ ,contained in both Gs and Gs, that isdirected

from src(ex) to snk (ex), and that satisfies

Delay (p') £ delay (ej . (5-g)

Now, if p does not contain ex, then p exists in Gs, and we are done. Otherwise,

let p' = (xv x2,..., xn) ; observe that p is of the form

125

P = (3V)>2»-»»3>*_i»ei»y*>y/b+1,...>yj Jand define

p"b 0>i>y2,...,^.1,x1,^2,...,*„, 3>*3>*+i ym) •

Clearly, p" is a path from src (e2) to snk (e2) in G5. Also,

Delay (p") =£<te/ay (*.) +£<te/ay (y.)

= Delay (p') + (Delay (p) - delay (ex))

<.Delay (p) (from Eqn. 5-8)

<>delay (e2) (from Eqn. 5-7).

QED.

Theorem 5.2 tells us that we can avoid implementing synchronization for

all redundant synchronization edges since the "redundancies" are not interdepen

dent. Thus, an optimal removal of redundant synchronizations can be obtained by

applying a straightforward algorithm that successively tests the synchronization

edges for redundancy in some arbitrary sequence, and since computing the weight

of the shortest path in a weighted directed graph is a tractable problem, we can

expect such a solution to be practical.

5.6.2 Removing redundant synchronizations

Fig. 5.5 presents an efficient algorithm, based on the ideas presented in the

previous subsection, for optimal removal of redundant synchronization edges. In

this algorithm, we first compute the path delay of aminimum-delay path from x to

y for each ordered pair of vertices (jc, y) ; here, we assign a path delay of °°

whenever there is no path from x to y. This computation is equivalent to solving

an instance of the well known all points shortest paths problem [Corm92]. Then,

we examine each synchronization edge e — in some arbitrary sequence — and

determine whether or not there is a path from src (e) to snk (e) that does not

contain e, and that has a pathdelay that does not exceed delay (e) . This check for

redundancy is equivalent to the check that is performed by the if statement in

126

RemoveRedundantSynchs because if p is a path from src (e) to snk (e) thatcon

tains more than one edge and that contains e, then p must contain a cycle c such

that c does not contain e; and since all cycles must have positive pathdelay (from

Lemma 4.1), the path delay of such a path p mustexceed delay (e) . Thus, if eQ

satisfies the inequality in the ifstatement ofRemoveRedundantSynchs, and p* is a

path from snk (e0) to snk (e) such that Delay (p*) = p(snk(e0), snk(e)),
then p* cannot contain e. This observation allows us to avoid having to recom

putethe shortest paths after removing acandidate redundant edge from Gs.

From the definition of a redundant synchronization edge, it is easily veri

fied that the removal of a redundant synchronization edge does not alter any of the

minimum-delay path values (path delays). That is, given a redundant synchroniza

tion edge er in Gs, and two arbitrary vertices x, y£ V, if we let

Gs =fVtEintu(E- {er})), then p^ (x,y) =pG (x,y). Thus, none of the

Function RemoveRedundantSynchs
Input: Asynchronization graph Gs = EintuEs

Output: The synchronization graph G* = (V, Eint u (Es - Er))

1. Compute pG (x, y) for each ordered pair ofvertices in Gs.

2.Er<r-0
3. For each e e E5

For each output edge e0 of src (e) exceptfor e

If delay(e0) +pG (snk(e0),snk(e))<>delay(e)

Then

Er<-Erv {e}
Break /* exit the innermostenclosing For loop 7

Endif

Endfor

Endfor

4. Return (V,Eintu (Es-Er)).

Figure 5.5. An algorithm that optimally removes redundant synchronization
edges.

127

minimum-delay path values computed in Step 1 need to be recalculated after

removing a redundant synchronization edge in Step 3.

Observe that the complexity of the function RemoveRedundantSynchs is

dominated by Step 1 and Step 3. Since all edge delays are non-negative, we can

repeatedly apply Dijkstra's single-source shortest path algorithm (once for each

vertex) to carry out Step 1in 0\\V\ J time; amodification of Dijkstra's algorithm
can be used to reduce the complexity of Step 1to OnV\ log2(|V|) +|V||£| I
[Corm92]. In Step 3, |£| is an upper bound for the number of synchronization

edges, and in the worst case, each vertex has an edge connecting it to every other

member of V. Thus, thetimecomplexity of Step 3 is 0 (\V\ \E\), and if we usethe

modification to Dijkstra's algorithm mentioned above for Step 1, then the time

complexity of RemoveRedundantSynchs is

o(|V|2log2(|Vl) +M|£| +|V1|£|J =tf(jVl2log2(|Vl) +M|£|J .

5.6.3 Comparison with Shaffer's approach

In [Sha89], Shaffer presents an algorithm that niinimizes the number of

directed synchronizations in the self-timed execution of an HSDFG under the

(implicit) assumption that the execution of successive iterations of the HSDFG are

not allowed to overlap. In Shaffer's technique, a construction identical to our syn

chronizationgraphis used except that thereis no feedback edge connectingthe last

actorexecuted on a processor to the first actor executed on the same processor, and

edges that have delay are ignored since only intra-iteration dependencies are sig

nificant. Thus, Shaffer's synchronization graph is acyclic. RemoveRedun

dantSynchs can be viewed as an extension of Shaffer's algorithm to handle self-

timed, iterative execution of an HSDFG; Shaffer's algorithm accounts for self-

timed execution only within a graph iteration, and in general, it can be applied to

iterative dataflow programs only if all processors are forced to synchronize

between graph iterations.

128

5.6.4 An example

In this subsection, we illustrate the benefits of removing redundant syn

chronizations through a practical example. Fig. 5.6(a) shows an abstraction of a

three channel, multi-resolution quadrature mirror (QMF) filter bank, which has

applications in signal compression [Vai93]. This representation is based on the

general (not homogeneous) SDFmodel, andaccordingly, eachedge is annotated

with the number of tokens producedand consumed by its source and sink actors.

Actors A and F represent the subsystems that, respectively, supply and consume

data to/from the filter bank system; B and C each represents a parallelcombina

tion of decimating high andlow pass FIR analysis filters; D and E representthe

corresponding pairs of interpolating synthesis filters. The amount of delay on the

edge directed from B to E is equal to the sum of the filter orders of C and D. For

more details on the application represented by Fig. 5.6(a), we refer the reader to

[Vai93].

To construct a periodic, parallel schedule we must first determine the num

ber of times q (N) that each actor N must be invoked in the periodic schedule.

Systematic techniques to compute these values are presented in [Lee87]. Next, we

must determine the precedence relationships between the actor invocations. In

determining the exact precedence relationships, we must take into account the

dependence of a given filter invocation on not only the invocation that produces

the token that is "consumed" by the filter, but alsoon the invocations that produce

the n precedingtokens, where n is the order of the filter. Such dependence can

easily be evaluated with an additional dataflow parameter on each actor input that

specifies the number ofpast tokens that are accessed [Pru^l]1. Using this infor-

1.It should benoted that some SDF-based design environments choose to forego parallel-
ization across multiple invocations of an actor in favor of simplified code generation and
scheduling. For example, in the GRAPEsystem, thisrestriction hasbeenjustified on the
grounds thatit simplifies inter-processor data management, reduces codeduplication, and
allows the derivation of efficient scheduling algorithms that operate directly on general
SDF graphs without requiring theuseof the acyclic precedence graph (APG) [BU94].

129

(a)

(b)

Proc. 1Av A2, Bx, Cv D{, Ev Fv F2

Proc. 2AvAA,BvE2,FyFA

(C)

£—•(S)——*n§)—•§>

(d)
- - •• synch, edges

• internal edges

Figure 5.6. (a) A multi-resolution QMF filter bank used to illustrate the benefits of
removing redundant synchronizations, (b) The precedence graph for (a), (c) A
self-timed, two-processor, parallel schedule for (a), (d) The initial synchroniza
tion graph for (c).

130

mation, together with the invocation counts specified by q, we obtain the prece

dence relationships specified by thegraph of Fig. 5.6(b), in whichthe i th

invocation ofactor N is labeled N{, and each edge e specifies that invocation

snk (e) requires data produced by invocation src (e) delay (e) iteration periods

after the iteration period in which the data is produced.

A self-timed schedule for Fig. 5.6(b) that can be obtained from Hu's list

scheduling method [Hu61] (described in is specified in Chapter 1 section 1.2) is

specified in Fig. 5.6(c), and the synchronization graph that corresponds to the IPC

graph ofFig. 5.6(b) and Fig. 5.6(c) is shown in Fig. 5.6(d). All of the dashed edges

in Fig. 5.6(d) are synchronization edges. If we apply Shaffer's method, which con

siders only those synchronization edges that do not have delay, we can eliminate

the need for explicit synchronization along only one of the 8 synchronization

edges — edge (AVB2) . In contrast, if we apply RemoveRedundantSynchs, we

can detect the redundancy of (Av B2) as well as four additional redundant syn

chronization edges — (AyB^), (AA,BJ , (B2,E^ , and (BVE2) . Thus,

RemoveRedundantSynchs reduces the number of synchronizations from 8 down to

3 — a reduction of 62%. Fig. 5.7 shows the synchronization graph of Fig. 5.6(d)

after all redundant synchronization edges areremoved. It is easily verified that the

synchronization edges that remain in this graph are not redundant; explicit syn

chronizations need only be implemented for these edges.

5.7 Making the synchronization graph strongly con
nected

In section 5.4.1, we defined two different synchronization protocols —

bounded buffer synchronization (BBS), which has a cost of 2 synchronization

accesses periteration period, and can be used whenever the associated edge is con

tained in a strongly connected component of the synchronization graph; and

unbounded buffer synchronization (UBS), which has a cost of 4 synchronization

accesses per iteration period. We pay the additional overhead of UBS whenever

131

the associated edgeis a feedforward edge of thesynchronization graph.

One alternative to implementing UBS for a feedforward edge e is to add

synchronization edges to the synchronization graph so that e becomes encapsu

lated in a strongly connected component; such a transformation would allow e to

be implemented with BBS. However, extra synchronization accesses will be

required to implement the new synchronization edges that areinserted. In this sec

tion, we show that by adding synchronization edges through a certain simple pro

cedure, the synchronization graph can be transformed into a strongly connected

graph in a way that the overhead of implementing the extra synchronization edges

is always compensated by the savings attained by being able to avoid the use of

UBS. That is, our transformations ensure that the total number of synchronization

accesses required (per iteration period) for the transformed graph is less than or

equal to the number of synchronization accesses required for the original synchro

nization graph. Through a practicalexample, we show that this transformation can

significantly reduce the number of required synchronization accesses. Also, we

discuss a technique to compute the delay that should be added to each of the new

edges added in the conversion to a strongly connected graph. This technique com-

©—<s>

- - •• synch, edges
—• internal edges

Figure 5.7. The synchronization graph of Fig. 5.6(d) after all redundant synchro
nization edges are removed.

132

putes the delays in a way that the estimated throughput of the IPC graph is pre

served with minimal increase in the shared memory storage cost required to

implement the communication edges.

5.7.1 Adding edges to the synchronization graph

Fig. 5.8 presents our algorithm for transforming a synchronization graph

that is not strongly connected into a stronglyconnected graph. This algorithm sim

ply "chains together" the source SCCs, and similarly, chains together the sink

SCCs. The construction is completed by connecting the first SCC of the "source

chain" to the last SCC of the sink chain with an edge that we call the sink-source

edge. From each source or sink SCC, the algorithm selects a vertex that has mini-

Function Convert-to-SC-graph
Input: A synchronization graph G that is not strongly connected.
Output: A strongly connected graph obtained by adding edges between the
SCCs of G.

1. Generate an ordering CVC2 Cm ofthe source SCCs of G, and similarly,

generate an ordering DvD2,...,Dn of the sink SCCs of G.

2. Selecta vertex vxe CY that minimizes /(*) over Cl.
3. For i = 2,3...,m

• Selecta vertex v. e ci thatminimizes t(*) over C,.

• Instantiate the edge d0(v._v vf).
End For

4. Select a vertex wl e Dx that minimizes r(*) over Dx.
5. Fori = 2,3...,n

• Select a vertex w. e Di that minimizes r(*) over Dt.
• Instantiate the edge d0(wi_v w{).

End For

6. Instantiate the edge d0(wm,vl).

Figure 5.8. An algorithm for converting a synchronization graph that is not
strongly connected into a stronglyconnected graph.

133

mum execution time to be the chain "link" corresponding to that SCC. Minimum

execution time vertices are chosen in an attempt to minimize the amount of delay

that must be inserted on the new edges to preserve the estimated throughput of the

original graph. In section 5.7.2, we discuss the selection of delays for the edges

introduced by Convert-to-SC-graph.

It is easily verified that algorithm Convert-to-SC-graph always produces a

strongly connected graph, and that a conversion to a strongly connected graph can

not be attained by adding fewer edges than the number of edges added by Convert-

to-SC-graph. Fig. 5.9 illustrates a possible solution obtained by algorithm Con

vert-to-SC-graph. Here, the black dashed edges are the synchronization edges con

tained in the original synchronization graph, and the grey dashed edges are the

edges that are added by Convert-to-SC-graph. The dashed edge labeled es is the

sink-source edge.

Assuming the synchronization graph is connected, the number of feedfor

ward edges it* must satisfy n^ (nc - 1) \ where nc is the number ofSCCs. This

follows from the fundamental graph theoretic fact that in a connected graph

(V*,E*) , \E*\ must be at least (|V*| - 1) . Now, it is easily verified that the

e«

v

••• &» new edges
- •• synch, edges
—• internal edges

Figure5.9. An illustration of a possible solution obtained by algorithm Convert-to-
SC-graph.

134

number of new edges introduced by Convert-to-SC-graph is equal to

(nsrc +nsnk - 1), where nsrc is the number ofsource SCCs, and nsnk is the num

ber of sink SCCs. Thus, the number of synchronization accesses per iteration

period, 5+, that is required to implement the edges introduced by Convert-to-SC-

graph is (2 x (nsrc + nsnk - 1)), while the number of synchronization accesses,

5_, eliminated by Convert-to-SC-graph (by allowing the feedforward edges of the

original synchronization graph to be implemented with BBS rather than UBS)

equals 2ny. It follows thatthenetchange (S+ - S_) in thenumber of synchroni

zation accesses satisfies

(S+-SJ =2(nsrc +nsnk-l)-2nf=2(nc-l-nf)Z2(nc-l-(nc-l)),
and thus, (S+ - 5_) £ 0. Wehaveestablished the following result.

Theorem 5.3: Suppose that G is a synchronization graph, and G is the graph that

results from applying algorithm Convert-to-SC-graph to G. Then the synchroniza

tion cost of G is less than or equal to the synchronization cost of G.

For example, without the edges added by Convert-to-SC-graph (the dashed

grey edges) in Fig. 5.9, there are 6 feedforward edges, whichrequire 24 synchro

nization accesses per iteration period to implement. The addition of the 4 dashed

edges requires 8 synchronization accesses to implement these new edges, but

allows us to use UBS for the original feedforward edges, which leads to a savings

of 12 synchronization accesses for the original feedforward edges. Thus, the net

effectachieved by Convert-to-SC-graph in thisexample is a reduction of the total

number of synchronization accesses by (12-8) = 4.As another example, con

sider Fig. 5.10, which shows the synchronization graph topology (after redundant

synchronization edges are removed) thatresults from a four-processor schedule of

a synthesizer for plucked-string musical instruments in seven voices based on the

Karplus-Strong technique. This algorithm was alsodiscussed in Chapter 3, as an

135

example application that was implemented on the ordered memory access archi

tecture prototype. This graph contains n{ = 6 synchronization edges (the dashed

edges), all of which are feedforward edges, so the synchronization cost is

4/ij = 24 synchronization access per iteration period. Since the graph has one

source SCC and one sink SCC, only one edge is added by Convert-to-SC-graph,

and adding this edge reduces the synchronization cost to 2n{ +2 = 14 — a 42%

savings. Fig. 5.11 shows the topology of a possible solution computed by Convert-

to-SC-graph on this example. Here, the dashed edges represent the synchroniza

tion edges in the synchronization graph returned by Convert-to-SC-graph.

Prod Proc 2 Prop 3 Proc 4

Exciurr:r

- - -• synch, edges

—• internal edges

Figure 5.10. The synchronization graph, after redundant synchronization edges
are removed, induced by a four-processor schedule of a music synthesizer
based on the Karplus-Strong algorithm.

136

5.7.2 Insertion of delays

One issue remains to be addressed in the conversion of a synchronization

graph Gs into astrongly connected graph Gs —the proper insertion of delays so

that Gs isnot deadlocked, and does not have lower estimated throughput than Gs.

The potential for deadlock and reduced estimated throughput arise because the

conversion to a strongly connected graphmust necessarily introduce one or more

new fundamental cycles. In general, a new cycle may be delay-free, or its cycle

mean may exceed that of the critical cycle in Gs. Thus, we may have to insert

delays on the edges added by Convert-to-SC-graph. The location (edge) and mag

nitude of the delays that we add are significant since they effect the self-timed

buffer bounds of the communication edges, as shown subsequently in Theorem

5.4. Since the self-timed buffer bounds determine the amount of memory that we

allocate for the corresponding buffers, it is desirable to prevent deadlock and

decrease in estimated throughput in a way that the sum of the self-timed buffer

bounds over all communication edges is minimized. In this section, we outline a

simple and efficient algorithm for addressing this problem. Our algorithm pro-

&»• new edges

- - •• synch, edges

Figure 5.11. A possible solution obtained by applying Convert-to-SC-graph to the
example of Figure 5.10.

137

duces an optimal result if Gs has only one source SCC or only one sink SCC; in

other cases, the algorithm must be viewed as a heuristic.

Fig. 5.12 outlines the restricted version of our algorithm that applies when

the synchronization graph Gs has exactly one source SCC. Here, BellmanFord is

assumed to be an algorithm that takes a synchronization graph Z as input, and

repeatedly applies the Bellman-Ford algorithm discussed in pp. 94-97 of [Law76]

to return the cycle mean of the critical cycle in Z; if one or more cycles exist that

have zero path delay, then BellmanFord returns °°. Details of this procedure can

be found in [Bhat95a].

Fig. 5.13 illustrates a solution obtained from DetermineDelays. Here we

assume that t(v) = 1 for each vertex v, and we assume that the set of communi

cation edges are ea and eb. The grey dashed edges are the edges added by Con

vert-to-SC-graph. We see that MCM is determined by the cycle in the sink SCC of

the original graph, and inspection of this cycle yields MCM = 4. The solution

determined by DetermineDelays for Fig. 5.13 is one delay on eQ and onedelay on

eb (60, bl = 1); the resulting self-timed buffer bounds of ea and eb are, respec

tively, 1 and 2; the total buffer sizes for the communication edges is thus 3 (sum

of the self-timed buffer bounds).

DetermineDelayscan be extended to yield heuristics for the general case in

which the original synchronization graph G contains more than one source SCC

- «**• new edges

- •• synch, edges

Figure 5.13. An example used to illustrate a solution obtained by algorithm
DetermineDelays.

138

Function DetermineDelays

Input: Synchronization graphs Gs = (V,E) and Gs, where Gs is the graph

computed by Convert-to-SC-graph when applied to Gs. The ordering of source

SCCsgenerated inStep 2 of Convert-to-SC-graph is denoted CVC2 Cm. For

i = 1,2, ...m- 1,«?,. denotesthe edge instantiated by Convert-to-SC-graph from

a vertex in C, to a vertex in C/+1. The sink-source edge instantiated by Convert-
to-SC-graph is denoted e0.

Output: Non-negative integers d0, dv...,dm_l such that the estimated through

putwhen delay (e.) = di% Q<>i<>m-\ , equals estimated throughput of Gs.

X0 = Gs [e0 -> oo,.... em _, -¥ «»1 /* set delays on each edge to be infinite */

Xmax= BellmanFord(X0) I* computethe max. cycle mean of Gs 7

dub =\(V t(x)l/AfCAfl /* an upper bound on the delay required for any

et V

For/ = 0, l,...,m-l

6,. = MinDelay(XiteitMCM,dub)

**> l = xi lei -> 6,] l* fix tne de,ay on ei to be o, */
End For

Return S^Sj 5m.!.

Function MinDelay(X, etXtB)
Input: A synchronization graph X, an edge e in X, a positive real number X,
and a positive integer B.

Output: Assuming X[e->B] has estimated throughput no less than X~l, deter
mine the minimum de {0,1.....B} such that the estimated throughput of

X[e ->d] is no less than AT1.

Perform a binary search in the range [0,1,.... B] to find the minimum value of
r€ {0,1,....5} such that BellmanFord(X[e->r]) returns a value less than or
equal to A,. Return this minimum value of r.

Figure 5.12. An algorithm for determining the delays on the edges introduced by
algorithm Convert-to-SC-graph.

139

and more than one sink SCC. For example, if (av a2,..., ak) denote edges that

were instantiated by Convert-to-SC-graph "between" the source SCCs — with

each a. representing the i thedge created — and similarly, (bv b2,..., bt) denote

the sequence of edges instantiated between the sink SCCs, then algorithm Deter

mineDelays can be applied with the modification that m = k + / +1, and

(e0tev...,em_l) e (es,ava2, ...,ak,bl,bl_v ...,&i) , where es is the sink-

source edge from Convert-to-SC-graph. Further details related to these issues can

be found in [Bhat95a].

DetermineDelays and its variations have complexity

0\ \V\ (log2 (M)) J [Bhat95a]. It is also easily verified that the time complex
ity of DetermineDelays dominates that of Convert-to-SC-graph, so the time com

plexity of applying Convert-to-SC-graph and DetermineDelays in succession is

again o(|Vl4(log2(|Vl))2J.
Although the issue of deadlock does not explicitly arise in algorithm Deter

mineDelays, the algorithm does guarantee that the output graph is not deadlocked,

assuming that the input graph is not deadlocked. This is because (from Lemma

4.1) deadlock is equivalent to the existence of a cycle that has zero path delay, and

is thus equivalent to an infinite maximum cycle mean. Since DetermineDelays

does not increase the maximum cycle mean, it follows that the algorithm cannot

convert a graph that is not deadlocked into a deadlocked graph.

Converting a mixed grain HSDFG that contains feedforward edges into a

strongly connected graph has been studied by Zivojnovic [Zivo94b] in the context

of retiming when the assignment of actors to processors is fixed beforehand. In this

case, the objective is to retime the input graph so that the number of communica

tion edges that have nonzero delay is maximized, and the conversion is performed

to constrain the set of possible retimings in such a way that an integer linear pro

gramming formulation can be developed. The technique generates two dummy

vertices that are connected by an edge; the sink vertices of the original graph are

connected to one of the dummy vertices, while the other dummy vertex is con

nected to each source. It is easily verified that in a self-timed execution, this

140

scheme requires at least four more synchronization accesses per graph iteration

than the method that we have proposed. We can obtain further relative savings if

we succeed in detecting one or more beneficial resynchronization opportunities.

The effect of Zivojnovic's retiming algorithm on synchronization overhead is

unpredictable since one hand a communication edge becomes "easier to make

redundant" when its delay increases, while on the other hand, the edge becomes

less useful in making other communication edges redundant since the path delay of

all paths that contain the edge increase.

5.8 Computing buffer bounds from gs and Gipc

After all the optimizations are complete we have a final synchronization

graph Gs = (V, Ejnt u Es) that preserves Gipc. Since the synchronization edges

in Gs are the ones that are finally implemented, it is advantageous to calculate the

self-timed buffer bound Bp as a final step after all the transformations on Gs are

complete, instead of using Gipc itself to calculate these bounds. This is because

addition of the edges in the Convert-to-SC-graph and Resynchronize steps may

reduce these buffer bounds. It is easily verified that removal of edges cannot

change the buffer bounds in Eqn. 5-1 as long as the synchronizations in Gipc are
preserved. Thus, in the interest of obtaining minimum possible shared buffersizes,

we compute the bounds using theoptimized synchronization graph. Thefollowing

theorem tells ushow tocompute the self-timed buffer bounds from Gs.

Theorem 5.4: If Gs preserves Gipc and the synchronization edges in Gs are

implemented, then for each feedback communication edge e in Gipc, the self-

timed buffer bound of e (Bflj(e)) — an upper bound on the number of data

tokens that can be presenton e — is givenby:

BfbW = oGs(snk(e),src(e)) +delay (e),

Proof: ByLemma 5.1, if there is a path p from snk (e) to src(e) inGs, then

141

start(src (e),k) £ end(snk (e),k- Delay (p)) .

Taking p to be an arbitrary minimum-delay pathfrom snk(e) to src (e) in Gs,

we get

start (src(e),k) >end(snk(e),k-pG (snk(e),src(e))) .

That is, src (e) cannot bemore that pG (snk (e), src(e)) iterations "ahead" of

snk (e) . Thus there cannever bemore that pG (snk (e), src(e)) tokens more

than the initial number of tokens on e — delay (e) . Since the initial number of

tokens on e was delay (e), the size of the buffer corresponding to e is bounded

above by BfD(e) = pG (snk(e) ,src(e)) + delay (e) . QED.

The quantities pG (snk(e),src(e)) can be computed using Dijkstra's

algorithm [Corm92] to solve the all-pairs shortest path problem on the synchroni

zation graph in time o\\v\ J .

5.9 Resynchronization

It is sometimes possible to reduce the total number of synchronization

edges Es by adding new synchronization edges to a synchronization graph. We

refer to the process of adding one or more new synchronization edges and remov

ing the redundant edges that result as resynchronization; Fig. 5.14(a) illustrates

this concept, where the dashed edges represent synchronization edges. Observe

that if we insert the new synchronization edge dQ (C,H), then two of the original

synchronization edges — (B, G) and (E, J) — become redundant, and the net

effect is that we require one less synchronization edge to be implemented. In Fig.

5.14(b), we show the synchronization graph that results from inserting the resyn

chronization edge dQ(C, H) (grey edge) into Fig. 5.14(a), and then removing the

redundant synchronization edges that result.

We refer to the problem of finding a resynchronization with the fewest

number of final synchronization edges as the resynchronization problem. In

142

[Bhat95a] we formally establish thatthe resynchronization problem is NP-hard by

deriving a polynomial time reduction from the classic minimal set covering prob

lem, which is known to be NP-hard [Garey79], to the pair-wise resynchronization

problem. The complexity remains the same whether we consider a general resyn

chronization problem that also attempts to insertedges within SCCs, or a restricted

version that only adds feed-forward edges between SCCs (the Resynchronize pro

cedure in [Bhat95a] restricts itself to the latter, because in this case it is simpler to

ensure that the estimated throughput is unaffected by the added edges).

Although the correspondence that we establish between the resynchroniza

tion problem and set covering shows that the resynchronization problem probably

cannot be attacked optimally with a polynomial-time algorithm, the correspon

dence allows any heuristic for set covering to be adapted easily into a heuristic for

the pair-wise resynchronization problem, and applying such a heuristic to each pair

of SCCs in a general synchronization graph yields a heuristic for the general (not

just pair-wise) resynchronization problem [Bhat95a]. This is fortunate since the set

covering problem has been studied in great depth, and efficient heuristic methods

@*-^>—KD-^) <§K^i>—KD*»<D
(a) (b)

--&*- new edge

-• synch, edges

Figure5.14. An example of resynchronization.

143

have been devised for it [Corm92].

For a certain class of IPC graphs (formally defined in [Bhat95b]) a prov-

ably optimum resynchronization can be obtained, using a procedure similar to

pipelining. This procedure, however, leads to an implementation that in general

has a larger latency than the implementation we start out with. The resynchroniza

tion procedure as outlined in [Bhat95a] in general can lead to implementations

with increased latency. Latency is measured as the time delay between when an

input data sample is available and when the corresponding output is generated. In

[Bhat95b] we show how we can modify the resynchronization procedure to trade

off synchronizationcost with latency. An optimallatencyconstrained synchroniza

tion, however, is again shown to be NP-hard.

The work on resynchronization is very much ongoing research, a brief out

line of which we have presented in this section.

5.10 Summary

We have addressed the problem ofrrtinimizing synchronization overhead in

self-timed multiprocessor implementations. The metric we use to measure syn

chronization cost is the number of accesses made to shared memory for the pur

pose of synchronization, per schedule period. We used the IPC graph framework

introduced in the previous chapter to extend an existing technique — detection of

redundant synchronization edges — for noniterative programs to the iterative case.

We presented a method for the conversion of the synchronization graph into a

strongly connected graph, which again results in reduced synchronization over

head. Also, we briefly outlined the resynchronization procedure, which involves

adding synchronization points in the schedule such that the overall synchroniza

tion costs are reduced. Details of resynchronization can be found in [Bhat95a] and

[Bhat95b]. We demonstrated the relevance of our techniques through practical

examples.

The input to our algorithm is an HSDFG and a parallel schedule for it. The

144

output is an IPC graph Gipc = (V, Eipc), which represents buffers as communica
tion edges; a strongly connected synchronization graph Gs = (V,EintuEs) ,

which represents synchronization constraints; and a set of shared-memory buffer

sizes {Bflj (e) \e is an IPC edge in Gipc] . Fig. 5.15 specifies the complete algo

rithm.

A code generator can then accept G,pC and Gs, allocate a buffer in shared

memory for each communication edge e specified by G^c of size BpJ(e), and

generate synchronization code for the synchronization edges represented in Gs.

These synchronizations may be implemented using the BBS protocol. The result

ing synchronization cost is 2ns, where ns is thenumber of synchronization edges

in the synchronization graph Gs that is obtained after all optimizations are corn-

Function MinimizeSynchCost
Input: An HSDFG G and a self-timed schedule S for this HSDFG.

Output: Gipc, Gs, and {Bp (e) \e is an IPC edge in Gipc] .

1. Extract Gipc from G and S

2. Gs <- Gipc r Each communication edge is also a synchronization
edge to begin with 7

3. Gs<-Resynchronize(Gs)

4. Gs<- Convert-to-SC-graph (Gs)

5. Gs<-DetermineDelays (Gs)

6. Gs 4- RemoveRedundantSynchs (Gs)

7. Calculate the buffer size Bfb(e) for each communication edge e in
Gipc

a) Compute pG (src (e), snk (e))

b) Bjb (e) <- pG (src (e), snk (e)) + delay (e)

Figure 5.15. The complete synchronization optimization algorithm.

145

pleted.

-;,••: |

146

6

EXTENSIONS

The techniques of the previous chapters apply compile time analysis to

static schedules for HSDF graphs that have no decision making at the dataflow

graph level. In this chapter we consider graphs with data dependent control flow.

Recall that atomic actors in an HSDF graph areallowed to perform data-dependent

decision making within their body, as long as their input/output behaviourrespects

SDF semantics. We show how some of the ideas we explored previously can still

be applied to dataflow graphs containing actors that display data-dependent firing

patterns, and therefore are not SDF actors.

6.1 The Boolean Dataflow model

The Boolean Dataflow (BDF) model was proposed by Lee [Lee91] and

was further developed by Buck [Buck93] for extending the SDF model to allow

data-dependent control actors in the dataflow graph. BDF actors are allowed to

contain a control input, and the number of tokens consumed and produced on the

arcs of a BDF actors can be a two-valued function of a token consumed at the con

trol input. Actors that follow SDF semantics, i.e. that consume and produce fixed

number of tokens on their arcs, are clearly a subset of the set of allowed BDF

actors (SDF actors simply do not have any control inputs). Two basic dynamic

147

actors in the token flow model are the SWITCH and SELECT actors shown in Fig.

6.1. The switch actor consumes one Boolean-valued control token and another

input token; if the control token is TRUE, the input token is copied to the output

labelled T, otherwise it is copied to the output labelled F. The SELECT actor per

forms the complementary operation; it reads an input token from its T input if the

control token is TRUE, otherwise it reads from its F input; in either case, it copies

the token to its output. Constructs such as conditionals and data-dependent itera-

'ITCH A _^T F\
Fy control ^V SELECT J

_ SWITCH
control

Figure 6.1. BDF actors SWITCH and SELECT

tions can easily be representedin a BDF graph, as illustrated in Fig. 6.2. The verti

ces A, B, C, etc. in Fig. 6.2 need not be atomic actors; they could also be arbitrary

SDF graphs. A BDF graph allows SWITCH and SELECT actors to be connected

in arbitrary topologies. Buck [Buck93] in fact shows that any Turing machine can

be expressed as a BDF graph, and therefore the problems of determining whether

such a graph deadlocks and whether it uses bounded memory are undecidable.

Buck proposes heuristic solutions to these problems based on extensions of the

techniques for SDF graphs to BDF model.

6.1.1 Scheduling

Buck presents techniques for statically scheduling BDF graphs on a single

processor; his methods attempt to generate a sequential program without a

dynamic scheduling mechanism, using if-then-else and do-while control

constructs where required. Because of the inherent undecidability of deterrnining

deadlock behaviour and bounded memory usage, these techniques are not always

148

(a) (b)

Figure 6.2. (a) Conditional (if-then-else) dataflow graph. The branch outcome
is determined at run time by actor B. (b) Graph representing data-dependent
iteration. The termination condition for the loop is determined by actor D.

guaranteed to generate a static schedule, even if one exists; a dynamically sched

uled implementation, where a run time kernel decides which actors to fire, can be

used when a static schedule cannot be found in a reasonable amount of time.

Automatic parallel scheduling of general BDF graphs is still an unsolved

problem. A naive mechanism for scheduling graphs that contain SWITCH and

SELECT actors is to generate an Acyclic Precedence Graph (APG), similar to the

APG generated for SDF graphs discussed in section 1.2.1, for every possible

assignment of the Boolean valued control tokens in the BDF graph. For example,

the if-then-else graph in Fig. 6.2(a) could have two different APGs, shown in Fig.

149

6.3, and APGs thus obtained can be scheduled individually using a self-timed

©->

£>

£V-*0--»fQ
©-•

3

<?
y—*0—nH

-0

(a) (b)

Figure 6.3. Acyclic precedence graphs corresponding to the if-then-else graph of

Fig. 6.2. (a) corresponds to the TRUE assignment of the control token, (b) to the
FALSE assignment.

strategy; each processor now gets several lists of actors, one list for each possible

assignment of the control tokens. The problem with this approach is that for a

graph with n different control tokens, there are 2 possible distinct APGs, each

corresponding to each execution path in the graph. Such a set of APGs can be

compactly represented using the so called Annotated Acyclic Precedence Graph

(AAPG) of [Buck93] in which actors and arcs are annotated with conditions under

which they exist in the graph. Buck uses the AAPG construct to determine whether

a bounded-length uniprocessor schedule exists. In the case of multiprocessor

scheduling, it is not clear how such an AAPG could be used to explore scheduling

options for the different values that the control tokens could take, without explic

itly enumerating all possible execution paths.

The main work in parallel scheduling of dataflow graphs that have dynamic

actors has been the Quasi-static scheduling approach, first proposed by Lee

[Lee88b] and extended by Ha [Ha92]. In this work, techniques have been devel

oped that statically schedule standard dynamic constructs such as data-dependent

conditionals, data-dependent iterations, and recursion. These constructs must be

identified in a given dataflow graph, either manually or automatically, before Ha's

techniques can be applied. These techniques make the simplifying assumption that

the control tokens for different dynamic actors are independent of one another, and

150

that each control stream consists of tokens that take TRUE or FALSE values ran

domly and are independent and identically distributed (i.i.d.) according to statistics

known at compile time. Such a quasi-static scheduling approach clearly does not

handle a general BDF graph, although it is a good starting point for doing so.

Ha's quasi-static approach constructs a blocked schedule for one iteration

of the dataflowgraph. The dynamic constructs are scheduledin a hierarchical fash

ion; each dynamic construct is scheduled on a certain number of processors, and is

then converted into a single node in the graph and is assigned a certain execution

profile. A profile of a dynamic construct consists of the number of processors

assigned to it, and the schedule of that construct on the assigned processors; the

profile essentially defines the shape that a dynamic actor takes in the processor-

time plane. When scheduling the remainder of the graph, the dynamic construct is

treated as an atomic block, and its profile is used to determine how to schedule the

remaining actors around it; the profile helps tiling actors in the processor-time

plane with the objective of minimizing the overall schedule length. Such a hierar

chical scheme effectively handles nested control constructs, e.g. nested condition

als.

One important aspect of quasi-static scheduling is determining execution

profiles of dynamic constructs. Ha [Ha92] studies this problem in detail and shows

how one can determine optimal profiles for constructs such as conditionals, data-

dependent iteration constructs, and recursion, assuming certain statistics are

known about the run time behaviour of these constructs.

We will consider only the conditional and the iteration construct here. We

will assume that we are given a quasi-static schedule, obtained either manually or

using Ha's techniques. We then explore how the techniques proposed in the previ

ous chapters for multiprocessors that utilize a self-timed scheduling strategy apply

when we implement a quasi-static schedule on a multiprocessor. First we propose

an implementation of a quasi-static schedule on a shared memory multiprocessor,

and then we show how we can implement the same program on the OMA architec

ture, using the hardware support provided in the OMA prototype for such an

151

implementation

6.2 Parallel

machines

implementation on shared memory

6.2.1 General strategy

A quasi-static schedule ensures that the pattern of processor availability is

identical regardless of how the data-dependent construct executes at runtime; in

the case of the conditional construct this means that irrespective of which branch is

actually taken, the pattern of processor availability after the construct completes

execution is the same. This has to be ensured by inserting idle time on processors

when necessary. Fig. 6.4 shows a quasi-static schedule for a conditional construct.

Maintaining the same pattern of processor availability allows static scheduling to

proceed after the execution of the conditional; the data-dependent nature of the

control construct can be ignored at that point. In Fig. 6.4 for example, the schedul-

CODE FOR ((•) conditional branch instructions

prod

TRUE proc 2
Branch

proc 3

pattern of processor availability

prod A ^MFALSE nmn9
Branch P™2 B c Kjfl^J

proc 3 D"H^MIJ
NO-OPS

CODE FOR g(»)

t
schedule for
subgraph-1

Figure 6.4. Quasi-static schedule for a conditional construct (adapted
from [Lee88b])

152

ing of subgraph-1 can proceed independent of the conditional construct because

the pattern of processor availability after this construct is the same independent of

the branchoutcome; note that "nops" (idle processor cycles) have been inserted to

ensure this.

Multiprocessor implementation of a quasi-static schedule directly, how

ever, implies enforcing global synchronization after each dynamic construct in

order to ensure a particular pattern of processor availability. We therefore use a

mechanism similar to the self-timed strategy; we first determine a quasi-static

schedule using the methods of Lee and Ha, and then discard the timing informa

tion and the restrictions of maintaining a processor availability profile. Instead, we

only retain the assignment of actors to processors, the order in which they execute,

and also under what conditions on the Boolean tokens in the system the actor

should execute. Synchronization between processors is done at run time whenever

processors communicate. This scheme is analogous to constructing a self-timed

schedule from a fully-static schedule, as discussed in section 1.2.2. Thus the quasi-

static schedule of Fig. 6.4 can be implemented by the set of programs in Fig. 6.5,

for the three processors. Here, {^i*^, r , r2} are the receive actors, and

Prod
A

receive c (rc1) <
»(c) {

E

receive (rj)
F

} else {
I

receive (r2)
J

}
<code for subgraph-1 >

Proc 2
B

send c (sc1)
C

H(c)

else

Proc 3

•• receive c (r^)

H(c){
H

send (Sj) } else
G L

*- send (S2)
K <code for subgraph-1 >

<code for subgraph-1 >

Figure 6.5. Programs on three processors for the quasi-static schedule

of Fig. 6.4

153

{scl, sv s2] are the send actors. The subscript V refers to actors that communi

cate control tokens.

The main difference between such an implementation and the self-timed

implementation we discussed in earlierchapters are the control tokens. Whenever

a conditional construct is partitioned across more than one processor, the control

token(s) that determine its behaviour must be broadcast to all the processors that

execute that construct. Thus in Fig. 6.4 the value c, which is computed by Proces

sor 2 (since the actor that produces c is assigned to Processor 2), must be broad

cast to the other two processors. In a shared memory machine this broadcast can be

implemented by allowing the processor that evaluates the control token (Processor

2 in our example) to write its value to a particular shared memory location preas-

signed at compile time; the processor will then update this location once for each

iteration of the graph. Processors that require the value of a particular control

token simply read that value from shared memory, and the processor that writes the

value of the control token needs to do so only once. In this way actor executions

can be conditioned upon the value of control tokens evaluated at run time. In the

previous chapters we discussed synchronization associated with data transfer

between processors. Synchronization checks must also be performed for the con

trol tokens; the processor that writes the value of a token must not overwrite the

shared memory location unless all processors requiring the value of that token

have in fact read the shared memory location, and processors reading a control

token must ascertain that the value they read corresponds to the current iteration

rather than a previous iteration.

The need for broadcast of control tokens creates additional communication

overhead that should ideally be taken into account during scheduling. The methods

of Lee and Ha, and also prior research related to quasi-static scheduling that they

refer to in their work, do not take this cost into account. Static multiprocessor

scheduling applied to graphs with dynamic constructs taking costs of distributing

control tokens into account is thus an interesting problem for further study.

154

6.2.2 Implementation on the OMA

Recall that the OMA architecture imposes an order in which sharedmem

ory is accessed by processors in the machine. This is done to implement the OT

strategy, and is feasible because the pattern of processor communications in a self-

timed schedule of an HSDF graph is in fact predictable. What happens when we

want to run a program derived from a quasi-static schedule, such as the parallel

program in Fig. 6.5, which was derived from the schedule in Fig. 6.4?Clearly, the

orderof processor accesses to shared memory is no longer predictable; it depends

on the outcome of run time evaluation of the control token c. The quasi-static

schedule of Fig. 6.4 specifies the schedules for the TRUE and FALSE branches of

the conditional. If the value of c were always TRUE, then we can determine from

the quasi-static schedule that the transaction order would be

(5ci» rci* rc2> sv rv <access order for subgraph-l>), and if the value of c were

always FALSE, the transaction order would be

(sd> rcV rc2> s2> r2»<access 0I"der for subgraph-1>) . Note that writing the con

trol token c once to shared memory is enough since the same shared location can

prod

TRUE proc 2
Branch

proc 3

schedule for
subgraph-1

(scV rcV rc2' sv rv <access order for subgraph-l>)

prod

FALSE nre^9
Branch Proc2

proc 3

(scVrcV rc2> s2> r2»<access or^er f°r subgraph-1>)

Figure 6.6. Transaction order corresponding to the TRUE and FALSE
branches

155

be read by all processors requiring the value of c.

For the OMA architecture, our proposedstrategy is to switch between these

two access orders at run time. This is enabled by the preset feature of the transac

tion controller (Chapter 3, section 3.4.2). Recall that the transaction controller is

implemented as a presettable schedule counter that addresses memory containing

the processor IDs corresponding to the bus access order. To handle conditional

constructs, we derive two bus access lists corresponding to each path in the pro

gram, and the processor that determines the branch condition (processor 2 in our

example) forces the controller to switch between the access lists by loading the

schedule counter with the appropriate value (address "7" in the bus access sched

ule of Fig. 6.7). Note from Fig. 6.7 that there are two points where the schedule

counter can be set; one is at the completion of the TRUE branch, and the other is a

jump into the FALSE branch. The branch intotheFALSEpath is best takencare of

by processor 2, since it computes the value of the control token c, whereas the

branch after the TRUE path (which bypasses the access list of the FALSE branch)

is best taken care of by processor 1, sinceprocessor 1 already possesses the bus at

the time when the counter needs to be loaded. The schedule counter load opera

tions are easily incorporated into the sequential programs of processors 1 and2.

The mechanism of switching between bus access orders works well when

the number of control tokens is small. But if the number of such tokens is large,

then this mechanisms breaks down, even if we can efficiently compute a quasi-

static schedule for the graph. To seewhy this is so,consider the graph in Fig. 6.8,

which contains k conditional constructs in parallel paths going from the input to

the output. The functions "f" and "gf are assumed to be subgraphs that are

assigned to more than one processor. In Ha's hierarchical scheduling approach,

each conditional is scheduled independently; once scheduled, it is converted into

an atomicnode in the hierarchy, and a profile is assigned to it. Scheduling of the

other conditional constructs can then proceed based on these profiles. Thus the

scheduling complexity in terms of the number of parallel paths is O (k) if there

are k parallel paths. If we implement the resulting quasi-static schedule in the

156

if c is FALSE proc 2
forces controller to jump
to the FALSE branch

if c is TRUE proc 1 forces
controller to bypass the
access list for the
FALSE branch

bus access list Addr

Proc 2 (scl)

Proc 1 (rcl)

Proc3(rc2)

Proc2

Proc2(s1)

Proc 1 (r,)

Procl

Proc3(s2)

ProcKr^)

T
I

Access list for the
TRUE branch

Access list for the
FALSE branch

Access order for
subgraph-1

Figure 6.7. Bus access list that is stored inthe schedule RAM for the quasi-static
schedule of Fig. 6.6. Loading operation of the schedule counter conditioned on
value of c is also shown.

manner stated in the previous section, and employ the OMA mechanismabove, we

would need one bus access list for every combination of the Booleans bit...,bk.

This is because each fj and gj will have its own associated bus access list, which

then has to be combined with the bus access lists of all the other branches to yield

one list. For example, if all Booleans £>{- are true, then all the fj's are executed, and

we get one access list. If bj is TRUE, and b2 through bkareFALSE, then g-| is exe

cuted, and f2 through f^ are executed. This corresponds to another bus access list.

This implies 2 bus access lists for each of the combination of fj and gj that exe

cute, i.e. for each possible execution path in the graph.

6.2.3 Improved mechanism

Although the idea of maintaining separate bus access lists is a simple

mechanism for handling control constructs, it can sometimes be impractical, as in

the example above. We propose an alternative mechanism based on masking that

handles parallel conditional constructs more effectively.

157

Figure 6.8. Conditional constructs in parallel paths

The main idea behind masking is to store an ID of a Boolean variable along

with the processor ID in the bus access list. The Boolean ID determines whether a

particular bus grant is "enabled." This allows us to combine the access lists of all

the nodes f-j through f|< and g-j throughg^. The bus grant corresponding to each fjis

tagged with the boolean ID of the corresponding bh and an additional bit indicates

that the bus grant is to be enabled when 6/ is TRUE. Similarly, each bus grant cor

responding to the access list of gj is tagged with the ID of bt, and an additional bit

indicates that the bus grant must be enabled only if the corresponding control

token has a FALSE value. At runtime, the controller steps through the bus access

list as before, but instead of simply granting the bus to the processorat the head of

the list, it first checks that the control token corresponding to the Boolean ID field

of the list is in its correct state. If it is in the correct state (i.e. it is TRUE for a bus

grantcorresponding to an fj andFALSE for abus grant corresponding to a g^, then

the bus grant is performed, otherwise it is masked. Thus the run time values of the

Booleans must be made available to the transaction controller for it to decide

whether to mask a particular bus grant or not.

More generally, a particular bus grant should be enabled by a product

158

(AND) function of the Boolean variables in the dataflow graph, and the comple

ment of these Booleans. Nested conditionals in parallel branches of the graph

necessitate bus grants thatare enabled by a product function; a similar need arises

whenbusgrants must be reordered based onvalues of theBoolean variables. Thus,

in general we need to implement an annotated bus access list of the form

{ (c^)ProclDv (c2)ProcID2,...} ; each bus access is annotated with a Bool

ean valued condition c(, indicating that thebus should be granted to the processor

corresponding to ProclDi when ci evaluates to TRUE; ci could be an arbitrary

product function of the Booleans (bv b2,..., bn) in the system, and the comple

mentsof these Booleans (e.g. c- = b2-b^, where thebar overavariable indicates

its complement).

This scheme is implemented as shown in Fig. 6.9. The schedule memory

X

shared address bus

shared data bus

memory maps the
flags CI through Cm

to the shared busK
address
decode

•* ...

n

T

<Condition>

Decoded
BG linos

<ProclD>

BG decode

BGOBGl BGn

C2 c3 -m

De-Mux

Enable

Signal indicating whether
to mask current BG or not

Figure 6.9. A bus access mechanism that selectively "masks0 bus
grants based on values of control tokens that are evaluated at run time

now contains two fields corresponding to eachbus access: <Condition>:<ProcID>

159

instead of the <ProcID> field alone that we had before. The <Condition> field

encodes a unique product ci associated with that particular bus access. In the

OMA prototype, we can use 3 bits for <ProcID>, and 5 bits for the <Condition>

field. This would allow us to handle 8 processors and 32 product combinations of

Booleans. There canbeup to m = 3 product terms in theworst case correspond

ing to n Booleans in the system, because each Boolean b- could appear in the

product term as itself, or its complement, or not at all (corresponding to a "don't

care"). It is unlikely thatall 3 possible product terms will berequired in practice;

we therefore expect such a scheme to be practical. The necessary product terms

(Cj) can be implemented within the controller at compile time, based on the bus

access pattern of the particulardynamic dataflow graph to be executed.

In Fig. 6.9, the flags bvb2,..., &n, are 1-bit memory elements (flip-flops)

that are memory mapped to the shared bus, and store the values of the Boolean

control tokens in the system. The processor that computes the value of each con

trol token updates the corresponding b. by writing to the shared memory location

that maps to br The product combinations cv c2 cn, are just AND functions

ofthe b.s and the complement ofthe b-s, e.g. c. could be b2 -F4. As the schedule

counter steps through the bus access list, the bus grant is actually granted only if

the condition corresponding to that access evaluates to TRUE; thus if the entry

<C2><Procl> appears at the head of the bus access list, and c2 = b2-b^, then

processor 1 receives a bus grant only if the control token b2 is TRUE and b4 is

FALSE, otherwise the bus grant is masked and the schedule counter moves up to

the next entry in the list.

This scheme can be incorporated into the transaction controller in our

existing OMA architecture prototype, since the controller is implemented on an

FPGA. The product terms c1$ c2,..., cn may be programmed into the FPGA at

compile time; when we generate programs for the processors, we can also generate

the annotated bus access list (a sequence of <Condition><Proc ID> entries), and a

hardware description for the FPGA (in VHDL, say) that implements the required

product terms.

160

6.2.4 Generating the annotated bus access list

Consider the problem of obtaining an annotated bus access list

{ (c1)ProcIDv (c2)ProcID2,...} , from which we can derive the sequence of

<Condition><Proc ID> entries for the mask-based transaction controller. A

straightforward, even if inefficient, mechanism for obtaining such a list is to use

enumeration; we simply enumerate all possible combinations of Booleans in the

system (2n combinations for n Booleans), and determine the bus access sequence

(sequence of ProcID's) for each combination. Each combination corresponds to an

execution path in the graph, and we can estimate the time of occurrence of bus

accesses corresponding to each combination from the quasi-static schedule. For

example, bus accesses corresponding to one schedule period of the two execution

paths in the quasi-static schedule of Fig. 6.6 may be marked along the time axis as

shown in Fig. 6.10 (we have ignored the bus access sequence corresponding to

subgraph-1 to keep the illustration simple).

The bus access schedules for each of the combinations can now be col

lapsed into one annotated list, as in Fig. 6.10; the fact that accesses for each combi

nation are ordered with respect to time allows us to enforce a global order on the

<*° j *?

8 8 8 8 8
pu a, ou & £

I h-H H • t c =TRUE

in n
ffl H- c = FALSE

{(c) Prod, (c) Prod, (c) Prod, (c) Prod, (c) Proc3, (c) Proc3, "annotated" list
(c)Prod, (c)Prod, (c)Proc3, (c)Proc 1}

Figure 6.10. Bus access lists andthe annotated list corresponding to Fig. 6.6

161

accesses in the collapsedbus access list. The bus accesses in the collapsed list are

annotated with their respective Boolean condition.

The collapsed list obtained above can be used as is in the masked controller

scheme; however there is a potential for optimizing this list. Note, however, that

the same transaction may appear in the access list corresponding to different Bool

ean combinations, because a particular Boolean token may be a "don't care" for

that bus access. For example, the first three bus accesses in Fig. 6.10 appearin both

execution paths, because they are independent of the value of c. In the worst case

a bus access that is independent of all Booleans will end up appearing in the bus

access lists of all the Boolean combinations. If these bus accesses appear contigu

ously in the collapsed bus access sequence, we can combine them into one. For

example, "(c) Proc2, (c) Proc2" in the annotated schedule of Fig. 6.10 can be

combined into a single "Proc 2" entry, which is not conditioned on any control

token. Consider another example: if we get contiguous entries M(bl •b2) Proc3"

and ti(bl •b2) Proc3" in the collapsed list, we can replace the two entries with a

single entry "{bx) Proc3".

More generally, if the collapsed list contains a contiguous segment of the

form:

{..., (cJProcIDp (c2)ProcIDk, (c3)ProcIDk,..., (c^ProcID^ ...} ,

we can write each of the contiguous segments as:

{..., (c1 + c2+ ...+cj)ProcIDk,...} ,

where the bus grant condition is an expression (Cj +c2 + ... +cj), which is asum

of products (SOP) function of the Booleans in the system. We can now apply 2-

level minimization to determine a minimal representation of each of these expres

sions. Such 2-level minimization can be done by using a logic minimization tool

such as ESPRESSO [Bray841, which simplifies a given SOP expression into an

SOP representation with minimal number of product terms. Suppose the expres

sion (Cj + c2+... +c7) can be minimized into another SOP expression

162

(Cj' +c2 + ... +c '), where p </. We can then replace the segment

{..., (cx)ProcJDk, (c2)ProcIDk, (c3)ProcIDk,.... (Cj)ProcIDk,...}

of the annotated bus access list with an equivalent segment of the form:

{..., (c^ProcIDp (c2')ProcIDk, (cz')Proc!Dk,..., (cpf)ProcIDk,...} .

We can thus obtain a minimal set of contiguous appearances of a bus grant

to the same processor.

Another optimization that can be performed is to combine annotated bus

access lists with the switching mechanism of section 6.2.1. Suppose we have the

following annotated bus access list:

{...,{ b1-F2\ProcIDi,lb1-F3)procIDj, (by- b4- b5)ProclDk,...} .
Then, by "factoring" b1 out,we can equivalently write the above list as:

{..., (bx) {{r^rocID^F^ProcID., (V b5)ProcIDk},...} .
Now, we can skip over all the three accesses whenever the Boolean b1 is FALSE

by loading the schedule counter and forcing it to increment its count by three,

instead of evaluating each access separately, and skipping over each one individu

ally. This strategy reduces overhead, becauseit costs an extra bus cycle to disable a

bus access when a condition correspondingto that bus access evaluates to FALSE;

by skipping over three bus accesses that we know are going to be disabled, we

save three idle bus cycles. There is an added cost of one cycle for loading the

schedule counter; the total savings in thisexample is therefore two bus cycles.

One of the problems with the above approach is that it involves explicit

enumeration of all possible combinations of Booleans, the complexity of which

limits the size of problems that can be tackled with this approach. An implicit

mechanism for representing all possibleexecution pathsis thereforedesirable. One

suchmechanism is the use of BinaryDecision Diagrams (BDDs), which have been

used to efficiently represent and manipulate Boolean functions for the purpose of

logicminimization [Bryant86]. BDDshavebeenused to compactly represent large

163

state spaces, and to perform operations implicitly over such state spaces when

methods based on explicit techniques are infeasible. One difficulty we encountered

in applying BDDs to our problem of representing execution paths is that it is not

obvious how precedence and ordering constraints can be encoded in a BDD repre

sentation. The execution paths corresponding to the various Boolean combinations

can be represented using a BDD, but it isn't clear how to represent the relative

order between bus accesses corresponding to the different execution paths. We

leave this as an area for future exploration.

6.3 Data-dependent iteration

A data-dependent iteration construct is shown in Fig. 6.2(b). A quasi-static

schedule for such a construct may look like the one in Fig. 6.11. We are assuming

Subgraph A Subgraphs B & D

J /
I fnU'x

prod

proc 2

proc 3

Subgraph C

t

S|^

k Iterations of subgraphs B & D

Figure 6.11. Quasi-static schedule for the data-dependent iteration

graph of Fig. 6.2(b).

that A, B, C, and D of Fig. 6.2(b) are subgraphs rather than atomic actors.

Such a quasi-static schedule can also be implemented in a straightforward

fashion on the OMA architecture, provided that the data-dependent construct spans

all the processors in the system. The bus access schedule corresponding to the iter

ated subgraph is simply repeated until the iteration construct terminates. The pro

cessor responsible for determining when the iteration terminates can be made to

force the schedule counter to loop back until the termination condition is reached.

164

This is shown in Fig. 6.12.

bus access

list for A

busaccess T
list for the
loop body X
(B&D) T

bus access
list for C

Bus access list

Processor that
determines termination
condition of the iteration
can also re-initialize
the schedule counter

Figure 6.12. A possible access order list corresponding to

the quasi-static schedule of Fig. 6.11.

6.4 Summary

This chapter dealt with extensions of the ordered transactions approach to

graphs with data-dependent control flow. We briefly reviewed the Boolean Data

flow model, and the quasi-static approach to scheduling conditional and data-

dependent iteration constructs. We then presented a scheme whereby the Ordered

Memory Access board could be used when such control constructs are included in

the dataflow graph. In this scheme, bus access schedules are computed for each set

of values that the control tokens in the graph evaluate to, and the bus access con

troller is made to select between these lists at run time based on which set of values

the control tokens actually take at any given time. This was also shown to be appli

cable to data-dependent iteration constructs. Such a scheme is feasible when the

number of execution paths in the graph is small. We proposed another mechamsm

based on masking of bus accesses depending on run time values of control tokens,

for handling the case when there aremultiple conditional constructs in "parallel."

165

7

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis we explored techniques that minimize inter-processor com

munication and synchronization costs in statically scheduled multiprocessors for

DSP. The main idea is that communication and synchronization in statically sched

uled hardware is fairly predictable, and this predictability can be exploited to

achieve our aims of low overhead parallel implementation at low hardware cost.

The first technique we looked at was the ordered transactions strategy, where the

idea is to predict the order of processor accesses to shared resources and enforce

this order at run time. We applied this idea to a shared bus multiprocessor where

the sequence of accesses to sharedmemory is pre-determined at compile time and

enforced at run time by a controller implemented in hardware. We built a prototype

of this architecture called the ordered memory access architecture, and demon

strated how we could achieve low overhead IPC at low hardware cost for the class

of DSP applications that can be specified as SDF graphs, and for which good com

pile time estimates of execution times exist. We also introduced the IPC graph

model for modeling self-timed schedules. This model was used to show that we

can determine a particular transaction order such that enforcing this order at run

time does not sacrifice performance when actual execution times of tasks are close

to their compile time estimates. When actual running times differ from the compile

time estimates, the computation performed is still correct, but the performance

166

(throughput) may be affected. We showed how such effects of run time variations

in execution times on the throughput of a given schedule can be quantified.

The ordered transactions approach also extends to graphs that include con

structs with data-dependent firing behaviour. We discussed how conditional con

structs and data-dependent iteration constructs can be mapped to the OMA

architecture, when the number of such control constructs is small — a reasonable

assumption for most DSP algorithms.

Finally, we presented techniques for minimizing synchronization costs in a

self-timed implementationthatcanbe achieved by systematically manipulating the

synchronization points in a given schedule; the IPC graph construct was used for

this purpose. The techniques proposed include deterrnining when certain synchro

nization points are redundant, transforming the IPC graph into a strongly con

nected graph, and then sizing buffers appropriately such that checks for buffer

overflow by the sender can be eliminated. We also outlined a technique we call

resynchronization, which introduces new synchronization points in the schedule

with the objective of minimizing the overallsynchronization cost.

The work presented in this thesis leads to several open problems and direc

tions for further research.

Mapping a general BDF graph onto the OMA to make best use of our abil

ity to switch between bus access schedules at run time is a topic thatrequires fur

ther study. Techniques for multiprocessor scheduling of BDF graphs could build

upon the quasi-static scheduling approach, whichrestricts itself to certain types of

dynamic constructs that need to be identified (for example as conditional con

structs or data-dependent iterations) before scheduling can proceed. Assumptions

regarding statistics of the Boolean tokens (e.g. the proportion ofTRUE valuesthat

a control token assumes during the execution of the schedule) would be required

for deterrnining multiprocessor schedules for BDF graphs.

The OMA architecture applies the ordered transactions strategy to a shared

bus multiprocessor. If the interprocessor communication bandwidth requirements

for an application are higher than what a single shared bus can support, a more

167

elaborate interconnect, such as a crossbar or a mesh topology, may be required. If

the processors in such a system run a self-timed schedule, the communication pat

tern is again periodic and we can predict this pattern at compile time. We can then

determine the states that the crossbar in such a system cycles through or we can

determine the sequence of settings for the switches in the mesh topology. The fact

that we can determine this information should make it possible to simplify the

hardware associated with these interconnect mechanisms, since the associated

switches need not be configured at run time. How exactly this compile time infor

mation can be made use of for simplifying the hardwarein such interconnects is an

interesting problem for further study.

In the techniques we proposed in Chapter 5 for rninimizing synchroniza

tion costs, no assumptions regarding bounds on execution times of actors in the

graph were made. A direction for further work is to incorporate timing guarantees

— for example, hard upper and lower execution time bounds, as Dietz, Zaafrani,

and O'Keefe use in [Dietz921; and handling of a mix of actors some of which have

guaranteed execution time bounds, and some that have no such guarantees, as Filo,

Ku, Coelho Jr., and De Micheli do in [Filo93]. Such guarantees could be used to

detect situations in which data will always be available before it is needed for con

sumption by another processor.

Also, execution time guarantees can be used to compute tighter buffer size

bounds. As a simple example, consider Fig. 7.1. Here, the analysis of section 5.8

Figure 7.1. An example of how execution time guarantees can be
used to reduce buffer size bounds.

168

yields a buffer sizefiy^ ((A, B)) = 3, since 3 is the minimum path delay of a

cycle that contains (A, B) . However, if t (A) and / (B) , the execution times of

actors A and B, are guaranteed to be equal to the same constant, then it is easily

verified that a buffer size of 1 will suffice for (A, B). Systematically applying

execution time guarantees to derive lower buffer size bounds appears to be a prom

ising direction for further work.

Another interesting problem is applyingthe synchronization minimization

techniques to graphs that contain dynamic constructs. Suppose we schedule a

graph that contains dynamic constructs using a quasi-static approach, or a more

general approach if one becomes available. Is it still possible to employ the syn

chronization optimization techniques we discussed in Chapter 5? The first step to

take would be to obtain an IPC graph equivalent for the quasi-static schedule that

has a representation for the control constructs that a processor may execute as a

partof the quasi-staticschedule. If we can show that the conditions we established

for a synchronization operation to be redundant (in section5.6) holds for allexecu

tion pathsin the quasi-static schedule, then we could identify redundant synchroni

zation points in the schedule. It may also be possible to extend the strongly-

connect and resynchronization transformations to handle graphs containing condi

tional constructs; these issues require further investigation.

169

REFERENCES

[Ack82]

W. B. Ackerman, "Data Flow Languages," IEEE Computer Magazine, Vol.

15, No. 2, February, 1982.

[Adam74]

T. L. Adam, K. M. Chandy and J. R. Dickson, "A Comparison of List

Schedules for Parallel Processing Systems," Communications of the ACM,

Vol. 17, No. 12, pp. 685-690, December 1974.

[Aik88]

A. Aiken, and A. Nicolau, "Optimal Loop Parallelization," Proceedings of

the SIGPLAN 88 Conference on Programming Language Design and

Implementation, 1988.

[Alle87]

R. Allen and K. Kennedy, "Automatic Transformation of Fortran Programs

to Vector Form," ACM Transactions on Programming Languages and Sys

tems, Vol. 9, No. 4, October, 1987.

[Ambl92]

A. L. Ambler, M. M. Burnett, and B. A. Zimmerman, "Operational Versus

Definitional: A Perspective on Programming Paradigms," IEEE Computer

Magazine, Vol. 25, No. 9, September, 1992.

[Ariel91]

User's Manualfor the S-56X, Ariel Corporation, Highland Park, New Jer

sey, 1991.

[Arvi90]

Arvind and R. S. Nikhil, "Executing a Program on the MIT Tagged-Token

170

Dataflow Architecture," IEEE Transactions on Computers, Vol. C-39, No.

3, March, 1990.

[Arvi91]

Arvind, L. Bic, and T Ungerer, "Evolution of Dataflow Computers,"

Advanced Topics in Dataflow Computing, Prentice-Hall, 1991.

[Bacc92]

F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization and

Linearity, John Wiley & Sons Inc., New York, pp. 103-154,1992.

[Bacc92]

F. Baccelli and Z. Liu, "On a Class of Stochastic Recursive Sequences

Arising in Queueing Theory," The Annals of Probability, Vol. 20, No. 1,

pp. 350-374.

[Barr91]

B. Barrera and E. A. Lee, "Multirate Signal Processing in Comdisco's

SPW," Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing, Toronto, April, 1991.

[Ben91]

A. Benveniste and G. Berry, "The Synchronous Approach to Reactive and

Real-Time Systems," Proceedings of the IEEE, Vol. 79, No. 9, 1991,

pp.1270-1282.

[Bhat95a]

S. S. Bhattacharyya, S. Sriram, and E. A. Lee, Optimizing Synchronization

in Multiprocessor Implementations ofIterative Dataflow

Programs, ERL Technical Report UCB/ERL M95/2, University of Califor

nia, Berkeley, CA 94720, January 5,1995.

[Bhat95b]

171

S. S. Bhattacharyya, S. Sriram, and E. A. Lee, Resynchronization for

Embedded Multiprocessors, Draft XXX, to be made into an ERL memo.

[Bhat93]

S. S. Bhattacharyya and Edward A. Lee, "Scheduling Synchronous Data

flow Graphs for Efficient Looping," Journal of VLSI Signal Processing,

No. 6,1993.

[Bhat94]

S. S. Bhattacharyya and E. A. Lee, "Memory Management for Dataflow

Programming of Multirate Signal Processing Algorithms,"IEEE Trans, on

SignalProcessing, Vol. 42, No.5, May 1994.

[Bier89]

J. Bier and E. A. Lee, "Frigg: A Simulation Environment for Multiproces

sor DSP System Development", Proceedings of the International Confer

ence on Computer Design, pp. 280-283,October, 1989, Boston, MA.

[Bier90]

J. Bier,S. Sriramand E. A. Lee, "A Class of Multiprocessor Architectures

for Real-Time DSP," VLSI DSP IV, ed. H. Moscovitz, IEEE Press, Novem

ber, 1990.

[Bils94]

G. Bilsen,M. Engels, R. Lauwereins andJ. A. Peperstraete, "Static Sched

uling of Multi-Rate and Cyclo-Static DSPApplications," VLSI SignalPro

cessing VII, IEEE Press, 1994.

[Blaz87]

J. Blazewicz, "Selected Topics in Scheduling Theory," in Surveys in Com

binatorial Optimization, North HollandMathematica Studies, 1987.

[Bork88]

172

S. Borkar et. al., "iWarp: An Integrated Solution to High-Speed Parallel

Computing", Proceedings of Supercomputing 1988 Conference, Orlando,

Florida, 1988.

[Bray84]

R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vin-

centelli, Logic Minimization Algorithms for VLSI Synthesis, Kluwer Aca

demic Publishers, 1984.

[Bryant861

R. E. Bryant, "Graph Based Algorithms for Boolean Function Manipula

tion," IEEE Transactions on Computers, C-35(8), pp. 677-691, August

1986.

[Buck93]

J. T. Buck, Scheduling Dynamic Dataflow Graphs with Bounded Memory

using the Token Flow Model, Ph. D. Thesis, Memorandum No. UCB/

ERLM93/69, Electronics Research Laboratory, University of California at

Berkeley, September, 1993.

[Buck94]

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Frame

work for Simulating and Prototyping Heterogeneous Systems," Interna

tionalJournal ofComputer Simulation, January 1994.

[Cam92]

J. Campos and M. Silva, "Structural Techniques and Performance Bounds

of Stochastic Petri Net Models," in Advances in Petri Nets 1993, pp. 325-

349, edited by G. Rosenberg, Springer-Verlag, 1993.

[Chase84]

M. Chase, "A Pipelined Data Flow Architecture for Digital Signal Process-

173

ing: The NEC mPD7281," IEEE Workshop on Signal Processing, Novem

ber 1984.

[Chao92]

L. F. Chao, and E. Sha, "Unfolding and Retiming Data-Flow DSP Pro

grams for RISC Multiprocessor Scheduling," Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing,

April 1992.

[Chre83]

P. Chretienne, "Timed Event Graphs: A Complete Study of their Controlled

Executions," International Workshop on Timed Petri Nets, July 1985.

[Cohen85]

G. Cohen, D. Dubois, J. Quadrat, "A Linear System Theoretic View of Dis

crete Event Processes and its use for Performance Evaluation in Manufac

turing," IEEE Transactions on Automatic Control, March 1985.

[Corm92]

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo

rithms, The MET Press and the McGraw Hill Book Company, Sixth print

ing, Chapter 25, pp. 542-543,1992.

[Cun79]

R. Cunningham-Green, "Minimax Algebra," Lecture Notes in Economics

andMathematical Systems, Vol. 166, Springer-Verlag 1979.

[deGroot92]

S. M. H. de Groot, S. Gerez, and O. Herrmann, "Range-Chart-Guided Iter

ative Data-Flow Graph Scheduling," IEEE Transactions on Circuits and

Systems, pp. 351-364, May 1992.

[DeMich94]

174

G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw

Hill Inc., New Jersey, 1994.

[Denn80]

J. B. Dennis, "Dataflow Supercomputers," IEEE Computer Magazine, Vol.

13, No. 11, November, 1980.

[Dietz92]

H. G. Dietz, A. Zaafrani, and M. T. O'Keefe, "Static Scheduling for Barrier

MIMD Architectures," Journal ofSupercomputing, Vol. 5, No. 4,1992.

[Durr91]

R. Durett, Probability: Theory and Examples, Wadsworth & Brooks/Cole

Statistics/Probability Series, Pacific Grove, CA, 1991.

[Filo93]

D. Filo, D. C. Ku, C. N. Coelho Jr., and G. De Micheli, "Interface Optimi

zation for Concurrent Systems Under Timing Constraints," IEEE Transac

tions on Very Large Scale Integration, Vol. 1, No. 3, September, 1993.

[Gajs94]

D. J. Gajski, F. Vahid, S. Narayan and J. Gong, Specification and Design of

EmbeddedSystems, Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[Garey79]

M. R. Garey and D. S. Johnson, Computers and Intractability — A Guide

to the Theory of NP-Completeness, W. H. Freeman and Company, New

York, 1979.

[Gasp92]

F. Gasperoni and Uwe Schweigelshohn, "Scheduling Loops on Parallel

Processors: A Simple Algorithm with Close to Optimum Performance,"

International Conference on Vector & Parallel Processors, Sept. 1992.

175

[Gau91]

J. Gaudiot and L. Bic, Advanced Topics in Data-flow Computing, Prentice

Hall, Englewood Cliffs, New Jersey, 1991.

[Gov941

R. Govindarajan, G. R. Gao, and P. Desai,"Minimizing Memory Require

ments in Rate-Optimal Schedules," Proceedings of the International Con

ference on Application Specific Array Processors, San Francisco, August,

1994.

[Grin881

C. M. Grinstead, "Cycle Lengths inAkb*," SIAM Journal on Matrix Analy

sis, October 1988.

[Ha921

S. Ha, Compile Time Scheduling of Dataflow Program Graphs with

Dynamic Constructs, Ph. D. Thesis, Memorandum No. UCB/ERL M92/43,

April 1992.

[Hal91]

N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, "The Synchronous

Data Flow Programming Language LUSTRE," Proceedings of the IEEE,

September 1991.

[Hal93]

N. Halbwachs, Synchronous Programming of Reactive Systems, Kluwer

Academic Publishers, 1993.

[Hav91]

B. R. Haverkort, "Approximate Performability Analysis Using Generalized

Stochastic Petri Nets," Proceedings of the Fourth International Workshop

on Petri Nets and Performance Models, Melbourne, Australia, pp. 176-

176

185,1991.

[Hu61]

T. C. Hu, "Parallel Sequencingand Assembly Line Problems," Operations

Research,\o\.9,1961.

[Huis93]

J. A. Huisken et. al., "Synthesis of Synchronous Communication Hardware

in a Multiprocessor Architecture,"Journal ofVLSI Signal Processing, Vol.

6,pp.289-299,1993.

[Kala93]

A. Kalavade, and E. A. Lee, "A Hardware/Software Codesign Methodol

ogy for DSP Applications," IEEE Design and Test, September 1993,Vol.

10, No. 3, pp. 16-28.

[Karp66]

R. M. Karp and R. E. Miller, "Properties of a Model for Parallel Computa

tions: Determinacy, Termination Queueing," SIAM Journal of Applied

Math., Vol. 14, No. 6, November, 1966.

[Karp78]

R. M. Karp, "A Characterization of the Minimum Cycle Mean in a

Digraph," Discrete Mathematics, Vol. 23, 1978.

[Koh90]

W. Koh, A Reconfigurable MultiprocessorSystemfor DSP Behavioral Sim

ulation, Ph. D. Thesis, Memorandum No. UCB/ERL M90/53, Electronics

Research Laboratory, University of California, Berkeley, June 1990.

[Koh75]

W. H. Kohler, "A Preliminary Evaluation of Critical Path Method for

Scheduling Tasks on Multiprocessor Systems," IEEE Transactions on

177

Computers, pp. 1235-1238, December 1975.

[Kung87]

S. Y. Kung, P. S. Lewis, and S. C. Lo, "Performance Analysis and Optimi

zation of VLSI Dataflow Arrays" Journal of Parallel and Distributed

Computing, Vol. 4, pp. 592-618,1987.

[Kung88]

S. Y. Kung, VLSI array processors, Englewood Cliffs, N. J., Prentice Hall,

1988.

[Lam88]

M. Lam, "Software Pipelining: An Effective Scheduling Technique for

VLIW Machines," Proceedings of theSIGPLAN1988Conference on Pro

gramming Language Design andImplementation, pp. 318-328, June 1988.

[Lam89]

M. Lam, A Systolic Array Optimizing Compiler, Kluwer Academic Pub

lishers, Norwell, Massachusetts, 1989.

[Lamp86]

L. Lamport, "The Mutual Exclusion Problem: Part I and n," Journal ofthe

ACM, Vol. 33, No. 2, pp. 313-348,April 1986.

[Laps91]

P. D. Lapsley, HostInterface andDebugging ofDataflow DSPSystems, M.

S. Thesis, Electronics Research Laboratory, University of California, Ber

keley, CA 94720, December, 1991.

[Lauw90]

R. Lauwereins, M. Engels, J.A. Peperstraete, E. Steegmans, and J. Van

Ginderdeuren, "GRAPE: A CASE Tool for Digital Signal Parallel Process

ing," IEEE ASSP Magazine, Vol. 7, No. 2, April, 1990.

178

[Law761

E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,

Rinehart and Winston, New York, pp. 65-80,1976.

[Lee861

E. A. Lee, A Coupled Hardware and Software Architecture for Program

mable DSPs, Ph. D. Thesis, Department of EECS, University of California

Berkeley, May 1986.

[Lee87]

E. A. Lee and D. G. Messerschmitt, "Static Scheduling of Synchronous

Dataflow Programs for Digital Signal Processing," IEEE Transactions on

Computers, February, 1987.

[Lee88a]

E. A. Lee, "Programmable DSP Architectures, Part I", IEEE Acoustics,

Speech, andSignal ProcessingMagazine, October, 1988.

[Lee88b]

E. A. Lee, "Recurrences, Iteration, and Conditionals in Statically Sched

uled Block Diagram Languages," VLSI Signal Processing III, IEEE, Press,

1988.

[Lee89]

E. A. Lee, and S. Ha, "Scheduling Strategies for Multiprocessor Real-Time

DSP," Globecom, Dallas Texas, pp. 1279-1283, November 1989.

[Lee90]

E. A. Lee and J. C. Bier,"Architectures for StaticallyScheduledDataflow,"

Journal of Parallel and Distributed Computing, Vol. 10, pp. 333-348,

December 1990.

[Lee91]

179

E. A. Lee, "Consistency in Dataflow Graphs", IEEE Transactions on Par

allel and Distributed Systems, Vol. 2, No. 2, April 1991.

[Lee93]

E. A. Lee, "Representing and Exploiting Data Parallelism Using Multidi

mensional Dataflow Diagrams," Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, Minneapolis,

Vol. 1, pp. 453-456, April 1993.

[Lee95]

E. A. Lee and T. M. Parks, "Dataflow Process Networks," Proceedings of

the IEEE,May 1995.

[Lei91]

C. E. Leiserson and J. B. Saxe, "RetimingSynchronous Circuitry," Algo-

rithmica, Vol. 6, No. 1, pp. 5-35,1991.

[Len92]

D. Lenoski, J. Laudon, K. Gharachorloo, W. D. Weber and J. Hennessey,

"The Stanford Dash multiprocessor," IEEE Computer, March 1992.

[Lew81]

H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computa

tion, Prentice Hall, 1982.

[Liao94]

G. Liao, G. R. Gao, E. Altman, and V. K.Agarwal, AComparative Study of

DSPMultiprocessor List Scheduling Heuristics, technical report, School of

Computer Science, McGill University, 1994.

[Iiao95]

S. Liao, S. Devadas, K. Keutzer, S. Tjiang and A. Wang, "Code Optimiza

tion Techniques for Embedded DSP Microprocessors," Proceedings of the

180

32nd Design Automation Conference, June 1995.

[Li95]

Y. S. Li and S. Malik, "Performance Analysis of Embedded Software

Using Implicit Path Enumeration," Proceedings of the 32nd Design Auto

mation Conference, June 1995.

[Messer88]

D. G. Messerschmitt, "Breaking the Recursive Bottleneck," in Perfor

mance Limits in Communication Theory and Practice, J. K. Skwirzynski

editor, Chapter 7, Kluwer Academic Publishers, 1988.

[Moll82]

Michael K. Molloy, "Performance Analysis Using Stochastic Petri Nets,"

IEEE Transactions on Computers, Vol. c-31, No. 9, September 1982.

[Moto89]

DSP96002 IEEE Floating-Point Dual-Port Processor User's Manual,

Motorola Inc., 1989.

[Moto90]

DSP96000ADS Application Development System Reference Manual,

Motorola Inc., 1990.

[Mouss92]

F. Moussavi and D. G. Messerschmitt, "Statistical Memory Management

for Digital Signal Processing," Proceedings ofthe 1992 IEEE International

Symposium on Circuitsand Systems, Vol. 2, pp. 1011-14, May 1992.

[Mur89]

T. Murata, "Petri nets: Properties, Analysis, and Applications," Proceed

ings ofthe IEEE, Vol. 77, pp. 39-58, January 1989.

[Ols90]

181

G. J. Olsder, J. A. C. Resing, R. E. De Vries and M. S. Keane, "Discrete

Event Systems with Stochastic Processing Times," IEEE Transactions on

Automatic Control, March 1990, Vol.35,No.3, pp. 299-302.

[01s89]

G. J. Oldser, "Performance Analysis of Data-driven Networks," Systolic

Array Processors; Contributions by Speakers at the International Confer

ence on Systolic Arrays; Edited by: J. McCanny, J. McWhiter, E. Swartz-

lander Jr., Prentice Hall, New York, 1989,pp. 33-41.

[Ous94]

J. K. Ousterhout, An Introduction to Tcl and Tk, Addison-Wesley Publish

ing, Redwood City, CA, 1994.

[Pap90]

G. M. Papadopoulos, "Monsoon: A Dataflow Computing Architecture

Suitable for Intelligent Control," Proceedings of the 5th IEEE Interna

tional Symposium on Intelligent Control, 1990.

[Parhi91]

K. Parhi, and D. G. Messerschmitt, "Static Rate-optimal Scheduling of

Iterative Data-flowProgramsvia Optimum Unfolding,"IEEE Transactions

on Computers, Vol. 40, No. 2, pp. 178-194, February 1991.

[Patt90]

D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative

Approach,Morgan Kaufman Publishers, 1990.

[Peter81]

J. L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice-

Hall Inc., 1981.

[Pin95a]

182

J. Pino, S. Ha, E. A. Lee, and J. T. Buck, "Software Synthesis for DSP

Using Ptolemy," Journal of VLSI Signal Processing, Vol. 9, No. 1, January,

1995.

[Pin95b]

J. L. Pino, S. S. Bhattacharyya andE. A.Lee, "A Hierarchical Multiproces

sor SchedulingSystemfor DSP Applications," to appear in IEEE Asilomar

Conference on Signals, Systems, and Computers, Pacific Grove, CA, Octo

ber 29 - November 1,1995.

[Pow92]

D. B. Powell, E. A. Lee, and W. C. Newman, "Direct Synthesis of Opti

mized DSP Assembly Code from Signal Flow Block Diagrams," Proceed

ings of the International Conference on Acoustics, Speech, and Signal

Processing, San Francisco, March, 1992.

[Prin91]

H. Printz, Automatic Mapping of Large Signal Processing Systems to a

Parallel Machine, Ph.D. thesis, Memorandum CMU-CS-91-101, School of

Computer Science, Carnegie Mellon University, May, 1991.

[Prin92]

H. Printz, "Compilation of Narrowband Spectral Detection Systems for

Linear MIMD Machines," Proceedings of the International Conference on

Application Specific ArrayProcessors, Berkeley, August, 1992.

[Ptol94]

Ptolemy design group, UC Berkeley, TheAlmagest, UC Berkeley, 1994.

[Rab-91]

J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, "Fast Prototyping of

Datapath Intensive Architectures," IEEE Design and Test of Computers,

183

Vol. 8, No. 2, pp. 40-51, June 1991.

[Rajs94]

Sergio Rajsbaum and Mosha Sidi, "On the Performance of Synchronized

Programs in Distributed Networks with Random Processing Times and

Transmission Delays," IEEE Transactions onParallel andDistributed Sys

tems. Vol. 5, No. 9, September 1994.

[Ram80]

C. V. Ramamoorthy and G. S. Ho, "Performance Evaluation of Asynchro

nous Concurrent Systems using Petri Nets," IEEE Transactions on Soft

ware Engineering, Vol. SE-6, No. 5, pp. 440-449, September 1980.

[Ram72]

C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzalez, "Optimal Sched

uling Strategies in Multiprocessor Systems," IEEE Transactions on Com

puters, Feb. 1972.

[Reit68]

R. Reiter, "Scheduling Parallel Computations", Journal of the Association

for Computing Machinery, October 1968.

[RenfSl]

M. Renfors andY. Neuvo, "The Maximum Sampling Rate of DigitalFilters

Under Hardware Speed Constraints," IEEE Transactions on Circuits and

Systems, C AS-28(3), March 1981.

[Ritz92]

S. Ritz, M. Pankert, and H. Meyr, "High Level Software Synthesis for Sig

nal Processing Systems," Proceedings of the International Conference on

ApplicationSpecific ArrayProcessors, Berkeley, August, 1992.

[Sark89]

184

V. Sarkar, "Partitioning and Scheduling Parallel Programs for Multiproces

sors," Research Monographs in Parallel and Distributed Computing, Pit

man, London, 1989.

[Sha89]

P. L. Shaffer, "Minimization of Interprocessor Synchronization in Multi

processors with Shared and Private Memory," International Conference on

Parallel Processing, 1989.

[Schw85]

D. A. Schwartz, and T. P. Barnwell m, "Cyclo-Static Solutions: Optimal

Multiprocessor Realizations of Recursive Algorithms," VLSI Signal Pro

cessing II, IEEE Special Publications, pp. 117-128, June 1985.

[Shen92]

N. Shenoy, R. K. Brayton, A. L. Sangiovanni-Vincentelli, "Graph algo

rithms for clock schedule optimization," in 7992 IEEE/ACMInternational

Conference on Computer-Aided Design. Digest ofTechnical Papers (Cat.

No.92CH03183-l), SantaClara, CA, pp. 132-6.

[Sih91]

G. C. Sin, Multiprocessor Scheduling to account for Interprocessor Com

munication, Ph. D. Thesis, Department of EECS, University of California

Berkeley, April 1991.

[Stolz91]

A. Stolzle, A Real Time Large Vocabulary Connected Speech Recognition

System, Ph. D.Thesis, Department of EECS, University of California Ber

keley, December 1991.

[Sriv92]

M. B. Srivastava, Rapid-Prototyping of Hardware andSoftware in a Uni-

185

fled Framework, Ph. D. Thesis, Memorandum No. UCB/ERL M92/67,

Electronics Research Laboratory, University of California, Berkeley, June

1992.

[Thor86]

Thor Tutorial, VLSI CAD Group, Stanford University, 1986.

[Vai93]

P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall,

1993.

[Veig90]

M. Veiga, J. Parera and J. Santos, "Programming DSP Systems on Multi

processor Architectures," Proceedings of the International Conference on

Acoustics, Speech, andSignalProcessing, Albuquerque,April 1990.

[Yao93]

L. Yao and C. M. Woodside, "Iterative Decompositionand Aggregation of

Stochastic Marked Graph Petri Nets," in Advances in PetriNets 1993, pp.

325-349, edited by G. Rosenberg, Springer-Verlag, 1993.

[Zaky89]

A. Zaky and P. Sadayappan, "Optimal Static Scheduling of Sequential

Loops on Multiprocessors," Proceedings of the International Conference

on Parallel Processing, Vol. 3, pp. 130-137,1989.

[Zivo94a]

V. Zivojnovic, S. Ritz and H. Meyr, "Retiming of DSP programs for opti

mum vectorization," Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing,April 1994.

[Zivo94b]

V. Zivojnovic, H. Koerner, and H. Meyr, "Multiprocessor Scheduling with

186

A-priori Node Assignment," VLSI Signal Processing VII, IEEE Press,

1994.

[Zivo95]

V. Zivojnovic, J. M. Velarde, C. Schlager and H. Meyer, "DSPSTONE: A

DSP-Oriented Benchmarking Methodology," Proceedings of ICSPAT,

1995.

187

	Copyright notice 1995
	ERL-95-90

