Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

STATE MINIMIZATION OF FSM’S WITH
IMPLICIT TECHNIQUES

by

Tiziano Villa, Timothy Kam, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/17

17 April 1996

STATE MINIMIZATION OF FSM'S WITH
IMPLICIT TECHNIQUES

by

Tiziano Villa, Timothy Kam, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/17

17 April 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

State Minimization of FSM’s with Implicit Techniques

Tiziano Villa! Timothy Kam? Robert K. Brayton!
Alberto L. Sangiovanni-Vincentelli!

Department of EECS
University of California at Berkeley
Berkeley, CA 94720

2Intel Development Labs
Intel Corporation
Hillsboro, Oregon 97124-6497

February 5, 1996

Abstract

This paper surveys algorithms for exact state minimization of finite state machines. Incompletcly
specified and pseudo-nondeterministic FSM’s are considered. An exact state minimum FSM can be
found by computing sets of compatible states and selecting a minimum closed cover of compatibles. An
cxplicit enumeration of compatibles is not always feasible in cxamples of practical interest. We present
techniques based on represcntation of scts with binary decision diagrams; this enablcs us to solve cxactly
larger cxamples. Sets of compatibles of cardinality up to 215 were computed and the corresponding
binatc tables solved.

1 Introduction

Finite state machincs (FSM’s) are a common formalism to describe sequential systems. Incompletely
specified FSM’s (ISFSM’s) and pseudo-nondeterministic FSM’s (PNDFSM's) are very useful classes of
FSM'’s, becausc they capture collections of input-output behaviors, any of which is a valid implementation
of the original specification. FSM’s and PNDFSM’s arise in the practice of sequential synthesis. The
choice of which input-output behavior to implement may be dictated by different criteria. A common one
is the minimization of thc number of states of the deterministic automaton corresponding to thc chosen
behavior. The chosen behavior may be required to satisfy other conditions, as implementability of the
chosen deterministic FSM within a network of FSM’s [19].
It has been shown [14, 8] that in case of IS'SM’s and PNDFSM’s all contained behaviors can be
-explored by means of collections of compatibles, called closed sets. To explore closed sets, onc must
compute maximal compatibles, prime compatibles, class sets of compatibles and other related sets and
subsets of sets of states. The number of compatibles can be exponential in the number of states of the
original FSM. This may be a problem for computations based on the explicit enumeration of compatibles
and their subsets. An alternative is to represent the characteristic functions of these sets by means of binary
decision diagrams (BDD’s). Then various sets of compatibles can be computed with BDD-based techniques.
Moreover, also the binate table that models the selection of compatibles is represented and manipulated

implicitly. The implicit techniques described here can be applied also to other problems of logic synthesis
and combinatorial optimization.

‘The remainder is organized as follows. Section 2 introduces the problem of exact state minimization of
FSM'’s, wiile representations based on BDD's are described in Section 3. Implicit computations for state
minimization are presented, respectively, in Section 4 for ISFSM’s, and in Section 5 for PNDFSM’s. The
restriction to a minimum Moore behavior is treated in Section 6.

2 Definitions

2.1 Finite State Machines

In this section, we shall define different classes of finite state machines (FSM’s) used in this paper, and the
problem of state minimization of FSM’s.

Definition 2.1 A deterministic FSM (DFSM) can be defined as a 6-tuple M = (S,1,0,8,\,r). S
represents the finite state space, I represents the finite input space and O represents the finite output space.
4 is the next state function defined as § : I x S — S where n € S is the next state of present state p € S on
inputi € I'ifand only if n = (i, p). A is the output function definedas)\ : I x S — O where o € O is the

output of present state p € S on input i € I if and only if o = A(i,p). r € S represents the unique reset
state.

Definition 2.2 A non-deterministic FSM (NDFSM) is defined as a 5-tuple M = (S,1,0,T, R) where
S,1,0 are defined as above. T is the transition relation defined as a characteristic functionT : I X S x
S x O — B. On an input i, the NDFSM at present state p can transit to a next state n and output o if
and only if T(i, p, n,0) = 1 (i.e, (i,p,n,0) is a transition). There exists one or more transitions Jor each
combination of present state p and input i. R C S represents the set of reset states.

The above is the most general definition of an FSM and it contains, as special cases, different well-known
classes of FSM’s. To capture flexibility/don’t-cares in the next state n and/or the output o from a state p
under an input ¢, one can specify one or more transitions (¢, p, n, 0) € T'. We assume that the state transition
relation T' is complete with respect to ¢ and p, i.e., there is always at least one transition from each state on
each input.

An NDFSM is a PNDFSM such that, for each triple (i,p,0) € I x S x O, there is a unique state n
satisfying T(¢, p, n, 0) = 1. It is non-deterministic because for a given input and present state there may be

more than one output; it is called pseudo non-deterministic because transitions carrying different outputs
must go to different next states !.

Definition 2.3 A pseudo non-deterministic FSM (PNDFSM) is a 6-tuple M = (S,1,0,6,A,R). § is
the next state function defined as § : I x S x O — S where each combination of input, present state
and output is mapped to a unique next state. A is the output relation defined by its characteristic function
A I'x S XO — B where each combination of input and present state is related to one or more outputs.
It C S represents the set of reset states.

Since the ncxt statc n is unique for a given output o, present statc p and input i, it can be given by a next state
function » = §(¢, p, 0). Since the output is non-deterministic in general, it is represented by the relation A,

An NDFSM is an incompletely specified FSM (ISFSM) if for each pair (7, p) € T x S such that
T'(i,p,n,0) = 1, (1) the machine can transit to a unique next state n or to any next state, and (2) the machine
can produce a unique output o or produce any output.

"The underlying finite automaton of a PNDFSM is deterministic.

In the standard literature, no reset state is specified for an ISFSM, and it is assumed that all states can
potentially be selected as a reset state for implementation. The same is assumed herc, and this is reflected
in covering conditions defined later. In addition, an unspecified next state is traditionally not represented in
the next state relation A. i.e., if the next state is not specified for present state s and input ¢, there is no state
s’ such that §(i, 5, s") = 1. This assumption is inade in subsequent definitions and computations.

Definition 2.4 A Moore NDFSM is a 6-tuple M = (S, 1,0, A, A, R). S represents the finite state space, I
represents the finite input space and O represents the finite output space. A is the next state relation defined
as a characteristic function A : I X S x S — B where each combination of input and present state is related
lo anon-empty set of next states. A is the output relation defined as a characteristic functionA : SxO — B
where each present state is related to a non-empty set of outputs. R C S represents the set of reset states.

The key fact to notice is that the output is associated with the present state, i.e., all transitions that leave a
given present state carry a common output 2. When the output depends from the present state and the input,
the FSM is said to be a Mealy machine.

Definition 2.5 Given a finite set of inputs I and a finite set of outputs O, a trace between I and O is a pair
of input and output sequences (o;,0,) where o; € I, 0, € O* and |o;| = |o,|.

Definition 2.6 A trace set is a set of traces.

Definition 2.7 An NDFSM M = (S, 1,0, T, R) realizes a trace set between I and O from state so € S,
denoted by L(M|s,) 3, if for every trace ({io,11, .. .,%;},{00,01,-..,0;}) in the trace set, there exists a
State sequence sy, 83, . . ., Sj+1 such thatVk : 0 < k < j, T (ik, Sk, Sk+1,0k) = 1.

The trace set realized by a deterministic FSM with inputs 7 and outputs O is called a behavior between
the inputs / and the outputs O. For each state in a DFSM, each input sequence corresponds to exactly one
possible output sequence. Given a reset state, a DFSM realizes a unique input-output behavior. But given a
behavior, there can be (possibly infinitely) many DFSM’s that realize the same behavior. Thus, the mapping
between behaviors and DFSM realizations is a one-to-many relation.

Any other kinds of FSM’s, on the other hand, can represent a set of behaviors because by different
choices of next states and/or outputs, more than one output sequencc can be associated with an input
sequence. Therefore, while a DFSM represents a single behavior, an NDFSM can be viewed as representing
a set of behaviors. Each such behavior within its trace set is called a contained behavior of the NDFSM.
Thus an NDFSM expresses handily flexibility in sequential synthesis. The choice of a particular behavior
for implementation is based on some cost function such as the number of states.

2.2 State Minimization of FSM’s

A specification represents a set of behaviors. The sets associated to diffcrent specifications can he compared
by means of the notion of behavioral containment.

This definition is the one given by Moore in [15] and preferred when modeling an haydware system [20]. However, it is common
also a “dual” definition where the output is associated with the next state [11, 7]. This second definition enjoys the nice property
that it is always possible to convert a Mealy machine into a Moore machine.

3If the NDFSM M is viewed as a NFA A which alphabetis £ = I x O, the trace sct of M from a state so corresponds to the
language of A from so, and both will be denoted by L(M |,,).

Definition 2.8 AnNDFSM M = (S, I,0, T’) behaviorally contains another NDFSM M’ = (S',1,0,T', R"),
denoted by L(M) D L(M'), if* for every r' € R!, there exists r € R such that the trace set of M from r
contains the trace set of M' from r'. i.e,

L(M) 2 L(M') ifand only if ¥r' € R' 3r € R L(M],) 2 L(M'|,+).

A criterion in the choice of a behavior is representability by a state transition graph with a minimum
number of statcs. This gives rise to the problem of state minimization.

Definition 2.9 Given an NDFSM M = (S, I, 0, T, R), the state minimization problem is to find a DFSM
M'=(S',1,0,T', R") such that

1. L(M") C L(M), and -
2. VM" such that L(M") C L(M), |S'| < |§"]. *

Such a case is denoted by L(M') mgm L(M).

The state minimization problem defined above is very different from the minimization problem of non-
deterministic finite automata described in classical automata textbooks [7]. Here we require a minimum state
implementation which is behaviorally contained in the specification, while the classical problem requires
an NDFSM which represents the same set of behaviors as the original NDFSM but has the fewest number
of states.

Closed covers are a way to explore all behaviors contained in a PNDFSM.

Definition 2.10 Given an NDFSM M = (S,1,0,T,R), a set of state sets, {c),ca,...,¢n}, is a cover of
M ifS there existsr € Randc; : 1 < j < n such thatr € ¢j.

Definition 2.11 Given an NDFSM M = (S, 1,0, T, R), aset of state sets, K = {c),ca, ..., ¢,}, is closed
inMifforeveryi€ Iandc;: 1< j < n,thereexistso € Oandcy: | < k < n such that jor each s € Cj
there exists s' € cx such that T (i, s,s',0) = 1, i.e,

VieIVe;€ KJo€ O3er € KVs €c;Is € e, T(iys,8,0)=1

Definition 2.12 A set K of state sets is called a closed cover for M = (S,1,0,T, R) if
1. K isacoverof M, and

2. K isclosedin M.

Definition 2.13 Let M = (S,1,0,T,R),and K = {c), c3,..., cn} be aclosed cover for M where c; € 25
Jor1<j<mn,and M'=(S',1,0,T', R') where S' = {s1,8;,...,8s}.

K is represented by M’ ifforeveryi € I'andj : 1 < j < n, thereexistsk:1 < k<nando € O
such tha, if [' (i, s;, 5,0) = 1 thenVs € c; Is' € ¢ T(3,s,',0) = 1.

Note that this definition implics a onc-to-one mapping of K onto .S’; in particular, ¢; — s; for 1 < j < n.
However, many different FSM’s can represent a single closed cover.

It has been proved in [8] that one can explore all behaviors contained in a PNDFSM by finding all closed
covers of the PNDFSM.

“¢f. classical definition for ISFSM minimization.
>Given a set S, | S| denotes the cardinality of the set.
Scf. classical definition for ISFSM minimization.

Theorem 2.1 Let M be a PNDFSM and M’ be a DFSM. L(M") C L(M) if and only if there exists a closed
cover for M which is represented by M'.

The following theorem, proved in [8], is a companion and an extension of Theorem 2.1. It proves the
optimality of cxact state minimization algorithms which find minimum closed covers.

Theorem 2.2 Let M be a PNDFSM and M’ be a DFSM. L(M") 'C. £(M) if and only if there exists a
minimum closed cover for M which is represented by M.

Closed covers can be found by restricting the attention to compatible sets of states.

Definition 2.14 A set of states is an output compatible if for every input, there is a correspoudmg output
which can be produced by each state in the set.

Lemma 2.1 [8] Every element of a closed cover is an output compatible.

Definition 2.15 A set of states is a compatible if for each input sequence, there is a corresponding output
sequence which can be produced by each state in the compatible.

Lemma 2.2 [8] Every element of a closed cover is a compatible.

The following theorem serves as an equivalent, constructive definition of compatibles.

Theorem 2.3 [8] A set c of stales is a compatible if and only if for each input i, there exists an output o
such that

1. each state in c has a transition under input i and output o, and

2. from the set c of states, the set ¢ of next states under i and o is also a compatible.

3 - Implicit Techniques
3.1 Binary Decision Diagrams
Basics on binary decision diagrams are found in [3, 2].

Definition 3.1 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each nonterminal
vertex v is labeled by a Boolean variable var(v). Vertex v has two outgoing arcs, childy(v) and child,(v).
Each terminal vertex u is labeled 0 or 1.

Definition 3.2 A BDD is ordered if there is a total order < over the set of variables such that for every
nonterminal vertex v, var(v) < var(childg(v)) if childo(v) is nonterminal, and var(v) < var(childi(v))
if child(v) is nonterminal.

Definition 3.3 A BDD is reduced if
1. it contains no vertex v such that childg(v) = child,(v), and

2. it does not contain two distinct vertices v and v' such that the subgraphs rooted at v and v’ are
isomorphic.

Definition 3.4 A reduced ordered binary decision diagram (ROBDD) is a BDD which is both reduced
and ordered.

3.2 Implicit Set Manipulation

In [8] it is presented a full-fledged theory on how to represent and manipulate sets using a BDD-based
representation. It extends the notation used in [12]. This theory is especially useful for applications where
sets of sets need to be constructed and manipulated.

Given a ground set G of cardinality less or equal to 2", any subset S can be represented in a Boolean
space B"™ by a unique Boolean function xs : B® — B, which is called its characteristic function [4], such
that: '

xs(z) =1 ifandonlyifz in S.

In other words, a subset is represented in positional-set or positional-cube notation form ’, using n Boolean
variables, = = z;2;...z,. The presence of an element s, in the set is denoted by the fact that variable
=) takes the value 1 in the positional-set, whereas z, takes the value O if element s, is not a member of the
set. One Boolean variable is needed for each element because the element can either be present or absent
in the set. As an example, for n = 6, the set with a single element s; is represented by 000100 and the
set $2833s is represented by 011010. The elements sy, s4, 8¢ Which are not present correspond to 0’s in the
positional-set.

A set of subsets of G can be represented by a Boolean function, whose minterms correspond to the

single subscts. In other words, a set of sets is represented as a set .S of positional-sets, by a characteristic
function xs : B® — B as:

xs(z) = 1 if and only if the set represented by the positional-set z is in the set S of sets.

Any relation R between a pair of Boolcan variables can also be represented by a characteristic function
R :B? - Bas:
R(z,y) =1 if and only if z is in relation R to y.
R can be a one-to-many relation over the two sets in B. These definitions can be extended to any relation
R between n Boolean variables, and can be represented by a characteristic function R : B™ — B as:
R(z1,%2,...,%,) = 1 if and only if the n-tuple (z;, za,. .., z,) is in relation R.

From an operator Op that acts on two sets of variables ¢ = z25 ...z, and Y= Y1¥2 . . .Y One obtains

arelation (z Op y) (as a characteristic function) of pairs of positional-sets. The containment and maximal
operators are shown next as examples.

Lemma 3.1 The containment relation evaluates to true if the set of objects represented by x contains the
set of objects represented by y, and can be computed as:

n
(z2y) =[] w = 2
k=1

where z. = yr = -z + yi designates the Boolean implication operation.

Lemma 3.2 The maximal of a set) of subsets is the set containing subsets in x not strictly contained by
any other subset in x, and can be computed as:

Mazimal:(x) = x(z)- By [(y D z) - x(v)].

"Called also /-hot encoding.

The following lemma, proved in [8], shows a quantifier-free computation of the operator maximal.

Lemma 3.3 Given a set of positional-sets x(z) and an array of Boolean variables z, the maximal of
positional-sets in x with respect to x can be computed by the recursive BDD operator Mazimal(x, 0, z):

Mazimal(x, k,z) {
if(x=0) return0
if(x =1) return []7—; z;
My = Mazimal(xz, k + 1)
M, = Mazimal(xz,, k + 1)
return IT E(zy, My, Mo - ~M)

3.3 Implicit FSM Representation

A state transition graph (STG) is commonly used as the internal representation of FSM’s in sequential
synthesis systems, such as SIS [17]. A limitation of STG’s is the fact that they arc a two-level form of
representation where state transitions are stored explicitly, one by one. This may degrade the performance
of conventional optimization algorithms on large FSM'’s.

Assume that the given FSM has » states. To perform state minimization, one must represent and manip-
ulate efficiently sets of states (such as compatibles) and sets of sets of states (such as sets of compatibles).
Therefore 1-hot encoding is used for the states of the FSM &, If inputs (outputs, respectively) of the FSM are
specified symbolically, they can be represented as a multi-valued symbolic variable i (o, respectively) where
each value of ¢ (o, respectively) represents an input (output, respectively) combination. For compactness of
representation, we used for these variables a logarithmic encoding, i.e. an m-valued variable is represented
with log, m Boolean variables. The fact that diilerent multi-valued variables use different encodings is not
a problem as long as they are used consistently. However if inputs (outputs, respectively) of the FSM are
already given in encoded form, each encoded bit of inputs (outputs, respectively) is represented by a single
Boolean variable.

4 State Minimization of ISKFSM’s

An exact algorithm for state minimization consists of two steps: the generation of various sets of compatibles,
and the solution of a binate covering problem. The generation step involves identification of sets of states
called compatibles which can potentially be merged into a single state in the minimized machine. Unlike
the case of DFSM’s, where state equivalence partitions the states, compatibles for ISFSM’s may overlap.
As a resuit, the number of compatiblcs can be exponential in the number of statcs [16], and the generation
of thc whole sct of compatibles can be a challenging task,

The covering stcp is to choosc a minimum subsct of compatibles satisfying covering and closurc
conditions, i.c., to find a minimuin closed cover. The covering conditions require that cvery state is
contained in at least one chosen compatible. The closure conditions guaranice that the states in a chosen
compatible arc mapped by any input sequence to states contained in a chosen compatible.

8 An alternative explained in [8] is to represent any set of sets of states (i.e., set of state sets) implicitly as a single 1-hot encoded
MDD, and manipulate the state sets symbolically all at once. Different sets of sets of states can be stored as multiple roots with a
single shared 1-hot encoded MDD.

4.1 Implicit Generation of Compatibles

In this section, we describe implicit computations to find sets of compatibles required for exact state
minimization of ISFSM’s.

To generate compatibles, incompatibility relations between pairs of states are derived first from the given
output and transition relations of an ISFSM.

Lemma 4.1 The set of output incompatible pairs, OICP(y, z), can be computed as:
OICP(y,z) = Tuplei(y) - Tuplei(2) - 3i Bo[A(i,y,0) - A(i, 2,0)] M

In the above and subsequent formulas, we will mix notations between relations and their corresponding
characteristic functions. Strictly speaking if we would have used the characteristic function notation, the
above formula would have been more clumsy:

OICP(y,z) =1 ifandonlyif (Tuplei(y)=1)-(Tuple(z) = 1)
i Bo[(A3,9,0) =1) - (A3, 2,0) = 1)]
Lemma 4.2 The set of incompatible pairs is the least fixed point of ICP:
ICP(y,z) = OICP(y, 2) + 3, u, v [A(i, y, u) - A(3, z,v) - ZCP(u, v))
and can be computed by the following iteration:

ICPo(y,z) = OICP(y,z)
Icpk+l(y1 z) = Icpk(ya z) + ai) u,v [A(i? Y, u) * A(ia 2, U) * Icpk("’) v)] (2)

The iteration can terminate when ICPyyy = ICPy and the set of incompatible pairs is ICP(y, z) =
ICPi(y, 2).

So far we established incompatibility relationships between pairs of states. The following definition
introduces sets of states of arbitrary cardinalities.

Lemma 4.3 The set of incompatibles can be computed us:
IC(c) = 3y, 2z [ICP(y,2) - (c 2 yU 2)] 3
Lemma 4.4 The set of compatibles, C(c), can be computed as:

C(c) = ~Tupleg(c) - ~IC(c)

4.2 Implicit Generation of Prime Compatibles and Closure Conditions

To sct up the covering problem, we also nced to compute the closurc conditions for each compatiblc. This
is done by finding the class set of a compatible, i.e., the set of next states implied by a compatible.

Definition 4.1 A set of states d; is an implied set of a compatible c for input i if d; is the set of next states
JSrom the states in c on input i.

Lemma 4.5 The implied set (in singleton form) of a compatible c for input i can be defined by the relation
F (¢, 4, n) which evaluates to 1 if and only if on input i, n is a next state Jrom state p in compatible c:

F(e, i, n)=3p [C(C) (2 P) -A(4, p, n)] 4)

Note that the implied next states arc represented here as singleton states in ¥ (c, i, n). All singletons
n in relation with a compatible ¢ and an input i can be combined into a single positional-set, for later

convenience. This positional-set representation of implied sets associates each compatible ¢ with a set of
implied sets d.

Lemma 4.6 The implied sets d (in positional-set form) of a compatible c for all inputs are computed by the
relation CI(c, d) as:

CI(c,d) = 3i [An(F(c,¢,n)) - Uniongsa(F (e, i,n))]
Definition 4.2 An implied set d of a compatible c is in its class set if
1. d has more than one element, and
2. d¢ c and
3. d g d' ifd’ € class set of c.

We can ignore any implied set which contains only a single state, because its closure condition is satisfied
if the state is covered by some chosen compatible. Also if d C c, the closure condition is satisfied by the
choice of c. Finally, if the closure condition corresponding to d’ is stronger than that of d, the implied set d
is not necessary.

Lemma 4.7 The class set of a compatible c is defined by the relation CCS(c, d) which evaluates to 1 if and
only if the implied set d is in the class set of compatible c:

CCS(c,d) = ~Tuple(d) - (c 2 d) - Mazimaly(CZ(c,d))

To solve exactly the covering problem, it is sufficient to consider a subset of compatibles called prime
compatibles. As proved in [6], at least one minimum closed cover consists entirely of prime compatibles.

Definition 4.3 . A compatible ¢’ dominates a compatible c if
1. ¢ D¢ and

2. class set of ¢ C class set of c.

i.e., ¢ dominates c if ¢’ covers all states covered by ¢, and the closure conditions of ¢’ are a subset of the
closure conditions of ¢. As aresult, compatible ¢’ expresses strictly less stringent conditions than compatible
c. Therefore ¢ is always a better choice for a closed cover than ¢, thus ¢ can be excluded from further
consideration. '
Lemma 4.8 The prime dominance relation is given by:

Dominate(c’, c) = (¢’ O ¢) - Containg(CCS(c,d),CCS(c, d))
Definition 4.4 A prime compatiblc is a compatible not dominated by another compatible.

Lemma 4.9 The set of prime compatibles is given by:

PC(c) = C(c)- Ac’ [C(c) - Dominate(c, c)]

4.3 Implicit Generation of the Covering Table

Once the sct of (non-essential) prime compatibles is generated, the problem of exact state minimization can
be solved as a binate table covering problem. In this section, we shall describe how such a binate table can
be generated. To keep with our stated objective, the binate table is also represented implicitly. We describe
an implicit representation of the covering table, that adroitly exploits how row and columns were implicitly
computed. A description of how the binate table is then solved implicitly can be found in [9].

We do not represent (even implicitly) the elements of the table, but we make use only of a set of row
labels and a set of column labels, each represented implicitly as a BDD. They are chosen so that the existence
and value of any table entry can be readily inferred by examining its corresponding row and column labels.
This choice allows us to define all table manipulations needed by the reduction algorithms in terms of
operations on row and column labels and to exploit all the special features of the binate covering problem
induced by state minimization (for instance, each row has at most one 0, etc.). A similar technique could
be applied to various binate covering problems that arise in logic synthesis, with a suitable encoding of the
rows and columns.

Definition 4.5 A column is labeled by a positional-set p. The set of column labels C is obtained by prime
generation as C(p) = PC(p).

Besides distinguishing one row from another, each row label must also contain information regarding
the positions of 0 and 1’s in the row. Each row label r consists of a pair of positional-sets (c, d). Since
there is at most one 0 in the row, the label of the column p intersecting it in a 0 is recorded in the row
label by setting its c part to p. If there is no O in the row, c is set to the empty set, Tupleg(c). Because of
Definition 4.7 for row labels, the columns intersecting a row labeled r = (c, d) in a 1 are labeled by the
prime compatibles p that contain d.

Definition 4.6 The table entry at the intersection of a row labeled by r = (c, d) € R and a column labeled
by p € C can be inferred by:

the table entry is a 0 iff relation 0(r, p)
the table entry is a 1 iff relation 1(r, p)

def

(p = c)istrue,
def .
= (p 2 d) is true.

Definition 4.7 The set of row labels R is given by:
R(r) = PC(c) - CCS(c, d) + Tupleg(c) - Tuple;(d)

The closure conditions associated with a prime compatible p are that if p is included in a solution, each
implied set d in its class set must be contained in at least one chosen prime compatible. A binate clause of
the form (P+ py +p2 +- - - + px) has to be satisfied for each implied set of p, where p; is a prime compatible
containing the implied set d. The labels for binate rows are given succinctly by PC(c) - CCS(c, d). There
is a row label for each (c, d) pair such that ¢ € PC is a prime compatible and d is one of its implied sets in
CCS(c, d). This row label consistently represents the binate clause because the 0 entry in the row is given
by the column labeled by the prime compatiblc p = ¢, and the row has 1’s in the columns labeled by p:
wherever (p; 2 d).

The covering conditions require that each state be contained by some prime compatible in the solution.
For each state d € S, a unate clause has to be satisfied which is of the form (p1 +p2 + - -+ p;) where
the p;'s are the prime compatibles that contain the state d. By specifying the unate row labels to be
Tupleo(c) - Tuple;(d), we define a row label for each state in Tuple; (d). Since the row has no 0, its ¢ part
must be set to T'upleo(c). The 1 entries are correctly positioned at the intersection with all columns labeled

10

by prime compatibles p; which contain the singleton state d ?. Since no minimal cover S can contain a
compatible contained in another compatible of S [13], one could introduce a new collection of clauses, one
for each pair of compatibles p; and p; such that p; D ps, each stating that at most one of the two can be
chosen (p1 + 72).

S State Minimization of PNDFSM’s

Explicit algorithms for exact state minimization of PNDFSM’s have been proposed by Watanabe et al.
in [20], by Damiani in [5], and by Kam et al. in [10].

An algorithm for PNDFSM state minimization is more complicated than one for ISFSM state minimiza-
tion [9] because the definition of compatibles and the closure conditions are more complex. By Theorem 2.2,
the state minimization problem of PNDFSM’s can be reduced to the problem of finding minimum closed
covers. Because of Lemma 2.2, an exact state minimization algorithm only needs to generate compatibles.
The next step after compatible generation is to select a subset of compatibles that corresponds to a minimized
machine. To satisfy behavioral containment, the selection of compatibles should be such that appropriate
covering and closure conditions are met. The covering conditions guarantee that some selected compatible
(i.e., some state in thc minimized machine) corresponds to a reset state of the original machinc. The closure
conditions require that for each selectcd compatible, the compatibles implied by state transitions should
also be selected. The state minimization problem reduces to the selection of a minimum closed cover of
compatibles.

5.1 Implicit Generation of Compatibles

First, we outline the differences between the state minimization algorithm of PNDFSM’s and the state
minimization algorithm for ISFSM’s [9]. For the latter, a set of states is a compatible if and only if each
pair of states in it are compatible; this is not true for PNDFSM'’s, as shown in [10]. As a result, the set of
compatibles cannot be generated from the set of incompatible pairs as for ISFSM’s. As we cannot gencrate
compatibles from incompatible pairs, we have to start with output compatibles (i.e., state sets) of arbitrary
cardinalities. '

Given the transition relation T'(3, s, s/, 0) of a PNDFSM M = (S, 1,0, T, R), first we compute the
relation T°(i, ¢, ¢/, 0). A 4-tuple (4, ¢, ¢, 0) is in relation T? if and only if the set of states ¢ on input i
can transit to another set of states ¢/, and produce output 0: T9(i, ¢, ¢/, 0) = Vs {[Single(s) - (s C ¢)] =
3s' [T(i,s,8,0) (s C)]} - Vs {[Single(s) - (s C ¢)] = Is[T(¢,s,5,0) (s C c)]}-—D(c) - =~0(c").

Proposition 5.1 The set C of compatibles of a PNDFSM can be found by the following fixed point compu-
tation:

e 7o(i, ¢, ¢) = 30 T4, ¢, ¢, 0),

o Initially all subsets of states are compatible: Cop(c) = 1,

e By Theorem 2.3, Tp41(%, ¢,) = (3, ¢,) - Ci(c),
Ciy1(¢) = Vi3 141 (3, ¢,).

The iteration can terminate when for some j, Cjy1 = Cj, and the greatest fixed point has been reached. The
set of compatibles is given by C(c) = Cj(c) and the transition relation on the compatibles is T (i,c,c’) =
Ti+1(is ¢,) - Cj(c).

9Every closed cover of an ISFSM whose states are all reachable must cover all the states. We can say that the covering clauses
express a property of the solution that speeds up the search. Alternatively one could impose that only the reset state is covered and
let the search procedure find that a solution covers all states.

11

The computaﬁons for closure conditions and prime dominance are more complicated than in case of
ISFSM'’s. In [10] it is described how to compute the set of primes PC')c) and the set of disjunctive clauses
I(c, ¢,d), where we represent each next state set as a positional-set d.

5.2 Implicit Generation of the Covering Table

To use the implicit binate solver, one has to specify four BDD’s: two characteristic functions C'ol and Row
representing a set of column labels and a set of row labels respectively; and two binary relations 1 and 0,
one relating columns and rows that intersect at a 1 in the table, and another relating columns and rows that
intersect at a 0.

Similar to the case for ISFSM’s, each prime compatible corresponds to a single column labeled p in the
covering table. So the set of column labels, Col(p), is given by: Col(p) = PC(p).

Each row can be labeled by a pair (¢, ¢) because each binate clause originates from the closure condition
for a compatible ¢ € PC under an input ;. And the covering condition for a reset state is expressed by a
single unate clause, to which we assign a row label (c, {) = (@,9). ¢ is chosen to be the empty set to avoid
conflicts with the labels of the binate rows, while the choice of ¢ = 0 is arbitrary. The set of row labels,
Row(c, 1), is given by a binate part and a unate part:

Row(c, i) = 3d I(c,i,d)+ O(c) - O(3).

Each binate clause associated with a compatible c and an input 7 expresses the condition that for at least
one output o, the next state set must be contained in a selected compatible d. The corresponding next state
relation is I(c, ¢, d).

Next, let us consider the table entries relations 1(c, ¢, p) and 0(c, ¢, p). If (c, 7) labels a binate row, the
expression 3d [(p 2 d) - I(c, ¢, d)] evaluates to true if and only if the table entry is a 1 at the intersection of
the row labeled (c, ¢) and the column labeled p, i.e., the row can be satisfied if next state set d is contained
in selected compatible p. There is an entry 0 at column p if (p = ¢), i.e., the row can also be satisfied by not
selecting a column labeled c.

The row labeled by (0, @) represents the disjunction of compatibles p each of which contains at least a
reset state R(s). On such a row, a tableentry is a 1 if and only if 3s [f(c) - 8(:) - R(s) - (s € p)].

Asa summary, the inference rules for table entries given a row (c, 7) and a column p are:

0(c,i,p) = (p =), :
1(c,i,p) % 3a [(p 2 d) - I(c,i,d)]+ 3s [B(c) - (i) - R(s) - (s C p)]. Notice that these inference rules
are more complex than those for the case of ISFSM’s, To handle the former rules we upgraded the implicit

binate solver used for ISFSM’s state minimization and described in [9]. The more general implicit binate
solver and the issues involved are described carefully in [8, 18].

6 State Minimization of PNDFSM’s for Moore Behavior

It has been shown in [19] that the set of permissible behaviors at a node of a network of FSM’s can be
represented by a PNDFSM. When choosing a state minimum DFSM among all permissible behaviors, one
must ensure that it is possible to implement it in the network without introducing unsaie cowmbinational
- cycles. A way to enforce this requirement is to restrict the minimum state FSM to be a Moorc DFSM.
Watanabe introduced in {20, 19] a more general notion of compatible, as a pair (g, f) where g is a set of
compatible states as defined in state minimization of PNDFSM’s and f is a function from B!U | to B!V |.
For Moore behaviors the pair (g, f) becomes a pair (g, v), where g represents a set of compatible states,
and v is an output minterm common to outgoing transitions of the states € g. This more complex notion

12

__-——--’//

of compatiblc, to which we refer as compatible pair, allows the formulation of state minimization as a
standard binate covering problem. As an alternative formulation, in [8] it is shown how the probiem can be
modelled without associating output minterms to compatibles !0,

6.1 Implicit Generation of Compatible Pairs

It was observed in [1] that a state that cannot produce a common output for all inputs is not involved in
any compatible in any reduced Moore machine. As a result, such states can be deleted from the original
machine along with all transitions leading to such pruned states, before the generation of compatibles.

The set of compatibles, i.e., (¢, v) pairs, is computed using the following fixed point computation:

CO(qa v) =1
Ck-H (q, ‘U) = Vu aq, [(30' Ck(q'a vl)) * Tdd(“: q, qlw v)]

where Tt is the transition relation over subsets of states.

First we assume that every pair (g, v), wherc g is any state set and v is any minterm, is a candidate
compatible and so it is in Co. After the first iteration, C)(g, v) captures all the state sets g that are output
compatibles, i.e., each state in ¢ can produce the same output minterm v for all inputs. During the k-th
iteration, (g, v) will be in Ci41 if and only if on output v, for every input u, there exists a next state set
q' € Cy from the state set ¢. The iteration terminates when Cr4) = C} and then the set of compatibles is
given by C(g, v) = Ci(q, v).

6.2 Implicit Generation of the Covering Table

We want to construct the set of column labels Col and the set of row labels Row in a format suitable to the
implicit specialized binate solver presented in [9]. Let columns be labeled by variables p and rows by pairs
of variables (c, d). The numbers of Boolean variables used for p, ¢ and d are the same. At the intersection
ot row (¢, d) and column p, the table cntry is a 1 if and only if p D d, and the table entry is a 0 if and only if
p = ¢. As no entry can be both 0 and 1 simultaneously, the case ¢ 2 d is ruled out.

Each column p in our table is a compatible, i.e., a pair (g, v), where empty states sets g are removed as
meaningless:

Col(qu) = C(g,v) - —0(y)-

Each row label consists of two parts ¢ and d. ‘1o match (he width of p, the row label has a field ¢ = (g, v)
and a field d = (r, w), where g and r represent sets of states in positional notation, and v and w represent
output minterms. The w variables are set to the empty set §(w), since they are never used. Rowynate
represents the unate rows corresponding to the covering conditions of the reset states, i.e., a compatible
(g, v) is in relation Rowynq¢e With (r, w) if and only if r is a reset state contained in the state set g:

Rowynate(qu, rw) = O(q) - O(v) - reset_state(r) - O(w).

Rowp;nate represents the binate rows corresponding to the closure conditions. In particular, (g, v) must
be a compatible (C(g,v) = 1), and r must be a state set in a compatible (3w C(r,w)), and they are in
the relation Rowpinate(qu, rw) only if r is the set of next states of ¢ under output minterm v (computed by
Ju [T (u, g, r, v)]):

Rowyinate(qv, rw) = [Fu T (u, g, r,v)]- C(q, v) - [Bw C(r, w)]- O(w).
Finally we collect all these clauses as the set of Row labels, and make sure that ¢ 2 d:
Row(qu, rw) = [Rowynate(qV, rw) + RoOWpinate (qu, rw)] - (qv 2 rw).

19The state minimization algorithm presented in this section is joint work with Yosinori Watanabe.

13

7 Conclusions

We have presented algorithms to compute implicitly a minimum state behavior contained in an ISFSM
or a PNDFSM, including the case when the minimum machine is restricted to be Moore. Compatibles,
maximal compatibles, prime compatibles and implied sets are all represented by the characteristic functions
of relations implemented with BDD’s. Similarly, the final step of covering a binate table is solved with an
implicit solver. The only explicit dependence is on the number of states of the initial problem. Experiments
with a variety of benchmark sets show that implicit techniques allow to compute compatible sets of cardinality
up to 2159 and to solve the correspondingly large binate tables. Experiments and applicability are discussed
in [9, 10, 8]. The techniques described herc can be applied to similar problems in logic synthesis and
combinatorial optimzation.

References

[1] A. Aziz, F. Balarin, R. K. Brayton, M. D. Di Benedetto, A. Saldanha, and A. L. Sangiovanni-
Vincentelli. Supervisory control of finite state machines. In Proceedings of International Conference
on Computer-Aided Verification, 1995.

{2] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In The Proceedings
of the Design Automation Conference, pages 40-45, June 1990.

(3] R. Bryant. Graph based algorithm for Boolean function manipulation. In IEEE Transactions on
Computers, pages C-35(8):667—-691, 1986.

[4] E. Cerny. Characteristic functions in multivalued logic systems. Digital Processes, vol. 6:167-174,
June 1980.

[5] M. Damiani. Nondeterministic finite-state machines and sequential don’t cares. In European Confer-
ence on Design Automation, pages 192-198, 1994.

(6] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in incompletely

specified sequential networks. IRE Transactions on Electronic Computers, EC-14(3):350-359, June
1965.

(7] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 1979.

[8] T. Kam. State Minimization of Finite State Machines using Implicit Techniques. PhD thesis, U.C.
- Berkeley, Electronics Research Laboratory, University of California at Berkeley, May 1995.

[9] T.Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, A fully implicit algorithm for exact state
minimization. In The Proceedings of the Design Automation Conference, pages 684—690, June 1994.

[10] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Implicit statc minimization of non-

deterministic fsm’s. In The Proceedings of the International Conference on Computer Design, October
1995.

[11] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill Book Company, New York, New
York, second edition, 1978.

14

(12} B. Lin, O. Coudert, and J.C. Madre. Symbolic primc generation for multiplc-valued functions. In The
Proceedings of the Design Automation Conference, pages 40-44, June 1992,

[13] F Luccio. Extending the definition of prime compatibility classes of states in incomplete sequential
machine reduction. IEEE Transactions on Computers, C-18(6):537-540, June 1969.

[14] R. E. Miller. Switching theory. Volume I: sequential circuits and machines. J. Wiley and & Co., N.Y.,
1965.

[15] E. Moore. Gedanken-experiments on sequential machines. In C. Shannon and J. McCarthy, editors,
Automata Studies. Princeton University Press, 1956.

[16] F.Rubin. Worst case bounds for maximal compatible subsets. IEEE Transactions on Computers, pages
830-831, August 1975.

[17] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and A. Sangiovanni-Vincentelli. Sequential
Circuit Design Using Synthesis and Optimization. In The Proceedings of the International Conference
on Computer Design, pages 328-333, October 1992.

(18] T. Villa. Encoding Problems in Logic Synthesis. PhD thesis, University of California, Berkeley, May
1995.

[19] Y. Watanabe. Logic optimization of intcracting components in synchronous digital systems. Ph.D.
Thesis, Tech. Report No. UCB/ERL M94/32, April 1994,

[20] Y. Watanabe and R. K. Brayton. State minimization of pseudo non-deterministic FSM's. In European
Conference on Design Automation, pages 184-191, 1994,

15

	Copyright notice 1996
	ERL-96-17

