

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

STATE MINIMIZATION OF FSM'S WITH

IMPLICIT TECHNIQUES

by

Tiziano Villa, Timothy Kam, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/17

17 April 1996

STATE MINIMIZATION OF FSM'S WITH

IMPLICIT TECHNIQUES

by

TizianoVilla, Timothy Kam, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/17

17 April 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

State Minimization of FSM's with Implicit Techniques

Tiziano Villa1 Timothy Kam2 Robert K. Brayton1
Alberto L. Sangiovanni-Vincentelli1

departmentof EECS
University of California at Berkeley

Berkeley, CA 94720

2Intel Development Labs
Intel Corporation

Hillsboro, Oregon 97124-6497

February 5,1996

Abstract

This paper surveys algorithms for exact state minimization of finite state machines. Incompletely
specified and pseudo-nondeterministic FSM's are considered. An exact state minimum FSM can be
found by computing sets of compatible states and selecting a minimum closed cover of compatibles. An
explicit enumeration of compatibles is not always feasible in examples of practical interest. We present
techniques based on representation of sets with binary decision diagrams; this enables us to solve exactly
larger examples. Sets of compatibles of cardinality up to 21500 were computed and the corresponding
binatc tables solved.

1 Introduction

Finite state machines (FSM's) are a common formalism to describe sequential systems. Incompletely
specified FSM's (ISFSM's) and pseudo-nondeterministic FSM's (PNDFSM's) are very useful classes of
FSM's, because they capturecollections of input-output behaviors,any of which is a valid implementation
of the original specification. FSM's and PNDFSM's arise in the practice of sequential synthesis. The
choice of which input-output behavior to implement may be dictatedby different criteria. A common one
is the minimization of the number of states of the deterministic automaton corresponding to the chosen
behavior. The chosen behavior may be required to satisfy other conditions, as implementability of the
chosen deterministic FSM within a network of FSM's [19].

It has been shown [14, 8] that in case of ISFSM's and PNDFSM's all contained behaviors can be
explored by means of collections of compatibles, called closed sets, lb explore closed sets, one must
compute maximal compatibles, prime compatibles, class sets of compatibles and other related sets and
subsets of sets of states. The number of compatibles can be exponential in the number of states of the
original FSM. This may be a problem for computations basedon the explicit enumeration of compatibles
andtheir subsets. An alternative is to representthe characteristic functions of these sets by means of binary
decision diagrams(BDD's). Then various sets ofcompatibles canbe computed with BDD-based techniques.
Moreover, also the binate table that models the selection of compatibles is represented and manipulated

implicitly. The implicit techniques described here can be appliedalso to other problems of logic synthesis
and combinatorial optimization.

The remainder is organized as follows. Section 2 introduces the problem of exact state minimization of
FSM's, wiiile representations based on BDD's are described in Section 3. Implicit computations for state
minimization are presented, respectively, in Section 4 for ISFSM's, and in Section 5 for PNDFSM's. The
restriction to a minimum Moore behavior is treated in Section 6.

2 Definitions

2.1 Finite State Machines

In this section, we shall define different classes of finitestate machines(FSM's) used in this paper, and the
problem of state minimization of FSM's.

Definition 2.1 A deterministic FSM (DFSM) can be defined as a 6-tuple M = (5,/,0,<5,A,r). S
represents thefinite statespace, I represents thefinite input spaceandO represents the finite output space.
Sis the next state fimction defined as5:1 xS -» S where n e S is the next state ofpresent state p e S on
input i € / if andonlyifn = 6(i,p). Xis theoutputfunction defined as \:I xS ->0 where oeO is the
output ofpresent state p € S on input i e I ifandonly ifo= \(i,p). r e S represents the unique reset
state.

Definition 2.2 A non-deterministic FSM (NDFSM) is defined as a 5-tuple M = (5, /, O,T,R) where
S, 1,0 are defined asabove. T is the transition relation defined asa characteristic function T : I x S x
S x O -¥ B. On an input i, the NDFSM atpresent state p can transit to a next state n and output o if
and only ifT(i, p, n,o)= 1(i.e„ (i, p, n,o) isa transition). There exists one ormore transitions for each
combination ofpresent state pand input i. R C S represents the set ofreset states.

The above isthemost general definitionofanFSM and itcontains, asspecial cases, different well-known
classes ofFSM's. lb capture flexibility/don't-cares in the next state n and/or the output o from a state p
under an input i,one can specify one ormore transitions (i,p,n,o) e T. We assume that the state transition
relation T is complete with respect to i and p, i.e., there is always atleast one transition from each state on
each input.

An NDFSM isa PNDFSM such that, for each triple (i, p, 6) € / x 5 x O, there is a unique state n
satisfying T(t, p, n, o) = 1. It is non-deterministic because for agiven input and present state there may be
more than one output; it iscalled pseudo non-deterministic because transitions carrying different outputs
must go to different next states *.

Definition 13 Apseudo non-deterministic FSM (PNDFSM) is a 6-tuple M = (5, /, 0,6,A, R). Sis
the next state function defined as6:IxSxO-+S where each combination ofinput, present state
and output is mapped to aunique next state. A is the output relation defined by its characteristic fimction
A:IxSxO->B where each combination ofinput and present state is related to one or more outputs.
R C S represents theset ofresetstates.

Since the next state nisunique for agiven output o, present statep and input i,itcan be given by anext stale
function n= S(i, p, o). Since the output isnon-deterministic ingeneral, itisrepresented by the relation A.

An NDFSM is an incompletely specified FSM (ISFSM) if for each pair (t,p) e Tx S such that
T(i, p, n,6) = 1, (1) the machine can transit to aunique next state nor to any next state, and (2) the machine
canproduce a unique output oor produce any output.

'The underlying finite automaton ofaPNDFSM isdeterministic.

In the standard literature, noreset state is specified for anISFSM, and it is assumed that all states can
potentially beselected as a reset state forimplementation. The same is assumed here, and thisis reflected
in covering conditions defined later. In addition, an unspecified next state is traditionally not represented in
the next state relation A. i.e., if the next state isnot specified for present state s and input i, there isno state
s' such that S(i, s,s') = 1. This assumption is made in subsequent definitions and computations.

Definition 2.4 AMoore NDFSM isa6-tuple M= <5, /, O, A, A, R). S represents thefinite state space, I
represents thefinite input space and O represents thefinite output space. Ais the next state relation defined
asacharacteristicfunction A:IxSxS->B where each combination ofinputandpresent state isrelated
toanon-empty setofnext states. Ais the output relation definedasa characteristicfunction A :SxO -+ B
where each present state isrelated to a non-empty set ofoutputs. R C S represents the set ofreset states.

Tnc key fact to notice is that theoutput is associated with thepresent state, i.e., all transitions thatleave a
given present state carry acommon output2. When the output depends from the present state and the input,
the FSM is said to be a Mealy machine.

Definition 2.5 Given afinite setof inputs I and afinite setofoutputs O, a trace between I andO is apair
of input andoutput sequences (ov,a0) where ai G /*, <rQ € O* and\ai\ = \a0\.

Definition 2.6 A trace set is a set oftraces.

Definition 2.7 An NDFSM M = {SJ,0, T, R) realizesa trace set between I andO from states0 e S,
denoted by C(M\ao) 3, iffor every trace ({io, t'i,..., ij},{on, °i> •••>°j}) in the trace set, there exists a
statesequence s\, S2> •• •» sj+i such that Vk ;0< k < j, T(u, s*, Sk+i, Ok) = 1.

The trace set realized by a deterministic FSM with inputs / and outputs O is called a behavior between
the inputs / and the outputs O. For each state in a DFSM, each input sequence corresponds to exactly one
possible output sequence. Given a reset state, a DFSM realizes a unique input-output behavior. But given a
behavior, there can be (possibly infinitely) many DFSM's that realize the same behavior. Thus, the mapping
between behaviors and DFSM realizations is a one-to-many relation.

Any other kinds of FSM's, on the other hand, can represent a set of behaviors because by different
choices of next states and/or outputs, more than one output sequence can be associated with an input
sequence. Therefore, while a DFSM represents a single behavior, an NDFSM can be viewed as representing
a set of behaviors. Each such behavior within its trace set is called a contained behavior of the NDFSM.

Thus an NDFSM expresses handily flexibility in sequential synthesis. The choice of a particular behavior
for implementation is based on some cost function such as the number of states.

2.2 State Minimization of FSM's

A specification represents a set ofbehaviors. The sets associated to different specifications can be compared
by means of (he notion of behavioral containment.

2This definition is theonegiven by Moore in[15] and preferred when modeling anhardware system[20]. However, it iscommon
also a "dual" definition where the output is associated with the next state [11,7]. This second definition enjoys the nice property
that it is always possible to convert a Mealy machine into a Moore machine.

3Ifthe NDFSM M isviewed as aNFA A which alphabet is£ = / x O, the trace setof M from astate so corresponds to the
language of A from so, andbothwill be denotedby C(M\3o).

Definition 2.8 AnNDFSMM = (St /,O,T, fl> behaviorallycontainsanotherNDFSMM' = (5', J,O,T', #'),
denoted by C(M) D C(M'), if4forevery r(€ R', there exists r € Rsuch that the trace set ofMfrom r
contains thetrace setof M'from r'. i.e.,

C(M) 2 C(M') ifand only if Vr' e R' Br 6 RC(M\r) DC{M'\r.).

A criterion in the choice of a behavior is representability by a state transition graph with a minimum
number of states. This gives rise to the problem of state minimization.

Definition2.9 Given anNDFSM M = (SJ,0, T, R),the state minimization problem is tofinda DFSM
M' = (S', /, O, T', R') such that

1. C(M') C C(M), and

2. VM" such thatC(M") C C(M), \S'\ < \S"\. 5
min

Such a case is denoted byC(M') C £(M).

The state minimizationproblemdefinedaboveis verydifferent from the minimizationproblemof non-
deterministicfiniteautomatadescribedinclassical automatatextbooks[7]. Herewerequirea minimumstate
implementation which is behaviorally contained in the specification, while the classical problem requires
an NDFSM whichrepresents the same set of behaviors as the original NDFSM but has the fewest number
of states.

Closed covers are a way to explore all behaviors contained in a PNDFSM.

Definition 2.10 Given an NDFSM M = (S, /, 0, T, R), a setofstate sets, {cj, c2,..., cn}, is a cover of
Mif6 there exists r e Rand Cj : 1< j < nsuch that r GCj.

Definition 2.11 Given an NDFSM M = (5, /, 0,7\ /?), aset ofstate sets, K = {c,,c2,..., c,J, isclosed
in Miffor every i e / andcj : 1 < j < n, there exists oeOandck: 1< k < nsuch thatfor each s 6 cjt
there exists s' e ck such that T(i, s, s', o) = 1, i.e.,

Vi 6 I Vcj € K 3o € O 3ck € K Vs € Cj 3s' € ck T(i,s,s\o) = 1

Definition 2.12 Aset K ofstate sets iscalled a closed coverfor M = (5, /, O,T, R) if

J. K is a coverofM, and

2. K is closed in M.

Definition 2.13 LetM = (SJ,0,T,R),andK = {chc2,...,cn}be aclosedcoverfor Mwhere cj e 2s
for l<j< n, and M' = (5', /, O,V, R!) where S' = {51, s2,..., sn}.

A" is represented by M' iffor every ielandj:\<j< n, there exists k : 1 < k < n ando € O
such that, ifT'(i, sj, sk, o) = 1 then Vs GCj 3s' € ck T(i, s, s\ o) = 1.

Note that this definiUon implies a one-to-one mapping ofK onto £'; in particular, cj -> sj for 1 < j < n.
However, many different FSM'scan represent a single closed cover.

Ithas been proved in[8] that one can explore all behaviors contained inaPNDFSM by finding all closed
covers of the PNDFSM.

*cf. classical definition for ISFSM minimization.
5Given aset S, \S\ denotes the cardinality ofthe set.
6cf. classical definition for ISFSM minimization.

Theorem 2.1 Let MbeaPNDFSMand M'be aDFSM. C(M') CC(M) ifandonlyifthere exists aclosed
coverfor M which is represented byM'.

The following theorem, proved in [8], is a companion and anextension ofTheorem 2.1. It proves the
optimality of exactstate minimization algorithms whichfind minimum closedcovers.

Theorem 22 Let Mbe aPNDFSM and Wbe aDFSM. C(M') "c C{M) ifand only ifthere exists a
minimum closed coverfor M which is represented byMf.

Closed covers canbe found byrestricting theattention to compatible setsof states.

Definition 2.14 Asetofstates isan output compatible ifforevery input, there is a corresponding output
which can beproducedbyeach state in theset.

Lemma 2.1 [8] Every element ofa closedcoveris an output compatible.

Definition2.15 A setof states is a compatible iffor each input sequence, there is a corresponding output
sequence which can beproducedbyeach state in thecompatible.

Lemma 22 [8] Every element ofa closed coveris a compatible.

The following theorem serves as an equivalent, constructive definition of compatibles.

Theorem 23 [8] A set c ofstates is a compatible ifand only iffor each inputi, there exists an output o
such that

1. each state in c has a transition under input i and output o, and

2. from theset c ofstates, theset d ofnext statesunder i ando is also a compatible.

3 Implicit Techniques

3.1 Binary Decision Diagrams

Basics on binary decision diagrams are found in [3,2].

Definition 3.1 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each nonterminal
vertex v is labeled by a Boolean variable var(v). Vertex v has two outgoing arcs, childo(v) and child\(v).
Each terminal vertex u is labeled Oor 1.

Definition 32 A BDD is ordered if there is a totalorder •< over the set of variables such that for every
nonterminal vertex v, var(v) -< var(childo(v)) ifchildo(v) isnonterminal, andvar(v) -< var(child\(v))
ifchild\(v) is nonterminal.

Definition 3J A BDD is reduced if

1. itcontains novertex v such that childo{v) = childi(v), and

2. it does not contain two distinct vertices v and v such that the subgraphs rooted at v and v are
isomorphic.

Definition 3.4 A reduced ordered binary decision diagram (ROBDD) is a BDD which is both reduced
and ordered.

3.2 Implicit Set Manipulation

In [81 it is presented a full-fledged theory on how to represent and manipulate sets using a BDD-based
representation. It extends the notation used in [12]. This theory is especially useful for applications where
sets of sets need to be constructed and manipulated.

Given a ground set G of cardinality less or equal to 2n, any subset 5 can be represented in a Boolean
space Bn by a unique Boolean function \s \Bn -¥ B, which is called its characteristic function [4], such
that:

Xs(x) = 1 ifandonlyifsinS.

Inother words, a subset is represented inpositional-setorpositional-cube notation form 7, using n Boolean
variables, x = x\x2... xn. The presence of an element sk in the set is denoted by the fact that variable
xk takes the value 1 in the positional-set, whereas xk takes the value 0 if element sk is not a member of the
set. One Boolean variable is neededfor each elementbecause the elementcan either be presentor absent
in the set As an example, for n = 6, the set with a single element 54 is representedby 000100 and the
set S2S3S5 is represented by 011010. The elements «i, S4, se which are not present correspond to 0's in the
positional-set.

A set of subsets of G can be represented by a Boolean function, whose minterms correspond to the
singlesubsets. In other words, a set of sets is represented as a set 5 of positional-sets, by a characteristic
function xs : Bn -» B as:

Xs(s) = 1 if andonly if thesetrepresented bythepositional-set x is in theset5 ofsets.

Any relation K between a pairofBoolean variables canalso berepresented bya characteristic function
11: B2 -+ B as:

ft (z. y) = 1 if andonlyif x is in relation U to y.

11 can be a one-to-many relation over the two sets inB. These definitions can beextended to any relation
1Z between n Boolean variables, and can berepresented bya characteristic function U : Bn -> B as:

U(x\, x2,..., xn) = 1 if and only if the w-tuple {xh ar2,..., xn) isinrelation U.

From anoperator Op that acts ontwo sets ofvariables x = x\x2... xn and y = yij/2... yn one obtains
a relation (x Op y) (as a characteristic function) ofpairs ofpositional-sets. The containment and maximal
operators are shown next as examples.

Lemma 3.1 The containment relation evaluates to true ifthe set ofobjects represented by x contains the
setofobjects represented by y, and can becomputed as:

n

(x 2 y) = n Vk =» xk
Jfc=l

where xk =>• yk = ->xk + yk designates the Boolean implication operation.

Lemma 3.2 The maximal ofa set \ ofsubsets is the set containing subsets in x not strictly contained by
anyother subset in x> <md canbe computed as:

Maximalx{x) = x(x)- /By [(y D x) •*(y)].

7Called also J-hot encoding.

The following lemma, proved in [81, shows a quantiiier-free computation of theoperator maximal.

Lemma33 Given a set of positional-sets x(x) and an array of Boolean variables x, the maximal of
positional-sets in x with respect tox can be computed by the recursive BDD operator Maximal(x,0,x):

Maximal(Xi &> s) {
if(x = 0) return 0
if(x = l) return Yl?=kXi
Mo = Maximal(xxkj k + 1)
Mj = Maximal(xxk,k+ 1)
return ITE(xk, Mu M0 •-*M\)

}

3.3 Implicit FSM Representation

A state transition graph (STG) is commonly used as the internal representation of FSM's in sequential
synthesis systems, such as sis [17]. A limitation of STG's is the fact that they arc a two-level form of
representation where state transitions are stored explicitly, one by one. This may degrade the performance
of conventional optimization algorithms on large FSM's.

Assume that the given FSM has n states. To perform state minimization, one must represent and manip
ulate efficiently sets of states (such as compatibles) and sets of sets of states (such as sets of compatibles).
Therefore 1-hot encoding is used forthestates ofthe FSM8. Ifinputs (outputs, respectively) oftheFSM are
specified symbolically, they can be represented as a multi-valued symbolic variable i (o, respectively) where
each value of i (o, respectively) represents an input (output, respectively) combination. For compactness of
representation, we used for these variables a logarithmic encoding, i.e. an m-valued variable is represented
with log2m Booleanvariables. The fact that different multi-valued variables use different encodings is not
a problem as long as they are used consistently. However if inputs (outputs, respectively) of the FSM are
already given in encoded form, each encoded bit of inputs (outputs, respectively) is represented by a single
Boolean variable.

4 State Minimization of ISFSM's

Anexactalgorithmfor state minimizationconsistsof twosteps: the generationof varioussetsof compatibles,
and the solution of a binate covering problem. The generationstep involves identificationof sets of states
called compatibles which can potentiallybe merged into a single state in the minimized machine. Unlike
the case of DFSM's, where state equivalence partitions the states, compatibles for ISFSM's may overlap.
As a result, the number of compatibles can be exponentialin the number of states [16], and the generation
of the whole set of compatibles can be a challenging task.

The covering step is to choose a minimum subset of compatibles satisfying covering and closure
conditions, i.e., to find a minimum closed cover. The covering conditions require that every state is
contained in at least one chosen compatible. The closure conditions guarantee that the states in a chosen
compatible arc mapped by any input sequence to states contained in a chosen compatible.

8An alternative explained in[8] is torepresent any setof sets of states (i.e., setof state sets) implicitly asasingle 1-hotencoded
MDD, andmanipulate the state sets symbolicallyall atonce. Different sets of setsof statescan be storedasmultiple roots with a
single shared 1-hot encoded MDD.

4.1 Implicit Generation of Compatibles

In this section, we describe implicit computations to find sets of compatibles required for exact state
minimization of ISFSM's.

lb generate compatibles, incompatibility relations between pairs ofstates are derived first from the given
output and transition relations of an ISFSM.

Lemma 4.1 The setof output incompatiblepairs, QlCV{y, z), can becomputed as:

OTCV(y, z) = Tuplex(y) •Tuplex(z) •3i flo [A(i, y,o) •A(i, z,o)] (1)

In the aboveandsubsequent formulas, we willmixnotations between relations and theircorresponding
characteristic functions. Strictly speaking if we would have used the characteristic function notation, the
above formula would have been more clumsy:

OXCV(y,z) = 1 if and only if (Tuplex(y) = 1). (Tuplei(z) = 1)
•3i^o[(A(i,y,o)=l).(A(i,z,o)=l)]

Lemma 42 The setof incompatiblepairsis the leastfixedpoint oflCV:

lCV(y,z) = OXCV(y, z)+ 3i, u,v [A(i, y,it) •A(i, z, v) •XCV(u, v)]

and can becomputed bythefollowing iteration:

ZCV0(y,z) = 01CV(y,z)

!CVk+l{y,z) = lCVk{y1z)+3iyu1v[A(i,y1u)'A(i,z,v)'lCVk(u1v)] (2)

The iteration can terminate when ICVk+i = 1CVk and the set of incompatible pairs is ICV(y, z) =
ICVk(y,z).

So far we established incompatibility relationships between pairs ofstates. The following definition
introducessets of states of arbitrarycardinalities.

Lemma 43 The setofincompatibles can be computed as:

XC(c) = 3y,z [lCV(y} z). (c D y Uz)\ (3)

Lemma4.4 The set ofcompatibles, C(c), can be computed as:

C(c) = -.rwp/e0(c).-,JC(c)

4.2 ImplicitGeneration of Prime Compatibles and Closure Conditions

To set up the covering problem, wc also need to compute the closure conditions tor each compatible. This
isdone by finding the class set ofacompatible, i.e., the set ofnext states implied by acompatible.

Definition 4.1 Aset ofstates d, isan implied set ofacompatible cfor input i ifdi is the set ofnext states
from the states in c on input i.

Lemma 4.5 The implied set (in singletonform) ofacompatible cfor input i can be defined by the relation
F(c, i,n) which evaluates to 1ifand only ifon input i, nis anext statefrom state pin compatible c:

T(c, i, n) = Bp [C{c) -(cDp)- A(i,p,n)] (4)

Note that the implied next states are represented here as singleton states in F(c, z, n). All singletons
n in relation with a compatible c and an input %can be combined into a single positional-set, for later
convenience. Tliis positional-set representation of implied sets associates each compatible c with a set of
implied sets d.

Lemma 4.6 Tfie implied sets d(in positional-setform) ofacompatible cforall inputs are computed by the
relation Cl(c, d) as:

Cl(c, d) = 3i [3n{T(c, z, n))•Unionn^d(T(c, z, n))]

Definition 4.2 An implied setdofa compatible c is in itsclassset if

1. d has more than one element, and

2. d%c, and

3. d%d' ifd' Gclass set ofc.

We can ignore any implied set which contains only a single state, because its closure condition is satisfied
if the state is covered by some chosen compatible. Also if d C c, the closure condition is satisfied by the
choice of c. Finally, if the closurecondition corresponding to d' is stronger than that of d, the implied set d
is not necessary.

Lemma 4.7 The class set ofa compatible c is defined bythe relation CCS(c, d) which evaluates to 1 if and
only if the impliedset d is in the class set ofcompatiblec:

CCS(c,d) = -Tuple\(d) • (c 2 d) •Maximald{Cl(c, d))

lb solve exactly the covering problem, it is sufficient to consider a subset of compatibles called prime
compatibles. As proved in [6], at least one minimum closed cover consists entirely of prime compatibles.

Definition 43 . A compatible c' dominates a compatible c if

1. d D c, and

2. class set ofc' C class set ofc.

i.e., d dominates c if d covers all statescovered by c, andthe closureconditions of d are a subset of the
closure conditions ofc. As aresult, compatible d expresses strictly less stringent conditionsthancompatible
c Therefore d is always a better choice for a closed cover than c, thus c can be excluded from further
consideration.

Lemma 4.8 Theprime dominance relation is given by:

Dominate{c\c) - {d ~) c)-Containd(CCS{c,d),CCS(d,d))

Definition 4.4 A prime compatible is a compatible notdominated by anothercompatible.

Lemma 4.9 Theset ofprime compatibles is given by:

VC(c) = C(c)- fid [C(d) •Dominate(c\c)]

4.3 Implicit Generation of the Covering Table

Once the set of (non-essential)prime compatiblesis generated, the problemof exact state minimizationcan
be solved as a binate table covering problem. In this section, we shall describe how such a binate table can
be generated, lb keep with our stated objective,the binate table is also representedimplicitly. We describe
an implicit representationof the coveringtable, that adroitlyexploitshowrow and columns were implicitly
computed. A descriptionof how the binate table is then solvedimplicitlycan be foundin [9].

Wedo not represent (evenimplicitly) the elements of the table, but we makeuse only of a set of row
labelsanda setof columnlabels,eachrepresented implicitly asa BDD. Theyarechosensothattheexistence
andvalue of anytableentry canbe readily inferred by examining its corresponding row andcolumn labels.
This choice allows us to define all table manipulations needed by the reduction algorithms in terms of
operations on rowandcolumn labels andto exploit all the special features of the binate covering problem
induced by state minimization (for instance, each row has at most one0, etc.). A similar technique could
beapplied to various binate covering problems that arise inlogic synthesis, with a suitable encoding of the
rows and columns.

Definition 4.5 Acolumn is labeled by apositional-set p. The set ofcolumn labels C isobtained byprime
generation as C(p) —VC(p).

Besides distinguishing one row from another, each row label must also contain information regarding
the positions of0 and l's in the row. Each row label r consists ofa pair ofpositional-sets (c, d). Since
there is at most one 0 in the row, the label of the column p intersecting it in a 0 is recorded in the row
label by setting its cpart to p. Ifthere is no 0 inthe row, cisset to the empty set, Tuple0(c). Because of
Definition 4.7 for row labels, the columns intersecting a row labeled r = (c, d) in a 1are labeled by the
prime compatibles p that contain d.

Definition 4.6 The table entry at the intersection ofarow labeled byr= (c, d) e Rand acolumn labeled
bypeC can be inferred by:

the table entry isa 0 iffrelation 0(r,p) = (p= c) is true,
the table entry isa 1 iffrelation l(r, p) = (p Dd) is true.

Definition 4.7 The seto/row labels R isgiven by:

R(r) = VC(c) •CCS(c,d) + Tuple0{c) •Tuplex(d)

The closure conditions associated with a prime compatible p are that if p is included in a solution, each
implied set dinits class set must becontained inatleast one chosen prime compatible. Abinate clause of
the form (p+px +p2 +••.+Pk) has to be satisfied for each implied set ofp, where p, is aprime compatible
containing the implied set d. The labels for binate rows are given succinctly by VC(c) •CCS(c, d). There
isarow label for each (c, d) pair such that c e VC isaprime compatible and dis one ofits implied sets in
CCS{c, d). This row label consistently represents the binate clause because the 0entry in the row is given
by the column labeled by the prime compatible p = c, and the row has 1's in the columns labeled by pt
wherever (p,- D d).

The covering conditions require that each state be contained by some prime compatible in the solution.
For each state de 5, aunate clause has to be satisfied which is of the form (pi -f- p2 + •••+ pf) where
the pt's are the prime compatibles that contain the state d. By specifying the unate row labels to be
Tuple0(c) •Tuplei (d), we define arow label for each state in Tuple\ (d). Since the row has no 0, its cpart
must besetto Tuple0(c). The1entries arecorrectly positioned attheintersection with all columns labeled

10

by prime compatibles p, which contain the singleton state d 9. Since no minimal cover S can contain a
compatible contained in another compatible of S [13], one couldintroduce a newcollection of clauses, one
for each pair of compatibles p\ and pi such that p\ D p2t each stating that at most oneof the two can be
chosen (pi + fn)-

5 State Minimization of PNDFSM's

Explicit algorithms for exact state minimization of PNDFSM's have been proposed by Watanabe et al.
in [20], by Damiani in [5], andby Kamet al. in [10].

Analgorithm forPNDFSM stateminimizationis more complicated thanoneforISFSM stateminimiza
tion[9] because thedefinitionofcompatibles and theclosureconditions aremore complex. ByTheorem 2.2,
the state minimization problem of PNDFSM's can be reduced to the problem of finding minimum closed
covers. Because of Lemma2.2, an exact state minimization algorithm only needs to generatecompatibles.
Thenextstepaftercompatible generation is to selecta subsetof compatibles thatcorresponds to a minimized
machine, lb satisfy behavioral containment, the selectionof compatibles should be such that appropriate
covering and closure conditions are met. The coveringconditions guarantee that some selected compatible
(i.e., some state in the minimizedmachine) corresponds to a reset state of the originalmachine. The closure
conditions require that for each selected compatible, the compatibles implied by state transitions should
also be selected. The state minimization problem reduces to the selection of a minimum closed cover of
compatibles.

5.1 Implicit Generation ofCompatibles

First, we outline the differences between the state minimization algorithm of PNDFSM's and the state
minimization algorithm for ISFSM's [9]. For the latter, a set of states is a compatible if and only if each
pair of states in it are compatible; this is not true for PNDFSM's, as shown in [10]. As a result, the set of
compatibles cannot be generated from the set of incompatible pairs as for ISFSM's. As we cannot generate
compatibles from incompatible pairs, we have to start with output compatibles (i.e., state sets) of arbitrary
cardinalities.

Given the transition relation T(i, s, s', o) of a PNDFSM M = (5, /, 0,2\ R), first we computethe
relation T°(i,c,d,o). A4-tuple (i,c, d,o) is in relation T° if and only if the set of states c oninput i
can transit to another setof states d, and produce output o: T°(i,c,c',o) = Vs {[Single(s) • (s C c)] =>
3d [T(i, 5,s',o) • (s' C d)]} •W {[Single(si) • (s' C d)] =» 3s [T(t,s, s', o) • (s C c)]} •-0(c) •->0(c').

Proposition 5.1 Theset C ofcompatibles ofa PNDFSMcan befound by thefollowing fixedpoint compu
tation:

• Initially all subsets ofstatesarecompatible: C'o(c) = 1,

• ByTheorem 2.3, rk+\(i, c,d) = rk(i,c, d) •Ck(d),
Ck+1 (c) = Vi 3d rk+1 (i, c,d).

The iteration can terminate whenfor somej, Cj+1 = Cj, andthegreatestfixedpointhas beenreached. The
set of compatibles is given byC{c) = Cj(c) andthe transition relation on the compatibles is r(i, c,d) =
j+i(\c,cO-Cj(c).

9Every closed cover of an ISFSM whose slates are all reachable must cover all the states. We can say that the covering clauses
express a propertyof the solution that speeds up the search. Alternatively one could impose that only the reset state is covered and
let the search procedure find that a solution covers all states.

11

The computations for closure conditions and primedominance are more complicated than in case of
ISFSM's. In [10] it is described howto compute the set of primes PC)c) andthe set of disjunctive clauses
/(c, i, d), where we represent each next state set as a positional-setd.

5.2 Implicit Generation of the Covering Table

lb use the implicit binate solver, one has to specifyfour BDD's: two characteristic functionsCol and Row
representing a set of column labels and a set of row labels respectively; and two binary relations 1 and 0,
one relating columns and rows that intersect at a 1 in the table, and another relating columns and rows that
intersect at a 0.

Similar to the case for ISFSM's, each prime compatible corresponds to a single column labeled p in the
covering table. So the set of columnlabels,Col(p), is given by: Col(p) = PC(p).

Eachrowcan be labeledby a pair (c, i) because eachbinateclauseoriginates fromthe closurecondition
for a compatible c e PC under an input i. And the covering condition for a reset state is expressed by a
singleunateclause, to whichwe assigna rowlabel (c, i) = (0,0). c is chosento be the emptyset to avoid
conflicts with the labels of the binate rows, while the choice of i = 0 is arbitrary. The set of row labels,
Row(cy i), is givenby a binatepart and a iinatepart:

Row(c, i) = 3d /(c, j, d) + 0(c) •0(i).

Each binate clause associated with a compatible c and an input i expresses the condition that for at least
one output o, the next state set must be contained in a selected compatible d. The corresponding next state
relation is /(c, t, d).

Next, let us consider the table entries relations l(c, i',p) and 0(c, i,p). If (c, i) labels a binate row, the
expression 3d [(p D d) •/(c, i, d)] evaluates to true if and only if thetable entry is a 1at theintersection of
the row labeled (c, i) and the columnlabeledp, i.e., the row can be satisfied if nextstate set d is contained
in selected compatible p. Thereis an entry0 at columnp if (p= c), i.e., the rowcanalsobe satisfied by not
selecting a column labeled c.

The rowlabeled by (0,0) represents the disjunction of compatibles p eachof which contains at leasta
reset state R(s). On such a row, a table entry is a 1if and only if 3s [0(c) •0(i) •R(s) •(s C p)].

Asa summary, theinference rulesfor tableentries given a row(c, t) anda column p are:
0(c,hp) = (p = c),

def
l(c, i,p) = 3d [(p D d) • /(c, i, d)] + 3s [0(c) •0(i) •R(s) • (s C p)]. Notice that these inference rules
are morecomplex thanthosefor thecaseof ISFSM's. lb handle the former rules weupgraded theimplicit
binate solver usedfor ISFSM's stateminimization anddescribed in [9]. The more general implicit binate
solver and the issues involved are describedcarefully in [8,18].

6 State Minimization of PNDFSM's for Moore Behavior

It has been shown in 119] that the set of permissible behaviors at a node of a network of FSM's can be
representedby a PNDFSM. When choosing a state minimum DFSM among all permissiblebehaviors,one
must ensure that it is possible to implement it in the network without introducing unsafe combinational
cycles. A way to enforce this requirement is to restrict the minimum state FSM to be a Moore DFSM.

Watanabe introduced in [20,19] a more general notion ofcompatible, asa pair (q, f) where qis a setof
compatible states asdefined in state minimization ofPNDFSM's and / is a function from B^U | toBW \.
For Moore behaviors the pair (g, /) becomes a pair (9,v), where q represents a set of compatible states,
and v is an output minterm common to outgoing transitions of the states € q. This more complex notion

12

of compatible, to which we refer as compatible pair, allows the formulation of state minimization as a
standard binate covering problem. As an alternative formulation, in[8] itisshown how the problem can be
modelled without associating output minterms tocompatibles10.

6.1 Implicit Generation of Compatible Pairs

It was observed in [1] that a state that cannot produce a common output for all inputs is not involved in
any compatible in any reduced Moore machine. As a result, such states can bedeleted from the original
machine along with all transitions leading tosuch pruned states, before the generation ofcompatibles.

The set ofcompatibles, i.e., (q, v) pairs, iscomputed using the following fixed point computation:

C0(q,v) = 1
Ck+l (q, v) = Vu 3q' [(3vf Ck(q', v')).Tdet(u, q} q\v))

where Tdet is the transition relation oversubsets of states.
First we assume that every pair (q, v), where q is any state set and v is any minterm, is a candidate

compatible and so it is in Co. After the first iteration, C\(q, v) captures all the statesetsq that are output
compatibles, i.e., each state in q can produce the sameoutput minterm v for all inputs. During the Jfc-th
iteration, (</, v) will be in Ck+\ if and only if on output v, for every input u, there exists a next state set
q' 6 Ck from thestate set q. The iteration terminates when Ck+i = Ck and then thesetof compatibles is
given by C(q,v) = Ck(q,v).

6.2 Implicit Generation of the Covering Table

We want to construct the set of column labels Col and the set of row labels Row in a format suitable to the

implicit specialized binate solver presented in [9]. Let columns be labeled by variables p and rows by pairs
of variables (c, d). The numbers of Boolean variables used for p, c and d are the same. At the intersection
of row (c, d) and columnp, the tableentryis a 1 if andonlyif p D d, and the tableentryis a 0 if and onlyif
p = c. As no entry can be both 0 and 1 simultaneously, the case c D d is ruled out.

Each column p in our table is a compatible, i.e., a pair (q, u), where empty states sets q are removed as
meaningless:

Col(qv) = C(q,v).-,<l>(<j).

Each row label consists of two parts c and d. 'lb match the width of p, the row label has a field c— (q, v)
and a field d = (r, w), where q and r representsets of statesin positionalnotation, and v and w represent
output minterms. The w variables are set to the empty set 0(w), since they are never used. Rowunate
represents the unate rows corresponding to the covering conditions of the reset states, i.e., a compatible
(9, v) is in relation Rowunate with (r, w) if andonly if r is a reset state contained in the state set q:

Rowunate(qv} rw) —0(g) •0(v) •resetstate(r) •0(w).

Rowunate represents the binaterowscorresponding to the closureconditions. In particular, (q,v) must
be a compatible (C(q,v) = 1), and r mustbe a state set in a compatible (3ty C(r1 w)), and they are in
the relationRowbinate(qv, rw) only if r is the set of nextstatesof q under output mintermv (computed by
3u[Tdet(u,q,r,v)]):

Rowbinate(qv, rw) = [3u Tdet(u, q,r,v)] •C(g, v) •[3w C(r, w)]. 0(w).

Finally we collect all these clauses as the set of Row labels, and make sure that cjbd:

Row(qv, rw) = [Rowunate(qv, rw) + Rowbinate(qv, rw)] • (qv g rw).

,0The state minimization algorithm presented inthis section isjoint work with Yosinori Watanabe.

13

7 Conclusions

We have presented algorithms to compute implicitly a minimum state behavior contained in an ISFSM
or a PNDFSM, including the case when the minimum machine is restricted to be Moore. Compatibles,
maximal compatibles, prime compatibles and implied sets areall representedby the characteristic functions
of relations implemented with BDD's. Similarly, the final step of covering a binate table is solved with an
implicit solver. The only explicit dependence is on the number of states ofthe initial problem. Experiments
with avarietyofbenchmark sets show thatimplicit techniques allowto compute compatible setsofcardinality
upto21500 and to solve thecorrespondingly large binate tables. Experiments and applicability are discussed
in [9, 10, 8]. The techniques described here can be applied to similar problems in logic synthesis and
combinatorial optimzation.

References

[1] A. Aziz, F. Balarin, R. K. Brayton, M. D. Di Benedetto, A. Saldanha, and A. L. Sangiovanni-
Vincentelli. Supervisory control of finite state machines. In Proceedings of International Conference
on Computer-Aided Verification, 1995.

[2] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of aBDD package. In The Proceedings
of the DesignAutomation Conference, pages 40-45, June 1990.

[3] R. Bryant. Graph based algorithm for Boolean function manipulation. In IEEE Transactions on
Computers,pages C-35(8):667-691,1986.

[4] E. Cerny. Characteristic functions in multivalued logic systems. Digital Processes, vol. 6:167-174,
June 1980.

[5] M. Damiani. Nondeterministic finite-state machines and sequential don't cares. In European Confer
ence on DesignAutomation, pages 192-198,1994.

[6J A. Grasselli and F. Luccio. A method for minimizing the number of internal states in incompletely
specified sequential networks. IRE Transactions on Electronic Computers, EC-14(3):350-359, June
1965.

[7] J. E. Hopcroft and J, D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 1979.

[8] T. Kam. State Minimization ofFinite State Machines using Implicit Techniques. PhD thesis, U.C.
Berkeley, Electronics Research Laboratory, University ofCalifornia at Berkeley, May 1995.

[9] T. Kam, T. Villa, R. Brayton, and A.Sangiovaiini-Vincentelli. A fully implicit algorithm for exact state
minimization. In The Proceedings ofthe Design Automation Conference, pages 684-690, June 1994.

[10] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Implicit state minimization of non-
deterministic fsm's. In The Proceedings ofthe International Conference on Computer Design, October
1995.

[11] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill Book Company, New York, New
York, second edition, 1978.

14

[12) B. Lin, O.Coudert, and J.C. Madre. Symbolicprime generation for multiple-valued functions. In The
Proceedings of theDesign Automation Conference, pages 40-44, June 1992.

[13] F. Luccio. Extending the definition of prime compatibility classes of states in incomplete sequential
machinereduction. IEEE Transactions on Computers, C-18(6):537-540, June 1969.

[14] R. E. Miller. Switching theory. Volume I: sequential circuits andmachines. J. Wiley and& Co., N.Y.,
1965.

[15] E. Moore. Gedanken-experiments on sequential machines. In C. Shannon and J. McCarthy, editors,
Automata Studies. Princeton University Press, 1956.

[16] F. Rubin. Worst case bounds for maximal compatible subsets. IEEE Transactions onComputers, pages
830-831, August 1975.

[17] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and A. Sangiovanni-Vincentelli. Sequential
Circuit Design Using Synthesis andOptimization. InThe Proceedings oftheInternational Conference
on ComputerDesign, pages 328-333, October 1992.

[18] T. Villa. Encoding Problems in Logic Synthesis. PhD thesis, University of California, Berkeley, May
1995.

[19] Y. Watanabe. Logicoptimization of interacting components in synchronous digital systems. Ph.D.
Thesis, Tech. Report No. UCB/ERL M94/32,April 1994.

[20] Y.Watanabe and R. K. Brayton. State minimization of pseudo non-deterministic FSM's. InEuropean
Conference on DesignAutomation, pages 184-191,1994.

15

	Copyright notice 1996
	ERL-96-17

