

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

PEN AND SPEECH RECOGNITION IN THE USER

INTERFACE FOR MOBILE MULTIMEDIA TERMINALS

by

Shankar Narayanaswamy

Memorandum No. UCB/ERL M96/11

25 March 1996

PEN AND SPEECH RECOGNITION IN THE USER

INTERFACE FOR MOBILE MULTIMEDIA TERMINALS

Copyright © 1996

by

ShankarNarayanaswamy

Memorandum No. UCB/ERL M96/11

25 March 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Pen and Speech Recognition in the User Interface

for Mobile Multimedia Terminals

by

Shankar Narayanaswamy

Doctor of Philosophy inEngineering - Electrical Engineering and Computer Sciences

University of California atBerkeley

Professor Robert W. Brodersen, Chair

Portable computers have soared in popularity over the last few years. Vendors are
introducing new models with smaller form factors, longer battery life, communications
capabilities and unique user interfaces using pen oraudio input

The design and implementation ofanetworked user interface architecture using hand
writing recognition and speech recognition is explored. Although the user interface
was designed for mobile multimedia terminals such as the InfoPad system, it ismore
generally applicable in any application domain where pen and/or spoken input are
preferable to keyboard input

We examine the kinds of handwriting and speech recognizers needed to provide an
effective user interface. There are several aspects to this problem. Firstly, there is the
user interaction model which determines where and how the user uses each input
modality. Secondly, there is the applications programming model which determines
the level of abstraction and the extent ofencapsulation of the recognizer's functional
ity. Thirdly, there isthe service provision model which determines whether the recog
nizer is part of the application or whether it runs as a separate thread or process, or
somewhere in between. The latter allows off-loading the recognition computation onto
aremote, possibly specialized server and minimizes the impact of compute-intensive
recognizers on otherapplications.

The entire infrastructure for apen and speech based user interface isdescribed, includ
ing asoftware hidden Markov model based writer-independent hand-print recognizer,
aVLSI hidden Markov model based large-vocabulary speaker independent continuous
speech recognizer, type servers tohandle the new data types and applications that exer
cise the entire user interface architecture.

Professor Robert W. Brodersen
Committee Chairman

Table of Contents

Acknowledgments xii

CHAPTER 1. Introduction 1

1.1. Motivation 2

1.1.1. Portable Computers/Communicators 2
1.1.1.1. Size Constraint 2
1.1.1.2. Weight Constraint 3
1.1.1.3. Other Considerations 3
1.1.2. Computer Aided Design 4
1.1.3. Persons With Disabilities 4
1.2. Enabling Technology 5
1.3. Pen Digitizer Technology 5
1.4. Limitations of Pen/Speech Interfaces 6
1.4.1. Pen Digitizers 7
1.4.2. Speech Recognizers and Noise 7
1.4.3. Recognition Errors 8
1.5. Previous Work 8

1.5.1. Pen Interfaces 8

1.5.2. Speech Interfaces 10
1.5.3. Pen and Speech Interfaces 11
1.6. Scope of Thesis 11

CHAPTER 2. The InfoPad System 12

2.1. System Design 12
2.1.1. InfoPad Applications 13
2.1.2. Design Objectives and Constraints 15
2.1.3. Design Choices 15
2.2. Wired Network Architecture 16
2.3. Terminal Design 17
2.4. Pen Subsystem on IPGraphics 21
2.5. Pen and Keyboard Subsystemson IPVideo 22

CHAPTER 3. The User Interface Architecture 28

3.1. Need for a New Architecture 28
3.2. High Level Description 29
3.3. Pen Server 32
3.3.1. Mouse Emulation 32
3.3.2. Pen-Resolution Data 33
3.3.3. General Operation 34
3.3.4. Command Line Options 36
3.3.5. Applications Programming Interface 36
3.3.6. Pen Support for X Workstations 37

iii

3.4. Audio Server 38
3.4.1. AudioFile Compatibility 38
3.4.2. Enhancements Over AudioFile 39
3.5. Handwriting and Speech Recognizers 40
3.5.1. Handwriting Recognizer 40
3.5.2. Speech Recognizer 41
3.5.3. Servers Versus Software Libraries 42

CHAPTER 4. Handwriting Recognition 43

4.1. Previous Work 43
4.1.1. GO Corporation 43
4.1.2. IBM 44
4.1.3. AT&T 44
4.1.4. CIC 45
4.1.5. Paragraph 45
4.1.6. Apple 45
4.2. Characteristics of Handwriting Recognizers 46
4.2.1. Vocabulary 46
4.2.2. Grammar 46

4.2.3. Constrained Writing Area 46
4.2.4. Spatial Locality 47
4.2.5. Digitizer Resolution 47
4.2.6. Available Computational Power 48
4.3. Recognition Requirements of the InfoPad 48
4.3.1. Non-Dictionary Words 48
4.3.2. Mass Text Entry 48
4.3.3. Gestures 49
4.3.4. Geometric Shapes 49
4.4. Models for Providing Recognition Services 49
4.4.1. User Interaction Model 49
4.4.2. Programming Model 50
4.4.2.1. Uncoupled Applications 50
4.4.2.2. Loosely Coupled Applications 51
4.4.2.3. Tightly Coupled Applications 51
4.4.3. Service Provision Model 51

4.5. Properties of Printed Handwriting 52
4.6. HMM Based Handwriting Recognition 53
4.6.1. Hidden Markov Modeling 54
4.7. A Writer Independent Handprint Recognizer 57
4.7.1. The Recognition Algorithm 57
4.7.1.1. Heuristics 57
4.7.1.2. Preprocessing and Feature Extraction 57
4.7.1.3. The Hidden Markov Model 58
4.7.1.4. Viterbi Algorithm 61
4.7.1.5. Post-Processing 62

iv

4.7.2. Character Sets 62

4.7.3. Applications Programming Interfaces 62
4.7.3.1. Handwriting Recognition Widget 63
4.7.3.2. Remote Server 64
4.7.3.3. Sun API 65

4.7.4. Data Capture and Manipulation 67
4.7.5. Training Set 73
4.7.6. Performance 75

4.7.7. Algorithmic and Implementational Improvements 76

CHAPTER 5. Speech Recognition 78

5.1. Performance of Existing Systems 78
5.1.1. Software 79
5.1.2. Off-the-Shelf Hardware 79
5.1.3. Custom Hardware 79

5.1.4. Accuracy on Realistic Tasks 79
5.2. Characteristics of Speech Recognizers 80
5.2.1. Word Length 80
5.2.2. Vocabulary Size 81
5.2.3. Grammar 81

5.2.4. Available Computational Power 82
5.3. Recognition Requirements of the InfoPad 82
5.3.1. Commands 82
5.3.2. Dictation 83
5.4. Models for Delivering Recognized Speech 84
5.4.1. User Interaction Model 84
5.4.1.1. Speech Recognition Focus 84
5.4.2. Programming Model 85
5.4.2.1. Uncoupled Applications 85
5.4.2.2. Loosely Coupled Applications 85
5.4.2.3. Tightly Coupled Applications 86
5.4.3. Service Provision Model 86
5.5. A Small, Flexible Recognizer 87
5.5.1. Motivation 87
5.5.2. Implementation 88
5.5.3. Discussion 90

5.6. A Real Time Large Vocabulary Speaker Independent Speech Recognizer 91
5.6.1. Differences from the Small,FlexibleRecognizer 92
5.6.2. The Recognition Algorithm 92
5.6.2.1. Feature Extraction 93
5.6.2.2. Hidden Markov Modeling 94
5.6.2.3. Viterbi Algorithm 95
5.6.2.4. Backtrace 98
5.6.3. System Architecture 98
5.6.3.1. Changes to Improve Performance 98

5.6.3.2. Hierarchy 99
5.6.3.3. System Hardware Partitioning 101
5.6.4. Phone Process 102

5.6.5. Active Word Process 102
5.6.5.1. Description 103
5.6.5.2. Implementation 105
5.6.5.3. Request Processor 107
5.6.5.4. Probability Processor 108
5.6.5.5. Grammar Node Processor 109
5.6.6. Viterbi Board Design 109
5.6.7. System Level Simulation 111

CHAPTER 6. Applications 114

6.1. Circuit Schematic Recognizer 114
6.1.1. Desired Functionality 114
6.1.2. Current Systems 115
6.1.3. Lessons Learned 116

6.1.4. Implementation 118
6.1.5. File Format 122

6.1.6. Suggested Improvements 124
6.2. Electronic Notebook 125

6.2.1. Desired Functionality 126
6.2.2. Lessons Learned 126
6.2.3. Implementation 127
6.2.4. Suggested Improvements 129

CHAPTER 7. Conclusions 130

7.1. Summary of Results 130
7.1.1. User Interface Architecture 130

7.1.2. Handwriting Recognition 131
7.1.3. Speech Recognition 132
7.1.4. Applications 132
7.2. Future Work 132

7.2.1. Development Projects 133
7.2.1.1. Audio Focus Manager 133
7.2.1.2. Pen Server Control Widget 133
7.2.1.3. Handwriting Recognition Widget 134
7.2.1.4. Speech Recognition Widget 134
7.2.1.5. User Interface Control Widget 134
7.2.1.6. Other Improvements 135
7.2.2. Research Projects 135
7.2.2.1. Complex Event Manager 135
7.2.2.2. Synergy Between Handwriting and Speech Recognition 136
7.2.2.3. Handwriting and Speech Recognition 136
7.2.2.4. Integrated Document Editor 137

vi

CHAPTER 8. Appendix: Handwritten Character Sets 138

CHAPTER 9. Appendix: Software Organization 145

9.1. Pen Server 145
9.2. Audio Server 145
9.3. Handwriting Recognizer 145
9.4. Circuit Schematic Recognizer 145
9.5. Notebook Application 146

Bibliography 154

vn

List of Figures

CHAPTER 1 1

Figure 1-1. Buttons on a Typical Pen and a Typical Mouse 7

CHAPTER 2 12

Figure 2-1. Diagrammatic Representation of the InfoPad System 14
Figure 2-2. The InfoPad Network (InfoNet) Architecture 17
Figure 2-3. InfoPad Type Servers 18
Figure 2-4. Architectureof the IPGraphics Terminal 18
Figure 2-5. Architecture of the IPVideo Terminal 19

Figure 2-6. IPGraphics Pen Subsystem 21
Figure 2-7. Protocol Chip Photograph 23
Figure 2-8. IPVideoPen and Keyboard Subsystems 24
Figure 2-9. BusMaster Module for IPVideo Pen and Keyboard Subsystem 25
Figure 2-10. Schematic of UART Used in Pen and Keyboard Module 26
Figure 2-11. PenAudio Chip Photograph 27

CHAPTER 3 28

Figure 3-1. InfoPad User Interface Architecture 30

Figure 3-2. Pen Server Packet Structure 34

CHAPTER4 43

Figure 4-1. High-Level Description of a HMMBased Handwriting Recognizer54
Figure 4-2. Topology of an 8-StateHandwriting Markov Model 60
Figure 4-3. Screen Shot of the Handwriting Recognition Widget 63
Figure 4-4. Main Menu Bar for the Data Captureand Manipulation Package.. 67
Figure 4-5. Example of Word File Format 68
Figure 4-6. Feature File Syntax 69
Figure 4-7. Vector File Syntax 70
Figure 4-8. Handwriting Capture Canvas 70
Figure 4-9. Global Variable Display/Editing Window 72
Figure 4-10. HMM Parameter File Syntax 74

CHAPTERS 78

Figure 5-1. GramCracker Application for Creating and Modifying Speech
Recognition Vocabularies 89

Figure 5-2. Code Fragment to Illustrate API for Speech Recognizer 90
Figure 5-3. Block Diagram of the Feature Extraction Algorithm 93
Figure 5-4. Graphical Representation of a Hidden Markov Model 94

vm

Figure 5-5. Trellis for Decoding a Hidden Markov Model 96
Figure 5-6. Source and Destination Grammar Nodes 100

Figure 5-7. Hardware Partitioning of the Speech Recognition System 101
Figure 5-8. Connections to the Active Word Process 103

Figure 5-9. Implementation of the Active Word Process 105
Figure 5-10. Chip Photograph of the Request Processor 107
Figure 5-11. Chip Photograph of the Probability Processor 108
Figure 5-12. Chip Photograph of the Grammar Node Processor 109
Figure 5-13. Switching Architecture of the Viterbi Board 110

CHAPTER 6 114

Figure 6-1. Screen Shot of the Circuit Schematic Recognizer with Edit Menu
Posted 118

Figure 6-2. Parameter Editing Form for MOS Transistors 120
Figure 6-3. Speech Recognition Control Widget 121
Figure 6-4. Circuit Schematic File Example 123
Figure 6-5. Circuit Schematic File Syntax 123
Figure 6-6. Screen Shot of ElectronicNotebook Application 127
Figure 6-7. Electronic Ink Stroke and Word Structures 128

Figure 6-8. Electronic Ink File Format 129

CHAPTER 7 130

CHAPTER 8 138

CHAPTER 9 145

IX

List of Tables

CHAPTER 1 1

Table 1-1. Some PDAs Currently on the Market 1
Table 1-2. Characteristics of Current Pen Digitizers 6

CHAPTER 2 12

Table 2-1. Signal Pins on the Pen Module 22

CHAPTER 3 28

Table 3-1. Pen PacketStructure for the Logitech Gazelle Digitizer 33

CHAPTER 4 43

Table 4-1. Heuristics Used in HandwritingRecognition 57
Table 4-2. Number of Markov States for Each Handwritten Character in the 61-

Character Recognizer 58
Table 4-3. Number of Markov States for Each Handwritten Character in the

Digit Recognizer 60

Table 4-4. Handwriting Recognition Results 76

CHAPTER 5 78

Table 5-1. Accuracies for Recent Speech Recognizers 80
Table 5-2. Contents of the Active Word List 103

Table 5-3. Memory Sizes on the Viterbi Board 111
Table 5-4. Components on the Viterbi Board 112

CHAPTER 6 114

Table 6-1. List of Speakable Commands 121

CHAPTER 7 130

CHAPTER 8 138

Table 8-1. Character Set for 61-Character Recognizer 139
Table 8-2. Character Set for Digit Recognizer 144

CHAPTER 9 145

Table 9-1. Pen Server Source Tree 146

Table 9-2. Audio Server Source Tree 147

Table 9-3. Handwriting Recognizer Source Tree 148
Table 9-4. Data Capture and Manipulation Package Source Tree 149
Table 9-5. Handwritten Data Source Tree 150

Table 9-6. Hidden Markov Model Parameters Source Tree 151

Table 9-7. Circuit Schematic Recognizer Source Tree 152

Table 9-8. Notebook Source Tree 153

xi

Acknowledgments

Many people deserve my thanks and appreciation for their contribution to the successful

completion of my graduate school career. My family was always there for me with unfail

ing emotional, spiritual, and material support. They never let me lose sight of my goal of

getting a Ph. D. and encouraged me onwardseven when they were not entirely convinced

that I was doing the right thing.

Professor Robert Brodersen, my research advisor, was an inspiration with his leadership

and vision. Fromhim I learned to not get boggeddown in details but insteadto always look

at the big picture and constantly re-evaluate the value of my work. Professor Jan Rabaey

was always available for technical and other advice. I am grateful for his cheerful, thought

ful input.

Working closely with Anton Stolzle during the first 3 yearsof graduate school was a plea

sure. He was always available to discuss issues in speech recognition or hardware design,

or just about anything else. I had the pleasure of interactingwith Brian Richards on numer

ous occasions. He always responded quickly to Lager problems and was a wellspring of

knowledge about both hardware and software design. He also designed early versions of

the Pen Server and the UART used in the IPVideo chip.

Andrew Burstein's hidden Markov model speech recognition code was the starting point

for my handwriting recognizer. I appreciate his responsiveness to questions about his code,

hidden Markov modeling and other software questions, especially while I was learning to

program in C++.

xn

Jeff Gilbertmade majorcontributions to the Audio Server, without which its performance

would not have been as good. His cheerful can-do attitude even in the face of tremendous

demo deadline pressure made my interactions with him enjoyable, even when he was the

group leader!

I would also like to acknowledge Armando Fox for implementingthe handwriting widget

interface and Steve Chow for doing a large part of the handwriting data capture, segmen

tation and labeling.

xm

1 Introduction

Portable computers have soared in popularity in the last few years. Several vendors have

released Personal Digital Assistants (PDAs) which have a small form factor and long bat

tery life (see Table 1-1) [Pen 95].Many PDAs use pen interfacesratherthan keyboards and

Vendor Model Screen Size

(inches)

Weight

(pounds)

Input modes Handwriting

Recognition?

Battery Life

(hours)

Apple MessagePad 120 3.8 x 2.8 1.28 pen Yes 22

Sharp Zaurus 4.0x2.6 0.85 pen + keyboard No 60

Casio Z-7000 3.1x4 0.95 pen Yes 90

Amstrad PIC 700 3.4 x 5.4 0.875 pen Yes 40

Sony PIC-1000 3.0 x 4.5 1.2 pen +optional

keyboard

Yes (3rd party) 12

Table 1-1. Some PDAs Currently on the Market

mice. A pen digitizer is smaller and lighter than a keyboard and provides a more natural

user interface, but requires a much more sophisticated user interface infrastructure. Some

experts predictthat within a few years we will see wide availability of small personal com

puters with pen and voice input [Cran93].

The main feature of portable computers that limits their ability to provide a sophisticated

user interface is their limited computational capacity. However recent advances in technol

ogy have made it possible to use more sophisticated user interfaces in portable terminals

and computers, and this thesis examines the issue of extending the user interface to use

both handwriting and speech as input modes. Such a user interface is very useful for por

table computers and is also applicable to desktop computers in situations where a pen and

speech interface would be advantageous.

1

1.1. Motivation

There are three major scenarios where a pen/speech interface is preferred: portable com

puters/communicators, Computer Aided Design (CAD) platforms, and computing for per

sons withdisabilities. In general, it is worth noting thathandwriting and speaking skillsare

acquired early in life. They perform an important role in human-human communication,

and are therefore bettersuitedto human-computer communication fromthe human's point

ofview[Rhyn93].

1.1.1. Portable Computers/Communicators

Portable computers are designed with strict attention to size and weight constraints. As

explained below, the pen is clearly superior to a keyboard and mouse in both size and

weight. If a pen digitizer is used in place of a keyboard and mouse, we can overcome the

disadvantages of the latter devices. The pen can easily replace the mouse as a pointing

device and, with handwriting recognition, the pen can also replace the keyboard in many

situations. In order to use the pen and speech as an alternative to the keyboard,we need to

create a sophisticated user interface using handwriting and/or speech recognition that is

comfortable for users. We also need a good applications programming interface to encap

sulate and abstract the recognizers.

1.1.1.1. Size Constraint

The size of a portable computer or communicator affects its user acceptability. A device

that fits into a pocket is very convenient whilea terminal that is too large to fit into a brief

case is not convenient. A keyboard adds significant volume to the size of a portable com

puter. For example, a regular PC-style keyboard occupies 18.5 by 7 by 1.5 inches. The

keyboard on an IBM Thinkpad 755C occupies 11.5by 6 by 0.5 inches, while the keyboard

on a Hewlett Packard HP200LXpalmtopcomputeroccupies 6 inches by 2.5 inches by 0.6

inches. When in use, these keyboards occupy valuable space and make the devices more

cumbersome, thereby making them less usable. The smaller keyboards are also difficult to

use since it is not easy to fit all ten fingers into the limited dimensionsof a small keyboard.

Many recent portable computers use a TrackPoint mouse (a little stub that sticks up from

the middle of the keyboard) to provide pointer input. This eliminates the need for a cum

bersome external mouse. However, this mouse is not as easy to use as a normal mouse.

Thesize-related cost of using a pen digitizer is a thicker screen incorporating thedigitizer

and storage space for the pen. For speech, the size related cost is an audio codec and a

microphone jack.

1.1.1.2. Weight Constraint

A regular IBM PC keyboard weighs between 2 and 4 pounds and a Microsoft mouse

weighs 3.5 ounces (6 ounces with cable), whereas a Logitech Gazelle PenMan digitizer

with penweighs about 3.5 ounces. The weight savings resulting from using a pen digitizer

rather than a keyboard and mouse are considerable, especially considering that the target

weightfor modern portable computers is below 4 pounds.

1.1.1.3. Other Considerations

Akeyboard-based computer requires two hands tooperate and a stable surface upon which

to placethe computer. A pen interface requires only onehandto operate; the other handis

free to do other thingsor to support the computer.

The pen isarguably a better pointing device than a mouse. It isadvantageous touse the pen

on the screen at the exact position where the user wants to activate a menu. However, the

disadvantage is that the user has to move his entire arm to use the pen whereas with a

mouse the total distance of arm travel is lower. This is a result of the relative coordinate

system and the acceleration/magnification provided by the mouse. For small screens this

problem is not severe.

A parallax problem arises when a pen digitizer with an LCD screen overlay is used. The

thickness of the LCD screen's glass causes a separation of between 1 and 2 mm between

the pentip andtheLCDdisplay. Theuser's perception of penposition is therefore not the

same as the device's knowledge of pen position. Additionally, there is some variation in

the calibration and registration ofpen digitizers from the same vendor sodigitizer param-

eters may vary from sample to sample. However, this problem may be partially alleviated

by using software alignment/registration.

Entering text viatyping is at least twice asfast ashand printing. Touch typists canachieve

a rate of 6-7 characters/sec while printingcan be done at 1-1.3characters/sec. Unistrokes,

which are faster to write than handprinted characters, can be written at 3.4 characters/sec.

[Gold93] [Tapp90]. Using apenformass text input such aswriting a bookor programming

is not as efficient as using a keyboard. Therefore a keyboard is preferred over a pen in

applications where mass text entry is required.

1.1.2. Computer Aided Design

ComputerAided Design (CAD) tools are used in many industries. Design often involves

freehand drawing (as in the garment design industry) or creating designs which comprise

only a few primitives (such as in digital andanalog integrated circuitdesign). Theseappli

cationscanbe done moreefficiently using a penthana mouse andkeyboard. For example,

in the garment design industry it is easierto draw a design than to specify a splinefor each

curve using a mouse. In circuit design, it is more convenient to draw each circuit element

than to type its name or select it from a menu. Traditional circuit design systems require

the user to navigateusing a mouseand to enter information on a keyboard, which requires

constant switching between the two devices. This issue is examined in greater detail in

Section 6.1. on page 114.

1.1.3. Persons With Disabilities

Persons suffering from tendonitis or carpal tunnel syndrome are unable to use a keyboard

for any great length of time. However, theycan usually use a pen for much more time, and

can speak all day. A pen/speech interface would be ideal for such persons. In fact, many

disabled persons currently use commercial voice recognition products such as DragonDic-

tate and Kurzweil Voice for dictation and even programming [Cros95]. A Wacom or other

digitizer provides a pointing device facility in cases where screen navigation cannot be

done via text commands.

1.2. Enabling Technology

Currently, a major factor preventing the use of a sophisticated recognition-based user inter

face is the high computational cost of provide recognition services at adequate perfor

mance levels. Performance measures include real-time operation and high accuracy.

Advances in low power, high speed microprocessors and in communications have now

made it possible to incorporate such a userinterface in a cheap, lightweight terminal.

Computer technology has been advancing very quickly in the last decade. We now have

extremely powerful microprocessors in desktop and portable computers. Processors are

cheap; they can be embedded in application specific hardware for performing specialized

tasks and, for a given desktop or portable, there are usually several embedded processors

performing specialized functions such as graphics rendering, sound processing, and com

munications. Advances in low power circuit design make it possible to use embedded pro

cessors in portable devices. It is therefore possible to embed specialized recognition or

compression/decompression hardware into portable devices to provide the required com

putational power.

Recent advances in networks and in wirelesscommunicationsmake it possible to off-load

computation onto a remote compute server rather than run all user and recognition pro

cesses on the local processor. This allows access to greater computational resources than

can be provided on an isolatedmobile terminal. The InfoPadsystem described in Chapter 2

uses this approach to enable a powerful user interface on a dumb terminal.

1.3. Pen Digitizer Technology

There are currently several vendors of pen digitizers (see Table 1-2).

The Logitech Gazelle digitizer uses electromagnetic technology. In this technology, a bat

tery-powered wireless pen transmits a signal containing information on switch status and

battery level. A digitizer circuitboard containing traces and other circuitry detects the pen

signal and computes the pen coordinates. The digitizer board is mounted below the LCD

screen.

Model Size

(inches)

Resolution

(lines/inch)

Sample Rate

(points/s)

Accuracy

(inches)

Technology

Logitech Gazelle PenMan 8.1x5.85 414 377 0.01 electromagnetic

Wacom SD-510C 9.13x5.91 500 100 0.02 electromagnetic

resonance

Wacom UD-0608-R 8x6 1270 205 0.01 electromagnetic

resonance

Scriptel 12x12 1000 200 0.015 resistive

decoding

Table 1-2. Characteristics of Current Pen Digitizers

Wacom digitizers use electromagnetic resonance technology where the tablet transmits a

signal to abatteryless andcordless pen for 20 usee, thenreceivesa signal which is re-emit

ted by the pen at a different frequency for20 u.sec. Tablet coordinates are computed based

on signal strength across several grid wires under the tablet surface.

The Scriptel digitizer uses resistive decoding technology. A wired pen transmits a signal

encoding button statusinformationwhich is detected by aresistive film deposited on trans

parentglass. Pencoordinates are calculated basedon voltages measured at the edges of the

resistive film. Since the digitizer is transparent, it may be mounted above the LCD screen,

replacing the glass that usually protects the screen from mechanical damage.

There are other pen digitizers which use purely resistive technology. In this case, direct

pressure of the pen (or any other object, such as a finger) on the digitizer closes

microswitches or modifies local resistivity. The change is detected and used to compute

pen coordinates. The disadvantage of this technology is that there is no information about

pen trajectory when it is not on the digitizer. Raised strokes therefore cannot be detected.

1.4. Limitations of Pen/Speech Interfaces

There are several limitations inherent in pen/speech interfaces. In the following subsec

tions, we examine each of these limitations and discuss some ways to overcome them.

1.4.1. Pen Digitizers

Although the pen is an excellent pointing device, it requires significant movement of the

user's hand across the screen. A mouse amplifies the user's hand movements and reflects

these movements on the screen. The pen also has fewer buttons than a typical modern

mouse (see Figure 1-1). A mouse on a workstation or PC usually has three buttons which

I

Button 3
Button 2

Button 1 r\
**=\s-\ r\

w w kj

Barrel Button

j Tip Button

Figure 1-1. Buttons on a Typical Pen and a Typical Mouse

are easily distinguishable from one another, whereas a digitizingpen has one button on the

tip and sometimes another on the barrel. The barrel button is difficult to use because it is

positioned such that usersoften press it by accident. When calledupon to press the barrel

button, users often have difficulty locating the button since its position is not intuitive.

Therefore, the pen has effectively only one input button, and this button is activated by

bringing the pen into contact with the screen. This limitation on the numberof input but

tons can be alleviated by placing additional buttons or modifying keys on the computeror

terminal itself. In the case of modifying keys, the user would press the modifier key and

then tap the pen on the screen to emulate additional pen buttons.

1.4.2. Speech Recognizers and Noise

Current speech recognizers do not perform well in noisy environments. Interfaces that use

speech recognition are therefore not very tolerant ofnoise yet they generate noise. A room

ful of peoplespeaking to theirterminals may create so much noisethat notonlywill every

one get annoyed, the recognizers may fail due to a low signal-to-noise ratio. A speech

recognizer will also not perform well in a naturally noisy environment such as a factory

7

floor or a meeting room. However, using headphones and an echo-cancelling microphone

can help alleviate these problems.

1.4.3. Recognition Errors

Handwriting and speechrecognizers bothmake frequent recognition errors. Chapter4 and

Chapter 5 report errorrates of current handwriting andspeech recognition systems respec

tively, but these numbers areobtained from artificial tasks in laboratory conditions. Under

realistic conditions the error rates are much higher.

Error rate increases with larger vocabularies andless constrainedgrammars.Error rates are

greater for writer (or speaker) independent systems than for dependentsystems which are

tailored for a particular user. Cursive handwriting recognizers tend to have greater error

rates than print recognizers; similarlycontinuous speechrecognition systems tend to make

more errors than isolated-wordspeech recognition systems. We can reduce the effects of a

finite recognition error rate by reducing the vocabulary, usinga more constraining gram

mar and by providing error correction facilities.

1.5. Previous Work

There has been some research on pen interfaces and speech interfaces, but little work has

been done on using both pen and speech together. This section reviews some previous

work in these three areas.

1.5.1. Pen Interfaces

As shown in Table 1-1 on Page 1, there are several PDAs with pen-based interfaces cur

rently on the market. The AppleMessagePad uses the Newton operating system. The other

PDAs use either Windows for Pen by Microsoft,OS/2 for Pen by IBM, PenDOS by CIC,

or GEOS by Geoworks. There are no commercialpen interfaces based on UNIX.

Goldberg and Goodisman [Gold91] at Xerox PARC examined how to interface to hand

writing recognition algorithms and the effective exploitation of the differences between a

pen and a keyboard/mouse. This was in the context of the design of a text entry tool. They

chose to use print rather than cursive input since there were no cursive systems known to

the authors which had consistently high recognition rates. The system recognized both

8

upper and lower case print. They chose to do all their user interface studies in boxed mode

because recognition in thismodeis more accurate. Correction and editingare also simpler.

The greatest advantage of boxed modeentry is that users do not slip into script mode and

join adjacent letters.

The system recognizes single letters rather than words and provides two correction ges

tures for deletion and insertion. Themostinteresting trade-off is thechoice ofwriter depen

dence versus independence. They chose to use a writer dependent system due to its better

accuracy. Training is explicit but without a separate training mode. The user can modify

the training samples wheneverthe recognizer makes anerror during normal operation.

Rhyne, Chow and Sacks [Rhyn91] at the IBM T. J. Watson Research Laboratory worked

on adding a paper-like interface (PLI) and handwriting recognition to the X Window Sys

tem. The X Window System was enhanced to provide a stylus-based user interface for

handheld computers. Modifications were done to the X server itself and to the Xt toolkit.

A new widget called aWritingArea widget was createdto receive strokes from the X server

and which invokes application-supplied callback functions. This stroke-receiver widget

maintains a list of the active input strokes. Another widget called a WritingReco widget

provides recognition services on top of the services supplied by the WritingArea widget.

These additional services includeerror correction, prototype managementand recognizer

management functions.

Goldberg and Richardson [Goldberg93] at Xerox PARC designed an approach to stylus

touch-typing using an alphabet of unistrokes, which are letters specially designed to be

used with a stylus. Unistrokes are faster to write, less prone to recognition errors, and

require very little screen real estate. They alsocanalsobe enteredin an"eyes-free" manner

because they consist of single strokes.

The set ofunistrokes were chosen to be robust in the face of sloppy writing. In the authors'

system, letterscould be writtenone on top of the other,so the screenreal estateused is very

small. Many unistroke characters are similar to Roman letters. The stylus' barrel button is

used to denote capitals, thereby reducing the size of the alphabet of unistrokes by a factor

of two. Writing time for each unistroke varied from 150 to 300 msec. The median inter-

stroke time was 158 msec.

Kurtenbach andBuxton [Kurt94] at theUniversity of Toronto worked on marking menus,

which allow a user to perform menu selection either by popping up a radial menu or by

making a straight mark in the direction of the desired menu item without popping up the

menu. They found that when users become expert with the menus, marks are used exten

sively. Also, using a mark was on average 3.5times faster than using the menu.

The Windows for Penextension to theMicrosoft Windows operating systemprovides very

similar services [Micr95]. Windows for Pen also provides pixel level callbacks where the

PLI system provides only stroke level callbacks, and has an extensive library of routines

for handling electronic ink and recognized handwriting.

The main difference in approach is that PLI tries to encapsulate as much of the pen func

tionality as possible whereas Windows for Penallows applications programmers accessto

all details of the process of handwriting capture.

1.5.2. Speech Interfaces

It is possible to use speech to navigate between windows on thescreen. The Xspeaksystem

from the Massachusetts Institute of Technology [Schm90] is an application running on X

workstations that recognizes spoken window names for navigation purposes. Xspeak par

tially replaces the mouse for navigation and for issuingcommands to the window manager.

Experiments showed that speech recognition can create a viable user interface for naviga

tion among windows.

The greatest limitation to Xspeak's functionality is the need to associate a name with each

window. Several windows can have the same name, especially in the X window system,

and this can confuse Xspeak. Also, window names may not be dictionary words and so

need to be trained separately. In Xspeak, a control panel allows the user to adaptively spec

ify the spoken name for each window.

10

1.5.3. Pen and Speech Interfaces

Rhyne and Wolf [Rhyn93] at the IBM T. J. Watson Research Laboratory identified and

examinedissues relatingto recognition-based interfaces. They found that recognitionfeed

back, correction and training are critical to the success of any recognition-based interface.

Recognition feedback allows the user to detect that an error has occurred. Correction

mechanisms are needed to allow the user to easily correct recognition errors. User training

can be less frustrating and more efficient for the user if it is done at once rather than in the

context of use, although it may not be as effective.

1.6. Scope of Thesis

Chapter 2 describes the InfoPad system [Chan93], which is the primary target system for

thisuser interface architecture. The InfoPad system isdesigned around a prototype mobile

multimedia terminal built here at the University ofCalifornia at Berkeley. It has digitized

pen and speechinputratherthana keyboard andmouse. Chapter3 describes the user inter

face architecture that I designed and implemented to take advantage of handwritten and

spoken input in the system and to provide services related to this input paradigm. This

architecture usesa networked client-server model to distribute thecomputation of thecom

ponents of the user interface and to provide services; it is equally applicable to InfoPad as

well as to other environments.

Chapter 4 describes a handwriting recognition engine which uses hidden Markov models

and very simple feature vectors to recognize printed characters. Chapter 5 describes the

InfoPad system's speech recognition requirements and describes thedesign and implemen

tation of a large vocabulary speaker independent connected speech recognizer, which

required 6 custom VLSI chips [Stol92]. This recognizer could be used as a speech recog

nizer server for the InfoPad system. Chapter6 describes applications that were built to

prove thatpenandspeech form a viable user interface for some classof systems andappli

cations. The primary application is a circuit schematic recognizer that recognizes drawn

circuit elements and wires. It uses theentire user interface architecture, including rawpen

data, recognized handwriting, and recognized speech. Chapter7 draws conclusions and

describes directions for future work.

11

2 The InfoPad System

The User Interface Architecture described in this thesis was designed and implemented in

the context of the InfoPad system [Chan93]. The InfoPad project is a multi-disciplinary

research effort to build a personal communications system for ubiquitous computing.

Research areas include low-power integrated circuit and terminal design, high-bandwidth

radio transceiver design, high-speed multimedia networking, integrated mechanical and

electrical terminal design, and advanced user interface design. Several faculty members

and many students at Berkeley are involved in building the system and examining the rel

evant issues.

This chapter describes the InfoPad system, concentrating on the elements that affect the

User Interface Architecture. The system, network, and terminal design are described first.

The Pen Subsystem for two generations of the InfoPad terminal is then described.

2.1. System Design

The design of the InfoPad system is a research effort that explores one extreme of the

design space for mobile personal communications systems. It includes a dumb terminal

with a high-bandwidth connection to a high-speednetwork, as describedbelow. There are

two basic assumptions that drive the system design. The first assumption is that the wired

backbone network is fast enough to provide a very high bandwidth with low latency. The

second is that given the fast network, a collection of network-connected compute servers

is available on which to run user and system processes. These two assumptions are based

on the premises that network bandwidth is available and that computation is also available

and best done in the network.

12

A diagrammatic representation of the system is shown in Figure 2-1. Each terminal has a

high-bandwidth connection to a basestation thatis on a high-speed wirednetwork. The net

work also supports compute servers and sources for multimedia information, such as video

databases. The applications that are supported and the design objectives and constraints

faced are described in this section.

2.1.1. InfoPad Applications

The InfoPad system is designed for mobile multimedia information retrieval and for

mobile personal communications. Examples of applications requiring multimedia infor

mationretrieval may be found in libraries, museums, and repair depots. In a library, users

currently use a fixed terminal to query a database for a call number which is used to locate

the book.However witha mobile, multimedia-enabled terminal theycan viewa map of the

library showing the location of the book. If a user is searching for a video, he could view

it on the terminal rather than going to a special viewing room.

In a museum, the user may retrieve information about the painting or sculpture he is cur

rently viewing, as well as information about the artist and his work. In a repair depot, a

mechanic may pull up schematics or other documentation on the part he is currently ser

vicing. Of course, the most general current application requiring multimedia information

retrieval and display is surfing the World Wide Web.

In personal communications, the user may want to send and retrieve multimedia electronic

mail, make a telephone call, or videoconference. We support 1-way videoconferencing

only (1-way video broadcast with 2-way audio) since there is no camera on the terminal.

Future versions of the InfoPad terminalmay incorporatea small, light camera and thereby

support true 2-way videoconferencing.

The applications that are conspicuousby their absence from the above discussion are gen

eral dictation such as book writing,and programming. These applications require mass text

entry. Mass text entry is much more efficient on a keyboard and seldom requires mobility.

Therefore, although the InfoPad system design does not preclude running such applica

tions an add-on keyboard would be required. The issues relating to the use of recognition

13

>
M

P

S
E

R
V

E
R

S

F
ib

er
O

pt
ic

B
ac

kb
on

e
>

10
G

bi
ts

/s
ec

^
W

IR
EL

ES
S

^
B

A
S

E
S

T
A

T
IO

N

V
ID

E
O

D
A

T
A

B
A

S
E

O
o

o
o

C
5

C
om

p
re

ss
ed

V
id

eo
R

A
I
D

-
I
I

r
L

A
R

G
E

A

C
O

M
M

E
R

C
I
A

L

D
A

T
A

B
A

S
E

A
ir

li
n

e
sc

h
ed

u
le

,
N

ew
sp

ap
er

,..
.

.

P
E

R
S

O
N

A
L

C
O

M
M

U
N

IC
A

T
O

R
S

In
fo

P
ad

(A
P

or
ta

b
le

M
u

lt
im

ed
ia

T
er

m
in

al
)

-
S

pe
ec

h
I/

O
an

d
P

en
In

p
u

t
-

X
-t

e
rm

in
a
l

-
F

u
ll

-m
o

ti
o

n
C

o
lo

r
V

id
e
o

Fi
gu

re
2-

1.
D

ia
gr

am
m

at
ic

R
ep

re
se

nt
at

io
n

of
th

e
In

fo
Pa

d
Sy

st
em

for mass text entry are examined indetail inthe discussions onhandwriting and speech rec

ognition in Chapter4 and Chapter 5 respectively.

2.1.2. Design Objectives and Constraints

The primary consideration in the system design is to provide userswith a usable terminal.

The terminal must be small, light, low-power (tooperate as long as possible on the same

setof batteries), ableto display multimedia (text, graphics, audio and video), andcommu

nicate multimedia data inreal time. Itmay also take advantage ofthe network and compute

servers to provide a good user interface and to access data. Ideally, the system should

degrade gracefully as its capacity is approached and exceeded. It should also be scalable

to allow support of a larger number of users.

Several constraints affect thedesign. Weuse commercial technology for thependigitizer,

screen,andbattery. Weare alsoconstrained by thefact thatradiolinks areinherently error-

proneso the system musttolerate missing datapackets, which affects the protocols usedto

communicate data.

2.1.3. Design Choices

Given theabove objectives and constraints, thesystem design concentrated on making the

terminal small and light, with the longest battery life possible. The most visible design

choice affects the input modalities. Pen and audio input replace the keyboard and mouse.

Audio is supported via a headmounted microphone andearphone to reduce audiosensitiv

ity to ambient noise and to limit noise generation. A head mounted microphone helps the

speechrecognizerbut is cumbersome to use.The long term solution is to mount the micro

phoneon the terminal itselfandtousebetterspeech recognition algorithms whicharemore

tolerant of noise and channel distortion.

Given the high-bandwidth network connection and the networked compute servers, it is

possibleto off-load all user-level computation onto the network and therebyminimize the

required compute power on theterminal. This is taken a stepfurther by moving all system

level computation onto thenetwork aswell. Therefore alluserand system processes in the

15

InfoPad system are executed on remote compute servers. The terminal is simply a dumb

input-output terminal, reducing cost,weight and power consumption.

To support ubiquitous computing with a scalable solution, the system is designed with a

pico-cellularwireless architecture and uses very small cells about 10 meters in diameter.

The goal is for each cell to support up to 50 users simultaneously. This operates in an

indoor environment where it is possible to place antennas atvery small intervals.

Given thatthe two inputmodalities are pen(4kbits/s) and audio (64 kbits/s for 8-bit fi-law

at 8 kHz), the uplink radio needs to support only 68 kbits/s peruser. This may be imple

mented using a standard Time Division Multiplexing (TDM) scheme. On the downlink,

however, text and graphics must also be supported, requiring a 1Mbit/sec downlink con

nection. We use a direct sequence spread spectrumscheme on the downlink.

2.2. Wired Network Architecture

Several components, collectively called InfoNet, comprise the wired network software

architecture [Le95] (see Figure 2-2).

On the uplink, Gateway A receives data from the antenna for all InfoPad terminals within

Cell A. This data is made available to the Pad Server of each terminal on aunique Internet

socket. Each Pad Server, which may run on a compute server remote from the Gateway,

receives a singlebit-stream from the Gateway andde-multiplexes this streaminto pen and

audio data. This data is made available on unique Internet sockets, as illustrated in

Figure 2-3. The socket connections are encapsulated within the InfoNet API.

The Pen Server and Audio Serverconnectto the pen andaudioportsof the PadServer, and

clients may access pen and audio data via these servers. The Pen Server and Audio Server

are described in greaterdetail in Section 3.3 and Section 3.4 respectively.

On the downlink, the Pad Server receives audio data from the Audio Server on the same

Internet socket as it sends uplink audiodata. The PadServer alsocollects text/graphics data

and video data from the associated Servers. The Text/Graphics server is a modified X

server [Sche91] while the Video Server is a modified Continuous Media Server [Rowe92].

16

To Processes

From Antenna

for Cell A

Figure 2-2. The InfoPad Network (InfoNet) Architecture

The Pad Server multiplexes all downlink datainto a single bit-stream which it sends to the

Gateway.

The Cell Server monitors the cell and facilitates handoff when a user moves between cells

[Le95].

2.3. Terminal Design

Two versions of the InfoPad terminalwere built. Both use a Sharp LM64P80 LCD mono

chrome display for text and graphics, and a Logitech Gazelle pen digitizer. Both also use

a Sharp 4-inch color active matrix display for video, and 8-bit |i-law audio at 8 kHz for

both uplink and downlink.

The architecture of the first version, called IPGraphics, is shown in Figure 2-4 [Chan94].

The Protocol Chip does all the multiplexing and de-multiplexing of data from the various

sources and to the various sinks. There is no common data bus in this architecture, so

17

To InfoPad

Terminal

Figure 2-3. InfoPad type Servers

Radio Modem Video Decompression

I I
Protocol Chip

1 I I
Pen Digitizer Speech Codec T/G Frame Buffer

Video Screen

I
T/G Screen

Figure 2-4. Architecture of the IPGraphics Terminal

adding new devices is not possible. However the hardware complexity, power consump

tion and cost are very low.

18

In IPGraphics, the Pen Subsystem consists ofthe digitizer, two commercial chips andsome

custom circuitry on the Protocol Chip. The Subsystem is described in greater detail in

Section 2.4.

The architecture of the second version of the InfoPad terminal, called IPVideo, is shown

in Figure 2-5 [Doer96]. A low-power databus is used for all data communications. All the

Transmit Chip
•

Radio

— Receive Chip

Pen Digitizer
C/3

CO .rJ-H

PenAudio Chip
0° Speech Codec

A

J

Keyboard Port

—•*
T/G Chips TG Screen

—- Video Chips Video Screen

CPU

Figure 2-5. Architecture of the IPVideo Terminal

modules talk to the bus in a priority scheme to avoid bus contention. The bus architecture

allows adding new I/O devices to the terminal without re-fabrication of existing custom

chips.

In IPVideo, the Pen Subsystem consists of the digitizer and some custom circuitry on the

PenAudio chip. The external components from IPGraphics are replaced by custom hard

ware for lower power and smaller board area. The keyboard port and the entire Keyboard

19

Subsystem are very similar to their pen counterparts. The Pen and Keyboard Subsystems

are described in greater detail in Section 2.5.

20

2.4. Pen Subsystem on IPGraphics

The Pen Subsystem of the IPGraphics terminal is illustrated in Figure 2-6. Its function is

Pen Digitizer

RS-232 serial byte stream at TTL levels

Maxim MAX220 Chip

RS-232 serial byte stream at RS-232 levels

Fujitsu MC8868A UART Chip

R ^Parallel byte stream at TTL levels

Protocol Chip

i f
Register

Latch

Control

i
Register Register

I
I

I
32

Push Fjpo

Full Pop

i_j.
Register

Pen Module T32 L i_ y

To Transmitter Module

Figure 2-6. IPGraphics Pen Subsystem

to collect pen data from the digitizer, push it onto a FIFO, and signal the transmit chip to

send the data from the FIFO to the Pen Server over the radio link.

The pendigitizer provides data as a9,600 bits/sec RS-232 serial byte stream atTTL signal

levels. The MAX220 chipconverts TTL levels to RS-232 levelswhichtheMC8868A chip

21

converts into a TTL 8-bitparallel datastream. Thisparallel stream is read by the Protocol

Chip. On-chip, the Pen Module converts the 8-bit parallel datastream to a 32-bit parallel

stream,whichis pushedontoa 32-bit, 16-word FIFO. ThisFIFOis readby the transmitter

module on the Protocol Chip.

The interface to the Pen Module is illustrated in Table 2-1. SCAN, SCANIN and

Signal Name Direction Source/Destination Comment

SCAN in off-chip for testing only

SCANIN in off-chip for testing only

SCANOUT out off-chip for testing only

DR in UART Data Ready

RS2323Data in UART Parallel data in

DRR out UART Data Ready Reset

FifoPush out FIFO Push 32-bit data onto FIFO

FifoPop in Transmitter module Pop 32-bit data from FIFO

FifoOut out Transmitter module Parallel Data Out

Table 2-1. Signal Pins on the Pen Module

SCANOUT are for scanpath testingonly.DR tells the Pen Module that the UART has data

that is ready to be read. DRR tells the UART that the Pen Module has read the current data.

FifoPush tells the FIFO to read the currentdata. FifoPop is generated by the Transmitter

Module and pops data from the FIFO. FifoOut is the 32-bit data that is made available to

the Transmitter Module by the FIFO.

A photograph of the Protocol Chip is shown in Figure 2-7. The Pen Module is marked in

the upper right of the photograph.

2.5. Pen and Keyboard Subsystems on IPVideo

The Pen and Keyboard Subsystems on IPVideo are shown in Figure 2-8. The function of

the Pen Subsystem is to collect pen data from the digitizer and make it available to the

Transmit Chip on the InfoPad Low Power Bus. The Keyboard Subsystem performs a sim

ilar function for keyboard data.

22

,-

Figure 2-7. Protocol Chip Photograph

In IPVideo, the functionality of the MAX220 and the MC8868A UART are combined into

an on-chip UART in the PenAudio chip. Two UARTs take serial data streams at 9,600 bits/

sec from the Pen Digitizer and 14,400 kbits/sec from the keyboard respectively and con

verts them into 8 bit parallel streams. The parallel streams are pushed onto FIFOs which

are read by the Transmit Chip via the Low-Power Bus and the BusMaster module.

The BusMaster module is shown in Figure 2-9 and handles the communications protocol

with the bus. The bus uses a priority daisy chain scheme. Permission to write to the bus

may be requested and granted via the daisy chain. The Request module arbitrates between

requests from within the chip and requests from other chips. If the chip wants to control

the bus, chips lower in the priority queue must wait until it is serviced.

23

PenAudio Chip

UART

KeyBoard UART

8

FIFO

FIFO •/•

BusMaster

=3

CQ

i

o

Figure 2-8. IPVideo Pen and Keyboard Subsystems

TheMaster module takes datafrom thePacketizer and putsit ontothe bus. Thepacketizer

manages the FIFO associatedwith the appropriate inputdevice and assembles this data into

packets. Keyboard data has 1-byte packets while pen data comes in 5-byte packets. The

SlavemoduleallowstheIPVideo terminal'sARM 610CPUto program all the registers on

the other modules inside the BusMaster Module.

For more details on each component in the BusMaster module, refer to [Doer96].

The on-chip UART is a modified version of a UART created by Brian Richards. A sche

matic of the UART is shown in Figure 2-10. It takes a clock on the 16XCLOCK pin at 16

times the bit-rate of the incoming serial stream, just like commercial UART chips. This

clock is used to sample the serial stream coming in on the RXDATA pin and to detect

edges within this stream. Based on these edges, bit boundaries are determined and the

incoming bit sequence is detected. The bit sequence is made available in parallel on the

D[7:0] bus. VALIDDATA indicates that there was no parity error and FRAMEERROR

indicates that there was an error in detecting the stop bits in the serial stream.

24

PQ
u

•

©

I

I

Data
4-4—

Address

Grfnt

Request

,taiii
I

Address

Data

Address

Data

Master Address

Request

Data

Master Addr ss

± ±

Slave

Packetizer

Packetizer

Keyboardi

From

Keyboard

From Pen

Digitizer

Pen

Figure 2-9. BusMaster Module for IPVideo Pen and Keyboard Subsystem

25

\>

5

J

: O t

5
?•

• i_s_ij;_i_ii

ITT-..

?•

3 * *

: [>• ? N

5
W

i i

b 5

s?
e.
i K

c n

IS

0 K

5 *

SE

W

A

3 8 s e
< a

£ 2

G

* 5

Figure 2-10. Schematic of UART Used in Pen and Keyboard Module

26

A photograph of the PenAudio Chip is shown in Figure 2-11. The Pen and Keyboard

Eir Bam

Figure 2-11. PenAudio Chip Photograph

Module is marked in the right half of the photograph.

27

3 The User Interface Architecture

This chapter describes the User Interface Architecture and its major components. A new

architecture is required dueto theunique nature of the InfoPad terminal's inputmodalities.

The pen and audio data types are not standard on existing computers or terminals, andthe

recognized-text data type is new. The new architecture supports these data types and the

transfer of data to and from applications.

The architecture takesadvantage of thenetworked nature of the InfoPad systemto provide

pen data, audio data, andhandwriting and speech recognition services to applications. We

address mainly the input mechanisms of the user interface and assume standard output

devices (display and audio).

3.1. Need for a New Architecture

Most moderncomputers have a keyboard and mouse for user input. More recently, some

portable computers have added pen input,usuallyusing this to replace rather than supple

ment the keyboard and mouse. There are currently no UNIX and X based systems which

use pen input. There are alsono commercial products which use audioinput, with or with

out pen, to replace the keyboard and mouse.

On UNIX-X systems, applications see the X server as the sole controlling entity thatowns

the keyboard and mouse. There are two input event types, keyboard events and mouse

events, with other event types (such as pointer entry and pointer leaving events) derived

from these types. Correspondingly, there are two data types, ASCII characters and mouse

pixel coordinate pairs (with mouse button status). There are well-established conventions

for dealing with these event types and data types. Applications receive keyboardevents as

ASCII characterstrings. Mouse events may be received as individual XEvent structures or

28

at a higher level of abstraction, depending on the widget set and other software libraries

used. Being network-aware, X supports distributed processing by allowing applications to

run on one machine and use the display from another seamlessly. This model of distribut

ing computation is well suited to the InfoPad system.

However, the current X architecture does notallow easy addition ofotherinputmodalities.

There is no support for pen data, audio data, or recognized text. Nor is there support for

incorporating type-transcoders (such as recognizers). Another weakness is that all data

types come througha single server, the X server. This is adequate for low ratedatasources

but for audio, at least 64 kbits per second flows through the serverin each direction. This

can seriously impact delivery of other data types throughthe single-threaded server.

We need anarchitecture thatseparates thedifferent types of data into independent streams

controlled by servers that have separate threads. In our implementation, we do not have

access to amulti-threaded operating systemsoeach data type serverrunsasa separate pro

cess. We also need each server to be transparently network-aware so that we can distribute

thecomputational overhead of theUser Interface Architecture. This isespecially true given

the computational demands of handwriting and speech recognizers.

3.2. High Level Description

The User Interface Architecture is shown in Figure 3-1. Its major components are the Pen

Server, Audio Server, handwriting recognizer, and speech recognizer. The Pen Server

reads a raw pen byte stream from the Pad Server, translates it into a more tractable form as

described in Section 3.3 below, and makes this data available to applications that require

pen-resolution data. It alsoemulatesthe mouse by generating X-windows mouse events so

that pointing functions are supported without applications having to accessthe Pen Server

directly.

The Audio Server reads a raw audio stream from the Pad Server, buffers it and makes it

available to applications. It alsoreads audio data from applications and sends this data to

the Pad Server. The Audio Server is described in greater detail in Section 3.4. The hand

writing recognizer reads raw pen data from thePen Server or from applications and gener-

29

Figure 3-1. InfoPad User Interface Architecture

ates recognized text or symbols as appropriate. The speech recognizer reads audio data

from the Audio Server and generates recognized text. Each recognizer pictured in the

Figure may be a collection of one or more specialized recognizers, as explained in

Section 3.5.1 below.

In Figure 3-1, raw data is shown going from the datatype servers to the recognizers. How

ever, there are situations where data is collected by the application itself and sent to a rec

ognizer. This situation is described in greater detail in the chapters on recognition,

Chapter 4 and Chapter 5.

30

Each component communicates with theothers through Applications Programming Inter

faces (APIs) which encapsulate the Internet socket used for inter-process communication

and the locations of the other components. This allows the programmer to work ata level

of abstraction which does not require knowledge of socket communications nor knowledge

of the location of each component.

The useof Internet sockets for communications allows each component to run on adiffer

ent machine, thereby distributing the computation onto multiple processors. This allows

each component to run without interference due to CPU usage by other components. This

is particularly important since some components, such as handwriting and speech recog

nizers, are compute-intensive and other components, such as the Audio Server, are very

sensitive to latency. Distributing the processes also allows services tobe provided by alter

native vendors if thecommunications protocols remain thesame. It is therefore possible to

upgrade recognizers transparently without recompiling applications orotherinfrastructural

code.

Each component of the user interface has its own API. As far as possible, we make use of

existing standard APIs but in somecases we designed ourown interfaces in the absence of

existing standards.

There are a few disadvantages to this architecture. Firstly, the communications overhead

of the Internet sockets adds about 2ms per hop [Nara96]. We could reduce latency by com

bining all the type servers, including recognizers, into the Pad Server. This solution will

become practical if we use amulti-threaded operating systemand powerful compute serv

ers that can handleall the threads concurrently.

However the 2ms overhead is a small price to pay for the advantages we gain from multi-

server operation. There is a minimum latency below which the system does not benefit

from a further latency reduction. This lower latency limit is 30 msec, the screen refresh

period, and arises due to the fact thatsystem feedback cannot be displayed sooner than 30

msec after the last screen update. There is also a maximum latency that can be tolerated,

which is determined by perceptual factors. Delays of less than 100 msec are not usually

noticed by users, and delays of greater than 200msec are usually noticed.

31

Secondly, each read from and write to an Internet socket is a system call, which consumes

a significant amount of CPU time. Our network system's main bottleneck is currently the

number of system calls it takes to run the system. However, this bottleneck will also go

away when we move to a multi-threadedoperating system and use shared memory.

Thirdly, the distributed nature of the architecture requires that a database be maintained to

keep track of the location of each service. This database manager, called the Name Server,

maintains a list of currently available services and their locations on the Internet. The

Name Server is centralized and therefore does not scale well as the system grows. The solu

tion to the scalability problem is to distribute the database, keeping the entries on Name

Servers that are local to each network cluster.

Lastly, each network hop consumes network bandwidth, which reduces the number of ter

minals the system can support. However, with proper network design this should not be a

limiting factor.

Now that we have described the User Interface Architecture at a high level, we will

describe its individual components in detail.

3.3. Pen Server

The Pen Server controls access to a scarce resource, the pen digitizer port. It performs two

functions. Firstly, it emulates the mouse by sending pointer events to the X server in

screen-resolution coordinates, allowing the user to run standard X applications that use the

mouse for pointer input. Secondly, it makes pen-resolution pen data available to applica

tions that require data with that resolution, such as handwriting recognizers. This section

describes the design and implementation of the Pen Server.

3.3.1. Mouse Emulation

The Xlib software library allows applications to send input events to the X server. These

events include keyboard events, pointer motion events and pointer button events. How

ever, many X window managers handle pointer button events specially by trapping them

and grabbing further pointer button events directly from the mouse port. This effect pre

vents the Pen Server from fully emulating the mouse since the X server effectively freezes

32

every time a mouse button is pressed. In order tocompletely implement theemulation, the

X extensions were used. The extensions allow the Pen Server to circumvent the limitations

of the Xlib interface by accessing the X server at a lower level.

There arethree extensions that would work in this case, theXInput extension, theXTEST

extension, and the DEC-XTRAP extension. We use the DEC-XTRAP extension.

3.3.2. Pen-Resolution Data

TheInfoPad PenServer receives a raw pen byte stream from thependigitizer via the radio

andInfoNet, without translation. This byte stream is interpreted by thePenServerandpen

resolution data is made available to applications.

The current implementation of the InfoPad terminal uses a Logitech Gazelle digitizer

which provides a 5-byte packet (see Table 3-1) encoding pen position, button status and

Byte No.

MSB

7 6 5 4 3 2 1

LSB

0

1 1 Near Battery Stat3 Stat2 Statl Barrel Tip

2 0 X6 X5 X4 X3 X2 XI XO

3 0 0 0 Xll X10 X9 X8 X7

4 0 Y6 Y5 Y4 Y3 Y2 Yl YO

5 0 0 0 Yll Y10 Y9 Y8 Y7

Table 3-1. Pen Packet Structure for the Logitech Gazelle Digitizer

other information. Near indicates that the pen is nearenoughto the digitizer that the posi

tion and button status bits are valid. Battery indicates pen battery status. Statl-3 reflect

data bits set in hardware; they are currently set to 0. Barrel and Tip report the status of the

barrel and tip buttons respectively. X0-11 and Y0-11 are pen x and y coordinates respec

tively. The origin for X and Y is at the top-rightcorner of the digitizer (and therefore of the

screen).

However, future versions of the terminal may use digitizer hardware from other vendors

so the Pen Server supports several commercial digitizers, including two types of Wacom

digitizer and the Scriptel digitizer. The choice of digitizer decoding is specified on the

33

command line. Supportfor otherdigitizers maybe easilyaddedwith minor modifications

to the software.

Most pen digitizers provide data at a resolution of 200 lines/inch which results in about

2700 x 1900pixels for the Gazelledigitizer, whereas the InfoPadterminalhas a 640 x 480

pixel screen, about a factor of four difference. To support future versions of the digitizer

which might have even greater spatial resolution, and to provide digitizer independence,

the Pen Server provides pen data at8times the screen resolution. The translated pen packet

that is provided to applications therefore contains x and y coordinates in both pen and

screenresolution, pen button status, anda timestamp (seeFigure3-2). The coordinate ref-

typedef struct tablet_packet {
char head;

char buttons;

short x;

short y;

short xscreen;

short yscreen;

unsigned long timestamp;
} tablet_packet;

Figure 3-2. Pen Server Packet Structure

erence frame has its origin at the top-left corner of the screen, with (0,0) at pen resolution

exactly corresponding to (0,0) at screen resolution, independent of the digitizer used.

The Pen Server is the only place inthe entire system, including both hardware and software

components,whereknowledge of thependigitizer vendoris required. Its interfacesat both

ends use protocols which are independent of digitizer vendor. Therefore upgrades to the

digitizer hardwarerequire changes in the Pen Serverand nowhereelse.

3.3.3. General Operation

The Pen Server is started by the Pad Server when the user first turns the InfoPad terminal

on. It runs on a machine whose address is determined via the InfoNet Name Server.

On start-up, the Pen Server establishes a connection to the X server and the DEC-XTRAP

extension, andestablishes a connection to thePad Server, which is partof theInfoNet soft-

34

ware (see section Section 2.2. on page 16). It creates a pair of Internetsockets, one for data

and one for control, which are advertised via the Name Server. Applications may obtain

pen-resolution data via these sockets. There is no predefined limit to the number of appli

cations that may concurrently connect to the Pen Server and receive pen-resolution data.

Although allowing multiple clients to access pen data without security may seemdanger

ous, it allows us to monitor the performance of the Pen Server and also allows the hand

writing recognizer to snoop onthe pen data if it chooses to read thisdata directly from the

Pen Serverrather than relying on the application to provide it.

The penbyte stream is read from the Pad Server and the necessary translations and X oper

ations are performed. Pen resolution data is calculated but not stored since there are no

client connections from applications. Once an application connects to the Pen Server,

translated pen packets are sent to the application. Each application uses the Pen Server's

API (see Section 3.3.5) which allows the application to establish and close connections,

pause and resume data transfer, and control the type of data sent. For example, anapplica

tion may prefer to receive onlypen-down packets, whereas another application may prefer

pen-down packets as well as the first pen-up packet after pen-down, allowing detection of

pen lift events. Since there is no standard for such an interface, we designed ourown API

that suited our needs.

The Gazelle digitizer provides pen data at about 100 pixels/sec, much faster than the rate

of a typical mouse. This is acceptable for handwriting recognition and other applications

requiring pen-resolution data, but the high data rate can overwhelm the X server. There

fore, the Pen Server temporally sub-samples the events it sends to the X server. This has

the effect of making X-aware applications receive exactly as many pointer events as

though they are being driven by a mouse. However this reduced resolution can hurt hand

writingrecognition accuracy. Applications suchashandwriting recognizers which cannot

tolerate sub-sampled data connect directly to the Pen Server over Internet sockets via its

API to obtain full-resolution data.

35

3.3.4. Command Line Options

Several command-line options allow the InfoNet system or other calling program to cus

tomize the Pen Server on system start-up. These options allow the user to specify:

• display screen to use for X events (defaults to the UNIX XDISPLAY environment vari
able

• ID of the current pad: the Pen Server to connects to this terminal via InfoNet

• Internet port number on which to make pen-resolution data available

• device name of theserial port (such as/dev/ttya) from which to readraw pendata
instead of InfoNet

• tablet type: allows selection from LogitechGazelle,WacomSD-510, WacomUD-0607
or Scriptel tablet

For more details, refer to the manual page in the InfoPad systemdocumentation.

3.3.5. Applications Programming Interface

Applications that want access to pen data can use the C language API. This section lists

andexplains the functions thatcomprise thissimple interface. In the textbelow, penStatus

is an enumerated type that can take on values PS_OK and PS_ERROR.

PS_OpenConnection() opens a connection to the Pen Server that services this InfoPad ter

minal and returns a penConnection structure that is used for all further references to the

Pen Server:

penConnection *PS_OpenConnection (char *host, int port,
int padID)

If an error occurs, an error message is printed and NULL is returned. If padID is given,

that number is used to query the Name Server to determine the location of the Pen Server.

If padID is -1, then host and port are used instead.

PS_CloseConnection() closes the connection to the Pen Server and frees all memory and

state associated with the penConnection object:

penStatus PS_CloseConnection (penConnection *conn)

PS_GetFD() returns an integer file descriptor for the pen data socket:

36

int PS_GetFd (penConnection *conn)

The file descriptor is used by the application to determine whether pen data is waiting to

be read. This is done via the select() system call.

After calling PS_OpenConnection(), the application must call PS_SendStart() to signal the

Pen Server to start sending pen data:

penStatus PS_SendStart (penConnection *conn)

PS_SendStop() tells thePenServer to suspend sending datato the application. However it

does not flush the data connection:

penStatus PS_SendStop (penConnection *conn)

PS_GetPacket() reads a singlepen packet that was sent by the Pen Server:

penStatus PS_GetPacket (penConnection *conn,
int *x, int *y, int *bl, int *b2,
int *xscreen, int *yscreen, int timestamp)

PS_Flush() tells the PenServerto suspend sending data to the application and also flushes

the pen data connection so that a subsequent call to PS_SendStart() followed by calls to

PS_GetPacket will not return obsolete data:

penStatus PS_Flush (penConnection *conn)

There are also other functions which tell the Pen Server whether to send pen dataforpen-

up strokes.

3.3.6. Pen Support for X Workstations

The Pen Server can also run independently of the InfoPad system. This allows software

development to proceed while the InfoNet system and the InfoPad terminal itself are not

available. In this case, the Pen Server does not connect to the InfoNet Pad Server but rather

to the serial port of the workstation in order to read pen data. This requires that a pen dig

itizerof oneof the supported types beconnected to thatport.It is assumed that the digitizer

sends data at 9600 baud.

This mode of operation is selected via a command line option.

37

3.4. Audio Server

The InfoPad Audio Server controls access to the terminal's audio input and output ports.

On the uplink, it collects 8-bit u.-law audio data from the InfoPad terminal and maintains

a buffer from which applications canread audio data. Onthedownlink, it accepts 8-bit(X-

law data from applications, mixes thedatafrom all incoming streams linearly and sends it

to the terminal. The downlink policy is to mix the incoming audio streams rather than a

preemptive scheme. This is due to the need forall applications to be able to concurrently

playsounds on thespeaker. Forexample, if a video player application is currently playing

audio continuously, anotherapplication that wants to play a warning beep must be able to

play the beep in a timely fashion without interrupting the video player's audio stream.

Since dropouts and other impairments to an audio stream are very audible, care must be

taken to ensure the integrity of each audio stream. Therefore, it is essential that audio data

be buffered in the Audio Server. The Audio Servermaintains a randomly-accessible 16-

second buffer for each of the uplink and downlink, which seems sufficient for all of the

applications we have built so far.

3.4.1. AudioFile Compatibility

The InfoPad Audio Server is based on AudioFile [Leve93], a public-domain software

package that provides network-transparent access to the audio ports of standard UNIX

workstations. Its operation is very similar to that of the X server. In X, the X server controls

access to the screen, and applications may use the screen resource only via the Xlib inter

face. Similarly, AudioFile takescontrolof the audioinput and output ports of the worksta

tion and applications may access these resources only through AudioFile.

There is a well-defined, standard API for AudioFile. The InfoPad Audio Server uses the

same API library. This allows all applications that are AudioFile compatible to run on the

InfoPad terminal without modification or even recompiling. Some important applications

that support AudioFile include the MBone videoconferencing tools [MBo95].

Using a standard, widely supported interface also allows software development to proceed

before the InfoNet software and InfoPad terminal are available. Application developers

38

need only run the standard AudioFile server on their workstations to be able to test their

software.

3.4.2. Enhancements Over AudioFile

Internally, the Audio Server differs from AudioFile in several ways. The device-dependent

code that reads audio data connects to the InfoNet Pad Server rather than the workstation's

audio hardware port. Writing of audio data also goes through the Pad Server.

In AudioFile, timing consistency is maintained bycounting thenumber of bytes read from

the audio hardware. There is therefore a common timebase for uplink and downlink. But

in the InfoPad, the unreliable radio link means that uplink data may frequently be lost,

making this method of timing measurement unreliable. In the Audio Server a separate

timing mechanism based onUNIX time is used forthedownlink. Theuplink anddownlink

timebases are therefore independent.

The InfoPad terminal's audio chip maintains a small first-in-first-out (FIFO) buffer for the

uplink and another for the downlink. The uplink bufferstores8 bytes (1 ms) of audio data

while the downlink bufferstores 128 bytes (16 ms) of audio data. It is necessary to keep

these buffers small to satisfy telephone or other applications that require a low-latency

audio loop. The small size of the downlink buffer means that data must be sent to the audio

chip at a carefully measured rate to avoid overflowing or underflowing thebuffer.This rate

controlis doneby the Audio Server. It sends audio dataon the downlink in 80-bytepackets

at intervals of 10 ms. Occasionally, the buffer may indeed underflow if the Audio Server

swaps out; due to the rate control on the downlink the effect is only a single click. This

underflowproblem can be avoided in future by using a real-timeoperating system and by

pinning the Audio Server to main memory.

The Audio Server connects to the InfoNet Pad Server on one side and to applications on

the other side via Internet sockets; it is truly networked. It can run on any Internet-enabled

machine whereas the traditional AudioFile implementation requires that the server run on

the physical machine upon which the audio hardware resides.

39

3.5. Handwriting and Speech Recognizers

In the sections above, the tasks of the Pen Server and Audio Server are shown to be very

well defined. However the tasks of the handwriting and speech recognizers are not as well

defined. Loosely speaking, they provide applications with ASCII text which may be used

for commands and control or for data entry. Howeverthis text is generated from the rec

ognizers' interpretations of handwritten or spoken inputand these interpretations may not

be accurate. This section addresses the role of handwriting and speech recognition in the

InfoPad systemand leaves detailed discussion of the actual recognizer designs and imple

mentations to Chapter 4 and Chapter 5 respectively.

3.5.1. Handwriting Recognizer

The handwriting recognizer's function is to replace the keyboard for text entry and for

single-key commands. This is a service which all applications requiring textual entry

would use. However, there are several different kinds of recognition services which appli

cations may want from the handwriting recognizer.

For mass text entry, a recognizerwith a large vocabulary and a grammar would be ideal.

Userswouldwrite sentences ina natural or artificial language, suchasEnglish orC++.The

recognizer would automatically check grammar and spelling. For mass text entry in

English, cursive handwriting may be used since cursive recognition requires a dictionary.

For file namesor web addresses, a recognizer which doesnot imposea grammar or dictio

nary is needed. The userprints each word and the recognizer sends the recognized text to

the application. In thiscase, the recognizer would be independent of the application since

there is no application-dependent grammar or vocabulary.

Single-character recognition and gesture recognition have similar requirements. Single

characters and gestures allowtheuser to entermacro commands quickly andeasily. In this

case, the screenlocation of thedrawn character or gesture mustalsobe sent to the applica

tion, together with a ASCII string that represents thecharacter or symbol so that the appli

cation can use location information to process the recognized gesture. For example, if the

gesture indicates erasure of a window on the screen, location information can identify the

appropriate window for erasure.

40

Using the InfoPad architecture, the application may need toaccess several recognizers con

currently, one for print and one for gestures in thecase of an e-mail application. The API

allows the applications programmer to specify the vocabulary and grammar herequires so

that the recognizer service can provide the appropriate kind of recognition service. The

application may therefore use several recognizers concurrently, each performing a differ

ent service. As described in Chapter 4, they can all have the same API.

In the next section, we will see that the speech recognizer can perform some of the func

tions described above. However, it is necessary that all functionality be supported without

speech recognition because speech recognizers usually perform inadequately in noisy

environments. There are also many situations where the user must be quiet and therefore

cannot speak to the terminal.

3.5.2. Speech Recognizer

The system is usable withoutspeech recognition, sincetext andcommandsmay be entered

using the handwriting recognizer. However the speech recognizer adds a new dimension

to the userinterface sinceit is not spatially specific. The speechrecognizer doesnotrequire

any kind of navigation, which meansthat issuing a command using speech need not inter

fere with the current task. As in handwritingrecognition, there areseveral kinds of services

the speech recognizer can provide.

The speech recognizer may be used for dictation or for commands. In dictation, which

includes masstext entry suchasbook writing and programming, the situation is similar to

that of handwriting recognition in thata grammar andvocabulary arerequired. This gram

mar and vocabulary may be application-dependent. But in the more common case of gen

eral dictation, the vocabulary and grammar are application-independent.

For commands, the grammar is much more restrictive and therefore simpler, although the

vocabulary may be large for some applications. As in handwriting recognition, the vocab

ulary is application-dependent.

41

Unlike handwriting, speech recognition is not appropriate for specifying data which does

not have a predefined vocabulary. Spelling out a word verbally takes much more time than

writing it, and is therefore less efficient.

Screen navigation using speech recognition may also be inefficient. If the user intends to

merely jump from window to window, speech recognition may be used to identify the

name of the destination window provided the windows have unique names, or that the user

is satisfiedwithrelativeratherthanabsolute moves. However usingthe pen wouldbe more

efficient so we do not support speechrecognition based screen navigation in the InfoPad

system.

3.5.3. Servers Versus Software Libraries

From the foregoing, it is clear that eachapplication may requiremore than one recognition

service. However, if each application were to have its own dedicated recognizer for each

type of recognition service it requires, there will be a large number of recognizers in the

system, consuming system resources. If the recognizers were indeed dedicated, there

would be no functional difference if each recognizer were compiled into that application.

The maindisadvantage of compiling the recognizer into the application is that the compu

tational loadof the recognizer would then run locally wherever the application is running.

This is not a problem if the application is runon a fastcompute serveror if the recognizer

is sufficiently lightweight, but can be a consideration in the more general case.

Compiling the recognizers intoeachapplication would make applications verylarge. This

is wasteful especially sinceat any one time only one application would be using recogni

tion services anyway. Therefore, recognition service for a single user should be provided

by a single remote recognition server rather than by compiling recognizers into applica

tions. Moreover, these servers can be upgraded by service providers as technology

improves and better recognizers become available, and may be shared between users in

addition to sharing among applications. This is especially true for dictation recognizers,

which are large and have high computationaldemands yet do not require customization for

each application.

42

4 Handwriting Recognition

In this chapter we explore the handwriting recognition needs of the InfoPad system and

describe the kinds of handwriting recognizers required to meet these needs. We then

describe models for delivering recognized textandan on-linehandwritten print recognizer

that was designed and implemented as partof this research effort and deployed in the sys

tem.

In the following discussion we concentrate on handprint recognition and not cursive rec

ognition.We furtherspecialize to the recognition of isolatedprinted words rather than sen

tences since this kind of handwriting recognition is required in the InfoPad system, as

explained in Section4.3 below. All the systems described in this chapter perform on-line

handwriting recognition; that is, they receive a sequence of pixels from a pen digitizer

while the user is writing. This is distinct from off-line recognition, in which scanned

images or facsimiles of handwritten words are processed.

4.1. Previous Work

In this section we review some of the previous work reported in the handwriting recogni

tion literature. We do not have recognition accuracyfigures for some of these recognizers

since their product literature does not report these statistics.

4.1.1. GO Corporation

GO Corporation built a handprint recognizer as part of their PenPoint operating system.

The handprintengine recognizes mixed upper and lowercase letters, numerals, and punc

tuation. It handles both boxedand linedhandwriting and tolerates characters that overlap,

touch or share strokes, independently of stroke order and direction.

43

This recognizer achieves 90-97% character level accuracy [Carr91]. Character recognition

is performed by comparing character shapesagainst a set of character prototypes for each

character. Users may train the prototypesas well as add new prototypes via a brief training

session. A 100,000-word dictionary, standard punctuation rules and application-supplied

word lists help improve word and sentence recognition accuracy.

4.1.2. IBM

Researchers at the IBMT. J. Watson Research Center built an unconstrained handwriting

recognizer using a technique called Parallel Dynamic Programming [Fuji93]. Apreproces

sor breaks up incoming words intosub-character elements which are then usedfor recog

nizing words from a prescribed list. Letter models are constructed from these sub-character

units and an alignmentmodel bridges characters and words.

This recognizer achieves a writer-independent word recognition accuracy of 89.7% based

on a vocabulary of 2171 words. This technique works well when a dictionary is usedbut

may not workwellfor applications without a dictionary sincecharactersegmentation is not

done. Without segmentation, the search space explodes since the recognizer receives no

hints to help it determine character boundaries.

4.1.3. AT&T

Using Time Delay Neural Networks, researchers at AT&T Bell Laboratories built a writer

independent and writer adaptive character recognizer [Guyo92]. Classical back-propaga

tion training for writer independence was combined with postprocessing which allows

adaptation to unique writing styles and learning on newsymbols.

Input characters are first re-sampled, centered and re-scaled toremove time and space dis

tortions. A set of 7 geometrical features are calculated for each pixel. These features are

designedto capture local topological features alongthe curveof the character. The features

are fed into a neural network that is designed to extract more complex, global features.

Therecognition accuracy achieved was 97.2% without writer adaptation. With adaptation,

this figure improved to more than 98%.

44

4.1.4. CIC

The Communications Intelligence Corporation sells a handprinted character recognizer

which doesnot require user training yet adapts to the user. It is compatible with Windows

for Pen and PenDos, and supports several languages including European languages and

Japanese. The product, called Handwriter, allows gesture-based editing and includes a sig

nature verification feature to allow secure access to data. Several PDAs, including the

Symbol PPT 4600 and some Fujitsu models, bundle this product. Handwriter can also be

purchased as a stand-alone product runningunder Windows, OS/2 or PenDOS. It includes

a 6" x 9" graphics tablet, Pen Extensions for Windows or OS/2, and some pen-enabled

applications.

4.1.5. Paragraph

Paragraph International's CalliGrapher[Par96] recognizesprinted, unconstrained cursive,

and mixed handwriting, and is shipped with the Newton MessagePad. It benefits from user

training andcan recognize arbitrary sequences of symbols, including wordfragments. Cur

rently, CalliGrapher supports, English,French and German handwriting.

4.1.6. Apple

A recenthandprint recognizer from Apple usesneural networks to estimatethe probability

that the handwritten input matches each character [Lyon96]. A number of innovations

make this recognizer interesting. It uses negative training to reduce the probability of

incorrect segmentation during theearlystages of recognition, improving word recognition

accuracy. The handwriting data in the training set is warped in several ways and the warped

versions are used to train the neural net, improving the generality of the net. Under-repre

sented data in the training set is passed through the net more than once during training (in

the warped instantiations) so that infrequently occurring examples are less undertrained.

The output error used in running the back-propagation algorithm to train the net is normal

ized by reducing the back-propagated error for classifier outputs corresponding to the

incorrect classes relative to the correct class. This helps deal with the situation where the

recognizer erroneously eliminates an alternative because one character has almost zero

probability due to being a poor alternative choice.

45

4.2. Characteristics of Handwriting Recognizers

There are several characteristics of handwriting recognizers that may be tradedoff against

each other to produce the best performance for a given application. In this section we

examinethesecharacteristics and the issues surrounding handprint recognizers, including

methods of using these characteristics to improve recognition accuracy.

4.2.1. Vocabulary

The imposition of a vocabulary on a handwriting recognizer helpsreduce the searchspace

and thereby reduces the recognition error rate. For example, if an unconstrained word-

input task has an average word length of 5 characters and the error rate is 10% for each

character, the probability of getting the word correct is 59% and the search space is 11.9

million lowercase words.But limitingrecognition to a vocabularyof 60,000 words reduces

the search space by a factor of 200. The reduction in the size of the search space greatly

reduces the processing requirements, in this case by a factor of 200. Recognition accuracy

improves as well since thereare fewer legal candidates.

Applications can further constrain thesearch space by specifying the kindof input that the

recognizercan expect. Using a recognizer thatrecognizes cursive, print andgesturesat the

same time will not be as accurate nor as fast as usingseparate recognizers for each input

type. The best-case scenario is where the application knows which kind of input it is get

tinganduses a recognizer tailored specifically for this kind of input. Another possibility is

to send the input to all three recognizers and use confidence levels returned by the recog

nizers to choose the recognized result.

4.2.2. Grammar

Imposing a grammar on a sentence recognizer allows improved recognition accuracy. The

recognition task in the InfoPad system involves word recognition and not sentence recog

nition, so using a grammar may not improveperformance.

4.2.3. Constrained Writing Area

If the writing area were constrained, for example with ruled horizontal lines and tick

marks, or with boxes, the recognizer would be able to segment the characters and estimate

46

their size more easily, aiding the recognition process. Constraining the writing area also

makes users write more neatly and allows corrections tobedone locally ona character-by-

character basis rather than by re-writing the entire word.

4.2.4. Spatial Locality

The fact that handwritten input contains absolute spatial information means that context-

dependent recognition can take place. Bynoting that inputcomes from different windows

or from different regions in thesame window therecognizer candetermine thekindof rec

ognition service required and also which application should received recognized text.

One example application of this feature is in correcting misrecognized handwriting. The

user writes on an entry widget and electronic ink provides user feedback. Then the ink is

erased and replaced byrecognized text. If theuserwrites on topof any recognized charac

ter, the captured writing can be interpreted as a single character that replaces the recog

nized character beneath it. Alternatively, the new input can be interpreted as a gesture and

sent to a gesture recognizer.

Another example is the situation where there is a page for handwritten cursive entry and a

single entry widget for entry of a file name via handprinting, both on the same screen.

Using spatial locality, the recognizer can tell which kind of handwriting to expect. It can

use a more task-specific algorithm and thereby achieve better accuracy.

4.2.5. Digitizer Resolution

The Logitech Gazelle digitizer used in the InfoPad system generates about 100 points/sec

at a resolution of about 200 points/inch, although it is capable of 377 points/sec at 414

lines/inch. It is commonly accepted that in order to capture the details of normal writing,

at least 200 points/inch and 100 points/sec are required [Tapp90]. However there is evi

dence that these requirements are too tight. Some commercial PDAs such as the Newton

MessagePad successfully use digitizers with much lower spatial and temporal resolution.

As handwriting recognition technology improves the need for high resolution digitizers

will diminish. The lower limit of digitizer resolution is the screen resolution. This is true

since user feedback is at screen resolution.

47

4.2.6. Available Computational Power

Increasing thecomputational resources available to run thehandwriting recognizer allows

the use of more sophisticated algorithms. For example, multi-algorithm recognition with

voting canbe used. Wecanalso doless pruning, thereby reducing theprobability of elim

inating the correct answer early in the recognition process. With greater computational

resources therecognizer will interfere less with other applications running on thesamepro

cessor and will return its results sooner, improving user responsetimes.

4.3. Recognition Requirements of the InfoPad

In the InfoPad system, handwriting recognition is used to specify file names, e-mail

addresses and Universal Resource Locators (URLs) for the World Wide Web (WWW). It

is not primarily intended formass textentry. Recognition of drawn gestures or geometrical

objects are also interesting capabilities that can be useful for the InfoPad.

In the sections below, wedescribe thehandwriting recognition requirements of the InfoPad

system and the kinds of recognizers needed to support these capabilities.

4.3.1. Non-Dictionary Words

File names, e-mail addresses and URLs are examples of non-dictionary words. It is not

possible to limit the searchspaceby specifying a finitevocabulary whichcontainsall legal

words within this set. Also, grammarmay not be used to improve recognition accuracy. A

character-based recognizerrather than a word-based recognizeris therefore required. This

recognizer must take the form of a handprint recognizer rather than a cursive recognizer

since cursive recognition requires a vocabulary.

4.3.2. Mass Text Entry

Since the InfoPad is not meant primarily for mass text entry, it is not essential to support

this type of data entry. Nevertheless the InfoPadcan support mass text entry if it had access

to cursive handwriting recognition. Cursive recognition requires a vocabulary and would

benefit from a grammar. A cursive recognizer would also be useful in cases where the user

wants to send e-mail as recognized text rather than electronic ink.

48

4.3.3. Gestures

Gesture recognition has proven to be very useful in the Windows for Pen, PenPoint, and

Newton OS environments. They are useful forshort commands forapplications as well as

for correcting and annotating handwrittendocuments.

A gesture recognizer may be implemented as an independent recognizer or as part of a

hand-print recognizer. Due to spatial locality, it is often possible for applications to deter

mine whether handwritten input is meant tobeagesture ora printed character, soit is pref

erable to have a separate gesture recognizer.

4.3.4. Geometric Shapes

Many applications, including the circuit schematic recognizer described in Chapter 6,

require recognition of drawn shapes. Other such applications include computer aided

design of various kinds, including architectural drawings and clothing. To support these

applications, a geometric object recognizer would be very useful. However, it would need

to be highly customizable so that applications can easily specify the primitives to be rec

ognized.

Alternatively, a library of recognition routines could be provided and applications can use

these routines to create theirown geometric object recognition engines.

4.4. Models for Providing Recognition Services

In this section, we discuss models foreach facet of providing handwriting recognition ser

vices. They are theuserinteraction model, the programming model, andtheservice provi

sion model.

4.4.1. User Interaction Model

The user interaction model describes the modes of interaction between the user and the

handwriting recognizer. There are several alternatives. One model is for the user to write

on a single space on the screen, with recognized text going automatically to the correct

application. Another is for all handwritten input to be local to the application. That is, all

characters arewritten in writing areas thatbelong explicitly to individual applications. The

userinteraction model alsocovers correction mechanisms. Onemodel is fortheusertoper-

49

form corrections in a separate mode, while another model has the user write on top of the

mis-recognizedcharacter.The recognizerdetectsthe locationof the new input and behaves

accordingly.

4.4.2. Programming Model

The programming model defines the interface into the handwriting recognizer from the

applicationprogrammer's perspective. Thereis a rangeof choicesavailablein selectingthe

tightness of the coupling between the recognizer and the application. For example, some

applications may not want to be aware of recognition at all, preferring to have the recog

nizer run separately and emulate a keyboard. Other applications may record pen strokes

themselves,calling the recognizerusing theirown application-specific parameters. In this

section,we exploresomeof thesechoices andtheirconsequences for implementation.

4.4.2.1. Uncoupled Applications

Some applications,especiallyexisting applications, should not need to be cognizant of the

handwriting recognizer. They receive user input as though from a keyboard and mouse.

Such applications can be supported by a stand-alone widget application in which the user

writes on a specialwritingcanvas. On recognition, this widgetsendsrecognizedtext to the

application with current recognition focus via the windowing system. Handwriting recog

nition focus may be determinedby keepingtrack of the most recently active window or by

other possibly more explicit means.

One disadvantage of this approach is that the application cannot tailor the recognizerto its

own needs, so it may be necessary to give the widget separate modes for each application.

This is cumbersome since the widget must be augmented for each additional application

supported, unless the application comes with its own customized widget. However, this sit

uation is not likely to arise often since all the kinds of applications expected on the InfoPad

require the same print recognition service.

Another disadvantage of this approach is that extra screen area, always precious on a small

portable terminal, is consumed. This is especially serious if separate widgets are needed

for each application.

50

One major advantage ofthis approach isthat the stand-alone widget can run on any remote

machine using the X-Window system as a display mechanism, thereby supporting distrib

uted processing. Another advantage is that the recognizer can be transparently replaced

with a betterone without modifying any of the applications.

4.4.2.2. Loosely Coupled Applications

An application may prefer a more customizable interface, where the programmer can

design all user interaction himself. This can be supported by providing a set of widgets

which the programmer uses in place of regular entry widgets within his application. Only

minimal changes to his code are needed. He can also control some of the recognizer's

parameters as necessary. However, he maynot haveaccess to all of the recognizer's inter

nal state and functionality since the widget encapsulates the recognizer's details.

4.4.2.3. Tightly Coupled Applications

In somesituations, an application may prefer to have complete control of the recognizer's

parameters, including capturing ink itself and sending the ink to the recognition engine.

The ink may represent print,cursive, gestures or drawn items. It is up to the application to

decide which type of recognition is required andto access the recognizer with the appro

priateparameters to perform thejob. A comprehensive APIintothe recognizer is required,

possibly including access to recognition confidence levels, the N best candidates, and

vocabulary words.

4.4.3. Service Provision Model

The service provision modeldescribes howand whereservice is provided.Service may be

providedby a separate process running locally (orequivalently a separatethread),as a sep

arate process running remotely, or as part of the same process.

As described in Section 3.5.3. on page 42, it is possible to run the recognizer remotely and

to communicate with it using Internet sockets. This model of providing service is very

powerful. It allows use of only one recognition engine per user rather than one recognizer

per application. This engine can be time-shared between applications and even between

51

users. The recognition server may be upgraded transparently to provide the best service,

and may be implemented on general purposeor special hardware.

Remote execution is the best service model in most cases, but there are some situations

where it is worthwhile to compile the recognizer into the application. Such a situation

ariseswhen the recognizer is tightly coupledwith the application and where the recognizer

should not be shared, such as in batch recognition of pre-recorded speech, or where net

work accessis expensive, or where the recognizer is highly customized for the application.

4.5. Properties of Printed Handwriting

In recognizing printed handwriting, we haveto take account of several of its unique prop

erties.When dotting i's andj's, and when crossing t's, writers often delay the stroke until

afterthe entire word has been written. This delayed stroke is therefore out of sequence in

the input stream and the recognizer must take care of this. This is especially common in

cursive handwriting.One solution for printrecognition is to sortall the handwritten strokes

from left to right. Anotheris to look for strokes thatare clearly out of sequence (based on

tick marksorboxes in the writing area) and move these strokes backwards in the sequence

to immediately follow the other strokes in the same box. The difference is that in one case,

all strokes are sortedwhereasin the othercaseonly delayed strokes are used.

There are several characters which havesimilar uppercase and lowercase representations;

the only difference is size. The recognizer must therefore have a mechanism to determine

which case the writer is using. A commonly used solution is to constrain the user to write

between lines andto use the line pitch as a hint. A related problem is that some characters

such as g andj havedescenders, so the lowerbaseline upon which the userwritesmust be

above the lower boundary of the window to allow space for descenders.

Many characters have more than one written representation. For example, the letter r can

be written in two ways (see Chapter 8). Even for the same representation of a particular

character, there may be several ways of ordering oreven writing the strokes. For example,

in E the four strokes may be written in any order. In f, the vertical stroke may be written

top to bottom or bottom to top.

52

Many users write words using characters that overlap their neighbors. Others write in a

"run-on" fashion where they do not pick the pen up between characters. The recognizer

therefore cannot easily use x coordinate separation to segment characters. One solution is

to use an algorithm that does not require pre-segmentation. Another is to use boxes or tick

marks along the lower baseline.

There are a few characters which cannot be differentiated without context. The numeral 0

and the letter O are written identically, and so are the numeral 1and the letter 1. The appli

cation must therefore tell the recognizer the context so that it can differentiate between

these characters.

Variation between writers can take several forms. Left handed writers sometimes write

strokes in theopposite direction to that of right handed writers. For example, aright handed

writer crosses a t from left to right whereas aleft handed writer crosses it from right to left.

Some writers slant theircharacters to the left, some to the right, and some not at all. Some

do not have a consistent slant. Writing speed varies among writers as well.

Visual feedback affects the quality of printed handwriting. If the application does not gen

erate electronic ink to follow the pen tip on the screen, the useris moresloppy. Writing on

lines or in boxes alsousually results in neater handwriting.

4.6. HMM Based Handwriting Recognition

A handwriting recognition algorithm must take into account the characteristics of hand

writing described in the previous section. As illustrated in Figure 4-1, HMM based recog

nition is done in several steps. Some of these steps may be omitted in some

implementations. The first stepis preprocessing raw handwriting. This includes interpolat

ing, sub-sampling, and normalizing theraw data to eliminate dependence on writing speed

and digitizer resolution.

Segmentation is done next based on information from the geometry of the writing area. It

is often done in several alternative ways. Each alternative segmentation is passed to the

next stage for further processing andeventual eliminationof incorrectsegmentations. Fea-

53

Raw Handwriting

Geometrical Information

HMM Parameters

Recognized Results -*-

•I Pre-process

] Segment

Extract

Features

i
Viterbi

Decoding

Post

Processing

Figure 4-1. High-Level Description of a HMMBased Handwriting Recognizer

tures may then be extracted and passed to the Viterbi decoding engine, which uses HMM

parameters to generate recognition results for each segmentation.

Post processing involves choosing the best answer from the alternatives provided by the

Viterbi decoder, includingdisambiguating uppercase and lowercasecharacters.

4.6.1. Hidden Markov Modeling

In this section, we describe the hidden Markov model in general terms. This modeling

technique is used in the handwriting recognizer described in Section 4.7 and in both the

speech recognizers described in Chapter 5.

Hidden Markov modeling is used to model a statisticalprocess which has a finite number

of states.The process transitions from onestateto anotherat each cycle; the destination (or

successor) state is determined probabilistically and depends on the current state only. It

does not depend on the states beforethecurrentstate.That is, the probabilisticstate process

54

isaMarkov process and each state transition isindependent of the previous state transition.

Each state generates an output from afinite set ofobservations; the actual output produced

depends probabilistically on thecurrent state. In some applications of the hidden Markov

model, the output depends on both the current and successor states. Butin the recognizers

described in this thesis the output depends only on the current state. The model is called

"hidden" because wecan observe only the outputs of theMarkov process and notthestates

themselves.

The model has many parameters. For each transition between states, the transition proba

bility:

Equation 4-1. Ai} = P(s{ +l=j\st = i)

is the probability that the successor state to state i is statej. There is therefore a transition

probability associated with every pair of states. The current state is a valid successor to

itself if the process can stayin the samestate for morethan one cycle. This allowsimplicit

time-duration modeling.

The output probability:

Equation 4-2. B^O,) =P{0=Ot\st =i)

is theprobability that theobserved output Ot is generated if theprocess is currently in state

i. There is therefore an output probability distribution associated with every state, and each

distribution has a probability value for every valid outputobservation value. In some sys

tems, this output canbe continuous rather than discrete, which results in probability distri

butions that are continuous.

The probability that any given sequence of observations O = {Ox...OT} matches any

sequence of states S = {s] ...sT} for T cycles is:

T

Equation4-3. P(0\S) =B(0,) JJAs> iSBs(Ot)
t = 2

Equation 4-3 canbe used to determine the most probable state sequence via Bayes' Rule:

55

Equation 4-4. P(S\0) =/>(^J^(5)
Since we are looking for MAX(P(S\0)) over all state sequences 5 and P(O) is indepen

dent of 5, the latter term is irrelevant to the evaluation of the MAX operation and may be

ignored. Therefore, maximizing Equation 4-3 is equivalent to maximizing Equation 4-5:

r-i

Equations. />= ^WO,)}}^.^.^*.)
/= 1

where n(sl) encapsulates P(S) and is the apriori probability that thestate Sj is atthestart

of a sequence. This equation may be evaluated inductively using the forward algorithm:

Equation 4-6. a,(/) = 71(0^.(0,)

Equation 4-7. at(j) =[X<X,_1 (i)A^Bj(Ot)

Equation 4-8. P = aT(sF)

where sF is the final state inthesequence S. The forward algorithm gives us theprobability

of that state sequence, which is adequate for determining the most probable single charac

ter. But for word recognition, this gives the probability that sF is the final state in the

sequence but does not allow us to trace back the path through the sequence and thereby

determine the most probable character sequence. We therefore maketheViterbi assump

tion:

Equation 4-9. vt(j) = [MAX(v/_]A|>.)]B/Or)

to replace Equation 4-7. Sincewe are taking the most likely path, we are ableto store point

ers back along this path and trace through it after the final state is processed to determine

the most likely character sequence.

The transition probabilities {A^} and the output probability density functions {£,} are

trainedusing the Baum-Welch.re-estimation algorithm [Baum72].

For a more detailed explanation of hidden Markov models, refer to [Juan84].

56

4.7. A Writer Independent Handprint Recognizer

A writer independent hidden Markov model based handprint recognizer was developed

and deployed inthe InfoPad system. Itwas inspired by the author's experience with HMM-

based speech recognition [Rabaey88]. Two sets ofMarkov model parameters were trained,

one for 61 alphabetic and special characters and another for all 10digits.

Inthis section, we discuss the recognition algorithm, the character sets selected, the appli

cations programming interfaces, the software written for capturing and manipulating hand

written data, and the training data set. Except for thegraphical userinterfaces which were

written in Tcl/Tk [Oust94], all the software was written in C and C++.

4.7.1. The Recognition Algorithm

The recognition algorithm begins with preprocessing and feature extraction, then does a

Viterbi search, and then traces backthrough the HMM trellis to determine the most likely

characterwritten. Somepost-processing is doneto disambiguate uppercase and lowercase

characters.

4.7.1.1. Heuristics

In orderto improve recognition accuracy, heuristics areapplied to the inputpixel sequence

before preprocessing. These heuristics detect certain characters, which are listed in

Character Heuristic

. (period) One stroke, less than 5 pixels

: (colon) Two strokes, less than 5 pixels each

Table 4-1. Heuristics Used in Handwriting Recognition

Table 4-1. These characters are otherwise difficult to detect due to the small number of

pixels and the algorithm's scaling behavior described in the next section.

4.7.1.2. Preprocessing and Feature Extraction

Several processing steps are performed to extract features before performing the actual

Viterbi search on the Markov model. These steps are called preprocessing and consist of

truncation, sorting, segmentation, normalization and feature extraction. The strokes are not

57

sub-sampled spatially or temporally because experimentswith sub-sampling showed that

it reducesrecognition accuracy, especially forcharacters witha smallnumberof pointsper

stroke.

As soon as the recognizer receives a sequence of strokes it computes the centroid of each

stroke. The strokes are sorted left-to-right and then segmented into characters. Segmenta

tion is done by assigning each stroketo a character using the position of its centroid with

respect to the tick marks providedon the drawing canvas. The last 3 pixels are then trun

cated from each stroke that has 15 or more pixels.This helps reduce the effects of the arti

fact that arises on pen-up, as described in Section 6.1.3. on page 116.

The characters are then processed individually. All strokes within each character are nor

malized verticallybased on the highestand lowestpointsof all the strokesin the character.

The recognizer quantizes the y-coordinates to 256 levels.

Lastly, the feature triplets arecalculated foreachpixel. In thisalgorithm, verysimple geo

metric features are used: slope, slope difference and y-coordinate for each pixel, each

quantized to 8 bits (256levels). Thesequence of feature triples is calculated for each stroke

in the character and concatenated with the previous strokes' features. This concatenated

array of feature triplets is passedon to the Viterbi searchengine.

4.7.1.3. The Hidden Markov Model

Before describing the Viterbi engine used in this recognizer, we describe the Markov

models used in this recognizer.Eachcharacteris assigneda numberof Markov states based

on its complexity. The number of states is listed in Table 4-2 for the 61-character recog-

Character States Character States Character States

a 8 A 12 * (asterisk) 10

b 8 B 16 @ (at sign) 12

c 6 C 6 ! (exclamation mark) 6

d 12 D 10 - (minus sign) 2

e 10 E 10 . (period) 1

Table 4-2. Number of Markov States for Each Handwritten Character in the 61-Character
Recognizer

58

Character States Character States Character States

f 8 F 8 / (slash) 4

g 10 G 8 ~ (tilde) 4

h 10 H 10 tt (double t) 10

i 5 I 10 _ (underscore) 2

J 8 J 10

k 10 K 10

1 4 L 6

m 16 M 16

n 10 N 12

0 8 0 8

P 10 P 10

q 12 Q 10

r 8 R 16

s 8 S 8

t 8 T 8

u 10 U 10

V 8 V 8

w 14 W 14

X 8 X 8

y 8 Y 8

z 10 Z 10

Table 4-2. Number of Markov States for Each Handwritten Character in the 61-Character
Recognizer

nizer and inTable 4-3 for thedigit recognizer. Thenumber of states for each digit orchar

acter wasinitially chosen based on thecomplexity of thecharacter, and thenrefined using

an iterative process to assign more states to characters with higher error rates.

Many of the characters can be written in several ways. In the 61-character recognizer all

the varitions of each character are condensed into one model whereas in the digit recog

nizer each distinct way of writing each digit has a unique model. Therefore there can be

several entries for each digit in Table 4-3. The various forms of each character and digit

are documented in Chapter 8 on page 138.

59

Digit States Digit States Digit States

Oa 8 5a 10 8a 10

la 4 5b 10 8b 10

lb 8 5c 10 8c 10

lc 8 5d 10 8d 10

2a 7 6a 6 8e 10

2b 8 6b 10 8f 10

2c 8 6c 8 8g 10

3a 12 7a 6 9a 8

4a 8 7b 8 9b 10

4b 10 7c 10 9c 10

4c 12 7d 8

Table 4-3. Number of Markov States for Each Handwritten Character in the Digit
Recognizer

All characters models use left-to-right topologies as shown in Figure 4-2. Transitions may

Figure 4-2. Topology of an 8-State Handwriting Markov Model

take place from any state to itself or to the next state only, except at the beginning and

ending states. The beginning and ending states have extra transitions to compensate for

artifacts on pen-down and pen-up. These artifacts are context dependent and maybemod

eled as co-articulation effects with adjacent characters.

The output probabilities are estimated using discrete probability distributions (discrete

HMMs) which are trained using a counting approach called the Baum-Welch algorithm

[Baum72]. This approach is iterative so that the model automatically aligns with the data.

60

4.7.1.4. Viterbi Algorithm

Therecognizer usestheViterbi algorithm todecode theMarkov model. Allparameters are

represented in floating-point. The algorithm calculates Equation 4-5 for all characters in

the vocabulary. The character withthe highest probability at its final state is determined to

be the recognized character.

This recognizer's HMM parameters are severely undertrained, as explained in

Section4.7.5. Some preprocessing of the trained parameters is therefore done in order to

improve the models' generality and thereby improve recognition accuracy for characters

that are not in the training set.

There are two parameter preprocessing steps in the algorithm. Each output probability is

subjected to a floor of 0.0001 so that all output probabilities below this value are set to it.

Thisprevents anystate sequence from becoming extremely improbable. Without this step,

a single mismatch due to the undertrained models could make the correct answer highly

improbable.

Each output probability distribution is subjected to a 7-pixel filter window (3 pixels on

each side of the current pixel). The probability of each feature value is set to the highest

probability within this window. Thishelps smooth out the probability distribution function

and thereby generalize the recognizer. Experiments showed that using the median rather

than the highest probability within the window does not work as well. The sparseness of

the training data meant that most of the probability values in the distributions are almost 0,

so the median value is usually 0.

If the models were not undertrained, it would nothave been necessary to takeeitherstep.

There are otherways to deal with this problem. Many researchers deal with undertraining

by fitting the probability distribution to a standard curve such as a Gaussian. This would

have been the next step if the currentrecognition algorithm had not given sufficient recog

nition accuracy (see Section 4.7.6).

61

4.7.1.5. Post-Processing

Some characters have similar upper case and lower case representations. These characters

arepost-processed todetermine thecase bycomparing their height totheheight ofthewrit

ing area. Theyare: c, m, n, o, p, s, u, v, w, x, y, and z. Once thecaseof eachcharacter has

been determined, all the recognized characters in the word are concatenated into a string

and this string is returned to the calling application.

4.7.2. Character Sets

The character sets for the recognizer were chosen based on the anticipated needs of Info

Pad applications. For e-mail addresses, URLs for the WorldWide Web and file names, the

61-character recognizer supports all 52 upper and lower case letters, at-sign "@", period

".", slash "/", tilde "~", and underscore "_". The asterisk "*" allows wildcard characters in

file selection boxes. The "double t" character models two consecutive "t"s which are

crossed with a single bar.

For numeric entryof parameters intoapplications, a separate setof HMM parameters was

trained. In the InfoPad model, multiple recognizers are easily accessible so applications

that require digit recognition can connect directly to a digit recognizer regardless of

whether they also need other recognition services. A dedicated digit recognizer achieves

much better recognition accuracy than a single all-purpose recognizer.

Another advantage of a separate digit recognizeris that some easily confusable characters

can be differentiated. For example, the numeral "0" and the letter "O" are easily confus

able, as are the numeral "1" and the letter "1".

4.7.3. Applications Programming Interfaces

There are currently three ways for applications to access the handwriting recognizer. A

handwriting recognition widget runs as a separate process and allows uncoupled applica

tions to accept handwritten input. A remote server allows applications to access a recog

nizer over the Internet and to control it remotely. A software library with a standard API

allows applications to tightly couple with the recognizer for greater customization of the

recognizer to the application.

62

4.7.3.1. Handwriting Recognition Widget

A screen shot of the handwriting recognition widget is shown in Figure4-3. This widget

StrokeBox |j||K||!:
Send

Figure 4-3. Screen Shot of the Handwriting Recognition Widget

was implemented by Armando Fox and uses the client side of the Sun API described in

Section 4.7.3.3 to interface with the recognizer engine. It runs as a separate process, col

lecting handwritten input, running the input through the recognizer, and sending recog

nized text to the current application via the X server. The user writes in a box with tick-

marks. Recognized results appear in a separate text window unless there is another cur

rently registeredapplication whichshould be receiving recognizedtext, in which case rec

ognizedtext is sent directly to that application. A slidercontrolsthe pitch of the tick marks

andotherbuttons allow various editing functions suchasbackspace, spacebar,disable rec

ognition, and recognize. Thename of thecurrent application is shown in theboxonthetop

left corner; this is the application which receives recognized text.

The buttonon the lowerleft corner of the widget allows the user to switchbetween recog

nizers. When the letter"A" shows, the61 character recognizer is the current recognizer. If

the number"9" shows, the 61-character recognizer is dormant and the digit recognizer is

active.

Currently, the widgetworks withapplications which use the tk widgetset [Oust94], in par

ticular thetk entry widget. It modifies theclass level bindings of all tkentrywidgets on the

current screen so that when there is a pen tap in that widget, a message is sent to the hand-

63

writing recognition widget to register the application as the current application so that it

will receive recognized text.

4.7.3.2. Remote Server

The recognizer can also run as a remote server. In this incarnation, applications use a

custom API to access the remote recognizer over Internet sockets. Of course, the API

encapsulates and hides the socketprotocol from the application.

The recognizer connects to the Pen Server described in Section 3.3. on page 32 to obtain

pendata. This data is recognized and the results are passed to theapplication. Theapplica

tion does not need to capture pen pixels itself. This recognizer canbe configured at start

up to use either the 61-character set or the digit set described in Section 4.7.2 above. Com

mand line options allow the user to specify:

• the character set (vocabulary)

• a list of files of handwritten input for batch recognition (see Section 4.7.4 for data file
format)

• the floor and filter width parameters (they default to 0.0001 and3 respectively, as
described in Section 4.7.1.4)

• the ratio for sub-sampling (the ratio is multiplied by the height of the character to
determine the minimum allowable distance between pixels; intervening pixels are
deleted)

• the number of pixels to truncate from the end of each stroke to allow for co-articulation
(see Section 4.7.1.2 for default behavior)

• the host name and port number of the Pen Server from which to read a streamof pen-
resolution data (unnecessary for batch mode operation)

• the Internetport numberon which to accept connections from applications (defaults to
1510)

Refer to the manual pages for more details.

An application that wishes to use the remote handwriting recognition servermust compile

the client side API library into itself. Using theclientAPI, the application opens a connec

tion to the remote handwriting recognizer usingHW_OpenConnection():

64

recogConnection *HW_OpenConnection (char *host, int port)

The recogConnection data type is a structure that contains information about the current

recognizer, host is the nameof the remote machine on which the recognizer is running and

port is the Internetport number on which the recognizer is accepting connections.

To begin recognition, the application issues HW_SendRecognize():

void HW_SendRecognize(recogConnection *conn)

This command tells the recognizer to start recording handwritten input and to store it for

recognition. When the application is ready to receive recognized text, it issues

HW_GetWord():

void HW_GetWord(recogConnection *conn, char *word)

Thiscommand tells therecognizer toperform recognition on thecaptured handwriting and

returnthe resultsin thebufferword. If theapplication wantsto suspend recognition, it may

issue HW_SendIdle():

void HW_SendIdle(recogConnection *conn)

This tells the recognizer to stop capturinghandwriting and wait for further instructions. If

the application wishes to disconnect from the recognizer, it may issue

HW_CloseConnection():

void HW_C1oseConnection(recogConnection *conn)

This command tells therecognizer todisconnect from theapplication. Therecognizer stays

activeand waits for another connection from the sameor anotherapplication.

4.7.3.3. Sun API

The handwriting recognizer can be included intoapplications as a software library. In this

incarnation of the recognizer, an API from SunMicrosystems [Kemp93] is used since this

is theonly available standard API forUNIX handwriting recognition engines. By adhering

to thisstandard, therecognizer canbeuseful outside theInfoPad project andInfoPad appli

cations can use recognizers from other institutions.

65

The Sun API is designed for applications which capture electronic ink and send it to the

recognizer themselves rather than relyingon the recognizer to obtain electronic ink via the

Pen Server. Each application may allocate as many recognizers as it likes at run time via

UNIX dynamic library loading. The client-side interface (used by applications) is not the

same as the server-side interface (the engine's API) and the software distribution from Sun

provides the code to mapbetween the twointerfaces. However there is a close correspon

dence between the two APIs. In the rest of this section we describe the server-side API. For

details on the client-side API, refer to [Kemp93].

Applications must first initialize and allocate the recognizer by calling

recognizer_internal_initialize():

recognizer recognizer_internal_initialize(void* handle,
rec_info* ri)

This routine initializes and allocates memory for the recognizer indicated by handle using

parameters specified in ri. All structures created and used by the recognizer are stored in

the item of type recognizer which is returned by the initialization function. This allows the

use of more than one recognizer at one time. A recognizer may be deallocated and deleted

using recognizer_internal_finalize():

recognizer recognizer_internal_finalize(recognizer rec)

Once initialized, the recognizer may be given recognition-related commands. To send

strokes to the recognizer, call set_buffer():

int set_buffer (recognizer r, u_int nstrokes,

pen_stroke *stroke)

This routine appends nstrokes strokes to the recognizer's internal stroke buffer. This inter

nal buffer can be cleared by calling clear():

int clear (struct _Recognizer* r, bool delete_points_p)

When all relevant strokes have been added to the buffer, the recognizer is instructed to per

form recognition using translate():

int translate (struct _Recognizer* r, u_int nstrokes,

66

pen_stroke* strokes, bool correlate_p, int* nret,
rec_alternative** ret)

This routine appends nstrokes strokes to the buffer and then performs recognition. The

correlate_p flag tells the recognizer whether or not to correlate strokes with characters and

return correlation information to the application. Correlation information allows applica

tions to determine which strokes correspond to which character, nret is the number of

alternative translations returned by the recognizer, and ret is an array of alternative trans

lations. Each translation is a linked list of the characters which constitute the recognized

word.

The geometryof the writing area is specified using set_context():

int set_context (struct _Recognizer* r, re* rec_xt)

rec_xt contains thebaseline andtickmark positions andtheboundaries of the writing area.

The API includes several other routines for inkmanipulation andothers forcontrolling the

recognizer, some of which are not used.

4.7.4. Data Capture and Manipulation

A software package was written forhandwriting capture and manipulation. This package

is available bothas a software library to be included intoapplications andas a stand-alone

application with its own graphical userinterface. The library version is incorporated into

the recognizers described elsewhere in this section. The main menu bar of the graphical

user interface of the stand-alone version is shown in Figure 4-4. The graphical user inter

ne Macros Capture Operations ffiw pain flecogrize Gtobals Ojttons $&isc fielp|

Figure 4-4. Main Menu Barfor theData Capture andManipulation Package

face was written using tel and tk [Oust94] while the capture and manipulation routines

were written in C and C++.

The Filemenusupports the usual filereading andwriting commands. Thereare threekinds

of files. Word files contain raw handwritten input as a sequence of pixels. The format of

67

such files is illustrated by the example in Figure 4-5. Text is the text represented by the
Text= pqrst_

Writer= shankarl

StrokeCount= 2

UpperBaseline= 4500

LowerBaseline= 5000

PixelCount= 6

4188 4867

4190 4867

4190 4871

4191 4896

4196 4944

4196 4964

PixelCount= 8

4211 5325

4212 5300

4213 5241

4213 5207

4209 5135

4205 5098

4198 5033

4196 5004

Figure 4-5. Example of Word File Format

data in the file. Writer indicates the person who wrote the text. StrokeCount is the

number of strokes comprising the wordor character. A stroke is defined as a sequenceof

pixels from pen down to pen up. UpperBaseline and LowerBaseline are the positions of

the lines between which the user writes in the writingcanvas. See Figure 4-8 below for a

picture of the writing canvas.

PixelCount is the number of pixels in thecurrent stroke. These pixels* x andy coordinates

appear after PixelCount.The next and all subsequent strokesare appended after the current

stroke.

Feature files contain the features extracted from the Word file. These features are described

in Section 4.7.1.2. The syntax of a Feature file is illustrated in Figure 4-6. Text, Writer

and StrokeCount are identical to the equivalent fields in a Word file, xmax, ymax, xmin,

and ymin are the maximum and minimum x and y coordinates in the entire word. Pixel-

Count is the number of pixels in the stroke that follows, xmax, ymax, xmin, and ymin are

68

Text= <Text>

Writer= <Writer>

StrokeCount= <number_of_strokes>
xmax= <xmax>

ymax= <ymax>

xmin= <xmin>

ymin= <ymin>

PixelCount= <number_of_pixels>
xmax= <xmax>

ymax= <ymax>

xmin= <xmin>

ymin= <ymin>

<slope_l> <slope_diff_l> <y_coord_l>
<slope_2> <slope_diff_2> <y_coord_2>

PixelCount= <number_of_pixels>
xmax= <xmax>

ymax= <ymax>

xmin= <xmin>

ymin= <ymin>

<slope_l> <slope_diff_l> <y_coord_l>

<slope_2> <slope_diff_2> <y_coord_2>

Figure 4-6. Feature File Syntax

the maximum and minimum x and y coordinates for that stroke, and they are followed by

the feature triplets for each pixel. The next and subsequent strokes follow.

Vector files encapsulate all the extractedfeatures in the format expected by the HMM rec

ognition software. The syntax is illustrated in Figure 4-7. frames is the number of feature

triplets in the file, dimension is the number of features per pixel, which is 3 in this case.

codeBooksize is the number of values each feature can take. Since they are quantized to 8

bits, this number is 256. The feature triples then follow.

The Macros menu contains several complex commands which are ordered sets of other

simpler commands that may be accessed via other buttons on the main menu bar. These

macros include a data capture session where the user is prompted to enter a list of words to

69

frames= <number_of_frames>
dimensions 3

codeBooksize= 256

<slope_l> <slope_diff_l> <y_coord_l>
<slope_2> <slope_diff_2> <y_coord_2>

Figure 4-7. VectorFile Syntax

be stored and used later for training or for testing therecognizer. Other macros allow the

user to sequentially view all the files in a directory or to view files by user. A set of hand

written words may be segmented and labeled using yet another macro. Vector files may be

generated inbatch mode via a macro. Since tcl is an interpreted language, it is very easy to

add new macros.

The Capture menu allows the user to choose the input device and immediately write a

word of handwritten data. The input devices currently supported are the mouse and two

models ofWacom digitizer. Awindow with baselines (see Figure 4-8) comes uptoaccept

•v Enter sampto of 12345]

/a-3

Figure 4-8. HandwritingCapture Canvas

user input.

The Operations menu allows the user to manipulate the current data set. Words may be

truncated (thelastfew pixels areremoved toalleviate theeffect of thepen-up artifact), seg-

70

mented based onx-coordinate spacing, sorted (strokes are sorted left-to-right based oncen

troid), and sub-sampled. Feature extraction may also be done via this menu.

Word and feature files can be viewed via the View menu. Words on the canvas can also be

queried to determine stroke order and to obtain other information about each stroke or

word via this menu.

The Train button runs a batch training session on data stored on disk. The Recognize

button tells the application to prompt the user to write a handwritten word on a pop-up

canvas and to recognize this word using the current recognition parameters.

The Globalsmenu brings up a window showing thevalue of eachglobal variable usedby

the application and to edit these globals. On start-up, the application also displays all the

71

global variables in a separate window, shown in Figure 4-9. Word is the currently dis-

Wbrd \12345

Writer \none

Data Directory \letters

H)ata Write Directory {letters

Vector Directory Urectoirs

Feature Directory \features

UpperBaseline X4500 rr>\

LowerBaseline 15000 ^T

Capture Device \wacom_ud

View Style]p±xel

Baseline Type \diglts

ResampleRatio E?

WbrdListFile \testFile

giobVar [*

Figure 4-9. Global Variable Display/Editing Window

played or most recently written word. Writer is the current user. Data Directory is the

path to the directory from which Word files should be read. DataWrite Directory is the

directory in which to save captured handwriting. Vector Directory and Feature Direc

tory point to the locations where vector and feature files respectively are to be written.

Upper BaselineandLower Baseline indicate thepositions of the lines between which the

user writes. These parametersare in pen resolution coordinatesunless the mouse was used

as the capture device, in which case they are in screen resolution coordinates. Capture

72

Deviceindicates the current dataentry device which can be either the mouse or a Wacom

tablet. View Style indicates whether handwriting should be displayed as dots only or

whether the dots should be connected. Baseline Type indicates normalization mode. This

tells the feature extraction routines whether to normalize based on the baselines or the

height ofthe characters. Resample Ratio indicates the minimum spacing between adjacent

pixels when theinput is sub-sampled. WordListFile tells thedatacapture macro where to

find the list of words with which the user is tobeprompted during a data capture session.

globVarallows users touse wild cards when retrieving a large number offiles forviewing.

The Options menu on the main menu barallows the user to control display options. The

Misc menu contains miscellaneous commands that were mainly used for testing and

debugging while the Help button brings up a manual page describing the operation of the

application.

4.7.5. Training Set

The recognizers were trained on very smalldata sets. Collectinga large data set requires a

very large investment in time and effort. The 61-character recognizer was trained using

3626 captured charactersfrom 16writers. This corresponds to an average of 59 examples

of each character. The digit recognizer wastrained using377 captured characters from 10

writers which is an average of 12examples per model since there are 31 HMMs in this rec

ognizer.

Training data was captured using the capture and manipulation package described in

Section 4.7.4 above. Users were prompted to write words from two word lists. The raw

captured data is stored in files on disk.

Segmentation was done automatically with operator intervention to correct segmentation

errors and to attach a label to each character. First, the stroke sequence was sorted left-to-

right to move delayed strokes to be adjacent to the main character. The segmentation macro

looked for overlap in the x coordinate used this to cluster strokes into characters. Strokes

were added or removed by the operator and a label was attached before segmentation was

accepted. Segmented characters are stored one per file.

73

Another macro was used to read all the segmentedcharacters from disk and generated fea

ture vectors as described in Section4.7.1.2.These vectorsare also stored using one file per

character. The training program then read the files one at a time to train the Markov model

parameters. The syntax of the files used to store HMM parameters is shown in Figure 4-

HidMarkMod <HMM_name>

state <start_state> START

edge generic <start_state> <state_l> <start_state>_<state_l>
edge generic <start_state> <state_2> <start_state>_<state_2>
state <end_state> END

state <state_l> state <pdf_l_name>

edge generic <state_l> <state_l> <state_J.>_<state_l>
edge generic <state_l> <state_2> <state_l>_<state_2>
state <state_2> state <pdf_l_name>

edge generic <state_2> <state_2> <state_2>_<state_2>
edge generic <state_2> <state_3> <state_2>_<state_3>

NoOutputPDF <start_state>_<state_l> generic <trans_prob_l>

OutputPDF <pdf_l_name> vector 256 numVec 3 map 0 12
{

<output_prob_l> <output_prob_2>... <output_prob_256>
}

OutputPDF <pdf_2_name> vector 256 numVec 3 map 0 12
{

<output__prob_l> <output_prob_2>... <output_prob_256>
}

Figure 4-10. HMM Parameter File Syntax

10. The first line specifies HMM_name, which is the name or label of the character mod

eled bythis file. Thesection following itdeclares the states and the topology of the Markov

model, state declares a state in the model and specifies whether it is a START, END or

74

normal state. Normal states have output probability distributions associated with them

whereas the START and ENDstates donot. edge declares anedge, or transition, between

states and assigns a label to that transition representing the transition probability.

The next section specifies the transition probabilities between the states. NoOutputPDF

declares that theedge itselfdoes not have anoutput probability distribution associated with

it, and assigns thetransition probability for that edge. The lastsection uses theOutputPDF

declaration to assign valuesto the output probability distributions which were declared in

the state declaration.

4.7.6. Performance

Recognition accuracy was surprisingly good considering thesmall sizeof the training data

sets. In user tests, the 61-character recognizer obtains about 80% character recognition

accuracy on average, although there is wide variation among users. For the author, this rec

ognizer achieves over 90% character accuracy. The digit recognizer achieves over 95%

accuracy for all writers, with 100% accuracy for the author.

A test of the 61-character recognizerwas conductedusing a Wacom tablet on a Sun work

station. Each user wrote 27 words (115characters) into the handwriting recognition widget

described in Section 4.7.3.1. The results are tabulated in Table 4-4. The average recogni

tion error rate is 17.0%.

We found that as users learned which characters were mis-recognized most often, they

wrote those characters more carefully and got better results. The users therefore get trained

to the system. We also found that some characters were similar enough to be easily con-

fusable. Pairs of such characters are u-v, w-u, r-v, n-r, p-r, a-o and b-h. Usually, one char

acter is recognized as the other but not vice versa. Some writers obtained mis-recognitions

of particular characters consistently. However writing the mis-recognized character again

more carefully usually solves this problem, and motivated users who played with the rec

ognizer before the test did better. The long term solution is to train the system with more

data.

75

Writer Error Count Error %

SN 10/115 8.7

NC 15/115 13.0

ML 21/116 18.1

TP 20/116 17.2

JR 30/115 26.1

10 20/114 17.5

TB 49/115 42.6

SM 7/115 6.1

LG 10/115 8.7

YCC 18/115 15.7

JC 11/115 9.6

RS 32/115 27.8

HB 11/115 9.6

Table 4-4. Handwriting Recognition Results

4.7.7. Algorithmic and Implementational Improvements

There are several improvements which would benefit the handwriting recognizer. Cur

rently, only one heuristic is used to improve recognition accuracy. Other heuristics can

reduce the search space. The number of strokes in the character can be used to constrain

the search. Descenders can be detected to reduce the search space. Delayed strokes are a

sure sign that the character is either a t, i or j.

Output probability distributions should be fitted to Gaussians or other shapes to see if rec

ognition accuracy can be improved this way. More training data should be captured and

the models retrained. A largebodyof datawithseparate test and training sets is nowavail

able [Guyo94] for this task.

Other methods of estimating probabilities should be explored. Neural networks havebeen

used by some researchers with good results (see Section 4.1.3 and Section 4.1.6). It is

likelythat a neural network basedrecognizer will perform betterfor probability estimation.

The recognizer currently returns only the most likely candidate. It should be enhanced to

return the top few candidates togetherwith a recognition confidence measure. Recognized

results that are deemed highly uncertain (having low confidence) should be reported as

76

unrecognized. The recognizer should also detect spaces between characters so that users

can write phrases.

A recognizer that recognizes both characters and digits at the same time should be trained

up, so that the application does not have to direct the recognizer to use separate sets of

parameters. This would be useful in applications whichuse single handwritten characters

as command shortcuts andwhere alphanumeric input is required.

The version of the recognizer with the Sun API should bemodified toexecute remotely as

a server. This allows the recognizer to run on a separate processor and therefore not load

the current application's processor, and also gains all the other advantages of a remote

server. The remote recognition server should accept and process partial input while the

user is writing so that feedback is faster andoverall latency is reduced.

The recognizer should also implement pruning to reduce the search space and thereby

improveresponse times. Experiments needto be done to determine a goodpruning thresh

old.

The current recognition performance figures are based on casual evaluation. A large test

set is needed to test the system andbenchmark its performance.

77

5 Speech Recognition

In this chapter we explorethe speech recognition needsof the InfoPad system anddescribe

the kinds of speech recognizers required to meet these needs. We then describe some

models for delivering recognized speech and two different recognizers that were imple

mented, oneof whichwasdeployed in theInfoPad system. The other is abasis for a speech

recognition server for InfoPad.

In the InfoPad system we do not use speech recognition to specify non-dictionary words

since spelling themoutverbally would bevery time-inefficient compared towriting them.

A spoken character recognizer could therefore play a secondary role, such asa fall-back to

spell outmisrecognized words. We lookonlyat word recognition rather than character rec

ognition, and, in any case, the former is a superset of the latter.

5.1. Performance of Existing Systems

In this section we review lookatsome systems reported in thespeech recognition literature

to motivate thedesign and deployment of the InfoPad recognizers. We look ata fully soft

ware solution from Carnegie Mellon University (CMU), then a solution from Bolt,

Beranek and Newman (BBN) using special purpose off-the-shelfhardware, and then at a

fully customsolution from a collaboration between theUniversity of California at Berke

ley (UCB) and Stanford Research Institute (SRI).

These solutionsshow that it is possible to get very high recognition rates on artificial tasks

but thatit is difficult to get real-time performance, especially for large vocabularies and for

less constrained grammars. We can conclude that for small vocabularies it is possible to

run a software speech recognizer in real time but for large vocabularies custom hardware

may be required. As technology improves it becomes possible to run even large recogniz-

78

ers in software in real time. However custom hardware can help achieve a performance

gain overa pure software system, and can allow use of algorithms which would otherwise

be impractical due to their large computational requirements.

5.1.1. Software

The SPHINX speech recognizer [Lee89] was built atCarnegie-Mellon University (CMU)

in the late 1980's and used hidden Markov modeling torepresent speech. Several versions

of the recognizer were built with different grammars. A bi-gram grammar gave SPHINX

thebest results, with accuracies of between 88.9% and 100% fora setof 15 speakers. The

median recognition accuracy among these speakers was 96.6%.

The system hada 1000-word vocabulary, was speaker independent and worked on contin

uous speech. They used a statistical grammar of perplexity 60. This recognizer was state-

of-the-art at the time. There is nodata to indicate how long it tookto run thealgorithm, but

it was almost certainly several times real timefor that vocabulary.

5.1.2. Off-the-Shelf Hardware

A group at Bolt, Beranek and Newman (BBN) used an off-the-shelfboard from Sky Com

puter that has an Intel i860 processoron boardfor speechrecognition [Aust90]. They were

able to run their algorithm in real timeon thisboard, which was a factorof 5 speedupover

straight C code on a SUN 4. The algorithm uses a fully connected first-order statistical

grammar and has a vocabulary of 1,000 words. Recognition accuracy was 97.6%.

5.1.3. Custom Hardware

A collaboration between University of California at Berkeley (UCB) and Stanford

Research Institute (SRI) resulted in a real-time 3,000 word speech recognizer built from

custom hardware [Raba88]. The hardware ran the CMU and BBN algorithms above and

also the DECIPHER system from SRI [Murv89].

5.1.4. Accuracy on Realistic Tasks

More recently, the performance of several research speech recognizers was measured in

the DARPA Air Travel Information System (ATIS) common task domain [Pall92]. The

test consisted of 971 utterances with 37 speakers, 17 male and 20 female. There were an

79

average of 11 words per utterance. The results are tabulated in Table 5-1. This test used

Institution Word Error Rate (%)

AT&T 17.5

BBN 9.4

CMU 16.2

MIT 18.1

Paramax 10.6

SRI 11.0

Table 5-1. Accuracies for Recent Speech Recognizers

data collected from several sites, and is thereforemore realistic than previous tests where

all the data was collected at one site using one set of hardware. Also, some of the test data

contained disfluencies. From the Table, we can conclude that word error rates of 10% to

15% are obtainable in realistic situations.

5.2. Characteristics of Speech Recognizers

There are severalcharacteristics of speech recognizers that may be tradedoff against each

other to produce the best performance in a given application. In this section, we examine

thesecharacteristics andthe issues surrounding them, including howwe might use themto

improve recognition accuracy.

5.2.1. Word Length

Speech recognizers usually work better if the words in the vocabulary are longer. This is

because the feature vectors for each utterance are longer so similarity measures havemore

data to work on. Longer words tend to be less confusable since the feature vector difference

is greater on average. This assumes that there is sufficient training data. However, longer

words tend to be used less often, which can lead to insufficient training data and under-

trained models for those words. This can hurt recognition accuracy in some cases.

When there is enoughtraining data, we can sometimes take advantage of the better recog

nitionfor longwords. Compound words consisting of a concatenation of single words may

be used instead of single words. For example, in the circuit schematic entry application

described in Chapter 6 almost all commands are compound words, increasing average

80

word length andthereby increasing recognition accuracy. Again, thisworks best when the

compound words are not undertrained.

5.2.2. Vocabulary Size

A larger vocabulary results in a larger number of confusable words. This means that rec

ognition accuracy suffers. Of course, the converse is also true: a recognizer that uses a

smaller vocabulary will generally perform better. In some situations, though, a smaller

vocabulary does nothelp recognition accuracy. This happenswhen the words in the vocab

ulary are easily confusable.

Wecan takeadvantage of thisfeature by limiting therecognition vocabulary whereverpos

sible, thereby increasing accuracy. However this requires that the recognizer vocabulary

be configurable by the user or application programmer.

Although a larger vocabulary raises the average length of the words, this effect is not suf

ficient to overcome the effect of the larger number of confusable words so recognition

accuracy often does decrease with increasing vocabulary size.

5.2.3. Grammar

Imposing a more constraining grammar on the recognizer improves recognition accuracy.

This is because the space of allowable sentences becomes more constrained, allowing the

system to eliminate illegal sentences or at least reduce their probability. However, gram

mar is often highly application-dependent. For example, a command-and-control applica

tion may prefer a different grammar than a dictation application. Obviously, an

inappropriate grammar would increase recognition errors.

We can take advantage of increased accuracy from grammar by building a recognizer that

allows user or application specific grammar. The recognition engine would be general

enough to take a user-supplied grammar and apply it to the recognized words. This gram

mar may be a statistical or natural-language grammar, or some other kind of rule-base. A

majority of the current systems use an n-gram grammar, where the probability of a word

following another word is a function of its n predecessors.

81

5.2.4. Available Computational Power

Increasing the available computational power to run speech recognition allows us to use

more sophisticated algorithms. For example, multi-algorithm recognition with voting

couldbe used.We can alsodo lesspruning, thereby reducing theprobability of eliminating

the correct answerearly in the recognition process. With greatercomputational resources

therecognizer will interfere lesswith other applications running on thesame processor and

will return its results sooner, improving userresponse times.

5.3. Recognition Requirements of the InfoPad

In the InfoPad system, speech recognition may beused toissue commands that drive appli

cations or for dictation. In each of these two cases, the type of recognizer required and

therefore the computational requirements are very different. As explained in Chapter 3,

speech recognition is not efficient for specifying file names, entering other non-dictionary

words, nor navigating the pointer across the screen. Therefore we do not address the

requirements for providing these lattercapabilities.

5.3.1. Commands

Forcommands, high recognition accuracy isessential. For any application, only a finite set

of commands is valid at any one time, which means that only this finite set of commands

needs to be in the vocabulary at that time. This setof commands can change dynamically

as the state of the application changes. Therefore, a small recognition vocabulary with a

simple rule based grammar is sufficient.

Recognition vocabulary and grammar for commands are specific to the application, and

may change with the state of the application. Therefore, the application programmer must

have the ability tospecify the vocabulary and grammar for his application, independent of

other applications. It is also desirable that the recognizer be flexible enough to adapt to

changes in the state of the application. If the recognizer is able to keep track of the appli

cation's state, andcandynamically modify thevocabulary and grammar to depend on this

state, it will be able to reduce the vocabulary and further constrain the grammar, thereby

improving recognition accuracy.

82

Commands require high recognition accuracy because in the event of a mis-recognized

command, the user may not have an opportunity to correct the error. Commands are exe

cutedimmediately uponrecognition andareespecially dangerous for commands that erase

or modify datawhere theapplication isunable toundo changes orerasures. Therecognizer

should useconfidence measures to reject utterances which haveinterpretations thatare not

highly probable rather than execute a command that has low recognition confidence.

Because of thesmall vocabulary and simple grammar associated withthecommand recog

nition task, it is possible to create a small, fast recognizer for this application. Extra CPU

power can be devoted to using a better algorithm since the search space has been reduced

and the processing power required is therefore less than that required for large vocabulary

recognition.

5.3.2. Dictation

The speech recognition requirements for dictation applications are very different from the

requirements for command entry. Dictation requires a very large vocabulary and a gener

alized grammar, which is usually not highly constrained. Recognition of dictated speech is

therefore a more computationally intensive problem than command recognition. However,

recognition errors are more tolerable. A word-processing application will display the mis-

recognized word on the screen, allowing the user to correct the error on the spot. However,

in cases of automatic batch-mode transcription of recorded speech there is no operator to

correct errors so there is a low tolerance of recognition errors. The key is interactivity. For

interactive applications, a higher error rate is tolerable.

Dictation vocabularies and grammars tend to be standard, so the application programmer

may not need to direct the recognizer at all. However there are some special cases where

the application programmer or the user may want to add vocabulary words for a specialized

domain, such as medical applications. For example, if a user is creating a document using

dictation into FrameMaker, he may want to add domain-specific words to the general rec

ognizer independently from FrameMaker. In this case, the recognizer must be controllable

separately from the application so that the user can add vocabulary words independently

of the application.

83

5.4. Models for Delivering Recognized Speech

There are several models that must be consideredwhen providing speech recognition ser

vices. They are the user interaction model, the programming model,and the service provi

sion model.

5.4.1. User Interaction Model

The user interaction model tells us how the user interacts with the recognizer. There are

severalpossibilities. Someof thesearedescribed in thesection on speech recognition focus

below, but in the InfoPad system each application has to define its own user interaction

model since there is no system level imposition of a model. The model also describes the

correction mechanism in the case of recognition errors. This issue is addressed in

Section 5.3 above.

5.4.1.1. Speech Recognition Focus

Speech recognition focus determines which application or applications receives recog

nized speech at a particular instant. If several applications arecurrently speech-enabled, it

is often not obvious which application the user is talking to. Forexample, the user may be

dictating into a word processor when the telephone application rings and he answers the

call. Theuserthen speaks to the telephone application and not theword processor, butthe

word processor does not automatically stop listening even if the pen focus moves to the

telephone application. The user must explicitly tell the word processor's speech recognizer

to stop listening.

There areseveral models for audio or speech recognition focus, and this issue is explored

ingreater detail when wetalk about future work inSection 7.2.1.1. onpage 133. Currently,

the Audio Server does not provide a facility for applications, including recognizers, to

determine who has audio focus. The speech recognizer's control widget allows the user

some control of when the recognizer is active but there is no support for the applications

programmer to determine who shouldreceiveaudio or speech recognition focus, and there

is no policy on audio focus.

84

5.4.2. Programming Model

The programming model defines the interface into the recognizer from the application pro

grammer's perspective. There is a range ofchoices available in selecting the tightness of

the coupling between the recognizer and the application. For example, some applications

may not want tobe aware of recognition atall, preferring tohave therecognizer run sepa

rately and emulate a keyboard whereas other applications may record speech themselves,

calling the recognizer using their own application-specific parameters, grammar and

vocabulary. In this section, we explore some of these choices and their consequences for

implementation.

5.4.2.1. Uncoupled Applications

Some applications, especially existing applications, should run independently without

modifications for recognition. These applications canbe supported by a stand-alone recog

nizer that sends recognized text to the application via a windowing system such as X or

Windows. Thisis theapproach taken by theDragonDictate commercial speech recognition

system [Drag94].

In some cases the recognizer needs to be tailored to the application but not the other way

around. The recognizer therefore has to know which application currently has speech rec

ognition focus, and may make this determination by querying the widowing system to

determine which application has current pointer focus. The issue of speech recognition

focus is discussed in greater detail in Section 5.4.1.1.

5.4.2.2. Loosely Coupled Applications

Some applications may prefer a simple interface, using minimal recognition capability.

Most applications would fall under this class. Their main functionality would be indepen

dent of recognition, and they can functionwithoutit. Such applications would control some

parameters of the recognizer such as grammarand vocabulary,but the application software

would not need major modifications to add recognition capability.

85

In this case, the recognizer could be compiled into the application or run as a remote pro

cess. The model for provision of recognition service is studied in greater detail in

Section 5.4.3.

5.4.2.3. Tightly Coupled Applications

A few applications would benefit from being tightly coupled to the recognizer. For exam

ple, a dictation system which allows spoken correction and which stores audio for voice-

mail, dictation or delayed recognition would want to capture its own audio data and send

it to the recognizer, retrieving detailed results including a list of top recognition choices,

confidence levels and temporal information. It may alsowantto control more recognition

parameters than a loosely coupled application, or even perform its own segmentation and

grammar processing.

In this case, the recognizer could be compiled into the application rather than run as a

remote process. The issue of remote execution is examined in greater detail in

Section 5.4.3.

5.4.3. Service Provision Model

The service provision model describes the way service is provided, regardless of the user

interaction and programming models. Service may be provided by a separate process run

ning locally, as a separate process running remotely, or as partof the same process.

As described in Section 3.5.3. onpage 42,it is possible to runthe recognizer remotely and

communicate using Internet sockets. This model of providing service is very powerful. It

allows useof only onerecognition engine peruserrather than onerecognizer per applica

tion. This engine can be time-shared between applications and even between users. This

recognition server may be upgraded transparently to provide the best service, and may be

transparently implemented on general purpose or special hardware.

Remote execution is the best service model in most cases, but there are some situations

where it is worthwhile to compile the recognizer into the application. Such a situation

ariseswhenthe recognizer is tightly coupled withtheapplication and where the recognizer

86

should not be shared, such as in batch recognition ofpre-recorded speech, where network

access is expensive, orwhere the recognizer is highly customized for the application.

5.5. A Small, Flexible Recognizer

Asmall, flexible recognizer was built by Andrew Burstein here atBerkeley [Burs96]. This

recognizer was written in C++ and Tel and is accessed via Tel. It is phoneme-based and

speaker independent. Several Tk widgets are provided for control ofrecording and recog

nition functions. Speech recognition functionality can be provided to applications with

only a few lines ofTel code. The vocabulary and grammar may be modified dynamically
by the application.

5.5.1. Motivation

The objective of the speech recognizer is to provide InfoPad applications with a mecha

nism to receive commands and simple data by recognizing user speech. For example, the

recognizer allows commands that are usually issued by selecting menu items, clicking but

tons, orpressing function keys tobeexecuted by speaking tothe pad. Just asthe names and

contents of menus and button bars change from application to application, so too do the

vocabulary and grammar. The speech recognizer accepts continuous speech (no pauses are

required between words), and isspeaker independent, but iscapable of some adaptation to

individual speakers. In its current form, itisintended for small tomedium sized vocabulary

applications such as command and control operation, but not general speech to text tran

scription.

The speech recognizer was designed asa compromise between theneed tocouple the rec

ognizer tightly to theindividual applications in order to increase recognition accuracy and

the desire to make it as simple as possible for programmers to use speech recognition.

Unfortunately, it is difficult to design a speech recognizer that can accurately recognize

arbitrary English sentences, especially if speech is continuous. However, we can often

narrow the recognition to a particular subject, such as commands one might give to a

World Wide Web browser. This allows the recognizer to greatly reduce the size of the

vocabulary and the complexity of the grammar that it must consider, thereby enhancing

accuracy. Thus, it is important for the applications to tell the speech recognizerin advance

87

the vocabulary and grammar that it expects to receive from the user. This is a fairly simple

task if the program is receiving verbal command and control: programs already have

vocabularies and grammars defined by their button names, menu hierarchies, and typed

commands.

5.5.2. Implementation

Programmers know what commands their programscan receive; the challenge is to make

it easy for them to pass this information to and from the speechrecognizerwithout forcing

them to understand the details of speech recognition. We meet this challenge by imple

menting the speech recognizer as anextension to the Tel language, by providing high level

TclATk widgets and itel objects for applications to interface with the recognizer, and by

providing a graphical vocabulary and grammar editor.

All interaction with the speech recognizercan be handled through two Tel commands, one

controlling the recording of sentences and the other the actual recognition. Since the con

tinuous-word recognizer recognizes entire sentences, not just words, the recorder supports

automatic silence detection to locate the beginning and end of sentences. To facilitate error

recovery, the recognizerprovides a list of several top matches; thus, if the best estimateof

the spoken sentence was not correct, the usercan make a correction from the other choices.

The recognizer is capable of determining if the user speaks a word that is not in its vocab

ulary rather than simply making the closest, albeit poor, match.

While the Tel commands allow complete, low-level control over recording and recogniz

ing speech, the most common tasks are controlled by the programmer through high-level

itel objects and by the user through itel mega-widgets. These objects contain procedures to

allow the programmer to manipulate vocabularies and grammars and to perform recogni

tion without having to deal with the underlying data structures. These procedures also

enable the programmer to convert spoken words into their phonetic transcriptions, so that

new words can be added to the vocabulary as they are spoken by users.

A similar mechanism allows users to train the recognizer to adapt to their own particular

pronunciation of any given word, if it differs significantly from the "standard," speaker-

independent pronunciation. The mega-widgets are designed to be dropped into programs

Speech Recognition Grammar& Dictionary Editor: MAGIG4.gram

Rte Edit View Recognize

Stops

ifetefisD

grid

grow

height

label

layers

left

Affricates

Grammar

SingleISTARTI

onjayers

Fricatives

s|shjz]*|
thlvjdhj

Nasals I Semivowels

l|rjw]y|hhjei
- Vowels

ty|ih|eh|ey|aejaa|aw|ay|
ah|ao|oy|ow|uh|uw|er|ax|bc

"foe" as in "debit": vddehclbKdt
•ci" ' *-» kj n_n

on direction

SI si|

Other

sBI

s?

''0

6E5

J

u

M

Figure 5-1.GramCracker Application for Creating and Modifying Speech Recognition
Vocabularies

to give users access to all necessarycontrols (e.g. volume control and silence detection lev

els: see Figure 6-3 on page 121), speaker adaptation, and recognition results. Finally, the

programmer can createandedit vocabularies and grammars using the GramCracker appli

cation (see Figure 5-1) thatallows graphical display of pronunciations and grammars.

89

5.5.3. Discussion

The circuit schematic recognizer described in Chapter 6 uses this speech recognizer for

command entry. It was very easy to add speech recognition capabilities to the application.

The code is illustratedin Figure 5-2.The speech.dict objectdeclaredin the first few lines

source w$SPRCG_LIBRARY/spRcg.tcl"
source w$SPRCG_LIBRARY/spRcg_wigits.tcl"

spRcg_gramDict speech_dict

speech_dict config -mlpFileName \

Vtools/ui/speechRecog/spRcg/v0.26/libtcl/\
phone. 16.r6 .L128.P3 .8khz .MO.Norm.hard,weightsq.mlp"

speech_dict readGramDict w$SCHEMATIC/lib/speech.gram

proc add_speech {} {

global env SCHEMATIC SPRCG_LIBRARY

if {[info commands speech_record] != **} {

.speech.control recordRecog speech_process
return

}

spRcg_recorder speech_record

if {[catch {set display $env(AUDIOFILE)}] != 0} {
set display $env(DISPLAY)

}

if { [catch {speech_record open $display)] != 0 } {
tkerror "Couldn't connect to AF server at $display"

}

eval spRcg_recognizer speech_recog \

[speech_dict giveRecogConstructorArgs]

toplevel .speech

spRcg_controller .speech.control -recognizerName \

speech_recog -recorderName speech_record

pack .speech.control

.speech.control recordRecog speechjprocess

Figure 5-2. Code Fragment to Illustrate API for Speech Recognizer

is a dictionary object which reads vocabulary and grammar information created in advance

using the GramCracker application. The add.speech procedure is called when the user

wants to start using speech. It declares the speech_record object which records speech and

90

stores it for later processing, and the speech_recognizer object which takes recorded

speech andrecognizes it. The .speech.control window (mega-widget) shown in Figure 6-

3 on page 121 is also created.

This API is very simple to use. Other megawidgets allow the user to adaptively train the

recognizer, to view the top four recognition candidates, and turn the audio recorderon and

off.

5.6. A Real Time Large Vocabulary Speaker Independent Speech
Recognizer

The recognizer described in Section 5.5 above is suitable for small-vocabulary applica

tions such as command and control of applications. It is not suitable for dictation. In this

section, we describe a recognizer thatwe built to support dictation. It has a large vocabu

lary (60,000 words), a statistical grammar (perplexity 60), is speaker-independent, and

runs in real time on custom hardware.

This recognizer is an excellent basis for building the remote speech recognition server

described in Section 5.4.3. Although it could have been used as a server, it was not con

nected to the InfoPad system because it is now out of date. It serves as an example of how

we could build custom hardware to implement sophisticated algorithms in real time and

connect to such a hardware server over the network.

The system is implemented as several custom boards in a VME card cage, and has a host

CPU board and an Ethernet board. It is therefore connected to the network. The CPU board

runs the VxWorks real-time operation system andcanrun applications written in C. There

fore the server front end software can run on the CPU board and clients can connect via the

network. A collectionof such servers canreside on the network to provide real time large

vocabulary speech recognition service.

In this case, network bandwidthrequirements would not be high. Since the system takes

digitized audio quantized to 16bits at 16kHz, the total data rate into the recognizer is 256

kbits/s peruser. The data rate comingout of the recognizer is negligible. Network latency

and jitter do not affect performance. However lossless network transmission is required.

91

The current InfoPad terminal provides 8-bit u,-law audio at 8 kHz which is not sufficient

for this recognizer to work well. However, future versions of the terminal will have 16-bit

16-kHz audio.

In this section, we explain the recognition algorithm used, including the hidden Markov

model used in this speech recognizer. It is significantly different from the model used in

the handwriting recognizer described in Chapter 4: this recognizer uses a grammar and a

dictionary. Then we describe the system architecture, concentrating on the Active Word

processing.We describethe hardware implementation of the systemand the hardwaresim

ulationenvironment thatwascreated to simulate theViterbi Boardwhichimplements most

of the recognition algorithm.

5.6.1. Differences from the Small, Flexible Recognizer

This speech recognizer is targeted towards general sentence dictation applications where

the vocabulary and grammarare the samefor all applications. The vocabulary is large and

it is not easy to change the vocabulary or grammar on the fly. In contrast, the recognizer

described in Section 5.5 allowseasy configuration of the vocabulary and grammar. It sup

ports only a small number of words at the same time. The algorithms are also different.

The VLSI recognizer uses triphonemodeling and a statisticalgrammar,whereas the small,

flexible recognizer uses phoneme modeling and a rule-based grammar which can be

changed on the fly during normal operation.

The VLSI recognizer uses HMM training to calculate output probability distributions

whereas the small, flexible recognizeruses a multi-layerperceptron for this purpose. The

small recognizer also uses special processing of the audio input to obtain some degree of

tolerance of noise and channel distortion.

5.6.2. The Recognition Algorithm

The recognition algorithm has three steps: feature extraction, Viterbi search and backtrace,

as explained in the following sections.

92

5.6.2.1. Feature Extraction

We implemented a non-parametric feature extraction algorithm similar to the algorithm

used in the DECIPHER system [Murv89]. A blockdiagram of the algorithm is shown in

x(n)
Pre-

emphasize -

Hamming
Window

FFT
Mel

Filters

Log Cosine

Transform Normalize
Vector

Quantize
V

Figure 5-3. Block Diagram of the FeatureExtractionAlgorithm

Figure 5-3. Incoming speechis sampled at 16 kHz and linearly quantized to 16 bits. It is

then pre-emphasized using the following equation:

Equation 5-1. yn = xn - (0.95 •*„_,)

The pre-emphasized speech is then blocked into frames of 512 sampleswhich are spaced

160 samples apart: the frames overlap by 352 samples. Each frame is smoothed with a

Hamming window:

Equation 5-2.

where m; = 0.54-0.46cosI-J^-
' \N - 1

hi = mi-ykM-\

and/ = 0...N-1.

The resulting frame is then used to computea 256-pointFast Fourier Transform (FFT). The

power in the FFT is integrated using 25 mel-spaced band-pass filters and the energy from

each of the mel filters is converted to its logarithm. These log energy values are passed

througha cosine transform to get the 13-dimensional mel-cepstrum coefficientvector.The

mel-cepstrum coefficient vector is then normalized with respect to its mean and variance,

and the 12 higher order elements of the 13 elements of the resulting normalized vector are

vector-quantized with acodebook of size 256 x12, which produces an 8-bit feature o).

93

2 3
Another feature, o{, is thevector quantized difference of cepstral vectors. oi is the scalar

quantized energy of the remaining cepstral vector element, and ot is the scalar quantized

differenced energy of this cepstral vectorelement. Each of these features are represented

using 8 bits and are used to match the incomingspeech to the states in the Markov model.

See [Stol92] for a more detailed explanation.

5.6.2.2. Hidden Markov Modeling

Figure 5-4 shows a graphical representation of a left-to-right hidden Markov model

Phoneir^

Figure 5-4. Graphical Representation of a Hidden Markov Model

(HMM). In HMM-based speech recognition,speechis assumed to be produced by a hidden

Markov process (see Section 4.6.1. on page 54). Each circle represents a Markov state, and

each arrow represents an allowed transition between states.

Just as a speech utterance progresses from one sound (such as a phoneme) to another, a

Markov model progresses from one state to another. It may stay in the same state for more

than one frame, which is illustrated by the self-loops in the Figure. This corresponds to the

same sound lasting more than one frame and is therefore a way of modeling the duration

of the sound. This model represents speech as having sudden transitions from one state to

another, whereas in actuality the transition from one phoneme to another can be gradual.

The model is left-to-right since a spoken word proceeds in a predictable manner from one

sound to the next. Some words have optional phonemes, and the transition that skips the

omitted phoneme is shown as the arrow from the end of the first phoneme to the beginning

of the last phoneme. In our implementation, each state can have at most 3 predecessors,

which are defined as preceding states which are allowed to transition to the current state.

94

Each state transition has an associated transition probability. The feature vector corre

sponding to each state depends probabilistically on that state. The model is "hidden"

because we can observeonly the probabilistically dependentfeatures rather than the states

themselves, and we have to use the sequence of these features to infer the mostprobable

state sequence, whichis an approximation to inferring the most probableword sequence.

In this algorithm, the smallest speech unit modeled is the phoneme. We model each pho

neme with a 3-state Markov model to allow for co-articulation effects with the previous

and the next phoneme. A word is a concatenation of phonemes. A sentenceis a concatena

tion of words. These concatenations may be done probabilistically and are, in fact, mod

eled as HMMs. The HMM representation is therefore hierarchical.

For a moregeneral description of hidden Markov modeling applied to speech recognition,

refer to Section 4.6.1. on page 54, or to [Juan84].

5.6.2.3. Viterbi Algorithm

The Viterbi algorithm [Juan84] is an approximation to the forward algorithm (see

Equation 4-7), which is the optimum maximum likelihood state sequence detector for a

HMM. The algorithm calculates the probability of a match with the current utterance for

all legal sequences in themodel anddetermines themost probable statesequence. Pruning

may be used to discard highly unlikely sequences early in the calculation and thereby

reduce computational requirements.

95

Figure 5-5 shows the trellis used for Viterbi decoding of the HMM. Each circle represents

Wordm

Word m+1

time (in frames)

Figure 5-5. Trellis for Decoding a Hidden Markov Model

a Markov state. The horizontal arrows represent the self-loops illustrated in Figure 5-4.

Other arrowsrepresent legal state transitions. The parameters { A ••} arethe state transition

probabilities. The horizontal dotted line represents the boundary between two phonemes.

Note that in this case, transitions between phonemes are allowed from the last state of the

predecessor to the first state of the successor only, these states being the grammar nodes

described in Section 5.6.3.2. In a more general case, any state can transition to any other

state.

At each frame, the probability of being in each state is calculated using transition probabil

ities from each predecessor for that state and the feature vector calculated from the current

frame of speech. This state probability is calculated forall active states;the probability that

96

any legal state sequence SN = {5,...jn} matches any feature vector sequence

0N h= {o,...oN} maybe determined using the following equation:

N

Equation5-3. P(SN,0N) =*(*,)/>(*, |jj)H [*(*,._„ j,.) •P^s,)]
i = 2

where A(5/5 s^) is the transition probability from state st to state j • and n^sf) is the a

priori probability that the sentence starts with state s(. Note that:

Equation 5-4. P(os\s) =P(o) \s) •P(o]\s) •P{o]\s) •P(<?*|j)
where each of the terms is defined in Section 5.6.2.1 and assumed to be independent of the

others. However this calculation isvery expensive. The number of possible state sequences

T
is (mN) where m is the geometric averageof the number of transitions into each state,

N is the number of Markov states in the system, and T is the number of frames in the sen

tence. For each second of speech, T = 100. For a 60,000word vocabulary with an aver

age of 15 Markov states perword, N = 900,000. If we assume that m = 3, then we have

to evaluate Equation 5-3 a total of 1.37* 10 times, whichis clearly aridiculously large

amount of computation.

Since we are interested only in the most probable state sequence leading up to each state,

we canomit thecalculation of theless probable paths intoeach state. The Viterbi algorithm

is a dynamic programming scheme that uses this approach:

Equation 5-5. PiO^s) = MAXpe ^^[PiO^p) •A(p,s)] •P(0i\s)
where the initial condition is

Equation 5-6. P(0}, s) = n(s) •P^o^s)

and the set {pred} is the setof predecessors of the state s.n(s) is the a priori probability

that the state s is the beginning of a sentence. This equation is calculated mNT times,

which corresponds to 270 million times per second. This number can be reduced by prun

ing. Pruning eliminates improbable paths from the search space, processing onlythehighly

97

probable paths. A pruning threshold is used todetermine which candidate paths to keep, as

explained in Section 5.6.3.1 below. Pruning can increase theerrorrateby eliminating the

correct path early. However experiments can be performed to determine a good pruning

threshold for any given recognizer.

5.6.2.4. Backtrace

At the end of the sentence, after Equation 5-5 has been calculated for the last frame, we

need a means of tracing the path from the state at the end of the most probable sequence

back through the trellis to the first frame so that wecan report theentire sequence. This is

done bymaintaining a backtrace listwhere, forevery state and forevery frame, a tagpoint

ing to the most probable preceding state is stored. This tag is the address in the backtrace

list of the preceding state. Using these tags, the most likely state sequence can be deter

mined at the end of the sentence.

5.6.3. System Architecture

The algorithm described in Section 5.6.2 above was implemented in custom hardware.

This section describes the architecture andimplementation of the system.

5.6.3.1. Changes to Improve Performance

Somechanges weremade to thealgorithm toimprove performance. In Equation 5-5above,

the multiply operations canbe replaced by additions if logarithmic representations of each

term in the equation are used.

This algorithm is ideally suited to floating pointrepresentations, but such a representation

would result in complex floating point datapaths and to larger memories. To avoid this

increasedcomplexity, we implemented a fixed-point representation with frequent normal

ization to retain accuracy and avoid underflow. Normalization is done using the following

equation:

Equation 5-7. Pn(Oi,s)= '
MAX^slP^O^.t)]

98

where MAXt[Pn{0(_,, r)] is the largest normalized state probability from the previous

frame, and S is the set of all states. This division operation is expensive to implement in

hardware. However, the logarithmic representation reduces it to a subtraction.

A pruning scheme helps reduce thecomputational requirements of the system by discard

ing word models whose states have low state probabilities. A pruning threshold 0 is com

puted before every frame as follows:

Equation 5-8. ©new = MAX[<dold, MAXS esP(Oif s). eoffset]

where Oa^set isa system parameter. Pruning isused to reduce the number ofactive states

by a factor of 5.

5.6.3.2. Hierarchy

TheViterbi recursion (Equation 5-5) is implemented on 2 levels of hierarchy, phone pro

cessing and grammar processing. In phone processing, the probabilities of states within

phoneme models are updated using only transitions from within the same phoneme. In

grammar processing, the transition probabilities between phonemes are used to compute

the probabilities of states within successorphonemes.

The advantage of this hierarchical scheme is that both levels of processing can be per

formed in parallel. However there is a large amount of datathat is passed between the two

levels since it is possible for transitions to successor phonemes to begin from more than

one state in each predecessor phoneme, and transitions from predecessor phonemes can

end in more than more than one successor phoneme.

99

To reducethe data rate between the two levels of hierarchy, we define two artificial nodes,

the source grammar nodeand the destination grammar node (see Figure 5-6). The source

I ^\ source grammar destination grammt
£ s^node node ,'

^ -^ ^ Phoneme ^ -» **

Figure 5-6. Source and Destination Grammar Nodes

grammarnode probabilityis the probability that the statesequence terminates at the begin

ning of the phone instance, corresponding to the MAX operation in the Viterbi recursion

(see Equation 5-3) with each predecessor probability taken as the destination grammar

node probability of the predecessor state.

Foreach phoneme, the destination grammar node probability at frame i is computed as fol

lows:

Equation 5-9. P(VJ =MAXpe {pred][P(Oit p) •A(p, D)]
where {pred} is the set of states within the phoneme which have transitions to the desti

nationgrammar node.To prevent overflow,the destination grammar node probabilities are

normalized after every frame. The destination grammar node probabilities must be com

puted before the source grammar node probabilities.

This scheme also helps reduce the memory requirements of the backtrace algorithm.

Instead of storinga backtracetag forevery statein every phoneme forevery frame, we can

store a tag for each destination grammar node only, with the tag pointing to the predeces

sor's destination grammar node. Whenever the probability of the destination grammar

node is high enough to be potentially part of the most likely path, it is stored in the back

trace list (together with a tag pointing to its predecessor phoneme's destination grammar

o-oo

100

node) and its tag is passed on to the source grammar nodes of its successors. The source

grammarnodespass the tag along to theirdestination grammarnodesas partof the normal

Viterbi processing.

5.6.3.3. System Hardware Partitioning

The hardware partitioning of the system is illustrated in Figure 5-7. All the customboards

Distribution Board Viterbi Board

Output

Distributions

nOAs) Phone

Processing

Active Word

Processing

O:

Grammar Board

Successor

Computation

Backtrace

Feature

Extraction

Digitized Speech

Figure 5-7. Hardware Partitioning of the Speech Recognition System

sit in a VME card-cage together with a CPU board and an Ethernet board.

Feature extraction is done on the Grammar Board, and the feature vector is sent to the Dis

tribution Boardvia the VMEbackplane. Thesetof probability distributions corresponding

to that feature vector is sent from the Distribution Board to a cache on the Viterbi Board

via a ribboncable.On the Viterbi Board, the Phone Process updatesthe state probabilities

of all the active states. If any of thestate probabilities of an active phone has a probability

higher than the threshold, the PhoneProcess sendsa message to the Active Word Process

to put this instance in the Active Word List for the next frame. If the destination grammar

nodeprobability of a phoneme is high, theViterbi Process tellsthe Successor Computation

101

Process on the Grammar Board to generate a backtrace list and send successors to the

Active Word Process. The Active Word Process maintains the Active Word List. Commu

nication between the Viterbi Board and the Grammar Board is done via ribbon cables. At

the end of a sentence, the Backtrace Process on theGrammar Boardgenerates a list of rec

ognized words.

A Heuricon 68020-based general purpose microprocessor boardand an Ethernet interface

board are used to control the system and to interface with the network. These boards allow

start-up and parameter loading of the custom boards and synchronizes the boards after

every frame. They also allow access from a UNIX workstation on the network to the mem

ories on the custom boards for operational and debuggingpurposes.

5.6.4. Phone Process

Phone processing involves calculating the stateprobabilities for all the active states includ

ing the destination grammar node probabilities but excluding the source grammar node

probabilities. The source grammar node probabilitiesare calculated by the Successor Com

putation Process on the Grammar Board.

The Phone Process is implementedin 3 customVLSI chips. For more details on its imple

mentation, see [Stol92].

5.6.5. Active Word Process

The Active Word Process generates and maintains a list of active phone instances for the

next frame. It takes input from the Phone Process and the Successor Computation Process,

as illustrated in Figure 5-8. We use the terms "word", "phone" and "phone instance" inter

changeably in the rest of this Section since each item is defined by the existence of a source

and a destination grammar node. As long as the item, be it a word or a phoneme, has these

grammar nodes the Active Word Process does not distinguish between them. For example,

if the recognizer were phoneme based then each item would have three states including the

grammar nodes whereas if the recognizer were word based then each item would have an

average of 17 states. This speech recognition system is triphone based, which means that

each subword unit models coarticulation effects with adjacent subword units, resulting in

three HMM states per triphone, excluding the grammar nodes.

102

Phone

Process ♦
Active Word

Process

Active Word

List

Successor

Computation
t

Figure 5-8. Connections to the Active Word Process

5.6.5.1. Description

The Phone Process supplies a list of words (actually phonemes) that are currently active

and should remain active during the next frame. These are words which have at least one

state with high probability. The Successor Computation Process supplies a list of new

words that are successors to the words which are currently being processed by the Phone

Process nd which are ending. This latter list may have redundant words; in this case, the

Active Word Process performs aMAX operation onthesource grammar node probabilities

and stores only the most probable one in the Active Word List.

The fields in the Active Word List are listed in Table 5-2.

Name Length (bits) Comment

P(S) 16 source grammar node probability

Tag(S) 20 source grammar node tag

WordArc 20 phone instance identification

SlProbAdd 18 address in the state probability memory

UniqueAdd 16 address of the unique phone

TopoAdd 4 address in the topology memory

NewFlag 1 flag to indicate that the phone instance is new

EndFlag 1 flag to indicate the end of the Active Word List

Table 5-2. Contents of the Active Word List

103

P(S) is the probability of the source grammar node of this word. It is used only when the

wordwas supplied by the Successor Computation Process. If the wordwas supplied by the

Phone Process, this probability is set to 0.

Tag(S) is the backtrace tag generated by the Successor Computation Process. If the word

was not generated by the Successor Computation Process, Tag(S) is meaningless.

WordArc is the ID of the word (or phoneme) instance, and is unique for each instance of

that phoneme.

StProbAdd is the address of the source grammar node of this word instance in the State

Probability Memory that is part of the Phone Process, and is valid only if this word was

supplied by the Phone Process.

UniqueAdd is the address of the prototype (orunique) phoneme in a phoneme based rec

ognizer. The idea behind this is that there are a numberof unique phonemes which have

unique topologies and topology probability distributions, and instances of each unique

phoneme would share the topology and probability distributions. Eachinstance is part of a

different word andbe processed separately by the Phone Process with adifferent ID, which

is stored in WordArc above.

TopoAdd is the address in the Topology Memory (which is part of the Phone Process) of

the unique phone corresponding to the current phone.

NewFlag is set to 0 if the word was supplied by the Phone Process, even if the Successor

Computation Process also supplied the same word. NewFlag is lonly if the word was not

supplied by the Phone Process, and this flag tells the Phone Process to ignore the contents

of the StProbAdd field.

EndFlag is set to 1 at the end of the Active Word List to tell the Phone Process to stop pro

cessing the current frame. It is 0 for all valid entries.

104

5.6.5.2. Implementation

The Active Word Process is implemented in 3 custom chips and uses 2 memories, as

shown in Figure 5-9. It is necessary to use 3 chips because of the large pin count of the

Phone

Process

WordArc TopoAdd
StProbAdd
UniqueAdd

Successor Computation

Process

WoniArc P(S)

I

TopoAdd
Tag(S)
UniqueAdd

*v

Request
Processor

Grammar Node

Processor

Data

Processor

ALddta
'Flags
WordArc

I
P(S)

Active Word

Tag(S)
StProbAdd
TopoAdd
UniqueAdd^

ddressALa

Active List

Memory
AWaddres

Memory

Active Word Process

Figure 5-9. Implementation of the Active Word Process

/

Active Word Process. The main controller for theActive Word Process is on the Request

Processor,andthe data pathsfor thefields in theActiveWordMemoryarebit-slicedacross

the 3 chips. All operations involving the Active ListMemory are alsodone on the Request

Processor. The chips are described in greater detail in Section 5.6.5.3 through

Section 5.6.5.5.

105

It is necessary to use 2 memories for the Active Word List to reduce the actual memory

requirements for storing and maintaining the List. The Active List Memory (1 MWords by

16 bits) is addressed using the WordArc identifier and contains an address that is used for

access into the Active Word Memory (64 kWords by 96 bits). This indirect addressing

scheme uses 2.75 Mbytes of memory whereas a direct addressing scheme would use a

single 1 MWords by 96 bits Active Word Memory, which would require 12 MBytes of

memory.

All entries in the Active ListMemory must bezeroed out before processing begins. When

ever the Active Word Process receives a request from the Phone Process or the Successor

Computation Process, it reads the ActiveList Memory to seeif the word is already in the

Active Word Memory. If so, the old data is retrieved and merged appropriately with the

new data, as explained in Section 5.6.5.1, and then re-written into the Active Word Mem

ory. If the word is not already in the Active Word Memory, it is written into the Active

Word Memory at the next available address and this address is stored in the Active List

Memory at the appropriate location.

106

5.6.5.3. Request Processor

A chip photograph of the Request Processor is shown in Figure 5-10. It is packaged in a

'.'Mi r :i}i~t::} t i)• ••; rtllTim rr'rti tr,("r' I'J'i'iGi
pffwWMMM i I HIMf^W mWMl mmfm *«.*— .{Injmu

:*>tlts:rr:yTkH'i::.:pfa. *..».:: bfc
SSC33 ;t - - ir y sec i hi hi if? 1 /1- -i I. n c
:?u ii ii bTTT- i! n ii»H »riHi .OIlJi^ £If ij Hli ti a iji j^Tpftj

Figure 5-10. Chip Photograph of the Request Processor

208-pin Pin GridArray (PGA). Thecontroller for theActive Word Process is on this chip,

as is the datapath for the WordArc processing andforNewFlag and EndFlag. All circuitry

for managing the Active List Memory is on the Request Processor.

107

5.6.5.4. Probability Processor

A chip photograph of the Probability Processor is shown in Figure 5-11. It is packaged in

Figure 5-11. Chip Photograph of the Probability Processor

a 208-pin PGA, and runs as a slave to the Request Processor. The Probability Processor

contains the datapaths for StProbAdd, Tag(S), TopoAdd, and UniqueAdd.

108

5.6.5.5. Grammar Node Processor

A chip photograph of the GrammarNode Processor is shown in Figure 5-12. It is packaged

Figure 5-12. Chip Photograph of the Grammar Node Processor

in a 84-pin PGA and runs as a slave to the Request Processor. The Grammar Node Proces

sor contains the datapath for P(S).

5.6.6. Viterbi Board Design

The architecture of the Viterbi Board is very complex. There are two State Probability

Memories and two Active Word Memories which are accessed during every frame. There

are also two Output Probabilities, one of which is being read by the Phone Process while

the other is pre-loaded from the Distribution Board. These three pairs of memories switch

function every frame. This switching means that theremustbe multiplexers on the memory

buses. Integrating these buses on the chips means an impossibly large number of pins per

chip, and putting the multiplexers on the board means a large chip count and an even more

complex board.

The Viterbi Board was therefore designed with a switching architecture. In Figure 5-13,

only one half of the board is shown. The otherhalf is a mirrorimage: each of the memories

109

it

Active List

Memory

Active Word

Memory

State

Probability
Memory

Output

Probability

Memory

Topology

Memory

1MM
l—I I I_

Active Word

Process

Phone

Process

T

•• to State Probability Memory

•• to Active Word Process

to Grammar Process i

Figure 5-13. Switching Architecture of the Viterbi Board

110

and custom chips is instantiated twice. Memories may be accessed by the VME interface

only through the custom chips. During a frame the Phone Process reads from the Active

Word Memory, the State Probability Memory, the Output Probability Memory, and the

Topology Memory on its side of the board while the Active Word Process updates the

Active List Memory and the Active Word Memory on the other side of the board. The

Phone Process also clears the Active List Memory on its side of the board. On the next

frame, the process is mirrored on the other side of the board.

The Viterbi Board design has several large memories and many othercomponents. They

are listed in Table 5-3 and Table 5-4. The board occupies a triple-height full-depth VME

Memory Words Bits/Word

Active List Memory 1M 16

Active Word Memory 64k 96

State Probability Memory 256 k 36

Output Probability Memory 64k 12

Topology Memory 64k 16

Table 5-3. Memory Sizes on the Viterbi Board

printed circuit board. The design was created using the Lager system [ERL88] and the

board was laid out and routed using Racal-Redac's Visula software [RR90].

5.6.7. System Level Simulation

Given that the board is large and complex, it was desirable to simulate its functionality to

the extent possible before actual fabrication and test. Simulation is not usually used to

verify printedcircuit boards. Instead, expertboard designers rely on their design skills to

get the design mostly right the first time and then use their debuggingskills to get it work

ing. But after the experience of VLSI chip design I felt that board level simulations would

help the design and debuggingprocess and reduce the time it would take to get it working.

I had to create the board simulation environment from scratch since there was no existing

capability for such an effort.

There are two types of simulations that may be done on a board design. A timing simula

tion can uncover all connectivity, functionality and timing problems, but requires timing

111

Part Type Quantity

22V10PLD 14

16L8-7PCPLD 5

74AS244 buffer 77

74AS374 flip-flops 6

VME2000 VME Interface 1

VME3000 VME Interface 1

74AS646 transceivers 3

74AS74 flip-flops 2

EP610PLD 1

74AS04 inverters 1

74AS02 or-gates 1

20 MHz oscillator 1

Ml641 SIP memory 14

Ml 831 SIP memory 6

Ml621 SIP memory 4

Table 5-4. Components on the Viterbi Board

models for all the components on the board, including the PLDs and the custom chips. I

could not find a simulation engine that handles a heterogeneous design like this one. Cre

ating timing models for all the components would havetaken too long to be worthwhile.

A second option is a behavioral simulation. In this case, only connectivity and functional

problems would be found. This is sufficient since the board is clocked and the interfaces

are very well specified. A separate program was created to find high fanout nodes so that

buffers could be added.

A public domain event-driven simulator called THOR [Stan86] was used to simulate the

board. In THOR each chip is modeled with abehavioral description in a language similar

to C. These C-like routines are connected at a higher level using a LISP-like language

called CSL. Hierarchical designs are supportedvia hierarchy of CSL files.

Forthis simulation,THOR models werewritten forall the off-the-shelf components on the

board and for all the individual components within the custom chips and the PLDs. The

simulator was then compiled and run with manually created test vectors. This simulation

112

was particularly valuable in finding problems in the synchronization between the Phone

Process and the Active Word Process and between the custom chips and the memories.

113

/^ Applications

Several applications were built for the InfoPad system. The applications thatmost involve

use of the pen are the Circuit Schematic Recognizer and the Electronic Notebook. The

former also uses handwriting and speech recognition. Since the focus of this thesis is the

use ofpen and speech inthe user interface we examine these two applications in this chap

ter. Some other InfoPad are described in [Nara96].

6.1. Circuit Schematic Recognizer

The CircuitSchematic Recognizer is the onlyInfoPad application that uses the entire rec

ognition infrastructure andis therefore theshowcase application for the InfoPad system. It

allows us to explore the use of the pen as a design tool and the synergy between pen and

audio input in an application. The pen is used as a drawing tool and for accessing menu

driven commands, the handwriting recognizer for entering parameters and labels, and the

small, fast speech recognizer described in Section 5.5 forcommands. The application rec

ognizes drawn circuit elements and automatically decides whether drawn items are ele

ments or wires.

It is implemented entirely in Tel [Oust94] anduses theTk toolkit of X widgets. An object-

orientedextension to Tel calleditel [itc96] wasusedfor ease of programming.

6.1.1. Desired Functionality

This application is designed to be a front end to the SPICE [Meta91] circuit simulation pro

gram. Users draw simple electrical circuits containing circuit elements and connecting

wires on a drawing canvas in a freehand style using a pen. The application captures this

freehand drawing and displays electronic ink on the drawing canvas. It recognizes drawn

circuit elements and generates a SPICE deck representing the drawn circuit. Wherever it

114

makes sense, speech recognition is used to improve the speed or convenience of design

entry.

At a higher level, this application is designed to allow the user to enter a circuit schematic

design faster and morecomfortably than he would be able to usingtraditional means such

as manually creating a netlist file or using a keyboard and mouse with a CAD tool. The

design entry process is improved by using pen and speech rather than a keyboard and

mouse.

6.1.2. Current Systems

There are currently no commercial or research prototypes of pen-based circuit schematic

capture tools available. However there are many tools based on a keyboard and mouse

interface [Hass95] [McMu92] [Gill95].

The biggest problem with a keyboard/mouse interface is the constant alternation between

mouse and keyboard. The mouse is used to place objects and to select commands from

menus. The keyboard is used for keystroke shortcut commands and for entryof parameters

andlabels. This alternation betweeninputdevices is inefficient andannoying. The mouse

interface is also inefficient because of theneed tomovethemousefrom thedrawing canvas

to the menu bar for commandsorthe palette ofcircuit primitives forcreation ofnew circuit

elements. Mouse interfaces also require that the user create each circuit primitive, then

rotate it to the desired orientation, then move in to the required location. That means three

operations for each primitive, rather than one.

A pen/speech interface overcomes many of these limitations. The pen and the microphone

are used by different parts of the human body, so alternating between the two does not

require physical movement. The pen maybe used to draw items in place and speech may

be used to issue commands that are traditionally menu driven. Pen or speech maybe used

to replace keystroke shortcuts. Items drawn with a pen can be placed at the correct place

with the correct orientation in one operation.

A pen/speech system can therefore provide a much better interface for schematic capture

and for a large class of computer aided design applications.

115

6.1.3. Lessons Learned

Implementing a pen-aware application revealed several unique characteristics of using a

pen to drive an application. These characteristics stem from the way people write rather

than anything inherent in the Pen Server or the InfoPad environment. They are therefore

universal and mustbe accounted for in any pen-based user interface.

The black-and-white (monochrome) screen of thepresent InfoPad version means that feed

back to the user cannot use color, so bitmaps and wires have to be represented in such a

way that they are clearlyvisible and distinguishable on a monochrome screen.

Users have trouble double-tapping apen (equivalent todouble-clicking amouse). It is dif

ficult to put the pen down onthe same spot twice inquick succession. The second tap usu

allycomesdown several screen pixels away. This phenomenon is dueto the needto lift the

entire forearm for each tap: for a mouse, the user keeps the pointing device steady while

pressing buttons withhis fingers so this problem does notarise. Also, the pen sometimes

bounces. Therefore this application does notuse pen double-taps.

The difficulty in tapping the pen accurately also relates to using pull-down menus. Users

often tap on a menu button, lift the pen until the menu comes up, then tap the pen on the

desired item. But they may miss the intended menu item if they are alittle sloppy. There

fore, all the menus are designed to be tap-and-drag. Menus mustappear on one side of the

pen rather than directly below it, otherwise the pen will obscure them.

Many electronic pens come with two buttons, one on the tip and another on the barrel.

However the barrel button is difficult to use. Its position is not intuitive and users often

press it accidentally. When called upon to press it deliberately, they often have difficulty

locating it. This application therefore does not use the barrel button. Effectively, we have

a one-button pen.

The pen is a natural pointing device. Users like to get visual or audio feedback from their

activities on screen and it would appear that pen position alone is enough to tell the user

which window contains the pen. Since it is physically on the screen, the pen can replace

the functionality of the mouse cursor. However, users are uncomfortable without a pen

116

cursor drawn on the screen, or some other way of telling which window or widget is cur

rently in focus. This discomfort is aggravated by the parallax problem caused by the thick

ness of the glass covering the LCD screen. Therefore, a pen cursor is visible at all times

when the application is active. This feature of keeping thecursor visibleeven when the pen

is up is supportedin the Pen Server, described in Section 3.3. on page 32.

The pen generates about 100 points per secondand a pen tap is slower than a mouse click

due to the mechanical movement of the switch at the pen tip. Therefore, the Pen Server

generates a line every time the pen is tappedon the screen.The number of points in the line

varies depending on the user's tapping style. Therefore the application has to interpret all

drawn lines and determine whether;: !.-ided to be pen taps or lines.

The mechanical delay in the tip switch when the pen is picked up or put down means that

when the pen is picked up after a line is drawn, an artifact persists in the direction in which

the pen was moving at the time. This artifact, or tail, means that drawn objects, especially

those consisting of multiple strokes, often have artifacts at the end of each stroke. The rec

ognizer therefore has to detect and filter out these spurious points.

The built-in geometric object recognizer performs recognition of drawn items when the

pen is picked up after strokes have been drawn. Multi-stroke elements are drawn with user-

dependent times between pen-up on the previous stroke and pen-down on the next stroke.

The recognizer therefore has to support user-programmed recognition time-outs.

Users align drawn items on the screen with varying degrees of precision, at least partly

because the pen obscures their view of the screen. Therefore it is sometimes not obvious

whether the user intends that two strokes be connected, or if a wire drawn close to a circuit

element is meant to be connected to that element. The application therefore has to allow

user-dependent alignment distances to allow for user sloppiness.

In noisy environments or when a quiet environment is needed, speech recognition cannot

currently be used to drive the application. Noisy environments cause the recognizer to

make more recognition errors. Therefore, the speech recognition should be enabled and

disabled at will by the user. All functionality can be accessed without speech, although

117

spoken input can improve the usability of the application. However there some uses, such

as issuing commands, where speech is a better input modality than handwriting. The solu

tion is better, noise-tolerant speech recognizers.

User tests showed that when speech recognition worked well for users, they preferred it to

using pull-down menus for issuing commands. When the speech recognizer made frequent

recognition errors, users abandoned speechcompletely in favor of using the pen even if the

errors were only on the same small number of utterances.

6.1.4. Implementation

A screen shot of the Circuit Schematic Recognizer is shown in Figure 6-1. The application

file Ipat SPICE I Speech

line length Threshold RecognitionTDTOaMrt(ms) Status: Boarty]

to 20

;:EdiliStefe|tldp>'''
AWHewBenwnt

DaioteSatecttoo

MovaSatoctton

ywo

ttran:ttiBie

Labdinone

Figure 6-1. Screen Shot ofthe Circuit Schematic Recognizer with Edit Menu Posted

starts up with a blank canvas, a row ofmenu buttons, and some control sliders along the

top. The File menu provides the usual file manipulation commands. The Edit menu, also

shown posted in the Figure, allows manipulation of objects on the canvas. The SPICE

menu controls SPICE file generation and the Speech menu allows speech recognition to

118

be enabled and disabled. The Help button brings up a manual page describing the applica

tion.

In normal operation, the user draws circuit elements and wires. This drawing is electroni

cally inked onto the canvas. The application segments each drawn stroke into lines or cir

cles and then looks for ordered sequences of these primitives to make up circuit elements.

The recognition algorithm compares the drawn sequence of primitives to stored templates

ofprimitive sequences representing circuit elements to find a match. This comparison uses

a priority ordering of most complex element first. Currently, the application supports

NMOS and PMOS transistors, resistors, capacitors, Vdd, and ground circuit elements. It

also recognizes rotations and reflectionsof these elements. If a drawn item is not identified

as a circuit element, the application assumes it is a wire or collection of wires.

Recognized circuit elements are displayed with bitmap representations while recognized

wires are displayedas straightlines. The linesarenot manhattanized because it is not obvi

ous where the user would want to place the additional segment generated by manhattaniz-

ing a wire that is almost horizontal or almost vertical. All recognized items, including

wires, are aligned with nearby items and are electrically connected to these items.

The "tails" generated by slow switch response on pen-up are dealt with by adding tem

plates incorporating these tails to the library. By observing actual users in action, we were

able to generate a list of situations where these tails commonly arise. Slow switch response

is also partly responsible for pen taps producing short lines on the screen. The application

detects short lines and interprets them as pen taps.

In this application, the recognition algorithm is very simple and completes in a fraction of

a second. However, to allow for more sophisticated recognition in future, there is a status

indicator on the top-right corner of the main window which says "Busy" during recogni

tion. It is also an indication to the user that recognition has begun so the screen display is

being updated.

Items on the screen, including circuit elements and wires, may be selected by tapping the

pen on the item. Selected circuit elements appear in inverse video while selected wires

119

appear as dotted lines. This representation was chosen because the InfoPad has a mono

chrome screen which does not allow visual feedback in color. Many items may be selected

at the same time. Items may by moved by tap-and-drag.

There is a concept of the "current item", which is the item under the pen. The pen cursor

is normally a "pen", but it changes to a "hand"whenit is over an item.The internal iden

tifier of that item, which is defined as the current item, is reported on the top-right of the

application's main window under Item. Label is the user-supplied label for the current

item.

The Edit menu supports all the commonediting commands including rotation, reflection,

adding new elements (this is an alternative to drawing the circuit element), adding/editing

parameters, deletion, massselection, andundo. The Edit menu can be invoked by tapping

the pen on any open space in the drawing canvas.

Parameters of an item maybe added orchanged by selecting the item (viaa pen-tapon the

item) and thenselecting Edit Parameters from the Edit menu. Anediting form, shown in

Figure 6-2 for an MOS transistor, comes up and the user may use the handwriting recog-

tahel [mT

•El:
dear Cancel I OK

Figure 6-2. Parameter Editing Form for MOS Transistors

nition widget described inSection 4.4.2.1. onpage 50toenteranoptional label andtherel

evant parameters. The form iscustomized tothe current item. Forwires, theform contains

only a label entry.

120

The Speech menu brings up a widget that controls the speech recognizer described in

Section 5.5. on page 87. This widget is shown in Figure 6-3 and allows the user to control

< - fttcpfilng Status: 4lTt

garbage ttrastxifcl

<MBOC8*dum0uii (2SB-288SJSKC)

"", tA

•fKordgafct
50

ptaygakT
so

pi^Ty.^.»>.». - -<jJ1j.»»r.T-~\?yTTssT

Figure 6-3. Speech Recognition Control Widget

noise immunity, silence detection, and gain.

All commands on the Edit menu may be spoken at any time. The list of speakable com

mands is in Table 6-1. This list is limited to the most commonly used commands to maxi-

Rotate 90

Reflect X-ray

Reflect Yankee

Edit Parameters

Add Resistor

Add Capacitor

Add NMOS

Add PMOS

Add Vdd

Add Ground

Select All

Deselect All

Delete Selection

Undo

Table 6-1. List of Speakable Commands

mize recognition accuracy. Speakable items are kept short for ease of use. An attempt is

121

also made to differentiate the items as much as possible. That is why we use "Reflect X-

ray" and "Reflect Yankee" instead of "Reflect X" and "Reflect Y" respectively.

The SPICE menu allows the user to generate a SPICE deck and specify the path and name

of the file in which to store the deck. It also allows the user to pull up forms for entering

simulation control parameters.

As explained in Section 6.1.3, this application does not use pen double-taps nor the barrel

button. There are three sliders to control critical, user-dependent variables. They are

locatedjust belowthe menubar at the topof themain window. The Alignment Threshold

slider specifies the maximum distance between the end of a line and the nearest item's

nearest terminal for them to be electrically connected. If they are connected, then the item

that was just added or moved is aligned to the existing item.

The Line Length Threshold slider specifies the minimum length of a stroke or line seg

ment before it is considered a line. This parameter is used in two cases. The first case is

when the pen is tapped. If the line lengthgenerated is smaller than the parameter, the event

is considered a tap, not a line. In the second case, whenever a stroke is segmented into

straight lines, each resulting line's length is compared to this parameter. If the length is

smaller, then it is considered noise and ignored.

The Recognition Timeout sliderspecifies thetimeafterthepenis liftedbeforerecognition

begins. If theuserfinds thatrecognition occurs before hehasfinished hisstrokes, he should

increase the valueof this parameter. If hefinds that recognition begins too late for his com

fort, he should decrease the value of the parameter.

All three parameters are initialized with reasonable defaults.

6.1.5. File Format

The file format used by the Circuit Schematic Recognizer is illustrated in Figure6-4 for

the circuit in Figure 6-1, andthe syntax of thefile is illustrated in Figure6-5.The first line

contains the name of the circuit, some of its parameters, and a list of its elements. This is

followed by a line for each circuit element, including wires. Each line contains the type,

name, location on the screen, orientation, label, names of connected neighbors for each ter-

122

circuit test 1 5 10 1900 20 rl cl vl nl pi gl wireO wirel
wire2 wire3 wire4 wire5 wire6 wire7 wire8 wire9 wirelO wirell

wirel2 wirel3

resistor rl 244 207 0 none 2 wirelO wirell 111-1

capacitor cl 202 206 0 none 2 wire8 wirel3 2 11-1

Vdd vl 147 111 0 none 1 wire2 11-1

nmos nl 133 206 0 none 3 wire5 wireO wirel 2 2 12-1-1

pmos pi 136 151 0 none 3 wire3 wire2 wireO 12 12-1-1

ground gl 139 264 0 none 1 wirel 2 0

wire wireO 2 155 171 152 206 none pi drain nl source 0

152 226 149 264 none nl drain gl ground 0

157 121 155 151 none vl Vdd pi source 0

136 161 103 169 none pi gate wire4 1 0

103 169 107 215 none wire3 2 wire5 1 0

107 215 133 216 none wire4 2 nl gate 0

102 192 56 198 none none none none none 0

232 189 152 189 none wire9 1 none none 0

211 191 211 206 none none none cl positive 0

232 189 312 190 none wire7 1 none none 0

wire wirelO 0 247 207 250 191 none rl positive none none 0

wire wirell 2 247 233 249 255 none rl negative wirel2 1 0

wire wirel2 3 249 255 152 255 none wirell 2 none none 0

wire wirel3 2 211 223 209 252 none cl negative none none 0

Figure 6-4. Circuit Schematic File Example

circuit <circuit_name> <scale> <line_threshold>

<align_threshold> <timeout> <element_count>

<element_l element_2...>

<element_type> <element_name> <x_coordinate> <y_coordinate>

<orientation> <label> <wire_count>

<wire_name_l wire_name_2...>

<wire_terminal_l wire_terminal_2...>

<parameter_count> <parameter_l parameter_2 ...>

wire wirel 2

wire wire2 2

wire wire3 3

wire wire4 2

wire wire5 1

wire wire6 3

wire wire7 3

wire wire8 2

wire wire9 1

Figure 6-5. Circuit Schematic File Syntax

minal, the names of the connected terminals of each connected neighbor, and all parame

ters for that element.

123

6.1.6. Suggested Improvements

The Circuit Schematic Recognizer works well for most users, especially after they have

gotten familiar with the templates used for recognition. However there are numerous

improvements which would make it work even better.

The most visible improvement would be capture of handwritten labels and parameters on

the drawing canvas itself. This would remove the need for a separate form for such data

entry and also the need for the stand-alone handwriting recognition widget. An extension

to this would be to capture drawn gestures as shorthand for menu commands, similar to

keystroke shortcuts in regular computers.

Even if we continued to use the current parameter entry form, it would be nice to write

directly into the formratherthanintoa separate widget application. A tk widgetthatencap

sulates the entire handwriting recognition widget application for inclusion into applica

tions is currently under development (see Section 4.4.2.2. on page51) and using this

widget allows this capability.

A color screenwouldmakethe application look nicerand allowothermodes of user feed

back. For example, labels are currently not displayed on the drawing canvas because it

would clutterup the screen. Butwith a color screen the labels could be displayed in a dif

ferent color. Selected items or the current item could also be displayed in a different color.

A drag-and-drop palette of circuit elements may be useful, but this usefulness is debatable

because dragging and dropping an element across the screen requires a large arm move

ment. Also, the small screen means that the screen real estate consumed by a palette may

be too expensive.

The small screen size also limits the size of the circuit that may be drawn. A larger screen

supporting a larger drawing canvas would help. Currently, the canvas does not scroll but

adding a scrolling capability is clearly a big win on the InfoPad. Other non-mobile plat

forms may be able to afford a larger screen.

The application is currently modeless, so theoperation executed in response to a userevent

depends onscreen context. Forexample, tapping the pen onthe screen executes a different

124

command if it is over a circuit item than over white space. However there are advantages

to moded behavior and it would be interesting to implement an interface with separate

drawing and editing modes.

There is currently no drawing grid on the drawing canvas, and no gravity or snap. Imple

menting a drawing grid would allow easy manhattanization of the wires, especially if the

grid is very coarse. This option should be investigated.

The current circuit element recognizer uses a relatively simple template-based algorithm.

A more complex algorithm may achieve better recognition accuracy and promote better

user interaction. For example, the present algorithm requires that all drawing be done and

the pen lifted before recognition is done. It also requiresthat lines be drawn in a predefined

way. There is no writer adaptation. A more sophisticated algorithm could recognize incre

mentally and adapt to the user.

Casual tests showed that the speech recognizer works well for some users and badly for

others. Adaptive training is needed to enable each user to get better recognition accuracy.

The full power of the speech recognizer's interface should exploited in this application.

Not all SPICE control commands are supported in this application. For completeness, even

the more esoteric ones should be supported.

6.2. Electronic Notebook

The Electronic Notebook application was designed as a test of the pen inking capabilities

of the InfoPad system infrastructure. In particular, it tests the loop consisting of pen packet

collection, transmission from the terminal to the Pen Server through InfoNet, transmission

of pen resolution data to the notebook application, generation of X events in the applica

tion, processing of X events in the X server,and transmission of bitmaps from the X server

to the terminal through InfoNet. This application was crucial in identifying timing bottle

necks early in the project.

The application also highlights the ability of the pen to function as a pointing device as well

as a drawing tool.

125

6.2.1. Desired Functionality

The Electronic Notebook functions as a personal appointment calendar. Users use the pen

to navigate through the calendar's pages by clicking on the appropriate date. Once at the

desired date, the application displays a writing canvas upon which the user may write or

sketch. Handwritten or sketched items may be sent to a recognizer for processing and the

resulting representations displayed instead of electronic ink.

There should be no limit to the numberof pagesper day, nor to the size of each page. There

should also be no limit to the complexity of the ink on each page.

6.2.2. Lessons Learned

Developing an electronic ink application was an interesting early learning experience.

When drawing on the screen, we found that horizontal ruled lines were essential for main

tainingcoherency in handwriting. Without lines, users write sloppily and verylarge,exac

erbating the limitations of the small screen. Having reasonably spaced lines improved

readability and user satisfaction.

All pen digitizers from the same vendor do not have identical parameters. Each piece has

to be calibrated separately. Also, thedigitization is not linear. Even if the pen registration

is accurate at all four corners, it may not be correct at the center of the screen or, more com

monly, along the edges of the screen. Therefore, a compromise was made by registering

along the centers of the four edges rather than at the corners.

Existing standards for storing electronic ink are not really standard. The JOT standard

[Slat93] had plenty of industry support but was short-lived. The UNIPEN standard

[Guyon94] is relatively new and it remains tobeseen whether widespread university and

research laboratory support ensures its survival.

Feedback to the user is extremely important. When the pen cursor was turned off, users

were hesitant and made many mistakes. Whenbuttonsdid not light up on pen focus, users

were again hesitant andmade mistakes. This is especially sobecause of theparallax prob

lem and imprecise pen registration.

126

6.2.3. Implementation

The Electronic Notebook was implemented using Tel and the Tk toolkit for the graphical

user interface and C to process and store electronic ink. Its interface is shown in Figure 6-

File) Edit] Optionsj Help

< | September 1993 | >l
s M T W T F S

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 ^Q 25
26 27 28 29 30

< J October 1993 | »l
s M T W T F

1

S

2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

Figure 6-6. Screen Shot of Electronic Notebook Application

6. Users tap the pen on the desired date to pull up the page corresponding to that date. The

arrows beside the month allow navigation to other months. The usual file manipulation and

editing functions are supported via pull-down menus. The user may sketch or write any

thing he likes. There is no limit to the complexityof the writing nor to its extent within the

page.

The pages are lined to reduce writersloppiness and to aid future inclusion of handwriting

recognition. The line spacing is controlled via the Options menu.

Due to the lack of stable standards for storage of electronic ink, we designed our own data

storage format and disk format. Internally, Strokes are stored as linked lists of pixels. Any

piece of writing is stored as a Word, which is a linked list of Strokes. The Stroke and

L^"""-!"""---!!

127

Word structures are shown in Figure 6-7. The Baselines in the WordStruct are useful to

typedef struct _StrokeStruct{

int *x, *y;

int PixelCount;

} StrokeStruct;

typedef struct _WordStruct{

StrokeStruct *Strokes;

int StrokeCount;

int UpperBaseline; /* smaller number than
* LowerBaseline */

int LowerBaseline;

} WordStruct;

typedef struct _TSetDataStruct {

WordStruct *Words;

int WordCount;

} TSetDataStruct;

Figure 6-7. Electronic Ink Stroke and Word Structures

a handwriting recognizer. Writing on separate lines are stored are separateWords, and all

writing for a particular page is stored in a TSetDataStruct.

Originally, the StrokeStruct had an array of pixels and the WordStruct had an array of

Strokes rather than linked lists. However, it turned out that if the application runs for sev

eral days without interruption, sufficient memory fragmentation occurs that the worksta

tion runs out of memory. Using linked lists, the application does its own memory

management and therefore does not suffer from memory fragmentation.

The file format for electronic ink is shown in Figure6-8. WordCount is the number of

lines of handwriting on a page, StrokeCount is the number of strokes on the line. Pixel-

Count is the number of pixels in the stroke. The UpperBaseline and LowerBaseline are

the lines bounding the writing area. In this case, the writing area is bounded by the drawn

lines above and below the writing. This file format mirrors the internal handwriting repre

sentation.

128

WordCount= 1

StrokeCount= 3

UpperBaseline= 50

LowerBaseline= 100

PixelCount= 6

112 680

112 681

112 685

112 688

111 693

136 778

PixelCount= 4

112 685

112 688

111 693

136 778

PixelCount= 4

212 685

212 688

211 693

236 778

Figure 6-8. Electronic Ink File Format

6.2.4. Suggested Improvements

The most visible improvement would be to implement scrolling of the writing area. Cur

rently, there is no scrolling.

Currently, handwriting recognition is not connected to the application, so handwritten

input must remain electronic ink. It is desirable to allow the user to segment the drawing

area and allow him to send the contents of selected areas to a handwriting recognizer. Rec

ognized text could then replaceelectronic ink. The same applies to drawings.

Current editing capabilities are very basic, comprising selection anddeletion. Addition of

scaling and translation would help, as well as merging and smoothing of strokes.

129

7 Conclusions

7.1. Summary of Results

In this thesis, we have reported the design and implementation of a pen and speech based

User Interface Architecture for mobile multimedia terminals. Although this architecture is

targeted towards the InfoPad system, most of its components are equally usable in other

environments. In particular, the authorconsiders Computer Aided Design (CAD) to be the

most promising area in which a pen and speechbased user interface can add value and suc

ceed.

The pen and speech input paradigm could be the wave of the future in user interfaces for

small computers. This interface requires a large amount of computational power to be

effective, and this computational power is not currently available to portable computers.

The power of this architecture lies in its network-centric design paradigm. By using the

resources of a fast network and compute servers, the architecture overcomes many of the

limitations of current portable computers that prevent their adoption of recognition-based

user interfaces.

The research contributions reported in this thesis include the User Interface Architecture

design and the implementation of all of its components. We also examine the situations in

which handwriting recognition is preferable to speech recognition, and vice versa. These

contributions are summarized in the following sections.

7.1.1. User Interface Architecture

We designed and built a network-based user interface architecture which allows remote

provision of pen and audio data servicesas wellas handwriting and speech recognitionser

vices to applications. The servers run remotely and communicate with applications and

130

with each other over the Internet, thereby off-loading the computational demands of com

pute intensive servers such as recognizers from the application's CPU.

This architecture has several major components. The Pen Server translates a raw byte

stream from the InfoPad terminal's pen digitizer into a device-independent format and

over-samples this datain space for device-independent spatial resolution. Datais accessed

via the Pen Server's API. The Pen Server also emulates the mouse by generating X mouse

button and motion events, sub-sampled in time to avoid overwhelming the X server and

sub-sampled in space to match the resolution of the screen.

The Audio Server reads an 8 kHz 8-bit jx-law audio stream from the InfoPad terminal's

microphone and makes this data available to applications. Applications wishing to access

the terminal's speaker must send the data to the Audio Server, which mixes data from all

sources, translates it into 8-bit |i-law, and sends it to the terminal. The Audio Server is

accessed via the standard AudioFile API so thatexisting AudioFile-compliant applications

do not need modification nor re-compilation to use the InfoPad's audio capabilities.

The handwritingand speech recognizers run as servers on remote machines since they are

very compute-intensive. The recognizers are summarized in the following sections.

7.1.2. Handwriting Recognition

In the handwriting recognition portion of the thesis, we analyzed the InfoPad system's

handwriting recognition requirements. We concluded thathandwriting recognition is best

employed in specifying file names, URLs and e-mail addresses. A handprint recognizer is

necessary for this purpose. A cursive recognizer is useful for mass text entrybut since this

is not a primary application for the InfoPad, cursive recognition is optional.

We therefore built a hidden Markov model based handprintrecognizer which has two inde

pendent vocabularies. The 61-character recognizer supports all uppercase and lowercase

alphabetic characters and some special characters. The digit recognizer supports the ten

numerals. We also examined the user interaction model, programming model and APIs for

access to the recognizer, providing three different access mechanisms.

131

7.1.3. Speech Recognition

Speech recognition is necessary in the InfoPad systemto issue commands. This requires a

small, flexible recognizer which can tailor itself to the current application. Such a system

was developed and deployed by another student. It does not run as a remote serverbut is

compiled into the application. This recognizer runs fast enough the it does not load down

the CPU very much. As in handwriting recognition, we examined the user interaction

model and the programming model. Only one access mechanism for this recognizer is cur

rently provided.

For general dictation, a large vocabulary speaker independent system is required. This

system requires a large amount of computation. A custom hardware solution using custom

VLSI chips was built which could be the basis for a spoken dictation server. This hardware

system supports several hidden Markov model based speech recognition algorithms. As

speech recognition technology improves, new algorithms may be similarly implemented

in a hardware server for real-time performance. This recognizer would be accessed by

applications as a remote server.

7.1.4. Applications

We built applications to exercise and test the User Interface Architecture and all of its com

ponents. The primary application is the Circuit Schematic Recognizer, a Computer Aided

Design (CAD) application that uses pen input for drawing circuit elements and wires,

speech recognition for commands, and handwriting recognition for parameters. We dis

covered many characteristics of using pen digitizers that are different from interacting with

the mouse. The use of both the pen and audio input modalities in the same application

allowed us greater insight into this new user input paradigm.

7.2. Future Work

There are several areas in which further development could be done and others in which

further research is promising. Due to the need to graduate in a finite amount of time, we

were not able to explore all these issues in depth as part of this work. We examine the

development topics and the research topics as separatecategories, since the former would

132

be an integral part of the InfoPad project but the latter would be applicable in other envi

ronments as well and are good starting points for future Masters or Ph. D. projects.

7.2.1. Development Projects

There are several small projects that fall within the scope of the user interface effort which

would benefit the InfoPad project. They are development projects which are not generally

applicable to other systems although some of the ideas expressed below are certainly trans

ferable.

7.2.1.1. Audio Focus Manager

There is currently no infrastructural controlof audio focus. All applications may write and

receive audio data at any time, and it is up to the application programmer to provide the

user with the capability to turn an audio stream on or off. There is also no mechanism for

the application to determine if it has mouse focus.

This scheme is clearly not optimal. The user shouldbe able to control the audio character

isticsof all applications in onecentral place. Ontheuplink, audiofocus shouldbe control

lableby the userandthe application so that applications may elect to receive audioonlyon

cue, only on pen focus, or continuously. On thedownlink to the speakerthe overall volume

and the relative volume of all audio streams should be user-controllable. The user should

also have the option of turning off the microphone and speaker via software control.

The Audio Focus Manager will also allow exploration of other models of access to audio

data.

7.2.1.2. Pen Server Control Widget

The Pen Server has several parameters that are either hard-coded, specified on the com

mand-line or specified by theapplications thatconnect to the Pen Servervia its API.These

parameters should be accessible to the user via a Pen Server Control Widget so that his

preferences may be used in the user interface. One such set of parameter is registration

information, which should be supported by allowing the user to align the pen whenever he

wants by running a registration routine via the Pen Server Control Widget.

133

Another parameter is the presence or absence of a pen cursor. Some users prefer that there

not be a pen cursor. Others prefer that the pen movements not be tracked by the pen cursor

when the pen is up or, conversely, when the pen is down. Controlof all these behaviors is

available to the applications programmer but not to the user.

7.2.1.3. Handwriting Recognition Widget

The handwriting recognition widgetneedsa lot of work. It needs a raised baseline to allow

for characters which have descenders, such as g and y. It needs to talk to all applications

rather than just the Tk-enabled ones. Mostof all, it needs to be encapsulated into a widget

that is included in the application rather than runningas a separate application. This would

make for a better user interface since users write directly on the input form rather than in

a separate window. All widgets connect to a single recognizer similar to the one described

in Section 4.7.3.3. on page 65, except that this recognizer will be running as a server rather

than compiled into the application. If this were not the case, the application could grow to

be unreasonable large if there are many entry boxes on the form.

The current correction mechanisms should be augmented or replaced with drawn gestures

that are recognizedand interpreted. The currentcorrectionmechanismis clumsy and occu

pies too much screen area,especially if the widget is to be replicated many times, once for

each entry box on a form.

7.2.1.4. Speech Recognition Widget

The current speech recognizer has one control widget per application, but many of the

parameters are common to all applications, such as garbage threshold, confidence thresh

old, gain, silence time-out, and noise/silence threshold. All these parameters should be

controllable for all applications viajust one widget. This widget should also provide user

feedback by reporting the most recently recognized utterance.

7.2.1.5. User Interface Control Widget

This widgetis an application thatprovides controllability andobserveability of all thecom

ponents of the User Interface Architecture. The user would use this widget to control the

134

parameters of each component. In addition to controlling each of the data and recognition

servers, it would also allow control of all parameters that are common to many applica

tions, such as gesture interpretations and parameters for the encapsulated handwriting rec

ognition widget. These parameters include tick-mark separation, recognition time-out,

writing area size, and handedness (left or right). Handedness information can help recog

nition accuracy and tell applications on which side of the pen (left or right) to post menus.

7.2.1.6. Other Improvements

There are some other improvements that would help the InfoPad terminal's user interface.

Using a Wacom digitizer instead of a Logitech Gazelle would allow use of a smaller pen

that does not require batteries. 16-bit, 16-kHz audio in and out would greatly improve rec

ognition accuracy and sound quality. A color screen would improve readability and allow

more modes of user feedback. Modifier buttons, as described in Section 1.4.1. on page 7,

would allow more modes of user input, as would additional function buttons. Using the

screen in portrait mode would make the paper-like interface more complete.

There is currently no formal way to benchmark the system and quantify how well we are

doing in terms of the quality of the user interfaces we build. We need to come up with real

tests and gather statistics on the user acceptability of the interfaces.

7.2.2. Research Projects

There are some areas of future work arising from this thesis which are applicable to a wide

range of pen and speech based systems, and which are good research areas in their own

right. Some of these areas are described below.

7.2.2.1. Complex Event Manager

Currently, the InfoPad is cognizant of pen events, audio events, handwritten events and

speech events, the latter two being results of recognition. However these events work in

isolation. There is no synergy in these events and modes of interaction. Research needs to

be done in discovering the kinds of complex, multi-modal events which make sense and in

establishing standard interpretations of these events which may be shared across applica

tions.

135

In order to do this, the Pen and Audio Servers as well as the handwriting and speech rec

ognizers should communicate with applications via a Complex Event Manager. This Man

ager would look for complex events, which are sets of simple events with special, pre

defined timing and/or spatial relationships, and interpret these events before passing them

on to applications. This is analogous to how a window manager such as twm works in the

X Window System.

7.2.2.2. Synergy Between Handwriting and Speech Recognition

In the InfoPad system, the handwriting and speech recognizers work independently with

out taking advantage of the fact that handwriting and speech recognizers tend to have

errors that are orthogonal, and can therefore complementeach other. At first glance, one

method would be to have the user write as well as say all input, using handwriting to gen

erate a list of recognition hypotheses and speech to pick the correct hypothesis from this

list. But this is very clumsy. Users balk at having to both write and say everything.

A more realistic approach would be to do post-recognition correction. If the handwriting

recognizer makes an error, the speech recognizer could be used to select from the list of

hypothesis subsequently: speech is only used if anerroris made by thehandwriting recog

nizer.

Another areaforexploring thesynergy between handwriting and speech recognition would

be in complex events, similar to events described Section 7.2.2.1. In this case, the user

would use speech as a modifier for handwritten characters or gestures.

7.2.2.3. Handwriting and Speech Recognition

Handwriting and speech recognition are major research areas in their own rights, with

many well-organized and capable groups of people working on improving recognition

accuracy and reducing computational overhead in terms of processing powerand memory

requirements. Work is also in progress on recognizers that are robust in the presence of

noise and varied data capture hardware. User-adaptive recognition is a hot research area.

Progress in all these areas is critical to improving future recognition-based userinterfaces

but there are other characteristics of recognition that must be addressed as well.

136

Most current recognizers are not well packaged for use in real applications. More work

needs to be done on applications programming interfaces and in encapsulating the pro

gramming interface to insulate the programmer as much as possible from the operational

details of recognition. The work reported in this thesis goes some way towards attacking

this problem but there is a lot more to be done.

Models for user interaction with recognizers are currently primitive. More work needs to

be done on encapsulating the user's interaction with recognition objects and on providing

feedback to the user on the performance of the recognizer and the recognition results. For

example, how does the user know what the speech recognizer detected? DragonDictate

[Drag94] uses a control window that displays the recognition results of the latest utterance

but surely there are better ways, such as audio cues, which can be application dependent.

7.2.2.4. Integrated Document Editor

The Integrated Document Editor may be the killer application that will show that handwrit

ing and speech recognition has arrived. This application would use cursive handwriting

recognition or spoken dictation recognition for mass text entry, printed handwriting recog

nition for file names and other dictionary words, handwritten gesture recognition or spoken

command recognition for keystroke shortcuts or short commands, and drawn geometric

object recognition for sketches, computer aided design and other specialized applications.

The challenge in building this application would be integrating the recognizers and draw

ing areas in such a way that it is possible to determine which recognizer to use for any one

input object. This application would also drive the development of the various kinds of rec

ognizers and use the entire user interface infrastructure. A related challenge is the user

feedback and data display problem. This is the issue of letting the user know that his input

data and commands have been accepted and correctly interpreted, and the related issue of

recovery from recognition errors.

This application would allow exploration of all the issues examined in this thesis and, if

successful, would be a harbinger of other recognition-based applications to come.

137

8 Appendix: Handwritten Character
Sets

In this appendix we list the various ways of writing each character in the training set used

for handwriting recognition. The characters in the 61-character recognizer are in Table 8-

1 and the digits are in Table 8-2. Formulti-stroke characters, the strokes can often be writ

ten in any order. The arrowhead at the tip of each stroke indicates the direction of the

stroke.

138

Character Representations

a

a 3 <*. o
b

V. b b
c

c
d

del c1 cJd
e

e
f

f f
g

9 9
h

K
i

i i
J

J J
k

Ic /< K K K
1

i I
m

Table 8-1. Character Set for 61-Character Recognizer

139

Character Representations

n

rv na
0

o o O
P

^Ppf
q

S^Q
r

r n
s

5 JO
t

i t-fi
u

w
V

V
w

w ^
X

X X ?c x
y

^V/
z

Z 2. >
Table 8-1. Character Set for 61-Character Recognizer

140

Character Representations

A

y\AA^A
B

BBJ3
C

e
D

D 0
E

££«e
F

FfP
G

G G Gi
H

UHHHH
I

I1 111 J
J

tj rr tj
K

KKK.K
L

LL
M

r>r\H
Table 8-1. Character Set for 61-Character Recognizer

141

Character Representations

N

nn n
0

0 o
P

p pp
Q

Q Q Gl
R

KRR
S

^
T

T^T i
U

U
V

V
w

VJ Vx/\A/
X

X * x
Y

YYYYYY
Table 8-1. Character Set for 61-Character Recognizer

142

Character Representations

Z

~z ^
* (asterisk)

^t b
@ (at sign)

@
! (exclamation mark)

\
*

- (minus)

-* ^

. (period)

•

/ (slash)

/
~ (tilde)

^* KS^

tt (double t)

-*t
_ (underscore)

¥ < .

Table 8-1. Character Set for 61-Character Recognizer

143

Digit Representations

a
\ x i

^a.Z «L
-3

^JL^4-
r gs
G 6fc
7 ?^7

S^9
Table 8-2. Character Set for Digit Recognizer

144

9 Appendix: Software Organization

In this appendix we list the files comprising each piece of software reported in this thesis.

All files may be found in the InfoPad software distribution.

9.1. Pen Server

The Pen Server source tree may be found in /tools/infonet/type_servers/pen/gazelle/vcur-

rent, and its component files are listed in Table 9-1.

9.2. Audio Server

The Audio Server source tree may be found in /tools/infonet/type_servers/audio/vcurrent,

and its component files are listed in Table 9-2. Since the source tree is a modified version

of the AudioFile source tree, only files which differ from AudioFile are listed in the Table.

9.3. Handwriting Recognizer

The Handwriting Recognizer source tree is stored in four directories in /tools/ui/handwrit-

ing. HMM/vcurrent contains the source tree for the recognizer itself, including the hidden

Markov model code. HW/vcurrent contains the source tree of the Data Capture and

Manipulation Package and support routines for electronic ink handling and feature extrac

tion, data contains the training and test data captured, models contains the hidden Markov

model parameter files. These directories are listed in Table 9-3 to Table 9-6.

9.4. Circuit Schematic Recognizer

The Circuit Schematic Recognizer source tree is stored in /tools/ui/schematic/vcurrent. Its

component files are listed in Table 9-7.

145

File Name Description

README Pen Server modification history.

bin/solaris/gazelle_gw Pen Server executable, Solaris version.

bin/solaris/pentest Pen Server test program, Solarisversion.

bin/sunos/gazelle_gw Pen Server executable, sunos version.

bin/sunos/pentest Pen Server test program, sunos version.

include/gazelle_gw.h Header file containingfunctionprototypes and data type definitions
internal to the Pen Server.

include/penpriv.h Header filecontainingdata type definitionscommon to the Pen Server
and its API routines.

include/penproto.h Header file containing function prototypes and data type definitions
for the API. This file is included by applications that require pen-reso
lution data.

lib/solaris/libpenlib.a Object library file for Pen Server API, Solaris version.

lib/solaris/libpenlib.so Object library file for Pen Server API, Solaris version.

lib/sunos/libpenlib.a Shared object library file for Pen Server API, sunos version.

lib/sunos/libpenlib.so Shared object library file for Pen Server API, sunos version.

man/man l/gazelle_gw. 1 Manual page for the Pen Server.

man/man3/penlib.3 Manual page for the Pen Server API.

scripts/penns Script to start up the Pen Serverwith the appropriate command-line
options and UNIX environment variables.

scripts/penns.tcl tcl script to start the Pen Serverwith the appropriate commandline
variables, penns.tcl also registers the Pen Server with the InfoNet
Name Server.

src/gazelle_gw.c C source file for the Pen Server.

src/penlib.c C source file for the Pen Server API.

src/pentest.c C source file for the Pen Server test program.

Table 9-1. Pen Server Source Tree

9.5. Notebook Application

The Notebook sourcetree is storedin /tools/ui/apps/notebook/vcurrent. Its component files

are listed in Table 9-8.

146

File Name Description

AF/server/dda/sparc1/sparc.c Code for the part of the Audio Server which connects to the InfoNet
Pad Server to obtain audio uplink data and to send audio downlink
data.

bin/solaris/Asparc1 Audio Server executable, Solaris version.

bin/sunos/Asparc1 Audio Server executable, sunos version.

doc/user_guide Document describing how to run the Audio Server and how to use its
API.

scripts/audions Script to start up the Audio Server with the appropriate command-line
options and UNIX environment variables.

scripts/audions.tcl tcl script to start the Audio Server with the appropriate command line
variables, audions.tcl also registers the Audio Server with the InfoNet
Name Server.

Table 9-2. Audio Server Source Tree

147

File Name Description

lib/solaris/HMM.a Object libraryfilecontainingthe entire recognizer with the Sun API.

lib/solaris/HMM.so Sharedobjectlibraryfilecontainingthe entire recognizerwith the Sun
API.

man/man 1/recogCursive.1 Manual pagefor the stand-alone handwriting recognition server.

man/man3/recoglib.3 Manual pagefor the API of the stand-alone handwriting recognition
server.

src/Edge.{h,cc} Source and header files for Edge objects in the recognizer. These
objects contain information relating to transitions between pairsof
states.

src/HidMarkMod. {h,cc} Source and header files for HMM objects in the recognizer. These
objects contain information relating entire HMMs.

src/LList.{h,cc} Source and header files for linked list objects in the recognizer.

src/NBest.{h,cc) Source and header files for NBest objects in the recognizer. These
objectscontain the N best alternatives returned by the recognizer.

src/PDF.{h,cc} Source and header files for PDF objects in the recognizer. These
objects contain probabilitydensity functions.

src/Prob.{h,cc} Source and header files for Edge objects in the recognizer. These
objects contain individual probabilities.

src/SpeechData. {h,cc} Source and header files for SpeechData objects in the recognizer.
These objectscontainfeature vectorsextracted from the input.

src/State.{h,cc) Source and header files for State objects in the recognizer. These
objects contain information relatingto Markovstates withina HMM,
including grammar nodes.

src/StringList. {h,cc} Source and header files for StringList objects in the recognizer.These
objects contain listsof strings, and are used to return recognized
results.

src/StringUtil.{h,cc} Source and header files for utilities that operate on StringList objects
in the recognizer.

src/cursive2HmmName.cc Routines for translating file names to and from the character string
represented by that file name.

src/cursiveHMMNames. {h,cc} Routines for translatingfile names to and from the character string
represented by that file name.

src/hre.{h,cc} Toplevel sourcefile for the recognizerwith the Sun API.

src/newFilelO. {h,cc} Routines for file handling.

src/newGiveGrade. {h,cc} Routines for scoring recognition results versus expected results.

src/recogCursive.cc Top level source file for stand-alone recognizer.

src/trainCursive.cc Top level source file for recognizer training.

Table 9-3. Handwriting Recognizer Source Tree

148

File Name Description

bin/GetComment.tcl tcl file containingentry widget allowing users to enter a comment into
a data file.

bin/GetDataWord.tcl tcl file containing entry widget allowing users to specify the word
being stored in a data file.

bin/GetFeatureWord.tcl tcl file containingentry widget allowing users to specify the word
being stored in a feature file.

bin/GetWordCount.tcl tcl file containingentry widget allowing users to specify the number
of words to capturein a dataentry session.

bin/HW.tcl main tcl file for the DataCapture and Manipulation Package.

bin/HWtcl executableof interpreter for tcl files in the DataCapture and Manipu
lation Package.

include/HW.h header file forapplications thatuse the DataCapture and Manipula
tion Library.

include/HWlib.h same as HW.h.

lib/libHW.a library file containing all the routines in the Data Capture and Manip
ulation Package excluding user interface routines.

src/HWPen.h header file for HWPen.c.

src/HWtcl.h header file for all routines that use the graphical user interface.

src/HW.c top level source file for bin/HWtcl.

src/HWAppInit.c source file for tcl initialization routines.

src/HWCanvas.c source file forroutines that display and manipulate electronic ink on a
canvas window.

src/HWCompare.c source file for routines that compare electronic ink.

src/HWCopy.c source file for routines that copy electronic ink into a new data struc
ture.

src/HWExtract.c source file for routines that perform feature extraction.

src/HWFiles.c source file for routines for file manipulation.

src/HWMemory.c source file formemory management routines: this package does all its
own memory management.

Table 9-4. Data Capture and Manipulation Package Source Tree

149

File Name Description

src/HWMouse.c source file for routines supportingelectronic ink capture via a mouse.

src/HWPen.c source file for routines supporting electronic ink capture via a pen dig
itizer.

src/HWPrint.c source file for routines thatprintinformation regarding any pieceof
electronic ink.

src/HWResample. source file for routines that re-sample electronic ink.

src/HWSegment.c source file for routines that segment electronic ink.

src/HWSort.c source file for routines that sort electronic ink.

src/HWStrokeNeighbours.c source file for routines that determine which strokes are neighbors:
used in segmentation.

src/HWTruncate.c source file for routines that truncatethe last few pixels from any piece
of electronic ink.

src/HWWindows.c source file for routines that display electronic ink and features.

src/Utils.c source file for general utility routines.

Table 9-4. DataCapture and Manipulation Package Source Tree

File Name Description

test/digits test data for digit recognizer.

train/digits 1/hwdata rawcaptured handwritten digits for the digit recognizer.

train/digits 1/segmented segmented data from train/digits1/hwdata.

train/digits 1/vectors feature vectors extracted from train/digits 1/segmented.

train/letters 1/hwdata raw captured handwritten characters for the 61-character recognizer.

train/letters 1/segmented segmented data from train/letters1/hwdata.

train/letters 1/vectors feature vectors extracted from train/letters 1/segmented using baseline
normalization, sorting, and ResampleRatio = 0.07.

train/letters 1/vectors.new feature vectors extracted from train/letters 1/segmented using baseline
normalization and ResampleRatio = 0.07.

train/letters 1/vectors.test feature vectors extracted from train/letters1/segmented using sorting,
without baseline normalization and re-sampling.

train/letters 1/vectors_bl_0_sort feature vectors extracted from train/letters1/segmented using sorting
and baseline normalization, without re-sampling.

Table 9-5. Handwritten Data Source Tree

150

File Name Description

macro/digits/digitRecognizer.hmm HMM file for the digit recognizer.

macro/gen/bin/genTopLevel executable file to create top level HMM files.

macro/gen/src/genTopLevel.cc source file for genTopLevel.

macro/letters/169charRecognizer.hmm HMM file for an old version of recognizer: recognizes 169 dis
tinct characters.

macro/letters/169scharRecognizer.hmm updated version of 169charRecognizer.hmm.

macro/letters1/printRecognizer.hmm HMM file for the 61-character recognizer.

train/iter/*.hmm HMM files for each digit.

train/i ter. new/*.hmm same as train/iter/*.hmm but with probabilities in scientific
notation.

train/letters 1/4biter_mm_0_sort.new/

*.hmm

HMM files for each character in the 61-character recognizer.

Table 9-6. Hidden Markov Model Parameters Source Tree

151

File Name Description

bin/schematic UNIX shell script that forms the executable of the Circuit Schematic
Recognizer.

lib/*.xbm bitmap files for circuit elements.

man/man 1/schematic.1 manual page for the application.

src/Vdd.tcl source file for Vdd class.

src/capacitor.tcl source file for capacitor class.

src/circuit.tcl source file for circuit class.

src/classes.tcl file containing list of circuitelementclass source files.

src/editmenu.tcl source file containing all code associated with the Edit Menu.

src/element.tcl source file for element class, from which all circuit element classes

and the wire class inherit.

src/ground.tcl source file for ground class.

src/line.tcl source file for line class.

src/nmos.tcl source file for nmos class.

src/pmos.tcl source file for pmos class.

src/resistor.tcl source file for resistor class.

src/schematic.tcl top level tcl source file for the application.

src/segment.tcl source file for segment class.

src/spice.tcl source file containing all code associated with the SPICE Menu.

src/src.tcl source file for source class.

src/wire.tcl source file for wire class.

Table 9-7. Circuit Schematic Recognizer Source Tree

152

File Name Description

CreateMonthCalendar.tcl source file for code to create a window displaying the calendar for a
given month.

GetDayOfWeek.tcl source file for calculating the day of the week given the date.

GetDaysInMonth.tcl source file for calculating the number of days in a given month.

GetNewNotebookName.tcl source file containing code to prompt user for the name of a new note
book and then read that notebook.

GoToDate.tcl source file containing code to prompt user for a date and then go to
that date.

InitArrays.tcl source file declaring and assigning global arrays.

SaveQuery.tcl source file containing code to prompt user to save a modified page
before going to another page.

UpdateMonthCalendar.tcl source file containing code to update the calendar window to display
the current month.

notebook.tcl top level source file for this application.

*.c source files for electronic ink manipulation, similar or identical to the
file in the Data Capture and Manipulation Package, as listed in
Table 9-4.

Table 9-8. Notebook Source Tree

153

Bibliography

[Aust90] S. Austin, P. Peterson, P. Placeway, R. Schwartz, and J. Vandergrift. "Toward a
Real-Time Spoken Language System Using Commercial Hardware." In
Proceedings ofthe DARPA Speech andNaturalLanguageWorkshop, pages72-77,
Hidden Valley, PA, June 1990.

[Baum72] L. E. Baum. "An Inequality and Associated Maximization Technique in
Statistical Estimation for Probabilistic Functions of Markov Processes." In Oved

Shisha, editor, Inequalities III, pages 1-8, New York, NY, 1972. Academic Press.

[Burs96] A. Burstein. Speech Recognitionfor Portable Multimedia Terminals. PhDthesis,
University of California at Berkeley, 1996.

[Carr91] R. Carr. "Handwriting Recognition in the GO Operating System." In Proc. IEEE
Compcon Spring '91, pages 483-486, February 1991.

[Chan93] A. Chandrakasan, T. Burd, A. Burstein, S. Narayanaswamy, Sheng S., and
R. Brodersen. "System Design of a Multimedia I/O Terminal." In VLSI Signal
Processing VI, pages 57-65. IEEE Press, 1993.

[Chan94] A. Chandrakasan. Low Power Digital CMOS Design. PhD thesis, University of
California at Berkeley, 1994.

[Cran93] H. Crane and D. Rtischev. "Pen andVoice Unite." Byte Magazine, pages 98-102,
Oct 1993.

[Cros95] S. Crosby. "The a2x FAQ." http://www.cl.cam.ac.uk/users/sac/a2x-faq.html,
1995.

[Doer96] R. Doering, T. Truman, and R. Brodersen. "A Modular Design for Wireless
Multimedia Access." Kluwer Journal of VLSI Signal Processing, to be published
1996.

[Drag94] Dragon Systems, Inc. Dragon Dictate User's Guide. Dragon Systems, Inc, 1994.

154

[ERL88] University of California at Berkeley Electronics Research Laboratory. "LagerlV
Distribution 1.0 Silicon Assembly System Manual," 1988.

[Fuji93] T. Fujisaki, K. Nathan, W. Cho, and H. Beigi. "On-line Unconstrained
Handwriting Recognition by a Probabilistic Method." In Proceedings of the
International Workshop on Frontiers in Handwriting Recognition, pages 235-241,
Buffalo, NY, May 1993.

[Gill95] D. Gillespie and J. Lazzaro. "The Log System." http://www.pcmp.caltech.edu:80/
chipmunk/, 1995.

[Gold91] D. Goldberg and A. Goodisman. "Stylus User Interfaces for Manipulating Text."
In Proceedings of the ACM Symposium on User Interface Software and
Technology, pages 127-135, Salem, MA, 1991. ACM Press.

[Gold93] D. Goldberg and C. Richardson. "Touch-Typing with a Stylus." In INTERCHI
'93 Conference Proceedings, pages 80-87, Salem, MA, April 1993. ACM Press.

[Guyo92] I. Guyon, D.Henderson, P. Albrecht, Y. LeCun, and J. Denker. "Writer
Independent and Writer Adaptive Neural Network for On-Line Character
Recognition." From Pixels to Features III, pages 493-506, 1992.

[Guyo94] I. Guyon. "UNIPEN 1.0 Format Definition." http://www.nici.kun.nl/unipen/
unipen.def, 1994.

[Hass95] M. Hassoun. "SCAPP 9.0 Users Manual." ftp://vlsil.ee.iastate.edu/pub/scapp,
1995.

[itc96] "Object-Oriented Programming in Tcl/Tk." http://www.wn.com/biz/itcl/, 1996.

[Juan84] Juang, B. H. "On the Hidden Markov Model and Dynamic Time Warping for
Speech Recognition - A Unified View." AT&TB.LT.J., 63(7):1213-1243, January
1984.

[Kemp93] J. Kempf. "Integrating Handwriting Recognition into Unix." In Proceedings of
the Summer 1993 USENIXConference, pages 187-204, 1993.

[Kurt94] G. Kurtenbach and B. Buxton. "User Learning and Performance with Marking
Menus." In CHI '94 Conference Proceedings, pages 258-264, Salem, MA, April
1994. ACM Press.

[Le95]M. Le, F. Burghardt, S. Seshan, and J. Rabaey. "InfoNet: the Networking
Infrastructure of InfoPad." In Proc. Compcon '95, San Francisco, CA, 1995.

[Lee89] K. F. Lee. AutomaticSpeechRecognition. Kluwer Academic Publishers, Norwell,
MA, 1989.

155

[Leve93] T. Levergood, A. Payne, J. Gettys, G. Treese, and L. Stewart. "AudioFile: A
Network-Transparent System forDistributed Audio Applications." In Proceedings
of the Summer 1993 USENIX Conference, June 1993.

[Lyon96] R. Lyon and L. Yaeger. "On-Line Hand-Printing Recognition with Neural
Networks." In Proceedings of the Fifth International Conference on
Microelectronics for Neural Networks andFuzzy Systems, Lausanne, Switzerland,
February 1996. IEEE Computer Society Press.

[MBo95] "MBONE Information Web." http://www.best.com/ prince/techinfo/
mbone.html, 1995. MBone WWW Page.

[McMu92] L. McMurchie and C. Ebeling. "Wirec 3.2 Tutorial and Reference Manual."
ftp://shrimp.cs.washington.edU/vlsi/wirec.3.2.tar.Z, 1992.

[Meta91] Meta-Software, Inc. HSP1CE User's Manual. Meta-Software, Inc, 1991.

[Micr95] Microsoft Corporation. Programmer's Guide to Pen Services. Microsoft Press,
Redmond, WA, 1995.

[Murv89] Murveit, H. et al. "SRI's DECIPHER System." In Proc. of the Speech and
Natural Language Workshop, pages 238-242, Feb 1989.

[Nara96] Narayanaswamy, S. et al. "Application and Network Support for InfoPad." IEEE
Personal Communications Magazine, to be published March 1996.

[Oust94] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing Company,
Reading, MA, 1994.

[Pall92] Pallett, D. et al. "DARPA February 1992 ATIS Benchmark Test Results." In
Proceedings of the Speech and Natural Language Workshop, pages 15-27, San
Mateo, CA, February 1992. Morgan Kaufmann Publishers.

[Par96] "Paragraph Handwriting Recognition Technology: Calligrapher." http://
www.paragraph.com/calligrapher/, 1996.

[Pen 95] Pen Computing Magazine. "PDA Buyer's Guide." Pen Computing Magazine,
Aug/Sept 1995.

[Raba88] J. Rabaey, A. Stoelzle, D. Chen, S. Narayanaswamy, R. Brodersen, H. Murveit,
and A. Santos. "A Large Vocabulary Real Time Continuous Speech Recognition
System." In VLSI Signal Processing III, pages 61-74, New York, NY, 1988. IEEE
Press.

[Rhyn91] J. Rhyne, D. Chow, and M. Sacks. "Enhancing the X-window System." Dr.
Dobb 's Journal, pages 30-38, December 1991.

156

[Rhyn93] J. Rhyne and C. Wolf. "Recognition-based User Interfaces." Advances in Human
Computer Interaction, 4:191-250, 1993.

[Rowe92] L.A. Rowe and B.C. Smith. "A Continuous Media Player." In Proc. 3rd Int.
Workshop on Network and Operating System Support for Digital Audio and Video,
Nov 1992.

[RR90] Racal-Redac. "Visula User's Manual," 1990.

[Sche91]W. Scheifler and J. Gettys. X Window System. Digital Press,Bedford, MA, 1991.

[Schm90] C. Schmandt, M. Ackerman, and D. Hindus. "Augmenting a Window System
with Speech Input." IEEE Computer Magazine, pages 50-56, August 1990.

[Slat93] Slate Corporation. "JOT Version 1.0," 1993.

[Stan86] Stanford University VLSI/CAD Group. "THOR Release 3.2 User's Manual,"
1986.

[Stol92] A. Stolzle. A Real Time Large Vocabulary Speech Recognition System. PhD
thesis, University of California at Berkeley, 1992.

[Tapp90] C. Tappert, C. Suen, and T. Wakahara. "The State of the Art in On-Line
Handwriting Recognition." IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(8):787-808, August 1990.

157

	Copyright notice 1996
	ERL-96-11 (1)
	ERL-96-11 (2)

