
Serverless Network File Systems

by

Michael Donald Dahlin

B.S. (Rice University) 1991
M.S. (University of California at Berkeley) 1993

A dissertation submitted in partial satisfaction of the requirements for
the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor David A. Patterson, Chair

Professor Thomas E. Anderson

Professor Pamela Matson

1995

The dissertation of Michael Donald Dahlin is approved:

University of California at Berkeley

1995

DateChair

Date

Date

Serverless Network File Systems

Copyright © 1995

by

Michael Donald Dahlin

All rights reserved

1

Abstract

Serverless Network File Systems

by

Michael Donald Dahlin

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor David A. Patterson, Chair

This thesis presents the design of aserverless network file system, a file system that dis-

tributes its functionality among cooperating, networked machines to eliminate the central file

server bottleneck found in current network file systems.

In a serverless system, any machine can cache, store, or control any block of data. This

location independence provides better performance and scalability than traditional file system

architectures. Further, because any machine in the system can assume the responsibilities of a

failed component, the serverless design can also provide higher availability.

This dissertation details the design of three serverless subsystems, each of which distrib-

utes a specific piece of functionality that a traditional system would implement as part of a central

server. I describe and evaluatecooperative caching, a way to coordinate client caches to replace

the central server’s cache. I evaluate differentdistributed disk storage architectures and present

several improvements on previous log-structured, redundant storage systems. Finally, I present the

design of adistributed management architecture that splits the control of the file system among

managers while maintaining a seamless single system image.

Together, these pieces form a a serverless file system that eliminates central bottlenecks.

I describe the integration of these components in the context of xFS, a prototype serverless file

system implementation. Initial performance measurements illustrate the promise of the serverless

approach for providing scalable file systems.

Professor David A. Patterson

iii

Table of Contents

CHAPTER 1. Introduction ...1
1.1. Design Environment and Applicability ...4
1.2. Overview of the Dissertation ...6

CHAPTER 2. Trends in Technology ...8
2.1. Trends in Technology ..8
2.1.1. Disk Performance..9
2.1.2. Disk Capacity..10
2.1.3. Network Latency...10
2.1.4. Network Bandwidth ..11
2.1.5. Processor Performance..12
2.1.6. Memory Bandwidth ..12
2.1.7. Memory Capacity..13
2.2. Increasing Demands on File Systems..13
2.2.1. Demands From Sequential Applications14
2.2.2. Demands From Parallel and Distributed Applications15
2.2.3. Demands From New Applications..16
2.3. Implications For File System Design ..17
2.3.1. Cooperative Caching...17
2.3.2. Distributed Storage ...18
2.3.3. Distributed Management...19
2.4. Other Technology Trends ..19

CHAPTER 3. Cooperative Caching ...21
3.1. Cooperative Caching Algorithms ..23
3.1.1. Direct Client Cooperation ...24
3.1.2. Greedy Forwarding ...25
3.1.3. Centrally Coordinated Caching...26
3.1.4. Hash Coordinated Caching ...27
3.1.5. Weighted LRU Caching..28
3.1.5.1. Limiting Weighted-LRU Communication Requirements.........31
3.1.6. N-Chance Forwarding...33
3.1.7. Other Algorithms ..34
3.2. Simulation Methodology ...35
3.3. Simulation Results ...37
3.3.1. Comparison of Algorithms ...38
3.3.2. Detailed Analysis of the Algorithms...43
3.3.2.1. Direct Client Cooperation ...44
3.3.2.2. Greedy Forwarding ...45
3.3.2.3. Centrally Coordinated and Hash Coordinated Caching............45
3.3.2.4. Weighted LRU..47

iv

3.3.2.5. N-Chance Forwarding...48
3.3.3. Sensitivity to Hardware Parameters..49
3.3.3.1. Client Cache Size..49
3.3.3.2. Dynamic Cache Sizing..50
3.3.3.3. Server Cache Size ...50
3.3.3.4. Network Speed..51
3.3.3.5. Future Projections ...52
3.3.4. Other Workloads...54
3.3.4.1. Other Sprite Traces ...54
3.3.4.2. Berkeley Auspex Workload..56
3.3.4.3. Worst-case Workloads ..59
3.3.5. Summary of Simulation Results ...63
3.4. Related Work ...65
3.5. Conclusions..67

CHAPTER 4. Distributed Disk Storage ...68
4.1. Log-based Network Striping..70
4.1.1. RAID...70
4.1.2. LFS..71
4.1.3. Zebra ...73
4.1.4. Limits to Zebra’s Scalability...75
4.1.5. Alternatives to Log-based Striping ...75
4.1.5.1. RAID Level 1 Mirroring...75
4.1.5.2. AutoRAID...76
4.1.5.3. Journaling File Systems ..77
4.2. Stripe Groups ...77
4.2.1. Motivation for Stripe Groups..78
4.2.2. Implementing Stripe Groups...80
4.3. Cleaning...82
4.3.1. Monitoring Segment Utilization ...83
4.3.1.1. Distributed Bookkeeping ..83
4.3.1.2. S-Files ...84
4.3.2. When to Activate Cleaners ...85
4.3.3. Distributing Cleaning..85
4.3.4. Coordinating Cleaners ..86
4.4. Cleaning and Cooperative Caching ...86
4.5. Availability ..89
4.5.1. Local Storage Server State..89
4.5.2. Stripe Group Map Reconfiguration ..89
4.5.3. Cleaner Recovery..90
4.5.4. Parity Reconstruction..90
4.6. Related Work ...90
4.6.1. Striped Disks...91
4.6.2. Delayed Writes..91
4.7. Conclusions..92

CHAPTER 5. Distributed Management ...93

v

5.1. Distributed Management Design ...94
5.1.1. Disk Storage Location Metadata...96
5.1.2. Cache Consistency State ...97
5.2. System Operation...97
5.2.1. Reads and Caching..97
5.2.2. Writes..99
5.2.2.1. Cache Consistency ..100
5.2.2.2. Commit of Writes to Log..100
5.2.2.3. Writes Due to Loss of Ownership...101
5.2.3. Index Node and Indirect Node Access....................................102
5.2.4. Assigning Files to Managers...102
5.2.4.1. Assigning and Changing Index Numbers102
5.2.4.2. Changing the Manager Map..103
5.3. Management Locality ..104
5.3.1. Methodology ...105
5.3.2. Results...106
5.4. Recovery and Reconfiguration ..109
5.4.1. Manager Map Reconfiguration ...109
5.4.2. Recovery of Disk Location Metadata110
5.4.2.1. Distributed Checkpoint Recovery...111
5.4.2.2. Distributed Roll Forward ..112
5.4.2.3. Consistency of Disk Location Metadata113
5.4.3. Cache Consistency State ...114
5.4.4. Cleaner Recovery Revisited..114
5.4.4.1. Scalability of Recovery...115
5.5. Related Work ...116
5.5.1. Hash-based Metadata Distribution..117
5.5.2. Hierarchical Metadata Distribution...118
5.6. Conclusions..118

CHAPTER 6. Security ...119
6.1. Security Assumptions ..121
6.1.1. Compromising the Kernel...122
6.1.1.1. Compromising Client Kernels ..123
6.1.2. Compromising Server, Manager, and Storage Server Kernels123
6.1.3. Compromising the Network..124
6.1.4. Physical Access to a Machine...125
6.2. Untrusted Clients in Mixed-Trust Environments125
6.2.1. Using the Serverless System as a Scalable Server..................126
6.2.2. Safe Serverless Client Protocol...128
6.2.2.1. Client Writes to Storage Server Logs128
6.2.2.2. Client Reads from Storage Servers ...129
6.2.2.3. Cooperative Caching...129
6.3. Summary..132

CHAPTER 7. xFS Prototype ..133
7.1. Serverless File Service...133

vi

7.2. xFS Prototype ..134
7.2.1. Prototype Status ..135
7.2.2. Test Environment..135
7.2.3. NFS and AFS Environments...136
7.2.4. Performance Results ...137
7.2.5. Performance of the Prototype ...138
7.2.6. Scalability ...139
7.2.7. Storage Server Scalability...142
7.2.8. Manager Scalability ..144
7.3. Conclusions and Future work ..145

CHAPTER 8. Conclusions ...147
8.1. Lessons Learned About Research..148
8.2. Future Directions ...150
8.2.1. Serverless File System Issues ...150
8.2.2. Other Research Issues ...153
8.3. Summary..155

vii

List of Figures

1-1: “Attack of the killer micros.”...1
2-1: Disk cost expressed in dollars per megabyte of capacity. ...11
2-2: DRAM price per megabyte..14
2-3: Bandwidth and processor performance..15
3-1: Cooperative caching algorithm design space...24
3-2: Greedy Forwarding. ...25
3-3: Average block read time. ...39
3-4: Cache and disk access rates. ..39
3-5: Server loads..41
3-6: Performance of each individual client. ..42
3-7: Direct Client Cooperation speedup..44
3-8: Response time for Centrally Coordinated Caching. ..46
3-9: Response time plateau..47
3-10: Response time for N-Chance. ..48
3-11: Response time as a function of client cache memory for the algorithms.49
3-12: Response time as a function of size of central server cache. ...51
3-13: Response time as function of network speed...52
3-14: Cooperative caching response time under assumed technology trends.53
3-15: Response time for four, two-day Sprite traces...54
3-16: Server loads for the algorithms. ...56
3-17: Response time for algorithms under the Auspex workload. ..58
3-18: Server load for the algorithms..58
3-19: Effect of working set size. ...61
3-20: Effect of load imbalance. ...62
3-21: Effect of sharing...63
4-1: RAID striping with parity. ...70
4-2: A log-structured file system...72
4-3: Log-based striping used by Zebra..74
4-4: Hours of downtime per month under different parity organizations.80
4-5: A stripe group map...81
4-6: Simulated network communication between clients and cleaner.84
4-7: Cooperative Caching and Cleaning. ..88
5-1: The Manager Map..95
5-2: The disk location metadata form a tree rooted in the imap..96
5-3: Procedure to read a block...98
5-4: Changing a file’s index number...103
5-5: Comparison of locality...106
5-6: Comparison of locality...107
5-7: Network messages per request...107
5-8: Network messages per request...108
6-1: A serverless core. ...126
6-2: Four administrative cells..127

viii

6-3: Encryption..131
6-4: Message digests. ..131
7-1: Two simple xFS installations...134
7-2: Time to read data via cooperative caching. ...138
7-3: Aggregate disk write bandwidth. ...140
7-4: Aggregate disk read bandwidth. ..141
7-5: Aggregate small write performance...142
7-6: Average time to complete the Andrew benchmark..143
7-7: Storage server throughput. ...144
7-8: Manager throughput...145
7-9: Ideal performance goals...146

ix

List of Tables

2-1 Summary of hardware improvement trends.. 8
2-2 Disk performance parameters. .. 10
2-3 Memory bandwidth for 1989 and 1994 machines. ... 13
2-4 Cache miss time. ... 18
3-1 Weighted LRU benefit/cost values. .. 30
3-2 Memory hierarchy access times.. 36
3-3 Impact of hints on Weighted LRU performance and communication............................. 48
3-4 Read response time. .. 50
3-5 Technological trends... 53
4-1 Performance and cost/performance... 76
4-2 Comparison of cleaning cost as segment size is varied. ... 79
6-1 Direct security impact. .. 121
6-2 Encryption and message digest performance.. 130
7-1 Breakdown of time for cooperative caching read. .. 139

x

Acknowledgments

One of the things I’ve looked forward to most about writing my dissertation has been the

chance to write this acknowledgments section. So many people have contributed to my enjoyment

and success as a graduate student, but in our hectic day-to-day lives, I seldom have the chance to

thank them. Without the people listed here (and others I’m sure I’ve forgotten) I would not be

here. Thank you all for five terrific years!

I have been fortunate to work with Dave Patterson and Tom Anderson acting as my co-advi-

sors. Although each is a terrific mentor in his own right, a happy set of circumstances has let me

benefit from their complementary strengths and philosophies. Not only have they offered invalu-

able technical guidance, criticism, and inspiration, but they have also helped me develop as a

writer, teacher, and professional engineer. Both are also well aware that everyone needs a life out-

side of the lab — an important quality in an advisor.

Pam Matson has been kind enough to act as the third member of my committee and as an

informal advisor for my Global Climate Change minor. I have enjoyed working with her and ben-

efitted greatly from her guidance as I tried to get a toe-hold for my understanding of global change.

My office-mates, Jeanna Neefe, Drew Roselli, and Randy Wang, have contributed to the

development of many of the ideas in this thesis. We have worked together on the xFS project for

several years and will continue to develop the ideas discussed in this dissertation in the future. It is

great to work in a group where everyone criticizes each other’s work (quite energetically at times),

and everyone accepts criticism in the productive spirit in which it is offered. xFS is a difficult

project, and it would be impossible without this constant, critical feedback.

The other members of NOW project also provided much advice and inspiration during my

work on my thesis. I could always find someone to bounce an idea off of or run a rough paper draft

xi

past, and it has been fun to work with a group of about 30 smart people working on a wide range of

interesting projects.

Katherine Crabtree, Bob Miller, and Terry Lessard-Smith have protected me from the bureau-

cracy of a 30,000 student university. Their ability to make paperwork do the right thing and to help

avoid bureaucratic pitfalls is nothing short of brilliant.

The dissertation has benefitted greatly from Thomas Phillipi’s efforts. His careful proofread-

ing and editorial suggestions have made this process much more bearable.

I must also thank all of my fellow students who have made graduate school such a pleasure.

The Happy Hour/Alexis Monday/Bago crew has been a constant source of dearly needed distrac-

tions, and Wednesday basketball has been a blast.

My debt to my parents and family is immeasurable. They have offered me their unconditional

support in all of my endeavors. Leading by example, they have instilled in me the value of hard

work and a job well done, and their confidence in me has given me the confidence to succeed in

graduate school.

Finally, my fiance, Marla, deserves much of the credit for this dissertation. Her love and sup-

port have been unfailing, and she has always been understanding of the evenings and weekends

spent in the lab.

This research was funded by a National Science Foundation graduate fellowship, a National

Science Foundation grant (CDA 0401156), a Advanced Research Projects Agency grant (N00600-

93-C-2481, F30602-95-C-0014), and California MICRO. Corporate support for different aspects of

the xFS and NOW projects came from the AT&T Foundation, Digital Equipment Corporation,

Exabyte, Hewlett Packard, IBM, Siemens Corporation, Sun Microsystems, and Xerox Corporation.

1

1Introduction

The evolution of computer processing has followed an apparently inexorable trend as the plat-

form of choice for demanding applications has moved from centralized, shared “mainframe” com-

puters to collections of commodity, “personal” computers. This evolution has been described

variously as the “attack of the killer micros” (a description popularized by Eugene Brooks),

“many, little defeating few, big” [Gray, 1995], and, as Figure 1-1 illustrates, an inverted food chain

in which the little fish eat the big ones.

No matter what name it is given, this trend arises from the incredible economies of scale for

microcomputers, which ship in volumes measured in tens of millions of units each year. These

high volumes enable research and development expenditures that cause microprocessor perfor-

mance to improve by 60% per year while microcomputer prices hold steady or even decline over

time. These trends make microcomputers the most cost-effective computing platform for many

applications.

FIGURE 1-1. “Attack of the killer micros.” This drawing illustrates the “attack of the killer
micros” in the form of an inverted food chain, where little fish eat the big ones. The same forces that
make killer micros attractive for compute-intensive applications make them attractive way to provide
file service. This illustration was assembled by Drew Roselli based on an earlier version by Dave
Patterson.

2

Recent advances in local area networks (LANs) expands the range of applications for which

killer micros can be used. Next-generation LANs such as Autonet [Schroeder et al., 1991], ATM

[ATM Forum, 1993], switched Ethernet, and Myrinet [Boden et al., 1995] provide aggregate net-

work bandwidth that scales with the number of machines connected to the network, and new, low-

latency network interfaces [von Eicken et al., 1992, Martin, 1994, Basu et al., 1995] allow

machines connected by these networks to cooperate closely. These network technologies allow

groups of microcomputers to work together to solve problems that are too large for a single one to

handle, further extending the realm of the killer micros. For instance, massively-parallel comput-

ers such as the Thinking Machines CM-5, IBM SP-2, Cray T3D, and Intel Paragon are based on

microprocessors connected by fast networks and are replacing vector supercomputers such as the

Cray Y-MP for many applications.

Although compute-intensive applications have been quick to benefit from the personal com-

puter revolution, file systems have been slower to take advantage of the “killer micros.” Even

when many users each run their programs on microcomputers, they typically store their file data

on a single, centralizedfile server. This central server is both a performance and reliability bottle-

neck: because all file system requests go through the server, the single server limits the system’s

throughput, and a server failure halts file system activity. Current file systems attempt to address

this problem by using high-end, special-purpose central server machines that resemble main-

frames in their cost and complexity.

My thesis is that file systems built around a new architecture calledserverless network file sys-

tems can exploit the performance and cost/performance advantages of microcomputers that are

connected by fast LANs. A serverless network file system’s architecture can be described with the

phrase “anything, anywhere” because this approach distributes all aspects of file service — includ-

ing data storage, data caching, and control processing — across potentially all of the machines in

the system. I hypothesize that this approach can realize three primary benefits compared to a cen-

tral server architecture.

• Improved Performance

A serverless system outperforms a centralized system by eliminating the central bottleneck

and utilizing the aggregate resources of a large number of machines. For instance, a single client

can read or write data in parallel to a large number of disks and thereby achieve a peak disk band-

3

width limited only by the bandwidth between the client and the network. Similarly, when many

clients actively access disk storage, the system’s disks work together to provide aggregate disk

bandwidth approaching the sum of the bandwidths of all of the disks. Because fast networks make

it faster to access remote RAM than local disk, the serverless system can also provide better per-

formance than a central server by exploiting the combined memory caches of all of the machines;

this largecooperative cache reduces the number of disk accesses compared to the individual cache

of a typical central server. Finally, the serverless system distributes control processing across many

machines so that control bottlenecks do not limit data throughput.

In addition to eliminating bottlenecks, the location independence of the serverless approach

improves performance by improving locality and balancing load. For instance, because any

machine in the system can control any file, a serverless system can co-locate the control and meta-

data processing of a file with the client using that file’s data, thereby reducing latency and load due

to communication between the client and file’s manager. Similarly, if a disk, processor, or network

link is a hot spot, a serverless system can change the distribution of files to machines to balance

load more evenly.

• Improved Availability

A serverless system provides high availability because when one machine fails, the remaining

machines can take over its responsibilities. Two aspects of the serverless design are crucial to this

goal. First, the distributed storage system uses redundant disk storage [Patterson et al., 1988] and

log-based storage [Rosenblum and Ousterhout, 1992] to ensure that higher levels of the system

can access all necessary file system state even when some machines have failed. Second, the sys-

tem can use location independence to delegate the duties of failed machines to the remaining

machines.

In a central server architecture, in contrast, the central server is a critical resource; when a cen-

tral server fails, file system clients can access only data that they already have cached until it is

repaired. Several central server systems have attempted to use server replication to increase avail-

ability [Walker et al., 1983, Kazar, 1989, Popek et al., 1990, Liskov et al., 1991, Kistler and

Satyanarayanan, 1992, Birrell et al., 1993]. However, replication increases the cost and complex-

ity of central servers, and it can also increase the latency of writes since the system must replicate

data at multiple servers.

4

• Improved Scalability

A key design goal is to eliminate all centralized bottlenecks from the file system — effectively

treating the file system as a parallel program. A serverless system’s performance and availability

improve as more CPUs, DRAM, or disks are added to provide more resources for the system to

exploit. This architecture should work well for systems with tens or hundreds of machines; it was

not designed to scale beyond about one thousand machines because such large systems are

unlikely to provide the uniformly fast networks and mutual trust among machines assumed by the

design.

In addition to these benefits, because the serverless architecture relies on commodity micro-

computers and LANs, it should achieve these goals in a cost-effective manner compared to cen-

tral-server approaches and allow file systems to take advantage of the “killer micro” revolution.

To support my thesis, I make four principal contributions in this dissertation.

1. I demonstrate how cooperative caching, using the cache memory already present in desktop
machines as a global file cache, outperforms traditional central server caching.

2. I evaluate a range of distributed disk storage approaches and conclude that log-structured
redundant network storage [Hartman and Ousterhout, 1995] is the most promising approach; I
extend this design to provide scalable, distributed disk storage.

3. I describe how to distribute file system control across many machines through distributed file
management and quantify its benefits compared to central server management.

4. I bring these elements together in the design of a prototype serverless network file system and
demonstrate that the prototype achieves good performance and scalability.

1.1. Design Environment and Applicability

I have developed the serverless system described here in the context of the Berkeley Network

of Workstations (NOW) project [Anderson et al., 1995]. This environment has four characteristics

that affect the design. First, the building block for this system is a commodity workstation or per-

sonal computer (PC) that contains a high-performance processor, a significant amount of memory,

and a disk. Second, these computers are connected by a high-performance, switched local area net-

work. Third, these machines are administered as a unit, so all machines are considered to be

equally secure. Finally, a NOW can be used for a wide range of workloads from traditional,

office/engineering programs to batch and parallel jobs.

5

Although I describe the serverless design in a context where the building blocks are complete

workstations that act as peers, other configurations are possible. For instance, it may be desirable

to configure some machines with many more disks than a typical desktop machine to amortize the

cost of the machine’s processor and memory over many inexpensive disks. Also, while the server-

less system can be made entirely of desktop workstation peers suppling file service to one another,

another approach would be to run the serverless file system on a number of computers in a

machine room and then use this serverless “core” of machines to supply file system services to

“fringe” client machines on desktops; this approach could be used when desktop machines do not

meet the high-performance network assumptions or security assumptions made in the serverless

design.

My design also assumes that networks are fast compared to disk; Chapter 2 discusses this

assumption. Emerging high-bandwidth, switched local area networks allow machines to cooperate

closely to provide seamless, high-performance file service. Although my description and initial

implementation assume that machines communicate via explicit network messages, the benefits of

the serverless design would also apply to systems that use a shared-memory abstraction to provide

high-performance communication among nodes that each behave like a workstation [Kubiatowicz

and Agarwal, 1993, Blumrich et al., 1994, Kuskin et al., 1994].

To get the full benefits of the serverless design, machines must trust one another so that file

service can be distributed among machines. As I’ve already mentioned, dividing machines up into

“core” trusted machines and “fringe” less-trusted machines may allow the serverless design to be

used in environments that are less homogeneous than a NOW. Chapter 6 explores security issues

in detail.

The serverless design presented here should work well for a wide range of workloads. Most of

the simulation results presented in this thesis use office/engineering trace workloads that include

graduate students, staff, and faculty’s day-to-day activities such as reading mail, editing files, and

simulating computer systems. These workloads present a number of challenges to file system

designers: in particular they require systems to handle not just large files, but also small files effi-

ciently. The system was also designed with other NOW workloads in mind; while I did not have

access to trace workloads for the parallel and batch workloads that may become more common in

a NOW, the serverless system eliminates central bottlenecks and supports data sharing to make it

work well in such an environment. Further, while I do not consider multimedia workloads explic-

6

itly, the scalable system presented here should be of interest to file system designers who wish to

support those workloads.

1.2. Overview of the Dissertation

The body of this thesis consists of six chapters. The first motivates taking a new approach to

file system design. The remaining chapters present the serverless design and evaluate that

approach by describing how to distribute each of the three main pieces of a file server (cache, disk,

and control), the security implications of this new approach, and how the different pieces of the

design fit together in a prototype serverless file system.

In Chapter 2, I review key technology trends that affect file system design. I explore the

changing trade-offs made possible as different technologies evolve at different rates over time and

conclude that disk, processor, memory, and network technologies are improving in ways that moti-

vate distributing file system services across a network. I also examine how workload trends moti-

vate scalable file systems.

Chapter 3 describes cooperative caching. Cooperative caching replaces central server caching

by coordinating the contents of clients’ caches and allowing clients to satisfy other clients’ read

requests. In addition to being more scalable than central server caching, cooperative caching out-

performs central server caching by reducing the percentage of requests that go to disk. For

instance, I simulated both cooperative caching and traditional central server caching under an

office/engineering workload and found that cooperative caching improved file system read perfor-

mance by 30% to 150%.

Chapter 4 explores how to distribute disk storage across multiple machines. It begins by

exploring a range of options and concludes that redundant, log-based striping similar to that used

in Zebra [Hartman and Ousterhout, 1995] has the most promise. It then builds on the Zebra design

to make it scale to large numbers of disks by eliminating its bottlenecks.

I then describe how to distribute the remaining file system functionality by spreading control

to distributed managers. Chapter 5 presents an approach that adapts multiprocessor cache consis-

tency designs [Lenoski et al., 1990, Chaiken et al., 1991] to the rigors of file system use. In partic-

ular, I describe how to adapt the data structures of log structured file systems (LFS) [Rosenblum

and Ousterhout, 1992] for distributed management and how to allow the system to reconfigure

7

management duties to continue operation in the presence of failures; I also explore policies for

assigning files to managers to improve locality.

While the serverless design generally assumes that machines are equally secure, not all envi-

ronments meet this assumption. Chapter 6 describes how the serverless design can be modified to

work in environments where not all machines trust one another. Unfortunately, reducing trust

makes it harder for machines to use one another’s resources to provide file service, but restricted

versions of the serverless protocol may still provide benefits for some machines.

Chapter 7 integrates the pieces of the design by describing xFS, a prototype serverless net-

work file system. I first detail how cooperative caching, distributed disk storage, and distributed

management work together to provide integrated file service. I then present initial performance

results for xFS running on up to 32 SPARCStation 10’s and 20’s. These results illustrate the prom-

ise of the serverless approach, but they also point out several limitations of the current xFS imple-

mentation.

Finally, Chapter 8 summarizes the key conclusions of this dissertation, points out some of the

lessons I have learned during this project, and discusses areas that would benefit from further

investigation.

8

2Trends in Technology

This chapter describes several key trends in technology that will influence the design of file

systems for the next decade. Section 2.1 outlines the basic trends to hardware performance that

underlie file system design. These trends affect both user demands on file systems and trade-offs in

their design. Section 2.2 considers how technologies will drive more demanding file system work-

loads that will demand scalable file systems. Section 2.3 outlines how opportunities raised by

these low-level technology trends impact specific aspects of the serverless design to provide that

scalable file service. Finally, to put the serverless approach in context, Section 2.4 discusses other

technology trends that affect file systems but that are not explicitly addressed in the serverless

design.

2.1. Trends in Technology

Table 2-1 summarizes the current performance and expected rates of improvement for hard-

ware technologies that influence file system design. The data in this table provide a basis for four

Hardware Parameter 1995 Baseline Yearly Improvement Rate

Disk Latency 12 ms 10%/year

Disk Bandwidth 6-9 MB/s 20%/year

Disk Cost/Capacity $0.24/MB 100%/year

Network Latency 1 ms 20%/year

Network Bandwidth 20 MB/s 45%/year

Processor Performance 100 SPECInt92 55%/year

Memory Bandwidth 30-70 MB/s 40%/year

Memory Cost/Capacity $31/MB 45%/year

TABLE 2-1. Summary of hardware improvement trends. The 1995 Baseline reflects the
performance a high-end, desktop workstation in 1995, and the Yearly Improvement Rate’s reflects
trends discussed in greater detail in Section 2.1. Although network latency has historically improved
slowly as indicated in the table, research in low latency network protocols may provide dramatic
improvements in the future. Conversely, while memory cost has historically improved quickly, recent
progress has been much slower. This chapter documents the rates of improvement.

9

general sets of observations. First, disks are slow, and their performance improves slowly relative

to other technologies. Second, compared with disks, networks have somewhat better bandwidth

and much better latency, and both latency and bandwidth are improving more quickly for networks

than for disks. Third, processors and memories are much faster than either disks or networks, and

their performance is improving quickly. Fourth, disk storage is two orders of magnitude less

expensive than equivalent memory storage, and this gap is widening as disk costs improve more

rapidly than memory costs. The rest of this section describes these trends in detail.

2.1.1. Disk Performance

Disk accesses rely on mechanical motions that are slow compared to electronic operations

such as DRAM reads. Further, the rate of improvement in disk mechanical performance is lower

than the rate of improvement of integrated circuit performance. Disk delays are dominated by

three factors: seek time, rotational latency, and transfer time. During the seek time, an actuator

moves the disk heads to the disk cylinder being accessed. Rotational latency allows a specific disk

block to spin under the disk head, and transfer time allows data to be accessed as it passes under

the disk head. Note that for physically sequential transfers, only the first block need pay seek and

rotation times.

 Table 2-2 summarizes disk performance trends for high-performance, commodity disks

appropriate for workstation servers in 1987, 1990, and 1994. The 1987 and 1990 values reflect

performance parameters reported by Gibson [Gibson, 1992] while the information for the more

recent drive is from a product data sheet [Seagate, 1994].

During this period, seek and rotational latencies have improved slowly, at about 10% per year,

while bandwidth has increased more quickly, at about 20% per year. These improvement rates are

similar to those discussed by Hennessy and Patterson [Hennessy and Patterson, 1996]. Bandwidth

increases more quickly than rotational speed because of increasing storage densities on the disk —

more data spins under the disk head at a given rotational speed.

A consequence of disks’ high seek time and rotational latency is that large transfers use disks

much more efficiently than small ones. As the table indicates, latency dominates the time to access

8 KB from disk while disk bandwidth dominates the time to transfer 1 MB. However, because disk

bandwidths improve more rapidly than other aspects of disk performance, increasingly large trans-

fers are needed over time to maintain a given level of efficiency. For instance, to reduce seek and

10

rotational latency to less than 10% of the total access time required a 562 KB sequential transfer in

1987 and a 988 KB transfer in 1994.

2.1.2. Disk Capacity

Disk capacity per unit cost improves dramatically over time — at 100% per year since 1992.

As the data in Figure 2-1 indicate, between 1983 and 1995 the cost of disk storage has fallen by

more than a factor of 400, from about $100/MB in January of 1983 to less than $0.24/MB in July

of 1995. For instance, advertisements inByte magazine in January of 1983 offer a 44 MB hard

drive for $4,395 while advertisements in the July 1995 edition price a 9,000 MB drive at $2,159.

This improvement reflects an increase of 62% per year over the twelve and one-half year period

with a faster rate since 1992 as PC manufacturing volumes and competition have ramped up.

2.1.3. Network Latency

Between 1989 and 1994 network RPC latency improved by less than a factor of three, from

2.66 ms [Schroeder and Burrows, 1990] to about 1.00 ms, a speedup of about 20% per year. How-

ever, a number of research efforts have demonstrated extremely low network latency using proto-

TABLE 2-2. Disk performance parameters. This table compares the parameters of a 1987, 1990,
and 1994 commodity disk drive. Although these disks represent only a single data point for each
year, I believe the trends accurately describe high-end commodity hardware available over the
specified periods. Average seek time is the time it takes to seek one-third of the way across the disk
surface, so it represents a pessimistic estimate of the seek time for a typical request because real
requests will benefit from locality [Hennessy and Patterson, 1996]. For the 1994 disk, the seek time is
higher for writes than for reads because of more stringent head settling requirements for writes. The
rotational latency represents the time for the disk to complete half of a complete revolution at the
given rotation speed. The bandwidth is the uncached transfer rate for a large data transfer, ignoring
seek and rotational latencies. For the 1990 and 1994 drives, transfer bandwidth is higher near the
edges of the disk than near the center because of the higher linear velocity of the media near the
edges. To provide an upper bound on disk improvement rates, I use the more aggressive read seek
time and outer-edge bandwidths when computing improvements over time. The 8 KB and 1 MB
transfer times indicate the time to transfer an 8 KB or 1 MB contiguous block of data including the
time for one “average” seek and rotational latency, plus the transfer size divided by the disk’s
maximum bandwidth.

1987 1990 1994

Improvement Rates

1987-94 1987-90 1990-94

Model Fujitsu
M2361A

Seagate
ST-41600n

Seagate
ST-15150n

Average Seek Time 16.7 ms 11.5 ms 8.0/9.0 ms (rd/wr) 11%/yr 13%/yr 9%/yr

Rotational Speed/Avg. Latency 3600 rpm/8.3 ms 5400 rpm/5.5 ms 7200 rpm/4.2 ms 10%/yr 15%/yr 7%/yr

Bandwidth 2.5 MB/s 3-4.4 MB/s 6-9 MB/s 20%/yr 21%/yr 20%/yr

8 KB Transfer 28.3 ms 18.9 ms 13.1 ms 12%/yr 14%/yr 10%/yr

1 MB Transfer 425 ms 244 ms 123 ms 19%/yr 20%/yr 19%/yr

11

cols somewhat more restrictive than those of RPC. Thekkath, for example, demonstrated a

restricted RPC protocol with 72µs round-trip latency on 155 Mbit/s ATM [Thekkath and

Levy, 1993], and Martin and von Eicken have measured 29µs and 52µs round trip times for

active message implementations using FDDI and ATM, respectively [Martin, 1994, von Eicken

et al., 1995]. If any of these simplified protocols could be used as a fast path for file system com-

munication, order of magnitude improvements in network latencies may be possible.

Whether or not research efforts provide new protocols, network latencies are significantly

smaller than disk latencies, and they seem likely to improve more quickly in the future. As a result,

networks will provide faster access to small data items than will disk.

2.1.4. Network Bandwidth

Over the past 15 years, the aggregate network bandwidth available to a 32-node cluster of

high-end, desktop workstations has increased by a factor of 256, from a 10 Mbit/s shared Ethernet

in the early 1980’s to a 2,560 Mbit/s switched, Myrinet [Boden et al., 1995] network in which half

FIGURE 2-1.Disk cost expressed in dollars per megabyte of capacity. Each point indicates the
capacity in megabytes divided by price in dollars for a hard disk drive advertised in the January or
July edition ofByte magazine for the indicated year. Note the log scale for the y-axis.

$0.1/MB

$1/MB

$10/MB

$100/MB

$1000/MB

1982 1984 1986 1988 1990 1992 1994 1996

C
os

t P
er

 M
eg

ab
yt

e

Year

12

of the workstations can each send at 160 Mbit/s while half receive at the same rate. This improve-

ment represents an increase of about 45% per year over this period. This improvement in network

speed has come from two sources, faster network links to each machine, and better topologies to

increase the aggregate bandwidth above the per-link bandwidth. The per-link bandwidth has

increased by a factor of 16 over this period, at about 20% per year. The other factor of 16 comes

from the move from the bus-based Ethernet to switch-based topologies [Schroeder et al., 1991]

such as ATM [ATM Forum, 1993], Myrinet, and switched Ethernet.

Although the one-time move from bus-based topologies to switch-based topologies contrib-

uted significantly to the improvement in network bandwidths over the last decade, large improve-

ments in network speed are likely to continue because it is easier to increase the speed of switched

network links than bus-based network links. First, many switched networks allow individual links

to be upgraded independently; in the past, a network’s speed could only be increased if all of the

machines in a system were simultaneously upgraded. Second, electrical signalling is easier on

these point-to-point networks; the bandwidth of the Myrinet network, for instance, is limited by

the workstation’s I/O bus bandwidth rather than the 640 Mbit/s physical link bandwidth

[Martin, 1995].

This evaluation suggests that high-performance networks will be faster than high-performance

disks, even for large data transfers.

2.1.5. Processor Performance

Processor performance benefits from improving integrated circuit technologies that allow

designers to increase the number of transistors per chip and to increase the speed of these transis-

tors. As a result, processor speed increases at 50% to 55% per year [Gwennap, 1995].

2.1.6. Memory Bandwidth

Improvements to DRAM architectures — including wider memories, memory interleaving,

and efficient access modes [Bursky, 1992, Jones, 1992, Prince et al., 1992, Hart, 1992,

Bondurant, 1992] — allow memory bandwidths to improve quickly. Table 2-3 summarizes the

memory-to-memory copy bandwidths of machines available in 1989 compared to machines mea-

sured in late 1994 and suggests that memory bandwidths are increasing at 40% per year or better

13

for each product line. In absolute terms, memory speeds are much faster than disk speeds, and the

relatively high rate of memory speed improvements suggest this gap will remain large.

2.1.7. Memory Capacity

The capacity of memory chips increases at about 60% per year due to improvements in tech-

nology that quadruple the amount of memory that can fit on a chip every three years [Hennessy

and Patterson, 1996]. As Figure 2-2 indicates, before 1992, memory prices reflected this trend,

falling at over 100% per year during that time. During the last three years, however, the cost per

megabyte of memory has been flat. It is not yet clear whether this drastically reduced rate of

improvement in cost is a long-term effect or a temporary blip. Over the full seven-year period indi-

cated in the figure, prices fell by an average of about 45% per year, but the most recent trends sug-

gest that this may be an optimistic estimate for memory-size improvement rates. In any event,

memory capacity seems likely to grow more slowly than disk capacity in the future.

2.2. Increasing Demands on File Systems

A key trend that impacts file systems is the dramatically increasing computing power available

to users. These increases come from several sources. New, more powerful CPUs increase the

demands of sequential applications, and fast networks give users the ability to exploit multiple

processors to run distributed or parallel applications, further increasing both average and peak

demands on file systems. Furthermore, expanding computing power enables new classes of

demanding applications such as databases and multimedia programs that add additional pressure

to I/O systems. As a result, I/O systems must advance quickly to avoid limiting system perfor-

mance. This trend motivates the radically more scalable serverless design.

Manufacturer

1989 1994 Five-year
Average
Rate of
IncreaseMachine

Bcopy
Bandwidth Machine

Bcopy
Bandwidth

SUN SPARCStation 1 5.6 MB/s SPARCServer 20 Model 6 27.9 MB/s 38%/year

Hewlett-Packard 9000-835CHX 6.2 MB/s 715/80 32.1 MB/s 39%/year

IBM RT-APC 5.9 MB/s 6000/370 67.2 MB/s 63%/year

Digital Equipment DS3100 5.1 MB/s 3000/400 43.8 MB/s 54%/year

TABLE 2-3.Memory bandwidth for 1989 and 1994 machines. The 1989 values were measured by
Ousterhout [Ousterhout, 1990]. The 1994 values are for large, 10 MB transfers to reduce cache
effects. The rate of increase is the change for each manufacturer for the products listed computed
over five years. Note that these rates would differ somewhat if different products in each vendor’s
line were chosen.

14

2.2.1. Demands From Sequential Applications

The faster improvement rate of processor performance compared to that of disk performance

suggests that future I/O systems be designed to take advantage of multiple-disk transfers; improv-

ing computers allow users to process more data more quickly, increasing the speed required from

the file system. For example, the Case/Amdahl rule of thumb suggests that a balanced machine

should have 1 Mbit of I/O bandwidth for each MIPS of CPU performance [Hennessy and

Patterson, 1996]. Figure 2-3 plots the actual local single-disk bandwidth against processor perfor-

mance for ten machines manufactured during the last decade. This graph suggests that high-per-

formance machines with single disks no longer conform to the Case/Amdahl rule of thumb and

that the gap is growing larger as processors get faster. The trend discussed above, whereby proces-

sors get faster more quickly than disk transfers, suggests that this imbalance will continue to grow.

If anything, Figure 2-3 understates the imbalance. First, it assumes that disk performance

improves with disk bandwidth. In fact, because disk latency improves more slowly than disk band-

width, overall disk performance is likely to improve more slowly as well. Second, as relative disk

latencies increase, systems use more aggressive prefetching [Patterson et al., 1995], which

$10/MB

$100/MB

$1000/MB

1989 1990 1991 1992 1993 1994 1995 1996

C
os

t P
er

 M
eg

ab
yt

e

FIGURE 2-2. DRAM price per megabyte. Each point indicates the cost per megabyte of DRAM
memory based on advertisements fromByte magazine. All prices reflect memory purchased in 9-bit-
wide SIMM form with access times of 80 ns or better. To provide the best price for each data point,
points before July of 1991 are the prices for 1MB SIMMs, and points from July of 1991 and later are
one quarter of the prices of 4 MB SIMMs. Note the log scale for the y axis.

15

increases demands for disk throughput. In effect, prefetching reduces latencies for disk requests by

increasing demands for bandwidth.

2.2.2. Demands From Parallel and Distributed Applications

Although sequential processors stretch the limits of conventional file systems, the increasing

need for high-performance, parallel file access by mainstream users seems likely to swamp them.

Efforts to allow users to harness the aggregate power of many workstations in Networks of Work-

stations (NOWs) [Anderson et al., 1995] will increase both the average and peak demands on file

systems from parallel programs or multiple, simultaneous, sequential jobs.

The ability to harness multiple machines will allow users to tackle larger problems, increasing

the total amount of data passed through file systems. Cypher [Cypher et al., 1993] measured the

I/O demands of parallel supercomputing applications and found that average I/O requirements

increased linearly as the size of a problem increased. This conclusion suggests that the perfor-

FIGURE 2-3. Bandwidth and processor performance. This comparison of local disk bandwidth
against processor performance suggests that single-disk sequential machines have too little I/O
capacity for their processing power and that this imbalance is increasing as processors get faster.
Each point shows the measured bandwidth when reading a file that is too large to fit in the in-
memory cache from a single local disk plotted against the published SPECInt performance for the
machine. Note that SPECInt92 is used to rate processor power rather than MIPS. If the higher MIPS
figures had been used, the machines would appear to be even more out of balance.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Disk Bandwidth > Processor Speed

Case
-Amdahl B

alance

Processor Speed > Disk Bandwidth

HP 735

DEC 3000/400HP 715/80

SPARC 10

DEC 5000/200

SPARC 2VAX 11/780

SPARC 20

Pentium90

HP9000/J200

Processor Performance (SPECInt 92)

D
is

k
B

an
dw

id
th

 (
M

bi
t/s

)

16

mance I/O systems must scale as quickly as that of aggregate — not just sequential — processing

for systems that support parallel jobs.

Further, not only will NOWs increase total demands on file systems, these demands are likely

to come in bursts as the actions of many machines become correlated. Where traditional file sys-

tems could depend on the “law of large numbers” to smooth file system demands over time, paral-

lel and distributed jobs running on NOWs synchronize the actions of many machines. For

instance, NOW users may compile programs using parallelmake rather than sequentially. Even if

a parallelmake demands no more total work from the file system that a sequential one does,

requests are sent to the file system much more quickly in the parallel case. To keep from reducing

perceived end-user performance, the file system must provide higher peak performance to keep up

with increased peak demands from users.

2.2.3. Demands From New Applications

Increasing workstation capabilities also enable new classes of demanding applications. For

instance, I/O intensive database applications would challenge conventional file systems because

they require large numbers of relatively small, concurrent accesses. Further, database vendors

want access to a large number of disks and they want to control how data are distributed over those

disks to assist in load balancing.

Continuous media applications such as video and audio will also pressure file systems by

requiring them to supply large amounts of aggregate bandwidth. Video applications demand sig-

nificant bandwidths for periods ranging from seconds to hours, requiring that storage systems

accommodate large numbers of simultaneous, demanding users. Furthermore, the sequential

nature of video streams may prevent file system caching from being useful, although by the same

token prefetching may be effective. Finally, continuous media applications may require real-time

guarantees for smooth playback. Although this thesis does not address continuous media applica-

tions or real-time guarantees explicitly, it does suggest methods by which storage systems may be

built to provide large amounts of aggregate bandwidth. These techniques could then be used as a

basis for a continuous media file system.

17

2.3. Implications For File System Design

Not only do changing technologies increase the demands on file systems, they also change the

design trade-offs that should be made to satisfy those demands. Fast, switched, local area networks

such as ATM and Myrinet enable serverless file systems by allowing LANs to be used as I/O back-

planes, harnessing physically distributed processors, memory, and disks into single file systems.

The switched networks provide aggregate bandwidths that scale with the number of machines on

the network, and new, low latency network interfaces enable closer cooperation among machines

than has been possible in the past. As the rest of this section describes, the trend towards faster,

scalable networks motivates each of the pieces of the serverless design, although particular design

decision were also shaped by other technology trends.

2.3.1. Cooperative Caching

The serverless design replaces central server caching with cooperative caching that coordi-

nates the clients’ caches to allow reads not satisfied by one client’s cache to be supplied from

another’s. Trends in network performance and in memory capacity motivate cooperative caching,

which Chapter 3 discusses in detail.

High-speed, low-latency networks provide the primary motivation for cooperative caching by

allowing clients to access remote memory much more quickly than they can access remote or even

local disk, as Table 2-4 indicates. Where fetching data from remote memory might be only three

times faster than getting the data from remote disk on an Ethernet, remote memory may now be

accessed ten to twenty times more quickly than disk, increasing the payoff for cooperative cach-

ing. At the same time, fast networks reduce the effectiveness of architectures like AFS [Howard

et al., 1988] that use local disk as a cache rather than using remote memory; with fast networks,

such an approach will be much slower than cooperative caching.

The recent lag in improvements to memory capacity provides a second motivation for cooper-

ative caching. As memory capacity grows more slowly, designers can no longer rely on growing

memories to maintain or improve hit rates or to cope with the larger working set sizes enabled by

larger disks. Instead, designers must use available memory more efficiently. Cooperative caching

does so by providing improved global hit rates with a given amount of memory and by reducing

duplicate caching between clients and the server and among clients.

18

2.3.2. Distributed Storage

A serverless system replaces centralized disk storage with storage servers that distribute stor-

age to different machines’ disks. This approach works well because of high-bandwidth networks.

Furthermore, to exploit trends in disk technologies, the specific storage server design discussed in

Chapter 4 uses redundant, log-structured storage to provide availability and improve write perfor-

mance.

Fast, scalable networks motivate distributed disk storage. When networks are faster than disks,

a single client can read or write at its full network bandwidth by accessing multiple disks that are

distributed on the network. Additionally, because a switched network’s aggregate bandwidth can

be orders of magnitude larger than its per-link bandwidth, the peak aggregate bandwidth of a dis-

tributed disk system is the sum of all of the disk bandwidths or network link bandwidths in the sys-

tem. In contrast, a centralized system’s bandwidth is limited to the network link bandwidth of a

single machine — the central server — even if the server uses a local RAID to increase its disk

bandwidth.

The storage server design described in Chapter 4 stores redundant data on disks to provide

high availability. The low cost of disk storage makes this approach to availability more cost-effec-

tive than alternatives designs such as replicated servers [Walker et al., 1983, Kazar, 1989, Popek

et al., 1990, Liskov et al., 1991, Kistler and Satyanarayanan, 1992, Birrell et al., 1993].

Ethernet
77 Mbit/s ATM

(Half of 155 Mbit/s)

Local
Memory

Local Disk
Remote
Memory

Remote
Disk

Remote
Memory

Remote
Disk

Mem. Copy 250 us 250 us 250µs 250µs 250µs 250µs

Net Overhead

Data

--

--

--

--

400µs

6250µs

400µs

6250µs

400µs

800µs

400µs

800µs

Disk -- 14,800 us -- 14,800µs -- 14,800µs

Total 250 us 14,800 us 6,900µs 21,700µs 1450µs 16,250µs

TABLE 2-4.Cache miss time.Time to service a file system’s local cache miss from remote memory
or disk for a slow network, Ethernet, and a faster network, a 155 MBit/s ATM network that achieves
half of its maximum link throughput. Copy time for local memory is the measured time it takes to
read 8 KB from the file cache on a DEC AXP 3000/400. Network overhead times indicate round-
trip, small-packet latencies based on TCP times reported in [Martin, 1994] for a Hewlett-Packard
9000/735 workstation. Transfer figures for Ethernet make the unrealistically optimistic assumption
that data is transferred at the full 10 Mbit/s link speed (in reality, because Ethernet utilizes a shared-
bus architecture, transfer times could often be several times those listed above). The ATM transfer
time assumes that half of the full 155 Mbit/s bandwidth is attained to account for protocol overheads
[Keeton et al., 1995]. The disk transfer time is based on measured, physical-disk time (excluding
queueing) for the fastest of three systems measured under real workloads by Ruemmler and Wilkes
[Ruemmler and Wilkes, 1993].

19

Trends in disk technology also favor the log-structured storage design used in the storage serv-

ers. Log structured file systems [Rosenblum and Ousterhout, 1992, Seltzer et al., 1993] commit

modifications to disk using large, contiguous writes to the log; this approach uses disks efficiently

by amortizing seek and rotational delays over large writes. Furthermore, log structured file sys-

tems are more efficient when free disk space is plentiful [Rosenblum and Ousterhout, 1992]; cheap

disks make it feasible to provide extra disk space to get improved performance.

2.3.3. Distributed Management

A serverless file system implements data management separately from data storage. Although

this separation can add an additional network hop to access data compared to a central server, low-

latency, scalable networks mitigate this cost. Low-latency networks make the additional network

hops needed to locate data inexpensive compared to the network or disk transfer of the data itself,

and scalable networks prevent congestion that could interfere with low-latency communication.

2.4. Other Technology Trends

A number of other technologies will also influence file systems during the next decade. The

increasing distribution of data over wide area networks (WANs), the growing use of portable com-

puters, and the emergence of robotic, tertiary storage libraries will all demand new file system

capabilities. This thesis focuses on file service within the context of a LAN with on-disk storage

and does not address the opportunities and requirements of these other technologies in detail. To

put this thesis in context, this section summarizes the relationship of the ideas it examines to these

wider technology trends.

The World Wide Web (WWW) enables data to be distributed widely and shared, and I believe

that there are many interesting research questions related to using file system techniques to

improve the efficiency and convenience of the WWW. However, because WAN and LAN perfor-

mance, availability, security, and cost characteristics are so different, the appropriate trade-offs for

WAN and LAN file system protocols will be different. As a result, I believe that future WAN file

systems will implement two sets of protocols, one for communication within a cluster of machines

on a fast LAN network and the second for communication among these clusters over a slower

WAN [Sandhu and Zhou, 1992]. Although the research for this thesis is devoted to file systems

within a LAN, the techniques described here would also be appropriate for the LAN-specific pro-

20

tocol in a LAN/WAN file system. I have examined protocols appropriate for WAN file systems

elsewhere [Dahlin et al., 1994].

This thesis also focuses on the needs of desktop, as opposed to portable, computers. Portable

computers pose a number of challenges to file systems stemming from their frequent disconnec-

tion from the network [Kistler and Satyanarayanan, 1992] or their use of relatively low-band-

width, wireless network connections [Le et al., 1995, Mummert et al., 1995]. Because the

techniques described in this thesis assume an environment where machines are tightly coupled

using a fast LAN, they would not work well as the primary file system for portable computers. In a

mixed environment of portable and sedentary computers, however, I would envision these tech-

niques being used on stationary workstations to provide a scalable file system “backbone.” In such

an environment, the portable machines would run a different protocol such as Coda [Kistler and

Satyanarayanan, 1992] or Ficus [Popek et al., 1990], using this scalable backbone as their

“server.”

Finally, tertiary-storage, robotic libraries [Drapeau, 1993] provide an opportunity for large

amounts of data to be stored more cheaply than they can be stored on disk. This advantage exists

because these libraries allow massive archives to be built and some system services, such as file

backup and restore, to be automated. Because the latency that results when these devices are

accessed can be tens or hundreds of seconds, file systems must be carefully structured to hide this

latency. Many of the techniques in this thesis address issues related to moving data among differ-

ent storage servers and might be extended as a mechanism to provide migration to tertiary storage

libraries. This thesis does not, however, examine the critical issue of migrationpolicy— when to

move data between storage levels to mask latency.

21

3Cooperative Caching

Cooperative caching seeks to improve file system performance and scalability by coordinating

the contents of client caches and allowing requests not satisfied by a client’s local in-memory

cache to be satisfied by the cache of another client.

Three technological trends discussed in Chapter 2 make cooperative caching particularly

attractive. First, processor performance is increasing much more rapidly than disk performance

(see Table 2-1 on page 8), making disk accesses a significant impediment to application perfor-

mance [Rosenblum et al., 1995]. This divergence makes it increasingly important to improve the

effectiveness of caching to reduce the number of disk accesses made by the file system. Second,

emerging high-speed, low-latency switched networks can supply file system blocks across a net-

work much faster than standard Ethernet, as indicated in Table 2-4 on page 18. Whereas fetching

data from remote memory over an older network might be only three times faster than getting the

data from a remote disk, remote memory may now be accessed ten to twenty times as quickly as a

disk, increasing the payoff for cooperative caching. Third, the rising cost of memory capacity rela-

tive to the cost of disk capacity makes it important to use memory efficiently to maintain good

cache hit rates. Traditional, central server caching uses the same technology — DRAM

memory — for both client caches and server caches. As a result, a significant fraction of the server

cache’s contents may be duplicated in client DRAM caches, reducing the effectiveness of server

caching and wasting precious DRAM capacity [Franklin et al., 1992, Muntz and

Honeyman, 1992]. To combat this problem, cooperative caching unifies global and local DRAM

caching into a single abstraction and explicitly manages data within the cooperative cache to repli-

cate blocks only when doing so improves performance.

Existing file systems use a three-level memory hierarchy, which implements a limited form of

“cooperative caching” by locating a shared cache in server memory in between the other two lev-

els of storage: client memory and server disk. Although systems can often reduce the number of

22

disk accesses by increasing the fraction of the system’s RAM that resides in its server, three factors

make true, distributed cooperative caching more attractive than physically moving memory from

clients to the server. First, central server caching manages DRAM less efficiently than cooperative

caching: the memory at the server does not improve clients’ local hit rates, the data at one client

cannot be accessed by other clients, and the DRAM at clients and servers often inefficiently repli-

cate the same data blocks. Second, a server in a cooperative caching system will be less loaded

than a server with a large cache because it can satisfy many requests by forwarding them to the cli-

ents’ caches rather than having to transfer large volumes of data. Finally, cooperative cache sys-

tems are more cost effective than systems with extremely large server caches. For example, in

1995 it would be significantly cheaper to add 32 MB of industry-standard SIMM memory to each

of one hundred clients than it would be to buy a specialized server machine capable of holding the

additional 3.2 GB of memory. Section 3.3.5 quantifies the trade-offs between centralized and dis-

tributed caching in more detail.

Note that the analysis in this chapter assumes that clients cache file system data in their local

memories but not on their local disks. Because of the technology trends driving fast local area net-

works, it will be much quicker for a client to fetch an 8 KB block from another client’s memory

than to fetch that data from a local disk.

The key challenge to exploiting distributed client memory as a cooperative cache is providing

a distributed, global memory management algorithm that provides high global hit rates without

interfering with clients’ local cache hit rates. In this chapter I examine six cooperative caching

algorithms and find that three factors determine their effectiveness. First, to benefit from data shar-

ing, algorithms should allow each client to access the recently accessed data of other clients. Sec-

ond, algorithms should reduce replication of cache contents by globally coordinating the client

caches rather than allowing clients to greedily fill them with locally referenced data. Finally, to

permit clients to maintain high hit rates to their local memories while also providing high hit rates

to the global cooperative cache, algorithms should dynamically adjust the portions of client mem-

ories dedicated to local caching and global caching so that active clients can use most of their

caches for local data, while idle clients allow most of their memories to be used for global data.

Based on these factors, I have developed a simple algorithm, called N-Chance Forwarding, that

provides nearly ideal performance. This algorithm is attractive because it provides good global

coordination of cache contents without relying on global communication. Instead, it exploits ran-

domized load balancing to get good performance [Eager et al., 1986, Adler et al., 1995].

23

To evaluate a range of algorithms, I use simulation studies driven by both traces of file system

usage and by synthetic workloads. To provide a simple comparison with current systems, this

study assumes that cooperative caching coordinates the contents of client memories in a tradi-

tional, central server system that retains a central server cache. Under these assumptions, the trace-

based studies indicate that cooperative caching can often reduce the number of disk accesses by

50% or more, improving the read response time of a file system by 30% to 150%1 for most of the

workloads studied. A fully serverless system would get even better performance from cooperative

caching by eliminating the separate, central cache memory and, instead, coordinating all of the

system’s memory as a single, cooperative cache. The synthetic-workload studies verify that coop-

erative caching will provide significant benefits over a wide range of workloads and that it will

almost never hurt performance.

Note that the algorithms examined in this work do not affect the reliability of data storage

because cooperative caching only deals with “clean” file system data. If a client modifies a data

block and then another client requests that block via cooperative caching, the first client commits

the block to disk before allowing the second client to see it.

Section 3.1 describes the six cooperative caching algorithms I examine. Section 3.2 describes

the simulation methodology, and Section 3.3 examines key simulation results. Section 3.4 dis-

cusses related studies in cooperative caching and global memory management. Finally, Section 3.5

summarizes my conclusions.

3.1. Cooperative Caching Algorithms

This section examines six variations of cooperative caching in detail, covering a range of algo-

rithm designs. Different cooperative caching algorithms could manage remote client memory in

many different ways. Figure 3-1 illustrates four fundamental design options and the relationship of

the six algorithms to these options. Although these algorithms are by no means an exhaustive set

of cooperative caching algorithms, the subset contains representative examples from a large por-

tion of the design space and includes a practical algorithm whose performance is close to optimal.

1. All improvement values for speedup and performance use the terminology in [Hennessy and Patterson, 1996].
Speedup is defined as the execution time of the slower algorithm divided by the execution time for the faster one. The
improvement percentages for performance are calculated by subtracting 1.00 from the speedup and then multiplying
by 100 to get a percentage.

24

The rest of this section examines these six algorithms; it then discusses several other possible

approaches.

3.1.1. Direct Client Cooperation

A very simple approach to cooperative caching, Direct Client Cooperation, allows an active

client to use an idle client’s memory as backing store. This process works when the active client

forwards cache entries that overflow its local cache directly to an idle machine. The active client

can then access this private remote cache to satisfy its read requests until the remote machine

becomes active and evicts the cooperative cache. The system must provide a mechanism and crite-

ria for active clients to locate idle ones.

Direct Client Cooperation is appealing because of its simplicity — it can be implemented

without modification to the server. From the server’s point of view, when a client uses remote

memory it appears to have a temporarily enlarged local cache. One drawback to this lack of global

cooperation is that active clients do not benefit from the contents of other active clients’ memories.

A client’s data request must, for example, go to disk if the desired block no longer happens to be in

the limited server memory even if another client is caching that block. As a result, the performance

benefits of Direct Client Cooperation are limited, motivating the next algorithm.

FIGURE 3-1. Cooperative caching algorithm design space. Each box represents a design decision
while each oval represents an algorithm examined in this study.

Greedy
Forwarding

Direct Client
Cooperation

N-
Chance

Private/Global
Coop. Cache?

Coordinated
Cache Entries?

Static/Dynamic
Partition?

Block
Location?

Centrally Hash

Weighted

GlobalPrivate

No Coordination Coordination

Static Dynamic

Any Client Fixed

LRU

Coordinated

25

3.1.2. Greedy Forwarding

Another simple approach to cooperative caching,Greedy Forwarding, treats the cache memo-

ries of all clients in a system as a global resource that may be accessed to satisfy any client’s

request, although the algorithm does not attempt to coordinate the contents of these caches. For

Greedy Forwarding, as for traditional file systems, each client manages its local cache “greedily,”

without regard to the contents of the other caches in a system or the potential needs of other cli-

ents.

Figure 3-2 illustrates how Greedy Forwarding allows clients to supply data from their caches

to one another. If a client does not find a block in its local cache, it asks the server for the data. If

the server has the required data in its memory cache, it supplies the data; otherwise, the server con-

sults a data structure that lists the contents of the client caches. If any client is caching the required

data, the server forwards the request to that client. The client receiving the forwarded request then

sends the data directly to the client that made the original request. Note that the system does not

send the block through the server, because doing so would unnecessarily increase latency and add

to the server’s workload. If no client is caching the data, the request is satisfied by the server disk

as it would have been without cooperative caching.

With Greedy Forwarding the only change to a file system is that the server needs to be able to

forward requests, and the clients need to be able to handle forwarded requests; this support is also

needed by the remaining algorithms discussed here. Server forwarding can be implemented with

the data structures already present in systems implementing write-consistency with callbacks

FIGURE 3-2. Greedy Forwarding. Using Greedy Forwarding, clients supply data already present
in their caches to one another. Client 1 tries to read block foo, not found in its local cache. It requests
the data from the Server that then forwards the request to Client 2, which is caching the data. Client 2
forwards block foo to Client 1, satisfying the request.

foo

Client CacheClient Cache

miss

fooread(foo)

requestfoo forward

supply
block
foo

from server request
for foo

Client 1 Client 2

Server

26

[Howard et al., 1988] or cache disabling [Nelson et al., 1988]. In such systems, the server tracks

the files being cached by each client so that it can take appropriate action to guarantee consistency

when a client modifies a file. Cooperative caching extends this callback data structure, sometimes

called adirectory [Lenoski et al., 1990],1 to allow request forwarding by tracking the individual

file blocks cached by each client. For systems such as NFS whose servers do not maintain precise

information about what clients are caching [Sandberg et al., 1985], implementation of this direc-

tory may be simplified if its contents are taken as hints; some forwarded requests may be sent to

clients no longer caching a certain block. In that case the client informs the server of the mistake,

and the server either forwards the request to another client or gets the data from disk.

Although cooperative caching’s per-block forwarding table is larger than traditional, per-file

consistency callback lists, the additional overhead of server memory is reasonable since each entry

allows the server to leverage a block of client cache. For instance, a system could implement the

forwarding table as a hash table with each hash entry containing a four byte file identifier, a four

byte block offset, a four byte client identifier, a four byte pointer for resolution of linked-list colli-

sions, and two pointers of four bytes each for a doubly linked LRU list. In this configuration, the

server would require 24 bytes for every block of client cache. For a system caching 8 KB file

blocks, such a data structure would consume 0.3% as much memory as it indexes. For a system

with 64 clients, each with 32 MB of cache, the server could track the contents of the 2 GB distrib-

uted cache with a 6 MB index.

Greedy Forwarding is also appealing because it allows clients to benefit from other clients’

caches while preserving fairness — clients manage their local resources for their own good. On

the other hand, this lack of coordination among the contents of caches may cause unnecessary

duplication of data, which fails to take full advantage of the system’s memory to avoid disk

accesses [Leff et al., 1991, Franklin et al., 1992]. The remaining four algorithms attempt to

address this lack of coordination.

3.1.3. Centrally Coordinated Caching

Centrally Coordinated Caching adds coordination to the Greedy Forwarding algorithm by

statically partitioning each client’s cache into two sections: one managed locally (greedily by that

1. In this dissertation, I avoid using the term “directory” to refer to cache consistency state to prevent confusion with
file directories that provide a hierarchical file name space.

27

client) and one managed globally (coordinated by the server as an extension of its central cache.)

If a client does not find a block in its locally managed cache, it sends the request to the server. If

the server has the requested data in memory, it supplies the data. Otherwise the server checks to

see if it has stored the block in centrally coordinated client memory. If it locates the data in client

memory, it forwards the request to the client storing the data. If all else fails, the server supplies

the data from disk.

Centrally Coordinated Caching behaves very much like physically moving memory from the

clients to the server for central server caching. The server governs the globally managed fraction

of each client’s cache using a global replacement algorithm. In this way, when the server evicts a

block from its local cache to make room for data fetched from disk, it sends the victim block to

replace the least recently used block among all of those in the centrally coordinated distributed

cache. When the server forwards a client request to a distributed cache entry, it renews the entry on

its LRU list for the global distributed cache. Unless otherwise noted, I simulate a policy where the

server manages 80% of each client’s cache.

The primary advantage of Centrally Coordinated Caching is the high global hit rate that it can

achieve by managing the bulk of its memory resources globally. The main drawbacks to this

approach are that the clients’ local hit rates may be reduced because their local caches are effec-

tively made smaller and also that the central coordination may impose a significant load on the

server.

3.1.4. Hash Coordinated Caching

Hash Coordinated Cachingresembles Centrally Coordinated Caching in that it statically

divides each client’s cache into two portions — local and cooperative cache — but it avoids

accessing the server on a hit to the cooperative cache by spreading the contents of the cache across

clients based on block identifiers. Each client manages one cache partition that contains blocks

selected by hashing on the blocks’ identifiers. On a local miss, a client uses the hash function to

send its request directly to the appropriate client without first going through the server. That client

then supplies the data if it is currently caching that block, or it forwards the request to the server if

it does not have the block. To store data in the cooperative cache, the central server sends blocks

displaced from its local cache to the appropriate partition of the cooperative cache.

28

Hash-Coordinated caching performs similarly to Centrally Coordinated Caching. Hash func-

tion partitioning of the centrally managed cache has only a small impact on hit rates, and going to

the cooperative cache before going to the central server reduces server load because many requests

satisfied by the cooperative cache don’t go through the server. Direct access to the cooperative

cache also improves the latency of its hits, but direct access hurts latency for central server cache

hits or disk accesses.

3.1.5. Weighted LRU Caching

To disadvantage of Centrally Coordinated and Hash Coordinated caching is that those algo-

rithms statically partition clients’ memories into global and local portions. This approach hurts

active clients because it reduces their local hit rates. Furthermore, it fails to take full advantage of

idle clients’ memories. The next two algorithms address this problem by dynamically balancing

the fraction of each client’s cache used for local caching and the fraction used for global caching.

The Weighted LRU policy uses global knowledge to attempt to make a globally optimal

replacement decision whenever it makes room in a cache to add a new block. When a client adds a

new block to an already full cache, it ejects either the least-recently-usedsinglet (a block stored in

only one client cache) or the least recently usedduplicate (a block stored in more than one client

cache). When deciding between the LRU singlet and LRU duplicate, the algorithm weighs the

blocks by the expected global cost of discarding the duplicate, discarding the singlet, or forward-

ing the singlet to another cache. Hence, the name Weighted LRU. Although the basic algorithm

requires potentially unreasonable amounts of communication because it uses global knowledge to

make all replacement decisions, a more practical implementation that relies on hints rather than on

constant global communication performs nearly as well.

On each cache miss, Weighted LRU performs a global benefit/cost calculation to decide which

block to replace. Thebenefit of caching a block is the reduction in latency that will be realized the

next time the block is referenced. For instance, if a client keeps a singlet in its local cache and then

later references it, it saves (LatencydiskAccess - LatencylocalAccess) compared to the time for that ref-

erence if it discards the singlet and has to read it from disk. The opportunitycost of caching a

block until it is referenced is the cache space that it consumes until the reference — the space-time

product of its size and the time until the next reference [Smith, 1981]. Because the system cannot

know future reference times and because each block in the system is the same size, the algorithm

29

approximates the cost of caching a block until its next reference as the time since the block’s last

reference.

When a client makes space in its local cache, it has five options:

1. Discard a duplicate from its local cache.

2. Discard a singlet from its local cache.

3. Forward a singlet from its local cache to a remote client’s cache that has free space.

4. Forward a singlet from its local cache to a remote client’s cache, forcing the remote cache to
discard a duplicate.

5. Forward a singlet from its local cache to a remote client’s cache, forcing the remote cache to
discard a singlet.

Notice that it never makes sense to forward a duplicate, because having two remote copies saves

no time (e.g., adds no benefit) compared to having one remote copy; in either case, if the client

later references the block, the latency will be the remote network access time.

Table 3-1 summarizes the benefit/cost of each option. For each replacement, the system

chooses to discard or forward the block that results in the smallest reduction in the global cache

system’s total benefit/ cost.

If the client discards a local duplicate, only the local machine is hurt because only that

machine benefits from the local copy. If any other machine accesses that block, it can get one of

the other duplicates as easily as the copy being considered. The local machine, however, benefits

from the local copy since it will save a network latency when it next references the block. Thus,

the system computes the global reduction in benefit/cost caused by discarding a local duplicate as

the difference between the latency of a remote memory hit and a local hit divided by the time since

the last local reference to that duplicate, as the first formula in Table 3-1 indicates.

If the client discards a local singlet, it loses the local benefit of that singlet as it does for a local

duplicate, but other clients may be hurt as well. In addition to the cost resulting from the fact that

the client no longer has a local copy of the data, the next access to that data by any machine in the

system will have to access disk rather than reading the block from the client’s memory. Therefore,

the system calculates the benefit/cost loss caused by discarding a singlet as the local benefit/cost

(calculated as for a duplicate) plus the global benefit/cost: the difference between the latency of

remote disk fetch and a remote memory fetch, divided by the time since the last global reference.

30

The second formula in the table indicates this case. If the last global reference was by the local cli-

ent, the benefit/cost formula simplifies to as it should.

Note that the “global” term representing the cost of accessing disk will dominate this equation

when disk latency is larger than remote memory fetch latency. This term makes it harder for the

system to discard a singlet than to discard a duplicate, because discarding a singlet may result in a

future disk access, while discarding a duplicate can only entail a less expensive future network

access.

Instead of discarding a singlet, a client can forward one to another client’s cache. If the remote

cache has extra space available, then — as in the case where a client discards a local duplicate —

the client loses local access to the data, but no other clients are hurt. The third formula shows the

impact to the global benefit/cost of the cache in this case.

Finally, as the last two lines of the table indicate, a client can forward a singlet to a remote

cache and displace either a singlet or duplicate from that cache. In these cases, the client loses the

local value of the forwarded singlet, and the remote cache loses the local value of the block it dis-

Latencydisk Latencylocal–()
timeSinceLastLocalReferenceSinglet

 
 
 

Option Expected Lost Benefit/Cost to Global Cache System

Discard
Duplicate

Discard
Singlet

Forward
Singlet to
Empty Slot

Forward
Singlet to
Replace
Duplicate

Forward
Singlet to
Replace
Singlet

LatencyremoteMemory Latencylocal–()
timeSinceLastLocalReferenceDuplicate
--

 
 
 

LatencyremoteMemory Latencylocal–()
timeSinceLastLocalReferenceSinglet
--

 
 
  Latencydisk LatencyremoteMemory–()

timeSinceLastGlobalReferenceSinglet

 
 
 

+

LatencyremoteMemory Latencylocal–()
timeSinceLastLocalReferenceSinglet
--

 
 
 

LatencyremoteMemory Latencylocal–()
timeSinceLastLocalReferenceSinglet
--

 
 
  LatencyremoteMemory Latencylocal–()

timeSinceLastLocalReferenceRemoteDuplicate
--

 
 
 

+

LatencyremoteMemory Latencylocal–()
timeSinceLastLocalReferenceSinglet
--

 
 
 

LatencyremoteMemory Latencylocal–()
timeSinceLastLocalReferenceRemoteSinglet
--

 
 
  Latencydisk LatencyremoteMemory–()

timeSinceLastGlobalReferenceRemoteSinglet

 
 
 

+ +

TABLE 3-1. Weighted LRU benefit/cost values.Weighted LRU clients use these values when
deciding whether to discard a duplicate, discard a singlet, or forward a singlet. The system takes the
action with the lowest benefit/cost. Latency and time values are in the same time units (e.g., micro-
seconds.) The time since the last local reference to a block is the predicted time until the next reference
to the block by the client caching it. The time since the last global reference to a block is the predicted
time until any client in the system next references that block.

31

cards. Additionally, if the discarded remote object is a singlet, the next client in the system to ref-

erence that block will have to go to disk rather than to that remote client’s cache.

Conceptually, for each replacement, a client evaluates the cost of discarding or forwarding

each of its local singlets and duplicates and the cost of discarding each of the remote singlets and

duplicates, and it chooses the combination with the least negative impact on the system’s global

benefit/cost state. In fact, the system will always discard either a locally-LRU duplicate at some

client or discard the globally-LRU singlet in the system. Therefore, the system needs to consider

only a small subset of the blocks. Locally, it only considers discarding the duplicate that it refer-

enced least recently or discarding or forwarding the singlet that it referenced least recently; evict-

ing any other blocks from the local cache would incur an unnecessarily large “local” term in the

benefit/cost calculations. Similarly, remote clients only consider discarding the duplicate they ref-

erenced least recently or the singlet referenced least recently by any machine in the system.

3.1.5.1. Limiting Weighted-LRU Communication Requirements

As described so far, Weighted LRU requires considerable communication and computation to

make its replacement decisions. Each time a client replaces a block, for instance, it must contact

the server to determine if any of the blocks it considers for replacement are singlets, and to evalu-

ate the cost of fowarding a block it must contact all other clients to determine the cheapest block to

replace. In addition, whenever a client discards or forwards a block, it must notify the server so

that the server can maintain cache consistency and cooperative cache forwarding information. In

practice, systems using Weighted LRU replacement would reduce communication by maintaining

information to track which local blocks are singlets, by using hints to guess the cost and location

of the best remote block to replace, and by combining messages to the server. In the simulations

described in this chapter, unless otherwise noted, I use three sets of optimizations described below.

Section 3.3.2 examines the performance impact of the hints.

The first set of optimizations reduces the number of messages asking the server if blocks are

singlets when clients evaluate the blocks’ benefit/cost values. Each client maintains three LRU

lists — one for blocks thought to be duplicates, one for blocks thought to be singlets, and one for

blocks of unknown state. Clients add blocks to their singlet LRU lists when singlets are forwarded

to them by other clients. Clients add blocks to their unknown lists when they read blocks during

normal operation. They move blocks from the tail of the unknown list to the singlet and duplicate

32

lists when they search for the LRU singlet and LRU duplicate in their local caches. Each time a

client needs to make space in its local cache, it starts by finding its LRU singlet and LRU dupli-

cate. To do this, it first ensures that the oldest singlet is at the tail of the singlet LRU list and that

the oldest duplicate is at the tail of the duplicate LRU list. If the tail of the unknown list was refer-

enced less recently than the tail of either the singlet list or duplicate list, that item might be the

LRU singlet or LRU duplicate, so the client asks the server which it is and moves the item to the

correct list. It continues to do this until the tails of both the singlet and duplicate LRU lists are

older than the tail of the unknown list. Once that is true, it can proceed with the benefit/cost analy-

sis.

Note that the singlet/duplicate classification is only a hint — for instance, a duplicate could

become a singlet if the other copy is discarded — but reducing communication justifies occasional

mistaken benefit/cost calculations. This approach reduces communication because clients never

ask the server about blocks forwarded to them by other clients, and they only ask about blocks that

they read themselves one time — when the block is about to be replaced because it has not been

referenced for a long time and has therefore reached the end of the unknown-status LRU list.

The second set of optimizations uses hints stored at the server and clients to estimate the bene-

fit/cost impact of forwarding a singlet to a remote machine. By using these hints, clients avoid

polling all of the other clients each time they consider forwarding a singlet. Instead, the server

keeps hints of the benefit/cost impact of forwarding a singlet to each client, and clients keep hints

of the current best client to which to forward data and the expected cost of forwarding to that cli-

ent. Each message from a client to the server includes the current benefit/cost of forwarding a sin-

glet to that client. Each message from the server to a client includes the name of the client that will

be least impacted by accepting forwarded singlets and the last known benefit/cost of forwarding a

singlet to that client. These values are hints because they can become incorrect if clients access the

data that they had planned to sacrifice for the next singlet forwarded to them.

Finally, the system reduces communication costs by combining messages. For instance, the

system can piggy-back hints about client benefit/cost values on regular server requests as

described in the previous paragraph. Second, clients tell the server about changes to their cache

contents in the same message in which they request data. This update indicates what block a client

discarded from its cache to make room for the new data, and it indicates where, if anywhere, it for-

warded that block.

33

3.1.6. N-Chance Forwarding

The final algorithm that I quantitatively evaluate,N-Chance Forwarding, also dynamically

adjusts the fraction of each client’s cache that is managed cooperatively, depending on client activ-

ity. Like Weighted-LRU, the N-Chance algorithm recognizes that singlets are more globally valu-

able to the system than duplicates, so it preferentially caches singlets. N-Chance, however, is

much simpler than Weighted-LRU because it uses randomized load balancing rather than global

knowledge to distribute singlets across the global cache. In fact, the N-Chance algorithm is nearly

as simple as the Greedy algorithm: except for singlets, N-Chance works like Greedy Forwarding.

The simple bias towards singlets in the algorithm, however, is enough to give it performance com-

parable to that of the more complex Weighted-LRU approach.

Like Greedy Forwarding, a client in the N-Chance algorithm always discards the locally least

recently used object from its cache when it makes space for new blocks. However, if the discarded

item is a singlet, the client forwards the singlet to another client’s cache rather than allow the last

copy of the block to drop out of the cooperative cache. The client that receives the data adds the

block to its LRU list as if it had recently referenced the block.

To limit the amount of memory consumed by old singlets, each block has arecirculation count

that clients increment when forwarding singlets. Clients discard rather than forward singlets

whose recirculation count reachesn. If a client references a local singlet, it resets the recirculation

count to zero, and if a client references a remote recirculating singlet, the remote client discards

the singlet after resetting the recirculation count to zero and forwarding it to the client that refer-

enced it. Thus, an unreferenced singlet survivesn cache lifetimes in the global cooperative cache,

giving the algorithm its name; Greedy Forwarding is simply the degenerate case of this algorithm

with n = 0. Unless otherwise noted, the simulations discussed in this thesis usen = 2.

Using the recirculation count, this algorithm provides a dynamic trade-off for each client

cache’s allocation between local data (data being cached because the client referenced it,) and glo-

bal data (singlets being cached for the good of aggregate system performance.) Active clients will

tend to force any global data sent to them out of their caches quickly as local references displace

global data. Idle clients, in contrast, will tend to accumulate global blocks and hold them in mem-

ory for long periods of time. One enhancement that I leave as future work is to forward singlets

preferentially to idle clients, thus avoiding disturbing active clients. For the current study, clients

34

forward singlets uniformly randomly to the other clients in the system. This simple approach is

sufficient to provide good performance for all trace workloads examined.

An implementation of this algorithm must prevent a ripple effect where a block forwarded

from one client displaces a block to another client and so on. Note that in the most common case,

the displaced block is not a singlet, so no ripple occurs. However, to guard against the uncommon

case, the simulator in this thesis imposes a policy that prevents deep recursion from ever occur-

ring: a client receiving a recirculating block is not allowed to forward a block to make space.

When a client receives such a block, it uses a modified replacement algorithm, discarding its old-

est duplicate. If the cache contains no duplicates, the client discards the oldest recirculating singlet

with the fewest recirculations remaining.

Like Weighted LRU, N-Chance Forwarding optimizes communication with the server by

using implicit knowledge, hints, and combined messages. In particular, it applies the same knowl-

edge used by Weighted LRU to hint at which blocks are singlets without asking the server in the

common case, and it combines updates to cache consistency state with other server messages just

like Weighted LRU does.

3.1.7. Other Algorithms

Although the algorithms discussed above cover a broad range of alternatives, some improve-

ments and variations on those algorithm remain to be studied in detail.

Feeley et al. [Feeley et al., 1995] examines a prototype network virtual memory system that

uses a global replacement algorithm similar to Weighted LRU. It improves upon Weighted LRU

by providing a more practical way to track global age information. To reduce the amount of global

knowledge needed, the system divides time into epochs and also estimates the fraction of low-

value pages stored at each node. During the epoch, the system forwards global pages to different

nodes with probabilities determined by the fraction of low-value pages at each node. This algo-

rithm also includes a cut-off that turns forwarding off when all machines are active. Feeley found

that this approach out-performed the N-Chance algorithm when the amount of idle memory in the

system was limited and the distribution of idle memory across machines was skewed.

I plan to evaluate this algorithm in detail in the future using the same methodology that I use

for the other algorithms in this chapter. I hope to understand the importance of three design deci-

35

sions. First, Feeley’s algorithm uses global knowledge to skew replacement to idle machines; a

key issue is quantifying the trade-off between different degrees of global knowledge and perfor-

mance. Second, the algorithm includes a cut-off to avoid pathological behavior; I will quantify the

importance of this feature. Third, the algorithm presented by Feeley favors replacing global-cache

singlets rather than duplicates; my hypothesis is that this bias is a bug — systems should value sin-

glets more highly than duplicates because discarding a singlet can cause future disk accesses while

discarding a duplicate can only result in less expensive future network accesses [Leff et al., 1991].

Once this evaluation is complete, I plan to modify the N-Chance algorithm to take advantage

of any important factors discovered and then evaluate the resulting algorithm. It should be rela-

tively easy to modify the N-Chance algorithm to skew replacement decisions towards idle nodes

or to add code to cut-off forwarding when all machines are active. For instance, Eager et al. [Eager

et al., 1986] and Adler et al. [Adler et al., 1995] demonstrate a randomized load balancing algo-

rithm for allocating jobs to processes that is similar to the N-Chance approach to cache manage-

ment. However, where the N-Chance algorithm forwards a blockn times, this algorithm examines

n machines, and forwards each job only once — to the least loaded of then machines examined.

Just as I find thatn = 2 works well for N-Chance Forwarding, Adler et al. find thatn = 2 works

well for their algorithm. I hypothesize that Adler’s algorithm could be adapted for forwarding sin-

glets among caches and that it would provide most of the performance benefits of Feeley’s algo-

rithms for skewed workloads when memory is scarce while retaining much of the simplicity of the

N-Chance algorithm.

Finally, work is needed to enforce global resource allocation so that a single user or process

cannot consume excessive amounts of the system’s resources. Although trace-based simulations

studied in this chapter do not encounter this problem, systems should bound the worst-case dam-

age that a resource hog can inflict on other users. The challenge is to balance worst-case fairness

and best-case performance.

3.2. Simulation Methodology

I use trace-driven simulation to evaluate the cooperative caching algorithms. The simulator

tracks the state of all caches in the system and monitors the requests and hit rates seen by each cli-

ent. It assumes a cache block size of 8 KB, and it does not allow partial blocks to be allocated even

36

for files smaller than 8 KB. I verified the simulator by using the synthetic workload described in

[Leff et al., 1993a] as input, and reproduced Leff’s results.

I calculate response times as the weighted sum of the latencies to local memory, remote client

memory, server memory, and server disk times the fraction of hits to those levels of the cache hier-

archies. My baseline technology assumptions are similar to those of the ATM column of Table 3-2

on page 30, but they assume that the full 155 Mbit/s network bandwidth is achieved. Under these

assumptions, an 8 KB block can be fetched from local memory in 250µs, a fetch from remote

memory takes an additional 400µs plus 200µs per network hop, and an average disk access takes

a further 14,800µs. Table 3-2 summarizes access times to different resources for the algorithms.

In Section 3.3.3 I examine the sensitivity of the results to changes in technology, including differ-

ent network speeds.

Note that these simulations do not include any queueing delays in response time results. Since

the most attractive algorithms studied do not increase server load and since emerging, high-perfor-

mance networks use a switched topology, queueing would not significantly alter the results.

To maintain data consistency on writes, I assume that modifications to data are written through

to the central server and that the server keeps client caches consistent using a write-invalidate pro-

Local
Mem.

Remote
Client
Mem.

Server
Mem.

Server
Disk

Direct 250µs 1050µs 1050µs 15,850µs

Greedy 250µs 1250µs 1050µs 15,850µs

Central 250µs 1250µs 1050µs 15,850µs

Hash 250µs 1050µs 1250µs 16,050µs

Weighted LRU 250µs 1250µs 1050µs 15,850µs

N-Chance 250µs 1250µs 1050µs 15,850µs

TABLE 3-2. Memory hierarchy access times. Access times for the different levels in the memory
hierarchy for different cooperative caching algorithms, assuming that transferring an 8 KB file block
takes 250µs for local memory, 400µs plus 200µs per hop for the network, and 14,800µs for disk as
described in Table 3-2 on page 30. A remote client memory hit takes 1250µs for most algorithms
because it includes a local transfer that costs 250µs, a network transfer that takes 400µs, and three
network hops (client request, server forward request, and client supplies data) requiring 200µs each.
The Direct and Hash algorithms access the cooperative cache in 1050µs because they save a
network hop by accessing it directly. Similarly, a server memory hit takes 1050µs for most
algorithms because clients usually access the server directly. The Hash algorithm, however, requires
an extra network hop to get to the server because it first accesses the client indicated by the hash
function.

37

tocol [Archibald and Baer, 1986]. Since this chapter focuses on read performance, a delayed-write

or write-back policy would not affect these results.

For most of the results in this chapter, I use traces five and six from the Sprite workload,

described in detail by Baker et al. [Baker et al., 1991]. The Sprite user community included about

30 full-time and 40 part-time users of the system, among whom were operating systems research-

ers, computer architecture researchers, VLSI designers, and “others,” including administrative

staff and graphics researchers. Baker gathered four two-day traces of about forty client machines

and six servers. For simplicity, my initial evaluation shows results only for one two-day trace that

follows the activity of 42 client machines and one server. This part of the trace contains over

700,000 read and write block accesses, and each simulation run uses the first 400,000 accesses (a

little over a day) to warm the caches. Section 3.3.4 describes the simulation results for several

other workloads including the rest of the Sprite traces.

When reporting results, I compare them against a set of baseline cache-management assump-

tions and also against an unrealistic best case model. The base case assumes that each client has a

cache and that the central server also has a cache, but that the system does not use cooperative

caching. The unrealizable best case assumes a cooperative caching algorithm that achieves a glo-

bal hit rate as high as if all client memory were managed as a single global cache, but one that

simultaneously achieves local hit rates as if each client’s memory were managed as a private, local

cache. This best case provides a lower bound for the response time for cooperative caching algo-

rithms that physically distribute client memory to each client equally and that use LRU replace-

ment. I simulate this algorithm by doubling each client’s local cache and allowing the clients to

manage half of it locally and allowing the server to manage half of it globally, as it does for the

centrally coordinated case. For the best case, I assume that clients access data found in remote cli-

ent memory with three network hops (request, forward, and reply) for a total of 1250µs per

remote memory hit.

3.3. Simulation Results

This section presents the principal results from the simulation studies of cooperative caching.

Section 3.3.1 compares the different cooperative caching algorithms to the base case, to each

other, and to the unrealizable best case. For clarity, this subsection makes this comparison by

assuming a particular set of parameters for each algorithm, a fixed set of technology and memory

38

assumptions, and the use of a single workload. Section 3.3.2 examines the individual algorithms

more closely, studying different values for the algorithms’ parameters. Section 3.3.3 examines the

sensitivity of these results to technology assumptions such as cache size and hardware perfor-

mance. Section 3.3.4 examines the algorithms under several additional workloads. Finally,

Section 3.3.5 summarizes the results, highlights key conclusions, and compares cooperative cach-

ing to an alternative strategy — moving more of the system’s memory to the server.

3.3.1. Comparison of Algorithms

This section compares the algorithms’ response times, hit rates, server loads, and their impact

on individual clients. Initial comparisons of the algorithms fix the client caches at 16 MB per cli-

ent and the server cache at 128 MB for the Sprite workload. For the Direct Cooperation algorithm,

I make the optimistic assumption that clients do not interfere with one another when they use

remote caches; I simulate this assumption by allowing each client to maintain a permanent, remote

cache of a size equal to its local cache, which effectively doubles the amount of memory dedicated

to each client. For the Central Coordination algorithm, I assume that each client dedicates 80% of

its local cache memory to the cooperative cache and that each manages 20% locally. For the N-

Chance algorithm, I choose a recirculation count of two; unreferenced data will be passed to two

random caches before being purged from memory. Section 3.3.2 examines why these are appropri-

ate parameters.

Figure 3-3 illustrates the response times for each of the algorithms being examined and com-

pares these times to the base case on the left and the best case on the right. It can be seen that

Direct Cooperation provides only a small speedup of 1.05 compared to the base case despite opti-

mistic assumptions for this algorithm. Greedy Forwarding shows a modest but significant perfor-

mance gain, with a speedup of 1.22; the remaining algorithms that coordinate cache contents to

reduce redundant cache entries show more impressive gains. Central Coordination provides a

speedup of 1.64, nearly matched by the Hash version of the algorithm with a speedup of 1.63;

Weighted LRU improves upon this result with a speedup of 1.74. The simpler, N-Chance Forward-

ing algorithm nearly equals Weighted LRU for this workload with a performance improvement of

1.73. All four coordinated algorithms are within 10% of the unrealistic best case response time.

Two conclusions seem apparent based on the results illustrated in Figure 3-3. First, disk

accesses dominate latency for the base case, so efforts like cooperative caching that improve the

39

overall hit rate and reduce disk accesses will be beneficial. Second, the most dramatic improve-

ments in performance come from the coordinated algorithms, where the system makes an effort to

reduce the duplication among cache entries to improve the overall hit rate. The performance of all

coordinated algorithms is close enough that other factors such as implementation simplicity and

fairness should be considered when selecting among them.

Figure 3-4 provides additional insight into the performance of the algorithms by illustrating

the access rates at different levels of the memory hierarchy. The total height of each bar represents

the miss rate for each algorithm’s local cache. The base, Direct Cooperation, Greedy, and best case

algorithms all manage their local caches greedily and so have identical local miss rates of 22%.1

Central Coordination has a local miss rate of 36%, over 60% higher than the baseline local miss

rate. This algorithm makes up for this deficiency with aggressive coordination of most of the

FIGURE 3-3. Average block read time. Each bar represents the time to complete an average read
for one of the algorithms. The segments of the bars show the fraction of the total read time for data
accesses satisfied byLocal memory,Server Memory, Remote Clientmemory, orServer Disk.

0 ms

1 ms

2 ms

3 ms

Base Direct Greedy Coord Hash Weighted N- Best
LRU Chance

Algorithm

2.75 ms
2.62 ms

2.24 ms

1.68 ms1.69 ms1.58 ms1.59 ms1.57 ms

Local
Server Memory
Remote Client

Server Disk

R
es

po
ns

e
T

im
e

FIGURE 3-4. Cache and disk access rates. The bars represent the fraction of requests satisfied at
each level of the memory hierarchy for different algorithms. The total height of the bar is the local
miss rate for each algorithm. The sum of theServer Disk andRemote Clientsegments shows the miss
rate for the combined local and server memories. The bottom segment shows the miss rate once all
memories are included, i.e. the disk access rate.

0%

5%

10%

15%

20%

25%

30%

35%

Base Direct Greedy Coord Hash Weighted N- Best
LRU Chance

Algorithm

Server Memory
Remote Client

Server Disk

A
cc

es
s

R
at

e

40

memory in the system, which provides global memory miss rates essentially identical to those

achieved in the best case, with just 7.6% of all requests going to disk. In other words, Centrally

Coordinated Caching’s disk access rate is less than half of the 15.7% rate for the base caching

scheme; Hash Coordinated Caching performs like Centrally Coordinated Caching.

The two algorithms that dynamically balance singlet and duplicate caching provide local miss

rates only slightly worse than the greedy algorithms and disk access rates nearly as low as the

algorithms that statically devoted 80% of their memory to global caching. The Weighted LRU

algorithm achieves a local miss rate of 22% and a disk access rate of 7.6%. The recirculation of the

N-Chance algorithm increases the local miss rate from the greedy 22% rate to 23%, but it reduces

the disk access rate to 7.7%.

A comparison between the algorithms that statically partition memory, Central Coordination

and Hash Coordination, and those that partition it dynamically, Weighted LRU and N-Chance,

illustrates that both the local and global miss rates must be considered when evaluating these algo-

rithms. Although the static algorithms reduce the disk access rate, this reduction comes at the cost

of diminished local cache performance. In contrast, the Weighted LRU and N-Chance algorithms

interfere less aggressively with local caching, protecting the local cache hit rate but sacrificing

some global hits.

Another important metric of comparison is the load on the server imposed by the algorithms.

If a cooperative caching algorithm significantly increases server load, increased queueing delays

might reduce any gains in performance. Figure 3-5 illustrates the relative server loads for the algo-

rithms compared to the base case.

Because I am primarily interested in verifying that the increased server load of cooperative

caching does not also greatly increase server load, I make a number of simplifications when I cal-

culate this load. First, I only include the load associated with servicing read requests; I do not

include the load for write-backs, deletes or file attribute requests in the comparison. These other

sources of server load are likely to be at least as large as the load from reads; for instance, in the

SPEC-SFS NFS server benchmark [Wittle and Keith, 1993], reads account for only about one-

third of the server load. Including the other sources of load would add equally to the load for each

1. The simulated local miss rate is lower than the 40% miss rate measured for the Sprite machines in [Baker
et al., 1991] because I simulate larger caches than the average 7 MB ones observed in that study and because these
larger caches service requests to only one server.

41

algorithm, reducing the relative differences among them. The results of this simulation can thus be

used in support of the hypothesis that there is little difference between the algorithms in terms of

server load, or, more specifically, that none of the algorithms greatly increases the server load. It

should not be used to claim that one algorithm significantly reduces load compared to another

because actual differences will be smaller than shown here.

As another simplification, I base the calculations of server load on the network messages and

disk transfers made by the server for each algorithm. I assume that a network message overhead

costs one load unit and that a network data block transfer costs two load units. A small network

message, therefore, costs one unit; a network data transfer costs one for overhead plus two for data

transfer, for a total of three units. I also charge the server two load units for transferring a block of

data from disk.

The results in Figure 3-5 suggest that the cooperative caching algorithms do not significantly

increase server load, justifying the approximation of ignoring queueing delay. The Centralized

Coordinated algorithm does, however, appear to increase server load somewhat, at least under

these simple assumptions; the centralized algorithm significantly increases the local miss rate, and

clients send all local misses to the server. More detailed measurements would have to be made to

determine if the centralized algorithm can be implemented without increasing server queueing

delays. The Hash Coordinated version of the static-partition algorithm alleviates the centralized

version’s increase because requests that hit in the cooperative cache never go to the server.

Other Load
Hit Server Memory
Hit Remote Client

Hit Disk

FIGURE 3-5. Server loads.Server loads for the algorithms as a percentage of the baseline, no-
cooperative-caching server load. TheHit Disk segment includes both the network and disk load for
all requests satisfied at the server disk. TheHit Remote Client segment shows the server load for
receiving and forwarding requests to remote clients. TheHit Server Memory segment includes the
cost of receiving requests and supplying data from the server’s memory. Local hits generate no server
load. TheOther Load segment includes server overhead for invalidating client cache blocks and for
answering client queries (e.g. Weighted LRU and N-Chance asks, “Is this block the last cached
copy?”).

0%

20%

40%

60%

80%

100%

120%

Base Direct Greedy Coord Hash Weighted N- Best
LRU Chance

Algorithm

S
er

ve
r

Lo
ad

100%

87% 89%

110%
100%

82% 87%

72%

42

A final comparison among the algorithms focuses on individual client performance rather than

the aggregate average performance. Figure 3-6 illustrates the relative performance for individual

clients under each cooperative caching algorithm compared to that client’s performance in the base

case. The graph positions data points for the clients so that inactive clients appear on the left of the

graph and active ones on the right. Speedups or slowdowns for inactive clients may not be signifi-

cant, both because they are spending relatively little time waiting for the file system in either case

and because their response times can be significantly affected by adding just a few disk accesses.

One important aspect of individual performance is fairness: are any clients significantly worse

off because they contribute resources to the community rather than managing their local caches

greedily? Fairness is important because even if cooperative caching improves performance aver-

aged across all clients, some clients may refuse to participate in cooperative caching if their indi-

vidual performance worsens.

The data in Figure 3-6 suggest that fairness is not a widespread problem for this workload.

Direct Client Cooperation, Centrally Coordinated Caching, and Hash Coordinated Caching slow a

few clients by modest amounts; Greedy Forwarding, Weighted LRU, and N-Chance Forwarding

do no harm at all.

FIGURE 3-6. Performance of each individual client. Each point represents the speedup or
slowdown seen by one client for a cooperative caching algorithm compared to that client’s
performance in the base case. Speedups are above the line and slowdowns are below it. A client’s
slowdown is defined as the inverse of its speedup, if its speedup is less than one. The x-axis indicates
the number of read requests made by each client; relatively inactive clients appear near the left edge
of the graph, and active ones appear on the right.

8
4
2
1
2
4
8

0 100002000030000

S
lo

w
d

o
w

n
S

pe
ed

up

Number of Client Reads

Direct Client Cooperation

8
4
2
1
2
4
8

0 100002000030000

S
lo

w
d

o
w

n
S

pe
ed

up

Number of Client Reads

Centrally Coordinated Weighted LRU

8
4
2
1
2
4
8

0 1000020000 30000
Number of Client Reads

S
lo

w
d

o
w

n
S

pe
ed

up

N-ChanceHash Coordinated

8
4
2
1
2
4
8

0 100002000030000
Number of Client Reads

S
lo

w
d

o
w

n
S

pe
ed

up

Greedy Forwarding
Number of Client Reads

8
4
2
1
2
4
8

0 10000 20000 30000

S
lo

w
d

o
w

n
S

pe
ed

up

Number of Client Reads

8
4
2
1
2
4
8

0 10000 20000 30000

S
lo

w
d

o
w

n
S

pe
ed

up

43

Although one would expect the two algorithms that manage client caches greedily to be con-

sistently fair, Direct Client Cooperation causes a few clients’ performance to decline up to 25%

compared to their performance without the additional cooperative cache memory. This reduction

occurs because Direct Client Cooperation does not effectively exploit sharing among clients. The

clients’ cooperative caches are private, limiting the benefits from cooperative caching, while the

server cache hit rates decline compared to the base case because the correlation among client

access streams to the server is reduced by clients’ accesses to their remote, private caches. The

Greedy algorithm, in contrast, is always fair because the cooperative cache exploits sharing among

clients just as the central server cache does.

Although the Centrally Coordinated, Hash Coordinated, Weighted LRU, and N-Chance algo-

rithms disturb local, greedy caching to some degree, the significant improvements they yield in

global caching provide a net benefit to almost all clients. This trend of widespread improvement is

dominant for Weighted LRU and N-Chance Forwarding, which hurt no clients for this workload.

Centrally Coordinated Caching damages the response of one client by 14% and Hash Coordinated

Caching hurts the same client by 29%. None of these algorithms helps a client whose working set

fits completely into its local cache, but such a client can sometimes be hurt by interference with its

local cache contents. Because the dynamic algorithms, Weighted LRU and N-Chance Forwarding,

interfere with local caching less than the algorithms that partition client caches statically (as was

indicated in Figure 3-4), they are less likely to be unfair to individual clients. Note that the current,

central server caching approach, whereby cache memory is physically moved from the clients to

the server, would suffer from the same vulnerability as the static division algorithms.

The measurements presented in this section suggest that any of the four coordinated algo-

rithms can significantly improve response time but that the dynamic algorithms are superior to the

static algorithms by other measures. In particular, the dynamic algorithms are more likely to be

fair across all clients because they interfere with local caching less. Likewise, while the Weighted-

LRU and N-Chance algorithms provide similar performance, the N-Chance algorithm is signifi-

cantly simpler to implement because it relies less on global knowledge.

3.3.2. Detailed Analysis of the Algorithms

This subsection examines the cooperative caching algorithms in more detail and evaluates

their sensitivity to algorithm-specific parameters.

44

3.3.2.1. Direct Client Cooperation

Although Direct Client Cooperation is appealingly simple, its performance gains are limited

for two reasons. First, clients do not benefit from sharing — a client must access disk even if

another client is caching the data it needs. Second, many clients need more than 16 MB of addi-

tional cache to get any advantage.

Furthermore, achieving even the modest 5% improvement in the response time seen above

may be difficult. The above results were based on the optimistic assumption that clients could

recruit sufficient remote cache memory to double their caches without interfering with one

another. In reality, the algorithm must meet three challenges to provide even these modest gains.

First, clients may not be able to find enough remote memory to significantly affect perfor-

mance. Figure 3-7 plots Direct Cooperation’s improvement in response time as a function of the

amount of remote memory recruited by each client. If, for instance, clients can only recruit enough

memory to increase their cache size by 25% (4 MB), the improvement in response time drops to

under 1%. Significant speedups of 40% are achieved only if each client is able to recruit about

64 MBs — four times the size of its local cache.

Interference from other clients may further limit the benefits of Direct Client Cooperation. For

instance, when a client donating memory becomes active, it will flush any other client’s data from

its memory. Another client trying to take advantage of remote memory thus sees a series of tempo-

rary caches, which reduces its hit rate because a new cache will not be warmed with its data. Stud-

ies of workstation activity [Nichols, 1987, Theimer and Lantz, 1989, Douglis and

FIGURE 3-7. Direct Client Cooperation speedup.The top line indicates the speedup compared to
the base case as a function of each client’s remote cache size. The circle indicates the result for the
16 MB per client remote cache assumed for this algorithm in the previous section.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2 MB 4 MB 8 MB 16 MB 32 MB 64 MB 128 MB

Direct Client Cooperation

S
pe

ed
up

 v
. B

as
e

Remote Cache Size (Per Client)

45

Ousterhout, 1991, Mutka and Livny, 1991, Arpaci et al., 1995] suggest that although many idle

machines are usually available, the length of their idle periods can be relatively short. For instance,

Arpaci et al. found that 70% of idle periods during the working day lasted ten minutes or less. To

evaluate the potential impact of periodically vacating remote caches, I ran a simulation in which

clients were forced to give up remote client memory after a random period of time that averaged

ten minutes; when remote caches were 16 MB, performance declined by about 10% compared to

the permanent remote caches illustrated in the figure. To achieve performance equivalent to the

permanent remote caches simulated, clients could send evicted data to a new, idle client rather than

discarding it, although doing so would increase the system’s complexity.

Finally, Direct Client Cooperation must dynamically select which clients should donate mem-

ory and which should use remote memory. This problem appears solvable; if only the most active

10% of clients are able to recruit a cooperative cache, they would achieve 85% of the maximum

benefits available to Direct Client Cooperation for this trace. On the other hand, the implementa-

tion of a recruiting mechanism detracts from the algorithm’s simplicity and may require server

involvement.

3.3.2.2. Greedy Forwarding

The greedy algorithm provides modest gains in performance, and it is particularly attractive

because of its simplicity, because it does not increase server load, and because it is fair. In other

words, this 22% improvement in performance comes essentially for free once the clients and

server have been modified to forward requests and the server’s callback state is expanded to track

individual blocks.

3.3.2.3. Centrally Coordinated and Hash Coordinated Caching

Centrally Coordinated Caching can provide significant speedups and very high global hit

rates. Unfortunately, devoting a large fraction of each client’s cache to Centrally Coordinated

Caching reduces the local hit rate, potentially increasing the load on the server and reducing over-

all performance for some clients. This section provides detailed measurements of Centrally Coor-

dinated Caching to examine what fraction of each client’s cache to dedicate to the global cache.

These measurements also apply to the Hash Coordinated algorithm.

46

The fraction of cache that each client dedicates to central coordination determines the effec-

tiveness of the algorithm. Figure 3-8 plots the overall response time against the fraction of cache

devoted to global caching. Increasing the fraction improves the global hit rate and reduces the time

spent fetching data from disk. At the same time, the local hit rate decreases, driving up the time

spent fetching from remote caches. These two trends create a response time plateau when 40% to

90% of each client’s local cache is managed as a global resource. Note that these measurements do

not take increased server load into account; devoting more space to the global cache also increases

the load on the central server because local caches satisfy fewer requests. This effect may increase

queueing delays at the server, reducing overall speedups, and pushing the “break-even” point

towards smaller centrally-managed fractions.

I chose to use 80% as the default centrally managed fraction because, as Figure 3-9 suggests,

that appears to be the more “stable” part of the plateau under different workloads and cache sizes.

For instance, the plateau runs from 60% to 90% with 8 MB client caches for the same workload.

For large caches, low centrally managed fractions work well because even a small percentage of a

large cache can provide a large cooperative cache. A high centrally managed fraction tends to

achieve good performance regardless of client cache size because of the large disparity between

disk and network memory access times compared to the gap between network and local memory.

If the network were slower, a smaller percentage would be appropriate.

FIGURE 3-8. Response time for Centrally Coordinated Caching.Response time varies with the
percent of the cache that is centrally coordinated. Zero percent corresponds to the baseline, no-
cooperative-caching case. The Total time is the sum of the time for requests that are satisfied by the
Disk and the time for Other requests that are satisfied by a local or remote memory. The rest of this
study uses a centrally coordinated fraction of 80% for this algorithm, indicated by the circled points.

0 ms

1 ms

2 ms

3 ms

0% 20% 40% 60% 80% 100%

Total

Other

Disk

Centrally Coordinated Percent

R
es

po
ns

e
T

im
e

47

3.3.2.4. Weighted LRU

The Weighted LRU algorithm I simulate elsewhere in this chapter approximates the ideal

Weighted LRU algorithm, but it uses two sets of hints to reduce communication. First, once a cli-

ent finds out whether a block is a singlet or a duplicate, it assumes that the information remains

valid until it evicts the block from the cache or until it forwards a singlet to another client. If

another client reads a “singlet” from the server cache or if another client discards its copy of a

“duplicate”, the local hint can be wrong. However, because clients ask about the singlet/duplicate

status only for blocks near the end of their LRU lists, they tend to discard blocks soon after discov-

ering their status.

The second set of hints avoids computing a global minimum benefit/cost value over all clients’

cache entries. Each time a client asks the server for a block, it also tells the server the current value

of its minimum benefit/cost item; the server maintains a table containing hints about all clients’

minimums. The server then informs clients of the current global-minimum hint, including both the

lowest benefit/cost value and the client currently caching that item, in its reply to each client’s read

request. Clients use this global minimum value hint when evaluating the cost of forwarding a sin-

glet, and, if they do forward a block, they use the hint to decide which client to victimize.

Table 3-3 summarizes the impact of those hints on cache performance. Even using the simple

simulation model that ignores queuing delays, the option that reduce network communication by

utilizing hints provides nearly the same performance as those systems that use more precise, glo-

bal knowledge.

0 ms

0.5 ms

1 ms

1.5 ms

2 ms

2.5 ms

3 ms

3.5 ms

0% 20% 40% 60% 80% 100%

4 MB/Client

8 MB/Client
16 MB/Client

32 MB/Client
64 MB/Client

Centrally Coordinated Percent

R
es

po
ns

e
T

im
e

FIGURE 3-9. Response time plateau. For Centrally Coordinated Caching the plateau varies as the
size of a client’s cache changes.

48

3.3.2.5. N-Chance Forwarding

N-Chance Forwarding also provides very good overall performance by improving overall hit

rates without significantly reducing local hit rates. This algorithm also has good server load and

fairness characteristics.

Figure 3-10 plots response time against the recirculation count parameter,n, for this algo-

rithm. The largest improvement comes whenn is increased from zero (the Greedy algorithm) to

one. Increasing the count from one to two also provides a modest improvement of about 5%;

larger values make little difference. Relatively low values forn are effective since data blocks that

are recirculated through a random cache often land in a relatively idle cache and thus remain in

memory for a significant period of time before being flushed. When the parameter is two, the ran-

dom forwarding almost always gives a block at least one relatively long period of time in a mostly

TABLE 3-3. Impact of hints on Weighted LRU performance and communication. The first line
shows the characteristics of the algorithm that uses global knowledge for all decisions, the second
line shows the performance when clients keep track of which blocks they believe to be singlets, and
the final line shows the impact of client and server hints that estimate the benefit/cost and location of
the cheapest item to replace if the system forwards a singlet. All other simulations of Weighted LRU
in this chapter use the algorithm described in the third line because it significantly reduces
communication and without significantly reducing performance.

Weighted LRU Version Response Time

Global Knowledge 1.57 ms

Singlet Hints 1.57 ms

Singlet Hints + Benefit/Cost Hints 1.58 ms

FIGURE 3-10.Response time for N-Chance.The performance of the algorithm depends on the
number of times unreferenced blocks are recirculated through random caches. Zero corresponds to
the Greedy algorithm (no recirculation). The Total time is the sum of the time for requests that are
satisfied by going to Disk and Other requests that are satisfied by a local or remote memory. The rest
of this study uses a recirculation count of two for this algorithm, indicated by the circled points.

0 ms

1 ms

2 ms

3 ms

0 1 2 3 4 5 6

Total

Disk

Recirculation Count (n)

Other

49

idle cache. Higher values make little additional difference both because few blocks need a third try

to find an idle cache and because the algorithm sometimes discards old cache items without recir-

culating them alln times to avoid a “ripple” effect among caches.

3.3.3. Sensitivity to Hardware Parameters

This subsection investigates how sensitive the above results are to assumptions about hard-

ware technology. It first examines the performance of the algorithms for different cache sizes, and

then examines the performance as hardware performance changes.

3.3.3.1. Client Cache Size

Figure 3-11 plots the performance of the algorithms as a function of the size of each client’s

local cache. The graph shows that the four coordinated algorithms, Centralized Coordination,

Hash Coordination, Weighted LRU, and N-Chance Forwarding, perform well as long as caches

are reasonably large. If caches are too small, however, coordinating the contents of client caches

provides little benefit, because borrowing any client memory causes a large increase in local

misses with little aggregate reduction in disk accesses. The simple Greedy algorithm also performs

relatively well over the range of cache sizes.

FIGURE 3-11.Response time as a function of client cache memory for the algorithms.Previous
graphs in this chapter have assumed a client cache size of 16 MB (circled).

0 ms

1 ms

2 ms

3 ms

4 MB 8 MB 16 MB 32 MB 64 MB

Base

Direct

Greedy

Coord
Hash

Weighted LRU

N-Chance
Best

R
es

po
ns

e
T

im
e

Client Cache Size

50

3.3.3.2. Dynamic Cache Sizing

Many modern file systems dynamically adjust the size of each client’s cache in response to the

demands of virtual memory [Nelson et al., 1988]. Although the simulations examined earlier in

this chapter did not dynamically change cache sizes, cooperative caching may be even more

attractive for systems that do so.

Current systems’ dynamic cache sizing effectively reduces the size of the most active clients’

caches: clients will have their smallest caches exactly when they need their caches the most! This

effect reduces clients’ local hit rates and makes them even more dependant on the improved global

hit rates provided by cooperative caching. At the same time, dynamic cache sizing allows idle cli-

ents to supply very large amounts of cache memory to the global cooperative cache, improving the

global cooperative cache hit rate.

To verify these effects experimentally, I simulated a system assuming that the cache sizes of

the ten most active clients were halved, while those of the ten least active clients were doubled.

This assumption may be conservative; in many systems, most clients are idle most of the time

[Arpaci et al., 1995].

Table 3-4 summarizes response times, comparing N-Chance Forwarding to the base case.

Although smaller local caches hurt the performance of the most active clients and thus hurt overall

performance, cooperative caching reduces this effect. N-Chance Forwarding’s speedup compared

to the base case was 83% under this simple simulation of dynamic cache sizing, compared to 73%

for the system with client cache sizes that were static.

3.3.3.3. Server Cache Size

Because cooperative caching attacks the same problem that central server caches do, large

central server caches reduce the benefits of cooperative caching. Figure 3-12 illustrates the effect

of varying the size of the central server cache. Increasing its size significantly improves the base,

Base N-Chance Speedup

Static Cache 2.75 ms 1.59 ms 1.73

Dynamic Cache 3.05 ms 1.66 ms 1.83

TABLE 3-4. Read response time. These results are for the Base and N-Chance algorithms under
both the default Static Cache assumptions and simple assumptions meant to represent the effects of
Dynamic Cache sizing. Dynamic cache sizing was simulated by halving the cache size of the ten
most active clients and doubling the cache size of the ten least active clients.

51

no-cooperative-caching case, while only modestly improving the performance of the cooperative

algorithms that already have good global hit rates. For sufficiently large server caches, cooperative

caching provides no benefit once the server cache is about as large as the aggregate client caches.

Such a large cache, however, would double the cost of the system’s memory compared to using

cooperative caching. Note that when the server cache is very large, Centrally Coordinated Caching

and Hash Coordinated Caching perform poorly because their local hit rates are degraded.

Although it would appear that server memories would increase in size and make cooperative

caching less attractive over time, Figure 3-12 showed performance for a workload that was gener-

ated in 1991. The technology trends discussed in Chapter 2 suggested that workloads tend to

increase in size nearly as quickly as memories. Thus, I expect the performance advantage of coop-

erative caching to remain significant in the future.

3.3.3.4. Network Speed

One of the motivations for cooperative caching is the emergence of fast, switched networks.

10 Mbit/s Ethernet-speed networks, even if switched, are too slow to derive large benefits from

cooperative caching because transferring a block from remote memory takes almost as long as a

disk transfer. Fortunately, emerging high speed networks, such as ATM, Myrinet, and 100 Mbit/s

Ethernet, promise to be fast enough to see significant improvements. Figure 3-13 plots response

time as a function of the network time to fetch a remote block. For an Ethernet-speed network,

where a remote data access can take nearly 10 ms, the maximum speedup seen for a cooperative

FIGURE 3-12.Response time as a function of size of central server cache. The circled points
highlight the results for the default 128 MB server.

0 ms

1 ms

2 ms

3 ms

64 MB 128 MB 256 MB 512 MB 1024 MB

Base
Direct

Greedy

Coord
Hash

Weighted LRU
N-Chance
BestR

es
po

ns
e

T
im

e

Server Cache Size

52

caching algorithm is 20%. If, however, network fetch times were reduced to 1 ms, for instance by

using an ATM network, the peak speedup increases to over 70%. This graph shows little benefit

from reducing a network’s block fetch time below 100µs because once the network is that fast, it

is not a significant source of delay compared to the constant memory and disk times assumed in

the graph.

Although any of the coordinated algorithms used in this study can provide nearly ideal perfor-

mance when the network is fast, the dynamic Weighted LRU and N-Chance Forwarding algo-

rithms appear to be much less sensitive to network speed than the static Centrally Coordinated and

Hash Coordinated algorithms. Static partitioning of client memory only makes sense in environ-

ments where accessing remote data is much closer in speed to accessing local data than going to

disk. Otherwise, the reduced local hit rate outweighs increased global hit rate.

3.3.3.5. Future Projections

Figure 3-14 projects the performance of cooperative caching in the future, assuming the trends

in technology outlined in Chapter 2 and summarized in Table 3-5 continue. Since cooperative

caching replaces disk transfers with network transfers, and since network speeds are improving

more rapidly than disk speeds, cooperative caching performance improves relative to the base case

over time. However, this relative improvement is a modest one because, as Figure 3-3 suggests,

disk access time dominates response time even under cooperative caching; improvements to other

FIGURE 3-13.Response time as function of network speed. The x axis is the round trip time it
takes to request and receive an 8 KB packet. Disk access time is held constant at 15 ms, and the
memory access time is held constant at 250µs. For the rest of this study I have assumed 200µs per
hop plus 400µs per block transfer for a total remote fetch time of 800µs (request-reply excluding
memory copy time), indicated by the vertical bar.

0 ms

1 ms

2 ms

3 ms

4 ms

5 ms

6 ms

10 ms 1 ms 100µs 10 µs

Coord
Hash

Base
Direct
Greedy

Weighted LRU
N-Chance

Best

R
ea

d
R

es
po

ns
e

T
im

e

Remote-Memory Access Time

53

technologies do not change total response time significantly once networks are “fast enough.” For

instance, the speedup for N-Chance Forwarding increases from 73% in 1994 to 87% in 1999 under

these assumptions.

Note that this projection accounts for neither the increase in memory sizes expected in the

future nor the expected increase in disk and workload sizes. These trends largely offset each other

[Baker et al., 1991], resulting in little increase in effective cache size. Figures 3-11 and 3-12 sug-

gest that significant increases in effective cache sizes would reduce the need for cooperative cach-

ing slightly because they would reduce the need to manage memory carefully.

FIGURE 3-14.Cooperative caching response time under assumed technology trends. Note that
while the absolute difference (measured in milliseconds) between cooperative caching and the base
case falls over time, the relative difference (e.g. the speedup) increases, suggesting that cooperative
caching will become more valuable in the future.

0 ms

1 ms

2 ms

3 ms

1994 1995 1996 1997 1998 1999

Base
Direct

Greedy

Coord
Hash

Weighted LRU
N-Chance

Best

Year of Projected Technology

R
ea

d
R

es
po

ns
e

T
im

e

TABLE 3-5. Technological trends. Summary of technological trends relevant to the performance of
cooperative caching. For more detail, see Chapter 2. Although this table assumes that performance of
all aspects of the system continuously improve, in fact, different parts of systems improve
discontinuously as users upgrade different pieces of their systems at different times. However, over
the long term, performance upgrades should resemble the trends outlined here.

Coop. Cache
Parameter

Performance
 Trend 1994 1995 1996 1997 1998 1999

Memory Copy 40% 250 us 179 us 128 us 91 us 65 us 46 us

Net Overhead
Bandwidth

20%
45%

200 us
400 us

167 us
276 us

139 us
190 us

116 us
131 us

96 us
90 us

80 us
62 us

Disk Overhead
Bandwidth

10%
20%

11,000 us
4,000 us

10,000 us
3,333 us

9,091 us
2,778 us

8,264 us
2,314 us

7,513 us
1,929 us

6,830 us
1,608 us

54

3.3.4. Other Workloads

To evaluate the performance of cooperative caching over a wider range of environments, the

next three subsections simulate the algorithms using several additional workloads. The first sub-

section uses several other Sprite traces, and the next subsection looks at cooperative caching per-

formance for a system with more clients than Sprite had. Finally, Section 3.3.4.3 uses synthetic

workloads to bound the worst-case performance of the algorithms.

3.3.4.1. Other Sprite Traces

Figure 3-15 illustrates the response time for the algorithms under four additional Sprite traces

gathered by Baker et al. [Baker et al., 1991]. Each trace covers a two-day period and includes the

activity from all Sprite servers. The third graph, labeled Traces 5 and 6, covers the same time

period examined in the previous sections, but it includes the activity of file systems exported by all

servers as opposed to the single file server trace examined previously.

FIGURE 3-15.Response time for four, two-day Sprite traces. The traces are labeled by their
names in [Baker et al., 1991], which analyzed each day separately. The graph labeled Traces 5 and 6,
covers the same time period examined in the previous sections, but it includes activity to file systems
exported by all servers as opposed to the single file server trace examined previously. Note that the
graphs have different scales for their y-axis.

Base Direct Greedy Coord Hash Wght. N- Best

Local
Server Memory
Remote Client

Server Disk

LRU ChanceAlgorithm

Traces 1 and 2 Traces 3 and 4

Local
Server Memory
Remote Client

Server Disk

Traces 5 and 6

R
es

po
ns

e
T

im
e

Traces 7 and 8

R
es

po
ns

e
T

im
e

0 ms

1 ms

2 ms

3 ms

4 ms 3.96
3.79

3.21

2.61 2.59

1.74
1.58

1.00R
es

po
ns

e
T

im
e

Local
Server Memory
Remote Client

Server Disk

Base Direct Greedy Coord Hash Wght. N- Best
LRU ChanceAlgorithm

0 ms

2 ms

4 ms

6 ms

8 ms

10 ms

R
es

po
ns

e
T

im
e

10.40

9.12 9.17

1.22 1.22 1.01 1.12 1.00

0 ms

1 ms

2 ms

3 ms

4 ms

5 ms

Base Direct Greedy Coord Hash Wght. N- Best
LRU ChanceAlgorithm

4.58
4.34

4.04

3.60 3.62
3.39 3.31

2.91

0 ms

0.2 ms

0.4 ms

0.6 ms

0.8 ms

1.0 ms

1.2 ms

1.4 ms

1.6 ms

1.8 ms

Base BuddyGreedy Coord Hash Wght. N- Best
LRU ChanceAlgorithm

Local
Server Memory
Remote Client

Server Disk

1.68 1.64

1.38 1.36 1.38
1.32 1.32 1.30

55

The results for these traces follow the previous results in most respects. Cooperative caching

provides significant speedups for all of the traces, with the best performance coming from the

coordinated algorithms in general and the dynamic, coordinated algorithms in particular. The

numerical speedups observed, however, vary significantly from trace to trace. The first, third, and

fourth pairs of traces (traces 1 and 2, 5 and 6, 7 and 8) show results qualitatively similar to the ear-

lier ones. For instance, N-Chance Forwarding provides speedups of 2.51, 1.38, and 1.27 for these

traces. The differences among these traces relates to the amount of data touched by the workloads.

In traces 7 and 8, the workload touches relatively little data, so all of the algorithms that share cli-

ent caches work well. Traces 5 and 6 access more data than will fit in the system’s memory, so

even the unrealistic best case algorithm has a relatively high response time of 2.91 ms; for this

trace, the dynamic coordinated algorithms manage memory better than the less sophisticated algo-

rithms. For traces 1 and 2, the working set just barely fits in the system’s memory; the unrealistic

best-case algorithm has no capacity misses, but all of the other algorithms do. Again, coordination

of memory proves to be important for achieving good results.

For traces 3 and 4, N-Chance Forwarding achieves a remarkable speedup of 9.29, and the

other coordinated algorithms perform similarly. The dominant activity during this trace is a single

user processing large, trace files [Baker et al., 1991]. Because that user’s working set does not fit

in a machine’s local memory, the base, Direct, and Greedy algorithms are ineffective. The remain-

ing algorithms that coordinate client memories do quite well, and dynamic coordination is not vital

because, although the user’s working set is too large for a single machine, it is small compared to

the system’s total memory resources.

Figure 3-16 shows the server load for the four sets of Sprite traces; cooperative caching does

not appear to significantly increase load compared to central server caching. In Traces 1 and 2 and

in Traces 3 and 4, cooperative caching may reduce server load slightly, and in Traces 5 and 6 and

Traces 7 and 8, it increases load by at most 20%. As noted earlier, because there are several other

significant sources of server load, the impact of cooperative caching on total server load may be

even less than indicated in the graphs. Also note that the Direct algorithm sometimes (in Traces 1

and 2) reduces load compared to the base case because clients can cooperate without accessing the

server. Similarly, for all of the traces, the Hash Coordinated algorithm reduces load compared to

the Centrally Coordinated algorithm because clients access the cooperative cache without access-

ing the server.

56

3.3.4.2. Berkeley Auspex Workload

The Berkeley Auspex workload provides another set of data points to evaluate cooperative

caching. This workload traces the NFS file system network requests for 237 clients in the U.C.

Berkeley Computer Science Division that were serviced by an Auspex file server during one week

of October, 1993. As in the Sprite traces, the users consist primarily of computer science research-

ers and staff. At the time this trace was gathered, the department’s Auspex file server had 64 MB

of file cache and most clients had between 32 MB and 64 MB of DRAM. The simulations, how-

ever, use the same parameters as they do for the Sprite traces: 16 MB of file cache per client and

128 MB of server cache.

This trace differs from the Sprite traces in three ways. First, it is more recent; this traces was

gathered in late 1993, while the Sprite traces were gathered in 1991. Second, it includes the activ-

FIGURE 3-16.Server loads for the algorithms. Loads are expressed as a percentage of the
baseline, no-cooperative-caching server load for the four, two-day Sprite traces. The traces are
labeled by their names in [Baker et al., 1991], which analyzed each day separately. The graph labeled
Traces 5 and 6 covers the same time period examined in the previous sections, but it includes activity
to file systems exported by all servers, as opposed to the single file server trace examined previously.

S
er

ve
r

Lo
ad

Traces 1 and 2
Other Load

Hit Server Memory
Hit Remote Client

Hit Disk

Traces 3and 4

S
er

ve
r

Lo
ad

Traces 5 and 6

S
er

ve
r

Lo
ad

0%

20%

40%

60%

80%

100%

120%

Base Direct Greedy Coord Hash Wght. N- Best
LRU ChanceAlgorithm

Other Load
Hit Server Memory
Hit Remote Client

Hit Disk
100%

82%
89% 88%

79% 75%
80%

54%

0%

20%

40%

60%

80%

100%

120%

Base Direct Greedy Coord Hash Wght. N- Best
LRU Chance

Algorithm

100%
95% 91%

72%

60%

48%

61%

46%

S
er

ve
r

Lo
ad

0%

20%

40%

60%

80%

100%

120%

Base Direct Greedy Coord Hash Wght. N- Best
LRU ChanceAlgorithm

100%
92% 92%

106%
101%

105%
114%

75%

0%

20%

40%

60%

80%

100%

120%

Base Direct Greedy Coord Hash Wght. N- Best
LRU Chance

Algorithm

Traces 7 and 8

100%
92% 90%

120%
115%

109% 112%

87%

57

ity of a much larger number of clients; the Berkeley Auspex workload tracks the activity of 237

active clients while Sprite had fewer than 50. The large number of clients provides an extremely

large pool of memory for cooperative caching to exploit. Third, this seven-day workload covers a

longer period of contiguous time than any of the two-day Sprite traces; this reduces the impact of

start-up effects. The simulator uses the first one million read and write events to warm the caches

and gathers statistics during the remaining four million events.

The trace has one major limitation, however. It was gathered by snooping on the network;

because of this, it does not include clients’ local hits. To approximate the response time results

based on this incomplete trace, I use Smith’s Stack Deletion method [Smith, 1977]. Smith found

that omitting references that hit in a small cache made little difference in the number of faults seen

when simulating a larger cache. The actual miss rate can be accurately approximated by dividing

the number of faults seen when simulating the reduced trace by the actual number of references in

the full trace.1 As a further refinement, I used the read attribute requests present in the trace to

more accurately model the local client LRU lists. NFS uses read-attribute requests to validate

cached blocks before referencing them. The simulator can, therefore, use read-attribute requests as

a hint that a cached block is being referenced even though the block requests do not appear in the

trace. The attribute requests still provide only an approximation — an attribute cache hides

attribute requests validated in the previous three seconds, and not all read-attribute requests really

signify that a file’s cached blocks are about to be referenced — but they do allow the simulator to

infer some of the “missing” block hits.

Although the results for the Auspex workload are only approximate, they support the results

seen for the Sprite workloads as Figure 3-17 indicates. The relative ranking of the algorithms

under the Auspex workload follows the results for the Sprite workload: Centrally Coordinated

Caching, Hash Coordinated Caching, Weighted LRU, and N-Chance Forwarding work nearly as

well as the best case, and the Greedy algorithm also provides significant speedups; Direct Cooper-

ation provides more modest gains. This result is insensitive to the “inferred” hit rate; the exact

1. Unfortunately, the Auspex trace does not indicate the total number of references. For the results in Figure 3-17, I
assume a “hidden” hit rate of 80% (to approximate the 78% rate simulated for the Sprite trace), giving a maximum
speedup of 2.02 for cooperative caching. If the local hit rate were higher, all of the bars would have a slightly larger
constant added and the differences among the algorithms would be smaller (e.g. a 90% local hit rate reduces the best
case speedup to 1.68). If the local hit rate were lower, the differences would be magnified (e.g. a 70% local hit rate
gives a best case speedup of 2.22).

58

speedup predicted for the Auspex workload depends on the inferred hit rate, but cooperative cach-

ing provides significant advantages over a wide range of assumed local hit rates.

Figure 3-18 shows the impact cooperative caching has on server load for the Auspex work-

load, and the results generally follow the same pattern as for the other workloads. However, the

Hash Distributed Caching has a higher load than the Centrally Coordinated algorithm. Because of

the large number of clients for this workload, the static hash function reduces the effectiveness of

the global cooperative cache compared to the centrally coordinated version. As a result, more

requests are satisfied by the server cache in the Hash algorithm than in the Centrally Coordinated

one.

FIGURE 3-17.Response time for algorithms under the Auspex workload. The Inferred Local
Hits segment indicates an estimate of the amount of time spent processing local hits that do not appear
in the incomplete Auspex traces, assuming that the traced system had an 80% local hit rate.

0 ms

0.2 ms

0.4 ms

0.6 ms

0.8 ms

1 ms

R
es

po
ns

e
T

im
e

Base Direct Greedy Coord Hash Weighted N- Best
LRU ChanceAlgorithm

1.03 ms

0.88 ms

0.70 ms

0.55 ms 0.55 ms 0.52 ms0.52 ms 0.51 ms

Inferred Local Hits
Local

Server Memory
Remote Client

Server Disk

FIGURE 3-18.Server load for the algorithms.Load is expressed as a percentage of the baseline,
no-cooperative-caching load for the Auspex trace.

0%

20%

40%

60%

80%

100%

120%

S
er

ve
r

Lo
ad

Base Direct Greedy Coord Hash Weighted N- Best
LRU ChanceAlgorithm

100%

76% 74%
86%

94%

63% 66%
55%

Other Load
Hit Server Memory
Hit Remote Client

Hit Disk

59

3.3.4.3. Worst-case Workloads

Although the above results suggest that cooperative caching can provide significant speedups

compared to central server caching, the algorithms can interfere with clients’ local caching. Coop-

erative caching can therefore conceivably hurt performance for some workloads. This section

bounds the worst case performance of cooperative caching and finds that (1) cooperative caching

degrades the performance of very few workloads, and (2) even in the worst cases, cooperative

caching hurts performance only slightly compared to the base case. Thus, it appears that coopera-

tive caching is worth the risk for most types of workloads.

The coordinated algorithms — Centrally Coordinated Caching, Hash Coordinated Caching,

Weighted LRU, and N-Chance Forwarding — can potentially hurt a system’s performance com-

pared to greedy algorithms. Three factors determine when these algorithms hurt performance: the

working set size of the clients, the load imbalance among the clients, and the degree of data shar-

ing among clients. This section uses a synthetic workload to control these key factors and examine

their impact on the performance of the coordinated algorithms compared to the greedy algorithm

as well as to the base case.

The synthetic workload controls the three criteria independently. Each client has a set of “pri-

vate” data, the size of which determines the client’s “working set size.” Clients access data in

bursts that are on average much longer than their local cache size; the simulator randomly deter-

mines the number of requests in each string of accesses by generating a uniform random number

between 0.1 and ten times the cache size. The length of time between a client’s bursts controls the

system’s load balance. If the interval between bursts is short (i.e. 0), then all clients are constantly

active, and there is never even a temporary load imbalance to exploit. On the other hand, if the

inter-burst time is long, then during a client’s burst, it is likely that most other clients are inactive,

which means that the active clients can exploit the resources of idle ones. Finally, the workload

controls the degree of sharing by allowing a fraction of each client’s requests to go randomly to

other clients’ private data. If 100% of requests go to a client’s private data, there is no sharing,

while if 0% of a client’s requests go to private data then all data are shared equally.

The simulations in this section fix the number of clients at ten and the size of client caches at

ten elements per client. Further, I turn off server caching and use the same base assumptions about

technology as in the previous sections: a local hit takes 250 us, a server hit takes 1,050 us, a

remote client hit takes 1,250 us, and a disk hit takes 15,850 us.

60

Based on these simulations, it appears that the dynamic, coordinated algorithms, Weighted

LRU and N-Chance Forwarding, can only hurt performance in a restricted set of cases whenall

three parameters take “bad” values: when clients are accessing a working set slightly larger than

their local caches, when load is almost completely balanced across machines, and when there is

virtually no sharing of data among machines. Further, because the local miss penalty is relatively

small when data are found in remote memory, the worst-case degradation is limited to about 20%.

However, the static Centrally Coordinated Caching and Hash Coordinated Caching algorithms

degrade performance compared to the base case under a wider set of conditions and can hurt per-

formance more than the other algorithms because they can hurt both local and global hit rates in

degenerate cases.

Working Set Size

The sizes of clients’ working sets determine the degree to which cooperative caching can hurt

performance in the rare cases when it degrades performance compared to the base case. If working

sets are small enough to fit into local client caches, then cooperative caching is not be invoked, and

it cannot hurt performance. If, on the other hand, clients have extremely large working sets, then

they spend most of their time going to disk with or without cooperative caching. In that case, the

additional network latencies imposed by incorrect cooperative caching coordination decisions

make little difference to average performance.

Figure 3-19 illustrates the performance of the cooperative caching algorithms and the base

case as a function of working set size. Note that the other synthetic load parameters are set to the

worst case for cooperative caching: 100% of each client’s accesses go to its local data set, so no

data are shared, and all clients are always active, so there is no idle memory to exploit. As a result,

as the working set size increases above 100% of the local cache size, an increasing number of

requests have to go to disk, regardless of the algorithm used.

For this workload, the base and Greedy algorithms provide the best performance over the

entire range of working set sizes; because there is no sharing and no idle memory, the system does

best when clients do not interfere with one another’s caches. The Weighted LRU and N-Chance

algorithms provide slightly inferior performance when the working set size is larger than the cache

size because clients forward data to one another, reducing their local hit rates without improving

the system’s global hit rate.

61

Despite the fact that cooperative caching cannot possibly help this workload, the worst-case

degradation is small for N-Chance and Weighted LRU. At worst, their performance is 20% worse

than the base case when the working set size is 10% larger than local caches. For small working

set sizes, the system does not invoke cooperative caching and suffers no degradation. For large

working set sizes, disk accesses dominate the response time, but the algorithms have no effect on

the time spent accessing disk because they do not change the global hit rate.

Centrally Coordinated Caching suffers poor performance over a wider range of working set

sizes. Because this static algorithm uses only 20% of each client’s local cache for local data, client

performance begins to degrade when the size of the working set grows larger than 20% of a cli-

ent’s local cache. Further, because this version of the algorithm allows duplication between the

local and centrally coordinated portions of the caches, the effective size of the global cache is just

80% of the sum of the client caches. Therefore, disk access rates begin to rise sharply once the

working set size is larger than 80% of a client’s cache size. Although not shown in the graph, the

performance of Hash Coordinated Caching or traditional, central server caching is comparable to

that of Centrally Coordinated Caching.

FIGURE 3-19.Effect of working set size.The effect of working set size on cooperative caching
performance when sharing and burst-size are set to their worst case values -- no sharing and no gaps
between bursts. The x axis indicates the amount of private data from which clients randomly select
their accesses as a percentage of their local cache size, and the y axis indicates the response time. For
instance the data points at x = 200% show the response time when each client touches twice as much
data as will fit in its local cache.

0 ms

2 ms

4 ms

6 ms

8 ms

10 ms

12 ms

0% 50% 100% 150% 200% 250% 300% 350% 400% 450% 500%

Base
Greedy

Centrally Coordinated

Weighted LRU
N-Chance

R
es

po
ns

e
T

im
e

Working Set Size (% of Local Cache Size)

62

Load Balance

Coordinated cooperative caching algorithms exploit load imbalances by using idle clients to

supply data to active clients. Figure 3-20 illustrates the effect of varying the load balance in the

otherwise worst-case situation where clients touch strictly private data with a working set 1.1

times the size of their local caches. When there is little or no load imbalance to exploit, the base

case and Greedy algorithm do the best. However, as the inter-burst time increases, active clients

can exploit the resources of idle clients, increasing the benefit of both the static and dynamic coor-

dinated algorithms. Once the inter-burst time is equal to the burst time, the dynamic coordinated

algorithms outperform the base and Greedy algorithms, even for what is otherwise the worst case

scenario for those algorithms.

Sharing

Both the Greedy and coordinated algorithms exploit client sharing by allowing clients to

access data from one another’s caches. Figure 3-21 illustrates this effect by varying the fraction of

requests that go to local data from 0% (no locality) to 100% (no sharing) with all machines active

all of the time and with the workings set 1.1 times the size of a client’s local cache. Near the left

edge of the graph, widespread sharing allows all varieties of cooperative caching to outperform the

base algorithm despite the lack of load imbalance and the awkward working set size. As locality

FIGURE 3-20.Effect of load imbalance.Each client waits for a random inter-burst time between
0.01 and 10 times the average cache size and then fires off a burst of requests. The size of the bursts is
a random, uniform number between 0.1 and 10x the local cache size. Clients do not share data, and
the working set size is 1.1 times the local cache size. Note that when the average burst is larger than
the working set size, clients tend to revisit data during a burst.

0 ms

1 ms

2 ms

3 ms

4 ms

5 ms

6 ms

0.01 0.1 1.0 10

R
es

po
ns

e
T

im
e

Inter-Burst Time (Fraction of Cache Size)

Base
Greedy

Centrally Coordinated

Weighted LRU
N-Chance

Less Load Imbalance More Load Imbalance

63

increases towards the right of the graph, all algorithms except the Centrally Coordinated one show

significant improvements in performance. When there is no sharing, the base and Greedy algo-

rithms perform best; however, the Weighted LRU and N-Chance algorithms outperform them for

all but the most insular workloads.

3.3.5. Summary of Simulation Results

N-Chance Forwarding is a relatively simple algorithm that appears to provide very good per-

formance over a wide range of conditions. Weighted LRU provides similar performance but may

be more complex to implement. Centrally Coordinated and Hash Distributed Caching can also

provide very good performance, but they are more likely to degrade the performance of individual

clients, they depend heavily on fast network performance to make up for the reduced local hit rates

they impose, and they increase server load compared to the dynamic algorithms.

The Greedy Forwarding algorithm appears to be the algorithm of choice if simplicity is para-

mount. Although the Direct Cooperation algorithm is also simple, it is much less effective because

it does not exploit the fact that clients share data.

FIGURE 3-21.Effect of sharing. Each client accesses the indicated percentage of data from its
private working set and randomly accesses blocks from all other clients’ private sets. In other
respects the workload represents the worst case for the coordinated algorithms with no inter burst
interval (all clients are always active) and with working set sizes 1.1 times the size of each client’s
local cache.

0 ms

2 ms

4 ms

6 ms

8 ms

10 ms

12 ms

14 ms

16 ms

0% 20% 40% 60% 80% 100%

R
es

po
ns

e
T

im
e

% of Requests to “Private” Data

No Locality No Sharing

Base

Greedy

Centrally Coordinated

Weighted LRU

N-Chance

64

Finally, consider the alternative to cooperative caching: physically moving more memory

from clients to a traditional, central server cache. The results of this section show that distributed,

dynamic cooperative caching is a more effective way to organize memory than static, traditional

central server caching for at least six reasons.

• Cooperative caching provides better performance.

Central server caching is equivalent to the Centrally Coordinated algorithm and provides sim-

ilar performance: moving 80% of client cache memory to the server yields improvements of 66%

and 93% for the Sprite and Auspex workloads compared to the standard distribution of memory.

These speedups are good, but they fall short of equalling the N-Chance algorithm because of their

lower local hit rates of 64% and 44% (compared to 77% and 66% for N-Chance) resulting from

smaller local caches.

• Dynamic cooperative caching is more fair to individual clients.

Static allocation of the global/local caches is more likely to provide bad performance for some

individual clients as was seen in Figure 3-6 for Centrally Coordinated Caching.

• Dynamic cooperative caching provides better worst-case performance.

As indicated by the Centrally Coordinated algorithm’s lines in Figures 3-19 through 3-21, cen-

tral server caching can perform poorly for a relatively wide range of workloads.

• Dynamic coordination is less sensitive to network speed.

A system with more cache memory at the server and less at the clients is sensitive to network

speed as was seen in Figure 3-13 for Centrally Coordinated Caching. If the performance of net-

works falls compared to the performance of local memory, moving memory to the server becomes

less attractive.

• Central server caching increases server load.

Reducing the size of local client caches can increase server load because the server then trans-

fers more data from its memory to clients. The load for reads under a traditional caching system

with the enlarged central cache is 50% higher than for N-Chance Forwarding under the Sprite

workload.

• Large, central server caches stress server memory capacity.

65

Configuring servers with large amounts of memory may be less cost-effective than spreading

the same amount of memory among the clients. For instance, 80% of the 16 MB of cache memory

for the 237 clients in the Auspex trace would be 3 GB of memory, which would demand an

extremely expandable and potentially expensive server.

3.4. Related Work

This chapter evaluates the performance benefits and implementation issues of cooperative

caching. Its primary contributions are evaluating realistic management algorithms under real file

system workloads and a systematic exploration of implementation options.

Leff et al. [Leff et al., 1991, Leff et al., 1993b, Leff et al., 1993a] investigate remote caching

architectures, a form of cooperative caching, using analytic and simulation-based models under a

synthetic workload. Two important characteristics of their workload were that the access probabil-

ities for each object by each client were fixed over time and that each client knew what these dis-

tributions were. Leff found that if clients base their caching decisions on global knowledge of

what other clients are caching, they could achieve nearly ideal performance, but that if clients

made decisions on a strictly local basis, performance suffered.

The studies in this chapter differ from Leff’s studies in a number of important ways. First, this

chapter includes actual file system reference traces as a workload, allowing it to quantify the bene-

fits of cooperative caching achievable under real workloads. A second major feature of this study

is that it has focused on getting good performance while controlling the amount of central coordi-

nation and knowledge required by the clients rather than focusing on optimal replacement algo-

rithms.

Franklin et al. [Franklin et al., 1992] examined cooperative caching in the context of client-

server data bases where clients were allowed to forward data to each other to avoid disk accesses.

The study used synthetic workloads and focused on techniques to reduce replication between the

clients’ caches and the server cache. The server did not attempt to coordinate the contents of the

clients’ caches to reduce replication of data among the clients. Their “Forwarding—Sending

Dropped Pages” algorithm is similar to my N-Chance Forwarding algorithm, but they send the last

copy of a block to the server cache rather than to another client.

66

Feeley et al. [Feeley et al., 1995] implemented unified buffer cache that implemented coopera-

tive caching for both file system and virtual memory pages. They implemented a global, coordi-

nated, dynamic algorithm similar to Weighted LRU, but used epochs to limit the amount of global

knowledge required by the implementation. One set of microbenchmarks indicated that this algo-

rithm provided better performance than N-Chance Forwarding when free memory was scarce and

distributed unevenly across machines. Future work is needed to determine if a small amount of

global knowledge can be added to N-Chance’s randomized load balancing to retain the simplicity

of the N-Chance algorithm while providing good performance in memory-constrained environ-

ments.

Blaze [Blaze, 1993] proposed allowing file system clients to supply hot data to each other

from their local on-disk file caches. The focus of this work was on reducing server load rather than

improving responsiveness. He found that the use of client-to-client data transfers alloweddynamic

hierarchical caching and avoided the store and forward delays experienced by static hierarchical

caching systems [Muntz and Honeyman, 1992].

The idea of forwarding data from one cache to another has also been used to build scalable

shared memory multiprocessors. DASH hardware implements a scheme similar to Greedy For-

warding for dirty cache lines [Lenoski et al., 1990]. This policy avoids the latency of writing dirty

data back to the server when it is shared. The same optimization could be used for a cooperative

caching file system that uses delayed writes. Several “Cache Only Memory Architecture”

(COMA) designs have also relied on cache-to-cache data transfers [Hagersten et al., 1992, Rosti

et al., 1993].

Other researchers have examined the idea of using remote client memory rather than disk for

virtual memory paging. Felten and Zahorjan [Felten and Zahorjan, 1991] examined this idea in the

context of traditional LANs. Schilit and Duchamp [Schilit and Duchamp, 1991] scrutinized using

remote memory paging to allow diskless portable computers, and Iftode et al. [Iftode et al., 1993]

explored using memory servers in parallel supercomputers. Comer and Griffioen proposed a com-

munications protocol for remote paging [Comer and Griffioen, 1992].

67

3.5. Conclusions

The advent of high-speed networks provides the opportunity for clients to work closely

together to significantly improve the performance of file systems. This chapter examined the tech-

nique of cooperative caching and concluded that it can reduce read response times by nearly a fac-

tor of two for several of the workloads studied and that a relatively simple algorithm allows clients

to efficiently manage their shared cache.

This analysis of cooperative caching algorithms suggests that coordinating the contents of cli-

ent caches is vital to providing good global hit rates as well as good overall performance. This

analysis further suggests that the N-Chance algorithm proposed here achieves such hit rates with-

out hurting local hit rates and without requiring excessive server coordination.

68

4Distributed Disk Storage

The serverless system’s distributed disk storage subsystem stores all of the system’s durable

state, including file data blocks, metadata blocks, and data structures used internally by other parts

of the system. The performance, availability, and scalability of the storage system is therefore cru-

cial to the goals of the file system as a whole. To provide high performance, the disks must allow

high bandwidth access to a single file or to multiple files by one or more clients, but the disks

should also handle small file writes efficiently [Baker et al., 1991]. The system should therefore

distribute data across multiple disks and machines for parallelism, but it should still support effi-

cient small writes. To provide high availability, the system must allow continued access to the data

when some machines fail, and it must provide support to help higher levels of the system recover

after crashes. To do this, the system should store data redundantly, and it should provide some sort

of reliable logging mechanism. To meet the scalability goals, the system should efficiently support

hundreds or thousands of disks. It should therefore control the parallelism of disk striping indepen-

dently from the number of disks, and it should allow the amount of redundant data in the system to

increase as more disks are added.

Fast, scalable networks enable scalable, distributed storage systems by making it possible to

harness disks from different machines in parallel, using the network as an I/O backplane. When

disks are distributed across multiple machines connected by a fast network, a single client can

write to the disks at a rate limited only by that client’s network link, and multiple clients can access

the system’s disks at a rate limited only by the sum of the disks’ bandwidths or the aggregate net-

work bandwidth of the system. Also, by distributing disk storage across multiple machines and by

storing data redundantly, the system can ensure that all data blocks are available, even if some of

the machines or disks crash. Finally, fast networks make distributed disk storage scalable. Because

the disks are located on multiple machines, no single machine’s processor, memory, network link,

or I/O bus limits the system’s throughput. Even if all of the machines’ I/O busses are saturated, for

69

instance, the system can increase its raw disk bandwidth by connecting new machines and disks to

the network.

Several disk storage systems that support subsets of the serverless storage system’s goals have

been built. As I discuss in Section 4.6, however, while these systems provide parallel disk storage,

few provide scalability, high availability, or support for small writes.

One system, Zebra [Hartman and Ousterhout, 1995] does meet many of the serverless storage

system’s goals. Zebra’s log-based, network striping combines the ideas of Redundant Array of

Inexpensive Disks (RAID) [Patterson et al., 1988, Chen et al., 1994] and Log-structured File Sys-

tems (LFS) [Rosenblum and Ousterhout, 1992, Seltzer et al., 1993] and adapts them for distrib-

uted storage. The combination of redundant storage and log structured storage provides the high

bandwidth and high availability of RAID with the straightforward crash recovery and good small-

write performance of LFS. However, Zebra’s scalability falls short of that needed by a serverless

system because all client writes involve all of the system’s disks, because Zebra relies on a single,

sequential log cleaner to garbage collect free disk space to use for logging writes, and because

Zebra relies on a single, sequential metadata manager.

This chapter describes a design that addresses the limitations of the Zebra system to make

large-scale, log-based striping practical. To improve performance and availability, it employs

stripe groups like those proposed for large RAIDs, and to prevent the log cleaner from throttling

throughput it exploits distributed cleaning. Furthermore, the next chapter will describe the synergy

between this design and the distributed manager. The distributed manager coordinates metadata

without limiting the throughput of the disk storage system, and the distributed storage system’s

redundant, log-structured storage system enables distributed manager crash recovery.

The rest of the chapter proceeds as follows. First, Section 4.1 examines how Hartman’s Zebra

system combines RAID and LFS for distributed, log-based storage, and it compares log-based,

network striping to alternative network disk architectures. The next two sections describe

enhancements to Zebra to make that design scale well: Section 4.2 describes stripe groups, and

Section 4.3 presents the design of a distributed cleaner. The next section investigates how to use

the serverless system’s large, cooperative cache to reduce cleaning overhead. Then, Section 4.5

focuses on issues related to fault tolerance. Then Section 4.6 describes previous work related to

70

the disk subsystem design presented here. Finally, Section 4.7 highlights the key ideas behind the

design and summarizes my conclusions.

4.1. Log-based Network Striping

This section describes the basic design of a log-based, striped storage system. It first reviews

the concepts introduced by RAID and LFS, after which it outlines the Zebra design that combines

these ideas and extends them to distributed systems. Next, it outlines the limitations of the basic

Zebra design, and then it considers alternative designs of storage systems that do not use log-based

storage. Based on this evaluation, I conclude that a modified Zebra approach provides a superior

basis for scalable storage.

4.1.1. RAID

The serverless storage system exploits RAID-style disk striping to provide high performance

disk storage that is highly available. As Figure 4-1 illustrates, a RAID partitions astripe of data

into N-1 data blocks and a parity block — the exclusive-OR of the corresponding bits of the data

blocks; it then stores each data and parity block on a different disk. The parallelism of a RAID’s

multiple disks provides high bandwidth, while its parity storage provides fault tolerance — it can

reconstruct the contents of a failed disk by taking the exclusive-OR of the remaining data blocks

and the parity block. A generalization of this approach can withstand multiple-disk failures by

using multiple-parity disks for each stripe [Blaum et al., 1994].

RAIDs, however, suffer from two limitations. First, the overhead of parity management can

hurt performance for small writes; if the system does not simultaneously overwrite all N-1 data

blocks of a stripe, it must first read the old parity and the old data from the disks to compute the

new parity. Each small write thus requires four disk accesses: two to read the old data and old par-

⊗Stripe
Data Blocks Parity Block

FIGURE 4-1.RAID striping with parity. The system stores each data stripe’s block on a separate
disk and stores the stripe’s parity block on one additional disk.

71

ity and two to write the new data and new parity. Unfortunately, small writes are common in many

environments [Baker et al., 1991], and larger caches increase the percentage of writes in disk

workload mixes over time. I would also expect cooperative caching — using workstation memory

as a global cache as described in Chapter 3 — to further this workload trend by reducing the num-

ber of reads that access a disk. A second drawback of commercially-available, hardware RAID

systems is that they are 2.5 to 10 times more expensive per megabyte than non-RAID commodity

disks [Myllymaki, 1994]. RAIDs command this cost premium because they add special-purpose

hardware to compute parity, because they have low sales volumes over which to amortize the

added development costs to build this hardware, and because they are marketed at the high-end

server market rather than the more cost-sensitive desktop market.

4.1.2. LFS

Distributed disk striping incorporates LFS because doing so addresses the problems of small

writes in RAID systems while providing a flexible index to locate data for reads. LFS offers

another advantage of particular value for scalable, distributed systems: it simplifies recovery com-

pared to traditional disk organizations. However, LFS’s log cleaner potentially limits the through-

put of log-structured storage.

LFS provides high-performance writes by buffering many of them in memory and then com-

mitting them to disk in large, contiguous, fixed-sized groups calledlog segments. Batching writes

into segments makes disk writes efficient by amortizing a single-disk seek and rotational latency

over all of the writes in a segment. Thus, by relying on large writes, LFS exploits the technology

trend whereby disk bandwidths are improving more rapidly than seek times or rotational latencies

(see Table 2-1 on page 8.) LFS’s log segments also address the RAID small-write problem by

eliminating small writes; when LFS is used with a RAID, each segment of the log spans a RAID

stripe and is committed as a unit.

Although log-based storage simplifies writes, it may complicate reads because a block could

be located anywhere in the log, depending on when it was written. LFS’s solution to this problem,

illustrated in Figure 4-2, provides a general mechanism by which to handle location-independent

data storage. LFS uses per-fileinodes(index nodes), similar to those of the Fast File System (FFS)

[McKusick et al., 1984], to store pointers to the system’s data blocks. However, whereas FFS’s

inodes reside in fixed locations, LFS’s inodes move to the end of the log each time they are modi-

72

file 3

in
de

x
no

de

da
ta

da
ta

... more modified files ...

... more modified files ...

... unused blocks ...

file 1 file 2

(a)

file 1
file 2

...

Imap

file 1 file 2

(b)

file 1
file 2
file 3

...

imap

Data Block

Inode (Contains pointers to data blocks)

Hole (Overwritten Data, Inode, Ifile, or Checkpoint)

block 2
file 2 file 3

more of
file 1

Ifile (On-disk version of Imap)

Checkpoint (Contains pointers to ifile)

da
ta

da
ta

in
de

x

da
ta

da
ta

da
ta

da
ta

da
ta .

no
de

in
de

x
no

de
ifi

le
bl

oc
k

in
de

x
no

de

in
de

x
no

de
ifi

le
bl

oc
k

ch
ec

k-
po

in
t

da
ta

da
ta

in
de

x

da
ta

da
ta

da
ta

da
ta

da
ta .

no
de

in
de

x
no

de
ifi

le
bl

oc
k

in
de

x
no

de

in
de

x
no

de
ifi

le
bl

oc
k

da
ta

in
de

x
no

de

in
de

x
no

de

in
de

x
no

de
ifi

le
bl

oc
k

ch
ec

k-
po

in
t

da
ta

da
ta

da
ta

da
ta

... more modified files ...file 1 file 2

(c)

file 1
file 2
file 3

...

imap

block 2
file 2 file 3

more of
file 1

da
ta

da
ta

in
de

x

da
ta

da
ta

da
ta

da
ta

da
ta .

no
de

in
de

x
no

de
ifi

le
bl

oc
k

in
de

x
no

de

in
de

x
no

de
ifi

le
bl

oc
k

da
ta

in
de

x
no

de

in
de

x
no

de

in
de

x
no

de
ifi

le
bl

oc
k

ch
ec

k-
po

in
t

da
ta

da
ta

da
ta

da
ta

FIGURE 4-2. A log-structured file system.In figure (a), the log contains two new files, file 1 and
file 2, as well as other modified files. The index node block following each file contains pointers to
the file’s data blocks, the imap contains pointers to the index nodes, and the ifile is an on-disk copy of
the imap. The checkpoint contains pointers to the blocks of the ifile. In figure (b), the middle block of
file 2 has been modified. A new version of it is added to the log, as well as a new version of its index
node. Then file 3 is created, causing its blocks and metadata to be appended to the log. Next, file 1
has two more blocks appended to it. These two blocks and a new version of file 1’s index node are
appended to the log along with part of the ifile and a checkpoint. Finally, in figure (c), file 3 is
overwritten; although this has occurred after the most recent checkpoint, if a crash occurred, the
modification could be recovered during roll-forward from the previous checkpoint. When a data
block, index node, or checkpoint is overwritten, the old version becomes obsolete, which creates a
hole in the log that must be garbage collected later.

73

fied. When LFS writes a file’s data block, moving it to the end of the log, the file system updates

the file’s inode so that it points to the new location of the data block; it then writes the modified

inode to the end of the log as well. LFS locates the mobile inodes by adding a level of indirection,

called animap; in the next chapter, I will describe how to modify LFS’s imap to distribute disk

metadata across multiple managers. LFS stores the imap, containing the current log pointers to the

system’s inodes, in memory and periodically writes modified portions of the imap to disk in a file

called theifile. To support recovery, LFS occasionally writescheckpoints to the disk; the check-

points contain pointers to the blocks of the ifile.

Checkpoints form a basis for LFS’s efficient crash-recovery procedure because they allow

LFS to recover by reading just the last few segments it wrote. After a crash, LFS reads backwards

from the end of the log until it reaches the last checkpoint, and then it uses the checkpoint to read

the ifile and recover the imap. To find the new location of inodes that were written since the last

checkpoint, the system thenrolls forward, reading the segments in the log after the checkpoint.

When recovery is complete, the imap contains pointers to all of the system’s inodes, and the

inodes contain pointers to all of the data blocks. In contrast to LFS’s efficient recovery procedure,

traditional systems like FFS must scan the entire disk to ensure consistency after a crash because

they have no way to isolate which areas of the disk were being modified at the time of the crash.

Another important aspect of LFS is itslog cleaner,which creates free disk space for new log

segments using a form of generational garbage collection [Lieberman and Hewitt, 1983]. When

the system overwrites a block, it adds the new version of the block to the newest log segment, cre-

ating a “hole” in the segment where the data used to reside. The cleaner then coalesces old, par-

tially-empty segments into a smaller number of full segments to create contiguous space in which

to store new segments.

The overhead associated with log cleaning is the primary drawback of LFS. Although Rosen-

blum’s original measurements found relatively low cleaner overheads, even a small overhead can

make the cleaner a bottleneck in a distributed environment. Further, some workloads, such as

transaction processing, incur larger cleaning overheads [Seltzer et al., 1993, Seltzer et al., 1995].

4.1.3. Zebra

Zebra provides a way to combine LFS and RAID so that both work well in a distributed envi-

ronment: LFS’s large writes make Zebra’s writes to the network RAID efficient; Zebra’s imple-

74

mentation of a software RAID on commodity hardware (workstation, disks, and networks)

addresses RAID’s cost disadvantage; and the reliability of both LFS and RAID allows Zebra to

safely distribute data over the network.

LFS’s solution to the small write problem is particularly important for Zebra’s network strip-

ing because reading old data to recalculate RAID parity requires network communication in a dis-

tributed system. As Figure 4-3 illustrates, each Zebra client coalesces its writes into a privateper-

client log. It then commits the log to the disks using fixed-sizedlog segments, each made up of

severallog fragments that it sends to different storage server disks over the LAN. Log-based strip-

ing allows clients to calculate parity fragments efficiently using entirely local operations, and then

to store parity fragments on an additional storage server to provide high data availability.

Zebra’s log-structured architecture simplifies its failure recovery significantly because, like

LFS, Zebra provides efficient recovery using checkpoint and roll forward. To roll the log forward,

Zebra relies ondeltas stored in the log. To allow the system to replay the modification during

recovery, each delta describes a modification to a file system block, including the ID of the modi-

fied block and pointers to the old and new versions of the block. Deltas greatly simplify recovery

by providing an atomic commit for actions that modify distributed state: each delta encapsulates a

set of changes to a file system’s state that must occur as a unit. Deltas also allow the system to

chronologically order modifications to the same data by different clients.

FIGURE 4-3. Log-based striping used by Zebra. Each client writes its new file data into a single
append-only log and stripes this log across the storage servers. As a result, clients compute parity for
segments, not for individual files.

Client Memories

1 2 3 . . .

One Client’s Write Log
Log Segment

1 2 3

Log Fragments Parity
Fragment

1⊗2⊗3

A B C . . .

One Client’s Write Log
Log Segment

A B C

Log Fragments Parity
Fragment

1

A

2

B

3

Network

Storage Server Disks

A⊗B⊗C

C

75

4.1.4. Limits to Zebra’s Scalability

Although Zebra points the way towards environments without servers, several factors limit

Zebra’s scalability. First, Zebra stripes all log segments over all storage servers. This restriction

limits both performance and availability; Section 4.2 describes how to usestripe groups to address

this problem. Second, Zebra, like LFS, relies on a single cleaner to create contiguous free disk

space for new segments; as with LFS, a single cleaner limits Zebra’s write throughput. Section 4.3

presents the design of a distributed cleaner that avoids this limit. Finally, a singlefile manager

tracks where clients store data blocks in Zebra’s log; the manager also handles all cache consis-

tency operations. Chapter 5 describes how to adapt LFS’s imap to distribute management duties

across multiple machines and how to scale Zebra’s recovery approach to handle this distributed

management.

4.1.5. Alternatives to Log-based Striping

The earlier parts of this section suggested that log-based, redundant striping has two primary

advantages over traditional striped-disk layout strategies that overwrite data in place. First, log-

based striping provides superior small-write performance by coalescing writes; second, log-based

striping simplifies recovery by restricting modifications to the end of the logs. Other approaches to

solving these problems are possible; for instance, mirroring writes (RAID level 1) avoids the

small-write problem encountered by parity striping (RAID level 5) because it duplicates data

rather than calculate parity [Patterson et al., 1988]. Also, journaling file systems [Hagmann, 1987,

Kazar et al., 1990] maintain some of the recovery advantages of LFS file systems while still over-

writing data in place; journaling techniques might be extended to enable recovery for distributed

striping.

4.1.5.1. RAID Level 1 Mirroring

A RAID level 1 storage organizationmirrors duplicate data to two disks rather than comput-

ing parity over a larger numbers of disks. This approach avoids RAID level 5’s small-write prob-

lem because it never needs to read the old data or the old parity to calculate the new parity. A

RAID level 1 can also improve “degraded” read performance (when a disk fails). However, these

improvements come at the price of increased storage cost. Thus, as Table 4-1 indicates, the

cost/performance ratio of RAID level 1 is worse than an LFS-based RAID level 5 for writes, equal

for standard reads, and equal for large reads when a disk has failed. Although RAID level 1 pro-

76

vides an advantage for small reads when a disk has failed [Hsiao and DeWitt, 1989, Lee, 1995],

for many systems I would expect cooperative caching to satisfy most small-read requests, making

small-read disk bandwidth under failure a relatively unimportant metric. Thus, the approach taken

by RAID level 5 will usually be superior to a RAID level 1 approach. For systems that depend on

small reads and that require real-time guarantees or for which caching is ineffective, a RAID level

1 approach may be worth considering.

4.1.5.2. AutoRAID

The primary drawback of a RAID level 1 system is the overhead, both in terms of capacity and

bandwidth, to duplicate all data. AutoRAID [Wilkes et al., 1995] attempts to retain the small-write

performance of RAID level 1 while reducing its space overhead. AutoRAID duplicates data that

are actively being written using RAID level 1, but it automatically migrates less-active data to

RAID level 5 to improve the system’s storage capacity.

For systems with a high degree of write locality, AutoRAID can reduce storage overhead to

approximate that of RAID level 5 while retaining the small-write performance of RAID level 1.

Also, it retains the small-read failure-mode advantage of RAID level 1 for the subset of data that is

RAID Level 1
2N Disks

AutoRAID (Best Case)
N + (N/G) Disks

RAID Level 5 (LFS)
N+(N/G) Disks

AdvantagePerformance
Performance/

Cost Performance
Performance/

Cost Performance
Performance/

Cost

Capacity N 1/2 N G/(G+1) N G/(G+1) Auto/RAID 5

Large-Write Bandwidth N 1/2 (N+N/G)/2 1/2 N G/(G+1) RAID 5

Small-Write Bandwidth εN ε/2 ε(N+N/G)/2 ε/2 N* G/(G+1)* RAID 5*

Large-Read Bandwidth 2N 1 N+N/G 1 N + N/G 1 =

Small-Read Bandwidth ε2N ε ε(N+ N/G) ε ε(N+ N/G) ε =

Large-Read BW (1 disk failed) 2N-1 1-1/(2N) N+N/G-1 1-1/(N+N/G) N G/(G+1) =

Small-Read BW (1 disk failed) ε(2N-1) ε(1-1/(2N)) ε(N+N/G-1) ε(1-1/(N+N/G)) εN/2 ε(G/(G+1))/2 RAID 1/Auto

TABLE 4-1.Performance and cost/performance.This table indicates the relative performance and
cost/performance of RAID level 1, AutoRAID, and RAID level 5 systems. This figure compares
systems of constant capacity (each of the systems can store N disks worth of data plus redundant
data.) The RAID level 1 system duplicates data while the LFS-based RAID level 5 system stores one
parity fragment for each stripe group of G data fragments. The comparison for AutoRAID assumes
the best case: that most of the system’s data are stored in RAID level 5 to conserve space while most
writes go to the RAID level 1 portion of the storage and that most small reads with one failed disk
access RAID level 1 data. For small reads and writes,ε represents the efficiency of small accesses to
disk: the small-access bandwidth (including seek and rotation overheads) divided by the large-access
bandwidth. The asterisk (*) indicates that the results for the RAID Level 5 system assume that it is
running LFS; without LFS, each small write in the RAID level 5 system requires four disk accesses,
reducing the performance to N/4, the performance/cost toε(1-1/G)/4, and giving the advantage to
RAID level 1 and AutoRAID.

77

mirrored. However, because AutoRAID duplicates all writes, its total write bandwidth is less than

that of a RAID level 5. Also note that AutoRAID is currently implemented as a traditional, cen-

tralized RAID controller. Adapting its data structures to a distributed system would require signif-

icant effort.

4.1.5.3. Journaling File Systems

Just as mirroring provides an alternative to RAID level 5 striping to provide data redundancy,

journaling file systems [Hagmann, 1987, Kazar et al., 1990] provide an alternative to LFS deltas

for metadata recovery. Journaling file systems maintain the update-in-place strategy used by tradi-

tional file systems, but they add an auxiliary data structure, called a journal, for logging changes

before they are committed to the primary disk data structures. Before beginning to modify the file

system’s main data structures, the system atomically logs a list the changes it is about to make into

the journal. If an operation that modifies multiple disk blocks in place is interrupted midway by a

machine crash, it may leave the on-disk data structures in an inconsistent state. During recovery,

however, the system can put the file system back in to a consistent state by comparing the main file

system state with the modifications indicated in the journal’s log and then completing any changes

that were interrupted by the crash.

A journaling file system could thus be combined with RAID level 1 or AutoRAID to provide a

serverless storage system with acceptable small write performance, high availability, and crash

recovery. The main advantage of such a design would be the elimination of the LFS cleaner. How-

ever, a number of research issues must be addressed to make such an approach viable. First, the

system would have to provide a method to introduce location-independence so that data could be

moved between disks to balance load or when disks are added to or removed from the system. Sec-

ond, the system should provide a distributed mechanism to locate and manage free disk space in

the distributed system. Third, the system should provide policies for distributing files and directo-

ries across the disks to exploit locality and balance load. Developing these layout policies is likely

to require substantial research efforts.

4.2. Stripe Groups

When using large numbers of storage servers, rather than stripe each segment to every storage

server as in Zebra, scalable systems should implementstripe groups as have been proposed for

78

large RAIDs [Chen et al., 1994] to improve performance and availability. A stripe group consists

of a subset of the system’s storage servers, and clients write their segments across stripe groups

rather than across all storage servers. This section expands on the motivation for stripe groups, and

then describes how the serverless design implements them.

4.2.1. Motivation for Stripe Groups

Stripe groups are essential to support large numbers of storage servers for at least four reasons.

1. Stripe groups allow large, efficient writes to disk.

By allowing clients to distribute each log segment to a limited set of storage servers, stripe

groups allow clients to write larger fragments for a given segment size. By favoring large writes to

each disk, stripe groups leverage the disk seek time and bandwidth technology trends that favor

large disk accesses over small ones.

The alternative approach for providing large disk writes to many storage servers — increasing

the segment size — is less desirable. First, this approach would increase the memory demands for

file systems with many storage servers to allow clients to buffer these large segments. Further,

because file systems periodically force data to disk usingfsync() calls, clients would seldom

fill larger segments before writing them to disk. For instance, Baker et al. [Baker et al., 1992]

found that for eight production file systems, only 3% to 35% of all 512 KB segments were full

when written to disk. Partial segment writes reduce the efficiency of writes by reducing the effec-

tive fragment size and by requiring expensive parity updates when segments are later filled.

2. Stripe groups reduce cleaning cost.

By limiting segment size, stripe groups make cleaning more efficient. This efficiency arises

because when cleaners extract live data from a segment, they can skip completely empty seg-

ments, but they typically must read partially-full segments in their entirety. Large segments linger

in the partially-full state longer than small segments, significantly increasing cleaning costs.

Table 4-2 illustrates this effect for a simulation using the Auspex trace described in

Section 3.3.4.2 on page 56. Section 4.4, later in this chapter, describes my methodology for simu-

lating cleaning.

79

As the table indicates, increasing the segment size from 64 KB to 512 KB increases the write

cost by 56% for the Auspex trace because with larger segments the cleaner must read 47% of those

segments cleaned while with smaller sizes only 7% of the segments cleaned must be read. Since

the amount of data is the same no matter what the segment size, small segments mean less data

need to be cleaned.

3. Stripe groups match network bandwidth to disk bandwidth.

Stripe groups match the aggregate bandwidth of the groups’ disks to the network bandwidth of

a client, using both resources efficiently. Thus, while one client writes to or reads form one stripe

group at its full network bandwidth, another client can access a different group, also at the client’s

full network bandwidth.

4. Stripe groups improve availability.

Finally, stripe groups improve availability. Because each group stores its own parity, the sys-

tem can survive multiple server failures if they happen to strike different groups, which is the most

likely case in a large system with random failures. For instance, Figure 4-4 shows the amount of

time that some data in a system are unavailable under organizations with zero, one, or two parity

fragments per stripe as well as with or without stripe groups. Striping with a single parity fragment

but without groups provides better availability than a single server system as long as there are

fewer than 40 storage servers in the striped system. For larger systems, however, downtime

increases rapidly. Using two parity fragments without stripe groups or one parity fragment with

stripe groups allows the system to scale to approximately 150 storage servers. Two parity frag-

ments per stripe group gives effectively unlimited scalability, suffering less than two minutes of

Segment Size

Segments
Written by
File System

Segments
Cleaned

Segments
Read by
Cleaner

Segments
 Written

by
Cleaner

Empty
Segments
 Cleaned

Write
Cost

64 KB 61370 63357 4383 960 58974 1.087

512 KB 7671 8844 4166 1142 4678 1.693

TABLE 4-2. Comparison of cleaning cost as segment size is varied. Smaller segments are less
expensive to clean because they are more likely to become completely empty. This simulation used
the seven-day Auspex trace, and assumed that the disk was 80% full. The write cost [Rosenblum and
Ousterhout, 1992] compares the overhead from the cleaner’s disk accesses to the amount of data
written by the system. A write cost of 1.0 is perfect, indicating no cleaner overhead, while a write
cost of 2.0, for instance, indicates that the cleaner is responsible for as much disk activity as file
system writes.

80

downtime per month with 1000 storage servers and less than 14 minutes per month with 10,000

storage servers.

4.2.2. Implementing Stripe Groups

The key data structure for implementing stripe groups is the stripe group map. As Figure 4-5

illustrates, this map provides a translation between a group identifier and the list of servers storing

that group’s fragments. When a client writes a segment, it selects one group from the map and dis-

tributes the segment and its parity to the members of the group indicated by the map. To read a

segment, a client extracts the stripe group ID field from the segment ID and uses the stripe group

ID to identify the machines storing the data. If a storage server is down when a client tries to read

data from it, the client uses the stripe group map to identify the other storage servers in the group

to reconstruct the data using parity.

FIGURE 4-4. Hours of downtime per month under different parity organizations. This graph
assumes that each storage server fails randomly for an average of one hour per month, and it assumes
that the system is down when any data block is unavailable. TheNo Parity line shows the system’s
availability, assuming data are stored without redundancy; theOne Parity andTwo Parity lines show
the system’s availability assuming no stripe groups and one or two parity fragments protecting all of
the system’s disks. TheOne Parity Per Group of 10 andTwo Parity Per Group of 10 lines assume
that the system uses stripe groups of 10 machines with one or two parity fragments per group. For
reference, theOne Server line shows the availability of a single server under these assumptions.

0 Hours

2 Hours

4 Hours

6 Hours

8 Hours

10 Hours

0 20 40 60 80 100 120 140 160 180 200

No Parity One Parity

One Server
One Parity Per Group of 10

Two Parity

Two Parity Per Group of 10

H
ou

rs
 o

f D
ow

nt
im

e
P

er
 M

on
th

Number of Storage Servers

81

The system replicates the stripe group map globally among clients so that any client can con-

tact the storage servers that belong to any given stripe group. Global replication is reasonable

because the stripe group map is small and because it seldom changes; the map contains a list of

stripe groups and the groups’ members, and it changes only when a machine enters or leaves the

system — for instance, if a machine crashes.

Each storage server typically belongs to exactly one stripe group, but to handle map reconfig-

uration, storage servers can belong to multiple groups: onecurrent stripe group and zero or more

obsolete stripe groups. The current stripe groups listed in the map represent the groups of storage

servers for the current configuration of machines; clients write only to current stripe groups. Obso-

lete stripe groups indicate mappings that existed at some time in the past, before the last reconfig-

uration of the stripe group map; clients read from both current and obsolete stripe groups. Leaving

obsolete entries in the map allows clients to read data previously written to the obsolete groups

without first transferring the live data from obsolete groups to current ones. Over time, the cleaner

will move data from obsolete to current groups [Hartman and Ousterhout, 1995]; when the cleaner

removes the last block of live data from an obsolete group, the system deletes the obsolete entry

from the stripe group map to keep the map small.

When one or more storage servers enter or leave the system, the system must regenerate the

stripe group map. To do so, it uses a global-consensus algorithm to identify storage servers that are

active, to assign these servers to current stripe groups, and to distribute the resulting stripe group

FIGURE 4-5. A stripe group map. The table on the left shows the contents of a stripe group map
and the figure on the right shows the resulting logical relationships among disks. The system can
write or read either of the current stripe groups, but it can only read the obsolete stripe groups. A
storage server in one of the obsolete groups, Group 96, has failed. If a client were to read a block
stored on the third storage server of Group 96, it would find that storage server 0 (SS0) is down, and
it would then read the corresponding blocks from the other storage servers in the group to reconstruct
the lost data from parity.

Stripe Group Map

Stripe
Group
ID

SS’s In
Group

Current/
Obsolete

98 1,2,3,4 Current

99 5,6,7,8 Current

96 7,8,0,1 Obsolete

97 2,3,4,5,6 Obsolete

SS1 SS2 SS3 SS4

Group 98

SS5 SS6 SS7 SS8

Group 99

SS7 SS8 SS0 SS1

Group 96

SS2 SS3 SS4 SS5 SS6

Group 97

Failed

Obsolete Groups

Current Groups

82

map of current groups; Section 4.5.2 discusses this process. To generate a map of obsolete groups,

each storage server uses a local checkpoint to assemble a list of groups for which it stores frag-

ments. The system combines the storage servers’ lists and distributes the result to complete the

stripe group map.

4.3. Cleaning

When a log-structured storage system appends data to its logs, it invalidates blocks in old seg-

ments, leaving “holes” that contain no live data. LFS systems use alog cleaner to coalesce live

data from old segments into a smaller number of new ones, creating completely empty segments

that can be used for full segment writes. Since the cleaner must create empty segments at least as

quickly as the system writes new ones, a single, sequential cleaner would act as a bottleneck in a

distributed system. A scalable architecture, therefore, must provide for a distributed cleaner.

An LFS cleaner, whether centralized or distributed, has three main tasks. First, the system

monitors old segments’ utilization status — how many holes they contain and how recently these

holes appeared — to make wise decisions about which segments to clean [Rosenblum and

Ousterhout, 1992]. Second, the system monitors the number of free segments and the level of sys-

tem activity so that it can begin cleaning when space is needed or when the system is idle. Third,

when the system does begin to clean, it proceeds in two steps: the cleaner examines the utilization

information to select which segments to clean, and then, for segments that are not completely

empty, it reads the live blocks from the old segments and writes those blocks to new, compact

ones.

The rest of this section describes how to distribute cleaning across multiple machines. It first

describes how to distribute the task of tracking segment utilization. It then outlines how the system

monitors free space and system activity to activate the cleaners. Finally, it describes how the sys-

tem distributes the tasks of selecting segments and moving live data from old segments to new

ones. This section describes the mechanisms necessary to support distributed cleaning, and it

explains why these mechanisms should provide good performance through locality. However,

future work is needed to identify specific policies for activating cleaners.

83

4.3.1. Monitoring Segment Utilization

The distributed cleaner assigns the burden of maintaining each segment’s utilization to the cli-

ent that wrote that segment. The system stores this information in standard files, calleds-files, to

allow any machine to access any segment’s status. Distributing bookkeeping to the writers of each

segment provides parallelism and locality, and because clients seldom write-share data [Baker

et al., 1991, Kistler and Satyanarayanan, 1992, Blaze, 1993], a client’s writes usually affect the

utilization status of local segments only. At the same time, s-files provide a globally accessible

view of segment use by means of the file sharing mechanisms already in place in the system. The

rest of this section examines the locality provided by distributing bookkeeping, and then it

describes s-files in more detail.

4.3.1.1. Distributed Bookkeeping

To examine how well this distributed bookkeeping policy reduces the overhead of maintaining

utilization information, I simulate its behavior on Auspex trace described in Section 3.3.4.2 on

page 56. Because this simulation only considers blocks that are written multiple times, caching is

not an issue, so I gather statistics for the full seven-day trace rather than using some of that time to

warm caches. These simulations suggest that distributed cleaning reduces the total load to monitor

segment utilization by over an order of magnitude, assuming that the load for network protocol

processing dominates data structure manipulation. This approach further benefits scalability by

distributing this reduced load across multiple machines.

Figure 4-6 shows the results of the simulation in more detail. The bars summarize the network

communication necessary to monitor the segments’ state under three policies: Centralized Pessi-

mistic, Centralized Optimistic, and Distributed. Under the Centralized Pessimistic policy, clients

notify a centralized, remote cleaner every time they modify an existing block. The Centralized

Optimistic policy also uses a cleaner that is remote from the clients, but to account for the effect of

the 30-second write delay buffer used by many systems, clients do not have to send messages

when they modify blocks that were recently written. Becausefsyncs() are not visible in the

Auspex trace, the simulator optimistically assumes that all writes are buffered for 30 seconds, and

it does not charge the Optimistic policy for local overwrites of data less than 30 seconds old.

Finally, under the Distributed policy, each client tracks the status of blocks that it writes, so it

needs no network messages when modifying a block for which it was the last writer.

84

During the seven days of the trace, roughly one million blocks were written by clients and

then later overwritten or deleted. 33% of these were modified within 30 seconds by the same client

and therefore require no network communication under the optimistic assumption. Nevertheless,

the Distributed scheme reduces communication by a factor of eighteen for this workload compared

to even the Centralized Optimistic policy.

4.3.1.2. S-Files

Although the system distributes the task of tracking segment utilization to the clients that

wrote each segment, it allows any cleaner to clean segments written any client. This way, if a cli-

ent is busy while another machine is idle, the second machine may clean segments written by the

first. To allow universal access to utilization information, clients periodically write their book-

keeping information tos-files, standard files that may be read by any machine in the system.

For locality, each s-file contains utilization information for segments written by one client to

one stripe group: clients write their s-files into per-client directories, and they write separate s-files

in their directories for segments stored to different stripe groups.

The s-files not only localize information for segments written by each client to each group,

they also provide a method by which different cleaners can concurrently work on segments stored

FIGURE 4-6. Simulated network communication between clients and cleaner. The distributed
algorithm exploits locality to reduce the cleaner workload. Each bar shows the fraction of all blocks
modified or deleted in the Auspex trace, based on the time and client that modified the block. Blocks
can be modified by a client other than the original data writer, by the same client within 30 seconds of
the previous write, or by the same client after more than 30 seconds have passed. TheCentralized
Pessimistic policy assumes every modification requires network traffic. TheCentralized Optimistic
scheme avoids network communication when the same client modifies a block it wrote within the
previous 30 seconds, while theDistributed scheme avoids communication whenever a block is
modified by its previous writer.

Modified By
Different

Client0%

20%

40%

60%

80%

100%

C
en

tr
al

iz
ed

C
en

tr
al

iz
ed

D
is

tr
ib

ut
ed

%
 o

f C
ha

ng
ed

 L
og

 B
lo

ck
s

P
es

si
m

is
tic

O
pt

im
is

tic

Modified By
Same Client

(< 30s)

Modified By
Same Client

(> 30s)

85

in the same stripe group: the system assigns each cleaner to a distinct set of s-files for that stripe

group.

4.3.2. When to Activate Cleaners

The system cleanson demand, when the number of free segments in a stripe group of storage

servers runs low, orin the background, when cleaning can take advantage of idle resources to reor-

ganize data without delaying other requests to the file system [Blackwell et al., 1995]. Stripe

groups can independently (and thus scalably) determine when to start cleaning.

To determine when to clean on demand, each storage server maintains a local count of free

segments. If this count falls below a low-water mark, that storage server can initiate cleaning for

the entire stripe group by informing its other members of the decision (so that they do not simulta-

neously initiate cleaning) and then activating cleaners by assigning to each a subset of the s-files

from the stripe group.

Similarly, if a storage server is idle, it can initiate background cleaning by first asking the other

members of the group if they are idle and then locating an idle cleaner. If other members are busy

or if no idle cleaner can be found, the storage server aborts background cleaning.

A key question during this process is: which machines should clean? One simple policy

assigns each client to clean the segments that it writes. An attractive alternative is to assign clean-

ing responsibilities to idle machines. Detailed policies for assigning s-files to cleaners should be

investigated in the future.

4.3.3. Distributing Cleaning

The system activates a cleaner by assigning it a subset of s-files to examine and clean. Given

this subset of segments, each of the distributed cleaners proceeds almost exactly as it would if it

were the only cleaner in the system. The cleaning decisions, however, differ slightly from those of

a global cleaner. In particular, because each member of the distributed cleaner examines only a

subset of the segments, the ones that they choose to clean may not be globally optimal; by the

same token, this approach allows the cleaners to make their decisions without a central bottleneck.

To clean the segments associated with a subset of s-files, the cleaner first reads the segment

utilization state from those s-files. The second step is to choose segments to clean based on this

86

utilization information. Cleaners choose segments based on a cost/benefit analysis that considers

their utilizations and modification histories [Rosenblum and Ousterhout, 1992]. Finally, the

cleaner reads the live data from the segments it is cleaning and writes that data to new segments,

marking the old segments as clean.

4.3.4. Coordinating Cleaners

Like BSD LFS and Zebra centralized cleaners, a distributed cleaner uses optimistic concur-

rency control to resolve conflicts between cleaner updates and normal file system writes. Cleaners

do not lock files that are being cleaned, nor do they invoke cache consistency actions. Instead,

cleaners just copy the blocks from their old segments to their new ones, optimistically assuming

that the blocks are not in the process of being updated somewhere else. If there is a conflict

because a client is writing a block as it is cleaned, the manager will ensure that the client’s update

takes precedence over that of the cleaner [Hartman and Ousterhout, 1995]. Although the algorithm

described here that distributes cleaning responsibilities never simultaneously asks multiple clean-

ers to clean the same segment, the same mechanism could be used to allow less strict (e.g. proba-

bilistic) divisions of labor by optimistically resolving conflicts between cleaners.

4.4. Cleaning and Cooperative Caching

This section describes the synergy between cleaning and cooperative caching. The large cache

provided by cooperative caching in a serverless file system significantly reduces cleaning costs by

allowing a cleaner to read data from a cooperative cache rather than from disk.

Cooperative caching allows a serverless system to reduce the cost of log cleaning by reducing

the need to read live data for segments being cleaned from disk. Reading live data blocks from

disk is more expensive than reading them from cache for three reasons. First, the overhead for set-

ting up a disk access is higher than for accessing cache memory. Second, disks, themselves, are

much slower than main memory (see Table 2-1 on page 8.) Finally, caches support efficient ran-

dom access, so the cleaner pays to read only the live data that it needs. In contrast, when reading a

segment’s live data from disk, the cleaner seeks to the segment, and then must often wait for the

entire segment to rotate under the disk head, even if there are only a few live blocks scattered

throughout the segment. Because cleaners typically clean segments that are mostly empty, this

case happens frequently.

87

To quantify caching’s effect on cleaning costs, I modify Rosenblum’s cleaning simulator

[Rosenblum and Ousterhout, 1992] to accept input from a trace file and to track cache information.

For the sake of simplicity, I simulate a single, sequential cleaner. Each client appends data to its

own, private 512 KB segment until the segment fills, but clients never overwrite data in pace, even

when overwriting data from the current segment; this simplification increases the write cost by

requiring the system to clean more data.

The simulation assumes that each client has 16 MB of cache, accessed and coordinated via

cooperative caching using the N-Chance algorithm. The caching cleaner is allowed to read a seg-

ment from memory rather than disk only if all live blocks are cached; if even one live block is not

cached, the cleaner reads the entire segment from disk just as the standard cleaner normally does.

Both the caching and non-caching cleaners skip completely empty segments entirely.

For input, I use the seven-day Auspex trace described in Section 3.3.4.2 on page 56. I warm

the simulator’s state in two steps. First, to create a realistic layout of data in segments, the simula-

tor runs through the entire trace with reads and caching turned off, but with writes and cleaning

turned on. This pass gives all data an initial storage location, a pessimistic assumption since some

writes in the trace would normally create new blocks rather than overwriting old ones. This

assumption increases the cleaning cost because it creates more holes that must be cleaned than

would occur in reality. The first pass also allows the rest of the simulation to run with an approxi-

mately stable disk utilization. In the second pass, I enable reads and caching (in addition to writes

and cleaning), but, to ensure that the read caches were warm, I do not begin to gather statistics

until the last half of the trace.

Figure 4-7 compares thewrite cost for two cleaning policies, one that always reads live seg-

ments from disk and a second that may read data from the client cooperative caches. I use Rosen-

blum’s definition of write cost [Rosenblum and Ousterhout, 1992]:

In other words, the write cost expresses the average cost of writing new data as the total amount of

new data written plus the amount of data read and written by the cleaner, divided by the amount of

new data written to disk. If there were no cleaning overhead, the (ideal) write cost would be 1.0.

WriteCost BytesWrittenData BytesReadCleaner BytesWrittenCleaner+ +() BytesWrittenData()⁄=

88

When the disk is 90% full, cleaning from the cache improves the write cost by 20% and

reduces the cleaning overhead by 40% for this workload. At lower disk utilizations, the improve-

ment is lower because longer segment lifetimes allow the segments to empty more completely

before they are cleaned. When the disk is 60% full, caching reduces the write cost by 7% (a 40%

improvement in the cleaning cost portion of the write cost).

Finally, note that even with the pessimistic assumptions about cleaning noted above, the write

cost for this workload is low, supporting the decision to use LFS for file storage. The caching

cleaner’s write cost is less than 2.0, even when disk utilization reaches 90%. In contrast, Rosen-

blum estimates FFS’s write cost to be between 4.0 and 10.0 [Rosenblum and Ousterhout, 1992].

This comparison suggests that LFS reduces write overheads by at least a factor of two for this

workload compared to standard file system layouts.

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

No Cleaner Caching

Cleaner Caching

No Cleaner (Ideal)W
rit

e
C

os
t

Disk Utilization

FIGURE 4-7. Cooperative Caching and Cleaning. The y-axis of this graph shows the write cost
with and without the improvement of reading from the cache when cleaning. The x-axis indicates the
peak disk utilization (the peak amount of live data divided by the total size of the disk) for the Auspex
trace used for this simulation.

89

4.5. Availability

The storage system is a key building block for a serverless system’s reliability and availability.

The rest of this section outlines how storage servers recover their local state after a crash, how they

reconfigure the stripe group map in response to changing storage server status, how cleaners

recover their state after a crash, and how storage servers generate data from parity to allow contin-

ued operation when a storage server fails. Section 5.4 on page 109 provides a more complete

description of the serverless system’s recovery by discussing how the storage servers and manag-

ers interact to recover the system’s metadata.

4.5.1. Local Storage Server State

When a storage server boots, it first restores its internal data structures so that the rest of the

system can access its on-disk logs. Each storage server maintains a local checkpoint that includes

the mappings from logical fragment IDs to the fragments’ physical disk addresses, maps of local

free disk space, and lists of the stripe groups for which the machine stores fragments. Each server

also rolls forward from its local checkpoint to update its data to reflect fragments written after the

checkpoint. During roll-forward, storage servers verify the checksums of any fragments that they

wrote at about the time of the crash, discarding incomplete fragments. Each storage server recov-

ers this information from data stored on its local disk, so this stage can proceed in parallel across

all storage servers.

4.5.2. Stripe Group Map Reconfiguration

Whenever the number of storage servers in a system changes, either because a machine has

been added, because a machine has failed, or because the system is booting, the system generates a

new stripe group map and distributes it to all active storage servers, clients, and managers. Stripe

group map generation proceeds in three steps.

In the first step, the storage servers use a consensus algorithm to identify all of the active stor-

age servers and elect a leader from among those machines. The global consensus algorithm used

can be one of several known algorithms [Ben-Or, 1990, Cristian et al., 1990, Cristian, 1991,

Schroeder et al., 1991]. When a machine notices that another machine has left or wants to join the

system, it initiates the consensus algorithm. When the algorithm completes, all of the machines

will know the identities of all of the other machines, and they will agree on a machine to lead the

next step.

90

Second, each storage server sends a list all of the stripe groups for which that storage server is

currently storing fragments to the leader, and the leader assembles a full list of the stripe groups

with live data. After recovery, the system will be able to read data from these potentially obsolete

stripe groups, but it will not write data to them.

Third, the leader partitions the live storage servers into current stripe groups that the system

will use for new writes after recovery, reusing as many old stripe groups as feasible. It combines

the lists of current and obsolete stripe groups to form the complete stripe group map, and it distrib-

utes this stripe group map to all of the active storage servers.

4.5.3. Cleaner Recovery

The last piece of state that must be recovered for the storage subsystem is the cleaners’ seg-

ment utilization information checkpointed in the s-files. Because the cleaners store this state in

standard files, the same procedures that recover the rest of the systems standard files recover the s-

files. Section 5.4 on page 109 describes these higher-level recover procedures.

4.5.4. Parity Reconstruction

Redundant data storage across storage servers allows the system’s logs to be available even

when one or more [Blaum et al., 1994] storage servers in a stripe group have crashed. When a cli-

ent realizes that a storage server that it tries to access has failed, it looks at the stripe group map to

find the list of storage servers in the same stripe group. The client then reads the data and parity

fragments from those storage servers to reconstruct the fragment it was initially trying to read.

4.6. Related Work

Section 4.1 discussed several technologies that provide an important basis for the scalable,

log-based, network striping described in this chapter. Redundant Arrays of Inexpensive Disks

(RAID) [Patterson et al., 1988, Chen et al., 1994] demonstrate how to stripe data across multiple

disks to get performance and availability. Log-structured File Systems (LFS) [Rosenblum and

Ousterhout, 1992, Seltzer et al., 1993] provide a way to batch writes to improve performance and

provide fast, simple recovery. Zebra [Hartman and Ousterhout, 1995] combines the ideas of RAID

and LFS to provide efficient network striping. This section describes several other efforts to build

decentralized storage systems and then describes several efforts to provide efficient writes in non-

LFS systems.

91

4.6.1. Striped Disks

In contrast with Zebra’s log-based striping, most efforts to distribute disk storage have used

per-file striping in which each file is striped across multiple disks and parity is calculated on a per-

file basis. This approach has two disadvantages compared to log-based striping. First, the update-

in-place disk layout associated with per-file striping makes crash recovery difficult unless the sys-

tem also supports journaling (see Section 4.1.5.3). Second, per-file striping with update-in-place

makes parity calculation expensive for small files, small writes to large files, or concurrent writes

to different parts of the same file.

As a result, many parallel disk file systems, such as CFS [Pierce, 1989], Bridge [Dibble and

Scott, 1989], and Vesta [Corbett et al., 1993], distribute data over multiple storage servers, but do

not attempt to provide availability across component failures. Such systems are typically used for

parallel, scientific workloads where data availability is considered less important than maximum

bandwidth for a given system cost.

Other parallel systems have implemented redundant data storage but restrict their workloads

to large file accesses, where per-file striping is appropriate and where large file accesses reduce

stress on their centralized manager architectures. For instance, Swift [Cabrera and Long, 1991]

and SFS [LoVerso et al., 1993] provide redundant distributed data storage for parallel environ-

ments, and Tiger [Rashid, 1994] services multimedia workloads.

4.6.2. Delayed Writes

In addition to batching writes into large, contiguous segment writes, LFS exploitsdelayed

writes to eliminate disk accesses for writes that are overwritten while still in the write buffer.

Many other file systems, such as FFS [McKusick et al., 1984], Andrew [Howard et al., 1988], and

Sprite [Nelson et al., 1988] use delayed writes to gain this benefit. Studies of such systems have

shown that for office and engineering workloads, 35-50% of all bytes “die” — are overwritten or

deleted — within 30 seconds [Srinivasan and Mogul, 1989, Baker et al., 1992, Ruemmler and

Wilkes, 1993].

A disadvantage of delayed writes is that if a machine crashes, systems can lose data that has

been written to the write buffer but not to disk. LFS limits the damage to the system by atomically

committing groups of modifications to file system state when it writes each segment. In LFS, if a

machine crashes before committing a segment in its write buffer, the modifications in the segment

92

are lost, but the rest of the file system’s data structures remain consistent. Echo [Birrell

et al., 1993] and Quicksilver [Schmuck and Wyllie, 1991] also commit writes carefully to main-

tain consistency across crashes. In contrast, traditional file systems like FFS must scan all of the

file system’s on-disk data structures after a crash to fix any inconsistencies arising from partially-

complete writes. As noted in Section 4.1.5.3, journaling supplements such systems with auxiliary

logs to assist recovery [Hagmann, 1987, Kazar et al., 1990]. Other techniques attempt to avoid los-

ing any of the write buffer’s data when a machine crashes [Liskov et al., 1991, Baker et al., 1992,

Baker, 1994]; these techniques could be applied to the serverless system’s log-structured file sys-

tem to further reduce the risks of delayed writes.

4.7. Conclusions

This chapter described how log based striping provides a solid basis for a scalable, distributed

storage system. It presented several techniques to allow such a system to scale to large numbers of

storage servers. In particular, stripe groups seem essential for providing availability and perfor-

mance for large systems; the stripe group map abstraction provides a basis for implementing scal-

able stripe groups. Similarly, distributed cleaning and, when possible, cleaning from the

cooperative cache prevent the cleaner from becoming a bottleneck. Finally, log-based, redundant

striping combines the high availability of RAID with the simple, fast recovery of LFS to provide a

solid basis for the rest of the serverless system’s recovery procedures.

93

5Distributed Management

A key design principle of the serverless file system is location independence: cooperative

caching and network disk striping allow any block of data to be stored on any machine in the sys-

tem, and they allow blocks’ positions to change over time. As a result, tracking the locations of the

system’s data is a critical task. Furthermore, the location service, itself, must be dynamically dis-

tributed across the system’s machines to provide scalable performance, to improve network local-

ity, and to provide high availability. The serverless system’sdistributed manager provides this

scalable, distributed location service.

Each manager machine in the system tracks the disk and cache storage locations of the blocks

of some subset of the system’s files. Using this location information, a manager can direct client

requests to the correct storage locations and coordinate multiple clients’ accesses to the same data.

The system distributes management across manager machines with amanager map, an array

of machine identifiers that indicate which machines manage which portions of the file system. The

system locates a file’s manager by first hashing on the file’s unique index number and then using

the result as an index into the manager map. The manager map thus provides a level of indirection

so that the management service, itself, is location independent; any manager can manage any file.

The distributed management design assumes a log-based, highly-available, distributed storage

system as described in the previous chapter. In particular, the design distributes disk location infor-

mation by distributing the LFS imap data structure. Additionally, the crash recovery design out-

lined here depends on two properties of the storage system. First, it requires that the storage

system include a log to allow recovery based on checkpoint and roll forward. Second, it assumes

that the storage system is redundant and highly available. If either of these assumptions were not

met, building a reliable, distributed manager would be more difficult.

94

The rest of this chapter describes the distributed manager architecture in detail. Section 5.1

presents the distributed manager design and explains how the system fulfills the manager’s two

primary duties: tracking where data blocks are stored on disk and where data blocks are cached.

Section 5.2 illustrates the operation of the system for reads and writes, and it explains how the sys-

tem’s cache consistency protocol works. Section 5.3 considers the performance impact of distrib-

uted management and, using simulation studies, examines different policies’ impact on locality.

Section 5.4 describes how crash recovery works, considering both how the system redistributes

management duties when one or a few managers fail and how the system avoids bottlenecks when

many machines must recover simultaneously. Section 5.5 discusses related work; although few file

systems have implemented distributed management, several distributed shared memory computers

have used related approaches to distribute their cache consistency state. Finally, Section 5.6 sum-

marizes the chapter’s main conclusions.

5.1. Distributed Management Design

The manager’s primary task is to track the location of every block of data in the system,

including copies stored in client caches and on storage server disks. Using this information, man-

agers forward client read requests to storage locations that can satisfy them, and managers invali-

date stale copies when clients overwrite or delete data.

A distributed manager partitions these tasks across multiple machines by assigning a portion

of the index number space to each machine as Figure 5-1 illustrates. To locate a file’s manager, a

client hashes on the file’s index number to generate a virtual manager number. It then uses the vir-

tual manager number as an index into the manager map to determine which physical machine con-

trols the file’s cache consistency metadata and disk location metadata (the imap and cache of index

nodes and indirect nodes.)

The manager map provides a level of indirection for the hash function, allowing the system to

control the mapping from virtual managers to physical machines. For instance, if a manager

crashes, the system can assign new physical machines to handle the affected virtual managers, or if

a new machine joins the system, the system can assign that machine to manage some of the entries

in the manager map. The manager map thus limits changes in management to isolated portions of

the index number space, reducing service disruptions and preventing changes to one virtual man-

95

ager mapping from interfering with the load distribution and locality efforts made for other map-

pings.

To support reconfiguration, the manager map should have at least an order of magnitude more

entries than there are physical managers. This rule of thumb allows the system to balance load by

assigning roughly equal portions of the index number space to each manager. Larger numbers of

map entries allow the system to assign management on a more fine-grained basis and reduce load

imbalance; however, larger tables increase the space overhead of storing the manager map.

The system globally replicates the manager map so that each manager and client has a local

copy. This replication allows managers to know their responsibilities, and it allows clients to con-

tact the correct manager directly given a file’s index number. Even though the system distributes

management over multiple machines, it requires no additional network latencies compared to a

centralized manager; in fact, as Section 5.3 will show, distributed management can actually reduce

average network latency per request by increasing locality. It is reasonable to globally replicate the

manager map because (i) it is relatively small — even with hundreds of machines, the map with

thousands of entries would be only tens of kilobytes in size — and (ii) because it changes

infrequently — only to correct a load imbalance or when a machine enters or leaves the system.

Index
Number

Disk Address
of Index Node

Metadata at Virtual Manager

Part of Global Imap

Index
Number

Clients Caching
Blocks

Part of Global Cache
Consistency State

Hash(Index Number)

Virtual

Manager

Manager
Map

FIGURE 5-1.The Manager Map.The map specifies which physical machines manage which hash
buckets of the index number space. The manager specified by the manager map controls the portion
of the imap that lists the disk location of index nodes for the files managed by that virtual manager,
and that manager keeps a cache of index nodes for those files. It also controls the cache consistency
state (the list of all clients caching a file’s blocks or with write ownership of the file’s blocks) for
those files.

Number

Cache of Index Nodes

Physical Machine ID

and Indirect Nodes

96

5.1.1. Disk Storage Location Metadata

The system distributes the disk location metadata to managers by distributing the LFS imap.

In LFS, the imap provides a mapping from each file’s index number to the disk log address where

the file’s index node was last written. For a distributed manager, the imap contains the same trans-

lation, but rather than implement the imap as a single, centralized array, the system implements it

as several, smaller arrays — one per virtual manager entry in the manager map. Each manager

stores and controls the portion(s) of the imap indicated by the manager map, allowing that man-

ager to read and write index nodes and indirect blocks for its files. The managers also cache

recently accessed index nodes and indirect blocks.

As Figure 5-2 illustrates, the disk storage for each file can be thought of as a tree whose root is

the imap entry for the file’s index number and whose leaves are the data blocks. A file’s imap entry

contains the log address of the file’s index node. xFS index nodes, like those of LFS and FFS, con-

tain the disk addresses of the file’s data blocks; for large files the index node can also contain log

FIGURE 5-2. The disk location metadata form a tree rooted in the imap. The nodes of the tree
are index nodes, data blocks, single-indirect blocks, double-indirect blocks, and (not shown) triple-
indirect blocks. In the figure, the blocks are numbered to show the sequential order of the blocks;
however, in a real system there are more blocks of each type than shown in this illustration, and the
numbering would be correspondingly changed. This figure shows the simple case where a client on a
single machine writes a file’s data blocks, and a manager on the same machine writes the file’s index
node and indirect nodes. If the client and manager are on different machines, the index nodes and
indirect nodes will be in different logs than the data blocks, but the nodes in the manager’s log will
still contain pointers to the data in the client’s log.

indeximap

data
data

datadbl

data
data

datasgl.

data
data

data

entry node indr.

indr.

sgl.
indr.

Logical Relationship of Disk Location Metadata for One File

Physical Layout of Disk Location Metadata for One File in On-Disk Log

3
data

8
data

dbl.
indr.

4
data

1
data

6
data

7
data

sgl.
indr.

index
node

9
data

5
data

sgl.
indr.

2
data

imap
entry

Newer Entries in LogOlder Entries in Log

1
2

3

4
5

6

7
8

9

97

addresses of indirect blocks that contain more data block addresses, double indirect blocks that

contain addresses of indirect blocks, and so on. The manager stores the imap in its memory and

periodically checkpoints it to the storage system to speed recovery. The lower levels of the tree are

stored on storage server disks, although managers cache index nodes and (all levels of) indirect

blocks, and clients cache data blocks.

5.1.2. Cache Consistency State

The same machine that handles a file’s disk metadata also handles cache consistency state for

the blocks of that file. For each block, this cache consistency state consists of a list of clients cach-

ing that block and a flag indicating whether that block is write-owned [Archibald and Baer, 1986].

Using this information, the manager forwards client read requests to other clients caching the

blocks, and the manager maintains cache consistency by invalidating stale cached copies when a

client writes or deletes a file.

5.2. System Operation

This section describes how distributed management works in conjunction with the log-based,

distributed storage system described in the previous chapter. I describe the operation of the system

for reads and writes and then detail how it manages index nodes and index numbers.

5.2.1. Reads and Caching

Figure 5-3 illustrates how the serverless system reads a block given a file name and an offset

within that file. Although the figure is complex, the complexity in the architecture is designed to

provide good performance. On a fast LAN, fetching a block out of local memory is much faster than

fetching it from remote memory, which, in turn, is much faster than fetching it from disk.

To open a file, the client first reads the file’s parent directory (labeled1 in the diagram) to

determine its index number. Note that the parent directory is, itself, a data file that must be read

using the procedure described here. As with FFS, the serverless system breaks this recursion at the

root; the kernel learns the index number of the root when it mounts the file system.

As the top left path in the figure indicates, the client first checks its local UNIX block cache for

the block (2a); if the block is present, the request is done. Otherwise it follows the lower path to

fetch the data over the network. The system first uses the manager map to locate the correct

98

Name,
Directory

Mgr.

Mgr.
Offset

Map

ID

FIGURE 5-3. Procedure to read a block. The circled numbers refer to steps described in Section 5.2.1. The network
hops are labelled as “possible” because clients, managers, and storage servers can run on the same machines. For
example, The system tries to co-locate the manager of a file on the same machine as the client most likely to use the file
to avoid some of the network hops. “SS” is an abbreviation for “Storage Server.”

UNIX
Cache

Data
Block

Offset
Index #

Imap
Client

to
Mgr. Index

Node
Addr.

Stripe
Group
Map

UNIX
Cache

Data
Block

Cache
Consistency

State
Mgr.

to
Client Index #

Offset

Client
to

ClientD
o
n
e

SS
ID

Mgr.
to
SS

Index
Node
Addr.

SS
Disk

Index
Node

offset

Data
Block
Addr.

Stripe
Group
Map

SS
ID

Mgr.
to
SS

Data
Block
Addr.

SS
Disk

Data
Block

SS
to

Mgr.

SS
to

Client

D
o
n
e

D
o
n
e

Index #
Offset

Client
ID

Data or Metadata Block (or Cache)
Globally Replicated Data

Local Portion of Global Data

Possible Network Hop
Access Local Data Structure

UNIX
Cache

1

2a

2b

3a

3b

4a

4b

7

65

8

99

manager for the index number (2b) and then sends the request to the manager. If the manager is not

co-located with the client, this message requires a network hop.

The manager then tries to satisfy the request by fetching the data from some other client’s cache.

The manager checks its cache consistency state (3a), and, if possible, forwards the request to a

client caching the data. That client reads the block from its UNIX block cache and forwards the data

directly to the client that originated the request. The manager also adds the new client to its list of

clients caching the block.

If no other client can supply the data from memory, the manager routes the read request to disk

by first examining the imap to locate the block’s index node (3b). The manager may find the index

node in its local cache (4a) or it may have to read the index node from disk. If the manager has to

read the index node from disk, it uses the index node’s disk log address and the stripe group map

(4b) to determine which storage server to contact. The manager then requests the index block from

the storage server, who then reads the block from its disk and sends it back to the manager (5). The

manager then uses the index node (6) to identify the log address of the data block. (I have not shown

a detail: if the file is large, the manager may have to read several levels of indirect blocks to find

the data block’s address; the manager follows the same procedure in reading indirect blocks as in

reading the index node.)

The manager uses the data block’s log address and the stripe group map (7) to send the request

to the storage server keeping the block. The storage server reads the data from its disk (8) and sends

the data directly to the client that originally asked for it.

5.2.2. Writes

When a client writes a block, it interacts with the manager twice. First, to maintain cache con-

sistency it acquires write ownership of the block if it has not already done so. Second, when a cli-

ent commits the block to a storage server, it informs the block’s manager of the block’s new log

address so that the manager can update the file’s index node and, if the file is large, the file’s indi-

rect blocks. The consistency protocol and commit protocol interact when blocks are shared. To

preserve consistency across failures, clients with exclusive access to modified data must flush all

logged changes to stable storage before allowing other clients to read the data. This subsection

details the activity related to cache consistency, commits, and ownership-loss writes.

100

5.2.2.1. Cache Consistency

The managers implement a token-based cache consistency scheme similar to Sprite [Nelson

et al., 1988], Andrew [Howard et al., 1988], Spritely NFS [Srinivasan and Mogul, 1989], Coda

[Kistler and Satyanarayanan, 1992], and Echo [Birrell et al., 1993] except that they manage

consistency on a per-block rather than per-file basis to allow more efficient data sharing

[Burrows, 1988]. Before a client modifies a block, it must acquire write ownership of that block, so

the client sends a message to the block’s manager. The manager then invalidates any other cached

copies of the block, updates its cache consistency information to indicate the new owner, and replies

to the client, giving permission to write. Once a client owns a block, the client may write the block

repeatedly without having to ask the manager for ownership each time. The client maintains write

ownership until some other client reads or writes the data, at which point the manager revokes

ownership, forcing the client to stop writing the block, flush the current segment to the storage

servers if it contains changes to the block, and forward the data to the new client.

The managers use the same state for both cache consistency and cooperative caching. The list

of clients caching each block allows managers to invalidate stale cached copies in the first case and

to forward read requests to clients with valid cached copies in the second.

5.2.2.2. Commit of Writes to Log

Clients buffer writes in their local memory until committed to a stripe group of storage serv-

ers. Because the storage system uses log-based striping, every write changes the disk address of

the modified block. Therefore, after a client commits a segment to a storage server, the client noti-

fies the modified blocks’ managers; the managers then update their imaps, index nodes, and indi-

rect blocks and periodically log these changes to stable storage. As with Zebra, the system does

not need to “simultaneously” commit index and indirect nodes with their associated data blocks

because the client’s log includes adelta that allows reconstruction of the manager’s data structures

in the event of a client or manager crash. I discuss deltas in more detail in Section 5.4.

As in BSD LFS [Seltzer et al., 1993], each manager stores its portion of the imap in memory,

checkpointing it to disk in a special file called theifile. The system treats the ifile like any other file

with one exception: the ifile has no index nodes. Instead, when managers boot, they locate the

blocks of the ifile using manager checkpoints described in Section 5.4.

101

5.2.2.3. Writes Due to Loss of Ownership

To facilitate recovery, the protocol requires clients to commit modified data to disk before

releasing ownership. By guaranteeing that clients commit modified data before allowing other cli-

ents to observe that data, the system ensures that a modification that depends on another modifica-

tion will not be committed before the state change on which it depends. For instance, if client A

makes directory “foo,” and then client B tries to modify directory “foo” to write file “foo/bar,” and

then one or both clients crash, upon recovery the system should be in one of three states

1. Neither “foo” nor “foo/bar” exist.

2. “Foo” exists but “foo/bar” does not.

3. Both “foo” and “foo/bar” exist.

The system would be inconsistent if, after recovery, “foo/bar” exists, but “foo” does not. By forc-

ing “foo” to stable, reliable storage before allowing client B to modify “foo” to create “foo/bar,”

the protocol guarantees that either case 2 or case 3 prevails after recovery.

Writing data to disk before releasing ownership will hurt performance if there is significant

write sharing. Each time a client loses write ownership of a block, it may have to write a partial

segment to disk, reducing disk efficiency [Baker et al., 1992]. Additionally, the client that is

attempting to access the new data must endure the latency of a synchronous disk write before it

can begin writing. For many workloads, little write sharing occurs, so this delay in revoking own-

ership will have little effect on performance [Thompson, 1987, Baker et al., 1991, Blaze, 1993].

Further, by maintaining consistency on a per-block rather than a per-file basis, the consistency pro-

tocol reduces ownership-loss writes caused by false sharing. On the other hand, ownership-loss

writes could delay parallel workloads that have fine-grained write sharing; I have not yet deter-

mined how significant such delays will be. If they are significant, a number of techniques could

reduce the delay while maintaining acceptable crash-recovery semantics. For instance, rather than

commit pending changes to disk when losing ownership, a client could send those changes over

the network to the client whose access caused write ownership to be revoked [Liskov et al., 1991];

that client would add those changes to its log, guaranteeing that those changes make it to disk

before any modifications that depend on them, even if the first client crashes. As an optimization,

once either client successfully commits the duplicated part of the log to disk, it could “cancel” the

duplicate writes at the other client.

102

5.2.3. Index Node and Indirect Node Access

One important design decision was to cache index nodes and indirect nodes only at managers

and not at clients. Although caching these nodes at clients would allow them to read multiple

blocks from storage servers without sending a request through the manager for each one, doing so

has four significant drawbacks. First, by reading blocks from disk without first contacting the man-

ager, clients would lose the opportunity to use cooperative caching to avoid disk accesses. Second,

although clients could sometimes read a data block directly, they would still need to notify the

manager of the fact that they are now caching the block so that the manager knows to invalidate

the block if it is later modified. Third, routing all read requests through a manager allows manag-

ers to enforce security rather than relying on clients; in contrast with Zebra’s design, where clients

can access any block stored on a storage server by constructing the proper block pointer [Hartman

and Ousterhout, 1995], clients never read data directly from storage servers, allowing managers to

enforce security on client reads. Similarly, managers can enforce security on client writes; even

though the clients write directly to storage servers, the system will ignore the writes unless the

manager accepts the new location of the blocks as legitimate. Finally, this approach simplifies the

design by eliminating client caching and cache consistency for index nodes and indirect nodes —

only the manager handling an index number directly accesses these structures.

5.2.4. Assigning Files to Managers

The system can control how files are assigned to managers in two ways, by manipulating files’

index numbers or by manipulating the manager map. Controlling index numbers allows fine-

grained control while manipulating the manager map provides a method to simultaneously change

many files’ managers.

5.2.4.1. Assigning and Changing Index Numbers

Because a file’s index number determines its manager, the system can control the assignment

of files to managers by controlling the use of index numbers. The simplest mechanism for doing

this is to control the choice of index numbers when files are created; systems must already choose

an index number for every file they create, so modifying this choice to control management

assignments is straightforward. A more complicated, but more flexible, mechanism is to change

file index numbers after the files have been created. Section 5.3 quantifies the benefits of algo-

rithms that use each approach.

103

Although assigning index numbers when creating files requires little or no modification of file

system interfaces, allowing the systems to dynamically change file index numbers complicates

matters. As Figure 5-4 shows, to change a file’s index number, a system changes the file’s direc-

tory to reflect the new mapping from name to index number, it removes the old imap entry for that

file, and it adds a new imap entry that contains a pointer to the file’s index node. Because these

three changes must be atomic, the system must support a new type of log delta to encapsulate these

changes. Further, because this functionality requires the system to change the directory entry for

the file, it does not support multiple hard links to a single file (soft links must be used instead).

Multiple hard links would mean that several directory entries all contain references to the same

imap entry, but the system does not provide a mechanism to locate all of the aliases to the same

file.

5.2.4.2. Changing the Manager Map

The system can assign groups of files to new managers by changing the manager map. This

mechanism allows the system to remap many files with a single action and without accessing each

file individually. It is thus suited for relatively coarse-grained adjustments such as assigning all of

the files previously managed by one machine to other machines when the first machine crashes. In

that case, fast recovery is more important than precise control over where the system assigns indi-

vidual files.

The system might also use this mechanism for balancing load when no machines have

crashed. For instance, if one machine becomes heavily loaded, this mechanism would allow the

FIGURE 5-4. Changing a file’s index number. Changing a file’s index number requires three
simultaneous modifications to the file system’s state. First, that file’s directory entry must be
modified to map the file’s name to its new index number. Second, the imap entry for the old index
number must be released. Third, the imap entry for the new index number must be updated to include
a pointer to the file’s index node and data blocks. Note that the file’s index node and data blocks are
not changed.

Directory Imap
Index
Node Data Blocks Directory Imap

Index
Node Data Blocks

Before Changing Index Number After Changing Index Number

104

system to quickly distribute a portion of that machine’s load to other machines. Unfortunately, the

coarse control provided by this mechanism forces the system to reassign many files at once, so

while the system may benefit from improved load balance, it is also likely to suffer reduced local-

ity as “private” files managed by the overloaded machine are reassigned along with the rest of the

files. Studying policies that balance locality against load distribution remains future work.

5.3. Management Locality

The previous sections described mechanisms to distribute management across multiple

machines, but the policies used to do so will determine distributed management’s impact on per-

formance. Distributing management can improve performance in two ways: by improving locality

and by distributing load. This section examines the issue of locality by using trace-driven simula-

tion studies to examine the impact of several distributed management policies on locality. Because

the file system traces to which I have access have relatively little concurrency, I defer a quantita-

tive evaluation of load distribution until Section 7.2.8 on page 144, where I examine the perfor-

mance of distributed management in the prototype implementation using a synthetic workload.

This section compares three policies. The Centralized policy uses a single, centralized man-

ager that is not co-located with any of the clients to provide a baseline for comparison. Under the

First Writer policy, when a client creates a file, the system chooses an index number that assigns

the file’s management to the manager co-located with that client. Finally, under the Last Writer

policy, the system dynamically assigns files to be managed by the manager co-located with the last

client to begin writing the files’ first blocks.

Based on the simulation studies, I conclude that co-locating a file’s management with the cli-

ent using that file can significantly improve locality and reduce network communication, particu-

larly for writes. For the workloads I looked at, the First Writer policy is sufficient to reap most of

the performance gains. The more complicated Last Writer policy provides only a small additional

improvement. Although these workloads do not appear to justify the added complexity of the Last

Writer policy, other workloads might. For instance, in a NOW, parallel programs, process migra-

tion, and batch jobs may increase the amount of data that are written and shared by multiple clients

and that would benefit from this policy. As NOW workloads become available, this policy should

be evaluated in that context.

105

5.3.1. Methodology

I simulate the system’s behavior under two sets of traces. The first set consists of four two-day

traces gathered by Baker from the Sprite file system. This set of traces was described in more

detail in Section 3.2 on page 35, and is analyzed in detail elsewhere [Baker et al., 1991]. The sec-

ond workload consists of a seven-day trace of 236 clients’ NFS accesses to an Auspex file server

in the Berkeley Computer Science Division. Section 3.3.4.2 on page 56 described this trace in

more detail. For each trace, the simulator warms the simulated caches through the first day of the

trace and gathers statistics through the remainder.

The finite length of the traces introduces a bias into the simulation which may reduce the

apparent benefits of distributed management. The finite trace length does not allow the simulator

to determine a file’s “First Writer” with certainty for references to files created before the begin-

ning of the trace. For files that are read or deleted in the trace before being written, I assign man-

agement to random managers at the start of the trace; when and if such a file is written for the first

time in the trace, I move its management to the first writer. Because write sharing is rare — 96% of

all block overwrites or deletes are by the block’s previous writer — this heuristic should yield

results close to a true “First Writer” policy for writes, although it will give pessimistic locality

results for “cold-start” read and write misses.

The simulator counts the network messages needed to satisfy client requests, assuming that

each client has 16 MB of local cache and that there is a manager co-located with each client, but

that storage servers are always remote.

An artifact of the Auspex trace affects read caching for that trace. Because the trace was gath-

ered by snooping the network, it does not include reads that resulted in local cache hits. By omit-

ting requests that resulted in local hits, the trace inflates the average number of network hops

needed to satisfy a read request. I therefore report the number of network hops per read miss rather

than per read when reporting results for this trace. Because I simulate larger caches than those of

the traced system, this factor does not significantly alter the total number of network requests for

each policy [Smith, 1977], which is the relative metric used for comparing policies.

106

5.3.2. Results

Figure 5-5 and Figure 5-6 show the impact of the simulated policies on locality for the Sprite

traces and the Auspex trace. The First Writer policy reduces the total number of network hops

needed to satisfy client requests by 11% to 50% for the different traces compared to the centralized

policy. Most of the difference comes from improving write locality; the algorithm does little to

improve locality for reads, and deletes account for only a small fraction of the system’s network

traffic. The dynamic Last Writer policy improves locality only slightly compared to the First

Writer policy for all of the traces.

Figure 5-7 and Figure 5-8 illustrate the average number of network messages to satisfy a read

block request, write block request, or delete file request. Despite the large number of network hops

that can be incurred by some requests (see Figure 5-3 on page 98), the average per request is quite

low. For instance, in the first two-day Sprite trace under the First Writer policy, 65% of read

requests in the trace are satisfied by the local cache, requiring zero network hops. An average local

0%

20%

40%

60%

80%

100%

Centralized First Last
Writer Writer

Delete Hops
Write Hops
Read Hops

Days 1 and 2

0%

20%

40%

60%

80%

100%

Centralized First Last
Writer Writer

Days 5 and 6

Delete Hops
Write Hops
Read Hops

N
et

w
or

k
M

es
sa

ge
s

(%
 o

f C
en

tr
al

iz
ed

)
N

et
w

or
k

M
es

sa
ge

s
(%

 o
f C

en
tr

al
iz

ed
)

0%

20%

40%

60%

80%

100%

Centralized First Last
Writer Writer

Delete Hops
Write Hops
Read Hops

N
et

w
or

k
M

es
sa

ge
s

(%
 o

f C
en

tr
al

iz
ed

) Days 7 and 8

FIGURE 5-5. Comparison of locality. Locality for the four two-days Sprite traces is indicated by
the reduced network traffic of the First Writer and Last Writer policies compared to the Centralized
policy. The y axis indicates the total number of network messages sent under each policy as a fraction
of the messages sent by the Centralized policy.

0%

20%

40%

60%

80%

100%

Centralized First Last
Writer Writer

Days 3 and 4

N
et

w
or

k
M

es
sa

ge
s

(%
 o

f C
en

tr
al

iz
ed

)

107

FIGURE 5-6. Comparison of locality. Locality for the seven-day Auspex trace is indicated by the
reduced network traffic of the First Writer and Last Writer policies compared to the Centralized
policy. The y axis indicates the total number of network messages sent under each policy as a fraction
of the messages sent by the Centralized policy.

Delete Hops
Write Hops
Read Hops

N
et

w
or

k
M

es
sa

ge
s

(%
 o

f C
en

tr
al

iz
ed

)

0%

20%

40%

60%

80%

100%

Centralized First Writer Last Writer

C
en

tr
al

iz
ed

F
irs

t W
rit

er

La
st

 W
rit

er

N
et

w
or

k
H

op
s

P
er

 R
eq

ue
st

0

1

2

3

Hops Per Hops Per Hops Per
Read DeleteWrite

Days 1 and 2

0

1

2

3

Hops Per Hops Per Hops Per
Read Write Delete

N
et

w
or

k
H

op
s

P
er

 R
eq

ue
st

Days 5 and 6

C
en

tr
al

iz
ed

F
irs

t W
rit

er

La
st

 W
rit

er

0

1

2

3

4

Hops Per Hops Per Hops Per
Read Write Delete

C
en

tr
al

iz
ed

F
irs

t W
rit

er

La
st

 W
rit

er

Days 7 and 8

N
et

w
or

k
H

op
s

P
er

 R
eq

ue
st

FIGURE 5-7. Network messages per request. Average number of network messages needed to
satisfy a read block, write block, or delete file request under the Centralized and First Writer policies.
The Hops Per Write column does not include a charge for writing the segment containing block
writes to disk because the segment write is asynchronous to the block write request and because the
large segment amortizes the per block write cost.

0

1

2

3

4

Hops Per Hops Per Hops Per
Read Write Delete

Days 3 and 4

C
en

tr
al

iz
ed

F
irs

t W
rit

er

La
st

 W
rit

er

N
et

w
or

k
H

op
s

P
er

 R
eq

ue
st

108

read miss costs 2.85 hops; a local miss normally requires three hops (the client asks the manager,

the manager forwards the request, and the storage server or client supplies the data), but 16% of

the time it can avoid one hop because the manager is co-located with the client making the request

or the client supplying the data. Under all of the policies, a read miss will occasionally incur a few

additional hops to read an index node or indirect block from a storage server. The other traces and

the Last Writer policy have similar characteristics.

Writes benefit more dramatically from locality. For the first Sprite trace under the First Writer

policy, of the 37% of write requests that require the client to contact the manager to establish write

ownership, the manager is co-located with the client 96% of the time. When a manager invalidates

stale cached data, one-third of the invalidated caches are local. Finally, when clients flush data to

disk, they must inform the manager of the data’s new storage location, a local operation 97% of

the time in this trace. Again, the other traces and the Last Writer policies are similar, although the

Last Writer policy provides slightly more locality for writes.

Deletes, though rare, benefit modestly from locality. For the first Sprite trace and the First

Writer policy, 29% of file delete requests go to a local manager, and 83% of the clients notified to

stop caching deleted files are local to the manager. The other Sprite traces have similar characteris-

tics, and the Auspex trace has somewhat better delete locality.

FIGURE 5-8. Network messages per request. Average number of network messages needed to satisfy
read block (considering only reads that miss in the local cache), write block, or delete file request unde
the Centralized and First Writer policies. The Hops Per Write column does not include a charge fo
writing the segment containing block writes to disk because the segment write is asynchronous to th
block write request and because the large segment amortizes the per block write cost.

Centralized First Writer Last Writer

N
et

w
or

k
H

op
s

P
er

 R
eq

ue
st

0

1

2

3

4

Hops Per Hops Per Hops Per
Remote Read Write Delete

109

5.4. Recovery and Reconfiguration

Because there can be large numbers of managers in a serverless system, the system must con-

tinue to function if some of the managers fail, and it must adjust when managers are added. To

accomplish this, managers implement a reconfiguration algorithm that allows one manager to take

over another’s functions. If there is a crash, one of the remaining managers recovers the lost man-

ager’s state and then performs its duties. Similarly, if a new manager joins the system, it takes over

some of the established managers’ state using the recovery procedures. When the system as a

whole reboots, all of the managers take part in recovery to rebuild the system’s entire management

state.

As the rest of this section describes, manager recovery proceeds in three stages to assemble

three sets of state. First, all active managers participate in a global consensus algorithm to agree on

a new manager map. This step happens first because it assigns different parts of the index number

space to different managers for the later steps. Second, managers recover their disk-location meta-

data for the files they manage. This step exploits the redundant, log-structured storage system

described in the previous chapter. Third, managers recover the cache consistency state for their

files by polling clients to determine which clients are caching which files. After describing these

three phases of recovery, this section reviews cleaner recovery, which relies on file metadata

recovery, and then it evaluates the scalability of these recovery procedures.

5.4.1. Manager Map Reconfiguration

When the number of managers in the system changes, either because a machine has been

added, because a machine has failed, or because multiple machines have rebooted, the system gen-

erates a new manager map and distributes it to all active manager machines. The system builds and

distributes the manager map using a distributed consensus algorithm that both identifies all of the

machines that will act as managers under the new mapping and elects a leader from among those

machines. Fortunately, several distributed consensus algorithms are known [Ben-Or, 1990, Cris-

tian et al., 1990, Cristian, 1991, Schroeder et al., 1991].

Once the system chooses a leader, the leader creates the new manager map. To balance load

across managers, it assigns roughly equal numbers of manager map entries to each active manager

machine. As an optimization, it may use the old map as a starting point when generating the new

map; this approach allows the system to limit the number of manager map entries changed and

110

thus maintains most of the locality between managers and the files that they manage. Once the

manager has generated a map, it distributes it to the active manager machines.

5.4.2. Recovery of Disk Location Metadata

The managers then recover the disk location metadata so that they can locate all of the data

blocks stored in the system’s storage servers. To recover this information, the managers build their

global, distributed imap. This imap contains pointers to on-disk copies of the system’s index

nodes, which, in turn, point to the data blocks on disk. The system recovers this information using

the same approach as other LFS systems [Rosenblum and Ousterhout, 1992, Seltzer et al., 1993,

Hartman and Ousterhout, 1995]: first it recovers a checkpoint of the imap from the logs stored on

storage server disks and then it rolls forward the logs to account for blocks that were written to the

log since the last checkpoint.

The recovery design relies on two facets of the storage server architecture described in the pre-

vious chapter. First, it takes advantage of the high availability provided by redundant, striped stor-

age. Thus, the procedures described here assume that the underlying storage system is highly

reliable, and they do not have to explicitly deal with lost data; lower levels of the recovery proto-

col do that. As long as no more than one storage server per stripe group has failed, manager recov-

ery can proceed. If more than one storage server in a stripe group is down, manager recovery is

stalled until it can proceed (multiple parity fragments per group [Blaum et al., 1994] would allow

recovery to continue in the face of multiple storage server failures.) Second, disk metadata recov-

ery uses the system’s log-structured storage to focus recovery efforts on only the segments written

at about the time of the crash, and it uses log records, called deltas, that make it easy to determine

what operations were in progress at the time of the crash. In contrast, without a log, the system

would have to scan all disk storage to discover any partially-completed operations that were in

progress at the time of the crash. Without reliable, log-structured storage, it would be much more

difficult to build a reliable, distributed manager.

The procedure described here draws heavily on the recovery design used in Zebra [Hartman

and Ousterhout, 1995]. Zebra demonstrates how a single manager can recover all of a system’s

disk location metadata from multiple clients’ logs. To adapt this approach to handle multiple man-

agers, I divide recovery so that different machines recover different parts of the disk location meta-

data by reading different parts of the systems’ logs. This approach works because the disk location

metadata for different files are largely independent. The following subsections discuss distributed

111

checkpoint recovery, distributed roll-forward, and consistency issues that arise from independent

manager checkpoints.

5.4.2.1. Distributed Checkpoint Recovery

The managers’ checkpoints allow the system to recover the state of the disk storage as it

existed a short time before the reconfiguration without scanning the logs from beginning to end.

The system stores important disk metadata in its logs and stores pointers to this metadata in log

checkpoints that it can locate and read quickly during recovery. For scalability, managers write and

recover their checkpoints independently.

During normal operation, managers keep the system’s imap, which contains the log addresses

of the index nodes, in memory. Periodically, however, they write modified parts of the imap to

their logs so that the on-disk ifile contains a nearly up-to-date copy of the imap. Managers also

write checkpoints to their logs. A checkpoint is, in effect, the index node of the ifile in that it con-

tains pointers to the on-disk blocks of the ifile [Seltzer et al., 1993]. Each manager writes check-

points for the portion of the imap that it manages, and collectively the checkpoints contain the disk

addresses of all of the blocks of the ifile. Checkpoints differ from standard index nodes in that they

are tagged in the log so that they may be easily located when the ends of the logs are scanned dur-

ing recovery.

Figure 4-2 on page 72 illustrates the logical relationship among data blocks, index nodes, the

imap, the ifile, and checkpoints and shows how they might be arranged in the log. This figure illus-

trates two important things about the checkpoints. First, checkpoints refer only to ifile blocks that

were written to the log before the checkpoint. Second, checkpoints do not always reflect the most

recent modifications to the file system; the system updates the imap to reflect more recent changes

during roll forward, as the next section describes. Checkpoints thus provide a snapshot of the sys-

tem’s state, although the picture may not be completely current.

During recovery, managers read their checkpoints independently and in parallel. Each manager

locates its checkpoint by first querying storage servers to locate the newest segment written to its

log before the crash and then reading backwards in the log until it finds the segment with the most

recent checkpoint. Next, managers use this checkpoint to recover their portions of the imap.

Although the managers’ checkpoints were written at different times and therefore do not reflect a

globally consistent view of the file system, the next phase of recovery, roll-forward, brings all of

112

the managers’ disk-location metadata to a consistent state corresponding to the end of the clients’

logs.

5.4.2.2. Distributed Roll Forward

To account for modifications since the time of the most recent checkpoint, the systemrolls for-

ward the clients’ logs. To roll a log forward, a client reads forward in time, using deltas [Hartman

and Ousterhout, 1995] to replay the operations that occurred between the time of the checkpoint

and the time of the crash.

Each delta contains enough information to identify the changes to the blocks of a file. A delta

contains five pieces of information:

1. The index number of the modified file.

2. Thefile offset of the block that was modified in the file.

3. Theblock version number that indicates when the client that wrote the block acquired owner-
ship of it. Version numbers allow ordering of deltas from different clients’ logs that modify the
same block.

4. Theold block addressgives the block’s previous log address. After a crash, the system uses the
old block pointers to recover the segment utilization information used by cleaners, and the
managers use this field to detect and correct races caused by the simultaneous cleaning and
modification of a file.

5. Thenew block address is the block’s new log address.

These fields are like those used in Zebra’s deltas with one exception. To support per-block

cache consistency and write sharing, these deltas use per-block version numbers rather than per-

file versions. If the system implemented per-file version numbers like those of Zebra, the system

could allow only one client to write a file at any time; in contrast, per-block version numbers allow

different clients to simultaneously modify a file, as long as they are accessing different blocks.

Managers supply block version numbers to clients when they grant write ownership — the version

number is simply the time stamp when the client acquired write ownership from the manager.

A simple, though inefficient, way for managers to roll forward from their checkpoints is for

each manager to begin scanning each client’s log starting from the time of the manager’s check-

point. A manager would ignore deltas pertaining to files managed by other managers, but it would

apply the deltas that refer to its files to its imap. This approach is inefficient because it reads each

client’s log from disk multiple times. The problem with having managers read the clients’ logs is

113

that each log can contain modifications to any file managed by any manager, so all managers must

inspect all clients’ logs.

A small change restores efficiency. Instead of having managers read client logs from disk, cli-

ents read the logs and send the deltas to the managers that need them. When recovery starts, the

system assigns clients to roll forward each log using the consensus procedure described in

Section 5.4.1. Normally, each client recovers the log that it wrote before the crash, but if a client is

down when the system starts roll forward, the system can assign a different client to roll forward

that log. To initiate roll forward, the recovering managers use information in their checkpoints to

determine the earliest segment that each client must roll forward, and they transmit this informa-

tion to the clients. Each client then reads backwards in time from the tail of its log until it locates

the earliest segment requested by any manager. Clients then begin reading forward in the log,

sending each delta to the manager indicated by the index number in the delta.

5.4.2.3. Consistency of Disk Location Metadata

Distributing management across multiple machines raises the issue of consistency across

checkpoints written by different managers. Checkpoints written by different managers at different

times do not generally correspond to the same point in a client’s log. Therefore, after checkpoint

recovery, different portions of the index number space will reflect different moments in time, pos-

sibly leading to inconsistencies. For instance, the directory entry for a newly created file might

exist, but the file itself might not if the directory index number was recently checkpointed but the

file’s part of the index number space was not checkpointed since the file was created.

Two solutions are possible. First, the system can allow inconsistent manager checkpoints and

use roll-forward to restore consistency. Second, the system can synchronize checkpoints across

managers so that they reflect a consistent view of the world.

Allowing inconsistent checkpoints but then rolling forward to a consistent state is the more

efficient solution to this problem because managers can then write checkpoints independently.

Roll-forward results in a consistent global state because it brings all managers’ metadata to the

same state corresponding to the end of each client’s log. Note that the state reflected by the clients’

logs must be consistent, even if the clients’ logs end at slightly different times, because each seg-

ment can only depend on segments already written to disk. As Section 5.2.2.3 explained, before a

114

client reads data that another client wrote, the client that wrote the data forces its dirty data to disk

as it loses write ownership.

Another approach to consistent recovery is to synchronize checkpoints so that they reflect a

globally consistent state. The advantage of this strategy is that it does not require roll forward,

potentially simplifying implementation. The disadvantage of this approach is that it requires a glo-

bal barrier at the time of a checkpoint, limiting scalability: the system must designate the point in

all of the clients’ logs at which the checkpoint will occur, and it cannot allow managers to modify

their state to reflect any later client modifications until after the managers write their checkpoints.

5.4.3. Cache Consistency State

After the managers have recovered and rolled forward the imap, they must recover the cache

consistency state associated with the blocks that they manage. This state consists of lists of clients

caching each data block plus a flag indicating whether the client caching a block holds write own-

ership for that block. The Sprite file system demonstrates how the managers can recover this infor-

mation by polling clients for the state of their caches [Nelson et al., 1988]. With a distributed

manager, each manager can recover its portion of the index number space by polling the clients.

The parallelism across managers actually reduces the risk of recovery storms possible in the Sprite

system [Baker, 1994] because the managers are less likely to overwhelmed by the clients. How-

ever, the reverse problem can occur if the multiple managers all ask a single client for the different

parts of its cache state; to avoid this problem, managers randomize the order in which they poll cli-

ents.

5.4.4. Cleaner Recovery Revisited

As Section 4.5.3 on page 90 indicated, the storage servers’ cleaners store their persistent state

in standard files called s-files. The procedures described earlier in this section recover the s-files

along with all of the other data files in the system. However, the s-files may not reflect the most

recent changes to segment utilizations at the time of the crash, so s-file recovery also includes a

roll forward phase. Each client rolls forward the utilization state of the segments tracked in its s-

files by asking the other clients for summaries of their modifications to those segments that are

more recent than the s-files’ checkpoints. To avoid scanning their logs twice, clients can gather this

segment utilization summary information during the roll-forward phase for manager disk location

metadata.

115

5.4.4.1. Scalability of Recovery

Two facets of the recovery design allow it to scale to large amounts of storage and to large

numbers of clients, storage servers, and managers. First, log-structured storage allows the system

to examine only the most recently written segments; in contrast, after a crash other disk layouts,

such as FFS, scan all blocks stored on disk because any write can affect any area of the disk (aux-

iliary journals [Hagmann, 1987, Kazar et al., 1990] could be employed by these systems to avoid

scanning the disk during recovery). Second, the system distributes recovery so that each client or

manager log is read only once, allowing different machines to recover different portions of the sys-

tem’s state in parallel. While these properties of the architecture suggest that it will scale well,

future work is required to measure the performance of recovery in practice.

The system’s log-structured storage provides the basis for scalable recovery by restricting

modifications to the tails of the system’s logs. During recovery, the system examines only the most

recently written segments; managers read their logs back to the most recent checkpoint, and clients

read the segments written since the manager checkpoints. The system can reduce recovery time by

reducing the interval between checkpoints, although this increases the overhead for writing check-

points during normal operation.

Distributing recovery across managers and clients provides scalability by parallelizing recov-

ery; although increasing the size of a system may increase the amount of state to recover after a

crash, different clients and managers can independently recover their own state so that recovery

time is proportional to the amount of state recovered per client or manager rather than to the total

amount of state recovered.

Disk metadata recovery proceeds in four steps, each of which progresses in parallel. First, cli-

ents and managers locate the tails of their logs. To enable machines to locate the end of the logs

they are to recover, each storage server tracks the newest segment that it stores for each client or

manager. A machine can locate the end of the log it is recovering by asking all of the storage

server groups and then choosing the newest segment. While this procedure requires O(N2) mes-

sages (where N corresponds to the number of clients, managers, or storage servers) to allow each

client or manager to contact each storage server group, each client or manager only needs to con-

tact N storage server groups, and all of the clients and managers can proceed in parallel, provided

that they take steps to avoid recovery storms where many machines simultaneously contact a sin-

116

gle storage server [Baker, 1994]; randomizing the order that machines contact one another accom-

plishes this goal.

The second step of disk metadata recovery also proceeds in parallel. Each manager scans its

log backwards from the tail until it locates and reads the segment that contains its last checkpoint.

Because managers can scan their logs independently, the time for this step depends primarily on

the interval between checkpoints, assuming that there are enough storage servers relative to man-

agers so that manager requests to read segments do not significantly interfere with one another.

In the third step of recovery, managers inform clients of where to start roll forward. Each man-

ager sends each client a message that indicates the last segment in that client’s log that manager

had processed at the time of the checkpoint; each client begins roll forward from the earliest seg-

ment requested by any manager. Again, managers contact clients independently and in parallel, so

that this phase requires N steps, assuming that it avoids recovery storms.

Next, clients roll forward their logs by reading segments written since the manager check-

points and sending information from the deltas to the managers. The time for this phase depends

primarily on the amount of data scanned per client, which is determined by the checkpoint interval

rather than the size of the system.

Finally, managers recover their cache consistency state by polling the clients. As in the other

phases of recovery, the managers proceed in parallel to make this phase efficient.

5.5. Related Work

This chapter describes a distributed metadata management system that implements manage-

ment as a separate module from data storage. This separation of function leads to a clean manager

interface that may easily be distributed across multiple machines. The Mass Storage Systems Ref-

erence Model [Coyne and Hulen, 1993] also recommends separate data and control paths for file

systems, and Zebra implements file systems using modules with similar functions to those

described here [Hartman and Ousterhout, 1995], although Zebra’s manager ran on a single

machine.

A small number of file systems have distributed their metadata across multiple machines.

However, a larger number of massively parallel, distributed shared memory machines have distrib-

117

uted their cache consistency metadata using related techniques. In either case, the approaches are

based on one of two basic data structures. The first set of approaches, which distribute data by

hashing, are similar to the architecture described in this chapter. The second set of approaches base

their distribution on hierarchical trees.

5.5.1. Hash-based Metadata Distribution

This chapter described an approach to metadata distribution built around a distributed hash

table. Similar approaches have been taken by a network virtual memory system, by multiprocessor

cache consistency systems, and by one other file system that I know of.

Most of these previous systems have used a fixed mapping from data address to manager. In

such systems, if one machine fails, a fraction of the system’s metadata becomes unavailable until

the machine recovers. Furthermore, it is difficult to add new machines to such systems or to

change the mapping of addresses to machines to balance load, because doing so requires all meta-

data to be redistributed according to a new hash function. In contrast, Feeley’s network virtual

memory system [Feeley et al., 1995] uses a level of indirection similar to the serverless file sys-

tem’s manager map to allow reconfiguration of management responsibilities.

The Vesta file system [Corbett et al., 1993] distributes metadata by hashing on a file’s path

name to locate the machine that controls the file’s metadata. However, metadata in Vesta is much

simpler than in the serverless system described in this chapter; Vesta’s file layout on disk is

restricted to variations of round-robin mappings across storage servers. Additionally, Vesta uses a

fixed mapping from file names to manager addresses, so it cannot easily reconfigure management

responsibilities.

File systems’ cache consistency protocols resemble the directory-based multiprocessor mem-

ory schemes [Tang, 1976, Censier and Feautrier, 1978, Archibald and Baer, 1984, Yen et al., 1985,

Agarwal et al., 1988]. In both cases, the cache consistency state allows the consistency manager to

prevent nodes from caching stale data. The DASH multiprocessor demonstrates how to provide

scalability by distributing the consistency directory [Lenoski et al., 1990]; each DASH node man-

ages a subset of the system’s cache consistency state. Unfortunately, in DASH and related, distrib-

uted, multiprocessor cache consistency schemes [Chaiken et al., 1991, Kuskin et al., 1994], the

distribution of state across managers is fixed, limiting their availability and ability to reconfigure.

118

5.5.2. Hierarchical Metadata Distribution

Several MPP designs have used dynamic hierarchies to avoid the fixed-home approach used in

traditional directory-based MPPs. The KSR1 [Rosti et al., 1993] machine, based on the DDM pro-

posal [Hagersten et al., 1992], avoids associating data with fixed home nodes. Instead, data may be

stored in any cache, and a hierarchy of directories allows any node to locate any data by searching

successively higher and more globally-complete directories. Although this approach could be

adapted to file systems [Blaze, 1993, Dahlin et al., 1994], a manager-map-based approach to dis-

tribution is superior for three reasons. First, it eliminates the “root” manager that must track all

data; such a root would bottleneck performance and reduce availability. Second, the manager map

allows a client to locate a file’s manager with at most one network hop. Finally, the manager map

approach can be integrated more readily with the imap data structure that tracks disk location

metadata.

5.6. Conclusions

This chapter described the design of a distributed management policy in which each manager

controls the metadata and cache consistency state for a subset of the system’s files. A level of indi-

rection called the manager map provides flexibility to reassign files to managers as the system’s

configuration changes, and on-disk checkpoints and deltas allow the system to be resilient to fail-

ures when used in conjunction with the redundant, log-structured storage architecture described in

Chapter 4.

Surprisingly, this distribution and indirection does not increase the number of network hops

needed to contact the manager compared to a central-server approach. In fact, by co-locating a

file’s manager with the client using that file, distributed management actually increases locality.

119

6Security

A serverless system derives its scalability from distributing a central server’s responsibilities

among a large number of machines. This approach raises security issues. If any of a serverless sys-

tem’s machines are compromised, the intruder may be able to read or modify the file system’s data

without authorization. Although similar security issues arise in client-server architectures, trust is

a particular concern in a serverless system because serverless systems place more responsibility

and trust on more nodes than do traditional, central-server protocols. Distributing responsibilities

improves performance, but it may increase the opportunity for a mischievous machine to interfere

with the system.

The serverless design presented in this dissertation was designed for uniform security environ-

ments where all machines are administered as a unit. The serverless design will work best in such

an environment, where the system can take full advantage of all of the machines’ resources by

using all machines as clients, managers, and storage servers.

One example of such an environment is a Network of Workstations (NOW) [Anderson

et al., 1995]. Another is a non-NOW cluster of workstations that is administered uniformly. This

level of trust might physically span an office, lab, floor, or building or might follow an organiza-

tion’s functional divisions, existing within groups, departments, or across an entire company. A

serverless file system can also be used within a massively parallel processor (MPP) such as a

Thinking Machines CM-5, Cray T3D, Intel Paragon, or IBM SP-2. Each node of these machines

resembles a workstation in a NOW, with a processor and a significant amount of memory; some

nodes also have disks and can be used as storage servers. Further, the level of trust among these

nodes is typically even higher than among NOW workstations. A serverless design may also be an

effective way to supply file service across the “scalable servers” currently being researched

[Lenoski et al., 1990, Kubiatowicz and Agarwal, 1993, Kuskin et al., 1994]. Although these scal-

able servers try to bridge the gap between MPPs and bus-based shared-memory multiprocessors

120

by adding hardware to support directory-based shared memory abstractions, their nodes otherwise

resemble the nodes of an MPP or NOW in both capabilities and trust.

Note that while serverless systems place a high level of trust on the kernels of all of their

nodes, they do not need to trust all users. Like traditional systems, a serverless system trusts the

kernel to enforce a firewall between untrusted user processes and kernel subsystems such as the

file system, allowing user processes to communicate with kernel subsystems only through well-

defined and protected interfaces. The system’s storage servers, managers, and clients can then

enforce standard file system security semantics. Examples of operating systems that provide this

type of protection include Unix, VMS, and Windows NT. This approach, however, would not

work for operating systems such as DOS and Windows95 that do not provide address space pro-

tection.

Although the complete serverless system can be used in many environments, some environ-

ments do not trust all of their machines. For instance, in a file system serving students’ personal

computers in a dormitory, because users have complete control over the administration of their

personal machines, they might trust only their own machines and a set of secure file servers

administered by the university. Central server architectures deal with such environments by trust-

ing servers and distrusting client machines.

By altering the serverless protocol, a serverless architecture can also be used in these mixed-

trust environments. However, as machines trust one another less, it becomes more difficult for

them to share their resources, and performance is reduced. This chapter describes how to extend

the serverless protocol to allow untrusted clients; however, the design still requires trusted manag-

ers and storage servers. The “core” of managers and storage servers act as a scalable, high-perfor-

mance, and highly-available file server for the “fringe” untrusted clients.

The rest of this chapter examines the security issues that arise when using the serverless

design to provide file system service to untrusted machines. First, it discusses the security assump-

tions made in the serverless design and compares those assumptions to those of two central-server

network file systems, NFS [Sandberg et al., 1985] and AFS [Howard et al., 1988]. Then, it

describes modifications of the basic serverless design that allow the approach to be used in settings

where some machines are trusted and some are not.

121

6.1. Security Assumptions

Security is a complex issue involving trade-offs between usability and security, and no system

can be completely secure [Denning and Denning, 1979]. Rather than try to address all aspects of

security in this chapter, I compare the security assumptions of the serverless design to those of two

traditional, centralized network file systems, NFS and AFS.

Table 6-1 compares the security assumptions of a serverless system with those of NFS and

AFS. There are three basic resources that can be compromised in any of these systems. If a user

circumvents the kernel’s protection model on a machine (for instance, by learning the root pass-

word), that user gains complete control over that machine. If a user compromises the network (for

instance, by compromising the kernel of a machine on the network or attaching an unauthorized

machine to the network), that user may be able to read or even change any unencrypted network

packets. The impact of a compromised network depends on the network topology — bus-based

networks such as Ethernet are more vulnerable than switch-based networks such as ATM. Finally,

users with physical access to a machine may be able to compromise its security by, for instance,

Kernel Compromised
Network Link
Compromised

Broadcast Network
Compromised

Physical Security
Compromised

Local
Users

Remote
Users

Remote
Root

Local
Users

Remote
Users

Remote
Root

Local
Users

Remote
Users

Remote
Root

Local
Users

Remote
Users

Remote
Root

NFS Client ✕ ✕ ✕ ✕ ✕ ✕ ✕
Server ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

AFS Client ✕ ✕ ✕ ✕ ✕
Server ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Serverless Client ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
Manager ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
Storage Server ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
Untrusted Client ✕ ✕ ✕ ✕ ✕

TABLE 6-1. Direct security impact. Summary of direct security impact of cracking the kernel,
network link, broadcast network, or physically accessing the machine. An✕ in a column indicates
that the specified entity is compromised if the resource is compromised. For instance, if an NFS
client’s kernel is compromised, then all non-root users’ files in the exported file system are
compromised, but the remote root files are not. Note that compromising one of these resources often
makes it easy to compromise others. The Serverless Untrusted Client line indicates the vulnerability
assuming the modifications described in Section 6.2.

122

physically removing the disk that stores file system data and attaching that disk to another machine

for unrestricted access.

Although I have listed the three resources separately, they are closely related; compromising

one often makes it easy to compromise others. For instance, if I can physically access a computer,

I can often compromise its kernel by attaching a new disk and booting my kernel or compromise

its network by attaching a new computer to its network tap. If I can compromise a machine’s ker-

nel, I can compromise its network by snooping or inserting packets. If I compromise a machine’s

network, I can compromise its kernel by supplying modified executables over the network

[Brewer et al., 1995].

Table 6-1 summarizes the direct impacts of different types of break-in. First, some attacks gain

no advantage; for instance, physically removing an NFS client’s disk does not directly compro-

mise NFS data, because the system does not store data on client disks. Second, attacks on client

machines often compromise data accessed by that client or the data of any user that logs onto that

client machine because that machine can issue commands to the rest of the system using those

users’ credentials. Third, an attack can compromise all but a privileged subset of the file system’s

data. For instance, NFS can be configured so that client machines cannot access files owned by the

server’s root account, so compromising an NFS client compromises all files except those owned

by root. Finally, some attacks such as compromising the kernel on an NFS server, AFS server, or

serverless manager lay essentially the entire file system open for abuse.

6.1.1. Compromising the Kernel

Most operating systems enforce a protection “firewall” between users’ processes and privi-

leged subsystems such as the file system, allowing the kernel to control users’ access to system

resources. A broad range of attacks designed to circumvent this barrier exist, including password

guessing, trojan horses, modifying the kernel by compromising the network or disk, and taking

advantage of kernel bugs. Denning and Denning [Denning and Denning, 1979] and Bellovin

[Bellovin, 1992] provide overviews of some general techniques, and Haynes and Kelly [Haynes

and Kelly, 1992] examine the issues in the context of file system security.

123

6.1.1.1. Compromising Client Kernels

If the kernel on a client machine is compromised in any of the file systems, the data of any

user that runs processes on that machine are at risk because the malicious kernel can issue spurious

commands using the credentials provided by the user.

AFS limits vulnerability to users that access the compromised machine by preventing a com-

promised client from issuing file system requests in the name of users who have not logged on to

that system. The file server only honors requests made byauthenticated users

[Satyanarayanan, 1989]. In an NFS or serverless system, in contrast, a compromised client can

issue requests in the name of any user in the system, although NFS protects files owned by root

from this type of attack by remapping root identifiers at clients to an unprivileged account at the

servers. Both NFS and serverless protocols can be modified to incorporate AFS-style authentica-

tion to improve security [Steiner et al., 1988, Haynes and Kelly, 1992].

The serverless client architecture raises three additional security concerns because clients

write data to storage servers, read data from storage servers, and participate in cooperative cach-

ing. Section 6.2.2 discusses the impact of these aspects of the architecture and explains how to

make the serverless clients’ security properties as good as those of traditional clients.

6.1.2. Compromising Server, Manager, and Storage Server Kernels

The correct operation of the kernels of the NFS and AFS servers as well as the kernels of the

serverless managers and storage servers are critical to security. If a kernel is compromised, the

intruder gains essentially unlimited access to all file system state.

In NFS and AFS the central server controls all of the file system’s data and all client accesses

to data. Therefore, if the central server’s kernel is compromised, the entire file system is jeopar-

dized.

In a serverless system the managers and storage servers play roles similar to the NFS and AFS

servers. The managers control the file system’s metadata and enforce access restrictions on clients.

A damaged manager might therefore allow anyone to read or write any data in the system. The

storage servers store the system’s persistent state on their disks, so a modified storage server can

read or write any data stored on its disks.

124

A potential advantage of NFS and AFS is that only one machine (the central server) must be

trusted, while in a serverless system all managers and storage servers must run on trusted

machines. However, a serverless system allows installations to vary the number of machines with

this level of trust and thereby vary the level of performance in the system; as a serverless system

trusts more machines to act as storage servers and managers, its performance increases. Con-

versely, if only a few machines can be trusted, the system can use only those machines to act as

storage servers and managers.

6.1.3. Compromising the Network

Attacking the network is an effective way to compromise all three network file systems. The

impact of such an attack depends on the network topology, which determines which machines are

compromised when different portions of the network are compromised. If a link is compromised

in a point-to-point, switched network such as ATM or Myrinet, packets to or from the machines

that use that link are vulnerable. In a broadcast network such as Ethernet, all packets are in danger

if an intruder has access to the broadcast medium. The simplest way for an intruder to gain access

to a network is to compromise a machine attached to the network; another approach is to attach a

new machine to the network.

An intruder that has compromised the network can passively read the packets sent across the

network. Because none of the file systems examined encrypts data sent across the network, all data

crossing the compromised section of the network are vulnerable.

A more active intruder can forge file system requests or replies to actively read data from the

system or to modify data. By forging client requests, the intruder can read or write any data to

which that client has access. By forging server replies, the intruder can falsify any data accessed

by clients.

Although AFS and Kerberized NFS attempt to solve these problems, for performance reasons

their authentication schemes do not protect the contents of packets. They do not encrypt data

blocks sent over the network, so network snooping can still read all data sent over the network.

They do not encrypt the contents of RPC requests or replies, so a compromised network can still

forge requests or replies. They do, however, reduce the range of requests that can be forged

because their servers verify that the user sending a request from a particular machine is actually

logged onto that machine. Forgeries must, therefore, appear to come from a current user/machine

125

pair. This level of security can be breached, but it provides a useful safeguard against “casual”

intruders who might otherwise access other users’ files by using their personal machines to issue

commands in other users’ names.

Although NFS and AFS protect their systems’ most sensitive files by disallowing all privi-

leged root-account accesses from the network, this safeguard adds less to security than it would

first appear. A compromised network can forge any data read by a client, even if the version of the

data stored at the server remains unmodified. An intruder that can forge network packets can,

therefore, modify even these protected files when they are read over the network by clients

[Brewer et al., 1995]. From a client’s point of view, the entire file system, including protected root-

owned files, is compromised. For example, an intruder can capture passwords by providing a fake

version of the login executable to the client.

Further, as software implementations of encryption become faster, it will become feasible to

encrypt all data sent over the network. This will reduce the vulnerability of all of these network file

systems to these types of attack.

6.1.4. Physical Access to a Machine

In addition to making it easier to compromise the kernel or network of a machine (with the

consequences described above), physical access to a machine also allows access to its disks. A

malicious user can remove a disk to damage the file system’s data or to connect the disk to a new

machine in order to read or modify the file system’s data.

Because NFS clients, serverless clients, and serverless managers do not access their local

disks, this peril does not directly affect them. Conversely, NFS servers, AFS servers, and server-

less storage servers store their system’s data on their disks and must be concerned with this type of

attack. Further, AFS clients cache data on their local disks, making the cached data vulnerable to

this type of assault.

6.2. Untrusted Clients in Mixed-Trust Environments

In some environments, not all machines will be trusted to perform all of the functions required

by a serverless system. This section first explores allowing untrusted clients to use traditional cli-

ent protocols such as NFS, Kerberized NFS, and AFS to access data stored by trusted, serverless

126

machines. Section 6.2.2 then examines a solution with higher performance: modifying the client

portion of the serverless protocol to make cooperative caching and log reconstruction safe.

6.2.1. Using the Serverless System as a Scalable Server

When a system uses protocols that do not require that clients be trusted and restricts storage

servers and managers to a subset of trusted machines, the trusted machines act as a “scalable

server” for the clients. The architecture resembles a traditional client-server one with a group of

serverless machines acting as a traditional — though scalable, reliable, and cost effective — file

server. If the storage servers and managers run only on trusted machines that are managed like tra-

ditional servers, such a system provides the same level of security as a traditional, centralized file

system.

The approach offers two additional advantages. First, it allows commodity workstation clients

to use the industry-standard NFS protocol to benefit from many of the advantages of serverless-

ness without changing any part of their operating systems. Second, the NFS and AFS protocols

may work better than the serverless protocols for clients with slow (e.g. Ethernet-speed) network

connections, because they do not require tight cooperation among clients. An economical use of

this technology might be to build fast, serverless cores using high-end machine-room networks but

to leave desktop machines connected to slower networks.

Figure 6-1 illustrates an installation in which a serverless core of machines exports file service

to untrusted fringe clients via the NFS protocol. To use this system, an NFS client employs the

same procedures it would use to mount a standard NFS partition, but instead of contacting a tradi-

tional NFS server, it contacts any one of the serverless clients. The serverless client then acts as an

NFS server for the NFS client, providing high performance by employing the remaining core

Serverless

NFS Clients

Core

FIGURE 6-1. A serverless core.The serverless core acts as a scalable file server for unmodified
NFS clients.

127

machines to satisfy requests not satisfied by its local cache. Multiple NFS clients can utilize the

core as a scalable file server by having different NFS clients mount the file system from different

core clients to avoid bottlenecks. Because the serverless system provides single-machine sharing

semantics, it appears to the NFS clients that they are mounting the same file system from the same

server. The NFS clients also benefit from the serverless core’s high availability because they can

mount the file system using any available core client.

Figure 6-2 illustrates a similar scenario, where several administrativecells work together to

service a single, global file system hierarchy. Different machines from the same cell fully trust one

another, but machines from different cells have less trust. Such a situation might exist among dif-

ferent research groups within the Berkeley Computer Science Department, for instance. The NOW

group’s machines all have the same administrator and root password, and the members of the

NOW research group trust those machine as file servers. Similar levels of trust exist within the

Daedalus group, the Plateau group, and the Tenet group. Each of these cells can use its machines

to provide serverless file service and can use the full serverless protocol within cells for best per-

formance. Users from one group might sometimes use machines from other groups, so each

machine in a cell mounts the other cells’ file systems using NFS or some other untrusted-client

protocol so that all machines present a uniform, global name space.

FIGURE 6-2. Four administrative cells. Each uses the serverless protocol for file access within
the cell, but uses the NFS protocol for access to other cells’ files.

NOW
Serverless

Plateau
Serverless

Tenet
Serverless

Daedalus
Serverless

NFS Protocol
CellCell

Cell Cell

128

6.2.2. Safe Serverless Client Protocol

Although traditional client protocols such as NFS and AFS can be used to access a serverless

core, the NFS and AFS client protocols reduce performance compared to the serverless client pro-

tocol for two reasons. First, there are additional forwarding delays because the NFS and AFS cli-

ents access the serverless system by using a serverless core client as an NFS or AFS server. This

client adds a delay because all data transmissions between the traditional clients and the serverless

core are staged through that serverless client. For instance, if an NFS client reads a block that is

not located in the cache of the serverless client that is acting as its NFS server, the serverless client

reads the block from a storage server or other serverless client, and then it forwards the block to

the NFS client. The second disadvantage is that the serverless system can not exploit the memory

of the traditional clients for use in the cooperative cache. The rest of this section describes how to

adapt the serverless client protocol for use by untrusted clients so that they can realize nearly the

same performance as trusted serverless clients.

Serverless clients differ from traditional clients in three ways that affect security. First, they

write data to logs that are stored directly on the storage servers. Second, they read data from the

storage server logs during normal operation and recovery. Third, they participate in cooperative

caching. The rest of this section discusses issues raised by each of these aspects of the design and

describes how to maintain security while retaining the serverless architecture.

6.2.2.1. Client Writes to Storage Server Logs

Although serverless clients write data directly into the storage server logs, this capability does

not compromise security because managers prevent unauthorized writes from being observed by

any but the compromised client. If a client tries to modify a file’s data by writing a new version of

the file to the log without permission, the manager refuses to update the disk-location metadata for

that file, and the new version of the data has no effect on the system. The manager also issues a

“reject delta” to its log to allow the cleaners to free the space consumed by the bogus data [Hart-

man and Ousterhout, 1995].

Just as the managers in a serverless system control the data-location metadata for security,

they also control the file-attribute metadata such as file ownership and access permissions.

Although performance arguments can be made for storing file-attribute metadata in either the file

directories (written by clients) or in index nodes (written by managers), the latter approach is more

129

secure. Manager control of file-attribute metadata prevents a compromised client from, for

instance, creating a dangerous executable and then changing its attributes to be “set-uid root” so

that it is executed with all of the capabilities of the root account.

6.2.2.2. Client Reads from Storage Servers

Clients read data from storage servers in three different ways. First, during normal operation,

they read blocks from storage servers. Second, when a storage server fails, they read blocks by

reading other blocks and parity from the same segment. Finally, during recovery, clients roll-for-

ward logs to replay reads that occurred between the time of a checkpoint and the crash.

During normal operation, clients ask managers for data and the managers forward the clients’

reads to the correct storage servers. Because clients never access storage servers directly, they can-

not read data without authorization. This approach provides better security than the Zebra system

in which clients issue arbitrary read requests directly to storage servers.

If a client reads data stored on a failed storage server, instead of supplying the data that a client

requests, the system supplies other blocks of data and parity so that the client can reconstruct the

missing block. This is a potential security hole because the client may receive blocks that it does

not have permission to read. A better approach, which I plan to implement in the future, is to

reconstruct lost data at one of the remaining storage servers rather than at the client.

Finally, clients read the logs directly during roll-forward. This raises two concerns. First, if a

client rolls forward a log that was written by some other client or one containing multiple clients’

writes combined together by a cleaner, it may read data without permission. To avoid this, the sys-

tem can restrict roll forward to trusted machines only. Second, the deltas in the log may contain

unauthorized modifications to the system. Managers should, therefore, check permissions for

actions requested during roll-forward just as they verify client requests during normal operation.

6.2.2.3. Cooperative Caching

Cooperative caching introduces two concerns about client security. First, a client might mod-

ify a block before forwarding it to another client. Second, a client might allow unauthorized local

reads to data that have been forwarded to it. These risks can be addressed in either of two ways: by

restricting which clients cache data cooperatively or by using encryption-based techniques. Com-

binations of these techniques may be the most practical approach.

130

Restricting Cooperative Caching to Trusted Machines

A simple strategy to make cooperative caching safe is to only use trusted clients’ memories for

cooperative caching. Untrusted clients could still benefit from cooperative caching when blocks

are forwarded to them, but because they would never forward blocks themselves, they could not

modify data being sent to other clients. Further, because the system would not forward data to such

clients for cooperative caching storage, they would not be able to issue unauthorized reads. Of

course, the system could not benefit from the untrusted clients’ memory capacity.

Another strategy that protects only against unauthorized read is to restrict untrusted clients to

greedy cooperative caching. In that case, the contents of untrusted clients’ memories only include

data that they have read on behalf of authorized users via the traditional client interface. For full

protection, this strategy for protecting reads can be combined with the encryption-based strategy

described below for protecting writes.

Encryption-Based Cooperative Caching Security

Cooperative caching protected via encryption-based techniques can exploit untrusted memo-

ries, paying additional CPU overheads to prevent clients from transgressing. As Table 6-2 shows,

modern CPUs can encrypt data (to guard against unauthorized reads) or compute digests (to guard

against unauthorized writes) quickly; because these operations are CPU limited, the technology

trends discussed in Chapter 2 will make this approach even more attractive in the future. In addi-

Digests Encryption

SPECInt92 MD4 MD5 DES WAKE

HP 715/80 65 8.2 MB/s 5.9 MB/s 3.7 MB/s 9.5 MB/s

HP 735/99 80 8.6 MB/s 6.0 MB/s 4.5 MB/s 11.4 MB/s

HP 9000/J200 139 10.6 MB/s 7.6 MB/s 4.9 MB/s 12.27 MB/s

SUN SS2 22 2.5 MB/s 1.9 MB/s 0.8 MB/s N/A

SUN SS10/51 65 6.3 MB/s 4.7 MB/s 1.6 MB/s 8.2 MB/s

SUN SS20/51 77 6.4 MB/s 4.7 MB/s 1.6 MB/s 8.6 MB/s

DEC AXP 3000/400 75 7.4 MB/s 5.1 MB/s N/A N/A

TABLE 6-2.Encryption and message digest performance. Performance was measured for several
algorithms on several machines. All performance figures indicate the bandwidth to encrypt or
compute the message digest of an 8 KB block of data; if larger blocks were used, all bandwidths
would be significantly higher. The digest algorithms are Rivest’s MD4 [Rivest, 1992a] and MD5
[Rivest, 1992b], the Digital Encryption Standard algorithm (DES), and Wheeler’s WAKE
[Wheeler, 1993].

131

tion to protecting cooperative caching, widespread, fast encryption may protect other aspects of

distributed file systems such as network communication.

Encryption prevents an unauthorized client from reading data stored in its cooperative cache.

Figure 6-3 illustrates how a client can encrypt and forward data to another client’s cache as it

would for the N-Chance algorithm. When a client makes room in its cache by forwarding data to

another client, it first encrypts the data using a private key; clients issue a different key for each

block they encrypt. In addition to forwarding the encrypted data to the remote cache, the client

sends the key to the manager, which stores the key with the block’s cache consistency state. If the

manager forwards a read request to the client holding the encrypted data, that client sends the

encrypted data to the reader, and the manager sends the key to the reader. The reader can decrypt

the data using the key and then store the data in its own cache.

Another encryption-based technique, message digests, can protect against unauthorized data

modifications. Message digests provide a secure checksum for data: given a block and its message

digest, it is computationally infeasible to devise another block with the same digest. As Figure 6-4

illustrates, when a client loses write ownership of a block it has modified, it computes a new digest

key

data:key encrypted

mgr.

client1 client2 client3

key

encrypted

mgr.

client1 client2 client3
data:key

encrypted

key

encrypted

FIGURE 6-3. Encryption. Cooperative caching when client 2 is not authorized to read a block of
data. The left picture indicates how client 1 encrypts data before sending it to client 2. The right
picture shows how client 2 forwards this encrypted data, which, when combined with the encryption
key sent by the server, satisfies client 3’s read request.

key

key read()
forward()

Forward to Cooperative Cache Read Via Cooperative Caching

data

data

data

data

FIGURE 6-4. Message digests. The security protocol uses message digests to verify the integrity of
data supplied via cooperative caching. Clients compute digests and send them to their managers when
they lose write ownership of a block. Later, when another client reads the block via cooperative
caching, it verifies the data by computing its digest and comparing the digest to the digest supplied by
the manager.

digest

data:digest

mgr.

client1 client3

digest

Compute Digest on Write

digest

data

mgr.

client2 client3

Verify Digest on CC Read

client2client2

data

read()
digestforward()

data:digest

132

and sends its digest to the manager. The managers thus always have current digests for all cache

blocks that are forwarded via cooperative caching. Digests can be combined with encryption or

greedy caching to provide protection from both unauthorized reads and unauthorized writes.

6.3. Summary

The serverless design will be most effective when machines trust one another equally. In that

case, machines can take full advantage of one anothers’ resources to provide file service. If not all

machines are trusted, more restrictive versions of the serverless protocol can be used. In these pro-

tocols, the serverless clients are replaced with clients with the same security requirements as tradi-

tional file system clients, and the serverless managers and storage servers execute only on trusted

machines, in the same way that traditional systems’ servers do.

133

7xFS Prototype

To investigate the pieces of serverless design described in the previous chapters, this chapter

examines xFS, a prototype serverless network file system. The construction and measurement of

the xFS prototype has been a joint project with rest of the Berkeley xFS group: Jeanna M. Neefe,

Drew S. Roselli, and Randolph Y. Wang.

The xFS prototype integrates cooperative caching, serverless storage, and serverless

management to realize its goal of location independence: the ability to put “anything, anywhere.”

It seeks to distribute all data, metadata, and control throughout the system and to allow them to be

dynamically migrated during operation. It attempts to exploit this location independence to improve

performance by taking advantage of all of the system’s resources — CPUs, DRAM, and disks —

to distribute load and increase locality. Finally, it aims to use location independence to provide high

availability by allowing any machine to take over the responsibilities of a failed component after

recovering its state from the redundant log-structured storage system.

This chapter first describes how cooperative caching, distributed storage, and distributed

management fit together to form xFS. Next, it describes the xFS prototype and presents initial

performance results. Finally, it summarizes the conclusions that can be drawn from these

preliminary results and discusses future directions.

7.1. Serverless File Service

The xFS prototype brings together cooperative caching, serverless storage, and serverless

management to replace the functionality of a traditional central server. In a typical, centralized

system, the central server has four main tasks:

1.The server stores all of the system’s data blocks on its local disks.
2.The server manages disk location metadata that indicate where on disk the system has stored

each data block.

134

3.The server maintains a central cache of data blocks in its memory to satisfy some client misses
without accessing its disks.

4.The server manages cache consistency metadata that lists which clients in the system are cach-
ing each block. It uses this metadata to invalidate stale data in client caches.

The xFS system performs the same tasks, but it builds on the ideas discussed in this dissertation

to distribute this work over all of the machines in system. xFS replaces the server cache with

cooperative caching that forwards data among client caches under the control of the managers as

described in Chapter 3. Similarly, to provide scalable disk storage, xFS uses log-based network

striping with distributed cleaners as Chapter 4 described. Finally, to provide scalable control of disk

metadata and cache consistency state, xFS uses serverless management techniques like those

discussed in Chapter 5. In xFS, four types of entities — the clients, storage servers, cleaners, and

managers cooperate to provide file service as Figure 7-1 illustrates.

7.2. xFS Prototype

The xFS prototype implementation runs on a cluster of 32 SPARCStation 10’s and 20’s. A small

amount of code runs as a loadable module for the Solaris kernel. This code provides xFS’s interface

to the Solaris v-node layer and kernel buffer cache. The remaining pieces of xFS run as daemons

outside of the kernel address space to facilitate debugging [Howard et al., 1988]. If the xFS kernel

Storage
Server

Storage
Server

Storage
Server

Client

ManagerCleaner

Storage
Server

Client

ManagerCleaner

Storage
Server

Client

ManagerCleaner

Storage
Server

Client Client

Client

Manager

Client

Cleaner

Client

Manager

Cleaner

FIGURE 7-1.Two simple xFS installations. In the first, each machine acts as a client, storage server,
cleaner, and manager, while in the second each node only performs some of those roles. The freedom
to configure the system is not complete; managers and cleaners access storage using the client
interface, so all machines acting as managers or cleaners must also be clients.

Network

Network

135

module cannot satisfy a request using the buffer cache, then it sends the request to the client

daemon. The client daemons provide the rest of xFS’s functionality by accessing the manager,

storage server, and cleaner daemons over the network.

The rest of this section summarizes the status of the prototype as of October 1995 and describes

the prototype’s hardware and software environment.

7.2.1. Prototype Status

The xFS prototype implements most of the key features of a serverless system, including

distributed management, cooperative caching, and network disk striping with single parity and

multiple groups. Several key features, however, remain to be implemented. The most glaring

deficiencies are in crash recovery and cleaning. Although the implementation supports storage

server recovery, including automatic reconstruction of data from parity, it does not implement

manager state checkpoint and roll forward; also, it does not include the consensus algorithms

necessary to calculate and distribute new manager maps and stripe group maps; the system

currently reads these mappings from a non-xFS file and cannot change them. Additionally, the

system does not have a cleaner yet. As a result, xFS is still best characterized as a research

prototype, and the results in this chapter should thus be viewed as evidence that the serverless

approach is promising, not as “proof” that it will succeed.

7.2.2. Test Environment

The testbed includes a total of 32 machines: eight dual-processor SPARCStation 20’s, and 24

single-processor SPARCStation 10’s. Each of the machines has 64 MB of physical memory.

Uniprocessor 50 MHz SS-20’s and SS-10’s have SPECInt92 ratings of 74 and 65, and can copy

large blocks of data from memory to memory at 27 MB/s and 20 MB/s, respectively. For the xFS

tests, all machines act as storage servers, managers, and clients unless otherwise noted. For

experiments using fewer than 32 machines, I always include all of the SS-20’s before starting to use

the less powerful SS-10’s.

Each xFS storage server stores data on a 256 MB partition of a 1.1 GB Seagate-ST11200N disk.

These disks have an advertised average seek time of 10.5 ms and rotate at 5,411 RPM. I measured

a 2.7 MB/s peak bandwidth to read from the raw disk device into memory. For all xFS tests, the

system uses a log fragment size of 64 KB, and unless otherwise noted it uses storage server groups

of eight machines — seven for data and one for parity; all xFS tests include the overhead of parity

computation.

136

A high-speed, switched Myrinet network [Boden et al., 1995] connects the machines. Although

each link of the physical network has a peak bandwidth of 80 MB/s, RPC and TCP/IP protocol

overheads place a much lower limit on the throughput actually achieved [Keeton et al., 1995]. The

throughput for fast networks such as the Myrinet depends heavily on the version and patch level of

the Solaris operating system used. For my xFS measurements, I use a kernel that I compiled from

the Solaris 2.4 source release. I measured the TCP throughput to be 3.2 MB/s for 8 KB packets

when using this source release. The binary release of Solaris 2.4, augmented with the binary patches

recommended by Sun as of June 1, 1995 provides higher performance; the TCP test achieves a

throughput of 8.4 MB/s for this setup. Alas, I could not get sources for the patches, so my xFS

measurements are penalized with a slower effective network than the NFS and AFS measurements

described below. RPC overheads further reduce network performance.

7.2.3. NFS and AFS Environments

I use the same hardware to compare xFS with two central-server architectures, NFS [Sandberg

et al., 1985] and AFS (a commercial version of the Andrew file system [Howard et al., 1988]). I use

NFS as my baseline system for practical reasons — NFS is mature, widely available, and well-

tuned, allowing easy comparison and a good frame of reference — but its limitations with respect

to scalability are well known [Howard et al., 1988]. Since many NFS installations have attacked

NFS’s limitations by buying shared-memory multiprocessor servers, I would like to compare xFS

running on workstations to NFS running on a large multiprocessor server, but such a machine was

not available to me, so my NFS server runs on essentially the same platform as the clients. I also

compare xFS to AFS, a more scalable central-server architecture. However, AFS achieves most of

its scalability compared to NFS by improving cache performance; its scalability is only modestly

better compared to NFS for reads from server disk and for writes.

For my NFS and AFS tests, one of the SS-20’s acts as the central server, using a larger and

somewhat faster disk than the xFS storage servers: a 2.1 GB DEC RZ 28-VA with a peak

bandwidth of 5 MB/s from the raw partition into memory. These servers also use a Prestoserve

NVRAM card that acts as a buffer for disk writes [Baker et al., 1992]. The xFS machines did not

use NVRAM buffers, but their log buffers provide similar performance benefits.

For local disk caches, the AFS clients use a 100 MB partition of the same Seagate ST11200N

disks used by the xFS storage servers.

137

The NFS and AFS tests run on the unmodified Solaris kernel, so I use the patched-binary Solaris

release for them. Under this kernel release, the network TCP tests indicate a maximum 8.4 MB/s

throughput between one client and the server for the Myrinet network.

7.2.4. Performance Results

This section presents preliminary performance results for xFS under a set of microbenchmarks

designed to stress file system scalability and under an application-level benchmark. Although these

results are preliminary and although I expect future tuning to significantly improve absolute

performance, they suggest that xFS has achieved its goal of scalability. For instance, in one of the

microbenchmarks 32 clients achieved an aggregate large file write bandwidth of 13.9 MB/s, close

to a linear speedup compared to a single client’s 0.6 MB/s bandwidth. The other tests indicated

similar speedups for reads and small file writes.

As noted above, several significant pieces of the xFS system — manager checkpoints and

cleaning — remain to be implemented. I do not expect checkpoints to limit performance. Thorough

future investigation will be needed, however, to evaluate the impact of distributed cleaning under

a wide range workloads; other researchers have measured sequential cleaning overheads from a few

percent [Rosenblum and Ousterhout, 1992, Blackwell et al., 1995] to as much as 40% [Seltzer

et al., 1995], depending on the workload.

Also, the current prototype implementation suffers from three inefficiencies, all of which will

be addressed in the future:

1. xFS is currently implemented by redirecting v-node calls to a set of user-level processes. This
indirection hurts performance because each user/kernel space crossing requires the kernel to
schedule the user level process and copy data to or from the user process’s address space. The
fix for this limitation is to move xFS into the kernel. (Note that AFS shares this handicap.)

2. RPC and TCP/IP overheads severely limit xFS’s network performance. The fix for this limita-
tion is to port xFS’s communications layer to a faster communication system, such as Active
Messages [von Eicken et al., 1992].

3. Once the first two limitations have been addressed, the system must be systematically profiled
and tuned to identify and fix any other major inefficiencies.

As a result, the absolute performance is much less than I expect for the (hypothetical) well-tuned

xFS. As the implementation matures, I expect a single xFS client to significantly outperform an

NFS or AFS client by benefitting from the bandwidth of multiple disks and from cooperative

caching. The eventual performance goal is for a single xFS client to be able to read and write data

at a rate near that of its maximum network throughput, and for multiple clients to realize an

aggregate bandwidth approaching the system’s aggregate local disk bandwidth.

138

To quantify the performance of the prototype, I examine the performance of cooperative caching

in detail. I then examine its scalability using a series of microbenchmarks. These microbenchmarks

measure read and write throughput for large files and write performance for small files. Finally, I

use Satyanarayanan’s Andrew benchmark [Howard et al., 1988] as a simple evaluation of

application-level performance. In the future, I plan to compare the systems’ performance under

more demanding applications.

7.2.5. Performance of the Prototype

Figure 7-2 details the performance of the prototype for a read request satisfied via cooperative

caching. These measurements illustrate the limitations of the current implementation that were

discussed above. As the summary in Table 7-1 indicates, network protocol processing causes most

of the latency for cooperative caching; context switches and copies between kernel and user-level

application

kernel

client daemon manager daemon

client daemon

Kernel Processing
and Copies:2 ms

Client Processing:
< 0.1 ms

RPC to Manager:
5 ms

RPC Reply:
5 ms

Manager Processing:
< 0.1 ms

Manager Processing:
< 0.1 ms

RPC (Local) to
Client: 1.5 ms

Client

Copy Data From

RPC: Send Data:
7 msWake Up Thread:

1.1 ms

RPC Reply:
5 ms

RPC Reply:
1.5 ms

read()

FIGURE 7-2. Time to read data via cooperative caching. Each large circle represents a Unix
process and address space. On the left, three processes cooperate on the client that is requesting the
data: the application that made the read request, the kernel, and a user-level client daemon that
implements most of xFS’s functionality. On the machine on the right, three processes cooperate: a
manager daemon, a client daemon (this figure assumes that the manager and client are co-located for
this data), and the kernel. The lines with solid heads show the flow of control, and the critical path is
drawn with thick lines. The complete read() takes about 20 ms.

kernel
Wake Up

Processing:
< 0.1 ms

Thread:
1.1 ms

Kernel:2.6 ms

139

daemons are also significant factors. Once these overheads have been reduced, further improve-

ments may require restructuring the code to avoid switching between threads, since each of the

two signals to wakeup a new thread takes over a millisecond.

Although the performance of the current prototype falls short of its ultimate goals, these mea-

surements identify the limiting factors and point the way towards improved performance. Feeley

et al. [Feeley et al., 1995] implemented a global virtual memory system that provides performance

similar to what I expect from a more mature cooperative cache implementation. This system’s

architecture is similar to xFS’s: when one machine has a local miss, it sends a message to a global-

cache-directory (GCD) that is similar to xFS’s managers. The GCD forwards the request to the

machine with the data, and that machine sends the data to the first machine. The implementation

differs from xFS, however, in that it uses a custom lightweight communications protocol, runs in

the kernel, and is more carefully tuned (although the authors note several remaining opportunities

to improve performance through further tuning.) The system runs on several 225 MHz DEC

Alphas running OSF/1 that communicate over a 155 Mbit/s ATM network. This implementation

allows the system to fetch data from a remote client’s memory in 1.5 ms.

7.2.6. Scalability

Figures 7-3 through 7-5 illustrate the scalability of xFS’s performance for large writes, large

reads, and small writes. For each of these tests, as the number of clients increases, so does xFS’s

aggregate performance. In contrast, just a few clients saturate NFS’s or AFS’s single server,

limiting peak throughput.

Time

Network Protocols 13.5 ms

Kernel/User Space Crossings 4.6 ms

Thread Switching 2.2 ms

Other <0.5 ms

Total 20 ms

TABLE 7-1. Breakdown of time for cooperative caching read. Network processing accounts for
the largest fraction of the latency for a cooperative caching request. The next largest component is
the cost of communication between user-space and kernel-space; this cost includes the time for the
kernel to intercept the vnode call, copy data between the address spaces, and schedule and activate a
user-level process. The third source of inefficiency is the implementation’s use of threads; each
remote hit switches between user-level threads in the client daemon twice for a total cost of 2.2 ms.
Manipulating data structures and other processing is a relatively minor source of delay.

140

Figure 7-3 illustrates the performance of the disk write throughput test, in which each client

writes a large (10 MB), private file and then invokes sync() to force the data to disk (some of the

blocks stay in NVRAM in the case of NFS and AFS.) A single xFS client is limited to 0.6 MB/s,

about one-third of the 1.7 MB/s throughput of a single NFS client; this difference is largely due to

the extra kernel crossings and associated data copies in the user-level xFS implementation as well

as high network protocol overheads. A single AFS client achieves a bandwidth of 0.7 MB/s, limited

by AFS’s kernel crossings and overhead of writing data to both the local disk cache and the server

disk. As the number of clients increases, NFS’s and AFS’s throughputs increase only modestly until

the single, central server disk bottlenecks both systems. The xFS configuration, in contrast, scales

up to a peak bandwidth of 13.9 MB/s for 32 clients, and it appears that if the prototype had more

clients available for these experiments, it could achieve even more bandwidth from the 32 xFS

storage servers and managers.

Figure 7-4 illustrates the performance of xFS and NFS for large reads from disk. For this test,

each machine flushes its cache and then sequentially reads a per-client 10 MB file. Again, a single

NFS or AFS client outperforms a single xFS client. One NFS client can read at 2.8 MB/s, and an

AFS client can read at 1.0 MB/s, while the current xFS implementation limits one xFS client to

0.9 MB/s. As is the case for writes, xFS exhibits good scalability; 32 clients achieve a read

throughput of 13.8 MB/s. In contrast, two clients saturate NFS at a peak throughput of 3.1 MB/s

and 12 clients saturate AFS’s central server disk at 1.9 MB/s.

While Figure 7-4 shows disk read performance when data are not cached, all three file systems

achieve much better scalability when clients can read data from their caches to avoid interacting

FIGURE 7-3. Aggregate disk write bandwidth. The x axis indicates the number of clients
simultaneously writing private 10 MB files, and the y axis indicates the total throughput across all of
the active clients. xFS uses four groups of eight storage servers and 32 managers. NFS’s peak
throughput is 1.9 MB/s with 2 clients, AFS’s is 1.3 MB/s with 32 clients, and xFS’s is 13.9 MB/s
with 32 clients.

Clients

0 MB/s

2 MB/s

4 MB/s

6 MB/s

8 MB/s

10 MB/s

12 MB/s

14 MB/s

0 5 10 15 20 25 30 35

xFS

AFS
NFSA

gg
re

ga
te

 L
ar

ge
-W

rit
e

B
an

dw
id

th

141

with the server. All three systems allow clients to cache data in local memory, providing scalable

bandwidths of 20 MB/s to 30 MB/s per client when clients access working sets of a few tens of

megabytes. Furthermore, AFS provides a larger, though slower, local disk cache at each client that

provides scalable disk-read bandwidth for workloads whose working sets do not fit in memory; our

32-node AFS cluster can achieve an aggregate disk bandwidth of nearly 40 MB/s for such

workloads. This aggregate disk bandwidth is significantly larger than xFS’s maximum disk

bandwidth for two reasons. First, as noted above, xFS is largely untuned, and I expect the gap to

shrink in the future. Second, xFS transfers most of the data over the network, while AFS’s cache

accesses are local. Thus, there will be some workloads for which AFS’s disk caches achieves a

higher aggregate disk-read bandwidth than xFS’s network storage. xFS’s network striping and

better load balance, however, provides better write performance and will, in the future, provide

better read performance for individual clients via striping. Additionally, once cooperative caching

runs under a faster network protocol, accessing remote memory will be much faster than going to

local disk, and thus the clients’ large, aggregate memory cache will further reduce the potential

benefit from local disk caching.

Figure 7-5 illustrates the performance when each client creates 2,048 files containing 1 KB of

data per file. For this benchmark, xFS’s log-based architecture overcomes the current

implementation limitations to achieve approximate parity with NFS and AFS for a single client: one

NFS, AFS, or xFS client can create 51, 32, or 41 files per second, respectively. xFS also

demonstrates good scalability for this benchmark. 32 xFS clients generate a total of 1,122 files per

second, while NFS’s peak rate is 91 files per second with four clients and AFS’s peak is 87 files per

second with four clients.

FIGURE 7-4. Aggregate disk read bandwidth. The x axis indicates the number of clients
simultaneously reading private 10 MB files and the y axis indicates the total throughput across all
active clients. xFS uses four groups of eight storage servers and 32 managers. NFS’s peak throughput
is 3.1 MB/s with two clients, AFS’s is 1.9 MB/s with 12 clients, and xFS’s is 13.8 MB/s with 32
clients.

Clients

0 MB/s

2 MB/s

4 MB/s

6 MB/s

8 MB/s

10 MB/s

12 MB/s

14 MB/s

0 5 10 15 20 25 30 35

xFS

NFS

AFS

A
gg

re
ga

te
 L

ar
ge

-R
ea

d
B

an
dw

id
th

142

Figure 7-6 shows the average time for a client to complete the Andrew benchmark as the number

of clients varies for each file system. This benchmark was designed as a simple yardstick for

comparing application-level performance for common tasks such as copying, reading, and

compiling files. When one client is running the benchmark, NFS takes 64 seconds to run and AFS

takes 61 seconds, while xFS requires somewhat more time — 78 seconds. xFS’s scalability,

however, allows xFS to outperform the other systems for larger numbers of clients. For instance,

with 32 clients simultaneously running independent copies of the benchmark, xFS takes

117 seconds to complete the benchmark on average, while increased I/O time, particularly in the

copy phase of the benchmark, increases NFS’s time to 172 seconds and AFS’s time to 210 seconds.

A surprising result is that NFS outperforms AFS when there are a large number of clients; this is

because in-memory file caches have grown dramatically since this comparison was first made

[Howard et al., 1988], and the working set of the benchmark now fits in the NFS clients’ in-memory

caches, reducing the benefit of AFS’s on-disk caches.

7.2.7. Storage Server Scalability

In the above measurements, I used a 32-node xFS system where all machines acted as clients,

managers, and storage servers and found that both bandwidth and small write performance scaled

well. This section examines the impact of different storage server organizations on that scalability.

Figure 7-7 shows the large write performance as I vary the number of storage servers and also as I

change the stripe group size.

Increasing the number of storage servers improves performance by spreading the system’s

requests across more CPUs and disks. The increase in bandwidth falls short of linear with the

FIGURE 7-5. Aggregate small write performance. The x axis indicates the number of clients,
each simultaneously creating 2,048 1 KB files. The y axis is the average aggregate number of file
creates per second during the benchmark run. xFS uses four groups of eight storage servers and 32
managers. NFS achieves its peak throughput of 91 files per second with four clients, AFS peaks at 87
files per second with four clients, and xFS scales up to 1,122 files per second with 32 clients.

S
m

al
l F

ile
 C

re
at

es
 p

er
 S

ec
on

d

AFS
NFS

Clients

0 files/s

200 files/s

400 files/s

600 files/s

800 files/s

1000 files/s

1200 files/s

0 5 10 15 20 25 30 35

xFS

143

E
la

ps
ed

 T
im

e

FIGURE 7-6. Average time to complete the Andrew benchmark.The three graphs show results
for NFS, AFS, and xFS as the number of clients simultaneously executing the benchmark varies. The
total height of the shaded areas represents the total time to complete the benchmark; each shaded area
represents the time for one of the five phases of the benchmark: makeDir, copy, scanDir, readAll, and
make. For all of the systems, the caches were flushed before running the benchmark.

E
la

ps
ed

 T
im

e
E

la
ps

ed
 T

im
e

NFS

AFS

xFS

Clients

Clients

0 s

50 s

100 s

150 s

200 s

250 s

0 5 10 15 20 25 30

0 s

50 s

100 s

150 s

200 s

250 s

0 5 10 15 20 25 30
Clients

make
readAll
scanDir
copy
makeDir

0 s

50 s

100 s

150 s

200 s

250 s

0 5 10 15 20 25 30

make

readAll
scanDir

copy

makeDir

make

readAll
scanDir

copy

makeDir

144

number of storage servers, however, because client overheads are also a significant limitation on

system bandwidth.

Reducing the stripe group size from eight storage servers to four reduces the system’s aggregate

bandwidth by 8% to 22% for the different measurements. I attribute most of this difference to the

increased overhead of parity. Reducing the stripe group size from eight to four reduces the fraction

of fragments that store data as opposed to parity. The additional overhead reduces the available disk

bandwidth by 16% for the system using groups of four servers.

7.2.8. Manager Scalability

Figure 7-8 shows the importance of distributing management among multiple managers to

achieve both parallelism and locality. It varies the number of managers handling metadata for 31

clients running the small write benchmark (due to a hardware failure, I ran this experiment with

three groups of eight storage servers and 31 clients.) This graph indicates that a single manager is

a significant bottleneck for this benchmark. Increasing the system from one manager to two

increases throughput by over 80%, and a system with four managers more than doubles throughput

compared to a single manager system.

Continuing to increase the number of managers in the system continues to improve performance

under xFS’s First Writer policy. This policy assigns files to managers running on the same machine

as the clients that create the files; Section 5.3 on page 104 described this policy in more detail. The

system with 31 managers can create 45% more files per second than the system with four managers

under this policy. This improvement comes not from load distribution but from locality; when a

FIGURE 7-7. Storage server throughput. Large write throughput as a function of the number of
storage servers in the system. The x axis indicates the total number of storage servers in the system
and the y axis indicates the aggregate bandwidth when 32 clients each write a 10 MB file to disk. The
8 SS’s line indicates performance for stripe groups of eight storage servers (the default), and the 4
SS’s shows performance for groups of four storage servers.

0 MB/s

2 MB/s

4 MB/s

6 MB/s

8 MB/s

10 MB/s

12 MB/s

14 MB/s

0 5 10 15 20 25 30 35

xFS (8 SS’s per Group)

xFS (4 SS’s per Group)

Storage Servers

A
gg

re
ga

te
 L

ar
ge

-W
rit

e
B

an
dw

id
th

145

larger fraction of the clients also host managers, the algorithm is more often able to successfully co-

locate the manager of a file with the client accessing it.

The Nonlocal Manager line illustrates what would happen without locality. For this line, I

altered the system’s management assignment policy to avoid assigning files created by a client to

the local manager. When the system has four managers, throughput peaks for this algorithm

because the managers are no longer a significant bottleneck for this benchmark; larger numbers of

managers do not further improve performance.

7.3. Conclusions and Future work

This chapter described how cooperative caching, serverless storage, and serverless manage-

ment combine to form a completely serverless file system, and it provided an overview of a proto-

type system called xFS. The goal of a serverless system is to eliminate all file system bottlenecks

to provide scalability, high performance, and high availability, and the initial prototype provides

evidence in support of this approach.

Full validation of this approach, however, will have to wait for a more complete implementa-

tion of the prototype. The remaining work on the prototype can be divided into three major efforts:

1. Performance Improvements

FIGURE 7-8. Manager throughput. Small write performance as a function of the number of
managers in the system and manager locality policy. The x axis indicates the number of managers.
The y axis is the average aggregate number of file creates per second by 31 clients, each
simultaneously creating 2,048 small (1 KB) files. The two lines show the performance using the First
Writer policy that co-locates a file’s manager with the client that creates the file, and a Nonlocal policy
that assigns management to some other machine. Because of a hardware failure, I ran this experiment
with three groups of eight storage servers and 31 clients. The maximum point on the x-axis is 31
managers.

0 files/s

200 files/s

400 files/s

600 files/s

800 files/s

1000 files/s

1200 files/s

0 5 10 15 20 25 30 35

First Writer Policy

Nonlocal Manager

Managers

S
m

al
l F

ile
 C

re
at

es
 p

er
 S

ec
on

d

24 Storage Servers
31 Clients

146

My hypothesis is that single client in a serverless system should be able to realize I/O band-

width limited only by its network interface and that the system as a whole should be limited only

by its aggregate disk bandwidth. Figure 7-9 compares the prototype’s current performance to the

ultimate performance I hope to achieve. Clearly, much remains to be done on this front. I plan to

pursue three approaches to achieve this goal: replacing RPC communication with Active Mes-

sages, moving the xFS implementation into the kernel address space, and more general perfor-

mance profiling and tuning.

2. Dynamic Reconfiguration

A mature serverless system will use dynamic reconfiguration both to provide high availability

and to balance load. The current xFS prototype, however, does not implement reconfiguration after

machine failures and it does not use reconfiguration of management to balance load. Future work

will therefore be needed to test the hypotheses that a serverless system can provide better avail-

ability than a central-server system and that a serverless system can, for a wide range of loads,

avoid performance bottlenecks caused by hot-spots.

3. Distributed Cleaning

The distributed cleaner design presented in Chapter 4 was designed to prevent the cleaner

from bottlenecking throughput. To evaluate the effectiveness of this design, a distributed cleaner

must be implemented for xFS, and that cleaner must be tested under a wide range of workloads.

FIGURE 7-9. Ideal performance goals.Comparison of current xFS performance for large writes
against ideal performance goals on the current experimental hardware configuration. With small
numbers of clients, the system throughput should be limited only by the clients’ network throughput,
and with large numbers of clients, the throughput should be limited only by the system’s aggregate
disk throughput.

0 MB/s

20 MB/s

40 MB/s

60 MB/s

80 MB/s

100 MB/s

0 5 10 15 20 25 30 35

A
gg

re
ga

te
 D

is
k

T
hr

ou
gh

pu
t

Clients

Ideal xFS

Current xFS

System Aggregate Disk Bandwidth

A
ct

iv
e

C
lie

nt
s’

 T
ot

al
 N

et
 B

an
dw

id
th

147

8Conclusions

My thesis is that serverless network file systems — fully distributed file systems consisting of

cooperating commodity workstations — can eliminate file system bottlenecks and scale to meet

rapidly increasing demands on file systems. This dissertation presents a design that distributes the

services handled by a traditional, central server by first functionally decomposing a central

server’s responsibilities, and then distributing each of these functions. A cooperative cache distrib-

uted among clients replaces central-server caching; log-based, redundant, network storage

replaces server disks; and a distributed management protocol both provides cache consistency and

locates the blocks stored on the disks.

The goals of this design are improved performance, availability, and scalability. I have evalu-

ated the design using both simulation and measurements of a prototype called xFS.

• Goal: Improved Performance

The cooperative cache replaces the relatively small central-server cache with a potentially

much larger cache that exploits all clients’ memories. Simulation results indicate that cooperative

caching improves read response time by 30% to 150% for office and engineering workloads.

The network-striped disks allow parallel data transfers for reads and writes; the goal is to pro-

vide enough bandwidth to an individual client to saturate its network bandwidth and to provide

aggregate bandwidth when servicing multiple clients approaching the aggregate bandwidth of the

disks in the system. Initial measurements indicate that the prototype falls short of these goals;

however, it appears that the architecture will support higher performance as limitations of the

implementation are addressed.

Distributed management improves performance both by eliminating the bottleneck that would

be present with a single manager and by improving locality by co-locating managers with the cli-

148

ents using the files they manage. Simulation results suggest that locality is a larger performance

factor than load distribution for office and engineering workloads, but benchmarks run on the pro-

totype reveal the importance of both factors for some workloads.

• Goal: Improved Availability

The architecture bases high-availability on location independence and redundant logging of

durable state. If a machine fails, another takes over its duties by recovering its state from the

redundant logs. I have completed the design of serverless recovery, but future work is still needed

to fully implement and validate this design. Beyond this basic approach, the use of stripe groups

increases the number of storage servers over which the system can store its data by improving

availability and limiting segment size.

• Goal: Improved Scalability

A key aspect of both the system’s performance and availability goals is scalability — the sys-

tem’s performance should improve as the number of machines increases, and its availability

should not decline. The design addresses these goals by trying to eliminate all centralized bottle-

necks, and initial performance results are promising. For instance, in the 32-node prototype with

32 active clients, each client receives nearly as much read and write bandwidth as it would see if it

were the only active client. As the prototype’s absolute performance increases, continuing to avoid

bottlenecks will be more challenging. Evaluating the prototype’s scalability with respect to avail-

ability is also future work.

8.1. Lessons Learned About Research

The xFS project represents computer systems research “in the large.” The complexity of this

system makes it difficult to evaluate the design. On one hand, simulation alone cannot be used,

because the simulator is unlikely to capture all of the important factors in the system. On the other

hand, the system’s complexity also makes it hard to isolate the effect of different aspects of the

design when the system is running. My approach has been to use both simulation and evaluation of

the prototype.

I found simulation to be valuable when comparing different policy choices for specific points

of the design; however, there is a limit on how much can be learned from simulations alone, so

they should be carefully designed to minimize the effort needed to examine a particular issue.

149

There are two dangers. First, it is tempting to put unnecessary details into a simulation. Second, it

is easy to neglect important details in a simulation. Although these statements may appear to be

contradictory, they are not because they apply to different aspects of the simulation. Designers

must guard against “tunnel vision” where, on one hand, they spend all of their time working on

details of the simulator that they understand well, while on the other, they ignore details that they

don’t. Otherwise, simulation complexity can begin to approach implementation complexity, but its

accuracy will not! The positive lesson is to consider exactly what one wants to learn from a simu-

lation, build the simplest simulator that can examine the issues, and to validate the simulation

results against the real world.

My first major simulation study [Dahlin et al., 1994] (which does not appear in this disserta-

tion) is a good example of the dangers of careless simulator design. In that study, I built an event-

driven simulator that not only modeled CPUs, disks, and networks, but also modeled queueing for

those resources. This simulator was far too complex — the event-driven approach introduced log-

ical concurrency to the simulator, forcing me to worry about locking data structures and avoiding

race conditions. Although this complexity made it appear that the simulator captured a lot of

details, the details were probably meaningless because my choices of workload and my simplify-

ing assumptions about the network, operating system, and disk all were more significant factors in

the final results than the queuing effects.

Evaluating a prototype, however, is not simple either. The performance results that appear in

Chapter 7 required myself and the rest of the xFS group to engage in literally hundreds of hours of

tedious “baby-sitting” the machines while the simulations ran. At least part of this problem came

from engineering errors on our part: we neglected practical pieces of the implementation that

would have made our lives easier because they seemed to be boring compared to the “real

research” parts of the design where we spent out time. For instance, restarting a client in a running

xFS system required rebooting the machine on which the client was running and then killing and

restarting all of the storage servers and managers in the system.

Beyond problems with engineering, however, evaluating a serverless network file system is

inherently complex. Performance is affected by at least the following factors:

• the number of clients

• the number of managers

• the number of storage servers

150

• the number of fragments in a stripe

• the fragment size

• the size of files being accessed

• the ratio of reads to writes

• the degree of sharing

• the state of the caches

• the raw network bandwidth

• the raw disk bandwidth

• the prefetching policy

• the cache replacement policy

• ...

Because so many different factors affect performance, some design decisions and measurement

priorities must be based on engineering judgement; there are too many factors to implement them

all, let alone systematically investigate all of their impacts on performance.

8.2. Future Directions

The work described in this dissertation has addressed many of the basic questions about build-

ing a serverless network file system, but it leaves some questions unanswered and raises several

new issues. This section first describes future work that will help evaluate this approach in more

detail. It then discusses broader research issues raised by the project.

8.2.1. Serverless File System Issues

The simulation studies presented in this thesis and the measurements of the xFS prototype pro-

vide a basis for evaluating the serverless approach to building file systems. Future work is called

for to flesh out the prototype, undertake additional simulation studies to address unanswered ques-

tions, and to extend the xFS design to handle other types of workloads.

The most immediate issues involve implementing significant pieces of the design described in

this dissertation but not yet included in the xFS prototype. Three key efforts are to improve the

performance of the prototype, implement dynamic reconfiguration, and implement parallel clean-

ing.

151

In addition, several other useful file system services should be added to xFS both to provide

important services and to exploit the state of the art in file system design. For instance, recent

advances in prefetching would allow the system to exploit its scalable bandwidth to reduce latency

[Griffioen and Appleton, 1994, Cao et al., 1995, Patterson et al., 1995]. Improved cache replace-

ment policies [Cao et al., 1994, Karedla et al., 1994] and cache implementation techniques

[Braunstein et al., 1989, Stolarchuk, 1993] can improve performance, as can improved disk

request scheduling [Teorey and Pinkerton, 1972, Seltzer et al., 1990, Worthington et al., 1994].

On-line compression can reduce storage costs [Burrows et al., 1992] and increase performance

[Douglis, 1993]. The system could also use its cleaner to reorganize data stored on its disks to

improve read performance [McKusick et al., 1984, Rosenblum and Ousterhout, 1992, Smith and

Seltzer, 1994, Seltzer et al., 1995].

Another service needed to make xFS comparable to commercial file systems is backup. While

serverless systems do not directly introduce new problems for backup subsystems, they rely on

some form of scalable backup to prevent backup from limiting scalability. The serverless architec-

ture does, however, provide facilities that may help construct scalable backup systems. First,

because serverless systems already store redundant data, backup systems may worry less about

disk head crashes and more about restoring past versions of individual files; this mode of operation

would place a premium on random access to the archive as opposed to the ability to restore an

entire volume quickly (although the system must still retain the ability to recover the entire file

system to enable recoveries from catastrophes affecting the entire file system.) Second, the man-

ager module abstracts location service and already tracks data through different levels of the stor-

age hierarchy (cache and disk). The manager might be extended to track data stored in the backup

archive as well. Finally, the LFS cleaner might be adapted to migrate and backup data to the

archive as it cleans segments, or it might be modified to avoid cleaning recently deleted or over-

written blocks to provide a user-accessible “undelete” or “time-travel” function such as that found

in the Network Appliancesnapshots [Hitz, 1993].

In addition to these implementation issues, a number of detailed simulation and measurement

studies will help improve the understanding of different aspects of the serverless design. As

Section 3.1.7 on page 34 discussed, there are several interesting variations of cooperative caching

algorithms that should be studied. Also, several aspects of the distributed cleaner design should be

examined; for instance, as Section 4.3 on page 82 indicated, a specific algorithm must be devel-

oped to balance locality and load when activating cleaners. Furthermore, in Section 5.3 on

152

page 104, I hypothesized that parallel workloads might benefit more from distributed management

than the sequential workloads I studied; to examine this hypothesis, the management strategies

should be studied under a wider range of workloads. Finally, Section 6.2 on page 125 suggested a

“core-fringe” protocol for dealing with mixed-security environments; the performance of this

approach, however, needs to be examined.

Once the basic system is operational, one track of research will be evaluating a wide range of

workloads and making any necessary changes to support them. For instance, large data base sys-

tems might benefit from xFS’s scalable I/O, but for best performance, these systems need to have

more precise control over resource usage than is provided by the Unix file system interface on

which xFS is built. One possible addition to the interface is to allow a single client to write to mul-

tiple logs, each of which contains a specific subset of the database’s files and each of which the

database stores on a specific set of storage servers. A second enhancement would be to add addi-

tional storage server architectures; for instance as described in Chapter 4, a RAID level 1 mirrored

storage system could be combined with write-ahead logging to support efficient update-in-place

often needed by the random update patterns of large databases.

Parallel programs might also benefit from being able to specify particular assignments of data

to disks [Corbett et al., 1993] or from new storage server architectures. For instance, some parallel

programs might prefer to log data without parity to increase their performance even at the risk of

lost data. Systems that support such unreliable writes, however, must ensure that no other data can

be lost through file system inconsistencies.

Multimedia workloads should also benefit from xFS’s scalable bandwidth, but the system may

need to be modified to support real-time scheduling for best effect.

Finally, other issues arise when adapting a file system for wide area network (WAN) work-

loads. Although the serverless protocol assumes that machines are tightly coupled, a hybrid sys-

tem could be used in which the serverless protocol is used within clusters of machines connected

by a LAN, while clusters share data with one another using a different, WAN protocol [Sandhu

and Zhou, 1992]. An earlier version of the xFS protocol [Wang and Anderson, 1993, Dahlin

et al., 1994] would be an effective WAN protocol.

153

8.2.2. Other Research Issues

The serverless network file systems design attempts to distribute a complex system across

multiple machines in a way that provides scalable performance and reliability. Many of the issues

raised in this research have broader applications — to other complex, distributed, scalable, high-

performance, and highly-available systems.

The experience of evaluating the performance of the xFS prototype has highlighted the diffi-

culties of measuring and tuning complex computer systems. Developing methodologies to evalu-

ate and tune complex systems is an interesting research question of immense practical concern.

Because even commercial systems are becoming quite complex, such methodologies would have

applications beyond leading-edge research systems like xFS. The goal is make these systems self-

diagnosing or self-tuning or both. Ideally, for instance, a system would configure its parameters in

response to changing workloads or hardware configurations to achieve as good performance as

possible, even when it is run by someone who does not fully understand its design.

A related issue is balancing competing resource demands in a Network of Workstations

(NOW) environment, where different distributed or serverless systems make demands for

resources. In the Berkeley NOW project, for instance, many different subsystems compete to use

memory: the Inktomi world wide web search engine application uses memory as a cache for data it

stores on disk; Network RAM allows workstations to page virtual memory to remote client mem-

ory rather than to their local disks; xFS uses cooperative caching to cache files in client memories;

and, of course, users run programs that require RAM memory. To complicate matters further, the

operating system dynamically balances the amount of memory used for file cache or virtual mem-

ory on each machine. Each of these consumers of memory can deliver marginally better perfor-

mance to its user if it is allowed to use more physical memory, but the amount of memory that the

system has to distribute among these applications is finite. Research is needed to determine how

best to allot limited resources to such diverse demands not only for memory capacity, but also for

CPU cycles, disk accesses, and network accesses.

File systems researchers would benefit from a standard file system programming interface that

covers a broader range of issues than the vnode layer. While vnodes standardize the interface that

allows the operating system to access file system services, it leaves out other interfaces important

to file system implementation. These omissions cause two problems. First, they make it difficult to

integrate a new file system into multiple operating system platforms. For instance, the interface to

154

the buffer cache differs across different Unix platforms, forcing a file system developer to develop

and maintain multiple sets of code. Second, the lack of well-defined interfaces to different func-

tions forces file system designers to “reinvent the wheel” for many subsystems of each system. For

instance, as noted above, the xFS prototype has not yet implemented sophisticated prefetching

despite the wealth of recent research in the area [Kotz and Ellis, 1991, Cao et al., 1995, Patterson

et al., 1995]. Standard interfaces would make it easier for researchers to benefit from one another’s

innovations. xFS’s functional division of the file system into distinct modules for storage, caching,

and management may provide a starting point for this investigation, as may recent work instack-

able file system interfaces [Khalidi and Nelson, 1993, Heidemann and Popek, 1994].

The serverless file system design addresses the issue of recovery in a distributed system, dem-

onstrating one approach to the problem, but a systematic investigation of the range of approaches

would be useful. The serverless design represents one end of the spectrum: it achieves availability

by logging batches of state changes to highly-available storage. Conversely, systems like Isis [Bir-

man and Cooper, 1990], Coda [Kistler and Satyanarayanan, 1992], Echo [Birrell et al., 1993], and

Horus [Renesse et al., 1994], replicate servers and keep the replicas synchronized with one

another for each modification to the system’s state. These approaches make different trade-offs

between update-time, cost, and recovery-time. Basing availability on logged, redundant storage

allows fast updates because it batches modifications, and it is inexpensive because it stores the

backup copy of system state on disk rather than maintaining multiple running copies of the system.

On the other hand, after a machine fails, this approach must recover that machine’s state from disk,

so fail-over may take a significant amount of time. The other approach, server replication, has

faster fail-over because it maintains an on-line replica, but updates are slow because each update

must be committed at both the primary machine and the backup machine, and the approach is

expensive because it maintains two running copies of the system. Research is needed to systemat-

ically investigate the impact of logging updates to disk, batching updates, and maintaining multi-

ple running versions of a system. Such research would help to understand when each approach is

appropriate, or when a hybrid approach should be used. One example of such a hybrid is Bres-

soud’shypervisor [Bressoud and Schneider, 1995], which transmits a log of updates directly from

a primary server to a secondary, gaining some of the advantages of logging while maintaining fast

recovery.

Finally, it would be valuable to design a system that is “always” available — one whose mean

time to failure is measured in years or decades rather than weeks or months. Designing such a sys-

155

tem would require a top-to-bottom evaluation of design decisions and would also require the

designer to address such issues as geographic distribution of data (to protect against natural or

man-made disasters) and hot-swap upgrades of hardware or software.

8.3. Summary

The original goals of distributed systems were better performance and availability, but distrib-

uted systems, in general, and distributed file systems, in particular, have often been built around a

central server that implements most of the system’s functionality. The lack of location indepen-

dence in central server architectures results in crucial performance or availability bottlenecks. The

serverless file system architecture exploits fast, scalable networks and aggressive location inde-

pendence to provide scalable performance and availability and to deliver the full capabilities of a

collection of “killer micros” to file systems users. The challenge in the future is to generalize the

principles explored in this file system design to other applications to enable a new generation of

high performance, highly-available, and scalable distributed systems.

156

Bibliography

Adler, M., Chakrabarti, S., Mitzenmacher, M., and Rasmussen, L. (1995). Parallel Randomized Load

Balancing. InProceedings of the Twenty-seventh ACM Symposium on Theory of Computing.

Agarwal, A., Simoni, R., Hennessy, J., and Horowitz, M. (1988). An Evaluation of Directory Schemes for

Cache Coherence. InProceedings of the Fifteenth International Symposium on Computer Architecture,

pages 280–289.

Anderson, T., Culler, D., Patterson, D., and the NOW team (1995). A Case for NOW (Networks of

Workstations).IEEE Micro, pages 54–64.

Archibald, J. and Baer, J. (1984). An Economical Solution to the Cache Coherence Problem. InProceedings

of the Eleventh International Symposium on Computer Architecture, pages 355–362.

Archibald, J. and Baer, J. (1986). Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulation

Model.ACM Transactions on Computer Systems, 4(4):273–298.

Arpaci, R., Dusseau, A., Vahdat, A., Liu, L., Anderson, T., and Patterson, D. (1995). The Interaction of

Parallel and Sequential Workloads on a Network of Workstations. InProceedings of the SIGMETRICS

Conference on Measurement and Modeling of Computer Systems, pages 267–278.

ATM Forum (1993).The ATM Forum User-Network Interface Specification, version 3.0. Prentice Hall Intl.,

New Jersey.

Baker, M. (1994).Fast Crash Recovery in Distributed File Systems. PhD thesis, University of California at

Berkeley.

Baker, M., Asami, S., Deprit, E., Ousterhout, J., and Seltzer, M. (1992). Non-Volatile Memory for Fast,

Reliable File Systems. InProceedings of the Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-V), pages 10–22.

Baker, M., Hartman, J., Kupfer, M., Shirriff, K., and Ousterhout, J. (1991). Measurements of a Distributed

157

File System. InProceedings of the ACM Thirteenth Symposium on Operating Systems Principles, pages

198–212.

Basu, A., Buch, V., Vogels, W., and von Eicken, T. (1995). U-Net: A User-Level Network Interface for

Parallel and Distributed Computing. InProceedings of the ACM Fifteenth Symposium on Operating

Systems Principles, pages 40–53.

Bellovin, S. (1992). There be Dragons. InUSENIX Unix Security III, pages 1–16.

Ben-Or, M. (1990).Fault-Tolerant Distributed Computing, volume 448 ofLecture Notes in Computer

Science, chapter Randomized Agreement Protocols, pages 72–83. Springer-Verlag.

Birman, K. and Cooper, R. (1990). The ISIS Project: Real Experience with a Fault Tolerant Programming

System. InEuropean Workshop on Fault-Tolerance in Operating Systems, pages 103–107.

Birrell, A., Hisgen, A., Jerian, C., Mann, T., and Swart, G. (1993). The Echo Distributed File System.

Technical Report 111, Digital Equipment Corp. Systems Research Center.

Blackwell, T., Harris, J., and Seltzer, M. (1995). Heuristic Cleaning Algorithms in Log-Structured File

Systems. InProceedings of the Winter 1995 USENIX Conference.

Blaum, M., Brady, J., Bruck, J., and Menon, J. (1994). EVENODD: An Optimal Scheme for Tolerating

Double Disk Failures in RAID Architectures. InProceedings of the Twenty-First International

Symposium on Computer Architecture, pages 245–254.

Blaze, M. (1993).Caching in Large-Scale Distributed File Systems. PhD thesis, Princeton University.

Blumrich, M., Li, K., Alpert, R., Dubnicki, C., Felten, E., and Sandberg, J. (1994). Virtual Memory Mapped

Network Interface for the SHRIMP Multicomputer. InProceedings of the Twenty-First International

Symposium on Computer Architecture, pages 142–153.

Boden, N., Cohen, D., Felderman, R., Kulawik, A., Seitz, C., Seizovic, J., and Su, W. (1995). Myrinet – A

Gigabit-per-Second Local-Area Network.IEEE Micro, pages 29–36.

Bondurant, D. (1992). Enhanced Dynamic RAM.IEEE Spectrum, page 49.

Braunstein, A., Riley, M., and Wilkes, J. (1989). Improving the Efficiency of UNIX File Buffer Caches. In

Proceedings of the ACM Twelfth Symposium on Operating Systems Principles, pages 71–82.

Bressoud, T. and Schneider, F. (1995). Hypervisor-based Fault Tolerance. InProceedings of the ACM

Fifteenth Symposium on Operating Systems Principles, pages 1–11.

158

Brewer, E., Gauthier, P., Goldberg, I., and Wagner, D. (1995). Basic Flaws in Internet Security and

Commerce. http://www.cs.berkeley.edu/ gauthier/ endpoint-security.html.

Burrows, M. (1988).Efficient Data Sharing. PhD thesis, Cambridge University, Cambridge, England.

Burrows, M., Jerian, C., Lampson, B., and Mann, T. (1992). On-line data compression in a log-structured file

system. InProceedings of the Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-V), pages 2–9.

Bursky, D. (1992). Memory-CPU Interface Speeds Up Data Transfers.Electronic Design, pages 137–142.

Cabrera, L. and Long, D. (1991). Swift: A Storage Architecture for Large Objects. InProceedings of the

Eleventh Symposium on Mass Storage Systems, pages 123–128.

Cao, P., Felten, E., Karlin, A., and Li, K. (1995). Implementation and Performance of Integrated Application-

Controlled Caching, Prefetching, and Disk Scheduling. InProceedings of the SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, pages 188–197.

Cao, P., Felten, E., and Li, K. (1994). Application Controlled File Caching Policies. InProceedings of the

Summer 1994 USENIX Conference, pages 171–82.

Censier, L. and Feautrier, P. (1978). A New Solution to Coherence Problems in Multicache Systems.IEEE

Transactions on Computers, 27(12):1112–1118.

Chaiken, D., Kubiatowicz, J., and Agarwal, A. (1991). LimitLESS Directories: A Scalable Cache Coherence

Scheme. InProceedings of the Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-IV), pages 224–234.

Chen, P., Lee, E., Gibson, G., Katz, R., and Patterson, D. (1994). RAID: High-Performance, Reliable

Secondary Storage.ACM Computing Surveys, 26(2):145–188.

Comer, D. and Griffioen, J. (1992). Efficient Order-Dependent Communication in a Distributed Virtual

Memory Environment. InSymposium on Experiences with Distributed and Multiprocessor Systems III,

pages 249–262.

Corbett, P., Baylor, S., and Feitelson, D. (1993). Overview of the Vesta Parallel File System.Computer

Architecture News, 21(5):7–14.

Coyne, R. A. and Hulen, H. (1993). An Introduction to the Mass Storage System Reference Model, Version

5. InProceedings of the Thirteenth Symposium on Mass Storage Systems, pages 47–53.

Cristian, F. (1991). Reaching Agreement on Processor Group Membership in Synchronous Distributed

159

Systems.Distributed Computing, 4:175–187.

Cristian, F., Dolev, D., Strong, R., and Aghili, H. (1990).Fault-Tolerant Distributed Computing, volume 448

of Lecture Notes in Computer Science, chapter Atomic Broadcast in a Real-Time Environment, pages 51–

71. Springer-Verlag.

Cypher, R., Ho, A., Konstantinidou, S., and Messina, P. (1993). Architectural Requirements of Parallel

Scientific Applications with Explicit Communication. InProceedings of the Twentieth International

Symposium on Computer Architecture, pages 2–13.

Dahlin, M., Mather, C., Wang, R., Anderson, T., and Patterson, D. (1994). A Quantitative Analysis of Cache

Policies for Scalable Network File Systems. InProceedings of the SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, pages 150–160.

Denning, D. and Denning, P. (1979). Data Security.Computing Surveys, 11(3):227–249.

Dibble, P. and Scott, M. (1989). Beyond Striping: The Bridge Multiprocessor File System.Computer

Architechture News, 17(5):32–39.

Douglis, F. (1993). The compression cache: Using on-line compression to extend physical memory. In

Proceedings of the Winter 1993 USENIX Conference, pages 519–529.

Douglis, F. and Ousterhout, J. (1991). Transparent Process Migration: Design Alternatives and the Sprite

Implementation.Software: Practice and Experience, 21(7):757–785.

Drapeau, A. (1993).Striped Tertiary Storage Systems: Performance and reliability. PhD thesis, University

of California at Berkeley.

Eager, D., Lazowska, E., and Zahorjan, J. (1986). Adaptive Load Sharing in Homogeneous Distributed

Systems.IEEE Transactions on Software Engineering, SE-12(5):662–675.

Feeley, M., Morgan, W., Pighin, F., Karlin, A., Levy, H., and Thekkath, C. (1995). Implementing Global

Memory Management in a Workstation Cluster. InProceedings of the ACM Fifteenth Symposium on

Operating Systems Principles, pages 201–212.

Felten, E. and Zahorjan, J. (1991). Issues in the Implementation of a Remote Memory Paging System.

Technical Report 91-03-09, Dept. of Computer Science, University of Washington.

Franklin, M., Carey, M., and Livny, M. (1992). Global Memory Management in Client-Server DBMS

Architectures. InProceedings of the International Conference on Very Large Data Bases, pages 596–609.

Gibson, G. A. (1992).Redundant Disk Arrays: Reliable, Parallel Secondary Storage. ACM Distinguished

160

Dissertations. MIT Press, Cambridge, Massachusettes.

Gray, J. (1995). Personal Communication.

Griffioen, J. and Appleton, R. (1994). Reducing File System Latency Using a Predictive Approach. In

Proceedings of the Summer 1994 USENIX Conference, pages 197–207.

Gwennap, L. (1995). Processor Performance Climbs Steadily.Microprocessor Report.

Hagersten, E., Landin, A., and Haridi, S. (1992). DDM–A Cache-Only Memory Architecture.IEEE

Computer, 25(9):45–54.

Hagmann, R. (1987). Reimplementing the Cedar File System Using Logging and Group Commit. In

Proceedings of the ACM Eleventh Symposium on Operating Systems Principles, pages 155–162.

Hart, C. (1992). Dynamic RAM as Secondary Cache.IEEE Spectrum, page 46.

Hartman, J. and Ousterhout, J. (1995). The Zebra Striped Network File System.ACM Transactions on

Computer Systems.

Haynes, R. and Kelly, S. (1992). Software Security for a Network Storage Service. InUSENIX Unix Security

III , pages 253–265.

Heidemann, J. and Popek, G. (1994). File-system Development with Stackable Layers.ACM Transactions

on Computer Systems, 12(1):58–89.

Hennessy, J. and Patterson, D. (1996).Computer Architecture A Quantitative Approach. Morgan Kaufmann

Publishers, Inc., 2nd edition.

Hitz, D. (1993). An NFS Server Appliance. Technical Report TR01, Network Appliance Corporation.

Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham, R., and West, M. (1988).

Scale and Performance in a Distributed File System.ACM Transactions on Computer Systems, 6(1):51–

81.

Hsiao, H. and DeWitt, D. (1989). Chained Declustering: A New Availability Strategy for Multiprocessor

Database Machines. Technical Report CS TR 854, University of Wisconsin, Madison.

Iftode, L., Li, K., and Petersen, K. (1993). Memory Servers for Multicomputers. InProceedings of

COMPCON93, pages 538–547.

Jones, F. (1992). A New Era of Fast Dynamic RAMs.IEEE Spectrum, pages 43–48.

161

Karedla, R., Love, J., and Wherry, B. (1994). Caching Strategies to Improve Disk System Performance.IEEE

Computer, pages 38–46.

Kazar, M. (1989). Ubik: Replicated Servers Made Easy. InProceedings of the Second Workshop on

Workstation Operating Systems, pages 60–67.

Kazar, M., Leverett, B., Anderson, O., Apostolides, V., Bottos, B., Chutani, S., Everhart, C., Mason, W., Tu,

S., and Zayas, E. (1990). Decorum File System Architectural Overview. InProceedings of the Summer

1990 USENIX Conference, pages 151–163.

Keeton, K., Anderson, T., and Patterson, D. (1995). LogP Quantified: The Case for Low-Overhead Local

Area Networks. InProceedings of the 1995 Hot Interconnects III Conference.

Khalidi, Y. and Nelson, M. (1993). Extensible File Systems in Spring. InProceedings of the ACM Fourteenth

Symposium on Operating Systems Principles, pages 1–14.

Kistler, J. and Satyanarayanan, M. (1992). Disconnected Operation in the Coda File System.ACM

Transactions on Computer Systems, 10(1):3–25.

Kotz, D. and Ellis, C. (1991). Practical Prefetching Techniques for Parallel File Systems. InProceedings of

the First International Conference on Parallel and Distributed Information Systems, pages 182–189.

Kubiatowicz, J. and Agarwal, A. (1993). Anatomy of a Message in the Alewife Multiprocessor. In

Proceedings of the Seventh International Conference on Supercomputing.

Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K., Chapin, J., Nakahira, D.,

Baxter, J., Horowitz, M., Gupta, A., Rosenblum, M., and Hennessy, J. (1994). The Stanford FLASH

Multiprocessor. InProceedings of the Twenty-First International Symposium on Computer Architecture,

pages 302–313.

Le, M., Burghardt, F., Seshan, S., and Rabaey, J. (1995). InfoNet: The Networking Infrastructure of InfoPad.

In Proceedings of COMPCON 95, pages 163–168.

Lee, E. (1995). Highly-Available, Scalable Network Storage. InProceedings of COMPCON 95, pages 397–

402.

Leff, A., Wolf, J., and Yu, P. (1993a). Replication Algorithms in a Remote Caching Architecture.IEEE

Transactions on Parallel and Distributed Systems, 4(11):1185–1204.

Leff, A., Yu, P., and Wolf, J. (1991). Policies for Efficient Memory Utilization in a Remote Caching

Architecture. In Proceedings of the First International Conference on Parallel and Distributed

162

Information Systems, pages 198–207.

Leff, A., Yu, P., and Wolf, J. (1993b). Performance Issues in Object Replication for a Remote Caching

Architecture.Computer Systems Science and Engineering, 8(1):40–51.

Lenoski, D., Laudon, J., Gharachorloo, K., Gupta, A., and Hennessy, J. (1990). The Directory-Based Cache

Coherence Protocol for the DASH Multiprocessor. InProceedings of the Seventeenth International

Symposium on Computer Architecture, pages 148–159.

Lieberman, H. and Hewitt, C. (1983). A Real-Time Garbage Collector Based on the Lifetimes of Objects.

Communications of the ACM, 26(6):419–429.

Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., Shrira, L., and Williams, M. (1991). Replication in the

Harp File System. InProceedings of the ACM Thirteenth Symposium on Operating Systems Principles,

pages 226–238.

LoVerso, S., Isman, M., Nanopoulos, A., Nesheim, W., Milne, E., and Wheeler, R. (1993). sfs: A Parallel

File System for the CM-5. InProceedings of the Summer 1993 USENIX Conference, pages 291–305.

Martin, R. (1994). HPAM: An Active Message Layer for a Network of HP Workstations. InProceedings of

the 1994 Hot Interconnects II Conference.

Martin, R. (1995). Personal Communication.

McKusick, M., Joy, W., Leffler, S., and Fabry, R. (1984). A Fast File System for UNIX.ACM Transactions

on Computer Systems, 2(3):181–197.

Mummert, L., Ebling, M., and Satyanarayanan, M. (1995). Exploiting Weak Connectivity for Mobile File

Access. InProceedings of the ACM Fifteenth Symposium on Operating Systems Principles, pages 143–

155.

Muntz, D. and Honeyman, P. (1992). Multi-level Caching in Distributed File Systems or Your cache ain’t

nuthin’ but trash. InProceedings of the Winter 1992 USENIX Conference, pages 305–313.

Mutka, M. and Livny, M. (1991). The Available Capacity of a Privately Owned Workstation Environment.

Performance Evaluation, 12(4):269–84.

Myllymaki, J. (1994). Overview of Current RAID Technology. http:// www.cs.wisc.edu/ jussi/

raidtech.html.

Nelson, M., Welch, B., and Ousterhout, J. (1988). Caching in the Sprite Network File System.ACM

Transactions on Computer Systems, 6(1).

163

Nichols, D. (1987). Using Idle Workstations in a Shared Computing Environment. InProceedings of the

ACM Eleventh Symposium on Operating Systems Principles, pages 5–12.

Ousterhout, J. (1990). Why Aren’t Operating Systems Getting Faster As Fast As Hardware? InProceedings

of the Summer 1990 USENIX Conference.

Patterson, D., Gibson, G., and Katz, R. (1988). A Case for Redundant Arrays of Inexpensive Disks (RAID).

In International Conference on Management of Data, pages 109–116.

Patterson, R., Gibson, G., Ginting, E., Stodolsky, D., and Zelenka, J. (1995). Informed Prefetching and

Caching. InProceedings of the ACM Fifteenth Symposium on Operating Systems Principles, pages 79–

95.

Pierce, P. (1989). A Concurrent File System for a Highly Parallel Mass Storage Subsystem. InProceedings

of the Fourth Conf. on Hypercubes, Concurrent Computers, and Applications, pages 155–160.

Popek, G., Guy, R., Page, T., and Heidemann, J. (1990). Replication in the Ficus Distributed File System. In

Proceedings of the Workshop on the Management of Replicated Data, pages 5–10.

Prince, B., Norwood, R., Hartigan, J., and Vogley, W. (1992). Synchronous Dynamic RAM.IEEE Spectrum,

pages 44–46.

Rashid, R. (1994). Microsoft’s Tiger Media Server. InThe First Networks of Workstations Workshop Record.

Renesse, R. V., Hickey, T., and Birman, K. (1994). Design and Performance of Horus: A Lightweight Group

Communications System. Technical Report TR94-1442, Cornell University Computer Science

Department.

Rivest, R. (1992a). The MD4 Message-Digest Algorithm. Request for Comments 1320, Network Working

Group, ISI.

Rivest, R. (1992b). The MD5 Message-Digest Algorithm. Request for Comments 1321, Network Working

Group, ISI.

Rosenblum, M., Bugnion, E., Herrod, S., Witchel, E., and Gupta, A. (1995). The Impact of Architectural

Trends on Operating System Performance. InProceedings of the ACM Fifteenth Symposium on Operating

Systems Principles, pages 285–298.

Rosenblum, M. and Ousterhout, J. (1992). The Design and Implementation of a Log-Structured File System.

ACM Transactions on Computer Systems, 10(1):26–52.

Rosti, E., Smirni, E., Wagner, T., Apon, A., and Dowdy, L. (1993). The KSR1: Experimentation and

164

Modeling of Poststore. InProceedings of the SIGMETRICS Conference on Measurement and Modeling

of Computer Systems, pages 74–85.

Ruemmler, C. and Wilkes, J. (1993). UNIX Disk Access Patterns. InProceedings of the Winter 1993 USENIX

Conference, pages 405–420.

Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. (1985). Design and Implementation of the

Sun Network Filesystem. InProceedings of the Summer 1985 USENIX Conference, pages 119–130.

Sandhu, H. and Zhou, S. (1992). Cluster-Based File Replication in Large-Scale Distributed Systems. In

Proceedings of the SIGMETRICS Conference on Measurement and Modeling of Computer Systems,

pages 91–102.

Satyanarayanan, M. (1989). Integrating Security in a Large Distributed System.ACM Transactions on

Computer Systems, 7(3):247–280.

Schilit, B. and Duchamp, D. (1991). Adaptive Remote Paging for Mobile Computers. Technical Report

CUCS-004-91, Dept. of Computer Science, Columbia University.

Schmuck, F. and Wyllie, J. (1991). Experience with Transactions in Quicksilver. InProceedings of the ACM

Thirteenth Symposium on Operating Systems Principles, pages 239–253.

Schroeder, M., Birrell, A., Burrows, M., Murray, H., Needham, R., Rodeheffer, T., Satterthwaite, E., and

Thacker, C. (1991). Autonet: A High-Speed, Self-Configuring Local Area Network Using Point-to-Point

Links. IEEE Journal on Selected Areas in Communication, 9(8):1318–1335.

Schroeder, M. and Burrows, M. (1990). Performance of Firefly RPC.ACM Transactions on Computer

Systems, 8(1):1–17.

Seagate (1994).ST-11200N SCSI-2 Fast (Barracuda 4) Specification. Seagate Technology, Inc.

Seltzer, M., Bostic, K., McKusick, M., and Staelin, C. (1993). An Implementation of a Log-Structured File

System for UNIX. InProceedings of the Winter 1993 USENIX Conference, pages 307–326.

Seltzer, M., Chen, P., and Ousterhout, J. (1990). Disk Scheduling Revisited. InProceedings of the Winter

1990 USENIX Conference, pages 313–324.

Seltzer, M., Smith, K., Balakrishnan, H., Chang, J., McMains, S., and Padmanabhan, V. (1995). File System

Logging Versus Clustering: A Performance Comparison. InProceedings of the Winter 1995 USENIX

Conference, pages 249–264.

Smith, A. (1977). Two Methods for the Efficient Analysis of Memory Address Trace Data.IEEE

165

Transactions on Software Engineering, SE-3(1):94–101.

Smith, A. (1981). Long Term File Migration: Development and Evaluation of Algorithms.Computer

Architecture and Systems, 24(8):521–532.

Smith, K. and Seltzer, M. (1994). File Layout and File System Performance. Technical Report TR-35-94,

Harvard University.

Srinivasan, V. and Mogul, J. (1989). Spritely NFS: Experiments with Cache Consistency Protocols. In

Proceedings of the ACM Twelfth Symposium on Operating Systems Principles, pages 45–57.

Steiner, J., Neuman, C., and Schiller, J. (1988). Kerberos: An Authentication Service for Open Network

Systems. InProceedings of the Winter 1988 USENIX Conference, pages 191–202.

Stolarchuk, M. (1993). Faster AFS. InProceedings of the Winter 1993 USENIX Conference, pages 67–75.

Tang, C. (1976). Cache Design in the Tightly Coupled Multiprocessor System. InProceedings of the AFIPS

National Computer Conference.

Teorey, T. and Pinkerton, T. (1972). A Comparative Analysis of Disk Scheduling Policies.Communications

of the ACM, pages 177–84.

Theimer, M. and Lantz, K. (1989). Finding Idle Machines in a Workstation-Based Distributed System.IEEE

Transactions on Software Engineering, 15(11):1444–57.

Thekkath, C. and Levy, H. (1993). Limits to Low-Latency Communication on High-Speed Networks.ACM

Transactions on Computer Systems, 11(2):179–203.

Thompson, J. (1987).Efficient Analysis of Caching Systems. PhD thesis, University of California at Berkeley.

von Eicken, T., Basu, A., and Buch, V. (1995). Low-Latency Communication Over ATM Networks Using

Active Messages.IEEE Micro, pages 46–53.

von Eicken, T., Culler, D., Goldstein, S., and Schauser, K. E. (1992). Active Messages: A Mechanism for

Integrated Communication and Computation. InProceedings of the Nineteenth International Symposium

on Computer Architecture, pages 256–266.

Walker, B., Popek, G., English, R., Kline, C., and Thiel, G. (1983). The LOCUS distributed operating system.

In Proceedings of the ACM Ninth Symposium on Operating Systems Principles, pages 49–69.

Wang, R. and Anderson, T. (1993). xFS: A Wide Area Mass Storage File System. InProceedings of the Third

Workshop on Workstation Operating Systems, pages 71–78.

166

Wheeler, D. (1993). A Bulk Data Encryption Algorithm. InProceedings of the Fast Software Encryption

Cambridge Security Workshop, pages 127–133.

Wilkes, J., Golding, R., Staelin, C., and Sullivan, T. (1995). The HP AutoRAID Hierarchical Storage System.

In Proceedings of the ACM Fifteenth Symposium on Operating Systems Principles, pages 96–108.

Wittle, M. and Keith, B. (1993). LADDIS: The Next Generation in NFS File Server Benchmarking. In

Proceedings of the Summer 1993 USENIX Conference, pages 111–28.

Worthington, B., Ganger, G., and Patt, Y. (1994). Scheduling Algorithms for Modern Disk Drives. In

Proceedings of the Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages

241–251.

Yen, W., Yen, D., and Fu, K. (1985). Data Coherence Problem in a Multicache System.IEEE Transactions

on Conputers, 34(1):56–65.

