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Abstract

In this paper, we study the synchronization of two coupled nonlinear, in particular chaotic,

systems which are not identical. We show how adaptive controllers can be used to adjust the

parameters of the systems such that the two systems will synchronize. We use a Lyapunov func

tion approach to prove a global result which shows that our choice of controllers will synchronize

the two systems. We show how it is related to Huberman-Lumer adaptive control and the LMS

adaptive algorithm.

We illustrate the applicability of this method using Chua's oscillators as the chaotic systems.

We choose parameters for the two systems which are orders of magnitude apart to illustrate the
effectiveness of the adaptive controllers. Finally, we discuss the role of adaptive synchronization

in the context of secure and spread spectrum communication systems. In particular, we show
how several signals can be encoded onto a single scalar chaotic carrier signal.

1 Introduction

Recently, there has been much work done in the area of chaotic synchronization [Fujisaka and
Yamada, 1983; Pecora and Carroll, 1990; He and Vaidya, 1992; Wu and Chua, 1993; Wu and
Chua, 1994; Wu and Chua, 1995a; Wu and Chua, 1995b; Wu et a/., 1995]. In most of the analysis
done on two coupled chaotic systems, the two systems are assumed to be identical. In practical
implementations this will not be the case, and some work has been done to address this problem
using an adaptive approach [Sinha et a/., 1990; John and Amritkar, 1994; Celka, 1995; Chua et a/.,
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1996]. This can be considered as a form of model following or model reference adaptive control
where the plant system is driven in such a way as to track the dynamics of the model system.
When the model system exhibits an unstable orbit, this can be interpreted as adaptive control to

force the plant system dynamics to unstable orbits. On the other hand, such parameter mismatch

between the two systems could be introduced intentionally as a way to encode information onto the

chaotic carrier [Parlitz et a/., 1992; Dedieu et a/., 1993; Parlitz and Kocarev, 1995]. The adaptive

controllers are then used to recover this encoded information.

The purpose of this paper is to further study the use of adaptive controllers to enforce the

synchronization even though initially the two coupled systems are not identical. In particular,

we propose a general theoretical framework in which to study this problem and present adaptive

controllers based on a Lyapunov approach, similar to those used in model referenceadaptive control.

In Section 2 we present the general framework and the main theorem which provesthat the use

of adaptive controllers will synchronize two coupled systems which are not identical initially. We
discuss the relation to other proposed schemes for adaptive control and synchronization. In Section

3 we extend the result in Section 2 by allowing the coupling to be adaptive. This eliminates the

need to estimate the dynamics of the two systems. In Section 4 we consider the special case of
unidirectional coupling. In Section 5 we illustrate the results presented by means of two coupled
Chua's oscillators. We show that the adaptive controllers can still synchronize the two systems

and make the driven system's parameters converge towards the driving system's parameters even

though the parameters of the two systems differ initially by orders of magnitude. Finally, in Section
6 we consider synchronization by means of adaptive controllers in the context of secure and spread
spectrum communication systems. We show how several information signals can be encoded onto
a single chaotic signal.

We use lowercase, bold uppercase and bold lowercase letters for scalars (or scalar-valued func
tions), matrices and vectors respectively. The transpose ofamatrix A is denoted AT. The vector
0 denotes the zero vector. The identity matrix is written as I. The integer n is usually used to

denote the size of matrices and vectors.

2 Adaptive Synchronization of Two Coupled Systems

Our starting framework will betwosystems coupled together, given bythe following stateequations:

*w = £ A*f*(*)+Bu <- system 1 (1)

5L(t) = £ Afcffc (x) +Bu <- System 2 (2)

where x and x are the state vectors of System 1 and System 2 respectively. We assume that f*
and fjt are nonlinear functions which are continuous. The vectors u and u are the inputs to the



corresponding systems. The entries of the matrices A* and A* can be considered as parameters of
the two systems respectively. Eqs. (l)-(2) can be considered as nonlinear systems which are linear

in the parameters.

Note that the coupling could be bidirectional, i.e. System 1 influences System 2 and vice versa.
Our emphasis will be on applications such as model-following, communication systems, and master-
slave driving, where the coupling is unidirectional, i.e., one system influences the other but not the
other way around. Forexample, if system 1 is the driving system and system 2 is the driven system,

then u will not depend on x or u.

We define the synchronization (or tracking) error to be:

r(«) = x(t) - *(«) (3)

Then we have:

m

r=£ [Ajbfifc(x) - Aj&(x)] +Bu - Bu (4)
k=i

This can be rewritten as

f=£ [(A* - A*)f*(X) +A*(ffc(x) - ffc(x)) +Ajb(ffc(x) - f*(x))] +Bu - Bii (5)
k=i

Consider the following control laws for the 2 systems:

u = z + g(x)-g(x)

u = z+h(x)-h(x) l '

where z and z are the external input signals that is fed into the two systems respectively (e.g.
periodic forcing).

Substituting Eq.(6) into Eq.(5) gives:

* = EEaCAfc-AOfcp)
+£E=iA*(f*(x)-fjk(x))

+EiiAfc«ib(x)-ft(x)) {t)

Let us denote

+Bz - Bz + (Bg + Bh)(x) - (Bg + Bh)(x)

p = Bg + Bh

p = Bg + Bh

The goal is to change A* adaptively such that A* and A* approach each other. Using a
Lyapunov approach, we construct adaptive controllers for A*, given in the following theorem. We
denote A* ={«&}{& and A* ={J$}|£j.



Theorem 1 Assume that A* is constant and

Bz = Bz (8)

P = P (9)

f* = ?* (10)

for each k, and there exists a realnumber A> 0 and V symmetric positive definite such that
m

AI + £(VAfcZ>ft(x)) +V£>p(x) (11)

is negative definite for all x, where -Dffc(x) and Z>p(x) are the Jacobian matrices offk and p at x
respectively.

Let s = («i,..., sn)T = Vr. If we use the adaptive controller for A* given by:

fi* = pMsfaWlj (12)

such that <j>i>j>k > 0 for all i,j and k, and the control laws specified by (6), then we can draw the
following two conclusions:

1. The synchronization error r(t) and the parameter mismatch A*-A* (2) can be made arbitrarily
small for all time t>0, if we choose the initial error r(0) and the initial parameter mismatch
Ajt —Afc(0) to be sufficiently small.

2. The two systems in Eq. (1) and Eq. (2) are synchronized ,i.e.,

r -• 0 (13)

as t -> oo. Furthermore, if either x or St is bounded for all time t > 0, then we have

4 -+ 0 (14)

as t —• oo.

Proof: Construct the Lyapunov function V as follows:

V(x,x, A», A*) =i(rTVr) +\ £ JL(a& - «&)» (15)
Given the assumptions, Eq. (7) can be simplified to:

r = £?=iA*(fjb(x)-ffc(x))

+ Eti (A* - Afc) ffc(x) +p(x) - p(x)
Differentiating V along the trajectories, we get

= rTV (EtiA*(ft(x) - f*(x)) +p(x) - p(x) +E?=i (A* - A*) ft(x)) (n)
+E,-,i,fc(^-4>«(f*(X))i

= rTV(EE.iAfc(ft(x) - ffc(x)) +p(x) - p(x)) <-ArTr



by the assumptions (see page 982 of [Wu and Chua, 1994]). The first conclusion follows from
Theorem 1.2.1 of [Lakshmikantham and Liu, 1993]. Note that if A* becomes unbounded, then
V -» +oo which contradicts V < 0. Thus for each fc, A* remains bounded for all time and the

second conclusion follows from an application of Theorem 1.2.3 of [Lakshmikantham and Liu, 1993].

•

Although the statement of the theorem dictates that all ft** > 0, it is clear that the theorem
is still true when we set $*•** = 0 for those {i, j,&} such that akj = a*-. In other words, we only
need to adapt the mismatched parameters. The condition of x or x being bounded in conclusion 2

can be removed if all the ft have bounded range, e.g. if they are sigmoid functions.
•k t.Note that the theorem only implies that atJ- —• 0. It doesn't say that a*- converges, and even

if akj converges it doesn't necessarily imply that a- —• akj and it is unrealistic to expect that in
general. First of all, it is possible that £A Ajtft = £* Afcft even when A* ^ Afc. This suggests

that in the design we should choose ft such that this does not occur. Second of all, it is possible

that several sets of parameters akj generate the same trajectory in System 2 and akj converge to
only one such set. This is especially true if the trajectory is pretty boring and covers a small part of

the phase space, e.g. an equilibrium point. One strategy is to run the adaptive controllers several

times, but using different initial conditions to "map" out the dynamics of the systems. On the other

hand, if for a given trajectory of the systems, there can correspond only one set of parameters which

generates that trajectory, then the two sets of parameters akj and akj might approach each other.
We conjecture that this happens for chaotic systems, where the dynamics is very rich. In Section 5

we present examples which support this conjecture. In summary, in general we can only conclude

that r —¥ 0; it is possible that J^k A*ft does not converge to J2k Ajfcft.

As for the choice of <£*»J'fc, they should be chosen such that the terms in V (Eq. (15)) are all
around the same order of magnitude, i.e. the large akj —akj is, the larger <f>l'i'k should be. This
requires an estimate of the range of the parameter mismatch and the synchronization error r.

Note that Eq. (12) can be more compactly written as

AA =^*(Vr[ft(x)]T)

where $* ={$,J',fc}|j=J, and • is entry-wise multiplication of matrices.
When k = 1 and V is a diagonal matrix, Eq. (12) takes on the form of the well-known

continuous-time LMS adaptive algorithm used widely in linear adaptive filters. In [Huberman and
Lumer, 1990; John and Amritkar, 1994], the following adaptive controller is proposed for the system
ofequations x\ = /t(x,^j), it- = fi(x,jij):

where they chose

for the computer simulations.

a>=g(*'-*"H)

G(i'-i'-4)=%,-ii)sgn(f)



It is clear that by removing the sgn function, the resulting adaptive controllers correspond to

Eq. (12) when V is diagonal, i.e. G becomes:

°(--ah^)-'(--*)(S) (18)
Thus the results presented in this paper provide proofs for the Huberman-Lumer adaptive scheme

when G is chosen as Eq. (18) and applied to Eqs. (l)-(2).

3 Choice of V, h, g, h and g

Our control strategy should be to find V, g, h, g and h such that the matrixin Eq. (11) is negative
definite.

Let us denote r = (ru.. .,r„)T. When V is the identity matrix or the diagonal matrix of the
form V = diag{vi,..., vn} > 0, st- = t?jft- and the adaptive controllers can be written as:

4- = #**«»(*)]* <19)
where $'J'fc = <£*'J'*vt-. Thus in case where V is diagonal but unknown, we choose 4>\'3' to be large
and positive. This choice has to be made with care to ensure that the adaptive controllers will
converge at proper rates, especially if the different state variables operate at different time scales.

The difficulty here is that the adaptive controllers require knowledge of V while the choice
of g and h requires the knowledge of A* and ft and V. One way to overcome this difficulty
is to change g and h adaptively as was done in [di Bernardo, 1995]. When J?k=i Afcft has a
bounded Jacobian matrix, it was shown in [Wu and Chua, 1994] that V can be chosen to be the
identity matrix when p is chosen to be p(x)= -Kmaxx for some positive definite diagonal matrix
Kmax = diag{k?ax,kfax,•• •,k£ax} > 0. Our goal is to adaptively change p to approach Kmax.
With these modifications, Theorem 1 becomes:

Theorem 2 Given the two systems

m

*(') =E A*f*(x) +z+K(x - x) <- System 1 (20)
k=\

x(t) =2 Afcft(x) +z+K(x - x) <- System 2 (21)
k=i

The matrices K and K are diagonal matrices of the form K = diag(kiik2i"-ikn) and K =
diag(ku fc2, •••,kn). Suppose that for each k, ft(x) has abounded Jacobian matrix for all x. Suppose
Afc and Ajfc are varied according to

alj = &J*ri[tk(it)]j (22)
ah. = -^rt-[f*(x)]i



such that <f>*J'k + 4>{'j'k > 0 for each i, j, and k. Let the coefficients ofK and K be varied as:

kJ = mTi (23)
h = A»r?

such that m + fa > 0, then the following statements are true:

1. If for each i, j and k, <£*'** = 0, then the synchronization error r(t) = x(t) - x(t) and the
parameter mismatch At - Afc(t) can be made arbitrarily small for all time t > 0 by choosing
the initial error r(0) and the initial parameter mismatch Ajt - Afc(0) to be sufficiently small
and k{(0)+ &t(0) > 0 to be sufficiently large.

2. IfAkis bounded for all t>0, then ki and h converge to some finite values as t-too for all
i.

S. One of two things can happen. Either Afc becomes unbounded as t —¥ oo for some k, or the
two systems in Eq. (20) and Eq. (21) are synchronized ,i.e.}

r -• 0 (24)

as t —• oo.

4. Iffor each i, j and k, <j>%^k = 0, then r -¥ 0, as t -¥ 00.

5. When r -¥ 0, and either xorxis bounded for all time t > 0, we have

tk
a 0 (25)

og -• 0 (26)

as t -> 00.

Note that in this case both Afc and Afc are time-varying.

Proof: The proof is the same as Theorem 1, except that we use the Lyapunov function

V(x,x,At,A*,K,K) =I(^
Taking the derivatives along trajectories, we get:

V= r^r+£,„,* zjjfajtfi -«*)(4 "*&) "£.• sk (*T" - *•• "*.) (*< +*.)

+£*,*(a& - <)*(«t(*))i + E.& + *.• - *?"*)'•?
= TT(ULrAk(fk(x)-fk(x))-Km":t)

If K + K becomes unbounded as t —¥ 00, then V -¥ +00 which contradicts V < 0. Now we show

that K is bounded for all time t > 0. Note that

k = iutt =-^-(w +W)r? =~^r-(i.- +fc)
W + IH /**+/*«



This implies that

MO =MO) +f -^TTT&i +k)dr =*,•(<>) +—^- (*#) +*,-(*) - **(0) - *,(0))
./O A*t ~r pi fli -f- fl>i v '

which is bounded for all t > 0 since fc,-(t) + {,-(<) is bounded for all t > 0. This implies that fc; is
also bounded for all t. Since ki and fct- are monotonic functions of time, this implies that ki and ki

converges to some finite values as t —• oo. If Afc is bounded, then Afc is bounded since otherwise

V -¥ +oo, contradicting V < 0. The rest of the proof is similar to Theorem 1. •

Note that we don't claim that ki + ki -¥ k™ax since in general there are many choices for

Kmax. The condition expressed in (Eq. (10)) implies that the nonlinearities in the two systems
are identical up to linear combinations. There are several reasons why this is not as restrictive as

it first seems. First, for several chaotic circuits and systems in the literature that we have studied,

there is only one scalar nonlinearity in the system. Thus in physical implementations the problem

of matching the parameters should be concentrated on the single nonlinear element. Second, some

of the ft might depend on things such as circuit topology which we can assume to be identical in

the two systems. Third, given enough basis functions, we can approximate any class of nonlinear

functions by a linear combination of basis functions. Thus we can assume the nonlinearities in the

two systems to consist of linear combinations of basis functions and adapt these coefficients. Some

of these points will be illustrated in the examples using Chua's oscillator in Section 5.

4 Simplifications and Unidirectional Coupling

The framework proposed in Theorem 1 is very general and is perhaps overly complicated. However,
some simplifications can be introduced if we are willing to sacrifice some generality. For example,
we can assume that B = B, g = g and h = h in which case p = p is satisfied. If we also assume
that z = z then Bz = Bz is also satisfied. Let us also assume that V is a diagonal matrix.

Then Theorem 1 can be simplified to:

Corollary 1 Given the two systems
m

x{t) = 53 Afcft(x) +B (z +g(x) - g(x)) <- System 1 (28)
Jfc=i

m

x{t) = 5] Afcft(x) +B (z +h(x) - h(x)) <- System 2 (29)
k=i

where r = x —x. Suppose Afc is constant and Afc is varied according to

4 = &J**iri[fk(*)]i (3°)
such that 4>*^k > 0 for each i, j, and k, and where V = diag{vii...1vn} > 0. Suppose also that
there exists A > 0 such that

m

AI + 53VAfc£ft(x) + VB(£g + Dh) (x)
*=i

8



is negative definite for all x. Then r -¥ 0, as t -¥ oo. Ifx or x is bounded for all time t > 0, then
ai;- -» 0 as t -¥ oo.

For the case of communication systems, master-slave driving or model following where we have
unidirectional coupling, some additional constraints are introduced. Let System 1 be the master
system (or transmitter) and System 2 be the slave system (or receiver). In this case we set g = 0.
Without loss of generality we set B to be the identity matrix and Corollary 1 reduces to

Corollary 2 Given the two systems

m

x(*) = 53Afcft(x) +z <- System 1 (31)
k=i

*(*) =£ Afcft(x) +z+h(x) - h(x) <- System 2 (32)
fc=i

Let V = diag{vi,..., vn} > 0 and r = x - x. Suppose Afc is constant and Afc are varied according
to

4' =^*w[f*(x)]i
such that 4>{^k > 0 for all i,j, and k. Suppose also that there exists A> 0 such that

m

AI + 53VAfcJDft (x) + VDh(x) (33)
k=i

is negative definite for all x. Then r -• 0 as t -> oo. Ifxis bounded for all time t > 0, f/ien

atJ- —» 0 as t —¥ oo.

Note that h in Corollary 2 can also be adaptively changed as in Theorem 2.

5 Examples Using Chua's Oscillator

The state equations of Chua's oscillator is given by

1 lit = &&&- »i) - /Mi
& = &[<?(»! - n) + h] (34)

I & = iH*-*o«3]
where

fM =GbVl +\{Ga- Gb)(\vi +E\- h - E\) +h (35)
There are many ways to decompose the state equations in the form of Eq. (1), and the choice

depends on which parameters we want to adapt.



Example 1 Let us assumethat two Chua'soscillators areconnected in a master-slave configuration
and the only mismatch is in the parameter C\. The coupled system equations are given by:

*St = £[<?(*!-»2) +*3]
4k —
it ~ar = xt-°2- ^0*3]

§ = i[-ft-4A]

(36)

Let us assume that the nonlinearities are equal (/ = /). The value of C\ is the unknown
parameter that the slave system wants to adapt to given only knowledge of v\. Suppose that Ci,

C2, R= ^, X, Rq are positive.
Chua's oscillator (Eq. (34)) can be decomposed as x = Af(x) where

A =

/ 11 c~x

\

c2

I

\ ( G(x2-x1)-f(x1) >
f(x)= G(xx-x2) + xz

\ —X2 —RqXs I

In this case V can be chosen to be A-1 and x = (i>i,V2>*3)T. Note that vi and v2 in this section
are different from the vt- used in previous sections to denote the matrix V.

Using Corollary 2, we construct an adapter for C\ as follows:

-^J- = <t>{v! - «l)«l = ^(t>i - V!)(G(h ~ h) ~ f{vi))
at

where i\ is the current through capacitor C\. This implies that

& =-CfrK - 5i)(G(«2 - 81) - /(%))
at

We also want Gc to be adaptive, so by using a result similar to Theorem 2, we get

i.e.,

dM

dGc
dt

=c,U-^+|f) (37)

The fixed parameters are set at C\ = 5.56nF, C2 = oOnF, R - 1388Q, #0 = 2Q,L = 7.UmH}
E = IV, Ga = -0.8ms, Gb = -0.5mS, J6 = OA.

The initial Ci(0) is set at lOOraF, which is about 18 times bigger than C\ and the initial Gc(0)
is set at 0.08ms, which is not big enough to synchronize the two Chua's oscillators. <f> is set at
8 x 1014, while \i - 4 x 108. The simulation results are shown in Figure 1. Figure la shows the
synchronization error ri(t), while Figure lb shows Ci(t). We see that C\ converges to the correct

10
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0.03 0.04 0.05
tim»(»)

(a)

G>)

0.08

(c)

Figure 1: Compensating for mismatch in C\. (a) Synchronization error r\(t) = x\(t) —x\(t). (b)
Capacitance C\(t) in System 2. The fixed capacitance C\ in System 1 is shown with a dashed

line, (c) The coupling conductance Gc{t). Gc(t) shoots up very quickly from Gc(0) = 0.08mS then
decreased to a constant value of 0.655mS.

11



value of C\ = 5.56nF, indicated by the dashed line. Similarly we see in Figure lc that Gc has

converged to a value close to 0.655m5.

Example 2 Let us now apply the same technique to adapt the parameters G0, <j&, h in /(•)• In
this case, we assume that C\ and C\ are matched but / # /. The state equations of the coupled
system are the same as Eq. (36), where C\ = C\ and / is given by

M) = Gbh + UGa-GbWh + El-fa-Efi + Ib
= \Ga(\vx +E\- \h - E\) +Gb (h - |(|$i +E\ - \vt - E\)) +h

We decompose the system (Eq. (34)) as x = £4=1 A,ft(x) where

(G(x2 - Xl) >
G(X! - x2) + xz
—X2 —RqXz J

(-\(\x1 + E\-\zl-E\)\
f2(x) = 0

V o
( -{xl-\{\xl-rE\-\xl-E\))\

fs(x) = 0

v o ;
-l\

/ i

Ai =

A3 =

A4 =

c2

Ci

A2= I 0

(9t

Ci

1/

7

\

<W

In this case, using Corollary 2, the adaptive controller for Ga and Gb, h are as follows:

-^=^Rlx)]! =-ifcfa - «i)(|«i +E\ - ft - E\)
i.e.,

^ = ~Cifc(i>i-«i)(|«i +£|-|«i-.B|)
Similarly,

^ = Ci*3r,ft(X)]i =-Cj*3(«i -«j)(«i -i(|«i +£|-|«i-£|))
and

^ = Ci*nft(*)]i =-Ci**t* ~*i)
The controller for Gc is given by

^ = ClM(»i-*i)2
12

(38)



In Figure 2 we show the simulation results. The fixed parameters are as before, except that
Ib = 2fiA. The initial values for the parameters of / are chosen to be Go(0) = -O.OlmS, Gb(0) =
-lOmS and /*(0) = -0.01mA, which differ by orders of magnitude from the corresponding values
in System 1. Ge(0) = 0.08m5, while <f>2 = fe = <f>4 = 5 X109 and \i = 109. We see in Fig. 2a that
the synchronization error ri has decreased to zero. We also see in Fig. 2b-d that the values of Ga ,
Gb and h has converged to the corresponding values of Ga and Gb and lb (indicated by the dashed
lines) respectively. We show in Fig. 2e the value of Gc as a function of time.

Example 3 Let us now adapt all four parameters Ci, Ga and Gb and J&. The state equations are
the same as before (Eq. (36)), and we decompose the system (Eq. (34)) into x = £4=1 Atf,(x) as
before.

In this case, using Corollary 2, the adaptive controller for C\ is as follows:

^ =-ClM^i -h)(G(h -h))
The adaptive controller for Ga and Gb are as follows:

d&) 1_^lZ =-i^(Vl - *)(!* +E\ - \Vl - E\)
which after some manipulation becomes

dG

Similarly,

and

dGb
dt

dt
=Ci (|f^ -\<h(vi "*i)(l*i +E\- ft -£1))
= -Ci(vx - vx) (GaGMh -*l) +ifc(|«! +E\ - fa - £|))

=c, i^j±-Mvi -h)(vi -\(\h +E\- \Vl -E\))^j
= -Ci(v! - vx) (dbGMh - vi) +03 (vi - iflvi +E\ - \v! - E\)X\

dh a (h dC\ . _A
-ft = Ci{di^r-Mvi-Vl))

= -C\ (vi - vi) (jbG<f>i (v2 - vi) +<f>4)
The controller for Gc is given in Eq. (37). In Figure 3 we show the simulation results. The

fixed parameters are as before, except for J& = IfiA. We choose Ci(0) = 100nF, Ga(0) = -5m5,
Gh{0) = -0.08mS, Ib(0) = -1mA and Gc(0) = 0.08mS. We choose fa = 2 x 1015, <fo = fe =
^4 = 5 x 109, \l = 1 x 109. We see in Fig. 3a that the synchronization error has decreased to zero.

13
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Figure 2: Compensating for mismatch in Ga, #6 and J&. (a) Synchronization error ri(t) = x%{t) -
xi(t). (b) Conductance Ga{t) in System 2. The fixed conductance Ga in System 1 is shown by a
dashed line, (c) Conductance Gb{t) in System 2. The fixed conductance Gb in System 1 is shown
with a dashed line.
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Figure 2: (d) Current Ib(t) in System 2. The fixed current J0 in System 1 is shown with a dashed

Une. (e) The coupling conductance Gc(t).
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Figure 3: Compensating for mismatch in Cu Gai Gb and h. (a) Synchronization error ri(t) =
xx(t) - xi(t). (b) Capacitance Ci(t) in System 2. The fixed capacitance C\ in System 1 is shown
by a dashed line, (c) Conductance Ga(t) in System 2. The fixed conductance Ga in System 1 is
shown by a dashed line.
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Figure 3: (d) Conductance Gb(t) in System 2. The fixed conductance Gb in System 1 is shown
with a dashed line, (e) Current h{t) in System 2. The fixed current 70 in System 1 is shown with

a dashed line, (f) The coupling conductance Gc(t).
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We also see in Fig. 3b-e that the values of C\ , Ga and <50, h has converged to the corresponding
values of Ci, Ga, Gb and J0 respectively. In Fig. 3f we show Gc as a function of time.

In [Parlitz and Kocarev, 1995] an example was given using Chua's oscillator where the decom

position is of the form x = Aifi(x) + A2f2(x) where

A1 =

A2 =

1

c~,
1

c2

Ci

fi(x) =

L J

f2(x) =

and Gx is the only parameter to adapt.

This results in a controller for Gx of the form

f G(x2 - Xl) - f(Xl) \
G(xi - x2) + x3

y —X2 —R0X3

dG3
dt

= tfCiri[f2(x)]i = -4>Ci(vx - t>i)i>i

6 Secure and Spread Spectrum Communication

There are two ways this scheme can be used to encode information signals onto chaotic carriers.
First, consider Eqs. (31)-(32). The transmitter system is System 1 and the receiver system is
System 2. The information signal can be embedded into the external input z at the transmitter
and sent along with the chaotic state vector x (or a portion thereof) by transmitting z + h(x) to
the receiver. When synchronization is achieved, h(x) approaches h(x) and z can be recovered from
the transmitted signal z + h(x).

When we want to use this approach using Chua's oscillators to implement a secure communica
tion system, theexamples in Section 5show thatthe parameters Ci, Gai Gb and h are not suitable
to be used as "keys".

Thesecond way information can beencoded is, as mentioned before, byintentionally introducing
parameter mismatch. At the transmitter, the parameters are modulated by an information signal.
The state vector (or a portion thereof) is then transmitted to the receiver where the adaptive
controllers recover the parameters of the transmitters.

For this second method the point is not just to synchronize the two systems, but also to use the
receiver to find the (time-varying) parameters of the transmitter which generated the transmitted
waveform. We show here some simulation results which suggest that this can be done when the

parameters are sufficiently slowly varying.

Example 4 The setup is the same as Example 2, except that the parameters Ga, Gb and h in
System 1 are modulated by slowly varying information signals. In particular, we set Ga, Gb and Ic
in the transmitter (System 1) to be sinusoids ofthe form Ga(t) = -0.8 x 10_3(1 - 0.01sin(300*)),
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Gb(t) = -0.5 x 10~3(1 - 0.01sin(150t)), Ib(t) = 7 x 10-6sin(75i). We set Go(0) = -ImS, Gb(0) =
-ImS, Ib{0) = 10/xA, Gc(0) = 0.08771,5.

The simulation results are shown in Fig. 4. The transmitted signal vi(t) is shown in Fig. 4a.

The three sinusoidal information signals can be recovered from Ga(t), Gb(t) and Ib{t) as shown in
Fig. 4b-d. In Fig. 4e we show the coupling conductance Gc{t)>

It is easy to see how by decomposing the nonlinearity /(•) into many "orthogonal" basis func

tions, it is possible to transmit an arbitrary number of signals on a single scalar signal V\(t).
Orthogonality here means the following. Let L be the range of v\ of the attractor (in our case
vi(t) € L « [-2,2], see Fig. 4a). The function / should be decomposed as /(vi) = 12iaiMvi)
such that if Z)t a*'/*'(vi) = E« <**/»(vi) f°r aH vi € L, then a,- = a; for all i. The decomposition in
Eq. (38) where Ga, Gb, and h are the coefficients is of this nature.

Of course, both these methods of transmitting information can be used simultaneously in the

same system.

7 Conclusions

In this paper we have shown how adaptive controllers can be used to adapt the parameters in two

coupled systems such that the two systems are synchronized. We conjecture that the parameters

of the 2 systems converge towards each other if they exhibit chaotic dynamics. This provides a

theoretical basis to study the well known Huberman-Lumer adaptive control scheme. The results

given are global and we give examples where the parameters of the two systems differing by orders

of magnitude approach each other to maintain synchronization. We also illustrate their use in

transmitting several signals onto a single chaotic carrier signal.
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Figure Captions

Figure 1 Compensating for mismatch in Cx.
(a) Synchronization error rx{t) =xi(t) - xi(t).

dSlSC"" 6l(t) " SySt6m 2> ^ **«••'•*— Ci in System 1is shown with a

5i?^Tarrnrxs-asgshoots up very quick,y from g<(o) -"***-
Figure 2 Compensating for mismatch in Ga, Gb and Ib.

(a) Synchronization error ri(t) =xx(t) - xi(t).

dbaSh21UeCtanCe *'W !n SyStem 2> The fiXed 0Md«e*«* G. «• System 1is shown by a
d°allSnK„UeC.tanCe 6t(t) !n SyStem 2" ^ fiMd conductance G» in System 1is shown with a
(d) Current /»(«) in System 2. The fixed current /, in System 1is shown with adashed Une.
(e) The coupling conductance Gc(t).

Figure 3 Compensating for mismatch in C:, <?„, Gb and Ih.
(a) Synchronization error rt(t) = xi(t) - £i(t).
(b) Capacitance C,(<) in System 2. The fixed capacitance C, in System 1is shown by a
dashed line.

(c) Conductance Ga(t) in System 2. The fixed conductance Ga in System 1is shown by a
dashed line.

(d) Conductance Gb{t) in System 2. The fixed conductance Gh in System 1is shown with a
dashed line.

(e) Current Ib(t) in System 2. The fixed current Ib in System 1is shown with a dashed line.
(f) The coupling conductance Gc(t).

Figure 4 Transmitting several signals by modulating Ga, Gb, and h.
(a) The transmitted signal v\(t).

(b) Conductance Ga(t) in System 2. The conductance Ga (shown as a dashed curve) in
System 1 is a sinusoid of the form -0.8 x 10~3(1 - 0.01sin(300*)).

(c) Conductance Gb(t) in System 2. The conductance Gb (shown as a dashed curve) in System
1 is a sinusoid of the form -0.5 x 10""3(1 - 0.01 sin(150t)).

(d) Current Ib(t) in System 2. The current lb (shown in a dashed curve) in System 1 is a
sinusoid of the form 7 x 10""6sin(75t).

(e) The coupling conductance Gc(t).
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