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Morphology on the CNN Universal Machine

Akos Zarandy*, Andre Stoffels*, Tamas Roska*, and Leon O. Chua*

ABSTRACT

The Cellular Neural/Nonlinear Network (CNN) paradigm [J, 2,3]became a successful framework
for many spatio-temporal problems. The CNN Universal Machine [4] enabled the algorithmic
use of such spatio-temporal CNN instructions [5]. It excelled especially in computationally
expensive linear and nonlinear image processing tasks. Among them, the emerging discipline of
Mathematical Morphology offers a new geometrical approach to image understanding and
processing. This paper introduces different analogic realizations of Binary and Gray-Scale
Mathematical Morphology on the CNN Universal Machine (CNNUM). Alternatively, a CNN
Morphology Engine can be built forprocessing morphology operators with the highest possible
speed on silicon.

1 Introduction

A distinct discipline within image analysis, mathematical morphology [6] studies the application of
some basic geometrical operators to different problems inthe field of image analysis. Mathematical
morphology has been used to describe objects by considering them as subsets of a Euclidean
space, which results in emphasis on their shapes, their volumes and their textures, as well as on
their luminosity and color at each point. Morphological operators can reduce bodies to their
essentials and so enable their description and detection in a much easier way.

In a well defined sense, the mathematical morphological operators erosion and dilation are
generic. A morphological operator can be implemented by the iterative use of them (like the AND,
OR, NOT in the Boolean logic) hence, the fact that CNN templates can implement erosion and
dilation means that all morphological operators can be implemented by the CNNUM.

We consider first the case of two-valued (binary) images to introduce the basic definitions of
binary mathematical morphology (Section 2), and show their CNN implementation (Section 3).
Then in Section 4, we present the definition of the basic gray-scale morphological operations. In
Section 5, we present two implementation methods using different CNN structures: one with a
nonlinear A template, and a more effective method with a nonlinear D template.
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2 Binary Mathematical Morphology

The two main operations of the mathematical morphology are the erosion and dilation of an
image. Erosion of an image P by a structuring element set S is defined by either of the following
two equivalent definitions [6]:

S(P,S) =tf:S.czP} or S(P,S) = I P_t (1)
4eS

Here the vector symbol £ describes translations in the two-dimensional image domain. Thus 5j»
is the structuring element set S translated by £ The first definition says that thefit function (Figure
1) is equivalent to the erosion operation [6], while the second shows a Boolean algebraic
approach. Thefit function is true in a pixel location, if the structuring element set (S) is translated
to the particular pixel position («%) "fits" entirely in an object on image P (Figure 1). The other
basic operation of binary mathematical morphology is dilation. Dilation of an image P by a
structuring element set S is defined by either of the following two equivalent definitions [6]:

Z>(P,S)={£:S*nP*0} or V(P,S)=\JP. (2)

Here the hat-operator is the reflection-operator, and 0 stands for the empty set. The first
A

definition says that the dilation is equivalent to the hit function (Figure 1) of P and S [6], while
the second shows a Boolean algebraic approach. The hit function is true in a pixel location, if the

A A

reflected structuring element set (S) is translated to the particular pixel position (St) has at least
one common ("hitting") pixel with an object on image P (Figure 1). In our paper we do not devote
too much attention to opening and closing, because those operators can be implemented on CNN
the same way like in other machines, namely, applying erosion and dilation operators one after the
other. Figure 1 shows an example for erosion and dilationand explainshit and./// functions.
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Figure 1. Example for the erosion and the dilation. Note that structuring element set Sfits only

in one position into the original image P (erosion image). The hit function for the P
A

and the S images was satisfied in 9 pixel positions (dilation image).

3 Implementation of Binary Mathematical Morphology

In this paper we use the following CNN dynamics:



^(0=-v„(o+ ZM^«)+ E^."*)* E^».x«)+ £s(*.,>"«)+/
kleNr(ij) MeNrOJ) kleNr(ij) kleNr(ij)

yrfbvl (3)
where: A, S, <?, and $ are nonlinear two input single output functions, and / is the sigmoid
function [1].

The basic operations of the mathematical morphology are erosion, dilation, opening, and closing.
These operations are defined on two images, one being the operand, the other the structuring
element set. In the CNN implementation, the former is the input, while the function (the templates)
itself depends on the latter. Due to the limited template size of the VLSI implementation (3x3 in
the current existing chips [8,9]), the implementation method drastically depends on the extension
of the structuring element set. If it does not exceed the size of the CNN template the dilation and
erosion operators can be implemented with a single CNN template (Section 3.1). If it does, an
analogic CNN algorithm can implement the operator (Section 3.2).

In the followings black locations ofa binary image are associated with pixels having logic true
value, and are represented by +1 in the CNN dynamic space. Analogously, white locations are
associated with pixels having logic false value, and represented by -1.

3.1 Single template implementation of binary morphological filters

The erosion and dilation operators of binary mathematical morphology can be considered as a
convolution followed by a thresholding [10]. For example, if we consider the same structuring
element set as shown in our examples (Figure 1), we can calculate the morphological filters in the
following ways:

Erosion is equivalent to convolution by the matrix o i o

0 1 1

000

followed by a thresholding at level 2.

Note, that this matrix is the direct mapping of the structuring element set S in Figure. In
general, due to the binary nature of the convolution kernel and the ±1 value representation of
image Pt the result of the convolution can be any value from the discrete set: {-«, -;?+2,...,w-2,
w}, where n is the number of the Is in the convolution kernel. In those pixel positions, where
the./// function is true, the result of the convolution is exactly n. Hence, thresholding with level
(n-1) delivers the result of the erosion operator.

Dilation is equivalent to convolution by the matrix [° °°1 followed by a thresholding at level
1 i o

o i o

2. Note, that this matrix is the direct mapping of the structuring element set S in Figure 1. In
general, in those pixel positions, where the hit function is true, the result of the convolution is
greater than -n. Hence, thresholding with level (1-w) delivers the result of the dilation
operator.



The convolution followed by a thresholding method can be implemented directly on the
CNNUM with a single template. The template synthesis method is the following:

The A template matrix contains only onenon-zero element, a 1 in the center position both the
erosion and dilation cases. In the case of erosion the structuring element set S should be directly
mapped to the B template and the / value should be equal to (1-w), where n is the number of Is in

the B template matrix. In the case of dilation the reflected structuring element set S should be
directly mapped to the B template and the / value should be equal to (n-I), where n is the number
of Is in the B template matrix. When calculating the operator, the image should be put to the input
of the CNN, and the initial condition is zero everywhere. Equation (4) shows the synthesized
erosion and equation (5) the dilation templates for the structuring element set given in Figure 1.

A = ,/ = -2

"0 0 0" "0 1 0"

0 1 0 ,B = 0 1 1

0 0 0 0 0 0

A = ,/ = 2

"0 0 0" '0 0 0"

0 1 0 ,B = 1 1 0

0 0 0 0 1 0

(4)

(5)

Notes:

2.

If we select current value/ between (\-n) and (n-\), we can implement the weak mathematical
morphology, which is closely related to fuzzy sets [10]. The concept of the hit, fit, or miss
transform is too strict in many cases. Usually, an "almost hit" or a "nearly miss" statement is
more useful. Especially pattern recognition uses this fuzzy description of the images.
When calculating the single template erosion and dilation operations, the transient settles in It
time, where x is the time constant of the analog CNN (x=100-300 ns depending on the
implementation [8,9]).

3.2 ON THE STABILITY OF THE TEMPLATES

In this chapter, we give a proof, that the erosion template (4) is stable, and works correctly. In the
same way, the same property of the dilation template (5) canbe proved [17].

3.2.1 Global Task (Erosion)

Given: static binary image P and a binary pattern structure S within S^y) defined by black pixels in
Figure 1.
Input: U(t)=P
Initial State: X(0)= zero
Output: Y(t) => Y(oo) (binary image) containing those black pixels of which are inside

ofP relative to the patternS. This means: a pixel p is inside P if the pattern S
placed on/? is also inside P.



3.2.2 Local Rules

W/,<0)

1. arbitrary pixel

2. arbitrary pixel

black, if the pixel is inside of P relative to the pattern S.

white, if the pixel is not inside of P relative to the pattern
S.

3.2.3 Example

See example in Figure 1.

3.2.3 Mathematical analysis

Consider the Driving Point (DP) plot shown in Figure 2. If aH the (three) black pixels of S are
inside P, then

w =w3=I+^Bklukl =-2+n-(3-n) =\ where n=3

On this DP plot, starting from 0 Xy -+ Qi > 1, hence y-y -> 1
If at least one black pixel ofS is outside P then

w =™n=I +yZBklukl=-2 +n-(3-n)<-\ where n= {0,1,2}

(6)

(7)

On the DP plot, starting from 0 Xy -» Qn < -1 (w={0, 1, 2}, the number of the black pixels of S,
which is inside P), hence yy -»-1.
£?o, Qu Qi, Qz, are globally stable equilibrium points.

Figure 2. The Driving Point plot ofthe CNN with the erosion template.



4 Gray-Scale Mathematical Morphology

Gray-scale mathematical morphology is a more recent vintage than its binary version. We present
its definitions using the one-dimensional continuous (in space) signals for the sake of an improved
understanding of the main issues and the two-dimensional discrete image space to visualize its
applications to image processing. Nevertheless it has to be emphasized that the general body of the
mathematical gray-scale morphology is independent of any domain dimensionality.

In contrast to binary morphology where images are interpreted as sets {-1,+1} and operations
are therefore discussed in terms of set theory, gray-scale morphology deals with operations using
certain subsets ofthe set of real numbers. In the analog gray-scale space of the CNNUM, for
instance, input-output values vary within [-1,+1]. Therefore the previously applied set operations
such as intersections or unions, are now replaced by the minimum and the maximum operators.

In the case of gray-scale images, an image P is generally defined as a distribution of gray-scale
values P = P(l) where £ e DP, i.e., £ denotes a pixel location in the 2D spatial image domain DP.
It has to be emphasized that the same rules are applied to the structuring element set S, which is
characterized by an arbitrary gray level distribution S=S(£) where t,^Ds. This leads to another
major difference to the binary case, which is the existence of a third translational degree of
freedom in the gray-scale image space. Besides the spatial translation in the image domain
described by £ in DP, we can now think about a vertical translation or offset £ along the gray
scale intensity axis. The spatial translation of an image P by £ has been referred to as P$. Then the
vertical translation of an image P by Qis defined by P + £, which equals to a pixel-wise addition of
the image with the gray level described by£. The same istrue for the structuring element set (S) as
well.

Gray-scale erosion of an image P by a structuring element set S is described by the following
point-wise term:

S(P,S)(4) = sup{Cs:S^Cs<:P}, (8)
where the relation < stands for beneath. Animage S is beneath an image P if Dsc DP, and for V£
e DSi Sfe) £ P(£,). Geometrically, to find the erosion of a signal by a structuring element set at a
point £, slide the structuring element set spatially so that its origin is located at £ and then find the
largest £, for the structuring element set to be lifted along the intensity axis with, and still be
beneath the signal. This effect is illustrated in Figure 3 in the ID signal space for a semicircular
and a flat structuring element set.
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Figure 3. Erosion of a signal P featuring two succeeding triangles by a semicircular (Si) and a
flat (.Sy structuring element sets. In both cases the spatial domains of the structuring



element sets are equal to half of the spatial domain of a triangle. Therefore the
domains ofS(P,SX) and S(P,S2) are identically reduced when compared to the original
image P. S(P,S{) is found by tracing out the graph with placing S\ always to the
highest position as it is still beneath P. S(P,S2) follows strictly the same idea.

Morphological gray-scale dilation ofan image Pby astructuring element set Scan be defined by
this point-wise definition:

ZV.SXy-infltS, +C>P} (9)

where S(£)=-S(-£)is the reflected (to the origin of S) and inverted (the values themselves)
structuring element set (see in Figure 4), and > stands for above. An image S is above an image P
if Ds fl DP is not an empty set, and for all £ € Ds n DP, S&) > P(%). Geometrically, to find the
dilation of a signal by a structuring element set at a point £, slide the inverted and reflected
structuring element set spatially so that its origin is located at £ and then find the smallest C, for
the structuring element set to be lifted along the intensity axis with, and still be above the signal.
This effect is illustrated in Figure 4 in the ID signal space for a semicircular and a flat structuring
element set.

• (T> • •

tf.

Figure 4. Dilation of a signal P by Si and S2 structuring element sets. Dilating of the graphs of
the signals parallels the extension of the signals' spatial domains. In both cases the
spatial domains of the structuring element sets are equal to half of the spatial domain
of a triangle. Therefore the domains of V(P,S{) and V(P,S2) are identically enlarged
when compared to the original imageP. V(P,Si) is found by tracing out the graph with
placing s, always to the lowest position as it is still above P. V(P,S2) follows strictly
the same idea. S3 structuring element set is introduced to show the effect of the
reflection and inversion for a general (non-symmetric) signal.

Figure 5 shows an example for the dilation and the erosion applied to gray-scale images.



(a) (b) (c)
Figure 5. Example for the effect of the gray-scale erosion and dilation on gray-scale images, (a)

is the original frame, (b) is the erosion, (c) is the dilation image. In the erosion image
the brighter regions are emphasized and widened, while in the dilation image the
darker regions are emphasized and widened.

5 Implementation of Gray-Scale Mathematical Morphology

Here we show two different implementation methods for the gray-scale morphology. First, we
show a multi-step method, which uses non-linear A templates. Then, we show a single template
method, which uses non-linear D templates. The reason while we show both is, that so far only
simple CNN chips with A and B templates were realized, however the second method exploits
betterthe resources of a CNN Universal Machine with D template.

5.1 Implementation of Gray-Scale Mathematical Morphology on a
CNN Universal Machine with non-linear A template

The main computational task occurring while tackling gray-scale morphological operations is the
query for local maxima or minima in a certain search area. This area is equivalent to the size of
the used structuring element. The task of finding local extrema can be considered as restricting the
search for a global extremum to a prescribed search range only. The term of an extremum refers
here to both, maxima and minima, because their computation is very similar and needs no specific
differentiation. Global tasks in a given image can be generally resolved by designing a feedback
template A and enabling the transient to propagate during a certain time to reach every part of the
image. In our case, [12] already presented a cloning template that computes the global maximum.

The limitation to an operation of only local native now implies the use offixed-state-maps. These
maps mark in the binary case with their black pixels those cells that remain "frozen" when the
transient is running. An appropriate fixed state mask allows for the computation of local extrema.
The pattern of the mask depends on the structure of the chosen A template. Generally we define
two different shapes of templates (or structuring elements): The two-dimensional Amax.c -template
and the AmaxJ) -template as given in (10. 11) in case ofthe maximum operation. The processing of
the minima requires the inverted and reflected nonlinear function.
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0 , B = 0 0 0

max_ 0 0 0_

7 = 0 (11)

Both operations use two different fixed-state patterns to solve the problem. In case of the
Amax,DlAmax>c template, the resulting mask has a line/checkerboard pattern. The mask's dimensions
equal those ofthe original image. Looking at the general structure of an Amax,DlAmaXtC template, the
underlying logic is easy to understand. Because the cell's center coincides with a white pixel in the
fixed-state-map its volume can change. At the same time it should be guaranteed that all other
neighbored cells that can influence the operation remain fixed. This is important because the
calculated extreme would otherwise be global and not local. In fact, the main purpose ofthe fixed-
state-map is to forestall the propagation ofthe A template. If one follows this logic it is easy to see
that the operation can be calculated in two stages using a binary fixed-state-map and its inverse as
shown in Figure 6.

Figure 6. Picture 1(3) shows in the upper left side the case of Amax,D/Amax,c template whose
center cell coincides with a white pixel (light gray), while the connected neighbors are
all fixed (dark gray). This cell is able to adapt the result of the extreme calculation.
The opposite case is the Amax,iJAmax,c template in the lower right part of picture 1(3).
Here the center is fixed (dark gray) and keeps the state value independently from the
operation to be applied. Picture 2(4) points out that a simple inversion of the fixed-
state-map also inverses the impact on the center cells. A superposition of both cases
simulates finally the effect ofa local extreme operation on the whole array.

The combination of both Amax,c and AmaXiD templates leads to the more complex case of a square
structuring element. In the case of a morphological gray-scale dilation, for instance, we compute
independently the supremewith both A^vcc and Amax.D templates and calculate finally the pixel-wise
maximum of both output frames. The gray-scale dilation by a square structuring element S is then
given by:

V(P,S)(%) = max{V(P,Sc) ft), t>(P,SD)(^)} (12)



where £ denotes a pixel in the image domain DP. Following the same remarks, the gray-scale
erosion is defined by:

S(P,S)(^)= rmn{g(P,Sc)(Z>)t WAX*)}- (13)
The flat structuring elements we dealt with until now were entirely described by the two-
dimensional Amax.c and Amaxp templates. We can now enlarge the body of this theory to include the
full range of symmetrical three-dimensional structuring elements. Generally a symmetrical

structuring element shows the following form:

d_c_±
c e c

J~c~~d
Here c, d, and e are intensity levels

fitting within the amplitude range used in the CNN context, this means: c,d,ee[-l,+\]. The
previous case that was subject of our previous considerations is included into this model by setting
c = d=e = 0. The general symmetriccaseofthe gray-scale erosion is then given by:

5(P,5)ft)= min{5(7>+c,Sc)£), S(P+d,SD)&), P(Z,)+e}. (14)
where P+c denotes the addition ofthe offset c to the amplitude distribution of the object P. Here it
has to be mentioned that the "new" object P+c has still the same size and location as the original
object P. Only its intensity levels are shifted by c. The same considerations are of course valid for
all coefficients c, d, and e. This model also includes the case of the general symmetric gray-scale
dilation described by:

V(P,S)(Z>)= max{Z>(P+c,Sc)0;), V(P+d,SD)(^), P(%)+e}, (15)

5.2 implementation of single template erosion and dilation on the cnn
Universal Machine

In this section first, we show the implementation of gray-scale morphological operators from the
mathematical aspect. Then, we show the details of the single template implementation of the
erosion and dilation operators.

Let us analyze the point-wise definition of the erosion as given in (8). In the discrete lattice
this equation leads to a set of ordering relations at every £ position. Figure 7 shows a simple case,
where the derivation of the ordering relations is easily understandable. A discrete gray-scale ID
signal (Figure 7a) and a discrete structuring element set are given in Figure 7b. Equation (8)
expresses that in position £ the largest possible £ elevation of S$ is sought where (Sz+ Q is still
beneath P. Figure 7c shows the vertically translated S$ with C, (square shaped discrete points)
beneath P (round shaped discrete points).

10
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Figure 7. (a): discrete ID function P. (b): Discrete structuring element set S. (c): S^ is raised
with £ but still beneath P.

The largest £ at position £ in the example of Figure 7c is equivalent to the largest solution of the
following ordering relation system:

(16)

Note:

S(-\) + Ci<P(^.\)

S(0) + CSP(«

S(\) + Q<P(^+I)

2.

Each relation stands for an element of the structuring element set. The terms on the left-hand-
side in relation (16) are illustrated by the height of the squares in the chart in Figure 7c,
whereas the terms on the right-hand-side are represented by the height ofthe discs.

We did not take advantage of the ID signal, hence (8) with arbitrary finite discrete structuring
element set leads to a system of relations in every £ position on the same way. The general
form ofthe relations is:

S(t\) + Q<P&+t\), where r\e Ds and £e DP (17)
Now, we show a parallel method for finding the largest solution of the relation system (17) in

a particular £ position. First, an appropriate small Q value is selected, which satisfies all the
relations in (17). Then, £ is gradually increased and all the relations are continuously checked in
parallel. When the two sides of a relation become equal, the £ value will freeze (stop increasing).
This frozen £ value is the largest solution of the relation system (17). For solving (17) at every £
position, we have to do the same method for every £. It seems to be very complex, however, it can
be directly implemented on a CNN array with nonlinear D template (3). (Similar D template was
used to implement median and rank operators [16] on the CNN Universal Machine.) If the
structuring element set S does not exceed the template size, the relation system (17) can be
implemented with a single template on this CNN structure. The idea of the implementation is as
follows:

The C values are represented by the state of the CNN, and P is represented by the input of the
CNN. The £0 values are chosen as -1 (the lowest initial condition value of the CNN gray-scale
dynamic). We create a template, which starts increasing all the Q values simultaneously, and
freezes each of them individually at the last moment when it still satisfies the relation system. The
template is the following:

11



A =

'«J;»-l.j+l"o 0 o"

0 1 0 ,D =

0 0 0

= d.

'i,j;i-\J-\

?ij;kl(vukrvxij)

i.J, i.j+\

i.J. i J ai.j.M.j

i,j; i.j-l Mi.;; i+lj-l

,7 = 1
5(t|) vukfvxij

(18)

where S(i\) is thereal value of the structuring element set (S) at point r\=(k,l), if notdij:ki =0.
This template finds the largest solution of the relation system (19), which is equivalent with (17).

S(r\) < P(Z>+r\) - C, where r\e Dsand $eDP (19)
At the very beginning, all P(^+r\) - Co values are larger than S(r\), hence the contribution of

the D template is zero at every cell. Due to the positive 7, all state values will start to increase, i.e.,
the value on the right-hand-side of equation (19) will decrease. (This term is represented by the
horizontal axis of the graph bound to (18). When a particular raising state value C reaches the
point, where

S(r\) = P(^n)-C> (20)

the contribution of the D template becomes -1, which eliminates the effect of the 7 term, hence
freezes the particular state value at C- After the state values in every cells are frozen, the output of
the CNN will show the result of the erosion. Due to the +1 current value in the 7 term, the
changing speed of the state value is equal to 1/x. Hence, the longest cell transient settles within 2x,
because the dynamic space of the CNN is limited [-1,+1]. If there are some Co, which does not
satisfy the relations, P and S should be linearly rescaled as to allow Co = -1 to satisfy all the
relations.

The definition of the dilation (9) also leads to an ordering relation system at every point £.
The only difference is, that the direction of the relation signal is the opposite.

S (ti) +C>P(£,+r\l where T| eD% and £e Dp (21)
Similarly to the erosion operator, the dilation operator with a3x3 structuring element set can

be implemented with a single template on the modified CNN structure. The differences are that
here the initial condition of the CNN Co is +1 (instead of-1) and after starting the transient, all the
values start decreasing (instead of increasing). The template which implements the 3x3 dilation is
the following:

12



A =

"0 0 o"

0 1 0 ,D =

0 0 0

i.j. »-!.;+! Lj.i,j+\ "i.;.i+l,;+]

i.J.i-l.j i.J. i.J i.J.i+\.J

|_ I..M-W-1 "ij-.i.j-l "i.j.n\,j-\

£fij;kl(vukrvxij)

,7 = -l

§(r,) vu*rvx//-
(22)

where: S(j\) is the real value of the reflected and inverted structuring element set (S) at point
T| =(£,/)• If it is not defined ina tj point dij;k\ =0.

The template works exactly the same way as the erosion template does. The transient settles
in 2x, and the output of the CNN shows the result of the dilation operator.

6 Implementation mathematical morphology with large structuring
element set

Morphological operators with large structuring element sets can also be implemented on the
CNN Universal Machine with analogic CNN algorithms. The algorithms are similar in both, the
binary and in the gray-scale cases. Without going into details, we list the main steps of the
implementation here:

1. Separate the large structuring element set into smaller ones, which ones can be implemented
with a single template.

2. Calculate the operations with all the small structuring element subsets, and shift the results to
the central position.

3. Apply AND (binary erosion), OR (binary dilation), MIN (grayscale erosion), MAX (grayscale
dilation) operators to the subresults.

7 Conclusion

Here we presented three different methods to implement the functions of the binary and gray
scalemathematical morphology for different structuring element sets on the CNNUM. As it turned
out the dilation and erosion operators can be implemented with a single CNN template, however
these operations are extremely computational hungry tasks of a digital image processing unit. The
significantly decreased computational complexity allows extremely fast morphological image
processing. Considering the additional resources provided by the CNNUM, one can state that a
CNN based mathematical morphology lends itself to time critical applications. Among those,
mathematical morphology is useful in the emerging field of object-oriented video compression
techniques [7][13][18]. The CNN matches all requirements, i.e., programmability, flexibility, and
high performances, that are asked for a real-time "morphology engine" [14].
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