Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PEN AND SPEECH RECOGNITION IN THE USER
INTERFACE FOR MOBILE MULTIMEDIA TERMINALS

by

Shankar Narayanaswamy

Memorandum No. UCB/ERL M96/11

25 March 1996

PEN AND SPEECH RECOGNITION IN THE USER
INTERFACE FOR MOBILE MULTIMEDIA TERMINALS

Copyright © 1996

by

Shankar Narayanaswamy

Memorandum No. UCB/ERL M96/11

25 March 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract
Pen and Speech Recognition in the User Interface
for Mobile Multimedia Terminals
by
Shankar Narayanaswamy
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California at Berkeley

. Professor Robert W. Brodersen, Chair

Portable computers have soared in popularity over the last few years. Vendors are
introducing new models with smaller form factors, longer battery life, communications
capabilities and unique user interfaces using pen or audio input.

The design and implementation of a networked user interface architecture using hand-
writing recognition and speech recognition is explored. Although the user interface
was designed for mobile multimedia terminals such as the InfoPad system, it is more
generally applicable in any application domain where pen and/or spoken input are
preferable to keyboard input.

We examine the kinds of handwriting and speech recognizers needed to provide an
effective user interface. There are several aspects to this problem. Firstly, there is the
user interaction model which determines where and how the user uses each input
modality. Secondly, there is the applications programming model which determines
the level of abstraction and the extent of encapsulation of the recognizer’s functional-
ity. Thirdly, there is the service provision model which determines whether the recog-
nizer is part of the application or whether it runs as a separate thread or process, or
somewhere in between. The latter allows off-loading the recognition computation onto
a remote, possibly specialized server and minimizes the impact of compute-intensive
recognizers on other applications.

The entire infrastructure for a pen and speech based user interface is described, includ-
ing a software hidden Markov model based writer-independent hand-print recognizer,
a VLSI hidden Markov model based large-vocabulary speaker independent continuous
speech recognizer, type servers to handle the new data types and applications that exer-
cise the entire user interface architecture.

AN bl

Professor Robert W. Brodersen
Committee Chairman

Table of Contents

ACKNOWIEAZINENLS............ccoociiiiiriteeetce et sb st sb s saeaesens xii
CHAPTER 1. INtroducCtion............coovceerrrvecereeinieseresesessnesssenssssssesssessssssasasasssssnes 1
LI, MOUVALION ...ociiiiiteiiccneceeesenesssssssssssssssessssssesesssssnssesesessarsesssnsasens 2
1.1.1. Portable Computers/COMMUDNICALOTSccereeerereerererrerernesersssereenenrenesens 2
1.1.1. SiZ€ CONSIIAINL.......cueiiiricirunreereresrssseesesessesssssssstesesseeesessnesessesessesessens 2
1.1.1. Weight COnStraint...........oceeeeeecrereenreeerenesrneseseseseneeserssssessesessesessesens 3
1.1.1. Other ConSIidErationsc.ccceevceeereerereerererressensessessssessessesneseesesssssesens 3
1.1.2. Computer Aided DESIZNcoceeuerererirererenrsenisrensesereneseenesrsesssesessensnes 4
1.1.3. Persons With Disabilities...........cccorevrrrerenererrerrerrrsenereseesenrensesnesesneseennans 4
1.2. Enabling TEChNOIOZYccoceereererrirerireniinierersieennesenenseesesesesesesesessessnens 5
1.3. Pen Digitizer TEChNOIOZY.......ccevueuererrnriierircisreiestsenreeee s eseenes 5
1.4. Limitations of Pen/Speech Interfaces..........coceoeeveeerienrnreveerevenrernreeeeseenen 6
1.4.1. Pen DIGIIZEIS.....cccieiciriireeeeeeisineereseenieacsenssessenessssssssssseseseesesnssesssssanes 7
1.4.2. Speech Recognizers and NOISEcoceeveerreirnrereerireereereresnereseeeeesenenes 7
1.4.3. Recognition EITOISc.cceeveuieveriernenirentnrerenieentsseteseseesesesesessesessessseneas 8
L5, Previous WOrK......ccuiiviiciicccincnnninnesnnesessesesessessessseesessessessessssnnne 8
1.5.1. Pen INErfaces.......cccoicemimeriereenntierentsnestssesenseseesesensesessesesssessesessesesnes 8
1.5.2. Speech INEIfaCescccovveeerueerirrreeieeeseniesstesniesaeseesseesesessesesesesnenens 10
1.5.3. Pen and Speech INterfacesccocovveeerenrrverenesenrensnecsenseenserereesesnesenne 11
1.6, SCOPE Of TRESISc.cererererrrierriersreserersesseseessssesesessesesesssssesssssssssosessaes 11
CHAPTER 2. The InfoPad SyStem..............coueuieeririireieeeeeeeeeeesesiessesessessesens 12
2.1, SYSEeM DESIZN....ccorurmiienecrnrerererereeinreresesereesessesesee et ssessasesesssssssesesseseanes 12
2.1.1. InfoPad ApPDICALIONScccceveerururirieiseeeeeeeesesessseesssesesesenss 13
2.1.2. Design Objectives and CONSLIAIntSeceererereereeeereereresnerenireenesenene 15
2.1.3. DESign CROICEScovevrrrieieeercreeeeeseseresesesesssrssesesssssesssesssssenssesssnens 15
2.2, Wired NetWork ArChiteCtUrEc.cvvuevrererirerereerrereseresseseseesesessessesesssssnens 16
2.3, Terminal DESIZNcocetvivieiiereerereretereeere st st sesesneseneseessens 17
2.4. Pen Subsystem on IPGIaphiCs........ccceeeeereerererererererensresississsssssessecssenes 21
2.5. Pen and Keyboard Subsystems on IPVideoccoeeueervcrerrrenerceereeenenenns 22
CHAPTER 3. The User Interface Architectureocccocuerevernnereeecnercnennn. 28
3.1, Need for a New ArchiteCture...........cceveerereerererereereereneennesesesesssseseensens 28
3.2, High Level DeSCIIPLONccccceueruirireriesrieesenererereeeesesennsesessssssssesssenne 29
3.3. Pl SEIVET.....ouiiiiitireceeeeeeeesssie e essesesese s sessesesesssnesesssssssnsssssasans 32
3.3.1. Mouse EMUlation........ccocovuiereniereneeneeseeeeseeereeeeeessesesessssesseseseesnnes 32
3.3.2. Pen-Resolution Datac.eceeeeueveeinineesennnsreerenesseseesesessessssesesssesessnes 33
3.3.3. General OPEration.........cceueverererereeerssessreresesesesresssesssscsesessesssssssessssenes 34
3.34. Command Line OPHONScccecveererererrreersereeseserersrreresersesssssesssesosens 36
3.3.5. Applications Programming INterface.........cccevvvererrurerreeereeeesnsnrrenenenen. 36
3.3.6. Pen Support for X WOrKStationsccevevveerrveiereceeeceneessenessesesessennes 37

iii

34, AUGIO SOIVET..ccueeeeieeitieeeeeeeeeeee et ereeseeestesssesssessssessessssessssessnssssnssosasssses 38

3.4.1. AudioFile Compatibilitycccceerrrrreerrrerererreeseeserereneresensessecsssenenes 38
3.4.2. Enhancements Over AUIOFIle........ccccovernrnrerererererneeineeneneseseeseseseanne 39
3.5. Handwriting and Speech ReCOZNIZETS...........ceveveeermreerrcmeeereneneeeeenenenne 40
3.5.1. Handwriting RECOZNIZETcevurerrreereerrrrrrerennerenesenseesesssessesessssssonns 40
3.5.2. Speech RECOZNIZET.....c.cceenieeeerirerereeitc ettt scsseseseass s nesesenes 4]
3.5.3. Servers Versus Software Libraries.........c.eevvcereeveresererereseeseseseenenesessnes 42
CHAPTER 4. Handwriting Recognition.................ccoeveeueeemeeeeeeeeeeerseereeesessrenens 43
4.1, Previous WOrK.......cccveiveminrneennnnennensesseseesesesesesesesesesssssessssasosssssesses 43
4.1.1. GO COIPOTAtiONccovevrvrrrrrreeesereeseresesessssessesesessssssssosesosessssessassessens 43
4.1.2. IBMu.iictteceeessstssssstsssas st nsas s s s s as et sas st as s 44
413, AT&T ettt s s s s ss b s benes 44
A1, CIC.iiittrrete e e se st s tes et se s s s sensssnesssssastans 45
4.1.5. Paragraph ..o ssee 45
41,6, APDIC..ci bbbttt bbb b re s s s nenes 45
4.2. Characteristics of Handwriting ReCOZNIZErS........c.evevvveeveeeriverencreeenennns 46
4.2.1. VOCADUIATY ...ttt s ssse e s e st ssssaesesanes 46
4.2.2. GIAIINATooiireenerencieeeisereesessessssiesesessssssssssssssessssssssssssesssssesesenes 46
4.2.3. Constrained WIIting ATEQ..........cceeeerereuensiseiriierescesesessssessssesesessessnns 46
4.2.4. Spatial LoCalitycccccceuerveriererenrrerreeeesssesssesesesesesenssesenssssessesssssesonns 47
4.2.5. Digitizer RESOIUtIONcceueuruirietetetereeeteserereree e neseseaesessss e sesesessesenes 47
4.2.6. Available Computational POWETccccervererrreresrererereresensrseseeesessens 48
4.3. Recognition Requirements of the InfoPadcccevvevrmveceeeerinerereecnan, 48
4.3.1. Non-Dictionary WOIdS..........ceceererererrrereresessrerensesesesensesenssesesssssssessssens 48
4.3.2. MasS TEXEENIIY ..ottt resessteessereessese s ssesease s esessane 48
433, GESHUIES.....cvverirircrrieieneereneeisissstssssssssssesssssssesesessssssnsesesessssnsnsssssnsosens 49
4.3.4. GEOMELriC SNAPEScvrveverrrrirrreenereeessesseesesesesesesesesesesesssessssssnans 49
4.4. Models for Providing Recognition SErvicesooovvervevererersuerenenenenenes 49
4.4.1. User Interaction MoOdelcccoecerereermrereninereieninecneneneseeesesesessesesensenes 49
4.4.2. Programming Modelc.ccoceuerrrmrereeerererieieeereieteeieeeeesec e 50
4.4.2.1. Uncoupled APPlICAtIONSccereeereererererereerernesererseseressessseseeesessesssens 50
4.4.2.2. Loosely Coupled AppliCationsccceeeveveriresrruerernereerseseneensseseseresnnns 51
4.4.2.3. Tightly Coupled APpliCationsccceeerererrerrerrerersvereneseresnsenesenennene 51
4.4.3. Service Provision Model............cccoeereieriereereneeeneeeercreneeeseesesessenens 51
4.5. Properties of Printed Handwriting...........ccecoeevrereeneerererererereeeeresnenennns 52
4.6. HMM Based Handwriting ReCOZNItioncccceueuereuerereriverererererererenenenes 53
4.6.1. Hidden Markov MoOdeling..........cccerveveereeererenrereeeereneesenesesssssessens 54
4.7. A Writer Independent Handprint Recognizerccccceevevereemeveeerernenennne 57
4.7.1. The Recognition AIGOrithimccceceuereerrmreerrreeerreeerereereesesrereseenens 57
4.7.1.1. HEUIISHCS c.uceevteereerecerisineeicseceese e ee s esssssssstese e s esssesebesesesessenssens 57
4.7.1.2. Preprocessing and Feature EXtractionccceeveeeveeeeerceeenenenenennn. 57
4.7.1.3. The Hidden Markov Modelccccccouevmerermrenrerereerceeennerereseseenenenes 58
4.7.1.4. Viterbi AIZOTthINccoeeimieireeeneeee ettt ve e renes 61
4.7.1.5. POSt-PTOCESSING......c.crerrrerieerrrrrrereerenresseessssssessssesesessesesssesesssesssessans 62

4.7.2. CRATACIET SELS .uveeoevieeeeeeeeereereeeeereeeesseesessssssessssssesassssssessssssssesssssnnsesesssns 62

4.7.3. Applications Programming INterfacescoceeerveerurreerrrerreressesesnraennes 62
4.7.3.1. Handwriting Recognition Widget..........cccceeerrrrrerenrerrevreeereerenrerrerenns 63
4.7.3.2. REMOLE SEIVETcocuererirrerirrrereiniessesstesrsessaesessrsesssssesesessessnsesessns 64
4.7.3.3. SUN AP ...ttt se e et n e nes 65
4.7.4. Data Capture and Manipulationceeveeereeereenrrerecsereseessesesenenesenenes 67
4.7.5. TrAINING Sel......cucuniieerricieierneneeneiesernsessssesesssesesessesesesssssesesessesesssesssseseses 73
4.7.6. PEIfOIMANCEcoouereeeenenceriieeriersenisesererssssenssesesesesssessssasssasessssessssenes 75
4.7.77. Algorithmic and Implementational Improvements...............ccccevrvvenen.. 76
CHAPTER 5. Speech Recognition.................cceeeverenecreieercncrececneneeeeceneseesenens 78
5.1. Performance of EXisting SYStems.........ccceevereerverereererenreressessesenenessesesnens 78
S. L1 SOfWATE .ottt sisesas e e saese s sae s ese s s sesnsnes 79
5.1.2. Off-the-Shelf HardwWarecccoceverrecerenrererernerenseesessesessseseeseseosensenes 79
3.1.3. Custom Hardwareccceemrveerrnererenenreseneeresseensnsesessessesesssssssesessens 79
5.1.4. Accuracy on RealisticC Tasks........ccceceurrrrrrerererereerererereeeererenssenenesesssenens 79
5.2. Characteristics of Speech RecOgnizers...........ccceeverrueeveerererenerereeereeeennen. 80
5.2.1. WOrd Length ... eeieceinrccictereeseste e seeesesess s sess st sessenes 80
5.2.2. VOCADUIATY SIZE....c.cvvemeerrrrreerriersiniseesierereseetstesesesssesesesssessssssssesssesssnes 81
5.2.3. GIaMAreuiieicreeeneneisrenieetsseistesesessae e sessesssesessesesesesensesessssssosesessases 81
5.24. Available Computational POWETcoceoereireerereereererenisseeserneseennes 82
5.3. Recognition Requirements of the InfoPadcccccceervverevrrrerenererrrenennnen. 82
5.3.1. COMMANGSc.oeereurrerriricisisiisnsesiesessss s essssssesenessnsssessosessaesenens 82
5.3.2. DiCLAtION.....cvirivieeeerireerreisesieeseessesssssesesesesssssseseseresssssssssasssasonssessenens 83
5.4. Models for Delivering Recognized Speech............ceevervrererererereninverenenes 84
5.4.1. User Interaction MOdElcccvrurererirereieeereeennrseesesseresenesesssens 84
5.4.1.1. Speech Recognition FOCUS.........c.ceevurrrereereereineeniereresseseenesevennanas 84
5.4.2. Programming Modelccooeueiniererereeerereeeeeeereseserene et tesenees 85
5.4.2.1. Uncoupled APPlICAtIONSccceuveereuererereeeieereseseseerereseseessssesesoseasanas 85
5.42.2. Loosely Coupled APPHCALIONSc.cceueverereevererenenrereesesrssesssssesesenees 85
5.4.2.3. Tightly Coupled APPliCationsc.cccoveeueeereneerreiirerererenenesesesesesens 86
5.4.3. Service Provision MOdel..........cccoueueerereernrereeneenereneeereresesessesesensenesenenene 86
5.5. A Small, Flexible RECOZNIZETccceoeeveeierererererrereeeneiereseseneseaeseeesenens 87
5.5.1. MOtVALON.......ictitiiericeneneieeietstesee s s e e e se e e s en e et stsss s sene 87
5.5.2. IMPICMENLALIONcucurmeueecrenreereirrerntetereeesesesesesesessesesesensessasssssessasansnes 88
5.5.3. DISCUSSION c.cecvueeeerecncuctninceresstsmnntstessssssssssessessesssesesesssssssasesesessasasssnens 90
5.6. A Real Time Large Vocabulary Speaker Independent Speech Recognizer 91
5.6.1. Differences from the Small, Flexible Recognizer..............cccccvevereucnnn. 92
5.6.2. The Recognition AIOTithmc.ceueveueueremieeeieeereecieiee e eeeeenas 92
5.6.2.1. Feature EXtraCtion............cccovvuerserererereeseseeeseneseneseseessssssessosescsenes 93
5.6.2.2. Hidden Markov Modelingcceoeeeerereeereeeencnenecereseeeeeseseeeneeenens 94
5.6.2.3. Viterbi AlGOrithmc.ccovvveirieieierereierceeeeee et eseees 95
5.6.2.4. BACKITACEocvrveeenenreeireeactrtnesstesesese bttt et teseresssssesesssssssesesesesnenas 98
5.6.3. SyStem ATCRItECIUTE.........ccovcreuriereieterererererereteseteseseseee s sesesesesseseenesena 98
5.6.3.1. Changes to Improve Performanceccceeeeeerererereeersesnenneeessensnnn. 98

v

5.6.3.2. HIETATCHY w.cvoroeeeeeeeeeeeeeeeeseeseemeesssemsesessessssesssesesssesssessseesensssessessssens 99

5.6.3.3. System Hardware Partitioning..............cccecervurerrerereesssserererssenseesesensens 101
5.6.4. PhONE PIOCESSc.ccotrrrrerireeiiiererereneeesteseeeseessesesestessssesnesessssnnes 102
5.6.5. AcCtive WOId PrOCESS.......ceuvverrrirererecrerererenrnsresesssessessseesessasesesssseseens 102
5.6.5.1. DESCIIPHOM......ccuruererririreiererenrersseresssssssesesesesessssseseseresesenssesesenss 103
5.6.5.2. ImMPIEMENtAtiON......cviivirerreeirrererereerseerereeete e esse e sesess s nesesns 105
5.6.5.3. REqUESt PrOCESSOL........cccovrrerererirererenenseresseresesesessesesessosesessessnesessens 107
5.6.5.4. Probability PrOCESSOr.........cccccvverereeeereeeeseeriesesereeresesesressssssensens 108
5.6.5.5. Grammar NOde ProCESSOL.........coceeeererrieresseraereeereensseseseseseseseaens 109
3.6.6. Viterbi Board DESIgNccocceveeemrereeeenerereernerereserennssesesssnesesssesens 109
5.6.7. System Level SIMulation..........ccoeervererereeeesrseinierecesesesnssesnesesessessenens 111
CHAPTER 6. APPHCALIONS.............ooneereeeeeecrcreecreretenene e esesssesaeseas 114
6.1. Circuit Schematic RECOZNIZETceevirreeirerrereresrerererereenreseseresenenes 114
6.1.1. Desired FUNRCHONALItYcccoceerieririrerirerenrereentereseerereesseesesessevessenenes 114
6.1.2. CUITENt SYSIEMScueerrerrrirrnieiesenssteseessstseeestesesessssesesesesesessssesssseses 115
6.1.3. Lessons Learned..........cocoevrurrreeverennnesennnssensssesessessssesesessesessenesenes 116
6.1.4. IMPIEMENLAtIONcuervrrrerrririeeeieereteseeiestereeesesecsese s saesesssesessesesseses 118
6.1.5. File FOMMAL......c.ccoceieeiecrriiriteresteseseseseteseseseseesesesese e eessssesesesessnsenes 122
6.1.6. Suggested IMProVEMENLS.............ccecevereerrererereereernereserseseessesesesesesenee 124
6.2. Electronic NOtEDOOK.........ccocerurerererrrereeieensensessssssssseesesseessesessesssessenes 125
6.2.1. Desired FUNCtionalityccccceevuerrrevernreeresesssensenseseeesenesesesessesesnens 126
6.2.2. Lessons Learned...........ccocevirurrererrnreerneennrerennessnsessesesseesesssessessessesessens 126
6.2.3. IMPIEMENLALIONc..oecoirrereerreererreesseeresesrseeseseesesaesessessesessesseseesesens 127
6.2.4. Suggested IMPrOVEMENLSccorereeerrrrrrerereererereseressesessesessssesesseseenenes 129
CHAPTER 7. Conclusions..............cc.ccoeoeeereeeeerererreeneseseesesesesssesesssesssesssons 130
7.1, Summary Of RESUILSccvvireiverererenrsnerentnrereseesseresseneeseessesessessssessaes 130
7.1.1. User Interface ATChiteCtUre.......c.ccereeerrrerererssrererenrerensssesnsseeenssensesesnns 130
7.1.2. Handwriting RECOZNILION.....cccovevemreererinririeieiereesereneseeeeressesesesesenes 131
7.1.3. Speech RECOZNILIONc.ccceverrrerrerneerirestnenenreresnsseresersenssseressssesessesenns 132
714, APDHCAONS ...cceoverrireeieencetereesteesseesesesssessesessessessssesaessssessessesssens 132
7.2, FUUIE WOTK ...covvviriiririnirrreeseninineeereestssssesesessesessesasessssensesesesssesssessens 132
7.2.1. Development PrOJECEScccecvevierirereerineeereeessereesesseeesessessesassessessenens 133
7.2.1.1. Audio FOCUS Managerccceererevenrnrereennrreennerenssesessesessesessssesesens 133
7.2.1.2. Pen Server Control Widget..........ccocervurerererrrreresersessnecnsseresssessesennne 133
7.2.1.3. Handwriting Recognition Widget..........cccceceeverveevrvecineceecenveeernennnenne 134
7.2.1.4. Speech Recognition Widgetccceeeveevccrenrcricrenrererreesinneesreneennenne 134
7.2.1.5. User Interface Control Widgetccceveerererenrerenensnseressesneessessennes 134
7.2.1.6. Other IMPrOVEMENLS.........cccvvereerrrrerreerereresessesseesessassessesssesesssesasssenss 135
7.2.2. Research Projects........ccoccvvrvinreeiinreninreeneecsesesssesseeeesseessessasssesssesssssnas 135
7.2.2.1. Complex Event Managercocevvverrereerencrenerscnreneeensenesseseesesnenes 135
7.2.2.2. Synergy Between Handwriting and Speech Recognition.................. 136
7.2.2.3. Handwriting and Speech Recognitionc.coceecvineirencrieccninensecnecnnns 136
7.2.2.4. Integrated Document EditOrccooveeveeerevenieeeenresenresieeseeseeesaenens 137

CHAPTER 8. Appendix: Handwritten Character Sets...........ccecceveeverueenenenn. 138

CHAPTER 9. Appendix: Software Organizationc..ccoevrverercrvrnnnnnn. 145
9.1, PEIN SEIVET.....ouceiirererrneerteieteisintetnsessssesesesesese s essessasssesesesesesssssssassssens 145
0.2, AUIO SEIVET.....ouueeeeeeirietrtetesetesesesesetstese oo sensssssasssessssssnssssssasasasens 145
9.3, Handwriting RECOZNIZET..........cccceurereeireereeeeriererereereseseseesrssssesssesesene 145
9.4. Circuit Schematic RECOZNIZETocorvererererereererernreeeeereeeesessesnens 145
9.5. Notebook APPLCALIONccovrirererriereceereeeereserereresene e seseseseans 146
BiDHOZIAPRY ...ttt ettt e ne 154

vii

List of Figures

CHAPTER 1. ...t tsts st beses st bttt ss s s sesssnsasassststes 1
Figure 1-1. Buttons on a Typical Pen and a Typical Mouse..............ccevrerererenne. 7
CHAPTER 2. ...t nessss s ssssssesssses s sessssessssssssssssssssssssssssssssens 12
Figure 2-1. Diagrammatic Representation of the InfoPad System..................... 14
Figure 2-2. The InfoPad Network (InfoNet) Architecturecoceveeverenenne... 17
Figure 2-3. InfoPad TYPE SEIVETs........cocoeeurreeerrecnrererereenreenresesesesesesesesessssseseons 18
Figure 2-4. Architecture of the IPGraphics Terminal...............ccocvvvevenererenennens 18
Figure 2-5. Architecture of the IPVideo Terminalcoevereveeriererernneeenenees 19
Figure 2-6. IPGraphics Pen Subsystem..........c.ccceevevveeuererereinrereneneseesseseesennene 21
Figure 2-7. Protocol Chip PhotOgraphcccevveieereienveererenneesereneeseereenenes 23
Figure 2-8. IPVideo Pen and Keyboard Subsystems............ccccceerererernenererennnnn. 24
Figure 2-9. BusMaster Module for IPVideo Pen and Keyboard Subsystem..... 25
Figure 2-10. Schematic of UART Used in Pen and Keyboard Module................ 26
Figure 2-11. PenAudio Chip Photograph...........cccceeeveeenueucrerereseneresereneseresesesens 27
CHAPTER 3. ...ttt tes st sesss s s s bbb st s b s sne 28
Figure 3-1. InfoPad User Interface ArchiteCture...........oeevevererverireeeeeeemreeeenennene 30
Figure 3-2. Pen Server Packet StrUCLUTE.........c.oeceerverereereeeereeeerenesresenesesesesnes 34
CHAPTER 4. ...ttt tssssssess s sssssesss e ss s e be b s s s e 43
Figure 4-1. High-Level Description of a HMM Based Handwriting Recognizer 54
Figure 4-2. Topology of an 8-State Handwriting Markov Model....................... 60
Figure 4-3. Screen Shot of the Handwriting Recognition Widget 63
Figure 4-4. Main Menu Bar for the Data Capture and Manipulation Package .. 67
Figure 4-5. Example of Word File FOrmatcccoceeererininieeerererneeeneneenenesenenes 68
Figure 4-6. Feature File SYNtax........cccccoceieveeveerireeneeeeneeneeerereeeresessesssseseasenens 69
Figure 4-7. Vector File SYNtaxcccoveieireeeereveceneeneeeeesssesesesesesesesenes 70
Figure 4-8. Handwriting Capture Canvas.............cccecvureerueresssreresssessesesersessssesens 70
Figure 4-9. Global Variable Display/Editing Windowcccceceeeverrerererennne 72
Figure 4-10. HMM Parameter File Syntax..........ccocccereveererereereenrereseenenseneseesesenes 74
CHAPTER 5. ...t tststsesse e sesessssstssssssesasasesassesesesassesesesassnnenans 78
Figure 5-1. GramCracker Application for Creating and Modifying Speech
Recognition Vocabulariescovceevveerereerereeieneninenseneeeneessesereennes 89
Figure 5-2. Code Fragment to Illustrate API for Speech Recognizer................ 90
Figure 5-3. Block Diagram of the Feature Extraction Algorithm...................... 93
Figure 5-4. Graphical Representation of a Hidden Markov Model.................... 94

viii

Figure 5-5. Trellis for Decoding a Hidden Markov Model.............c.coeveeeunn... 96
Figure 5-6. Source and Destination Grammar Nodescccceereeererererennen. 100
Figure 5-7. Hardware Partitioning of the Speech Recognition System 101
Figure 5-8. Connections to the Active Word Process...........ccecevvvererrerevernenenes 103
Figure 5-9. Implementation of the Active Word Process.........cceceveverererererenen 105
Figure 5-10. Chip Photograph of the Request Processorccococeeeeeruereeennnns 107
Figure 5-11. Chip Photograph of the Probability Processorcccveveverennenes 108
Figure 5-12. Chip Photograph of the Grammar Node Processor 109
Figure 5-13. Switching Architecture of the Viterbi Board.............c..coeueeune.... 110
CHAPTER 6.coiiiieieerieceteiseesiesstsssssstssssssessssssesesssesesesesebesesesesssessssnsane 114
Figure 6-1. Screen Shot of the Circuit Schematic Recognizer with Edit Menu
POSIEA ...ttt ettt sa e et e ae e 118
Figure 6-2. Parameter Editing Form for MOS Transistors............cccvevevennene... 120
Figure 6-3. Speech Recognition Control Widgeteeevereereerrerererreesnenenes 121
Figure 6-4. Circuit Schematic File EXample.........ccoceoeereveerrerrreerereneereneereenene 123
Figure 6-5. Circuit Schematic File Syntaxccoceeveeererererernereneeeinnenereenns 123
Figure 6-6. Screen Shot of Electronic Notebook Application...............c.......... 127
Figure 6-7. Electronic Ink Stroke and Word Structuresccoccvueevevrvveseenens 128
Figure 6-8. Electronic Ink File Format.........cccceceveuvverevenrnreeneeneeneeresennevenenns 129
CHAPTER 7. ...ttt sssssissssssssstsssssssesesesesessssssssesssssssnsasasas 130
CHAPTER 8. ...ttt ssssssssssssssssesssssessssese s sesesesessnsasnens 138
CHAPTERooieeteenirttsis s ssss e sssss s s s s ses s snsrssessssne s s sebssessasns 145

ix

List of Tables

CHAPTER 1L ...t sssssiessse s s senes s se s ss s sse s sssassesesesons 1
Table 1-1. Some PDAs Currently on the Market...........cccvevereeeemreenerceeerernenenns 1
Table 1-2. Characteristics of Current Pen Digitizersc.cocevrververerrererersnnennnnes 6

CHAPTER 2.oeeeesesesttsssssstes et ses s s s s sassssssssssessssessssssasssssssssoses 12
Table 2-1. Signal Pins on the Pen Module..........c.ccoevevereivinrereieeneeneeereereeesenne 22

CHAPTER 3. ...ttt st s st sseses e s sesesesassasasassessnes 28
Table 3-1. Pen Packet Structure for the Logitech Gazelle Digitizer................. 33

CHAPTER 4.oreieceerstsesrassss st sess st sessssssssasesesesesesssesesasssesabasessses 43
Table 4-1. Heuristics Used in Handwriting Recognition..........cccccccceeveuevenenen.. 57
Table 4-2. Number of Markov States for Each Handwritten Character in the 61-

Character RECOZNIZETccveucrerrereerrererenieererinreseeseee e ssesesesens 58
Table 4-3. Number of Markov States for Each Handwritten Character in the

Digit RECOZMIZET.....uceveueeeerieneereiereeeresteesseressesseeesensessssesaesensenes 60
Table 4-4. Handwriting Recognition Results............ccoceverueeeereereerererneresnenennes 76

CHAPTERSS. ...ttt tssssssss s tssssesssss s sesses s st sas s sensseseses 78
Table 5-1. Accuracies for Recent Speech RecOgnizerscoceeeveeeeerceriennens 80
Table 5-2. Contents of the Active Word Listcccocovereerevecrnreeveerernerennerenene 103
Table 5-3. Memory Sizes on the Viterbi Boardccoceeeeiviveriencricenieeneenen. 111
Table 5-4. Components on the Viterbi Boardccceeererrvenrnerenreessesnnnes 112

CHAPTER 6.ooconiiiiirnneniineeenttsssssssss s tsassssss s ssss s s e s s e se s senes 114
Table 6-1. List of Speakable Commands............ccceeeerrrereveerererrevereereiesseenns 121

CHAPTER 7.eeeeeeeeeesetse st teteseteseses et be e sa bbb s ssbe s s s nenns 130

CHAPTER 8. ...ttt ssastesstsse e s s s e s s b b et nans 138
Table 8-1. Character Set for 61-Character Recognizer..........cccceeeevveevuennenn. 139
Table 8-2. Character Set for Digit ReCOZNIZETccovvvvvererercnencrecrcrennenene 144

CHAPTER 9. ...ttt ctreeteteeteessesssasesestssts st e ssesssesesaseseesesasesaessasasans 145
Table 9-1. Pen Server SoUrce TIEEcceeecreeeereererruecerinreerseesseessessesssassanas 146
Table 9-2. Audio Server Source TTeecoovivviererinniiniinnecieenercrerreenenencnnne 147
Table 9-3. Handwriting Recognizer Source Treecoccocevceircecvrecreneecenns 148
Table 9-4. Data Capture and Manipulation Package Source Tree.................. 149
Table 9-5. Handwritten Data Source Treec.coceeeveereeerveerenrereneeserseereennens 150

Table 9-6.
Table 9-7.
Table 9-8.

Hidden Markov Model Parameters Source Treecccovvvvervcnnee.
Circuit Schematic Recognizer Source Tree.......ccoevereverererivnencneen

Notebook Source Tree

...

Xi

Acknowledgments

Many people deserve my thanks and appreciation for their contribution to the successful
completion of my graduate school career. My family was always there for me with unfail-
ing emotional, spiritual, and material support. They never let me lose sight of my goal of
getting a Ph. D. and encouraged me onwards even when they were not entirely convinced

that I was doing the right thing.

Professor Robert Brodersen, my research advisor, was an inspiration with his leadership
and vision. From him I learned to not get bogged down in details but instead to always look
at the big picture and constantly re-evaluate the value of my work. Professor Jan Rabaey
was always available for technical and other advice. I am grateful for his cheerful, thought-

ful input.

Working closely with Anton Stolzle during the first 3 years of graduate school was a plea-
sure. He was always available to discuss issues in speech recognition or hardware design,
or just about anything else. I had the pleasure of interacting with Brian Richards on numer-
ous occasions. He always responded quickly to Lager problems and was a wellspring of
knowledge about both hardware and software design. He also designed early versions of
the Pen Server and the UART used in the IPVideo chip.

Andrew Burstein’s hidden Markov model speech recognition code was the starting point
for my handwriting recognizer. I appreciate his responsiveness to questions about his code,
hidden Markov modeling and other software questions, especially while I was learning to

program in C++.

xii

Jeff Gilbert made major contributions to the Audio Server, without which its performance
would not have been as good. His cheerful can-do attitude even in the face of tremendous
demo deadline pressure made my interactions with him enjoyable, even when he was the

group leader!

I would also like to acknowledge Armando Fox for implementing the handwriting widget
interface and Steve Chow for doing a large part of the handwriting data capture, segmen-

tation and labeling.

Xiii

1 Introduction

Portable computers have soared in popularity in the last few years. Several vendors have
released Personal Digital Assistants (PDAs) which have a small form factor and long bat-

tery life (see Table 1-1) [Pen 95]. Many PDAs use pen interfaces rather than keyboards and

Vendor | Model Screen Size | Weight | Input modes Handwriting Battery Life
(inches) (pounds) Recognition? | (hours)
Apple 1 MessagePad 120 | 3.8 x 2.8 1.28 pen Yes — 22
Sharp] Zaurus 40x26 [085 pen + keyboard | No 60
Casio Z-7000 3.1x4 0.95 pen Yes 90
Amstrad | PIC 700 34x54 0.875 pen Yes 40
Sony PIC-1000 30x4.5 1.2 pen +optional | Yes (3rd party) | 12
keyboard

Table 1-1. Some PDAs Currently on the Market

mice. A pen digitizer is smaller and lighter than a keyboard and provides a more natural
user interface, but requires a much more sophisticated user interface infrastructure. Some
experts predict that within a few years we will see wide availability of small personal com-

puters with pen and voice input [Cran93].

The main feature of portable computers that limits their ability to provide a sophisticated
user interface is their limited computational capacity. However recent advances in technol-
ogy have made it possible to use more sophisticated user interfaces in portable terminals
and computers, and this thesis examines the issue of extending the user interface to use
both handwriting and speech as input modes. Such a user interface is very useful for por-
table computers and is also applicable to desktop computers in situations where a pen and

speech interface would be advantageous.

1.1. Motivation

There are three major scenarios where a pen/speech interface is preferred: portable com-
puters/communicators, Computer Aided Design (CAD) platforms, and computing for per-
sons with disabilities. In general, it is worth noting that handwriting and speaking skills are
acquired early in life. They perform an important role in human-human communication,

and are therefore better suited to human-computer communication from the human’s point
of view [Rhyn93].

1.1.1. Portable Computers/Communicators

Portable computers are designed with strict attention to size and weight constraints. As
explained below, the pen is clearly superior to a keyboard and mouse in both size and
weight. If a pen digitizer is used in place of a keyboard and mouse, we can overcome the
disadvantages of the latter devices. The pen can easily replace the mouse as a pointing
device and, with handwriting recognition, the pen can also replace the keyboard in many
situations. In order to use the pen and speech as an alternative to the keyboard, we need to
create a sophisticated user interface using handwriting and/or speech recognition that is
comfortable for users. We also need a good applications programming interface to encap-

sulate and abstract the recognizers.

1.1.1.1. Size Constraint

The size of a portable computer or communicator affects its user acceptability. A device
that fits into a pocket is very convenient while a terminal that is too large to fit into a brief-
case is not convenient. A keyboard adds significant volume to the size of a portable com-
puter. For example, a regular PC-style keyboard occupies 18.5 by 7 by 1.5 inches. The
keyboard on an IBM Thinkpad 755C occupies 11.5 by 6 by 0.5 inches, while the keyboard
on a Hewlett Packard HP200LX palmtop computer occupies 6 inches by 2.5 inches by 0.6
inches. When in use, these keyboards occupy valuable space and make the devices more
cumbersome, thereby making them less usable. The smaller keyboards are also difficult to

use since it is not easy to fit all ten fingers into the limited dimensions of a small keyboard.

Many recent portable computers use a TrackPoint mouse (a little stub that sticks up from
the middle of the keyboard) to provide pointer input. This eliminates the need for a cum-

bersome external mouse. However, this mouse is not as easy to use as a normal mouse.

The size-related cost of using a pen digitizer is a thicker screen incorporating the digitizer
and storage space for the pen. For speech, the size related cost is an audio codec and a

microphone jack.

1.1.1.2. Weight Constraint

A regular IBM PC keyboard weighs between 2 and 4 pounds and a Microsoft mouse
weighs 3.5 ounces (6 ounces with cable), whereas a Logitech Gazelle PenMan digitizer
with pen weighs about 3.5 ounces. The weight savings resulting from using a pen digitizer
rather than a keyboard and mouse are considerable, especially considering that the target

weight for modern portable computers is below 4 pounds.

1.1.1.3. Other Considerations
A keyboard-based computer requires two hands to operate and a stable surface upon which
to place the computer. A pen interface requires only one hand to operate; the other hand is

free to do other things or to support the computer.

The pen is arguably a better pointing device than a mouse. It is advantageous to use the pen
on the screen at the exact position where the user wants to activate a menu. However, the
disadvantage is that the user has to move his entire arm to use the pen whereas with a
mouse the total distance of arm travel is lower. This is a result of the relative coordinate
system and the acceleration/magnification provided by the mouse. For small screens this

problem is not severe.

A parallax problem arises when a pen digitizer with an LCD screen overlay is used. The
thickness of the LCD screen’s glass causes a separation of between 1 and 2 mm between
the pen tip and the LCD display. The user’s perception of pen position is therefore not the
same as the device’s knowledge of pen position. Additionally, there is some variation in

the calibration and registration of pen digitizers from the same vendor so digitizer param-

eters may vary from sample to sample. However, this problem may be partially alleviated

by using software alignment/registration.

Entering text via typing is at least twice as fast as hand printing. Touch typists can achieve
arate of 6-7 characters/sec while printing can be done at 1-1.3 characters/sec. Unistrokes,
which are faster to write than handprinted characters, can be written at 3.4 characters/sec.
[Gold93] [Tapp90]. Using a pen for mass text input such as writing a book or programming
is not as efficient as using a keyboard. Therefore a keyboard is preferred over a pen in

applications where mass text entry is required.

1.1.2. Computer Aided Design

Computer Aided Design (CAD) tools are used in many industries. Design often involves
freehand drawing (as in the garment design industry) or creating designs which comprise
only a few primitives (such as in digital and analog integrated circuit design). These appli-
cations can be done more efficiently using a pen than a mouse and keyboard. For example,
in the garment design industry it is easier to draw a design than to specify a spline for each
curve using a mouse. In circuit design, it is more convenient to draw each circuit element
than to type its name or select it from a menu. Traditional circuit design systems require
the user to navigate using a mouse and to enter information on a keyboard, which requires
constant switching between the two devices. This issue is examined in greater detail in

Section 6.1. on page 114.

1.1.3. Persons With Disabilities

Persons suffering from tendonitis or carpal tunnel syndrome are unable to use a keyboard
for any great length of time. However, they can usually use a pen for much more time, and
can speak all day. A pen/speech interface would be ideal for such persons. In fact, many
disabled persons currently use commercial voice recognition products such as DragonDic-
tate and Kurzweil Voice for dictation and even programming [Cros95]). A Wacom or other
digitizer provides a pointing device facility in cases where screen navigation cannot be

done via text commands.

1.2. Enabling Technology

Currently, a major factor preventing the use of a sophisticated recognition-based user inter-
face is the high computational cost of provide recognition services at adequate perfor-
mance levels. Performance measures include real-time operation and high accuracy.
Advances in low power, high speed microprocessors and in communications have now

made it possible to incorporate such a user interface in a cheap, lightweight terminal.

Computer technology has been advancing very quickly in the last decade. We now have
extremely powerful microprocessors in desktop and portable computers. Processors are
cheap; they can be embedded in application specific hardware for performing specialized
tasks and, for a given desktop or portable, there are usually several embedded processors
performing specialized functions such as graphics rendering, sound processing, and com-
munications. Advances in low power circuit design make it possible to use embedded pro-
cessors in portable devices. It is therefore possible to embed specialized recognition or
compression/decompression hardware into portable devices to provide the required com-

putational power.

Recent advances in networks and in wireless communications make it possible to off-load
computation onto a remote compute server rather than run all user and recognition pro-
cesses on the local processor. This allows access to greater computational resources than
can be provided on an isolated mobile terminal. The InfoPad system described in Chapter 2

uses this approach to enable a powerful user interface on a dumb terminal.

1.3. Pen Digitizer Technology

There are currently several vendors of pen digitizers (see Table 1-2).

The Logitech Gazelle digitizer uses electromagnetic technology. In this technology, a bat-
tery-powered wireless pen transmits a signal containing information on switch status and
battery level. A digitizer circuit board containing traces and other circuitry detects the pen
signal and computes the pen coordinates. The digitizer board is mounted below the LCD

screen.

Model Size Resolution | Sample Rate | Accuracy | Technology
(inches) | (lines/inch) | (points/s) (inches)

Logitech Gazelle PenMan | 8.1x5.85 | 414 371 0.01 electromagnetic

Wacom SD-510C 9.13x5.91 | 500 100 0.02 electromagnetic
resonance

Wacom UD-0608-R 8x6 1270 205 0.01 electromagnetic
resonance

Scriptel 12x12 1000 200 0.015 resistive
decoding

Table 1-2. Characteristics of Current Pen Digitizers

Wacom digitizers use electromagnetic resonance technology where the tablet transmits a
signal to a batteryless and cordless pen for 20 psec, then receives a signal which is re-emit-
ted by the pen at a different frequency for 20 psec. Tablet coordinates are computed based

on signal strength across several grid wires under the tablet surface.

The Scriptel digitizer uses resistive decoding technology. A wired pen transmits a signal
encoding button status information which is detected by a resistive film deposited on trans-
parent glass. Pen coordinates are calculated based on voltages measured at the edges of the
resistive film. Since the digitizer is transparent, it may be mounted above the LCD screen,

replacing the glass that usually protects the screen from mechanical damage.

There are other pen digitizers which use purely resistive technology. In this case, direct
pressure of the pen (or any other object, such as a finger) on the digitizer closes
microswitches or modifies local resistivity. The change is detected and used to compute
pen coordinates. The disadvantage of this technology is that there is no information about

pen trajectory when it is not on the digitizer. Raised strokes therefore cannot be detected.

1.4. Limitations of Pen/Speech Interfaces

There are several limitations inherent in pen/speech interfaces. In the following subsec-

tions, we examine each of these limitations and discuss some ways to overcome them.

1.4.1. Pen Digitizers

Although the pen is an excellent pointing device, it requires significant movement of the
user’s hand across the screen. A mouse amplifies the user’s hand movements and reflects
these movements on the screen. The pen also has fewer buttons than a typical modern

mouse (see Figure 1-1). A mouse on a workstation or PC usually has three buttons which

] Button 3
Button 2

Button 1 O O O

Barrel Button

| &— Tip Button

Figure 1-1. Buttons on a Typical Pen and a Typical Mouse

are easily distinguishable from one another, whereas a digitizing pen has one button on the
tip and sometimes another on the barrel. The barrel button is difficult to use because it is
positioned such that users often press it by accident. When called upon to press the barrel
button, users often have difficulty locating the button since its position is not intuitive.
Therefore, the pen has effectively only one input button, and this button is activated by
bringing the pen into contact with the screen. This limitation on the number of input but-
tons can be alleviated by placing additional buttons or modifying keys on the computer or
terminal itself. In the case of modifying keys, the user would press the modifier key and

then tap the pen on the screen to emulate additional pen buttons.

1.4.2. Speech Recognizers and Noise

Current speech recognizers do not perform well in noisy environments. Interfaces that use
speech recognition are therefore not very tolerant of noise yet they generate noise. A room-
ful of people speaking to their terminals may create so much noise that not only will every-
one get annoyed, the recognizers may fail due to a low signal-to-noise ratio. A speech

recognizer will also not perform well in a naturally noisy environment such as a factory

7

floor or a meeting room. However, using headphones and an echo-cancelling microphone

can help alleviate these problems.

1.4.3. Recognition Errors

Handwriting and speech recognizers both make frequent recognition errors. Chapter 4 and
Chapter 5 report error rates of current handwriting and speech recognition systems respec-
tively, but these numbers are obtained from artificial tasks in laboratory conditions. Under

realistic conditions the error rates are much higher.

Error rate increases with larger vocabularies and less constrained grammars. Error rates are
greater for writer (or speaker) independent systems than for dependent systems which are
tailored for a particular user. Cursive handwriting recognizers tend to have greater error
rates than print recognizers; similarly continuous speech recognition systems tend to make
more errors than isolated-word speech recognition systems. We can reduce the effects of a
finite recognition error rate by reducing the vocabulary, using a more constraining gram-

mar and by providing error correction facilities.

1.5. Previous Work

There has been some research on pen interfaces and speech interfaces, but little work has
been done on using both pen and speech together. This section reviews some previous

work in these three areas.

1.5.1. Pen Interfaces

As shown in Table 1-1 on Page 1, there are several PDAs with pen-based interfaces cur-
rently on the market. The Apple MessagePad uses the Newton operating system. The other
PDAs use either Windows for Pen by Microsoft, OS/2 for Pen by IBM, PenDOS by CIC,
or GEOS by Geoworks. There are no commercial pen interfaces based on UNIX.

Goldberg and Goodisman [Gold91] at Xerox PARC examined how to interface to hand-
writing recognition algorithms and the effective exploitation of the differences between a
pen and a keyboard/mouse. This was in the context of the design of a text entry tool. They
chose to use print rather than cursive input since there were no cursive systems known to

the authors which had consistently high recognition rates. The system recognized both

8

upper and lower case print. They chose to do all their user interface studies in boxed mode
because recognition in this mode is more accurate. Correction and editing are also simpler.
The greatest advantage of boxed mode entry is that users do not slip into script mode and

join adjacent letters.

The system recognizes single letters rather than words and provides two correction ges-
tures for deletion and insertion. The most interesting trade-off is the choice of writer depen-
dence versus independence. They chose to use a writer dependent system due to its better
accuracy. Training is explicit but without a separate training mode. The user can modify

the training samples whenever the recognizer makes an error during normal operation.

Rhyne, Chow and Sacks [Rhyn91] at the IBM T. J. Watson Research Laboratory worked
on adding a paper-like interface (PLI) and handwriting recognition to the X Window Sys-
tem. The X Window System was enhanced to provide a stylus-based user interface for
handheld computers. Modifications were done to the X server itself and to the Xt toolkit.
A new widget called a WritingArea widget was created to receive strokes from the X server
and which invokes application-supplied callback functions. This stroke-receiver widget
maintains a list of the active input strokes. Another widget called a WritingReco widget
provides recognition services on top of the services supplied by the WritingArea widget.
These additional services include error correction, prototype management and recognizer

management functions.

Goldberg and Richardson [Goldberg93] at Xerox PARC designed an approach to stylus
touch-typing using an alphabet of unistrokes, which are letters specially designed to be
used with a stylus. Unistrokes are faster to write, less prone to recognition errors, and
require very little screen real estate. They also can also be entered in an “eyes-free” manner

because they consist of single strokes.

The set of unistrokes were chosen to be robust in the face of sloppy writing. In the authors’
system, letters could be written one on top of the other, so the screen real estate used is very
small. Many unistroke characters are similar to Roman letters. The stylus’ barrel button is

used to denote capitals, thereby reducing the size of the alphabet of unistrokes by a factor

of two. Writing time for each unistroke varied from 150 to 300 msec. The median inter-

stroke time was 158 msec.

Kurtenbach and Buxton [Kurt94] at the University of Toronto worked on marking menus,
which allow a user to perform menu selection either by popping up a radial menu or by
making a straight mark in the direction of the desired menu item without popping up the
menu. They found that when users become expert with the menus, marks are used exten-

sively. Also, using a mark was on average 3.5 times faster than using the menu.

The Windows for Pen extension to the Microsoft Windows operating system provides very
similar services [Micr95]. Windows for Pen also provides pixel level callbacks where the
PLI system provides only stroke level callbacks, and has an extensive library of routines

for handling electronic ink and recognized handwriting.

The main difference in approach is that PLI tries to encapsulate as much of the pen func-
tionality as possible whereas Windows for Pen allows applications programmers access to

all details of the process of handwriting capture.

1.5.2. Speech Interfaces

It is possible to use speech to navigate between windows on the screen. The Xspeak system
from the Massachusetts Institute of Technology [Schm90] is an application running on X
workstations that recognizes spoken window names for navigation purposes. Xspeak par-
tially replaces the mouse for navigation and for issuing commands to the window manager.
Experiments showed that speech recognition can create a viable user interface for naviga-

tion among windows.

The greatest limitation to Xspeak’s functionality is the need to associate a name with each
window. Several windows can have the same name, especially in the X window system,
and this can confuse Xspeak. Also, window names may not be dictionary words and so
need to be trained separately. In Xspeak, a control panel allows the user to adaptively spec-

ify the spoken name for each window.

10

1.5.3. Pen and Speech Interfaces

Rhyne and Wolf [Rhyn93] at the IBM T. J. Watson Research Laboratory identified and
examined issues relating to recognition-based interfaces. They found that recognition feed-
back, correction and training are critical to the success of any recognition-based interface.
Recognition feedback allows the user to detect that an error has occurred. Correction
mechanisms are needed to allow the user to easily correct recognition errors. User training
can be less frustrating and more efficient for the user if it is done at once rather than in the

context of use, although it may not be as effective.

1.6. Scope of Thesis
Chapter 2 describes the InfoPad system [Chan93], which is the primary target system for

this user interface architecture. The InfoPad system is designed around a prototype mobile
multimedia terminal built here at the University of California at Berkeley. It has digitized
pen and speech input rather than a keyboard and mouse. Chapter 3 describes the user inter-
face architecture that I designed and implemented to take advantage of handwritten and
spoken input in the system and to provide services related to this input paradigm. This
architecture uses a networked client-server model to distribute the computation of the com-
ponents of the user interface and to provide services; it is equally applicable to InfoPad as

well as to other environments.

Chapter 4 describes a handwriting recognition engine which uses hidden Markov models
and very simple feature vectors to recognize printed characters. Chapter 5 describes the
InfoPad system’s speech recognition requirements and describes the design and implemen-
tation of a large vocabulary speaker independent connected speech recognizer, which
required 6 custom VLSI chips [Stol92]. This recognizer could be used as a speech recog-
nizer server for the InfoPad system. Chapter 6 describes applications that were built to
prove that pen and speech form a viable user interface for some class of systems and appli-
cations. The primary application is a circuit schematic recognizer that recognizes drawn
circuit elements and wires. It uses the entire user interface architecture, including raw pen
data, recognized handwriting, and recognized speech. Chapter 7 draws conclusions and

describes directions for future work.

11

2 The InfoPad System

The User Interface Architecture described in this thesis was designed and implemented in
the context of the InfoPad system [Chan93). The InfoPad project is a multi-disciplinary
research effort to build a personal communications system for ubiquitous computing.
Research areas include low-power integrated circuit and terminal design, high-bandwidth
radio transceiver design, high-speed multimedia networking, integrated mechanical and
electrical terminal design, and advanced user interface design. Several faculty members
and many students at Berkeley are involved in building the system and examining the rel-

evant issues.

This chapter describes the InfoPad system, concentrating on the elements that affect the
User Interface Architecture. The system, network, and terminal design are described first.

The Pen Subsystem for two generations of the InfoPad terminal is then described.

2.1. System Design

The design of the InfoPad system is a research effort that explores one extreme of the
design space for mobile personal communications systems. It includes a dumb terminal
with a high-bandwidth connection to a high-speed network, as described below. There are
two basic assumptions that drive the system design. The first assumption is that the wired
backbone network is fast enough to provide a very high bandwidth with low latency. The
second is that given the fast network, a collection of network-connected compute servers
is available on which to run user and system processes. These two assumptions are based
on the premises that network bandwidth is available and that computation is also available

and best done in the network.

12

A diagrammatic representation of the system is shown in Figure 2-1. Each terminal has a
high-bandwidth connection to a basestation that is on a high-speed wired network. The net-
work also supports compute servers and sources for multimedia information, such as video
databases. The applications that are supported and the design objectives and constraints

faced are described in this section.

2.1.1. InfoPad Applications

The InfoPad system is designed for mobile multimedia information retrieval and for
mobile personal communications. Examples of applications requiring multimedia infor-
mation retrieval may be found in libraries, museums, and repair depots. In a library, users
currently use a fixed terminal to query a database for a call number which is used to locate
the book. However with a mobile, multimedia-enabled terminal they can view a map of the
library showing the location of the book. If a user is searching for a video, he could view

it on the terminal rather than going to a special viewing room.

In a museum, the user may retrieve information about the painting or sculpture he is cur-
rently viewing, as well as information about the artist and his work. In a repair depot, a
mechanic may pull up schematics or other documentation on the part he is currently ser-
vicing. Of course, the most general current application requiring multimedia information

retrieval and display is surfing the World Wide Web.

In personal communications, the user may want to send and retrieve multimedia electronic
mail, make a telephone call, or videoconference. We support 1-way videoconferencing
only (1-way video broadcast with 2-way audio) since there is no camera on the terminal.
Future versions of the InfoPad terminal may incorporate a small, light camera and thereby

support true 2-way videoconferencing.

The applications that are conspicuous by their absence from the above discussion are gen-
eral dictation such as book writing, and programming. These applications require mass text
entry. Mass text entry is much more efficient on a keyboard and seldom requires mobility.
Therefore, although the InfoPad system design does not preclude running such applica-

tions an add-on keyboard would be required. The issues relating to the use of recognition

13

wdsAS peqJojuy ayy jo uonejuasaiday onewwesdei(‘-z s

03pIA 10]0D) uolow-[ny -
[eUTuLId)}-X -

mmduj uag pue Q/[yo9dg -

(1vuritdd], vIpaw NN 3]qv40 V) pedojul

SYOLVIININNWNNOD |3
TVNOSIAd |

II-aivi
“Uadvdsmapn 09p1A passaiduio)
‘ainpayos aurlay
4svavivda @ 000 @
TVIOUIIWINOD

49UV1 dSVavivd O3dIA

14

for mass text entry are examined in detail in the discussions on handwriting and speech rec-

ognition in Chapter 4 and Chapter 5 respectively.

2.1.2. Design Objectives and Constraints

The primary consideration in the system design is to provide users with a usable terminal.
The terminal must be small, light, low-power (to operate as long as possible on the same
set of batteries), able to display multimedia (text, graphics, audio and video), and commu-
nicate multimedia data in real time. It may also take advantage of the network and compute
servers to provide a good user interface and to access data. Ideally, the system should
degrade gracefully as its capacity is approached and exceeded. It should also be scalable

to allow support of a larger number of users.

Several constraints affect the design. We use commercial technology for the pen digitizer,
screen, and battery. We are also constrained by the fact that radio links are inherently error-
prone so the system must tolerate missing data packets, which affects the protocols used to

communicate data.

2.1.3. Design Choices

Given the above objectives and constraints, the system design concentrated on making the
terminal small and light, with the longest battery life possible. The most visible design
choice affects the input modalities. Pen and audio input replace the keyboard and mouse.
Audio is supported via a head mounted microphone and earphone to reduce audio sensitiv-
ity to ambient noise and to limit noise generation. A head mounted microphone helps the
speech recognizer but is cumbersome to use. The long term solution is to mount the micro-
phone on the terminal itself and to use better speech recognition algorithms which are more

tolerant of noise and channel distortion.

Given the high-bandwidth network connection and the networked compute servers, it is
possible to off-load all user-level computation onto the network and thereby minimize the
required compute power on the terminal. This is taken a step further by moving all system

level computation onto the network as well. Therefore all user and system processes in the

15

InfoPad system are executed on remote compute servers. The terminal is simply a dumb

input-output terminal, reducing cost, weight and power consumption.

To support ubiquitous computing with a scalable solution, the system is designed with a
pico-cellular wireless architecture and uses very small cells about 10 meters in diameter.
The goal is for each cell to support up to 50 users simultaneously. This operates in an

indoor environment where it is possible to place antennas at very small intervals.

Given that the two input modalities are pen (4 kbits/s) and audio (64 kbits/s for 8-bit p-law
at 8 kHz), the uplink radio needs to support only 68 kbits/s per user. This may be imple-
mented using a standard Time Division Multiplexing (TDM) scheme. On the downlink,
however, text and graphics must also be supported, requiring a 1Mbit/sec downlink con-

nection. We use a direct sequence spread spectrum scheme on the downlink.

2.2. Wired Network Architecture

Several components, collectively called InfoNet, comprise the wired network software

architecture [Le95] (see Figure 2-2).

On the uplink, Gateway A receives data from the antenna for all InfoPad terminals within
Cell A. This data is made available to the Pad Server of each terminal on a unique Internet
socket. Each Pad Server, which may run on a compute server remote from the Gateway,
receives a single bit-stream from the Gateway and de-multiplexes this stream into pen and
audio data. This data is made available on unique Internet sockets, as illustrated in

Figure 2-3. The socket connections are encapsulated within the InfoNet API.

The Pen Server and Audio Server connect to the pen and audio ports of the Pad Server, and
clients may access pen and audio data via these servers. The Pen Server and Audio Server

are described in greater detail in Section 3.3 and Section 3.4 respectively.

On the downlink, the Pad Server receives audio data from the Audio Server on the same
Internet socket as it sends uplink audio data. The Pad Server also collects text/graphics data
and video data from the associated Servers. The Text/Graphics server is a modified X

server [Sche91] while the Video Server is a modified Continuous Media Server [Rowe92].

16

To Processes

Pad Server 1

From Antenna To Processes

Pad Server 2

for Pad 2

for Cell A

"

Cell Server A
To Processes

Pad Server N

for Pad N

Figure 2-2. The InfoPad Network (InfoNet) Architecture

The Pad Server multiplexes all downlink data into a single bit-stream which it sends to the

Gateway.

The Cell Server monitors the cell and facilitates handoff when a user moves between cells
[Le95].

2.3. Terminal Design
Two versions of the InfoPad terminal were built. Both use a Sharp LM64P80 LCD mono-
chrome display for text and graphics, and a Logitech Gazelle pen digitizer. Both also use
a Sharp 4-inch color active matrix display for video, and 8-bit ji-law audio at 8 kHz for
both uplink and downlink.

The architecture of the first version, called IPGraphics, is shown in Figure 2-4 [Chan94].
The Protocol Chip does all the multiplexing and de-multiplexing of data from the various

sources and to the various sinks. There is no common data bus in this architecture, so

17

Pen Server n

Audio Server n

To InfoPad

Pad Server n

Applications

Terminal
Text/Graphics

Server n

Video Server n

Figure 2-3. InfoPad Type Servers

—p| Video Screen

Radio Modem Video Decompression
Protocol Chip

! ¢ P

Pen Digitizer| | Speech Codec | [T/G Frame Buffer| | T/G Screen

Figure 2-4. Architecture of the IPGraphics Terminal

adding new devices is not possible. However the hardware complexity, power consump-

tion and cost are very low.

18

In IPGraphics, the Pen Subsystem consists of the digitizer, two commercial chips and some
custom circuitry on the Protocol Chip. The Subsystem is described in greater detail in
Section 2.4.

The architecture of the second version of the InfoPad terminal, called IPVideo, is shown

in Figure 2-5 [Doer96]. A low-power data bus is used for all data communications. All the

Transmit Chip

Radio

<_I_ Pen Digitizer

Speech Codec

' Receive Chip

PenAudio Chip

Low-Power Bus

Keyboard Port

T/G Chips |——| TG Screen

Video Chips |—— Video Screen

CPU

Figure 2-5. Architecture of the IPVideo Terminal

modaules talk to the bus in a priority scheme to avoid bus contention. The bus architecture
allows adding new I/O devices to the terminal without re-fabrication of existing custom

chips.

In IPVideo, the Pen Subsystem consists of the digitizer and some custom circuitry on the
PenAudio chip. The external components from IPGraphics are replaced by custom hard-

ware for lower power and smaller board area. The keyboard port and the entire Keyboard

19

Subsystem are very similar to their pen counterparts. The Pen and Keyboard Subsystems

are described in greater detail in Section 2.5.

20

2.4. Pen Subsystem on IPGraphics
The Pen Subsystem of the IPGraphics terminal is illustrated in Figure 2-6. Its function is

Pen Digitizer

l RS-232 serial byte stream at TTL levels

Maxim MAX220 Chip

l RS-232 serial byte stream at RS-232 levels

Fujitsu MC8868A UART Chip

_ Parallel byte stream at TTL levels

8
Protocol Chip
roT T T === X ————— e
: r—» Register Register Register Register ||
|
| ! ' Y I
|) I
I | Latch |
' |
|
| — 1 Push FIFO !
Control]
| <— Full Pop |
\ Pen Module Y,
To Transmitter Module

Figure 2-6. IPGraphics Pen Subsystem

to collect pen data from the digitizer, push it onto a FIFO, and signal the transmit chip to
send the data from the FIFO to the Pen Server over the radio link.

The pen digitizer provides data as a 9,600 bits/sec RS-232 serial byte stream at TTL signal
levels. The MAX220 chip converts TTL levels to RS-232 levels which the MC8868A chip

21

converts into a TTL 8-bit parallel data stream. This parallel stream is read by the Protocol
Chip. On-chip, the Pen Module converts the 8-bit parallel data stream to a 32-bit parallel
stream, which is pushed onto a 32-bit, 16-word FIFO. This FIFO is read by the transmitter

module on the Protocol Chip.

The interface to the Pen Module is illustrated in Table 2-1. SCAN, SCANIN and

Signal Name | Direction | Source/Destination | Comment

SCAN in o?f-chip -fo_r testing only]
SCANIN in off-chip for testing only

SCANOUT ([out off-chip for testing only

DR in UART Data Ready

RS2323Data | in UART Parallel data in

DRR out UART Data Ready Reset

FifoPush out FIFO Push 32-bit data onto FIFO
FifoPop in Transmitter module | Pop 32-bit data from FIFO
FifoOut out Transmitter module | Parallel Data Out

Table 2-1. Signal Pins on the Pen Module

SCANOUT are for scanpath testing only. DR tells the Pen Module that the UART has data
that is ready to be read. DRR tells the UART that the Pen Module has read the current data.
FifoPush tells the FIFO to read the current data. FifoPop is generated by the Transmitter
Module and pops data from the FIFO. FifoQut is the 32-bit data that is made available to
the Transmitter Module by the FIFO.

A photograph of the Protocol Chip is shown in Figure 2-7. The Pen Module is marked in
the upper right of the photograph.

2.5. Pen and Keyboard Subsystems on IPVideo

The Pen and Keyboard Subsystems on IPVideo are shown in Figure 2-8. The function of
the Pen Subsystem is to collect pen data from the digitizer and make it available to the
Transmit Chip on the InfoPad Low Power Bus. The Keyboard Subsystem performs a sim-

ilar function for keyboard data.

22

Figure 2-7. Protocol Chip Photograph
In IPVideo, the functionality of the MAX220 and the MC8868 A UART are combined into
an on-chip UART in the PenAudio chip. Two UARTS take serial data streams at 9,600 bits/

sec from the Pen Digitizer and 14,400 kbits/sec from the keyboard respectively and con-
verts them into 8 bit parallel streams. The parallel streams are pushed onto FIFOs which

are read by the Transmit Chip via the Low-Power Bus and the BusMaster module.

The BusMaster module is shown in Figure 2-9 and handles the communications protocol
with the bus. The bus uses a priority daisy chain scheme. Permission to write to the bus
may be requested and granted via the daisy chain. The Request module arbitrates between
requests from within the chip and requests from other chips. If the chip wants to control

the bus, chips lower in the priority queue must wait until it is serviced.

23

PenAudio Chip

Pen 8 8
Digitizer —# UART |/ FIFO />

BusMaster

Low-Power Bus

KeyBoard| ! UART £l FIFO |Ae

Figure 2-8. IPVideo Pen and Keyboard Subsystems

The Master module takes data from the Packetizer and puts it onto the bus. The packetizer
manages the FIFO associated with the appropriate input device and assembles this data into
packets. Keyboard data has 1-byte packets while pen data comes in 5-byte packets. The
Slave module allows the IPVideo terminal’s ARM 610 CPU to program all the registers on

the other modules inside the BusMaster Module.
For more details on each component in the BusMaster module, refer to [Doer96].

The on-chip UART is a modified version of a UART created by Brian Richards. A sche-
matic of the UART is shown in Figure 2-10. It takes a clock on the 16XCLOCK pin at 16
times the bit-rate of the incoming serial stream, just like commercial UART chips. This
clock is used to sample the serial stream coming in on the RXDATA pin and to detect
edges within this stream. Based on these edges, bit boundaries are determined and the
incoming bit sequence is detected. The bit sequence is made available in parallel on the
D[7:0] bus. VALIDDATA indicates that there was no parity error and FRAMEERROR

indicates that there was an error in detecting the stop bits in the serial stream.

24

InfoPad Low-Power Bus

|
|

|

|

Packetizer | From :

_

Data Keyboard :
|

|

|

|

|

Master |Address

—————
____________________ o
o -
|
|
Request |
|
|
: |
Dat Packetizer From Pen |
“Digitizer |
igitizer
Nlaster |Addrgss 8 :
|
|
|
. Pen |
Lo e e e e o e e e e e e e e e e e e e e e = = — 4

Figure 2-9. BusMaster Module for IPVideo Pen and Keyboard Subsystem

25

10t € LLNOTONAS

0 ¢ yatvisonAsLXaN

IVHAQ ITVALXEN

HONUZONINVYL

vivaarv,

Lwaqrava

= {0 €)BLVLITNVEILXEN

VLVOXUAVAHYELIXDNG | o § =3 2 wn VL VOX UL TNV

o
o€ 1 100™2NVHL

1ot lALVISAHVA. »

101 €1 ALVLEONAY to

ANVELA IV

vivaxy

9 M- NalLVia-

IN- WIMELOO=HOSSIIOHS “AUNLINULE
TIAOALES\ * NOLVHANAD ” LNHOAY)

1CINITDONAS

10 C) vavaino

Va4

»Be1=31wn

tosvivavany

Lasd

01

XUTBIIMYE

ANVRIAITVA

101 C1vivaLnNo

ONAS

*6ei" 2200

to*Civivani

1dsa

PESLE

. Clrasan
arva — ATINYE _
CruM 3 o
M 2% cotzana Mu:au
o330 ° w P toraaze
-<...<n’_ TV
I noo1ox91

1093a38

v

[CIFRFI

LWLV

3T
1

[CIZEE1

Ivavi——————C vavuxuy

TvLva
a

tore1a CHY

QUMOUN TMXY
& PIRE b 1 b L2 E w (2 UE b U D n..‘:l_ » zwts D exa{ D x4
1003430 torause 10v3u3p toesup tovausp 10v3usp toriuie torauwp tovIuwie
b P <] 2] D =3 =3 P _ =
Tvave Tviva Tva v 1vive Vv 1vavd tviva TVl
ha a a ha .Q

Figure 2-10. Schematic of UART Used in Pen and Keyboard Module
26

A photograph of the PenAudio Chip is shown in Figure 2-11. The Pen and Keyboard
| e T " iB,, L i

gﬁ.u ?'...._

TS Y o e e e

g (o *’WW
- ig LY

"
¥
|
1
]
f
i
e
LB &

Figure 2-11. PenAudio Chip Photograph

Module is marked in the right half of the photograph.

27

3 The User Interface Architecture

This chapter describes the User Interface Architecture and its major components. A new
architecture is required due to the unique nature of the InfoPad terminal’s input modalities.
The pen and audio data types are not standard on existing computers or terminals, and the
recognized-text data type is new. The new architecture supports these data types and the

transfer of data to and from applications.

The architecture takes advantage of the networked nature of the InfoPad system to provide
pen data, audio data, and handwriting and speech recognition services to applications. We
address mainly the input mechanisms of the user interface and assume standard output

devices (display and audio).

3.1. Need for a New Architecture

Most modern computers have a keyboard and mouse for user input. More recently, some
portable computers have added pen input, usually using this to replace rather than supple-
ment the keyboard and mouse. There are currently no UNIX and X based systems which
use pen input. There are also no commercial products which use audio input, with or with-

out pen, to replace the keyboard and mouse.

On UNIX-X systems, applications see the X server as the sole controlling entity that owns
the keyboard and mouse. There are two input event types, keyboard events and mouse
events, with other event types (such as pointer entry and pointer leaving events) derived
from these types. Correspondingly, there are two data types, ASCII characters and mouse
pixel coordinate pairs (with mouse button status). There are well-established conventions
for dealing with these event types and data types. Applications receive keyboard events as

ASCII character strings. Mouse events may be received as individual XEvent structures or

28

at a higher level of abstraction, depending on the widget set and other software libraries
used. Being network-aware, X supports distributed processing by allowing applications to
run on one machine and use the display from another seamlessly. This model of distribut-

ing computation is well suited to the InfoPad system.

However, the current X architecture does not allow easy addition of other input modalities.
There is no support for pen data, audio data, or recognized text. Nor is there support for
incorporating type-transcoders (such as recognizers). Another weakness is that all data
types come through a single server, the X server. This is adequate for low rate data sources
but for audio, at least 64 kbits per second flows through the server in each direction. This

can seriously impact delivery of other data types through the single-threaded server.

We need an architecture that separates the different types of data into independent streams
controlled by servers that have separate threads. In our implementation, we do not have
access to a multi-threaded operating system so each data type server runs as a separate pro-
cess. We also need each server to be transparently network-aware so that we can distribute
the computational overhead of the User Interface Architecture. This is especially true given

the computational demands of handwriting and speech recognizers.

3.2. High Level Description

The User Interface Architecture is shown in Figure 3-1. Its major components are the Pen
Server, Audio Server, handwriting recognizer, and speech recognizer. The Pen Server
reads a raw pen byte stream from the Pad Server, translates it into a more tractable form as
described in Section 3.3 below, and makes this data available to applications that require
pen-resolution data. It also emulates the mouse by generating X-windows mouse events so
that pointing functions are supported without applications having to access the Pen Server

directly.

The Audio Server reads a raw audio stream from the Pad Server, buffers it and makes it
available to applications. It also reads audio data from applications and sends this data to
the Pad Server. The Audio Server is described in greater detail in Section 3.4. The hand-

writing recognizer reads raw pen data from the Pen Server or from applications and gener-

29

Handwriting

Recognizer

Applications

Speech

Recognizer

Figure 3-1. InfoPad User Interface Architecture

ates recognized text or symbols as appropriate. The speech recognizer reads audio data
from the Audio Server and generates recognized text. Each recognizer pictured in the
Figure may be a collection of one or more specialized recognizers, as explained in

Section 3.5.1 below.

In Figure 3-1, raw data is shown going from the data type servers to the recognizers. How-
ever, there are situations where data is collected by the application itself and sent to a rec-
ognizer. This situation is described in greater detail in the chapters on recognition,

Chapter 4 and Chapter 5.

30

Each component communicates with the others through Applications Programming Inter-
faces (APIs) which encapsulate the Internet socket used for inter-process communication
and the locations of the other components. This allows the programmer to work at a level
of abstraction which does not require knowledge of socket communications nor knowledge

of the location of each component.

The use of Internet sockets for communications allows each component to run on a differ-
ent machine, thereby distributing the computation onto multiple processors. This allows
each component to run without interference due to CPU usage by other components. This
is particularly important since some components, such as handwriting and speech recog-
nizers, are compute-intensive and other components, such as the Audio Server, are very
sensitive to latency. Distributing the processes also allows services to be provided by alter-
native vendors if the communications protocols remain the same. It is therefore possible to
upgrade recognizers transparently without recompiling applications or other infrastructural

code.

Each component of the user interface has its own API. As far as possible, we make use of
existing standard APIs but in some cases we designed our own interfaces in the absence of

existing standards.

There are a few disadvantages to this architecture. Firstly, the communications overhead
of the Internet sockets adds about 2ms per hop [Nara96]. We could reduce latency by com-
bining all the type servers, including recognizers, into the Pad Server. This solution will
become practical if we use a multi-threaded operating system and powerful compute serv-

ers that can handle all the threads concurrently.

However the 2ms overhead is a small price to pay for the advantages we gain from multi-
server operation. There is a minimum latency below which the system does not benefit
from a further latency reduction. This lower latency limit is 30 msec, the screen refresh
period, and arises due to the fact that system feedback cannot be displayed sooner than 30
msec after the last screen update. There is also a maximum latency that can be tolerated,
which is determined by perceptual factors. Delays of less than 100 msec are not usually

noticed by users, and delays of greater than 200 msec are usually noticed.

31

Secondly, each read from and write to an Internet socket is a system call, which consumes
a significant amount of CPU time. Our network system’s main bottleneck is currently the
number of system calls it takes to run the system. However, this bottleneck will also go

away when we move to a multi-threaded operating system and use shared memory.

Thirdly, the distributed nature of the architecture requires that a database be maintained to
keep track of the location of each service. This database manager, called the Name Server,
maintains a list of currently available services and their locations on the Internet. The
Name Server is centralized and therefore does not scale well as the system grows. The solu-
tion to the scalability problem is to distribute the database, keeping the entries on Name

Servers that are local to each network cluster.

Lastly, each network hop consumes network bandwidth, which reduces the number of ter-
minals the system can support. However, with proper network design this should not be a

limiting factor.

Now that we have described the User Interface Architecture at a high level, we will

describe its individual components in detail.

3.3. Pen Server

The Pen Server controls access to a scarce resource, the pen digitizer port. It performs two
functions. Firstly, it emulates the mouse by sending pointer events to the X server in
screen-resolution coordinates, allowing the user to run standard X applications that use the
mouse for pointer input. Secondly, it makes pen-resolution pen data available to applica-
tions that require data with that resolution, such as handwriting recognizers. This section

describes the design and implementation of the Pen Server.

3.3.1. Mouse Emulation

The XIlib software library allows applications to send input events to the X server. These
events include keyboard events, pointer motion events and pointer button events. How-
ever, many X window managers handle pointer button events specially by trapping them
and grabbing further pointer button events directly from the mouse port. This effect pre-

vents the Pen Server from fully emulating the mouse since the X server effectively freezes

32

every time a mouse button is pressed. In order to completely implement the emulation, the
X extensions were used. The extensions allow the Pen Server to circumvent the limitations

of the Xlib interface by accessing the X server at a lower level.

There are three extensions that would work in this case, the XInput extension, the XTEST
extension, and the DEC-XTRAP extension. We use the DEC-XTRAP extension.

3.3.2. Pen-Resolution Data
The InfoPad Pen Server receives a raw pen byte stream from the pen digitizer via the radio
and InfoNet, without translation. This byte stream is interpreted by the Pen Server and pen

resolution data is made available to applications.

The current implementation of the InfoPad terminal uses a Logitech Gazelle digitizer

which provides a 5-byte packet (see Table 3-1) encoding pen position, button status and

MSB LSB
Byte No. | 7 6 5 4 3 2 1 0
— ————]
1 1 Near | Battery | Stat3 | Stat2 | Statl | Barrel | Tip
2 0 X6 |X5 X4 |X3 X2 |Xi X0
3 0 0 0 X11 |X10 | X9 |X8 X7
4 0 Y6 |YS5 Y4 |Y3 |Y2 |YI YO
5 0 0 0 YIi1 | Y10 | Y9 |Y8 Y7

Table 3-1. Pen Packet Structure for the Logitech Gazelle Digitizer

other information. Near indicates that the pen is near enough to the digitizer that the posi-
tion and button status bits are valid. Battery indicates pen battery status. Statl1-3 reflect
data bits set in hardware; they are currently set to 0. Barrel and Tip report the status of the
barrel and tip buttons respectively. X0-11 and Y0-11 are pen x and y coordinates respec-
tively. The origin for X and Y is at the top-right corner of the digitizer (and therefore of the

screen).

However, future versions of the terminal may use digitizer hardware from other vendors
so the Pen Server supports several commercial digitizers, including two types of Wacom

digitizer and the Scriptel digitizer. The choice of digitizer decoding is specified on the

33

command line. Support for other digitizers may be easily added with minor modifications

to the software.

Most pen digitizers provide data at a resolution of 200 lines/inch which results in about
2700 x 1900 pixels for the Gazelle digitizer, whereas the InfoPad terminal has a 640 x 480
pixel screen, about a factor of four difference. To support future versions of the digitizer
which might have even greater spatial resolution, and to provide digitizer independence,
the Pen Server provides pen data at 8 times the screen resolution. The translated pen packet
that is provided to applications therefore contains x and y coordinates in both pen and

screen resolution, pen button status, and a timestamp (see Figure 3-2). The coordinate ref-

typedef struct tablet_packet {

char head;

char buttons;

short x;

short y;

short xscreen;

short yscreen;

unsigned long timestamp;
} tablet_packet;

Figure 3-2. Pen Server Packet Structure

erence frame has its origin at the top-left corner of the screen, with (0,0) at pen resolution

exactly corresponding to (0,0) at screen resolution, independent of the digitizer used.

The Pen Server is the only place in the entire system, including both hardware and software
components, where knowledge of the pen digitizer vendor is required. Its interfaces at both
ends use protocols which are independent of digitizer vendor. Therefore upgrades to the

digitizer hardware require changes in the Pen Server and nowhere else.

3.3.3. General Operation
The Pen Server is started by the Pad Server when the user first turns the InfoPad terminal

on. It runs on a machine whose address is determined via the InfoNet Name Server.

On start-up, the Pen Server establishes a connection to the X server and the DEC-XTRAP

extension, and establishes a connection to the Pad Server, which is part of the InfoNet soft-

34

ware (see section Section 2.2. on page 16). It creates a pair of Internet sockets, one for data
and one for control, which are advertised via the Name Server. Applications may obtain
pen-resolution data via these sockets. There is no predefined limit to the number of appli-
cations that may concurrently connect to the Pen Server and receive pen-resolution data.
Although allowing multiple clients to access pen data without security may seem danger-
ous, it allows us to monitor the performance of the Pen Server and also allows the hand-
writing recognizer to snoop on the pen data if it chooses to read this data directly from the

Pen Server rather than relying on the application to provide it.

The pen byte stream is read from the Pad Server and the necessary translations and X oper-
ations are performed. Pen resolution data is calculated but not stored since there are no
client connections from applications. Once an application connects to the Pen Server,
translated pen packets are sent to the application. Each application uses the Pen Server’s
API (see Section 3.3.5) which allows the application to establish and close connections,
pause and resume data transfer, and control the type of data sent. For example, an applica-
tion may prefer to receive only pen-down packets, whereas another application may prefer
pen-down packets as well as the first pen-up packet after pen-down, allowing detection of
pen lift events. Since there is no standard for such an interface, we designed our own API

that suited our needs.

The Gazelle digitizer provides pen data at about 100 pixels/sec, much faster than the rate
of a typical mouse. This is acceptable for handwriting recognition and other applications
requiring pen-resolution data, but the high data rate can overwhelm the X server. There-
fore, the Pen Server temporally sub-samples the events it sends to the X server. This has
the effect of making X-aware applications receive exactly as many pointer events as
though they are being driven by a mouse. However this reduced resolution can hurt hand-
writing recognition accuracy. Applications such as handwriting recognizers which cannot
tolerate sub-sampled data connect directly to the Pen Server over Internet sockets via its

API to obtain full-resolution data.

35

3.3.4. Command Line Options
Several command-line options allow the InfoNet system or other calling program to cus-

tomize the Pen Server on system start-up. These options allow the user to specify:

* display screen to use for X events (defaults to the UNIX XDISPLAY environment vari-
able

* ID of the current pad: the Pen Server to connects to this terminal via InfoNet
* Internet port number on which to make pen-resolution data available

e device name of the serial port (such as /dev/ttya) from which to read raw pen data
instead of InfoNet

* tablet type: allows selection from Logitech Gazelle, Wacom SD-510, Wacom UD-0607
or Scriptel tablet

For more details, refer to the manual page in the InfoPad system documentation.

3.3.5. Applications Programming Interface

Applications that want access to pen data can use the C language API. This section lists
and explains the functions that comprise this simple interface. In the text below, penStatus
is an enumerated type that can take on values PS_OK and PS_ERROR.

PS_OpenConnection() opens a connection to the Pen Server that services this InfoPad ter-
minal and returns a penConnection structure that is used for all further references to the

Pen Server:

penConnection *PS_OpenConnection (char *host, int port,
int padlID)

If an error occurs, an error message is printed and NULL is returned. If padID is given,
that number is used to query the Name Server to determine the location of the Pen Server.

If padID is -1, then host and port are used instead.

PS_CloseConnection() closes the connection to the Pen Server and frees all memory and
state associated with the penConnection object:
penStatus PS_CloseConnection (penConnection *conn)

PS_GetFD() returns an integer file descriptor for the pen data socket:

36

int PS_GetFd (penConnection *conn)

The file descriptor is used by the application to determine whether pen data is waiting to

be read. This is done via the select() system call.

After calling PS_OpenConnection(), the application must call PS_SendStart() to signal the

Pen Server to start sending pen data:

penStatus PS_SendStart (penConnection *conn)

PS_SendStop() tells the Pen Server to suspend sending data to the application. However it

does not flush the data connection:

penStatus PS_SendStop (penConnection *conn)

PS_GetPacket() reads a single pen packet that was sent by the Pen Server:

penStatus PS_GetPacket (penConnection *conn,
int *x, int *y, int *bl, int *b2,
int *xscreen, int *yscreen, int timestamp)
PS_Flush() tells the Pen Server to suspend sending data to the application and also flushes
the pen data connection so that a subsequent call to PS_SendStart() followed by calls to

PS_GetPacket will not return obsolete data:

penStatus PS_Flush (penConnection *conn)

There are also other functions which tell the Pen Server whether to send pen data for pen-

up strokes.

3.3.6. Pen Support for X Workstations

The Pen Server can also run independently of the InfoPad system. This allows software
development to proceed while the InfoNet system and the InfoPad terminal itself are not
available. In this case, the Pen Server does not connect to the InfoNet Pad Server but rather
to the serial port of the workstation in order to read pen data. This requires that a pen dig-

itizer of one of the supported types be connected to that port. It is assumed that the digitizer
sends data at 9600 baud.

This mode of operation is selected via a command line option.

37

3.4. Audio Server

The InfoPad Audio Server controls access to the terminal’s audio input and output ports.
On the uplink, it collects 8-bit p-law audio data from the InfoPad terminal and maintains
a buffer from which applications can read audio data. On the downlink, it accepts 8-bit -
law data from applications, mixes the data from all incoming streams linearly and sends it
to the terminal. The downlink policy is to mix the incoming audio streams rather than a
preemptive scheme. This is due to the need for all applications to be able to concurrently
play sounds on the speaker. For example, if a video player application is currently playing
audio continuously, another application that wants to play a warning beep must be able to

play the beep in a timely fashion without interrupting the video player’s audio stream.

Since dropouts and other impairments to an audio stream are very audible, care must be
taken to ensure the integrity of each audio stream. Therefore, it is essential that audio data
be buffered in the Audio Server. The Audio Server maintains a randomly-accessible 16-
second buffer for each of the uplink and downlink, which seems sufficient for all of the

applications we have built so far.

3.4.1. AudioFile Compatibility

The InfoPad Audio Server is based on AudioFile [Leve93], a public-domain software
package that provides network-transparent access to the audio ports of standard UNIX
workstations. Its operation is very similar to that of the X server. In X, the X server controls
access to the screen, and applications may use the screen resource only via the Xlib inter-
face. Similarly, AudioFile takes control of the audio input and output ports of the worksta-

tion and applications may access these resources only through AudioFile.

There is a well-defined, standard API for AudioFile. The InfoPad Audio Server uses the
same API library. This allows all applications that are AudioFile compatible to run on the
InfoPad terminal without modification or even recompiling. Some important applications

that support AudioFile include the MBone videoconferencing tools [MB095].

Using a standard, widely supported interface also allows software development to proceed

before the InfoNet software and InfoPad terminal are available. Application developers

38

need only run the standard AudioFile server on their workstations to be able to test their

software.

3.4.2. Enhancements Over AudioFile
Internally, the Audio Server differs from AudioFile in several ways. The device-dependent
code that reads audio data connects to the InfoNet Pad Server rather than the workstation’s

audio hardware port. Writing of audio data also goes through the Pad Server.

In AudioFile, timing consistency is maintained by counting the number of bytes read from
the audio hardware. There is therefore a common timebase for uplink and downlink. But
in the InfoPad, the unreliable radio link means that uplink data may frequently be lost,
making this method of timing measurement unreliable. In the Audio Server a separate
timing mechanism based on UNIX time is used for the downlink. The uplink and downlink

timebases are therefore independent.

The InfoPad terminal’s audio chip maintains a small first-in-first-out (FIFO) buffer for the
uplink and another for the downlink. The uplink buffer stores 8 bytes (1 ms) of audio data
while the downlink buffer stores 128 bytes (16 ms) of audio data. It is necessary to keep
these buffers small to satisfy telephone or other applications that require a low-latency
audio loop. The small size of the downlink buffer means that data must be sent to the audio
chip at a carefully measured rate to avoid overflowing or underflowing the buffer. This rate
control is done by the Audio Server. It sends audio data on the downlink in 80-byte packets
at intervals of 10 ms. Occasionally, the buffer may indeed underflow if the Audio Server
swaps out; due to the rate control on the downlink the effect is only a single click. This
underflow problem can be avoided in future by using a real-time operating system and by

pinning the Audio Server to main memory.

The Audio Server connects to the InfoNet Pad Server on one side and to applications on
the other side via Internet sockets; it is truly networked. It can run on any Internet-enabled
machine whereas the traditional AudioFile implementation requires that the server run on

the physical machine upon which the audio hardware resides.

39

3.5. Handwriting and Speech Recognizers

In the sections above, the tasks of the Pen Server and Audio Server are shown to be very
well defined. However the tasks of the handwriting and speech recognizers are not as well
defined. Loosely speaking, they provide applications with ASCII text which may be used
for commands and control or for data entry. However this text is generated from the rec-
ognizers’ interpretations of handwritten or spoken input and these interpretations may not
be accurate. This section addresses the role of handwriting and speech recognition in the
InfoPad system and leaves detailed discussion of the actual recognizer designs and imple-

mentations to Chapter 4 and Chapter 5 respectively.

3.5.1. Handwriting Recognizer

The handwriting recognizer’s function is to replace the keyboard for text entry and for
single-key commands. This is a service which all applications requiring textual entry
would use. However, there are several different kinds of recognition services which appli-

cations may want from the handwriting recognizer.

For mass text entry, a recognizer with a large vocabulary and a grammar would be ideal.
Users would write sentences in a natural or artificial language, such as English or C++. The
recognizer would automatically check grammar and spelling. For mass text entry in

English, cursive handwriting may be used since cursive recognition requires a dictionary.

For file names or web addresses, a recognizer which does not impose a grammar or dictio-
nary is needed. The user prints each word and the recognizer sends the recognized text to
the application. In this case, the recognizer would be independent of the application since

there is no application-dependent grammar or vocabulary.

Single-character recognition and gesture recognition have similar requirements. Single
characters and gestures allow the user to enter macro commands quickly and easily. In this
case, the screen location of the drawn character or gesture must also be sent to the applica-
tion, together with a ASCII string that represents the character or symbol so that the appli-
cation can use location information to process the recognized gesture. For example, if the
gesture indicates erasure of a window on the screen, location information can identify the

appropriate window for erasure.

40

Using the InfoPad architecture, the application may need to access several recognizers con-
currently, one for print and one for gestures in the case of an e-mail application. The API
allows the applications programmer to specify the vocabulary and grammar he requires so
that the recognizer service can provide the appropriate kind of recognition service. The
application may therefore use several recognizers concurrently, each performing a differ-

ent service. As described in Chapter 4, they can all have the same API.

In the next section, we will see that the speech recognizer can perform some of the func-
tions described above. However, it is necessary that all functionality be supported without
speech recognition because speech recognizers usually perform inadequately in noisy
environments. There are also many situations where the user must be quiet and therefore

cannot speak to the terminal.

3.5.2. Speech Recognizer

The system is usable without speech recognition, since text and commands may be entered
using the handwriting recognizer. However the speech recognizer adds a new dimension
to the user interface since it is not spatially specific. The speech recognizer does not require
any kind of navigation, which means that issuing a command using speech need not inter-
fere with the current task. As in handwriting recognition, there are several kinds of services

the speech recognizer can provide.

The speech recognizer may be used for dictation or for commands. In dictation, which
includes mass text entry such as book writing and programming, the situation is similar to
that of handwriting recognition in that a grammar and vocabulary are required. This gram-
mar and vocabulary may be application-dependent. But in the more common case of gen-

eral dictation, the vocabulary and grammar are application-independent.

For commands, the grammar is much more restrictive and therefore simpler, although the
vocabulary may be large for some applications. As in handwriting recognition, the vocab-

ulary is application-dependent.

4]

Unlike handwriting, speech recognition is not appropriate for specifying data which does
not have a predefined vocabulary. Spelling out a word verbally takes much more time than

writing it, and is therefore less efficient.

Screen navigation using speech recognition may also be inefficient. If the user intends to
merely jump from window to window, speech recognition may be used to identify the
name of the destination window provided the windows have unique names, or that the user
is satisfied with relative rather than absolute moves. However using the pen would be more
efficient so we do not support speech recognition based screen navigation in the InfoPad

system.

3.5.3. Servers Versus Software Libraries

From the foregoing, it is clear that each application may require more than one recognition
service. However, if each application were to have its own dedicated recognizer for each
type of recognition service it requires, there will be a large number of recognizers in the
system, consuming system resources. If the recognizers were indeed dedicated, there
would be no functional difference if each recognizer were compiled into that application.
The main disadvantage of compiling the recognizer into the application is that the compu-
tational load of the recognizer would then run locally wherever the application is running.
This is not a problem if the application is run on a fast compute server or if the recognizer

is sufficiently lightweight, but can be a consideration in the more general case.

Compiling the recognizers into each application would make applications very large. This
is wasteful especially since at any one time only one application would be using recogni-
tion services anyway. Therefore, recognition service for a single user should be provided
by a single remote recognition server rather than by compiling recognizers into applica-
tions. Moreover, these servers can be upgraded by service providers as technology
improves and better recognizers become available, and may be shared between users in
addition to sharing among applications. This is especially true for dictation recognizers,
which are large and have high computational demands yet do not require customization for

each application.

42

4 Handwriting Recognition

In this chapter we explore the handwriting recognition needs of the InfoPad system and
describe the kinds of handwriting recognizers required to meet these needs. We then
describe models for delivering recognized text and an on-line handwritten print recognizer
that was designed and implemented as part of this research effort and deployed in the sys-

tem.

In the following discussion we concentrate on handprint recognition and not cursive rec-
ognition. We further specialize to the recognition of isolated printed words rather than sen-
tences since this kind of handwriting recognition is required in the InfoPad system, as
explained in Section 4.3 below. All the systems described in this chapter perform on-line
handwriting recognition; that is, they receive a sequence of pixels from a pen digitizer
while the user is writing. This is distinct from off-line recognition, in which scanned

images or facsimiles of handwritten words are processed.

4.1. Previous Work

In this section we review some of the previous work reported in the handwriting recogni-
tion literature. We do not have recognition accuracy figures for some of these recognizers

since their product literature does not report these statistics.

4.1.1. GO Corporation

GO Corporation built a handprint recognizer as part of their PenPoint operating system.
The handprint engine recognizes mixed upper and lowercase letters, numerals, and punc-
tuation. It handles both boxed and lined handwriting and tolerates characters that overlap,

touch or share strokes, independently of stroke order and direction.

43

This recognizer achieves 90-97% character level accuracy [Carr91]. Character recognition
is performed by comparing character shapes against a set of character prototypes for each
character. Users may train the prototypes as well as add new prototypes via a brief training
session. A 100,000-word dictionary, standard punctuation rules and application-supplied

word lists help improve word and sentence recognition accuracy.

4.1.2. IBM

Researchers at the IBM T. J. Watson Research Center built an unconstrained handwriting
recognizer using a technique called Parallel Dynamic Programming [Fuji93]. A preproces-
sor breaks up incoming words into sub-character elements which are then used for recog-
nizing words from a prescribed list. Letter models are constructed from these sub-character

units and an alignment model bridges characters and words.

This recognizer achieves a writer-independent word recognition accuracy of 89.7% based
on a vocabulary of 2171 words. This technique works well when a dictionary is used but
may not work well for applications without a dictionary since character segmentation is not
done. Without segmentation, the search space explodes since the recognizer receives no

hints to help it determine character boundaries.

4.1.3. AT&T

Using Time Delay Neural Networks, researchers at AT&T Bell Laboratories built a writer
independent and writer adaptive character recognizer [Guyo92]. Classical back-propaga-
tion training for writer independence was combined with postprocessing which allows

adaptation to unique writing styles and learning on new symbols.

Input characters are first re-sampled, centered and re-scaled to remove time and space dis-
tortions. A set of 7 geometrical features are calculated for each pixel. These features are
designed to capture local topological features along the curve of the character. The features

are fed into a neural network that is designed to extract more complex, global features.

The recognition accuracy achieved was 97.2% without writer adaptation. With adaptation,

this figure improved to more than 98%.

4.14.CIC

The Communications Intelligence Corporation sells a handprinted character recognizer
which does not require user training yet adapts to the user. It is compatible with Windows
for Pen and PenDos, and supports several languages including European languages and
Japanese. The product, called Handwriter, allows gesture-based editing and includes a sig-
nature verification feature to allow secure access to data. Several PDAs, including the
Symbol PPT 4600 and some Fujitsu models, bundle this product. Handwriter can also be
purchased as a stand-alone product running under Windows, OS/2 or PenDOS. It includes
a 6” x 9” graphics tablet, Pen Extensions for Windows or OS/2, and some pen-enabled

applications.

4.1.5. Paragraph

Paragraph International’s CalliGrapher [Par96] recognizes printed, unconstrained cursive,
and mixed handwriting, and is shipped with the Newton MessagePad. It benefits from user
training and can recognize arbitrary sequences of symbols, including word fragments. Cur-

rently, CalliGrapher supports, English, French and German handwriting.

4.1.6. Apple

A recent handprint recognizer from Apple uses neural networks to estimate the probability
that the handwritten input matches each character [Lyon96]. A number of innovations
make this recognizer interesting. It uses negative training to reduce the probability of
incorrect segmentation during the early stages of recognition, improving word recognition
accuracy. The handwriting data in the training set is warped in several ways and the warped
versions are used to train the neural net, improving the generality of the net. Under-repre-
sented data in the training set is passed through the net more than once during training (in
the warped instantiations) so that infrequently occurring examples are less undertrained.
The output error used in running the back-propagation algorithm to train the net is normal-
ized by reducing the back-propagated error for classifier outputs corresponding to the
incorrect classes relative to the correct class. This helps deal with the situation where the
recognizer erroneously eliminates an alternative because one character has almost zero

probability due to being a poor alternative choice.

45

4.2. Characteristics of Handwriting Recognizers

There are several characteristics of handwriting recognizers that may be traded off against
each other to produce the best performance for a given application. In this section we
examine these characteristics and the issues surrounding handprint recognizers, including

methods of using these characteristics to improve recognition accuracy.

4.2.1. Vocabulary

The imposition of a vocabulary on a handwriting recognizer helps reduce the search space
and thereby reduces the recognition error rate. For example, if an unconstrained word-
input task has an average word length of 5 characters and the error rate is 10% for each
character, the probability of getting the word correct is 59% and the search space is 11.9
million lowercase words. But limiting recognition to a vocabulary of 60,000 words reduces
the search space by a factor of 200. The reduction in the size of the search space greatly
reduces the processing requirements, in this case by a factor of 200. Recognition accuracy

improves as well since there are fewer legal candidates.

Applications can further constrain the search space by specifying the kind of input that the
recognizer can expect. Using a recognizer that recognizes cursive, print and gestures at the
same time will not be as accurate nor as fast as using separate recognizers for each input
type. The best-case scenario is where the application knows which kind of input it is get-
ting and uses a recognizer tailored specifically for this kind of input. Another possibility is
to send the input to all three recognizers and use confidence levels returned by the recog-

nizers to choose the recognized result.

4.2.2. Grammar
Imposing a grammar on a sentence recognizer allows improved recognition accuracy. The
recognition task in the InfoPad system involves word recognition and not sentence recog-

nition, so using a grammar may not improve performance.

4.2.3. Constrained Writing Area
If the writing area were constrained, for example with ruled horizontal lines and tick

marks, or with boxes, the recognizer would be able to segment the characters and estimate

46

their size more easily, aiding the recognition process. Constraining the writing area also
makes users write more neatly and allows corrections to be done locally on a character-by-

character basis rather than by re-writing the entire word.

4.2.4. Spatial Locality

The fact that handwritten input contains absolute spatial information means that context-
dependent recognition can take place. By noting that input comes from different windows
or from different regions in the same window the recognizer can determine the kind of rec-

ognition service required and also which application should received recognized text.

One example application of this feature is in correcting misrecognized handwriting. The
user writes on an entry widget and electronic ink provides user feedback. Then the ink is
erased and replaced by recognized text. If the user writes on top of any recognized charac-
ter, the captured writing can be interpreted as a single character that replaces the recog-
nized character beneath it. Alternatively, the new input can be interpreted as a gesture and

sent to a gesture recognizer.

Another example is the situation where there is a page for handwritten cursive entry and a
single entry widget for entry of a file name via handprinting, both on the same screen.
Using spatial locality, the recognizer can tell which kind of handwriting to expect. It can

use a more task-specific algorithm and thereby achieve better accuracy.

4.2.5. Digitizer Resolution

The Logitech Gazelle digitizer used in the InfoPad system generates about 100 points/sec
at a resolution of about 200 points/inch, although it is capable of 377 points/sec at 414
lines/inch. It is commonly accepted that in order to capture the details of normal writing,
at least 200 points/inch and 100 points/sec are required [Tapp90]. However there is evi-
dence that these requirements are too tight. Some commercial PDAs such as the Newton
MessagePad successfully use digitizers with much lower spatial and temporal resolution.
As handwriting recognition technology improves the need for high resolution digitizers
will diminish. The lower limit of digitizer resolution is the screen resolution. This is true

since user feedback is at screen resolution.

47

4.2.6. Available Computational Power

Increasing the computational resources available to run the handwriting recognizer allows
the use of more sophisticated algorithms. For example, multi-algorithm recognition with
voting can be used. We can also do less pruning, thereby reducing the probability of elim-
inating the correct answer early in the recognition process. With greater computational
resources the recognizer will interfere less with other applications running on the same pro-

cessor and will return its results sooner, improving user response times.

4.3. Recognition Requirements of the InfoPad

In the InfoPad system, handwriting recognition is used to specify file names, e-mail
addresses and Universal Resource Locators (URLSs) for the World Wide Web (WWW). It
is not primarily intended for mass text entry. Recognition of drawn gestures or geometrical

objects are also interesting capabilities that can be useful for the InfoPad.

In the sections below, we describe the handwriting recognition requirements of the InfoPad

system and the kinds of recognizers needed to support these capabilities.

4.3.1. Non-Dictionary Words

File names, e-mail addresses and URLs are examples of non-dictionary words. It is not
possible to limit the search space by specifying a finite vocabulary which contains all legal
words within this set. Also, grammar may not be used to improve recognition accuracy. A
character-based recognizer rather than a word-based recognizer is therefore required. This
recognizer must take the form of a handprint recognizer rather than a cursive recognizer

since cursive recognition requires a vocabulary.

4.3.2. Mass Text Entry

Since the InfoPad is not meant primarily for mass text entry, it is not essential to support
this type of data entry. Nevertheless the InfoPad can support mass text entry if it had access
to cursive handwriting recognition. Cursive recognition requires a vocabulary and would
benefit from a grammar. A cursive recognizer would also be useful in cases where the user

wants to send e-mail as recognizcd text rather than electronic ink.

48

4.3.3. Gestures
Gesture recognition has proven to be very useful in the Windows for Pen, PenPoint, and
Newton OS environments. They are useful for short commands for applications as well as

for correcting and annotating handwritten documents.

A gesture recognizer may be implemented as an independent recognizer or as part of a
hand-print recognizer. Due to spatial locality, it is often possible for applications to deter-
mine whether handwritten input is meant to be a gesture or a printed character, so it is pref-

erable to have a separate gesture recognizer.

4.3.4. Geometric Shapes

Many applications, including the circuit schematic recognizer described in Chapter 6,
require recognition of drawn shapes. Other such applications include computer aided
design of various kinds, including architectural drawings and clothing. To support these
applications, a geometric object recognizer would be very useful. However, it would need
to be highly customizable so that applications can easily specify the primitives to be rec-

ognized.

Alternatively, a library of recognition routines could be provided and applications can use

these routines to create their own geometric object recognition engines.

4.4. Models for Providing Recognition Services
In this section, we discuss models for each facet of providing handwriting recognition ser-
vices. They are the user interaction model, the programming model, and the service provi-

sion model.

4.4.1. User Interaction Model

The user interaction model describes the modes of interaction between the user and the
handwriting recognizer. There are several alternatives. One model is for the user to write
on a single space on the screen, with recognized text going automatically to the correct
application. Another is for all handwritten input to be local to the application. That is, all
characters are written in writing areas that belong explicitly to individual applications. The

user interaction model also covers correction mechanisms. One model is for the user to per-

49

form corrections in a separate mode, while another model has the user write on top of the
mis-recognized character. The recognizer detects the location of the new input and behaves

accordingly.

4.4.2. Programming Model

The programming model defines the interface into the handwriting recognizer from the
application programmer’s perspective. There is a range of choices available in selecting the
tightness of the coupling between the recognizer and the application. For example, some
applications may not want to be aware of recognition at all, preferring to have the recog-
nizer run separately and emulate a keyboard. Other applications may record pen strokes
themselves, calling the recognizer using their own application-specific parameters. In this

section, we explore some of these choices and their consequences for implementation.

4.4.2.1. Uncoupled Applications

Some applications, especially existing applications, should not need to be cognizant of the
handwriting recognizer. They receive user input as though from a keyboard and mouse.
Such applications can be supported by a stand-alone widget application in which the user
writes on a special writing canvas. On recognition, this widget sends recognized text to the
application with current recognition focus via the windowing system. Handwriting recog-
nition focus may be determined by keeping track of the most recently active window or by

other possibly more explicit means.

One disadvantage of this approach is that the application cannot tailor the recognizer to its
own needs, so it may be necessary to give the widget separate modes for each application.
This is cumbersome since the widget must be augmented for each additional application
supported, unless the application comes with its own customized widget. However, this sit-
uation is not likely to arise often since all the kinds of applications expected on the InfoPad

require the same print recognition service.

Another disadvantage of this approach is that extra screen area, always precious on a small
portable terminal, is consumed. This is especially serious if separate widgets are needed

for each application.

50

One major advantage of this approach is that the stand-alone widget can run on any remote
machine using the X-Window system as a display mechanism, thereby supporting distrib-
uted processing. Another advantage is that the recognizer can be transparently replaced

with a better one without modifying any of the applications.

4.4.2.2. Loosely Coupled Applications

An application may prefer a more customizable interface, where the programmer can
design all user interaction himself. This can be supported by providing a set of widgets
which the programmer uses in place of regular entry widgets within his application. Only
minimal changes to his code are needed. He can also control some of the recognizer’s
parameters as necessary. However, he may not have access to all of the recognizer’s inter-

nal state and functionality since the widget encapsulates the recognizer’s details.

4.4.2.3. Tightly Coupled Applications

In some situations, an application may prefer to have complete control of the recognizer’s
parameters, including capturing ink itself and sending the ink to the recognition engine.
The ink may represent print, cursive, gestures or drawn items. It is up to the application to
decide which type of recognition is required and to access the recognizer with the appro-
priate parameters to perform the job. A comprehensive API into the recognizer is required,
possibly including access to recognition confidence levels, the N best candidates, and

vocabulary words.

4.4.3. Service Provision Model
The service provision model describes how and where service is provided. Service may be
provided by a separate process running locally (or equivalently a separate thread), as a sep-

arate process running remotely, or as part of the same process.

As described in Section 3.5.3. on page 42, it is possible to run the recognizer remotely and
to communicate with it using Internet sockets. This model of providing service is very
powerful. It allows use of only one recognition engine per user rather than one recognizer

per application. This engine can be time-shared between applications and even between

51

users. The recognition server may be upgraded transparently to provide the best service,

and may be implemented on general purpose or special hardware.

Remote execution is the best service model in most cases, but there are some situations
where it is worthwhile to compile the recognizer into the application. Such a situation
arises when the recognizer is tightly coupled with the application and where the recognizer
should not be shared, such as in batch recognition of pre-recorded speech, or where net-

work access is expensive, or where the recognizer is highly customized for the application.

4.5. Properties of Printed Handwriting

In recognizing printed handwriting, we have to take account of several of its unique prop-
erties. When dotting i’s and j’s, and when crossing t’s, writers often delay the stroke until
after the entire word has been written. This delayed stroke is therefore out of sequence in
the input stream and the recognizer must take care of this. This is especially common in
cursive handwriting. One solution for print recognition is to sort all the handwritten strokes
from left to right. Another is to look for strokes that are clearly out of sequence (based on
tick marks or boxes in the writing area) and move these strokes backwards in the sequence
to immediately follow the other strokes in the same box. The difference is that in one case,

all strokes are sorted whereas in the other case only delayed strokes are used.

There are several characters which have similar uppercase and lowercase representations;
the only difference is size. The recognizer must therefore have a mechanism to determine
which case the writer is using. A commonly used solution is to constrain the user to write
between lines and to use the line pitch as a hint. A related problem is that some characters
such as g and j have descenders, so the lower baseline upon which the user writes must be

above the lower boundary of the window to allow space for descenders.

Many characters have more than one written representation. For example, the letter r can
be written in two ways (see Chapter 8). Even for the same representation of a particular
character, there may be several ways of ordering or even writing the strokes. For example,
in E the four strokes may be written in any order. In f, the vertical stroke may be written

top to bottom or bottom to top.

52

Many users write words using characters that overlap their neighbors. Others write in a
“run-on” fashion where they do not pick the pen up between characters. The recognizer
therefore cannot easily use x coordinate separation to segment characters. One solution is
to use an algorithm that does not require pre-segmentation. Another is to use boxes or tick

marks along the lower baseline.

There are a few characters which cannot be differentiated without context. The numeral 0
and the letter O are written identically, and so are the numeral 1 and the letter 1. The appli-
cation must therefore tell the recognizer the context so that it can differentiate between

these characters.

Variation between writers can take several forms. Left handed writers sometimes write
strokes in the opposite direction to that of right handed writers. For example, a right handed
writer crosses a t from left to right whereas a left handed writer crosses it from right to left.
Some writers slant their characters to the left, some to the right, and some not at all. Some

do not have a consistent slant. Writing speed varies among writers as well.

Visual feedback affects the quality of printed handwriting. If the application does not gen-
erate electronic ink to follow the pen tip on the screen, the user is more sloppy. Writing on

lines or in boxes also usually results in neater handwriting.

4.6. HMM Based Handwriting Recognition

A handwriting recognition algorithm must take into account the characteristics of hand-
writing described in the previous section. As illustrated in Figure 4-1, HMM based recog-
nition is done in several steps. Some of these steps may be omitted in some
implementations. The first step is preprocessing raw handwriting. This includes interpolat-
ing, sub-sampling, and normalizing the raw data to eliminate dependence on writing speed

and digitizer resolution.

Segmentation is done next based on information from the geometry of the writing area. It
is often done in several alternative ways. Each alternative segmentation is passed to the

next stage for further processing and eventual elimination of incorrect segmentations. Fea-

53

Raw Handwriting » Pre-process

!

Geometrical Information — ! Segment

!

Extract
Features

!

Viterbi
Decoding

!

Post
Processing

HMM Parameters ——— p»

Recognized Results ¢

Figure 4-1. High-Level Description of a HMM Based Handwriting Recognizer

tures may then be extracted and passed to the Viterbi decoding engine, which uses HMM

parameters to generate recognition results for each segmentation.

Post processing involves choosing the best answer from the alternatives provided by the

Viterbi decoder, including disambiguating uppercase and lowercase characters.

4.6.1. Hidden Markov Modeling
In this section, we describe the hidden Markov model in general terms. This modeling
technique is used in the handwriting recognizer described in Section 4.7 and in both the

speech recognizers described in Chapter 5.

Hidden Markov modeling is used to model a statistical process which has a finite number
of states. The process transitions from one state to another at each cycle; the destination (or
successor) state is determined probabilistically and depends on the current state only. It

does not depend on the states before the current state. That is, the probabilistic state process

54

is a Markov process and each state transition is independent of the previous state transition.
Each state generates an output from a finite set of observations; the actual output produced
depends probabilistically on the current state. In some applications of the hidden Markov
model, the output depends on both the current and successor states. But in the recognizers
described in this thesis the output depends only on the current state. The model is called
“hidden” because we can observe only the outputs of the Markov process and not the states

themselves.

The model has many parameters. For each transition between states, the transition proba-

bility:

Equation 4-1. Aij = P(s, . = Jjls, =1)

is the probability that the successor state to state i is state j. There is therefore a transition
probability associated with every pair of states. The current state is a valid successor to
itself if the process can stay in the same state for more than one cycle. This allows implicit

time-duration modeling.

The output probability:

Equation 4-2. B,(0,)=P(0 = O,|s, = i)
is the probability that the observed output O, is generated if the process is currently in state

i. There is therefore an output probability distribution associated with every state, and each
distribution has a probability value for every valid output observation value. In some sys-
tems, this output can be continuous rather than discrete, which results in probability distri-

butions that are continuous.

The probability that any given sequence of observations O = {0,...0;} matches any

sequence of states S = {s,...s7} for T cycles is:

T
Equation 4-3. P(0|S) = B(O)[] A;,_5B;,(0)
t=2
Equation 4-3 can be used to determine the most probable state sequence via Bayes’ Rule:

S5

P(O[S)P(S)
P(0)

Since we are looking for MAX(P(S|0)) over all state sequences S and P(0O) is indepen-

Equation 4-4. P(S|0) =

dent of S, the latter term is irrelevant to the evaluation of the MAX operation and may be

ignored. Therefore, maximizing Equation 4-3 is equivalent to maximizing Equation 4-5:
T-1

Equation 4-5. P= n(s))B(0)) [] A;, B, (0;41)

t=1

where 7(s,) encapsulates P(S) and is the a priori probability that the state s, is at the start

of a sequence. This equation may be evaluated inductively using the forward algorithm:

Equation 4-6. o, (i) = m(i)B;(0,;)

Equation 4-7. a,(j) = [Zar—l(i)Aij]Bj(ot)
i

Equation 4-8. P = or(sg)

where s is the final state in the sequence S. The forward algorithm gives us the probability

of that state sequence, which is adequate for determining the most probable single charac-

ter. But for word recognition, this gives the probability that sy is the final state in the

sequence but does not allow us to trace back the path through the sequence and thereby
determine the most probable character sequence. We therefore make the Viterbi assump-

tion:

Equation 4-9. v,(J) = [MAX(v,_1A;)1B;(0,)
to replace Equation 4-7. Since we are taking the most likely path, we are able to store point-
ers back along this path and trace through it after the final state is processed to determine

the most likely character sequence.

The transition probabilities {A;;} and the output probability density functions {B;} are

trained using the Baum-Welch.re-estimation algorithm [Baum?72].

For a more detailed explanation of hidden Markov models, refer to [Juan84].

56

4.7. A Writer Independent Handprint Recognizer

A writer independent hidden Markov mode] based handprint recognizer was developed
and deployed in the InfoPad system. It was inspired by the author’s experience with HMM-
based speech recognition [Rabaey88]. Two sets of Markov model parameters were trained,

one for 61 alphabetic and special characters and another for all 10 digits.

In this section, we discuss the recognition algorithm, the character sets selected, the appli-
cations programming interfaces, the software written for capturing and manipulating hand-
written data, and the training data set. Except for the graphical user interfaces which were

written in Tcl/Tk [Oust94], all the software was written in C and C++.

4.7.1. The Recognition Algorithm

The recognition algorithm begins with preprocessing and feature extraction, then does a
Viterbi search, and then traces back through the HMM trellis to determine the most likely
character written. Some post-processing is done to disambiguate uppercase and lowercase

characters.

4.7.1.1. Heuristics

In order to improve recognition accuracy, heuristics are applied to the input pixel sequence

before preprocessing. These heuristics detect certain characters, which are listed in

Character | Heuristic

. (period) One stroke, less than 5 pixels

: (colon) | Two strokes, less than 5 pixels each

Table 4-1. Heuristics Used in Handwriting Recognition

Table 4-1. These characters are otherwise difficult to detect due to the small number of

pixels and the algorithm’s scaling behavior described in the next section.

4.7.1.2. Preprocessing and Feature Extraction
Several processing steps are performed to extract features before performing the actual
Viterbi search on the Markov model. These steps are called preprocessing and consist of

truncation, sorting, segmentation, normalization and feature extraction. The strokes are not

57

sub-sampled spatially or temporally because experiments with sub-sampling showed that
it reduces recognition accuracy, especially for characters with a small number of points per

stroke.

As soon as the recognizer receives a sequence of strokes it computes the centroid of each
stroke. The strokes are sorted left-to-right and then segmented into characters. Segmenta-
tion is done by assigning each stroke to a character using the position of its centroid with
respect to the tick marks provided on the drawing canvas. The last 3 pixels are then trun-
cated from each stroke that has 15 or more pixels. This helps reduce the effects of the arti-

fact that arises on pen-up, as described in Section 6.1.3. on page 116.

The characters are then processed individually. All strokes within each character are nor-
malized vertically based on the highest and lowest points of all the strokes in the character.

The recognizer quantizes the y-coordinates to 256 levels.

Lastly, the feature triplets are calculated for each pixel. In this algorithm, very simple geo-
metric features are used: slope, slope difference and y-coordinate for each pixel, each
quantized to 8 bits (256 levels). The sequence of feature triples is calculated for each stroke
in the character and concatenated with the previous strokes’ features. This concatenated

array of feature triplets is passed on to the Viterbi search engine.

4.7.1.3. The Hidden Markov Model
Before describing the Viterbi engine used in this recognizer, we describe the Markov
models used in this recognizer. Each character is assigned a number of Markov states based

on its complexity. The number of states is listed in Table 4-2 for the 61-character recog-

Ehiracter States | Character States=l Charafter States
a 8 A 12 * (asterisk) 10

b 8 B 16 @ (at sign) 12

c 6 C 6 ! (exclamation mark) | 6

d 12 D 10 - (minus sign)

e 10 E 10 . (period) 1

Table 4-2. Number of Markov States for Each Handwritten Character in the 61-Character
Recognizer

58

Character | States | Character | States | Character States
f 8 F 8 / (slash) 4
g 10 G 8 ~ (tilde) 4
h 10 H 10 tt (double t) 10
i 5 | 10 _ (underscore) 2
j 8 J 10

k 10 K 10

1 4 L 6

m 16 M 16

n 10 N 12

o 8 0] 8

p 10 P 10

q 12 Q 10

r 8 R 16

s 8 S 8

t 8 T 8

u 10 U 10

v 8 \Y 8

w 14 w 14

X 8 X 8

y 8 Y 8

z 10 Z 10

Table 4-2. Number of Markov States for Each Handwritten Character in the 61-Character

nizer and in Table 4-3 for the digit recognizer. The number of states for each digit or char-
acter was initially chosen based on the complexity of the character, and then refined using

an iterative process to assign more states to characters with higher error rates.

Many of the characters can be written in several ways. In the 61-character recognizer all
the varitions of each character are condensed into one model whereas in the digit recog-
nizer each distinct way of writing each digit has a unique model. Therefore there can be

several entries for each digit in Table 4-3. The various forms of each character and digit

Recognizer

are documented in Chapter 8 on page 138.

59

Digit | States | Digit | States | Digit | States

—

Oa 8 S5a 10 8a 10
la |4 5b 10 8b 10
Ib |8 Sc 10 8¢ 10
Ic 8 5d 10 8d 10
2a 7 6a 6 8e 10
2b |8 6b 10 8f 10
2c 8 6¢c 8 8g 10

3a 12 7a 6 9a 8
4a |8 7b 8 Sb 10
4 (10 Tc 10 9 10
4c 12 7d 8

Table 4-3. Number of Markov States for Each Handwritten Character in the Digit
Recognizer

All characters models use left-to-right topologies as shown in Figure 4-2. Transitions may

o

Figure 4-2. Topology of an 8-State Handwriting Markov Model

take place from any state to itself or to the next state only, except at the beginning and
ending states. The beginning and ending states have extra transitions to compensate for
artifacts on pen-down and pen-up. These artifacts are context dependent and may be mod-

eled as co-articulation effects with adjacent characters.

The output probabilities are estimated using discrete probability distributions (discrete
HMMs) which are trained using a counting approach called the Baum-Welch algorithm
[Baum?72]. This approach is iterative so that the model automatically aligns with the data.

60

4.7.1.4. Viterbi Algorithm

The recognizer uses the Viterbi algorithm to decode the Markov model. All parameters are
represented in floating-point. The algorithm calculates Equation 4-5 for all characters in
the vocabulary. The character with the highest probability at its final state is determined to

be the recognized character.

This recognizer’s HMM parameters are severely undertrained, as explained in
Section 4.7.5. Some preprocessing of the trained parameters is therefore done in order to
improve the models’ generality and thereby improve recognition accuracy for characters

that are not in the training set.

There are two parameter preprocessing steps in the algorithm. Each output probability is
subjected to a floor of 0.0001 so that all output probabilities below this value are set to it.
This prevents any state sequence from becoming extremely improbable. Without this step,
a single mismatch due to the undertrained models could make the correct answer highly

improbable.

Each output probability distribution is subjected to a 7-pixel filter window (3 pixels on
each side of the current pixel). The probability of each feature value is set to the highest
probability within this window. This helps smooth out the probability distribution function
and thereby generalize the recognizer. Experiments showed that using the median rather
than the highest probability within the window does not work as well. The sparseness of
the training data meant that most of the probability values in the distributions are almost 0,

so the median value is usually 0.

If the models were not undertrained, it would not have been necessary to take either step.
There are other ways to deal with this problem. Many researchers deal with undertraining
by fitting the probability distribution to a standard curve such as a Gaussian. This would
have been the next step if the current recognition algorithm had not given sufficient recog-

nition accuracy (see Section 4.7.6).

61

4.7.1.5. Post-Processing

Some characters have similar upper case and lower case representations. These characters
are post-processed to determine the case by comparing their height to the height of the writ-
ing area. They are: ¢, m, n, o, p, s, u, v, W, X, y, and z. Once the case of each character has
been determined, all the recognized characters in the word are concatenated into a string

and this string is returned to the calling application.

4.7.2. Character Sets

The character sets for the recognizer were chosen based on the anticipated needs of Info-
Pad applications. For e-mail addresses, URLs for the World Wide Web and file names, the
61-character recognizer supports all 52 upper and lower case letters, at-sign “@”, period
“.”, slash “/”, tilde “~”, and underscore “_”. The asterisk “*” allows wildcard characters in
file selection boxes. The “double t” character models two consecutive “t”s which are

crossed with a single bar.

For numeric entry of parameters into applications, a separate set of HMM parameters was
trained. In the InfoPad model, multiple recognizers are easily accessible so applications
that require digit recognition can connect directly to a digit recognizer regardless of
whether they also need other recognition services. A dedicated digit recognizer achieves

much better recognition accuracy than a single all-purpose recognizer.

Another advantage of a separate digit recognizer is that some easily confusable characters
can be differentiated. For example, the numeral “0” and the letter “O” are easily confus-

able, as are the numeral “1” and the letter “1”.

4.7.3. Applications Programming Interfaces

There are currently three ways for applications to access the handwriting recognizer. A
handwriting recognition widget runs as a separate process and allows uncoupled applica-
tions to accept handwritten input. A remote server allows applications to access a recog-
nizer over the Internet and to control it remotely. A software library with a standard API
allows applications to tightly couple with the recognizer for greater customization of the

recognizer to the application.

62

4.7.3.1. Handwriting Recognition Widget

A screen shot of the handwriting recognition widget is shown in Figure 4-3. This widget

Figure 4-3. Screen Shot of the Handwriting Recognition Widget

was implemented by Armando Fox and uses the client side of the Sun API described in
Section 4.7.3.3 to interface with the recognizer engine. It runs as a separate process, col-
lecting handwritten input, running the input through the recognizer, and sending recog-
nized text to the current application via the X server. The user writes in a box with tick-
marks. Recognized results appear in a separate text window unless there is another cur-
rently registered application which should be receiving recognized text, in which case rec-
ognized text is sent directly to that application. A slider controls the pitch of the tick marks
and other buttons allow various editing functions such as backspace, space bar, disable rec-
ognition, and recognize. The name of the current application is shown in the box on the top

left corner; this is the application which receives recognized text.

The button on the lower left corner of the widget allows the user to switch between recog-
nizers. When the letter “A” shows, the 61 character recognizer is the current recognizer. If
the number “9” shows, the 61-character recognizer is dormant and the digit recognizer is

active.

Currently, the widget works with applications which use the tk widget set [Oust94], in par-
ticular the tk entry widget. It modifies the class level bindings of all tk entry widgets on the

current screen so that when there is a pen tap in that widget, a message is sent to the hand-

63

writing recognition widget to register the application as the current application so that it

will receive recognized text.

4.7.3.2. Remote Server

The recognizer can also run as a remote server. In this incarnation, applications use a
custom API to access the remote recognizer over Internet sockets. Of course, the API

encapsulates and hides the socket protocol from the application.

The recognizer connects to the Pen Server described in Section 3.3. on page 32 to obtain
pen data. This data is recognized and the results are passed to the application. The applica-
tion does not need to capture pen pixels itself. This recognizer can be configured at start-
up to use either the 61-character set or the digit set described in Section 4.7.2 above. Com-

mand line options allow the user to specify:

* the character set (vocabulary)

* alist of files of handwritten input for batch recognition (see Section 4.7.4 for data file
format)

« the floor and filter width parameters (they default to 0.0001 and 3 respectively, as
described in Section 4.7.1.4)

o the ratio for sub-sampling (the ratio is multiplied by the height of the character to
determine the minimum allowable distance between pixels; intervening pixels are
deleted)

* the number of pixels to truncate from the end of each stroke to allow for co-articulation
(see Section 4.7.1.2 for default behavior)

* the host name and port number of the Pen Server from which to read a stream of pen-
resolution data (unnecessary for batch mode operation)

* the Internet port number on which to accept connections from applications (defaults to
1510)

Refer to the manual pages for more details.

An application that wishes to use the remote handwriting recognition server must compile
the client side API library into itself. Using the client API, the application opens a connec-

tion to the remote handwriting recognizer using HW_OpenConnection():

recogConnection *HW_OpenConnection (char *host, int port)

The recogConnection data type is a structure that contains information about the current
recognizer. host is the name of the remote machine on which the recognizer is running and

port is the Internet port number on which the recognizer is accepting connections.
To begin recognition, the application issues HW_SendRecognize():

void HW_SendRecognize (recogConnection *conn)

This command tells the recognizer to start recording handwritten input and to store it for
recognition. When the application is ready to receive recognized text, it issues
HW_GetWord():

void HW_GetWord(recogConnection *conn, char *word)

This command tells the recognizer to perform recognition on the captured handwriting and
return the results in the buffer word. If the application wants to suspend recognition, it may
issue HW_Sendldle():

void HW_SendIdle(recogConnection *conn)

This tells the recognizer to stop capturing handwriting and wait for further instructions. If
the application wishes to disconnect from the recognizer, it may issue
HW_CloseConnection():

void HW_CloseConnection(recogConnection *conn)

This command tells the recognizer to disconnect from the application. The recognizer stays

active and waits for another connection from the same or another application.

4.7.3.3. Sun API

The handwriting recognizer can be included into applications as a software library. In this
incarnation of the recognizer, an API from Sun Microsystems [Kemp93] is used since this
is the only available standard API for UNIX handwriting recognition engines. By adhering
to this standard, the recognizer can be useful outside the InfoPad project and InfoPad appli-

cations can use recognizers from other institutions.

65

The Sun API is designed for applications which capture electronic ink and send it to the
recognizer themselves rather than relying on the recognizer to obtain electronic ink via the
Pen Server. Each application may allocate as many recognizers as it likes at run time via
UNIX dynamic library loading. The client-side interface (used by applications) is not the
same as the server-side interface (the engine’s API) and the software distribution from Sun
provides the code to map between the two interfaces. However there is a close correspon-
dence between the two APIs. In the rest of this section we describe the server-side API. For

details on the client-side API, refer to [Kemp93].

Applications must first initialize and allocate the recognizer by calling

__recognizer_internal_initialize():

recognizer __ recognizer_internal_initialize(void* handle,
rec_info* ri)

This routine initializes and allocates memory for the recognizer indicated by handle using
parameters specified in ri. All structures created and used by the recognizer are stored in
the item of type recognizer which is returned by the initialization function. This allows the
use of more than one recognizer at one time. A recognizer may be deallocated and deleted

using __recognizer_internal_finalize():
recognizer __recognizer_internal_finalize(recognizer rec)
Once initialized, the recognizer may be given recognition-related commands. To send

strokes to the recognizer, call set_buffer():

int set_buffer (recognizer r, u_int nstrokes,
pen_stroke *stroke)

This routine appends nstrokes strokes to the recognizer’s internal stroke buffer. This inter-
nal buffer can be cleared by calling clear():

int clear (struct _Recognizer* r, bool delete_points_p)
When all relevant strokes have been added to the buffer, the recognizer is instructed to per-

form recognition using translate():

int translate (struct _Recognizer* r, u_int nstrokes,

66

pen_stroke* strokes, bool correlate_p, int* nret,
rec_alternative** ret)

This routine appends nstrokes strokes to the buffer and then performs recognition. The
correlate_p flag tells the recognizer whether or not to correlate strokes with characters and
return correlation information to the application. Correlation information allows applica-
tions to determine which strokes correspond to which character. nret is the number of
alternative translations returned by the recognizer, and ret is an array of alternative trans-
lations. Each translation is a linked list of the characters which constitute the recognized

word.
The geometry of the writing area is specified using set_context():

int set_context (struct _Recognizer* r, rc* rec_xt)

rec_xt contains the baseline and tick mark positions and the boundaries of the writing area.

The APl includes several other routines for ink manipulation and others for controlling the

recognizer, some of which are not used.

4.7.4. Data Capture and Manipulation

A software package was written for handwriting capture and manipulation. This package
is available both as a software library to be included into applications and as a stand-alone
application with its own graphical user interface. The library version is incorporated into
the recognizers described elsewhere in this section. The main menu bar of the graphical

user interface of the stand-alone version is shown in Figure 4-4. The graphical user inter-

‘file Macres Capture Qperations View Train Recognize Globals Qptions Misc ,uelpl

Figure 4-4. Main Menu Bar for the Data Capture and Manipulation Package

face was written using tcl and tk [Oust94] while the capture and manipulation routines

were written in C and C++.

The File menu supports the usual file reading and writing commands. There are three kinds

of files. Word files contain raw handwritten input as a sequence of pixels. The format of

67

such files is illustrated by the example in Figure 4-5. Text is the text represented by the

Text= pqgrst_
Writer= shankarl
StrokeCount= 2
UpperBaseline= 4500
LowerBaseline= 5000
PixelCount= 6
4188 4867

4190 4867

4190 4871

4191 4896

4196 4944

4196 4964
PixelCount= 8
4211 5325

4212 5300

4213 5241

4213 5207

4209 5135

4205 5098

4198 5033

4196 5004

Figure 4-5. Example of Word File Format

data in the file. Writer indicates the person who wrote the text. StrokeCount is the
number of strokes comprising the word or character. A stroke is defined as a sequence of
pixels from pen down to pen up. UpperBaseline and LowerBaseline are the positions of
the lines between which the user writes in the writing canvas. See Figure 4-8 below for a

picture of the writing canvas.

PixelCount is the number of pixels in the current stroke. These pixels’ x and y coordinates
appear after PixelCount. The next and all subsequent strokes are appended after the current
stroke.

Feature files contain the features extracted from the Word file. These features are described
in Section 4.7.1.2. The syntax of a Feature file is illustrated in Figure 4-6. Text, Writer
and StrokeCount are identical to the equivalent fields in a Word file. xmax, ymax, xmin,
and ymin are the maximum and minimum x and y coordinates in the entire word. Pixel-

Count is the number of pixels in the stroke that follows. xmax, ymax, xmin, and ymin are

68

Text= <Text>

Writer= <Writer>

StrokeCount= <number_of_strokes>
Xmax= <xmax>

ymax= <ymax>

xmin= <xmin>

ymin= <ymin>

PixelCount= <number_of_pixels>
xmax= <xmax>

ymax= <ymax>

xmin= <xmin>

ymin= <ymin>

<slope_1> <slope_diff_ 1> <y_coord_1>
<slope_2> <slope_diff_ 2> <y_coord_2>

PixelCount= <number_of_pixels>
Xmax= <xmax>

ymaxs= <ymax>

xmin= <xmin>

ymin= <ymin>

<slope_1> <slope_diff_1> <y _coord_1>
<slope_2> <slope_diff_2> <y coord_2>

Figure 4-6. Feature File Syntax

the maximum and minimum x and y coordinates for that stroke, and they are followed by

the feature triplets for each pixel. The next and subsequent strokes follow.

Vector files encapsulate all the extracted features in the format expected by the HMM rec-
ognition software. The syntax is illustrated in Figure 4-7. frames is the number of feature
triplets in the file. dimension is the number of features per pixel, which is 3 in this case.
codeBooksize is the number of values each feature can take. Since they are quantized to 8

bits, this number is 256. The feature triples then follow.

The Macros menu contains several complex commands which are ordered sets of other
simpler commands that may be accessed via other buttons on the main menu bar. These

macros include a data capture session where the user is prompted to enter a list of words to

69

frames= <number_of_frames>
dimension= 3

codeBooksize= 256

<slope_1> <slope_diff_1> <y coord_1>
<slope_2> <slope_diff_2> <y_coord_2>

Figure 4-7. Vector File Syntax

be stored and used later for training or for testing the recognizer. Other macros allow the
user to sequentially view all the files in a directory or to view files by user. A set of hand-
~written words may be segmented and labeled using yet another macro. Vector files may be
generated in batch mode via a macro. Since tcl is an interpreted language, it is very easy to

add new macros.

The Capture menu allows the user to choose the input device and immediately write a
word of handwritten data. The input devices currently supported are the mouse and two

models of Wacom digitizer. A window with baselines (see Figure 4-8) comes up to accept

. xEntrsamploofizsds|

Figure 4-8. Handwriting Capture Canvas

user input.

The Operations menu allows the user to manipulate the current data set. Words may be

truncated (the last few pixels are removed to alleviate the effect of the pen-up artifact), seg-

70

mented based on x-coordinate spacing, sorted (strokes are sorted left-to-right based on cen-

troid), and sub-sampled. Feature extraction may also be done via this menu.

Word and feature files can be viewed via the View menu. Words on the canvas can also be
queried to determine stroke order and to obtain other information about each stroke or

word via this menu.

The Train button runs a batch training session on data stored on disk. The Recognize
button tells the application to prompt the user to write a handwritten word on a pop-up

canvas and to recognize this word using the current recognition parameters.

The Globals menu brings up a window showing the value of each global variable used by

the application and to edit these globals. On start-up, the application also displays all the

71

global variables in a separate window, shown in Figure 4-9. Word is the currently dis-

rl.nwer Baselme 15000

‘(.‘apture Device lwacom ad LS

Vlew Style lp.zxel

Baseline Type 'd .zg'.its -

ResampleRatm |0

WordListFile ~|_¢93th1¢ =

globvar [*
Figure 4-9. Global Variable Display/Editing Window

played or most recently written word. Writer is the current user. Data Directory is the
path to the directory from which Word files should be read. Data Write Directory is the
directory in which to save captured handwriting. Vector Directory and Feature Direc-
tory point to the locations where vector and feature files respectively are to be written.
Upper Baseline and Lower Baseline indicate the positions of the lines between which the
user writes. These parameters are in pen resolution coordinates unless the mouse was used

as the capture device, in which case they are in screen resolution coordinates. Capture

72

Device indicates the current data entry device which can be either the mouse or a Wacom
tablet. View Style indicates whether handwriting should be displayed as dots only or
whether the dots should be connected. Baseline Type indicates normalization mode. This
tells the feature extraction routines whether to normalize based on the baselines or the
height of the characters. Resample Ratio indicates the minimum spacing between adjacent
pixels when the input is sub-sampled. WordListFile tells the data capture macro where to
find the list of words with which the user is to be prompted during a data capture session.

globVar allows users to use wild cards when retrieving a large number of files for viewing.

The Options menu on the main menu bar allows the user to control display options. The
Misc menu contains miscellaneous commands that were mainly used for testing and
debugging while the Help button brings up a manual page describing the operation of the

application.

4.7.5. Training Set

The recognizers were trained on very small data sets. Collecting a large data set requires a
very large investment in time and effort. The 61-character recognizer was trained using
3626 captured characters from 16 writers. This corresponds to an average of 59 examples
of each character. The digit recognizer was trained using 377 captured characters from 10
writers which is an average of 12 examples per model since there are 31 HMMs in this rec-

ognizer.

Training data was captured using the capture and manipulation package described in
Section 4.7.4 above. Users were prompted to write words from two word lists. The raw

captured data is stored in files on disk.

Segmentation was done automatically with operator intervention to correct segmentation
errors and to attach a label to each character. First, the stroke sequence was sorted left-to-
right to move delayed strokes to be adjacent to the main character. The segmentation macro
looked for overlap in the x coordinate used this to cluster strokes into characters. Strokes
were added or removed by the operator and a label was attached before segmentation was

accepted. Segmented characters are stored one per file.

73

Another macro was used to read all the segmented characters from disk and generated fea-
ture vectors as described in Section 4.7.1.2. These vectors are also stored using one file per
character. The training program then read the files one at a time to train the Markov model
parameters. The syntax of the files used to store HMM parameters is shown in Figure 4-

HidMarkMod <HMM_name>

state <start_state> START

edge generic <start_state> <state_1> <start_state>_<state_1>
edge generic <start_state> <state_2> <start_state>_<state_2>
state <end_state> END

state <state_1> state <pdf_1_name>

edge generic <state_1> <state_l1> <state_l1>_<state_1>

edge generic <state_1> <state_2> <state_1>_<state_2>

state <state_2> state <pdf_1_name>

edge generic <state_2> <state_2> <state_2>_<state_2>

edge generic <state_2> <state_3> <state_2>_<state_3>

NoOutputPDF <start_state>_<state_1> generic <trans_prob_1>

OutputPDF <pdf_1_name> vector 256 numVec 3 map 0 1 2
ioutput_prob_1> <output_prob_2>... <output_prob_256>
éutputPDF <pdf_2_name> vector 256 numVec 3 map 0 1 2
ioutput_prob_1> <output_prob_2>... <output_prob_256>
}

Figure 4-10. HMM Parameter File Syntax

10. The first line specifies HMM_name, which is the name or label of the character mod-
eled by this file. The section foﬂowing it declares the states and the topology of the Markov
model. state declares a state in the model and specifies whether it is a START, END or

74

normal state. Normal states have output probability distributions associated with them
whereas the START and END states do not. edge declares an edge, or transition, between

states and assigns a label to that transition representing the transition probability.

The next section specifies the transition probabilities between the states. NoOutputPDF
declares that the edge itself does not have an output probability distribution associated with
it, and assigns the transition probability for that edge. The last section uses the QutputPDF
declaration to assign values to the output probability distributions which were declared in

the state declaration.

4.7.6. Performance

Recognition accuracy was surprisingly good considering the small size of the training data
sets. In user tests, the 61-character recognizer obtains about 80% character recognition
accuracy on average, although there is wide variation among users. For the author, this rec-
ognizer achieves over 90% character accuracy. The digit recognizer achieves over 95%

accuracy for all writers, with 100% accuracy for the author.

A test of the 61-character recognizer was conducted using a Wacom tablet on a Sun work-
station. Each user wrote 27 words (115 characters) into the handwriting recognition widget
described in Section 4.7.3.1. The results are tabulated in Table 4-4. The average recogni-

tion error rate is 17.0%.

We found that as users learned which characters were mis-recognized most often, they
wrote those characters more carefully and got better results. The users therefore get trained
to the system. We also found that some characters were similar enough to be easily con-
fusable. Pairs of such characters are u-v, w-u, r-v, n-r, p-r, a-0 and b-h. Usually, one char-
acter is recognized as the other but not vice versa. Some writers obtained mis-recognitions
of particular characters consistently. However writing the mis-recognized character again
more carefully usually solves this problem, and motivated users who played with the rec-
ognizer before the test did better. The long term solution is to train the system with more

data.

75

Writer Error Count Error %
SN 0115 87
NC 15/115 13.0
ML 21/116 18.1
TP 20/116 17.2
JR 30/115 26.1
10 20/114 17.5
TB 49/115 42.6
SM 7/115 6.1
LG 10/115 8.7
YCC 18/115 15.7
IC 11/115 9.6
RS 32/115 27.8
HB 11/115 9.6

Table 4-4. Handwriting Recognition Results

4.7.7. Algorithmic and Implementational Improvements

There are several improvements which would benefit the handwriting recognizer. Cur-
rently, only one heuristic is used to improve recognition accuracy. Other heuristics can
reduce the search space. The number of strokes in the character can be used to constrain
the search. Descenders can be detected to reduce the search space. Delayed strokes are a

sure sign that the character is either a t, i or j.

Output probability distributions should be fitted to Gaussians or other shapes to see if rec-
ognition accuracy can be improved this way. More training data should be captured and
the models retrained. A large body of data with separate test and training sets is now avail-
able [Guyo94] for this task.

Other methods of estimating probabilities should be explored. Neural networks have been
used by some researchers with good results (see Section 4.1.3 and Section 4.1.6). It is

likely that a neural network based recognizer will perform better for probability estimation.

The recognizer currently returns only the most likely candidate. It should be enhanced to
return the top few candidates together with a recognition confidence measure. Recognized

results that are deemed highly uncertain (having low confidence) should be reported as

76

unrecognized. The recognizer should also detect spaces between characters so that users

can write phrases.

A recognizer that recognizes both characters and digits at the same time should be trained
up, so that the application does not have to direct the recognizer to use separate sets of
parameters. This would be useful in applications which use single handwritten characters

as command shortcuts and where alphanumeric input is required.

The version of the recognizer with the Sun API should be modified to execute remotely as
a server. This allows the recognizer to run on a separate processor and therefore not load
the current application’s processor, and also gains all the other advantages of a remote
server. The remote recognition server should accept and process partial input while the

user is writing so that feedback is faster and overall latency is reduced.

The recognizer should also implement pruning to reduce the search space and thereby
improve response times. Experiments need to be done to determine a good pruning thresh-
old.

The current recognition performance figures are based on casual evaluation. A large test

set is needed to test the system and benchmark its performance.

77

5 Speech Recognition

In this chapter we explore the speech recognition needs of the InfoPad system and describe
the kinds of speech recognizers required to meet these needs. We then describe some
models for delivering recognized speech and two different recognizers that were imple-
mented, one of which was deployed in the InfoPad system. The other is a basis for a speech

recognition server for InfoPad.

In the InfoPad system we do not use speech recognition to specify non-dictionary words
since spelling them out verbally would be very time-inefficient compared to writing them.
A spoken character recognizer could therefore play a secondary role, such as a fall-back to
spell out misrecognized words. We look only at word recognition rather than character rec-

ognition, and, in any case, the former is a superset of the latter.

3.1. Performance of Existing Systems

In this section we review look at some systems reported in the speech recognition literature
to motivate the design and deployment of the InfoPad recognizers. We look at a fully soft-
ware solution from Carnegie Mellon University (CMU), then a solution from Bolt,
Beranek and Newman (BBN) using special purpose off-the-shelf hardware, and then at a
fully custom solution from a collaboration between the University of California at Berke-
ley (UCB) and Stanford Research Institute (SRI).

These solutions show that it is possible to get very high recognition rates on artificial tasks
but that it is difficult to get real-time performance, especially for large vocabularies and for
less constrained grammars. We can conclude that for small vocabularies it is possible to
run a software speech recognizer in real time but for large vocabularies custom hardware

may be required. As technology improves it becomes possible to run even large recogniz-

78

ers in software in real time. However custom hardware can help achieve a performance
gain over a pure software system, and can allow use of algorithms which would otherwise

be impractical due to their large computational requirements.

5.1.1. Software

The SPHINX speech recognizer [Lee89] was built at Carnegie-Mellon University (CMU)
in the late 1980’s and used hidden Markov modeling to represent speech. Several versions
of the recognizer were built with different grammars. A bi-gram grammar gave SPHINX
the best results, with accuracies of between 88.9% and 100% for a set of 15 speakers. The

median recognition accuracy among these speakers was 96.6%.

The system had a 1000-word vocabulary, was speaker independent and worked on contin-
uous speech. They used a statistical grammar of perplexity 60. This recognizer was state-
of-the-art at the time. There is no data to indicate how long it took to run the algorithm, but

it was almost certainly several times real time for that vocabulary.

5.1.2. Off-the-Shelf Hardware

A group at Bolt, Beranek and Newman (BBN) used an off-the-shelf board from Sky Com-
puter that has an Intel i860 processor on board for speech recognition [Aust90]. They were
able to run their algorithm in real time on this board, which was a factor of 5 speedup over
straight C code on a SUN 4. The algorithm uses a fully connected first-order statistical

grammar and has a vocabulary of 1,000 words. Recognition accuracy was 97.6%.

5.1.3. Custom Hardware

A collaboration between University of California at Berkeley (UCB) and Stanford
Research Institute (SRI) resulted in a real-time 3,000 word speech recognizer built from
custom hardware [Raba88]. The hardware ran the CMU and BBN algorithms above and
also the DECIPHER system from SRI [Murv89].

5.1.4. Accuracy on Realistic Tasks
More recently, the performance of several research speech recognizers was measured in
the DARPA Air Travel Information System (ATIS) common task domain [Pall92]. The

test consisted of 971 utterances with 37 speakers, 17 male and 20 female. There were an

79

average of 11 words per utterance. The results are tabulated in Table 5-1. This test used

Institution Word Error Rate (%)
AT&T 17.5

BBN 9.4

CMU 16.2

MIT 18.1

Paramax 10.6

SRI 11.0

Table 5-1. Accuracies for Recent Speech Recognizers

data collected from several sites, and is therefore more realistic than previous tests where
all the data was collected at one site using one set of hardware. Also, some of the test data
contained disfluencies. From the Table, we can conclude that word error rates of 10% to

15% are obtainable in realistic situations.

5.2. Characteristics of Speech Recognizers

There are several characteristics of speech recognizers that may be traded off against each
other to produce the best performance in a given application. In this section, we examine
these characteristics and the issues surrounding them, including how we might use them to

improve recognition accuracy.

5.2.1. Word Length

Speech recognizers usually work better if the words in the vocabulary are longer. This is
because the feature vectors for each utterance are longer so similarity measures have more
data to work on. Longer words tend to be less confusable since the feature vector difference
is greater on average. This assumes that there is sufficient training data. However, longer
words tend to be used less often, which can lead to insufficient training data and under-

trained models for those words. This can hurt recognition accuracy in some cases.

When there is enough training data, we can sometimes take advantage of the better recog-
nition for long words. Compound words consisting of a concatenation of single words may
be used instead of single words. For example, in the circuit schematic entry application

described in Chapter 6 almost all commands are compound words, increasing average

80

word length and thereby increasing recognition accuracy. Again, this works best when the

compound words are not undertrained.

5.2.2. Vocabulary Size

A larger vocabulary results in a larger number of confusable words. This means that rec-
ognition accuracy suffers. Of course, the converse is also true: a recognizer that uses a
smaller vocabulary will generally perform better. In some situations, though, a smaller
vocabulary does not help recognition accuracy. This happens when the words in the vocab-

ulary are easily confusable.

We can take advantage of this feature by limiting the recognition vocabulary wherever pos-
sible, thereby increasing accuracy. However this requires that the recognizer vocabulary

be configurable by the user or application programmer.

Although a larger vocabulary raises the average length of the words, this effect is not suf-
ficient to overcome the effect of the larger number of confusable words so recognition

accuracy often does decrease with increasing vocabulary size.

5.2.3. Grammar

Imposing a more constraining grammar on the recognizer improves recognition accuracy.
This is because the space of allowable sentences becomes more constrained, allowing the
system to eliminate illegal sentences or at least reduce their probability. However, gram-
mar is often highly application-dependent. For example, a command-and-control applica-
tion may prefer a different grammar than a dictation application. Obviously, an

inappropriate grammar would increase recognition errors.

We can take advantage of increased accuracy from grammar by building a recognizer that
allows user or application specific grammar. The recognition engine would be general
enough to take a user-supplied grammar and apply it to the recognized words. This gram-
mar may be a statistical or natural-language grammar, or some other kind of rule-base. A
majority of the current systems use an n-gram grammar, where the probability of a word

following another word is a function of its n predecessors.

81

5.2.4. Available Computational Power

Increasing the available computational power to run speech recognition allows us to use
more sophisticated algorithms. For example, multi-algorithm recognition with voting
could be used. We can also do less pruning, thereby reducing the probability of eliminating
the correct answer early in the recognition process. With greater computational resources
the recognizer will interfere less with other applications running on the same processor and

will return its results sooner, improving user response times.

5.3. Recognition Requirements of the InfoPad

In the InfoPad system, speech recognition may be used to issue commands that drive appli-
cations or for dictation. In each of these two cases, the type of recognizer required and
therefore the computational requirements are very different. As explained in Chapter 3,
speech recognition is not efficient for specifying file names, entering other non-dictionary
words, nor navigating the pointer across the screen. Therefore we do not address the

requirements for providing these latter capabilities.

5.3.1. Commands

For commands, high recognition accuracy is essential. For any application, only a finite set
of commands is valid at any one time, which means that only this finite set of commands
needs to be in the vocabulary at that time. This set of commands can change dynamically
as the state of the application changes. Therefore, a small recognition vocabulary with a

simple rule based grammar is sufficient.

Recognition vocabulary and grammar for commands are specific to the application, and
may change with the state of the application. Therefore, the application programmer must
have the ability to specify the vocabulary and grammar for his application, independent of
other applications. It is also desirable that the recognizer be flexible enough to adapt to
changes in the state of the application. If the recognizer is able to keep track of the appli-
cation’s state, and can dynamically modify the vocabulary and grammar to depend on this
state, it will be able to reduce the vocabulary and further constrain the grammar, thereby

improving recognition accuracy.

82

Commands require high recognition accuracy because in the event of a mis-recognized
command, the user may not have an opportunity to correct the error. Commands are exe-
cuted immediately upon recognition and are especially dangerous for commands that erase
or modify data where the application is unable to undo changes or erasures. The recognizer
should use confidence measures to reject utterances which have interpretations that are not

highly probable rather than execute a command that has low recognition confidence.

Because of the small vocabulary and simple grammar associated with the command recog-
nition task, it is possible to create a small, fast recognizer for this application. Extra CPU
power can be devoted to using a better algorithm since the search space has been reduced
and the processing power required is therefore less than that required for large vocabulary

recognition.

5.3.2. Dictation

The speech recognition requirements for dictation applications are very different from the
requirements for command entry. Dictation requires a very large vocabulary and a gener-
alized grammar, which is usually not highly constrained. Recognition of dictated speech is
therefore a more computationally intensive problem than command recognition. However,
recognition errors are more tolerable. A word-processing application will display the mis-
recognized word on the screen, allowing the user to correct the error on the spot. However,
in cases of automatic batch-mode transcription of recorded speech there is no operator to
correct errors so there is a low tolerance of recognition errors. The key is interactivity. For

interactive applications, a higher error rate is tolerable.

Dictation vocabularies and grammars tend to be standard, so the application programmer
may not need to direct the recognizer at all. However there are some special cases where
the application programmer or the user may want to add vocabulary words for a specialized
domain, such as medical applications. For example, if a user is creating a document using
dictation into FrameMaker, he may want to add domain-specific words to the general rec-
ognizer independently from FrameMaker. In this case, the recognizer must be controllable
separately from the application so that the user can add vocabulary words independently

of the application.

83

5.4. Models for Delivering Recognized Speech
There are several models that must be considered when providing speech recognition ser-
vices. They are the user interaction model, the programming model, and the service provi-

sion model.

5.4.1. User Interaction Model

The user interaction model tells us how the user interacts with the recognizer. There are
several possibilities. Some of these are described in the section on speech recognition focus
below, but in the InfoPad system each application has to define its own user interaction
model since there is no system level imposition of a model. The model also describes the
correction mechanism in the case of recognition errors. This issue is addressed in

Section 5.3 above.

5.4.1.1. Speech Recognition Focus

Speech recognition focus determines which application or applications receives recog-
nized speech at a particular instant. If several applications are currently speech-enabled, it
is often not obvious which application the user is talking to. For example, the user may be
dictating into a word processor when the telephone application rings and he answers the
call. The user then speaks to the telephone application and not the word processor, but the
word processor does not automatically stop listening even if the pen focus moves to the
telephone application. The user must explicitly tell the word processor’s speech recognizer

to stop listening.

There are several models for audio or speech recognition focus, and this issue is explored
in greater detail when we talk about future work in Section 7.2.1.1. on page 133. Currently,
the Audio Server does not provide a facility for applications, including recognizers, to
determine who has audio focus. The speech recognizer’s control widget allows the user
some control of when the recognizer is active but there is no support for the applications
programmer to determine who should receive audio or speech recognition focus, and there

is no policy on audio focus.

84

5.4.2. Programming Model

The programming model defines the interface into the recognizer from the application pro-
grammer’s perspective. There is a range of choices available in selecting the tightness of
the coupling between the recognizer and the application. For example, some applications
may not want to be aware of recognition at all, preferring to have the recognizer run sepa-
rately and emulate a keyboard whereas other applications may record speech themselves,
calling the recognizer using their own application-specific parameters, grammar and
vocabulary. In this section, we explore some of these choices and their consequences for

implementation.

5.4.2.1. Uncoupled Applications

Some applications, especially existing applications, should run independently without
modifications for recognition. These applications can be supported by a stand-alone recog-
nizer that sends recognized text to the application via a windowing system such as X or
Windows. This is the approach taken by the DragonDictate commercial speech recognition

system [Drag94].

In some cases the recognizer needs to be tailored to the application but not the other way
around. The recognizer therefore has to know which application currently has speech rec-
ognition focus, and may make this determination by querying the widowing system to
determine which application has current pointer focus. The issue of speech recognition

focus is discussed in greater detail in Section 5.4.1.1.

5.4.2.2. Loosely Coupled Applications

Some applications may prefer a simple interface, using minimal recognition capability.
Most applications would fall under this class. Their main functionality would be indepen-
dent of recognition, and they can function without it. Such applications would control some
parameters of the recognizer such as grammar and vocabulary, but the application software

would not need major modifications to add recognition capability.

85

In this case, the recognizer could be compiled into the application or run as a remote pro-
cess. The model for provision of recognition service is studied in greater detail in
Section 5.4.3.

5.4.2.3. Tightly Coupled Applications

A few applications would benefit from being tightly coupled to the recognizer. For exam-
ple, a dictation system which allows spoken correction and which stores audio for voice-
mail, dictation or delayed recognition would want to capture its own audio data and send
it to the recognizer, retrieving detailed results including a list of top recognition choices,
confidence levels and temporal information. It may also want to control more recognition
parameters than a loosely coupled application, or even perform its own segmentation and

grammar processing.

In this case, the recognizer could be compiled into the application rather than run as a
remote process. The issue of remote execution is examined in greater detail in
Section 5.4.3.

5.4.3. Service Provision Model
The service provision model describes the way service is provided, regardless of the user
interaction and programming models. Service may be provided by a separate process run-

ning locally, as a separate process running remotely, or as part of the same process.

As described in Section 3.5.3. on page 42, it is possible to run the recognizer remotely and
communicate using Internet sockets. This model of providing service is very powerful. It
allows use of only one recognition engine per user rather than one recognizer per applica-
tion. This engine can be time-shared between applications and even between users. This
recognition server may be upgraded transparently to provide the best service, and may be

transparently implemented on general purpose or special hardware.

Remote execution is the best service model in most cases, but there are some situations
where it is worthwhile to compile the recognizer into the application. Such a situation

arises when the recognizer is tightly coupled with the application and where the recognizer

86

should not be shared, such as in batch recognition of pre-recorded speech, where network

access is expensive, or where the recognizer is highly customized for the application.

5.5. A Small, Flexible Recognizer

A small, flexible recognizer was built by Andrew Burstein here at Berkeley [Burs96]. This
recognizer was written in C++ and Tcl and is accessed via Tcl. It is phoneme-based and
speaker independent. Several Tk widgets are provided for control of recording and recog-
nition functions. Speech recognition functionality can be provided to applications with
only a few lines of Tcl code. The vocabulary and grammar may be modified dynamically

by the application.

5.5.1. Motivation

The objective of the speech recognizer is to provide InfoPad applications with a mecha-
nism to receive commands and simple data by recognizing user speech. For example, the
recognizer allows commands that are usually issued by selecting menu items, clicking but-
tons, or pressing function keys to be executed by speaking to the pad. Just as the names and
contents of menus and button bars change from application to application, so too do the
vocabulary and grammar. The speech recognizer accepts continuous speech (no pauses are
required between words), and is speaker independent, but is capable of some adaptation to
individual speakers. In its current form, it is intended for small to medium sized vocabulary
applications such as command and control operation, but not general speech to text tran-

scription.

The speech recognizer was designed as a compromise between the need to couple the rec-
ognizer tightly to the individual applications in order to increase recognition accuracy and
the desire to make it as simple as possible for programmers to use speech recognition.
Unfortunately, it is difficult to design a speech recognizer that can accurately recognize
arbitrary English sentences, especially if speech is continuous. However, we can often
narrow the recognition to a particular subject, such as commands one might give to a
World Wide Web browser. This allows the recognizer to greatly reduce the size of the
vocabulary and the complexity of the grammar that it must consider, thereby enhancing

accuracy. Thus, it is important for the applications to tell the speech recognizer in advance

87

the vocabulary and grammar that it expects to receive from the user. This is a fairly simple
task if the program is receiving verbal command and control: programs already have
vocabularies and grammars defined by their button names, menu hierarchies, and typed

commands.

5.5.2. Implementation

Programmers know what commands their programs can receive; the challenge is to make
it easy for them to pass this information to and from the speech recognizer without forcing
them to understand the details of speech recognition. We meet this challenge by imple-
menting the speech recognizer as an extension to the Tcl language, by providing high level
Tcl/Tk widgets and itcl objects for applications to interface with the recognizer, and by

providing a graphical vocabulary and grammar editor.

All interaction with the speech recognizer can be handled through two Tcl commands, one
controlling the recording of sentences and the other the actual recognition. Since the con-
tinuous-word recognizer recognizes entire sentences, not just words, the recorder supports
automatic silence detection to locate the beginning and end of sentences. To facilitate error
recovery, the recognizer provides a list of several top matches; thus, if the best estimate of
the spoken sentence was not correct, the user can make a correction from the other choices.
The recognizer is capable of determining if the user speaks a word that is not in its vocab-

ulary rather than simply making the closest, albeit poor, match.

While the Tcl commands allow complete, low-level control over recording and recogniz-
ing speech, the most common tasks are controlled by the programmer through high-level
itcl objects and by the user through itcl mega-widgets. These objects contain procedures to
allow the programmer to manipulate vocabularies and grammars and to perform recogni-
tion without having to deal with the underlying data structures. These procedures also
enable the programmer to convert spoken words into their phonetic transcriptions, so that

new words can be added to the vocabulary as they are spoken by users.

A similar mechanism allows users to train the recognizer to adapt to their own particular
pronunciation of any given word, if it differs significantly from the “standard,” speaker-

independent pronunciation. The mega-widgets are designed to be dropped into programs

88

I3 Speech Recognition Grammar & Dictionary Editor: MAGIOd.gram -}
iHile ‘Edit View Recognize “ e T ' A

HI_M_]!I __I_l ;J'_h_j;j:i_u:tg 4en\

Grammar | |on dlrectlonl fid_ mount B
Fﬁﬁf ingle] —
N\ ‘ g o2
_ lon_Tayers|_ °°3@ Trorep s
e T e A

Figure 5-1. GramCracker Application for Creating and Modifying Speech Recognition
Vocabularies
to give users access to all necessary controls (e.g. volume control and silence detection lev-
els: see Figure 6-3 on page 121), speaker adaptation, and recognition results. Finally, the
programmer can create and edit vocabularies and grammars using the GramCracker appli-

cation (see Figure 5-1) that allows graphical display of pronunciations and grammars.

89

5.5.3. Discussion
The circuit schematic recognizer described in Chapter 6 uses this speech recognizer for
command entry. It was very easy to add speech recognition capabilities to the application.

The code is illustrated in Figure 5-2. The speech_dict object declared in the first few lines

source “$SPRCG_LIBRARY/spRcg.tcl”
source “$SPRCG_LIBRARY/spRcg wigits.tcl”

spRcg_gramDict speech_dict

speech_dict config -mlpFileName \
“/tools/ui/speechRecog/spRcg/v0.26/1ibtcl/\
phone.16.r6.L128.P3.8khz.M0.Norm.hard.weightsqg.mlp”

speech_dict readGramDict “$SCHEMATIC/lib/speech.gram

proc add_speech {} ({
global env SCHEMATIC SPRCG_LIBRARY

if {[info commands speech_record] != “*} {
.speech.control recordRecog speech_process
return

}

spRcg_recorder speech_record
if {[catch {set display $env(AUDIOFILE)}] != 0} {
set display $env(DISPLAY)
}
if { [catch {speech_record open $display}] != 0 } {
tkerror “Couldn’t connect to AF server at $display”
}

eval spRcg_recognizer speech_recog \
[speech_dict giveRecogConstructorArgs]

toplevel .speech

spReg_controller .speech.control -recognizerName \
speech_recog -recorderName speech_record

pack .speech.control

.speech.control recordRecog speech_process

Figure 5-2. Code Fragment to Illustrate API for Speech Recognizer

is a dictionary object which reads vocabulary and grammar information created in advance
using the GramCracker application. The add_speech procedure is called when the user

wants to start using speech. It declares the speech_record object which records speech and

90

stores it for later processing, and the speech_recognizer object which takes recorded
speech and recognizes it. The .speech.control window (mega-widget) shown in Figure 6-

3 on page 121 is also created.

This API is very simple to use. Other mega widgets allow the user to adaptively train the
recognizer, to view the top four recognition candidates, and turn the audio recorder on and
off.

5.6. A Real Time Large Vocabulary Speaker Independent Speech
Recognizer

The recognizer described in Section 5.5 above is suitable for small-vocabulary applica-
tions such as command and control of applications. It is not suitable for dictation. In this
section, we describe a recognizer that we built to support dictation. It has a large vocabu-
lary (60,000 words), a statistical grammar (perplexity 60), is speaker-independent, and

runs in real time on custom hardware.

This recognizer is an excellent basis for building the remote speech recognition server
described in Section 5.4.3. Although it could have been used as a server, it was not con-
nected to the InfoPad system because it is now out of date. It serves as an example of how
we could build custom hardware to implement sophisticated algorithms in real time and

connect to such a hardware server over the network.

The system is implemented as several custom boards in a VME card cage, and has a host
CPU board and an Ethernet board. It is therefore connected to the network. The CPU board
runs the VxWorks real-time operation system and can run applications written in C. There-
fore the server front end software can run on the CPU board and clients can connect via the
network. A collection of such servers can reside on the network to provide real time large

vocabulary speech recognition service.

In this case, network bandwidth requirements would not be high. Since the system takes
digitized audio quantized to 16 bits at 16 kHz, the total data rate into the recognizer is 256
kbits/s per user. The data rate coming out of the recognizer is negligible. Network latency

and jitter do not affect performance. However lossless network transmission is required.

91

The current InfoPad terminal provides 8-bit pi-law audio at 8 kHz which is not sufficient
for this recognizer to work well. However, future versions of the terminal will have 16-bit
16-kHz audio.

In this section, we explain the recognition algorithm used, including the hidden Markov
model used in this speech recognizer. It is significantly different from the model used in
the handwriting recognizer described in Chapter 4: this recognizer uses a grammar and a
dictionary. Then we describe the system architecture, concentrating on the Active Word
processing. We describe the hardware implementation of the system and the hardware sim-
ulation environment that was created to simulate the Viterbi Board which implements most

of the recognition algorithm.

5.6.1. Differences from the Small, Flexible Recognizer

This speech recognizer is targeted towards general sentence dictation applications where
the vocabulary and grammar are the same for all applications. The vocabulary is large and
it is not easy to change the vocabulary or grammar on the fly. In contrast, the recognizer
described in Section 5.5 allows easy configuration of the vocabulary and grammar. It sup-

ports only a small number of words at the same time. The algorithms are also different.

The VLSI recognizer uses triphone modeling and a statistical grammar, whereas the small,
flexible recognizer uses phoneme modeling and a rule-based grammar which can be

changed on the fly during normal operation.

The VLSI recognizer uses HMM training to calculate output probability distributions
whereas the small, flexible recognizer uses a multi-layer perceptron for this purpose. The
small recognizer also uses special processing of the audio input to obtain some degree of

tolerance of noise and channel distortion.

5.6.2. The Recognition Algorithm
The recognition algorithm has three steps: feature extraction, Viterbi search and backtrace,

as explained in the following sections.

92

5.6.2.1. Feature Extraction

We implemented a non-parametric feature extraction algorithm similar to the algorithm

used in the DECIPHER system [Murv89]. A block diagram of the algorithm is shown in

X(n) Pre Hammin
- g Mel
— . —
emphasize Window FFT Filters
l Cosine . Vector
Log ™| Transform[™| Normalize Quantize

Figure 5-3. Block Diagram of the Feature Extraction Algorithm

Figure 5-3. Incoming speech is sampled at 16 kHz and linearly quantized to 16 bits. It is

then pre-emphasized using the following equation:

Equation 5-1. Yo = %,—(095-x,_)
The pre-emphasized speech is then blocked into frames of 512 samples which are spaced
160 samples apart: the frames overlap by 352 samples. Each frame is smoothed with a

Hamming window:

Equation 5-2. hy = m;- Y-

21
N-1

where m; = 0.54—0.46cos()andi =0..N-1.

The resulting frame is then used to compute a 256-point Fast Fourier Transform (FFT). The
power in the FFT is integrated using 25 mel-spaced band-pass filters and the energy from
each of the mel filters is converted to its logarithm. These log energy values are passed
through a cosine transform to get the 13-dimensional mel-cepstrum coefficient vector. The
mel-cepstrum coefficient vector is then normalized with respect to its mean and variance,

and the 12 higher order elements of the 13 elements of the resulting normalized vector are

vector-quantized with a codebook of size 256 x 12, which produces an 8-bit feature o ,l .

93

Another feature, oi2 , is the vector quantized difference of cepstral vectors. o? is the scalar

quantized energy of the remaining cepstral vector element, and o? is the scalar quantized

differenced energy of this cepstral vector element. Each of these features are represented
using 8 bits and are used to match the incoming speech to the states in the Markov model.

See [Stol92] for a more detailed explanation.

5.6.2.2. Hidden Markov Modeling

Figure 5-4 shows a graphical representation of a left-to-right hidden Markov model

— T ———

-~ Phoneme 1 ~

Figure 5-4. Graphical Representation of a Hidden Markov Model

(HMM). In HMM-based speech recognition, speech is assumed to be produced by a hidden
Markov process (see Section 4.6.1. on page 54). Each circle represents a Markov state, and

each arrow represents an allowed transition between states.

Just as a speech utterance progresses from one sound (such as a phoneme) to another, a
Markov model progresses from one state to another. It may stay in the same state for more
than one frame, which is illustrated by the self-loops in the Figure. This corresponds to the
same sound lasting more than one frame and is therefore a way of modeling the duration
of the sound. This model represents speech as having sudden transitions from one state to

another, whereas in actuality the transition from one phoneme to another can be gradual.

The model is left-to-right since a spoken word proceeds in a predictable manner from one
sound to the next. Some words have optional phonemes, and the transition that skips the
omitted phoneme is shown as the arrow from the end of the first phoneme to the beginning
of the last phoneme. In our implementation, each state can have at most 3 predecessors,

which are defined as preceding states which are allowed to transition to the current state.

94

Each state transition has an associated transition probability. The feature vector corre-
sponding to each state depends probabilistically on that state. The model is “hidden”
because we can observe only the probabilistically dependent features rather than the states
themselves, and we have to use the sequence of these features to infer the most probable

state sequence, which is an approximation to inferring the most probable word sequence.

In this algorithm, the smallest speech unit modeled is the phoneme. We model each pho-
neme with a 3-state Markov model to allow for co-articulation effects with the previous
and the next phoneme. A word is a concatenation of phonemes. A sentence is a concatena-
tion of words. These concatenations may be done probabilistically and are, in fact, mod-

eled as HMMs. The HMM representation is therefore hierarchical.

For a more general description of hidden Markov modeling applied to speech recognition,

refer to Section 4.6.1. on page 54, or to [Juan84].

5.6.2.3. Viterbi Algorithm

The Viterbi algorithm [Juan84] is an approximation to the forward algorithm (see
Equation 4-7), which is the optimum maximum likelihood state sequence detector for a
HMM. The algorithm calculates the probability of a match with the current utterance for
all legal sequences in the model and determines the most probable state sequence. Pruning
may be used to discard highly unlikely sequences early in the calculation and thereby

reduce computational requirements.

95

Figure 5-5 shows the trellis used for Viterbi decoding of the HMM. Each circle represents

states
A

time (in frames)

P
>

Figure 5-5. Trellis for Decoding a Hidden Markov Model

a Markov state. The horizontal arrows represent the self-loops illustrated in Figure 5-4.

Other arrows represent legal state transitions. The parameters { A ij} are the state transition

probabilities. The horizontal dotted line represents the boundary between two phonemes.
Note that in this case, transitions between phonemes are allowed from the last state of the
predecessor to the first state of the successor only, these states being the grammar nodes
described in Section 5.6.3.2. In a more general case, any state can transition to any other

state.

At each frame, the probability of being in each state is calculated using transition probabil-
ities from each predecessor for that state and the feature vector calculated from the current

frame of speech. This state probability is calculated for all active states; the probability that

96

any legal state sequence Sy = {s,...sy} matches any feature vector sequence

Oy = {0,...0y} may be determined using the following equation:

N
Equation 5-3. P(Sy, Oy) = (s))P(0, |sl)n [A(s;_»5) - P(o,-lsi)]
i=2

where A(s;, s;) is the transition probability from state s; to state s ;j and m(s;) is the a

priori probability that the sentence starts with state s;. Note that:

Equation 5-4. P(o,-|s) = P(o: Is) . P(ofls) . P(o?ls) . P(o?ls)

where each of the terms is defined in Section 5.6.2.1 and assumed to be independent of the
others. However this calculation is very expensive. The number of possible state sequences
is (mN)T where m is the geometric average of the number of transitions into each state,
N is the number of Markov states in the system, and T is the number of frames in the sen-
tence. For each second of speech, T = 100. For a 60,000 word vocabulary with an aver-

age of 15 Markov states per word, N = 900, 000 . If we assume that m = 3, then we have

to evaluate Equation 5-3 a total of 1.37x10% times, which is clearly a ridiculously large

amount of computation.

Since we are interested only in the most probable state sequence leading up to each state,
we can omit the calculation of the less probable paths into each state. The Viterbi algorithm

is a dynamic programming scheme that uses this approach:

Equation 5-5. P(O;,s) = MAXPE {pred}[P(Oi_], p) - A(p,s)]- P(o,-ls)

where the initial condition is

Equation 5-6. P(O,,s) = n(s)- P(o,-|s)
and the set { pred} is the set of predecessors of the state s. t(s) is the a priori probability

that the state s is the beginning of a sentence. This equation is calculated mNT times,
which corresponds to 270 million times per second. This number can be reduced by prun-

ing. Pruning eliminates improbable paths from the search space, processing only the highly

97

probable paths. A pruning threshold is used to determine which candidate paths to keep, as
explained in Section 5.6.3.1 below. Pruning can increase the error rate by eliminating the
correct path early. However experiments can be performed to determine a good pruning

threshold for any given recognizer.

5.6.2.4. Backtrace

At the end of the sentence, after Equation 5-5 has been calculated for the last frame, we
need a means of tracing the path from the state at the end of the most probable sequence
back through the trellis to the first frame so that we can report the entire sequence. This is
done by maintaining a backtrace list where, for every state and for every frame, a tag point-
ing to the most probable preceding state is stored. This tag is the address in the backtrace
list of the preceding state. Using these tags, the most likely state sequence can be deter-

mined at the end of the sentence.

5.6.3. System Architecture
The algorithm described in Section 5.6.2 above was implemented in custom hardware.

This section describes the architecture and implementation of the system.

5.6.3.1. Changes to Improve Performance
Some changes were made to the algorithm to improve performance. In Equation 5-5 above,
the multiply operations can be replaced by additions if logarithmic representations of each

term in the equation are used.

This algorithm is ideally suited to floating point representations, but such a representation
would result in complex floating point datapaths and to larger memories. To avoid this
increased complexity, we implemented a fixed-point representation with frequent normal-
ization to retain accuracy and avoid underflow. Normalization is done using the following

equation:

P(0O;, 5)

Equation 5-7. P, (0;5) = MAX, _ 4[P,(0;_,, D]
€ n\~i-1

98

where MAX,[P,(O;_,,1)] is the largest normalized state probability from the previous

frame, and S is the set of all states. This division operation is expensive to implement in

hardware. However, the logarithmic representation reduces it to a subtraction.

A pruning scheme helps reduce the computational requirements of the system by discard-

ing word models whose states have low state probabilities. A pruning threshold © is com-

puted before every frame as follows:

Equation 5-8. Opnew = MAX[O, 145, MAX . sP(O;,5) - ©ppr,,]

where ©,,.,, is a system parameter. Pruning is used to reduce the number of active states
by a factor of 5.

5.6.3.2. Hierarchy

The Viterbi recursion (Equation 5-5) is implemented on 2 levels of hierarchy, phone pro-
cessing and grammar processing. In phone processing, the probabilities of states within
phoneme models are updated using only transitions from within the same phoneme. In
grammar processing, the transition probabilities between phonemes are used to compute

the probabilities of states within successor phonemes.

The advantage of this hierarchical scheme is that both levels of processing can be per-
formed in parallel. However there is a large amount of data that is passed between the two
levels since it is possible for transitions to successor phonemes to begin from more than
one state in each predecessor phoneme, and transitions from predecessor phonemes can

end in more than more than one successor phoneme.

99

To reduce the data rate between the two levels of hierarchy, we define two artificial nodes,

the source grammar node and the destination grammar node (see Figure 5-6). The source

—
é - - - - =
Q 7]
(3] %]
o ()]
2 g
o S
= source grammar destination gramm «
(] / o
= \ node node =
~
S~ o Phoneme _-"
S~ — — -

Figure 5-6. Source and Destination Grammar Nodes

grammar node probability is the probability that the state sequence terminates at the begin-
ning of the phone instance, corresponding to the MAX operation in the Viterbi recursion
(see Equation 5-3) with each predecessor probability taken as the destination grammar

node probability of the predecessor state.

For each phoneme, the destination grammar node probability at frame i is computed as fol-

lows:

Equation 5-9. P(D) = MAX , ¢ (preay P(O;, p) - A(p, D)]
where { pred} is the set of states within the phoneme which have transitions to the desti-
nation grammar node. To prevent overflow, the destination grammar node probabilities are

normalized after every frame. The destination grammar node probabilities must be com-

puted before the source grammar node probabilities.

This scheme also helps reduce the memory requirements of the backtrace algorithm.
Instead of storing a backtrace tag for every state in every phoneme for every frame, we can
store a tag for each destination grammar node only, with the tag pointing to the predeces-
sor’s destination grammar node. Whenever the probability of the destination grammar
node is high enough to be potentially part of the most likely path, it is stored in the back-

trace list (together with a tag pointing to its predecessor phoneme’s destination grammar

100

node) and its tag is passed on to the source grammar nodes of its successors. The source
grammar nodes pass the tag along to their destination grammar nodes as part of the normal

Viterbi processing.

5.6.3.3. System Hardware Partitioning

The hardware partitioning of the system is illustrated in Figure 5-7. All the custom boards

Distribution Board Viterbi Board Grammar Board
Output H(O4sp} Phone | Successor
Distributiong Processing \ Computation

»n A

N

A

Active Word J. Backtrace
Processing
Feature
| Extraction
0,
Digitized Speech

Figure 5-7. Hardware Partitioning of the Speech Recognition System

sit in a VME card-cage together with a CPU board and an Ethernet board.

Feature extraction is done on the Grammar Board, and the feature vector is sent to the Dis-
tribution Board via the VME backplane. The set of probability distributions corresponding
to that feature vector is sent from the Distribution Board to a cache on the Viterbi Board
via a ribbon cable. On the Viterbi Board, the Phone Process updates the state probabilities
of all the active states. If any of the state probabilities of an active phone has a probability
higher than the threshold, the Phone Process sends a message to the Active Word Process
to put this instance in the Active Word List for the next frame. If the destination grammar
node probability of a phoneme is high, the Viterbi Process tells the Successor Computation

101

Process on the Grammar Board to generate a backtrace list and send successors to the
Active Word Process. The Active Word Process maintains the Active Word List. Commu-
nication between the Viterbi Board and the Grammar Board is done via ribbon cables. At
the end of a sentence, the Backtrace Process on the Grammar Board generates a list of rec-

ognized words.

A Heuricon 68020-based general purpose microprocessor board and an Ethernet interface
board are used to control the system and to interface with the network. These boards allow
start-up and parameter loading of the custom boards and synchronizes the boards after
every frame. They also allow access from a UNIX workstation on the network to the mem-

ories on the custom boards for operational and debugging purposes.

5.6.4. Phone Process

Phone processing involves calculating the state probabilities for all the active states includ-
ing the destination grammar node probabilities but excluding the source grammar node
probabilities. The source grammar node probabilities are calculated by the Successor Com-

putation Process on the Grammar Board.

The Phone Process is implemented in 3 custom VLSI chips. For more details on its imple-

mentation, see [Stol92].

5.6.5. Active Word Process

The Active Word Process generates and maintains a list of active phone instances for the
next frame. It takes input from the Phone Process and the Successor Computation Process,
as illustrated in Figure 5-8. We use the terms “word”, “phone” and “phone instance” inter-
changeably in the rest of this Section since each item is defined by the existence of a source
and a destination grammar node. As long as the item, be it a word or a phoneme, has these
grammar nodes the Active Word Process does not distinguish between them. For example,
if the recognizer were phoneme based then each item would have three states including the
grammar nodes whereas if the recognizer were word based then each item would have an
average of 17 states. This speech recognition system is triphone based, which means that
each subword unit models coarticulation effects with adjacent subword units, resulting in
three HMM states per triphone, excluding the grammar nodes.

102

Phone

Process *
Active Word Active Word
P
Process List
Successor ?
Computation

Figure 5-8. Connections to the Active Word Process

5.6.5.1. Description

The Phone Process supplies a list of words (actually phonemes) that are currently active
and should remain active during the next frame. These are words which have at least one
state with high probability. The Successor Computation Process supplies a list of new
words that are successors to the words which are currently being processed by the Phone
Process nd which are ending. This latter list may have redundant words; in this case, the
Active Word Process performs a MAX operation on the source grammar node probabilities

and stores only the most probable one in the Active Word List.

The fields in the Active Word List are listed in Table 5-2.

Name Length (bits) | Comment

P(S) 16 source grammar node probability

Tag(S) 20 source grammar node tag

WordArc |20 phone instance identification

StProbAdd |18 address in the state probability memory
UniqueAdd | 16 address of the unique phone

TopoAdd |4 address in the topology memory

NewFlag 1 flag to indicate that the phone instance is new
EndFlag 1 flag to indicate the end of the Active Word List

Table 5-2. Contents of the Active Word List

103

P(S) is the probability of the source grammar node of this word. It is used only when the
word was supplied by the Successor Computation Process. If the word was supplied by the

Phone Process, this probability is set to 0.

Tag(S) is the backtrace tag generated by the Successor Computation Process. If the word

was not generated by the Successor Computation Process, Tag(S) is meaningless.

WordArc is the ID of the word (or phoneme) instance, and is unique for each instance of

that phoneme.

StProbAdd is the address of the source grammar node of this word instance in the State
Probability Memory that is part of the Phone Process, and is valid only if this word was
supplied by the Phone Process.

UniqueAdd is the address of the prototype (or unique) phoneme in a phoneme based rec-
ognizer. The idea behind this is that there are a number of unique phonemes which have
unique topologies and topology probability distributions, and instances of each unique
phoneme would share the topology and probability distributions. Each instance is part of a
different word and be processed separately by the Phone Process with a different ID, which

is stored in WordArc above.

TopoAdd is the address in the Topology Memory (which is part of the Phone Process) of

the unique phone corresponding to the current phone.

NewFlag is set to 0 if the word was supplied by the Phone Process, even if the Successor
Computation Process also supplied the same word. NewFlag is lonly if the word was not
supplied by the Phone Process, and this flag tells the Phone Process to ignore the contents
of the StProbAdd field.

EndFlag is set to 1 at the end of the Active Word List to tell the Phone Process to stop pro-

cessing the current frame. It is O for all valid entries.

104

5.6.5.2. Implementation

The Active Word Process is implemented in 3 custom chips and uses 2 memories, as

shown in Figure 5-9. It is necessary to use 3 chips because of the large pin count of the

Phone Successor Computation
Process Process
We TopoAdd

ordArc StProbAdd WorldArc | p(S) ;Zg(ogl)dd
UniqueAdd UniqueAdd

-]---"1T-""-—-"-"—-""—"-"1T""-""—-""—-""—=-"—= - - = T T TN
A | Y % y \
: Request Grammar Node Data :
| Processor Processor Processor |
I |
I TF lags Tag(S)

ALdata StProbAdd
| WordArc P(S) TopoAdd |
: UniqueAdd!
I
I I

| .
| Active List Active Word :
-
| |
——

ALciddress Memory AWaddrok Memory l
I l
l\ Active Word Process /l

Figure 5-9. Implementation of the Active Word Process

Active Word Process. The main controller for the Active Word Process is on the Request
Processor, and the data paths for the fields in the Active Word Memory are bit-sliced across
the 3 chips. All operations involving the Active List Memory are also done on the Request
Processor. The chips are described in greater detail in Section 5.6.5.3 through
Section 5.6.5.5.

105

It is necessary to use 2 memories for the Active Word List to reduce the actual memory
requirements for storing and maintaining the List. The Active List Memory (1 MWords by
16 bits) is addressed using the WordArc identifier and contains an address that is used for
access into the Active Word Memory (64 kWords by 96 bits). This indirect addressing
scheme uses 2.75 Mbytes of memory whereas a direct addressing scheme would use a
single 1 MWords by 96 bits Active Word Memory, which would require 12 MBytes of

memory.

All entries in the Active List Memory must be zeroed out before processing begins. When-
ever the Active Word Process receives a request from the Phone Process or the Successor
Computation Process, it reads the Active List Memory to see if the word is already in the
Active Word Memory. If so, the old data is retrieved and merged appropriately with the
new data, as explained in Section 5.6.5.1, and then re-written into the Active Word Mem-
ory. If the word is not already in the Active Word Memory, it is written into the Active
Word Memory at the next available address and this address is stored in the Active List

Memory at the appropriate location.

106

5.6.5.3. Request Processor

A chip photograph of the Request Processor is shown in Figure 5-10. It is packaged in a

H0.49.00.3.3

1

1

AL

LB IO LS

E i b

b ara o e R e

THHEEEEW R R

RS AT

&

Figure 5-10. Chip Photograph of the Request Processor

208-pin Pin Grid Array (PGA). The controller for the Active Word Process is on this chip,
as is the datapath for the WordArc processing and for NewFlag and EndFlag. All circuitry

for managing the Active List Memory is on the Request Processor.

107

5.6.5.4. Probability Processor
A chip photograph of the Probability Processor is shown in Figure 5-11. It is packaged in

T UG Y

EIERR R

E

i

sifs

g B
if
..

(o
;’jr
=

7L
-

MDD W

Figure 5-11. Chip Photograph of the Probability Processor

a 208-pin PGA, and runs as a slave to the Request Processor. The Probability Processor

contains the datapaths for StProbAdd, Tag(S), TopoAdd, and UniqueAdd.

108

5.6.5.5. Grammar Node Processor

A chip photograph of the Grammar Node Processor is shown in Figure 5-12. It is packaged

ﬂ!!!illlll’

[S 14ty

e w2

Figure 5-12. Chip Photograph of the Grammar Node Processor

in a 84-pin PGA and runs as a slave to the Request Processor. The Grammar Node Proces-

sor contains the datapath for P(S).

5.6.6. Viterbi Board Design

The architecture of the Viterbi Board is very complex. There are two State Probability
Memories and two Active Word Memories which are accessed during every frame. There
are also two Output Probabilities, one of which is being read by the Phone Process while
the other is pre-loaded from the Distribution Board. These three pairs of memories switch
function every frame. This switching means that there must be multiplexers on the memory
buses. Integrating these buses on the chips means an impossibly large number of pins per
chip, and putting the multiplexers on the board means a large chip count and an even more

complex board.

The Viterbi Board was therefore designed with a switching architecture. In Figure 5-13,

only one half of the board is shown. The other half is a mirror image: each of the memories

109

¢ — — — — — — — — e ——

Active List

|

Memory

Active Word
Memory

State —L— toState Probability Memory

Probability
Memory

Output

Probability
Memory

Topology
Memory

(L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v

yvyvy

Active Word Phone

Process

|
|
[
|
|
|
I
|
I
I
|
|
I
|
|
|
|
|
|
|
|
|
|
Process |
|

I
v l—'——-> to Active Word Process

to Grammar Process |
Figure 5-13. Switching Architecture of the Viterbi Board

110

and custom chips is instantiated twice. Memories may be accessed by the VME interface
only through the custom chips. During a frame the Phone Process reads from the Active
Word Memory, the State Probability Memory, the Output Probability Memory, and the
Topology Memory on its side of the board while the Active Word Process updates the
Active List Memory and the Active Word Memory on the other side of the board. The
Phone Process also clears the Active List Memory on its side of the board. On the next

frame, the process is mirrored on the other side of the board.

The Viterbi Board design has several large memories and many other components. They

are listed in Table 5-3 and Table 5-4. The board occupies a triple-height full-depth VME

Memory Words | Bits/Word
Active List Memory IM |16
Active Word Memory 64k |96

State Probability Memory 256k |36
Output Probability Memory |64 k | 12
Topology Memory 64k |16

Table 5-3. Memory Sizes on the Viterbi Board

printed circuit board. The design was created using the Lager system [ERL88] and the

board was laid out and routed using Racal-Redac’s Visula software [RR90].

5.6.7. System Level Simulation

Given that the board is large and complex, it was desirable to simulate its functionality to
the extent possible before actual fabrication and test. Simulation is not usually used to
verify printed circuit boards. Instead, expert board designers rely on their design skills to
get the design mostly right the first time and then use their debugging skills to get it work-
ing. But after the experience of VLSI chip design I felt that board level simulations would
help the design and debugging process and reduce the time it would take to get it working.
I had to create the board simulation environment from scratch since there was no existing

capability for such an effort.

There are two types of simulations that may be done on a board design. A timing simula-

tion can uncover all connectivity, functionality and timing problems, but requires timing

111

Part Typeﬁ QuanlityJ
22V10PLD 14
16L8-7PC PLD 5
74AS244 buffer 77
74AS374 flip-flops 6
VME2000 VME Interface | 1
VME3000 VME Interface | 1
74AS646 transceivers 3
74AS74 flip-fiops 2
EP610 PLD 1
74AS04 inverters 1
74AS02 or-gates 1
20 MHz oscillator 1
M1641 SIP memory 14
M1831 SIP memory

M1621 SIP memory 4

Table 5-4. Components on the Viterbi Board

models for all the components on the board, including the PLDs and the custom chips. I
could not find a simulation engine that handles a heterogeneous design like this one. Cre-

ating timing models for all the components would have taken too long to be worthwhile.

A second option is a behavioral simulation. In this case, only connectivity and functional
problems would be found. This is sufficient since the board is clocked and the interfaces
are very well specified. A separate program was created to find high fanout nodes so that
buffers could be added.

A public domain event-driven simulator called THOR [Stan86] was used to simulate the
board. In THOR each chip is modeled with a behavioral description in a language similar
to C. These C-like routines are connected at a higher level using a LISP-like language

called CSL. Hierarchical designs are supported via hierarchy of CSL files.

For this simulation, THOR models were written for all the off-the-shelf components on the
board and for all the individual components within the custom chips and the PLDs. The

simulator was then compiled and run with manually created test vectors. This simulation

112

was particularly valuable in finding problems in the synchronization between the Phone

Process and the Active Word Process and between the custom chips and the memories.

113

6 Applications

Several applications were built for the InfoPad system. The applications that most involve
use of the pen are the Circuit Schematic Recognizer and the Electronic Notebook. The
former also uses handwriting and speech recognition. Since the focus of this thesis is the
use of pen and speech in the user interface we examine these two applications in this chap-

ter. Some other InfoPad are described in [Nara96].

6.1. Circuit Schematic Recognizer

The Circuit Schematic Recognizer is the only InfoPad application that uses the entire rec-
ognition infrastructure and is therefore the showcase application for the InfoPad system. It
allows us to explore the use of the pen as a design tool and the synergy between pen and
audio input in an application. The pen is used as a drawing tool and for accessing menu
driven commands, the handwriting recognizer for entering parameters and labels, and the
small, fast speech recognizer described in Section 5.5 for commands. The application rec-
ognizes drawn circuit elements and automatically decides whether drawn items are ele-

ments or wires.

It is implemented entirely in Tcl [Oust94] and uses the Tk toolkit of X widgets. An object-

oriented extension to Tcl called itcl [itc96] was used for ease of programming.

6.1.1. Desired Functionality

This application is designed to be a front end to the SPICE [Meta91] circuit simulation pro-
gram. Users draw simple electrical circuits containing circuit elements and connecting
wires on a drawing canvas in a freechand style using a pen. The application captures this
freehand drawing and displays electronic ink on the drawing canvas. It recognizes drawn

circuit elements and generates a SPICE deck representing the drawn circuit. Wherever it

114

makes sense, speech recognition is used to improve the speed or convenience of design

entry.

At a higher level, this application is designed to allow the user to enter a circuit schematic
design faster and more comfortably than he would be able to using traditional means such
as manually creating a netlist file or using a keyboard and mouse with a CAD tool. The
design entry process is improved by using pen and speech rather than a keyboard and

mouse.

6.1.2. Current Systems

There are currently no commercial or research prototypes of pen-based circuit schematic
capture tools available. However there are many tools based on a keyboard and mouse
interface [Hass95] [McMu92] [Gill95].

The biggest problem with a keyboard/mouse interface is the constant alternation between
mouse and keyboard. The mouse is used to place objects and to select commands from
menus. The keyboard is used for keystroke shortcut commands and for entry of parameters
and labels. This alternation between input devices is inefficient and annoying. The mouse
interface is also inefficient because of the need to move the mouse from the drawing canvas
to the menu bar for commands or the palette of circuit primitives for creation of new circuit
elements. Mouse interfaces also require that the user create each circuit primitive, then
rotate it to the desired orientation, then move in to the required location. That means three

operations for each primitive, rather than one.

A pen/speech interface overcomes many of these limitations. The pen and the microphone
are used by different parts of the human body, so alternating between the two does not
require physical movement. The pen may be used to draw items in place and speech may
be used to issue commands that are traditionally menu driven. Pen or speech may be used
to replace keystroke shortcuts. Items drawn with a pen can be placed at the correct place

with the correct orientation in one operation.

A pen/speech system can therefore provide a much better interface for schematic capture

and for a large class of computer aided design applications.

115

6.1.3. Lessons Learned

Implementing a pen-aware application revealed several unique characteristics of using a
pen to drive an application. These characteristics stem from the way people write rather
than anything inherent in the Pen Server or the InfoPad environment. They are therefore

universal and must be accounted for in any pen-based user interface.

The black-and-white (monochrome) screen of the present InfoPad version means that feed-
back to the user cannot use color, so bitmaps and wires have to be represented in such a

way that they are clearly visible and distinguishable on a monochrome screen.

Users have trouble double-tapping a pen (equivalent to double-clicking a mouse). It is dif-
ficult to put the pen down on the same spot twice in quick succession. The second tap usu-
ally comes down several screen pixels away. This phenomenon is due to the need to lift the
entire forearm for each tap: for a mouse, the user keeps the pointing device steady while
pressing buttons with his fingers so this problem does not arise. Also, the pen sometimes

bounces. Therefore this application does not use pen double-taps.

The difficulty in tapping the pen accurately also relates to using pull-down menus. Users
often tap on a menu button, lift the pen until the menu comes up, then tap the pen on the
desired item. But they may miss the intended menu item if they are a little sloppy. There-
fore, all the menus are designed to be tap-and-drag. Menus must appear on one side of the

pen rather than directly below it, otherwise the pen will obscure them.

Many electronic pens come with two buttons, one on the tip and another on the barrel.
However the barrel button is difficult to use. Its position is not intuitive and users often
press it accidentally. When called upon to press it deliberately, they often have difficulty
locating it. This application therefore does not use the barrel button. Effectively, we have

a one-button pen.

The pen is a natural pointing device. Users like to get visual or audio feedback from their
activities on screen and it would appear that pen position alone is enough to tell the user
which window contains the pen. Since it is physically on the screen, the pen can replace

the functionality of the mouse cursor. However, users are uncomfortable without a pen

116

cursor drawn on the screen, or some other way of telling which window or widget is cur-
rently in focus. This discomfort is aggravated by the parallax problem caused by the thick-
ness of the glass covering the LCD screen. Therefore, a pen cursor is visible at all times
when the application is active. This feature of keeping the cursor visible even when the pen

is up is supported in the Pen Server, described in Section 3.3. on page 32.

The pen generates about 100 points per second and a pen tap is slower than a mouse click
due to the mechanical movement of the switch at the pen tip. Therefore, the Pen Server
generates a line every time the pen is tapped on the screen. The number of points in the line
varies depending on the user’s tapping style. Therefore the application has to interpret all

drawn lines and determine whether .. t.ded to be pen taps or lines.

The mechanical delay in the tip switch when the pen is picked up or put down means that
when the pen is picked up after a line is drawn, an artifact persists in the direction in which
the pen was moving at the time. This artifact, or tail, means that drawn objects, especially
those consisting of multiple strokes, often have artifacts at the end of each stroke. The rec-

ognizer therefore has to detect and filter out these spurious points.

The built-in geometric object recognizer performs recognition of drawn items when the
pen is picked up after strokes have been drawn. Multi-stroke elements are drawn with user-
dependent times between pen-up on the previous stroke and pen-down on the next stroke.

The recognizer therefore has to support user-programmed recognition time-outs.

Users align drawn items on the screen with varying degrees of precision, at least partly
because the pen obscures their view of the screen. Therefore it is sometimes not obvious
whether the user intends that two strokes be connected, or if a wire drawn close to a circuit
element is meant to be connected to that element. The application therefore has to allow

user-dependent alignment distances to allow for user sloppiness.

In noisy environments or when a quiet environment is needed, speech recognition cannot
currently be used to drive the application. Noisy environments cause the recognizer to
make more recognition errors. Therefore, the speech recognition should be enabled and

disabled at will by the user. All functionality can be accessed without speech, although

117

spoken input can improve the usability of the application. However there some uses, such
as issuing commands, where speech is a better input modality than handwriting. The solu-

tion is better, noise-tolerant speech recognizers.

User tests showed that when speech recognition worked well for users, they preferred it to
using pull-down menus for issuing commands. When the speech recognizer made frequent
recognition errors, users abandoned speech completely in favor of using the pen even if the

errors were only on the same small number of utterances.

6.1.4. Implementation

A screen shot of the Circuit Schematic Recognizer is shown in Figure 6-1. The application

Figure 6-1. Screen Shot of the Circuit Schematic Recognizer with Edit Menu Posted

starts up with a blank canvas, a row of menu buttons, and some control sliders along the
top. The File menu provides the usual file manipulation commands. The Edit menu, also
shown posted in the Figure, allows manipulation of objects on the canvas. The SPICE

menu controls SPICE file generation and the Speech menu allows speech recognition to

118

be enabled and disabled. The Help button brings up a manual page describing the applica-

tion.

In normal operation, the user draws circuit elements and wires. This drawing is electroni-
cally inked onto the canvas. The application segments each drawn stroke into lines or cir-
cles and then looks for ordered sequences of these primitives to make up circuit elements.
The recognition algorithm compares the drawn sequence of primitives to stored templates
of primitive sequences representing circuit elements to find a match. This comparison uses
a priority ordering of most complex element first. Currently, the application supports
NMOS and PMOS transistors, resistors, capacitors, Vdd, and ground circuit elements. It
also recognizes rotations and reflections of these elements. If a drawn item is not identified

as a circuit element, the application assumes it is a wire or collection of wires.

Recognized circuit elements are displayed with bitmap representations while recognized
wires are displayed as straight lines. The lines are not manhattanized because it is not obvi-
ous where the user would want to place the additional segment generated by manhattaniz-
ing a wire that is almost horizontal or almost vertical. All recognized items, including

wires, are aligned with nearby items and are electrically connected to these items.

The “tails” generated by slow switch response on pen-up are dealt with by adding tem-
plates incorporating these tails to the library. By observing actual users in action, we were
able to generate a list of situations where these tails commonly arise. Slow switch response
is also partly responsible for pen taps producing short lines on the screen. The application

detects short lines and interprets them as pen taps.

In this application, the recognition algorithm is very simple and completes in a fraction of
a second. However, to allow for more sophisticated recognition in future, there is a status
indicator on the top-right corner of the main window which says “Busy” during recogni-
tion. It is also an indication to the user that recognition has begun so the screen display is

being updated.

Items on the screen, including circuit elements and wires, may be selected by tapping the

pen on the item. Selected circuit elements appear in inverse video while selected wires

119

appear as dotted lines. This representation was chosen because the InfoPad has a mono-
chrome screen which does not allow visual feedback in color. Many items may be selected

at the same time. Items may by moved by tap-and-drag.

There is a concept of the “current item”, which is the item under the pen. The pen cursor
is normally a “pen”, but it changes to a “hand” when it is over an item. The internal iden-
tifier of that item, which is defined as the current item, is reported on the top-right of the
application’s main window under Item. Label is the user-supplied label for the current

item.

The Edit menu supports all the common editing commands including rotation, reflection,
adding new elements (this is an alternative to drawing the circuit element), adding/editing
parameters, deletion, mass selection, and undo. The Edit menu can be invoked by tapping

the pen on any open space in the drawing canvas.

Parameters of an item may be added or changed by selecting the item (via a pen-tap on the
item) and then selecting Edit Parameters from the Edit menu. An editing form, shown in

Figure 6-2 for an MOS transistor, comes up and the user may use the handwriting recog-

aear | cancet | oK |

Figure 6-2. Parameter Editing Form for MOS Transistors

nition widget described in Section 4.4.2.1. on page 50 to enter an optional label and the rel-
evant parameters. The form is customized to the current item. For wires, the form contains

only a label entry.

120

The Speech menu brings up a widget that controls the speech recognizer described in

Section 5.5. on page 87. This widget is shown in Figure 6-3 and allows the user to control

MR EM R R e peiie

Figure 6-3. Speech Recognition Control Widget
noise immunity, silence detection, and gain.

All commands on the Edit menu may be spoken at any time. The list of speakable com-

mands is in Table 6-1. This list is limited to the most commonly used commands to maxi-

Rotate 90
Reflect X-ray

Reflect Yankee

Edit Parameters
Add Resistor
Add Capacitor
Add NMOS
Add PMOS
Add Vdd

Add Ground
Select All
Deselect All

Delete Selection
Undo

Table 6-1. List of Speakable Commands

mize recognition accuracy. Speakable items are kept short for ease of use. An attempt is

121

also made to differentiate the items as much as possible. That is why we use *“Reflect X-

ray” and “Reflect Yankee” instead of “Reflect X and “Reflect Y™ respectively.

The SPICE menu allows the user to generate a SPICE deck and specify the path and name
of the file in which to store the deck. It also allows the user to pull up forms for entering

simulation control parameters.

As explained in Section 6.1.3, this application does not use ben double-taps nor the barrel
button. There are three sliders to control critical, user-dependent variables. They are
located just below the menu bar at the top of the main window. The Alignment Threshold
slider specifies the maximum distance between the end of a line and the nearest item’s
nearest terminal for them to be electrically connected. If they are connected, then the item

that was just added or moved is aligned to the existing item.

The Line Length Threshold slider specifies the minimum length of a stroke or line seg-
ment before it is considered a line. This parameter is used in two cases. The first case is
when the pen is tapped. If the line length generated is smaller than the parameter, the event
is considered a tap, not a line. In the second case, whenever a stroke is segmented into
straight lines, each resulting line’s length is compared to this parameter. If the length is

smaller, then it is considered noise and ignored.

The Recognition Timeout slider specifies the time after the pen is lifted before recognition
begins. If the user finds that recognition occurs before he has finished his strokes, he should
increase the value of this parameter. If he finds that recognition begins too late for his com-

fort, he should decrease the value of the parameter.

All three parameters are initialized with reasonable defaults.

6.1.5. File Format

The file format used by the Circuit Schematic Recognizer is illustrated in Figure 6-4 for
the circuit in Figure 6-1, and the syntax of the file is illustrated in Figure 6-5. The first line
contains the name of the circuit, some of its parameters, and a list of its elements. This is
followed by a line for each circuit element, including wires. Each line contains the type,

name, location on the screen, orientation, label, names of connected neighbors for each ter-

122

circuit test 1 5 10 1900 20 rl ¢l vl nl pl gl wire0 wirel
wire2 wire3 wired wire5 wire6 wire7 wire8 wire9 wirell wirell
wirel2 wirel3l

resistor rl 244 207 0 none 2 wirel0 wirell
capacitor cl 202 206 0 none 2 wire8 wirel3

vdd v1i 147 111 0 none 1 wire2 1 1 -1
nmos nl 133 206 0 none 3
pmos pl 136 151 0 none 3

ground gl 139 264 0 none

wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire

wire0
wirel
wire2
wire3
wired
wire5
wireb
wire?
wire8
wire9

wirelO0 0 247 207 250 191
wirell 2 247 233 249 255
wirel2 3 249 255 152 255
wirel3 2 211 223 209 252

P MNMWWwEDDWNDNDND

155
152
157
136
103
107
102
232
211
232

171
226
121
161
169
215
192
189
191
189

152
149
155
103
107
133

wire5 wire0 wirel 2
wire3 wire2 wire0 1

1l wirel 2 0

206
264
151
169
215
216

none
none
none
none
none
none

pl drain nl source 0
nl drain gl ground 0
vl vdd pl source 0
pl gate wire4d 1 0
wire3 2 wire5 1 0
wire4 2 nl gate 0

56 198 none none none none none 0

152 189 none wire9 1 none none 0

211 206 none none none cl positive 0
312 190 none wire7 1 none none 0

none rl positive none none 0
none rl negative wirel2 1 0
none wirell 2 none none 0
none cl negative none none 0

Figure 6-4. Circuit Schematic File Example

circuit <circuit_name> <scale> <line_threshold>
<align_threshold> <timeout> <element_count>
<element_1 element_2...>

<element_type> <element_name> <x_coordinate> <y_coordinate>
<orientation> <label> <wire_count>
<wire_name_1l wire_name_2...>
<wire_terminal_1l wire_terminal_2...>
<parameter_count> <parameter_1l parameter_2...>

Figure 6-5. Circuit Schematic File Syntax

minal, the names of the connected terminals of each connected neighbor, and all parame-

ters for that element.

123

6.1.6. Suggested Improvements
The Circuit Schematic Recognizer works well for most users, especially after they have
gotten familiar with the templates used for recognition. However there are numerous

improvements which would make it work even better.

The most visible improvement would be capture of handwritten labels and parameters on
the drawing canvas itself. This would remove the need for a separate form for such data
entry and also the need for the stand-alone handwriting recognition widget. An extension
to this would be to capture drawn gestures as shorthand for menu commands, similar to

keystroke shortcuts in regular computers.

Even if we continued to use the current parameter entry form, it would be nice to write
directly into the form rather than into a separate widget application. A tk widget that encap-
sulates the entire handwriting recognition widget application for inclusion into applica-
tions is currently under development (see Section 4.4.2.2. on page 51) and using this

widget allows this capability.

A color screen would make the application look nicer and allow other modes of user feed-
back. For example, labels are currently not displayed on the drawing canvas because it
would clutter up the screen. But with a color screen the labels could be displayed in a dif-

ferent color. Selected items or the current item could also be displayed in a different color.

A drag-and-drop palette of circuit elements may be useful, but this usefulness is debatable
because dragging and dropping an element across the screen requires a large arm move-
ment. Also, the small screen means that the screen real estate consumed by a palette may

be too expensive.

The small screen size also limits the size of the circuit that may be drawn. A larger screen
supporting a larger drawing canvas would help. Currently, the canvas does not scroll but
adding a scrolling capability is clearly a big win on the InfoPad. Other non-mobile plat-

forms may be able to afford a larger screen.

The application is currently modeless, so the operation executed in response to a user event

depends on screen context. For example, tapping the pen on the screen executes a different

124

command if it is over a circuit item than over white space. However there are advantages
to moded behavior and it would be interesting to implement an interface with separate

drawing and editing modes.

There is currently no drawing grid on the drawing canvas, and no gravity or snap. Imple-
menting a drawing grid would allow easy manhattanization of the wires, especially if the

grid is very coarse. This option should be investigated.

The current circuit element recognizer uses a relatively simple template-based algorithm.
A more complex algorithm may achieve better recognition accuracy and promote better
user interaction. For example, the present algorithm requires that all drawing be done and
the pen lifted before recognition is done. It also requires that lines be drawn in a predefined
way. There is no writer adaptation. A more sophisticated algorithm could recognize incre-

mentally and adapt to the user.

Casual tests showed that the speech recognizer works well for some users and badly for
others. Adaptive training is needed to enable each user to get better recognition accuracy.

The full power of the speech recognizer’s interface should exploited in this application.

Not all SPICE control commands are supported in this application. For completeness, even

the more esoteric ones should be supported.

6.2. Electronic Notebook

The Electronic Notebook application was designed as a test of the pen inking capabilities
of the InfoPad system infrastructure. In particular, it tests the loop consisting of pen packet
collection, transmission from the terminal to the Pen Server through InfoNet, transmission
of pen resolution data to the notebook application, generation of X events in the applica-
tion, processing of X events in the X server, and transmission of bitmaps from the X server
to the terminal through InfoNet. This application was crucial in identifying timing bottle-

necks early in the project.

The application also highlights the ability of the pen to function as a pointing device as well

as a drawing tool.

125

6.2.1. Desired Functionality

The Electronic Notebook functions as a personal appointment calendar. Users use the pen
to navigate through the calendar’s pages by clicking on the appropriate date. Once at the
desired date, the application displays a writing canvas upon which the user may write or
sketch. Handwritten or sketched items may be sent to a recognizer for processing and the

resulting representations displayed instead of electronic ink.

There should be no limit to the number of pages per day, nor to the size of each page. There

should also be no limit to the complexity of the ink on each page.

6.2.2. Lessons Learned

Developing an electronic ink application was an interesting early learning experience.
When drawing on the screen, we found that horizontal ruled lines were essential for main-
taining coherency in handwriting. Without lines, users write sloppily and very large, exac-
erbating the limitations of the small screen. Having reasonably spaced lines improved

readability and user satisfaction.

All pen digitizers from the same vendor do not have identical parameters. Each piece has
to be calibrated separately. Also, the digitization is not linear. Even if the pen registration
is accurate at all four corners, it may not be correct at the center of the screen or, more com-
monly, along the edges of the screen. Therefore, a compromise was made by registering

along the centers of the four edges rather than at the corners.

Existing standards for storing electronic ink are not really standard. The JOT standard
[S1at93] had plenty of industry support but was short-lived. The UNIPEN standard
[Guyon94] is relatively new and it remains to be seen whether widespread university and

research laboratory support ensures its survival.

Feedback to the user is extremely important. When the pen cursor was turned off, users
were hesitant and made many mistakes. When buttons did not light up on pen focus, users
were again hesitant and made mistakes. This is especially so because of the parallax prob-

lem and imprecise pen registration.

126

6.2.3. Implementation

The Electronic Notebook was implemented using Tcl and the Tk toolkit for the graphical

user interface and C to process and store electronic ink. Its interface is shown in Figure 6-

File| Edit| Options| Help]

< | September1993 | > |
S M T W T F 8
1.2 3 4
5 6 7 8 9 10 1
12 13 14 15 16 17 18
19 20 21 22 23 EEW 25
26 27 28 29 30
< | oOctoser1993 | > |
S M T W T F S
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
177 18 19 20 21 22 23
24 25 26 27 28 29 30
31

T I T I I I I it

T et

Figure 6-6. Screen Shot of Electronic Notebook Application

6. Users tap the pen on the desired date to pull up the page corresponding to that date. The

arrows beside the month allow navigation to other months. The usual file manipulation and

editing functions are supported via pull-down menus. The user may sketch or write any-

thing he likes. There is no limit to the complexity of the writing nor to its extent within the

page.

The pages are lined to reduce writer sloppiness and to aid future inclusion of handwriting

recognition. The line spacing is controlled via the Options menu.

Due to the lack of stable standards for storage of electronic ink, we designed our own data

storage format and disk format. Internally, Strokes are stored as linked lists of pixels. Any

piece of writing is stored as a Word, which is a linked list of Strokes. The Stroke and

127

Word structures are shown in Figure 6-7. The Baselines in the WordStruct are useful to

typedef struct _StrokeStruct{
int **x, *yi
int PixelCount;

} StrokeStruct;

typedef struct _WordStruct({
StrokeStruct *Strokes;
int StrokeCount; .
int UpperBaseline; /* smaller number than
* LowerBaseline */
int LowerBaseline;
} Wordstruct;

typedef struct _TSetDataStruct {
WordStruct *Words;
int WordCount;

} TSetDataStruct;

Figure 6-7. Electronic Ink Stroke and Word Structures

a handwriting recognizer. Writing on separate lines are stored are separate Words, and all

writing for a particular page is stored in a TSetDataStruct.

Originally, the StrokeStruct had an array of pixels and the WordStruct had an array of
Strokes rather than linked lists. However, it turned out that if the application runs for sev-
eral days without interruption, sufficient memory fragmentation occurs that the worksta-
tion runs out of memory. Using linked lists, the application does its own memory

management and therefore does not suffer from memory fragmentation.

The file format for electronic ink is shown in Figure 6-8. WordCount is the number of
lines of handwriting on a page, StrokeCount is the number of strokes on the line. Pixel-
Count is the number of pixels in the stroke. The UpperBaseline and LowerBaseline are
the lines bounding the writing area. In this case, the writing area is bounded by the drawn
lines above and below the writing. This file format mirrors the internal handwriting repre-

sentation.

128

WordCount= 1
StrokeCount= 3
UpperBaseline= 50
LowerBaseline= 100
PixelCount= 6
112 680

112 681

112 685

112 688

111 693

136 778
PixelCount= 4
112 685

112 688

111 693

136 778
PixelCount= 4
212 685

212 688

211 693

236 778

Figure 6-8. Electronic Ink File Format

6.2.4. Suggested Improvements
The most visible improvement would be to implement scrolling of the writing area. Cur-

rently, there is no scrolling.

Currently, handwriting recognition is not connected to the application, so handwritten
input must remain electronic ink. It is desirable to allow the user to segment the drawing
area and allow him to send the contents of selected areas to a handwriting recognizer. Rec-

ognized text could then replace electronic ink. The same applies to drawings.

Current editing capabilities are very basic, comprising selection and deletion. Addition of

scaling and translation would help, as well as merging and smoothing of strokes.

129

7 Conclusions

7.1. Summary of Results

In this thesis, we have reported the design and implementation of a pen and speech based
User Interface Architecture for mobile multimedia terminals. Although this architecture is
targeted towards the InfoPad system, most of its components are equally usable in other
environments. In particular, the author considers Computer Aided Design (CAD) to be the
most promising area in which a pen and speech based user interface can add value and suc-

ceed.

The pen and speech input paradigm could be the wave of the future in user interfaces for
small computers. This interface requires a large amount of computational power to be
effective, and this computational power is not currently available to portable computers.
The power of this architecture lies in its network-centric design paradigm. By using the
resources of a fast network and compute servers, the architecture overcomes many of the
limitations of current portable computers that prevent their adoption of recognition-based

user interfaces.

The research contributions reported in this thesis include the User Interface Architecture
design and the implementation of all of its components. We also examine the situations in
which handwriting recognition is preferable to speech recognition, and vice versa. These

contributions are summarized in the following sections.

7.1.1. User Interface Architecture
We designed and built a network-based user interface architecture which allows remote
provision of pen and audio data services as well as handwriting and speech recognition ser-

vices to applications. The servers run remotely and communicate with applications and

130

with each other over the Internet, thereby off-loading the computational demands of com-

pute intensive servers such as recognizers from the application’s CPU.

This architecture has several major components. The Pen Server translates a raw byte
stream from the InfoPad terminal’s pen digitizer into a device-independent format and
over-samples this data in space for device-independent spatial resolution. Data is accessed
via the Pen Server’s API. The Pen Server also emulates the mouse by generating X mouse
button and motion events, sub-sampled in time to avoid overwhelming the X server and

sub-sampled in space to match the resolution of the screen.

The Audio Server reads an 8 kHz 8-bit p-law audio stream from the InfoPad terminal’s
microphone and makes this data available to applications. Applications wishing to access
the terminal’s speaker must send the data to the Audio Server, which mixes data from all
sources, translates it into 8-bit u-law, and sends it to the terminal. The Audio Server is
accessed via the standard AudioFile API so that existing AudioFile-compliant applications

do not need modification nor re-compilation to use the InfoPad’s audio capabilities.

The handwriting and speech recognizers run as servers on remote machines since they are

very compute-intensive. The recognizers are summarized in the following sections.

7.1.2. Handwriting Recognition

In the handwriting recognition portion of the thesis, we analyzed the InfoPad system’s
handwriting recognition requirements. We concluded that handwriting recognition is best
employed in specifying file names, URLs and e-mail addresses. A handprint recognizer is
necessary for this purpose. A cursive recognizer is useful for mass text entry but since this

is not a primary application for the InfoPad, cursive recognition is optional.

We therefore built a hidden Markov model based handprint recognizer which has two inde-
pendent vocabularies. The 61-character recognizer supports all uppercase and lowercase
alphabetic characters and some special characters. The digit recognizer supports the ten
numerals. We also examined the user interaction model, programming model and APIs for

access to the recognizer, providing three different access mechanisms.

131

7.1.3. Speech Recognition

Speech recognition is necessary in the InfoPad system to issue commands. This requires a
small, flexible recognizer which can tailor itself to the current application. Such a system
was developed and deployed by another student. It does not run as a remote server but is
compiled into the application. This recognizer runs fast enough the it does not load down
the CPU very much. As in handwriting recognition, we examined the user interaction
model and the programming model. Only one access mechanism for this recognizer is cur-

rently provided.

For general dictation, a large vocabulary speaker independent system is required. This
system requires a large amount of computation. A custom hardware solution using custom
VLSI chips was built which could be the basis for a spoken dictation server. This hardware
system supports several hidden Markov model based speech recognition algorithms. As
speech recognition technology improves, new algorithms may be similarly implemented
in a hardware server for real-time performance. This recognizer would be accessed by

applications as a remote server.

7.1.4. Applications

We built applications to exercise and test the User Interface Architecture and all of its com-
ponents. The primary application is the Circuit Schematic Recognizer, a Computer Aided
Design (CAD) application that uses pen input for drawing circuit elements and wires,
speech recognition for commands, and handwriting recognition for parameters. We dis-
covered many characteristics of using pen digitizers that are different from interacting with
the mouse. The use of both the pen and audio input modalities in the same application

allowed us greater insight into this new user input paradigm.

7.2. Future Work

There are several areas in which further development could be done and others in which
further research is promising. Due to the need to graduate in a finite amount of time, we
were not able to explore all these issues in depth as part of this work. We examine the

development topics and the research topics as separate categories, since the former would

132

be an integral part of the InfoPad project but the latter would be applicable in other envi-

ronments as well and are good starting points for future Masters or Ph. D. projects.

7.2.1. Development Projects

There are several small projects that fall within the scope of the user interface effort which
would benefit the InfoPad project. They are development projects which are not generally
applicable to other systems although some of the ideas expressed below are certainly trans-

ferable.

7.2.1.1. Audio Focus Manager

There is ciJrrently no infrastructural control of audio focus. All applications may write and
receive audio data at any time, and it is up to the application programmer to provide the
user with the capability to turn an audio stream on or off. There is also no mechanism for

the application to determine if it has mouse focus.

This scheme is clearly not optimal. The user should be able to control the audio character-
istics of all applications in one central place. On the uplink, audio focus should be control-
lable by the user and the application so that applications may elect to receive audio only on
cue, only on pen focus, or continuously. On the downlink to the speaker the overall volume
and the relative volume of all audio streams should be user-controllable. The user should

also have the option of turning off the microphone and speaker via software control.

The Audio Focus Manager will also allow exploration of other models of access to audio

data.

7.2.1.2. Pen Server Control Widget

The Pen Server has several parameters that are either hard-coded, specified on the com-
mand-line or specified by the applications that connect to the Pen Server via its API. These
parameters should be accessible to the user via a Pen Server Control Widget so that his
preferences may be used in the user interface. One such set of parameter is registration
information, which should be supported by allowing the user to align the pen whenever he

wants by running a registration routine via the Pen Server Control Widget.

133

Another parameter is the presence or absence of a pen cursor. Some users prefer that there
not be a pen cursor. Others prefer that the pen movements not be tracked by the pen cursor
when the pen is up or, conversely, when the pen is down. Control of all these behaviors is

available to the applications programmer but not to the user.

7.2.1.3. Handwriting Recognition Widget _

The handwriting recognition widget needs a lot of work. It needs a raised baseline to allow
for characters which have descenders, such as g and y. It needs to talk to all applications
rather than just the Tk-enabled ones. Most of all, it needs to be encapsulated into a widget
that is included in the application rather than running as a separate application. This would
make for a better user interface since users write directly on the input form rather than in
a separate window. All widgets connect to a single recognizer similar to the one described
in Section 4.7.3.3. on page 65, except that this recognizer will be running as a server rather
than compiled into the application. If this were not the case, the application could grow to

be unreasonable large if there are many entry boxes on the form.

The current correction mechanisms should be augmented or replaced with drawn gestures
that are recognized and interpreted. The current correction mechanism is clumsy and occu-
pies too much screen area, especially if the widget is to be replicated many times, once for

each entry box on a form.

7.2.1.4. Speech Recognition Widget

The current speech recognizer has one control widget per application, but many of the
parameters are common to all applications, such as garbage threshold, confidence thresh-
old, gain, silence time-out, and noise/silence threshold. All these parameters should be
controllable for all applications via just one widget. This widget should also provide user

feedback by reporting the most recently recognized utterance.

7.2.1.5. User Interface Control Widget
This widget is an application that provides controllability and observeability of all the com-

ponents of the User Interface Architecture. The user would use this widget to control the

134

parameters of each component. In addition to controlling each of the data and recognition
servers, it would also allow control of all parameters that are common to many applica-
tions, such as gesture interpretations and parameters for the encapsulated handwriting rec-
ognition widget. These parameters include tick-mark separation, recognition time-out,
writing area size, and handedness (left or right). Handedness information can help recog-

nition accuracy and tell applications on which side of the pen (left or right) to post menus.

7.2.1.6. Other Improvements

There are some other improvements that would help the InfoPad terminal’s user interface.
Using a Wacom digitizer instead of a Logitech Gazelle would allow use of a smaller pen
that does not require batteries. 16-bit, 16-kHz audio in and out would greatly improve rec-
ognition accuracy and sound quality. A color screen would improve readability and allow
more modes of user feedback. Modifier buttons, as described in Section 1.4.1. on page 7,
would allow more modes of user input, as would additional function buttons. Using the

screen in portrait mode would make the paper-like interface more complete.

There is currently no formal way to benchmark the system and quantify how well we are
doing in terms of the quality of the user interfaces we build. We need to come up with real

tests and gather statistics on the user acceptability of the interfaces.

7.2.2. Research Projects
There are some areas of future work arising from this thesis which are applicable to a wide
range of pen and speech based systems, and which are good research areas in their own

right. Some of these areas are described below.

7.2.2.1. Complex Event Manager

Currently, the InfoPad is cognizant of pen events, audio events, handwritten events and
speech events, the latter two being results of recognition. However these events work in
isolation. There is no synergy in these events and modes of interaction. Research needs to
be done in discovering the kinds of complex, multi-modal events which make sense and in

establishing standard interpretations of these events which may be shared across applica-

tions.

135

In order to do this, the Pen and Audio Servers as well as the handwriting and speech rec-
ognizers should communicate with applications via a Complex Event Manager. This Man-
ager would look for complex events, which are sets of simple events with special, pre-
defined timing and/or spatial relationships, and interpret these events before passing them
on to applications. This is analogous to how a window manager such as twm works in the

X Window System.

7.2.2.2. Synergy Between Handwriting and Speech Recognition

In the InfoPad system, the handwriting and speech recognizers work independently with-
out taking advantage of the fact that handwriting and speech recognizers tend to have
errors that are orthogonal, and can therefore complement each other. At first glance, one
method would be to have the user write as well as say all input, using handwriting to gen-
erate a list of recognition hypotheses and speech to pick the correct hypothesis from this

list. But this is very clumsy. Users balk at having to both write and say everything.

A more realistic approach would be to do post-recognition correction. If the handwriting
recognizer makes an error, the speech recognizer could be used to select from the list of
hypothesis subsequently: speech is only used if an error is made by the handwriting recog-

nizer.

Another area for exploring the synergy between handwriting and speech recognition would
be in complex events, similar to events described Section 7.2.2.1. In this case, the user

would use speech as a modifier for handwritten characters or gestures.

7.2.2.3. Handwriting and Speech Recognition

Handwriting and speech recognition are major research areas in their own rights, with
many well-organized and capable groups of people working on improving recognition
accuracy and reducing computational overhead in terms of processing power and memory
requirements. Work is also in progress on recognizers that are robust in the presence of
noise and varied data capture hardware. User-adaptive recognition is a hot research area.
Progress in all these areas is critical to improving future recognition-based user interfaces

but there are other characteristics of recognition that must be addressed as well.

136

Most current recognizers are not well packaged for use in real applications. More work
needs to be done on applications programming interfaces and in encapsulating the pro-
gramming interface to insulate the programmer as much as possible from the operational
details of recognition. The work reported in this thesis goes some way towards attacking

this problem but there is a lot more to be done.

Models for user interaction with recognizers are currently primitive. More work needs to
be done on encapsulating the user’s interaction with recognition objects and on providing
feedback to the user on the performance of the recognizer and the recognition results. For
example, how does the user know what the speech recognizer detected? DragonDictate
[Drag94] uses a control window that displays the recognition results of the latest utterance

but surely there are better ways, such as audio cues, which can be application dependent.

7.2.2.4. Integrated Document Editor

The Integrated Document Editor may be the killer application that will show that handwrit-
ing and speech recognition has arrived. This application would use cursive handwriting
recognition or spoken dictation recognition for mass text entry, printed handwriting recog-
nition for file names and other dictionary words, handwritten gesture recognition or spoken
command recognition for keystroke shortcuts or short commands, and drawn geometric

object recognition for sketches, computer aided design and other specialized applications.

The challenge in building this application would be integrating the recognizers and draw-
ing areas in such a way that it is possible to determine which recognizer to use for any one
input object. This application would also drive the development of the various kinds of rec-
ognizers and use the entire user interface infrastructure. A related challenge is the user
feedback and data display problem. This is the issue of letting the user know that his input
data and commands have been accepted and correctly interpreted, and the related issue of

recovery from recognition errors.

This application would allow exploration of all the issues examined in this thesis and, if

successful, would be a harbinger of other recognition-based applications to come.

137

Appendix: Handwritten Character
Sets

In this appendix we list the various ways of writing each character in the training set used
for handwriting recognition. The characters in the 61-character recognizer are in Table 8-
1 and the digits are in Table 8-2. For multi-stroke characters, the strokes can often be writ-
ten in any order. The arrowhead at the tip of each stroke indicates the direction of the

stroke.

138

Character

Table 8-1. Character Set for 61-Character Recognizer

139

Character Representations

T

O)
PP

O¥ (G |0

79

R
0
et

Sl<|c [Tl

'y,

XX KX

| v/
Z 22 Y

Table 8-1. Character Set for 61-Character Recognizer

140

A S A A A
BB
GG G
HoH HHY A
TJT IO
I KK
L L

O, &1

EF -

Table 8-1. Character Set for 61-Character Recognizer

Representations

NN N

P PP

Q Q
KRR

T J Tt

VAN VANY,

X % X

YYVYYYY

Character

R

w

Table 8-1. Character Set for 61-Character Recognizer

142

Character

Representations

* (asterisk)

<,
8

@ (at sign)

! (exclamation mark)

Z
ra
@)
?

- (minus)
—_— -
. (period)
[
/ (slash) /
~ (tilde) ~» e

tt (double t)

_ (underscore)

L S

€

Table 8-1. Character Set for 61-Character Recognizer

143

2., C 2.
L. 4 4

@ 6
7 727

G

X358 X

N

S99 G

Digit | Representations

2

8

Table 8-2. Character Set for Digit Recognizer

144

9 Appendix: Software Organization

In this appendix we list the files comprising each piece of software reported in this thesis.

All files may be found in the InfoPad software distribution.

9.1. Pen Server
The Pen Server source tree may be found in /tools/infonet/type_servers/pen/gazelle/vcur-

rent, and its component files are listed in Table 9-1.

9.2. Audio Server

The Audio Server source tree may be found in /tools/infonet/type_servers/audio/vcurrent,
and its component files are listed in Table 9-2. Since the source tree is a modified version

of the AudioFile source tree, only files which differ from AudioFile are listed in the Table.

9.3. Handwriting Recognizer

The Handwriting Recognizer source tree is stored in four directories in /tools/ui/handwrit-
ing. HMM/vcurrent contains the source tree for the recognizer itself, including the hidden
Markov model code. HW/vcurrent contains the source tree of the Data Capture and
Manipulation Package and support routines for electronic ink handling and feature extrac-
tion. data contains the training and test data captured. models contains the hidden Markov

model parameter files. These directories are listed in Table 9-3 to Table 9-6.

9.4. Circuit Schematic Recognizer
The Circuit Schematic Recognizer source tree is stored in /tools/ui/schematic/vcurrent. Its

component files are listed in Table 9-7.

145

File Name I Description !
README Pen Server modification history.

bin/solaris/gazelle_gw | Pen Server executable, solaris version.

bin/solaris/pentest Pen Server test program, solaris version.

bin/sunos/gazelle_gw Pen Server executable, sunos version.

bin/sunos/pentest Pen Server test program, sunos version.

include/gazelle_gw.h Header file containing function prototypes and data type definitions
internal to the Pen Server.

include/penpriv.h Header file containing data type definitions common to the Pen Server
and its API routines.

include/penproto.h Header file containing function prototypes and data type definitions
for the API. This file is included by applications that require pen-reso-
lution data.

lib/solaris/libpenlib.a Object library file for Pen Server API, solaris version.

lib/solaris/libpenlib.so | Object library file for Pen Server API, solaris version.

lib/sunos/libpeniib.a Shared object library file for Pen Server AP, sunos version.

lib/sunos/libpenlib.so Shared object library file for Pen Server API, sunos version.

man/man1/gazelle_gw.1 | Manual page for the Pen Server.

man/man3/penlib.3 Manual page for the Pen Server APL

scripts/penns Script to start up the Pen Server with the appropriate command-line
options and UNIX environment variables.

scripts/penns.tcl tcl script to start the Pen Server with the appropriate command line
variables. penns.tcl also registers the Pen Server with the InfoNet
Name Server.

src/gazelle_gw.c C source file for the Pen Server.
src/penlib.c C source file for the Pen Server API.
src/pentest.c C source file for the Pen Server test program.

Table 9-1. Pen Server Source Tree

9.5. Notebook Application
The Notebook source tree is stored in /tools/ui/apps/notebook/vcurrent. Its component files
are listed in Table 9-8.

146

File Name

Description

AF/server/dda/sparcl/sparc.c | Code for the part of the Audio Server which co:nects t=o the InfoNet

Pad Server to obtain audio uplink data and to send audio downlink
data.

bin/solaris/Asparc1 Audio Server executable, solaris version.

bin/sunos/Asparcl Audio Server executable, sunos version.

doc/user_guide Document describing how to run the Audio Server and how to use its
APL ’

scripts/audions Script to start up the Audio Server with the appropriate command-line

options and UNIX environment variables.

scripts/audions.tcl

tcl script to start the Audio Server with the appropriate command line
variables. audions.tcl also registers the Audio Server with the InfoNet
Name Server.

Table 9-2. Audio Server Source Tree

147

File Name Description
lib/solaris/HMM.a Object]ibrary_ﬁle containing the entire recognizer with the Sun APL
lib/solaris/HMM.so Shared object library file containing the entire recognizer with the Sun

APL

man/manl/recogCursive.]

Manual page for the stand-alone handwriting recognition server.

man/man3/recoglib.3

Manual page for the API of the stand-alone handwriting recognition
server.

src/Edge.{h,cc}

Source and header files for Edge objects in the recognizer. These
objects contain information relating to transitions between pairs of
states.

src/HidMarkMod. {h,cc}

Source and header files for HMM objects in the recognizer. These
objects contain information relating entire HMMs.

src/LList.{h,cc}

Source and header files for linked list objects in the recognizer.

src/NBest.{h,cc}

Source and header files for NBest objects in the recognizer. These
objects contain the N best alternatives returned by the recognizer.

src/PDF.{h,cc} Source and header files for PDF objects in the recognizer. These
objects contain probability density functions.
src/Prob. {h,cc} Source and header files for Edge objects in the recognizer. These

objects contain individual probabilities.

src/SpeechData. {h,cc)

Source and header files for SpeechData objects in the recognizer.
These objects contain feature vectors extracted from the input.

src/State.{h,cc}

Source and header files for State objects in the recognizer. These
objects contain information relating to Markov states within a HMM,
including grammar nodes.

src/StringList. {h,cc)

Source and header files for StringList objects in the recognizer. These
objects contain lists of strings, and are used to return recognized
results.

src/StringUtil.{h,cc}

Source and header files for utilities that operate on StringList objects
in the recognizer.

src/cursive2HmmName.cc

Routines for translating file names to and from the character string
represented by that file name.

src/cursiveHMMNames. { h,cc}

Routines for translating file names to and from the character string
represented by that file name.

src/hre.{h,cc}

Top level source file for the recognizer with the Sun APL

src/newFilelO.{h,cc}

Routines for file handling.

src/newGiveGrade. {h,cc}

Routines for scoring recognition results versus expected results.

src/recogCursive.cc

Top level source file for stand-alone recognizer.

src/trainCursive.cc

Top level source file for recognizer training.

Table 9-3. Handwriting Recognizer Source Tree

148

File Name Description ‘

bin/GetComment.tcl tcl file containing entry widget allowing ‘users to enter a comment into
a data file.

bin/GetDataWord.tcl tcl file containing entry widget allowing users to specify the word
being stored in a data file.

bin/GetFeatureWord.tcl tcl file containing entry widget allowing users to specify the word
being stored in a feature file.

bin/GetWordCount.tcl tcl file containing entry widget allowing users to specify the number
of words to capture in a data entry session.

bin/HW.tcl main tcl file for the Data Capture and Manipulation Package.

bin/HWtcl executable of interpreter for tcl files in the Data Capture and Manipu-
lation Package.

include/HW.h header file for applications that use the Data Capture and Manipula-
tion Library.

include/HWIlib.h same as HW.h.

lib/libHW.a library file containing all the routines in the Data Capture and Manip-
ulation Package excluding user interface routines.

src/HWPen.h header file for HWPen.c.

src/HWicl.h header file for all routines that use the graphical user interface.

src/HW.c top level source file for bin/HWtcl.

src/HWApplnit.c source file for tcl initialization routines.

src/HWCanvas.c source file for routines that display and manipulate electronic ink on a
canvas window.

src/HWCompare.c source file for routines that compare electronic ink.

src/HWCopy.c source file for routines that copy electronic ink into a new data struc-
ture.

src/HWExtract.c source file for routines that perform feature extraction.

src/HWFiles.c source file for routines for file manipulation.

src/HWMemory.c source file for memory management routines: this package does all its

own memory management.

Table 9-4. Data Capture and Manipulation Package Source Tree

149

File Name

Description

——— ——

src/HWMouse.c source file for routines supporting electronic ink capn.Tre via a mouse.

src/HWPen.c source file for routines supporting electronic ink capture via a pen dig-
itizer.

src/HWPrint.c source file for routines that print information regarding any piece of
electronic ink.

src/HWResample. source file for routines that re-sample electronic ink.

src/HWSegment.c source file for routines that segment electronic ink.

src/HWSort.c source file for routines that sort electronic ink.

src/HW StrokeNeighbours.c | source file for routines that determine which strokes are neighbors:
used in segmentation.

src/HWTruncate.c source file for routines that truncate the last few pixels from any piece
of electronic ink.

src/HWWindows.c source file for routines that display electronic ink and features.

src/Utils.c source file for general utility routines.

Table 9-4. Data Capture and Manipulation Package Source Tree

File Name Description
test/digits test data for digit recognizer.
train/digits1/hwdata raw captured handwritten digits for the digit recognizer.

train/digits1/segmented

segmented data from train/digits1/hwdata.

train/digits1/vectors

feature vectors extracted from train/digits1/segmented.

train/letters I/hwdata

raw captured handwritten characters for the 61-character recognizer.

train/letters 1/segmented

segmented data from train/letters1/hwdata.

train/letters1/vectors

feature vectors extracted from train/letters1/segmented using baseline
normalization, sorting, and ResampleRatio = 0.07.

train/letters1/vectors.new

feature vectors extracted from train/letters1/segmented using baseline
normalization and ResampleRatio = 0.07.

train/letters 1/vectors.test

feature vectors extracted from train/letters1/segmented using sorting,
without baseline normalization and re-sampling.

train/letters1/vectors_bl_0_sort

feature vectors extracted from train/letters1/segmented using sorting
and baseline normalization, without re-sampling.

Table 9-5. Handwritten Data Source Tree

150

[File Name

Description

macro/digits/digitRecognizer.hmm

HMM file for the digit recognizer.

macro/gen/bin/genTopLevel

executable file to create top level HMM files.

macro/gen/src/genTopLevel.cc

source file for genTopLevel.

macro/letters/169charRecognizer.hmm

HMM file for an old version of recognizer: recognizes 169 dis-
tinct characters.

macro/letters/169scharRecognizer.hmm

updated version of 169charRecognizer.hmm.

macro/letters1/printRecognizer.hmm

HMM file for the 61-character recognizer.

train/iter/*.hmm

HMM files for each digit.

train/iter.new/* . hmm

same as train/iter/*.hmm but with probabilities in scientific
notation.

train/letters 1/4biter_mm_0O_sort.new/
* hmm

HMM files for each character in the 61-character recognizer.

Table 9-6. Hidden Markov Model Parameters Source Tree

151

File Name

Description

bin/schematic UNIX shell script_ that forms the executable of the Circuit Schematic
Recognizer.
lib/*.xbm bitmap files for circuit elements.

man/manl/schematic.1

manual page for the application.

src/Vdd.tcl

source file for Vdd class.

src/capacitor.tcl

source file for capacitor class.

src/circuit.tel

source file for circuit class.

src/classes.tcl

file containing list of circuit element class source files.

src/editmenu.tcl

source file containing all code associated with the Edit Menu.

src/element.tcl

source file for element class, from which all circuit element classes
and the wire class inherit.

src/ground.tcl

source file for ground class.

src/line.tcl

source file for line class.

src/nmos.tcl

source file for nmos class.

src/pmos.tcl

source file for pmos class.

src/resistor.tcl

source file for resistor class.

src/schematic.tcl

top level tcl source file for the application.

src/segment.tcl

source file for segment class.

src/spice.tcl

source file containing all code associated with the SPICE Menu.

src/src.tcl

source file for source class.

src/wire.tcl

source file for wire class.

Table 9-7. Circuit Schematic Recognizer Source Tree

152

File Name

Description

CreateMonthCalendar.tcl source file for code to create a window displagi-ng the calendar for a
given month.

GetDayOfWeek.(cl source file for calculating the day of the week given the date.

GetDaysInMonth.tcl source file for calculating the number of days in a given month.

GetNewNotebookName.tcl | source file containing code to prompt user for the name of a new note-
book and then read that notebook.

GoToDate.tcl source file containing code to prompt user for a date and then go to
that date.

InitArrays.tcl source file declaring and assigning global arrays.

SaveQuery.tcl source file containing code to prompt user to save a modified page

before going to another page.

UpdateMonthCalendar.tcl

source file containing code to update the calendar window to display
the current month.

notebook.tcl

top level source file for this application.

*c

source files for electronic ink manipulation, similar or identical to the
file in the Data Capture and Manipulation Package, as listed in
Table 9-4.

Table 9-8. Notebook Source Tree

153

Bibliography

[Aust90] S. Austin, P. Peterson, P. Placeway, R. Schwartz, and J. Vandergrift. “Toward a
Real-Time Spoken Language System Using Commercial Hardware.” In
Proceedings of the DARPA Speech and Natural Language Workshop, pages 72-77,
Hidden Valley, PA, June 1990.

[Baum72] L. E. Baum. “An Inequality and Associated Maximization Technique in
Statistical Estimation for Probabilistic Functions of Markov Processes.” In Oved
Shisha, editor, Inequalities III, pages 1-8, New York, NY, 1972. Academic Press.

[Burs96] A. Burstein. Speech Recognition for Portable Multimedia Terminals. PhD thesis,
University of California at Berkeley, 1996.

[Carr91] R. Carr. “Handwriting Recognition in the GO Operating System.” In Proc. IEEE
Compcon Spring '91, pages 483486, February 1991.

[Chan93] A. Chandrakasan, T.Burd, A.Burstein, S.Narayanaswamy, Sheng S., and
R. Brodersen. “System Design of a Multimedia I/O Terminal.” In VLSI Signal
Processing VI, pages 57-65. IEEE Press, 1993.

[Chan94] A. Chandrakasan. Low Power Digital CMOS Design. PhD thesis, University of
California at Berkeley, 1994.

[Cran93] H. Crane and D. Rtischev. “Pen and Voice Unite.” Byte Magazine, pages 98-102,
Oct 1993.

[Cros95] S. Crosby. “The a2x FAQ.” http://www.cl.cam.ac.uk/users/sac/a2x-faq.html,
1995.

[Doer96] R. Doering, T. Truman, and R. Brodersen. “A Modular Design for Wireless
Multimedia Access.” Kluwer Journal of VLSI Signal Processing, to be published
1996.

[Drag94] Dragon Systems, Inc. Dragon Dictate User’s Guide. Dragon Systems, Inc, 1994.

154

[ERL88] University of California at Berkeley Electronics Research Laboratory. “LagerIV
Distribution 1.0 Silicon Assembly System Manual,” 1988.

[Fuji93] T. Fujisaki, K. Nathan, W.Cho, and H.Beigi. “On-line Unconstrained
Handwriting Recognition by a Probabilistic Method.” In Proceedings of the

International Workshop on Frontiers in Handwriting Recognition, pages 235-241,
Buffalo, NY, May 1993.

[Gill95] D. Gillespie and J. Lazzaro. “The Log System.” http://www.pcmp.caltech.edu:80/
chipmunk/, 1995.

[Gold91] D. Goldberg and A. Goodisman. “Stylus User Interfaces for Manipulating Text.”
In Proceedings of the ACM Symposium on User Interface Software and
Technology, pages 127-135, Salem, MA, 1991. ACM Press.

[Gold93] D. Goldberg and C. Richardson. “Touch-Typing with a Stylus.” In INTERCHI
’93 Conference Proceedings, pages 80-87, Salem, MA, April 1993. ACM Press.

[Guyo092] L. Guyon, D. Henderson, P. Albrecht, Y.LeCun, and J. Denker. “Writer
Independent and Writer Adaptive Neural Network for On-Line Character
Recognition.” From Pixels to Features II1, pages 493-506, 1992.

[Guyo94] 1. Guyon. “UNIPEN 1.0 Format Definition.” http://www .nici.kun.nl/unipen/
unipen.def, 1994.

[Hass95] M. Hassoun. “SCAPP 9.0 Users Manual.” ftp://vlsil.ee.iastate.edu/pub/scapp,
1995.

[itc96] “Object-Oriented Programming in Tcl/Tk.” http://www.wn.com/biz/itcl/, 1996.

[Juan84] Juang, B. H. “On the Hidden Markov Model and Dynamic Time Warping for
Speech Recognition - A Unified View.” AT&T B.L.T.J., 63(7):1213-1243, January
1984.

[Kemp93] J. Kempf. “Integrating Handwriting Recognition into Unix.” In Proceedings of
the Summer 1993 USENIX Conference, pages 187-204, 1993.

[Kurt94] G. Kurtenbach and B. Buxton. “User Learning and Performance with Marking
Menus.” In CHI '94 Conference Proceedings, pages 258-264, Salem, MA, April
1994. ACM Press.

[Le951 M. Le, F.Burghardt, S.Seshan, and J. Rabaey. “InfoNet: the Networking
Infrastructure of InfoPad.” In Proc. Compcon 95, San Francisco, CA, 1995.

[Lee89] K. F. Lee. Automatic Speech Recognition. Kluwer Academic Publishers, Norwell,
MA, 1989.

155

[Leve93] T. Levergood, A. Payne, J. Gettys, G. Treese, and L. Stewart. “AudioFile: A
Network-Transparent System for Distributed Audio Applications.” In Proceedings
of the Summer 1993 USENIX Conference, June 1993.

[Lyon96] R. Lyon and L. Yaeger. “On-Line Hand-Printing Recognition with Neural
Networks.” In Proceedings of the Fifth International Conference on
Microelectronics for Neural Networks and Fuzzy Systems, Lausanne, Switzerland,
February 1996. IEEE Computer Society Press.

[MB095] “MBONE Information = Web.” http://www.best.com/ prince/techinfo/
mbone.html, 1995. MBone WWW Page.

[McMu92] L. McMurchie and C. Ebeling. “Wirec 3.2 Tutorial and Reference Manual.”
ftp://shrimp.cs.washington.edu/vlsi/wirec.3.2.tar.Z, 1992.

[Meta91] Meta-Software, Inc. HSPICE User’s Manual. Meta-Software, Inc, 1991.

[Micr95] Microsoft Corporation. Programmer’s Guide to Pen Services. Microsoft Press,
Redmond, WA, 1995.

[Murv89] Murveit, H. et al. “SRI’s DECIPHER System.” In Proc. of the Speech and
Natural Language Workshop, pages 238-242, Feb 1989.

[Nara96] Narayanaswamy, S. et al. “Application and Network Support for InfoPad.” IEEE
Personal Communications Magazine, to be published March 1996.

[Oust94] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing Company,
Reading, MA, 1994.

[Pall92] Pallett, D. et al. “DARPA February 1992 ATIS Benchmark Test Results.” In
Proceedings of the Speech and Natural Language Workshop, pages 15-27, San
Mateo, CA, February 1992. Morgan Kaufmann Publishers.

[Par96] “Paragraph Handwriting Recognition Technology: Calligrapher.” http://
www.paragraph.com/calligrapher/, 1996.

[Pen 95] Pen Computing Magazine. “PDA Buyer’s Guide.” Pen Computing Magazine,
Aug/Sept 1995.

[Raba88] J. Rabaey, A. Stoelzle, D. Chen, S. Narayanaswamy, R. Brodersen, H. Murveit,
and A. Santos. “A Large Vocabulary Real Time Continuous Speech Recognition
System.” In VLSI Signal Processing 111, pages 61-74, New York, NY, 1988. IEEE
Press.

[Rhyn91] J. Rhyne, D. Chow, and M. Sacks. “Enhancing the X-window System.” Dr.
Dobb’s Journal, pages 30-38, December 1991. '

156

[Rhyn93] J. Rhyne and C. Wolf. “Recognition-based User Interfaces.” Advances in Human
Computer Interaction, 4:191-250, 1993.

[Rowe92] L.A. Rowe and B.C. Smith. “A Continuous Media Player.” In Proc. 3rd Int.
Workshop on Network and Operating System Support for Digital Audio and Video,
Nov 1992.

[RR90] Racal-Redac. “Visula User’s Manual,” 1990.
[Sche91] W. Scheifler and J. Gettys. X Window System. Digital Press, Bedford, MA, 1991.

[Schm90] C. Schmandt, M. Ackerman, and D. Hindus. “Augmenting a Window System
with Speech Input.” IEEE Computer Magazine, pages 50-56, August 1990.

[Slat93] Slate Corporation. “JOT Version 1.0,” 1993.

[Stan86] Stanford University VLSI/CAD Group. “THOR Release 3.2 User’s Manual,”
1986.

[Stol92] A. Stolzle. A Real Time Large Vocabulary Speech Recognition System. PhD
thesis, University of California at Berkeley, 1992.

[Tapp90] C. Tappert, C. Suen, and T. Wakahara. “The State of the Art in On-Line
Handwriting Recognition.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(8):787-808, August 1990.

157

	Copyright notice 1996
	ERL-96-11 (1)
	ERL-96-11 (2)

