Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

IDENTIFYING COMMON SUBSTRUCTURE
FOR INCREMENTAL METHODS

by

Stephen A. Edwards, Gitanjali M. Swamy,
and Robert K. Brayton

Memorandum No. UCB/ERL M96/21

15 April 1996

IDENTIFYING COMMON SUBSTRUCTURE
FOR INCREMENTAL METHODS

by

Stephen A. Edwards, Gitanjali M. Swamy,
and Robert K. Brayton

Memorandum No. UCB/ERL M96/21

15 April 1996

ELECTHONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Identifying Common Substructure for Incremental

Methods

Stephen A. Edwards Gitanjali M. Swamy Robert K. Brayton
{sedwards, gms, brayton}@eecs.berkeley.edu
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

Abstract

In this paper we solve the problem of identifying a “matching” between
two logic circuits or “networks”. A matching is a functions that maps each
gate or “node” in the new circuit into one in the old circuit (if a matching
does not exist it maps it to null). We present both an exact and a heuristic
way to solve the maximal matching problem. The matching problem does
not require any input correspondences; the purpose is Lo identify structurally
identical regions in the networks.

We apply this solution to the problem of incremental design. Logic de-
sign is usually an iterative process where errors are corrected and optimiza-
tions performed repeatedly. A designer rectifies, re-optimizes, and rechecks a
design many times. In practice, it is common for small, incremental changes
to be made to the design, rather than changing the entirety of the design. Cur-
rently, each time the system is modified, the entire set of computations (syn-

thesis, verification) are repeated from the beginning. This results in unneces-

sary re-computation of information, which can be avoided by re-using results
of a previous iteration and information about changes to the system.
Synthesis and verification tools that recognize these sequences of slightly-
differing inputs may be able to outperform their counterparts that discard all
previous work. This work is concerned with detecting what information has

changed in a design, and what information may be re-utilized.

1 Introduction

We address the problem of finding a high quality matching between two networks.
We compare pairs of networks—combinational logic designs represented as directed
acyclic graphs whose nodes are gencralized (multi-valued, non-deterministic) gates
and whose edges are generalized (multi-valued) connecting wires. We look for match-
ings, a function M : N — N'U {¢} from each node in a new network N to a node in
an old network N’ or to “unmatched” (¢) such that if M(n) = n’, then the gates at
nodes n and n' are identical (when their inputs are permuted) and their fanins match
(M(ng) = ny, for corresponding fanins n; and n}). The quality of a matching is the
number of matched nodes g(M) = |{n € N|M(n) # ¢}|. We solve the problem of
finding the maximum quality matching.

The ability to reuse information is the primary motivation for solving this prob-
lem. One application, incremental design analysis, stems from the iterative nature
of design. A designer usually wants to analyze each version of a design (with, e.g,
a formal verification check). Analysis can be done more efficiently by identifying
unchanged portions of a design and reusing the information computed for them. If
we have a matching M, we can reuse information for each node n where M(n) # ¢.
Our techniques may also be used to identify common areas within a single design,
allowing common information to be computed efficiently. Another application is
incremental synthesis, where the aim is to preserve as much of the old design as
possible.

A matching corresponds to structurally identical transitive fanin cones of the de-
sign that start at a node and contain all the nodes and wires in its transitive fanin. We
choose to identify these because the global function at a node is a function only of
its transitive fanin. An example is the transition function [1], used frequently in for-

mal verification and usually computed using BDDs [2]. Identifying matching nodes

allows us to compute the new BDD by substituting variables, which can be done ef-
ficiently. Our approach does not require any additional matching information (e.g.,
correspondences between the primary inputs). We expect most designs we compare
will be the output of a compiler that does not supply any correspondence informa-
tion. An altcrnative would be to use names to guess correspondences, but this is
insufficient when names are automatically generated—they are often very sensitivc
to small changes in a design. Finally, by not assuming input correspondences, our
algorithms can be applied to more general problems such as identifying identical
portions within the same design.

We propose a greedy three-phase algorithm to find a good matching. Initially,
nodes with identical functions are identified. This information is then combined
with connectivity information to find nodes that have identical structures in their
transitive fanins. Finally, the matchings implied by these nodes are greedily com-
bined into a high-quality matching.

This paper is organized as follows. Section 2 describes previous and related
work on the problem. Section 3 describes our approach to the gate function (node)
matching problem and Section 4 contains our exact and heuristic solutions to the
network (structural) matching problem. We present both an exact formulation (Sec-
tion 4.3) and a greedy algorithm that works well in practice (Section 4.4). Section 5
describes the results of some experiments on the algorithms and presents our con-

clusions.

2 Previous Work

Other approaches to incremental synthesis rely on knowing input correspondences.
Brand et al.’s [3, 4] work on incremental synthesis identifies regions of common-

ality similar to our own, but they require knowledge of input correspondences and

can only detect regions that start at the inputs.

Burch et al. [5] solve a functional matching problem that does not require in-
put correspondence information. However, they are only comparing boolean func-
tions, and their approach does not generalize to circuit designs. We adopt a similar
notion of a semi-canonical form, but our form is simpler (and hencc faster) at the
expense of some precision. Also, we deal with more general multi-valued func-
tions [6], rather than just binary.

The techniques presented here can be used to drive the incremental verification
algorithms of Swamy et a.1 [7] [8] and Sokolosky et al. [9]. These use information

about the similarities between two designs to speed up the verification process.

3 Table Matching

The nodes in our networks have discrete-valued functions (a generalization of boolean
functions) associated with them. These are represented in BLIF-MV-style tables [6],
such as that in Figure 1. Each column on the left represents an input variable, and
each row is a pattern that, when the inputs match it, produces the output in the right-
most column. Each entry is either a single value (e.g., 3), a set of values (e.g.,
1,2,5), or the set of all values (i.e., “"). Note that blif-mv permits symbolic values
of the form red, blue, greeen, which are represented as the values 0, 1,2. We ignore
the fact that red, blue, greeen can also be represented as 2,1,0.

Figure 1 represents a function f(x),x;,x3) thatis 3whenx; =0and x; =2 or 3,
orwhenx; = 1;isOwhenx; =1, x; =0, and x3 = 1; and is 1 default.

We want to be able to quickly identify tables that compute the same function.
Transforming each table into a permutation-invariant canonical form is an approxi-
mate approach to solving this problem,; different tables that are not equivalent mod-

ulo permutations may also compute the same function. Computing a canonical form

o ox ox f
0 23 -3
-1 -13
1 0 1]0

default 1

Figure 1. A multi-valued table. x;, x;, and x5 are the input variables.
(modulo all permutations) is much more expensive([5]).

Definition 1 Tivo tables are pennutatibn equivalent if one can transformed to the

other by permuting the rows and columns.

Definition 2 A function is canonicalizing iff it maps all permutation-equivalent ta-
bles to a single table, which is called the permutation-invariant canonical form of
the table.

A function is canonicalizing if it imposes a permutation-invariant total order
on rows and columns and then sorts the rows and columns based on this. Finding
such a total order is difficult and expensive, however, s0 we resort to an order that is
partial for certain tables. We count the number of times a particular value appears
in the entrics in a row or column and order the rows and columns based on this sum.

Consider the table in Figure 2. If we order the rows and columns according the
number of 1’s that appear in each row and column, we obtain the table in Figure 3.
We were fortunate in this example, since the number of 1’s in each row and column
is different, but in general, this strategy only produces semi-canonical tables.

We can extend these ideas to tables with set-valued entries by converting each
entry to an integer. First, each set is transformed to a vector of 0’s and 1’s. Each 1

represents the presence of a value in the set; each O represents the absence, e.g., the

110 2
111 3
100 1

= 321

Figure 2: A simple table annotated with the number of 1's in each row and column.

¥ =
0 01 1
011 2
111 3

2= 12 3

Figure 3: The table of Figure 2 in canonical form

entry 2, 3 would be represented as a vector (0,0, 1,1). Summing all such vectors in
arow or column (zero-extending them if necessary) gives a vector than can be used
to impose a partial order.

These vectors can be transformed to integers to make them easier to manipulate.
Note that in a table with n rows and m columns, the total number of 1’s in a position
in a column cannot exceed n. Similarly, the total number in a row cannot exceed
m. By transforming these vectors to base max{m,n} + 1 integers, we can sum the
integers in a row or column, and still ensure that each column sum only includes

information about that column (no carry between columns).

Definition 3 For a table with n rows and m columns, let mj be the maximum value
of the input variable in column j, and let E;;(k) be 1 if the entry in row i and column
J contains the value k and O otherwise. The numerical representation of this table

is an n X m matrix T with entries
mj
L= 2 (1 +max{m,n})"E,~j(k)
k=0
It is clear that each subset of values at a table entry has unique encoding ;.
Figure 4 shows the table of Figure 1 converted to a matrix of natural numbers. For
this table, (14 max{m,n}) = 4. As an example, the entry 2, 3 is converted to a base

four number: 1,, =4°.04+4'.0+4%.1+43.1 = 80.

Definition 4 In anm x n table (1;;), arow i is before row k if ¥'i_, 1;; < Yicilj A

column j is before a column k if ¥, ;i < T ta.

Definition S The semi-canonical form of a table 1;; is a permutation of the rows
and columns of t;j such that if row i is before row k then i < k, and if column j is

before column k then j < k.

Figure 5 shows the table in Figure 4 converted to semi-canonical form.

Y =

1 8 5 86
5 45 14
4 1 4 9

2= 10 8 14

Figure 4: The table of Figure 1 converted to a matrix of natural numbers. Row and

column sums are also shown.

4 4 1
55 4
1 5 80

Figure 5: The table of Figure 4 in semi-canonical form

Theorem 3.1 A table in semi-canonical form represents the same function as the

original table under some permutation of variables.

Hence two tables with the same semi-canonical form represent the same dis-

crete function.

4 Network Matching

Our aim is, for each node in the new network, to find a node in the old network with
information we can use for its analysis. This information, by assumption, is only
a function of the node and its transitive fanin. Thus, the matching node in the old
network must have an identical transitive fanin.

We cannot use the implementation verification technique of using the simula-
tion signatures of nodes to distinguish them, because we do not have an input cor-
respondence. We identify the set of all potentially matching nodes (called candi-
date pairs) and combine a compatible subset of these to form the matching. In Sec-
tion 4.3, we show that the problem of finding the best subset can be reduced to find-
ing a maximal prime compatible. In Section 4.4, we present a greedy algorithm for

finding a good subset.

4.1 Definitions

Definition 6 A network N = {n;} is a set of nodes with three associated functions:
func(n) is the function of the node, fanins(n) € {0,1,...} is the number of fanins

of the node, and fanin(n,k) € N,k = {1,...,fanins(n)} is the kth fanin of the node.

Figure 6 depicts a typical network. We only consider acyclic networks. For-

mally, n & tf(n), where ¢ f(n) denotes the set of nodes in the transitive fanin of 2.

10

N= {n,,...,ns}
func(n;) = func(n3) = fi
func(nz) =/

fanins(np) = 3

fanins(ns) = fanins(ng) = 0

fanin(ny,1) = ns
fanin(n,,2) = ns
fanin(ny,3) = n4

tf(n) = {n3,ns,ne}
Figure 6: A typical network. The arrows indicate the direction of information flow.

Definition 7 The transitive fanin of anode n is the set of nodes tf(n) = U,ff:i,"s(") (fanin(n,k)U
tf(fanin(n, k))).

The following definition characterizes which nodes we might consider match-
ing. Informally, two nodes could match if their functions are identical and their re-

spective fanins could match.

Definition 8 A pairofnodesn,,n; is a candidate pair (denoted ny ~ n) if func(n;) =
func(nz), fanins(n;) = fanins(nz), and Vi=,,... fains(n,)fanin(n, k) ~ fanin(ny, k).
Note that the correspondence between the fanins is determined by reducing the ta-
ble 1o its semi-canonical form, and noting that in that form, the variable of column

i in the table for n must correspond with the variable in column i in the table for n'.

Note that this definition implies that all primary inputs may match with each
other. We add the caveat that the primary inputs may match provide they can take
the same set of values, i.e. a primary input that can take values 0, 1,2 cannot match

with a primary input that takes values 0, 1,2,3,4,5.

11

Not all candidate pairs lead to consistent matchings. Specifically, it may be nec-
essary to match a node in the new network to two or more nodes in the old network
simultaneously. This is particularly nonsensical in the case of zero-fanin nodes,

which represent inputs to the network. Figure 7 depicts a contradictory situation.

/

n~n

New old 1~
/

2~
v ny ~nj

me:f |mpify maifd

Figure 7: A candidate pair (n, ~ n}) with no consistent matching.

Formally, the consistency constraint requires a matching to be a function map-
ping each node in the new network either a matched node in the old network, or to

“unmatched,” represented as ¢.

Definition 9 Given two networks N and N', a matching is a functionM : N — N'U
{0} such thatM(n) # ¢impliesn ~ M(n) andVk=1,...,fanins(n) . M(fanin(n,k)) =
fanin(M(n), k).

Figure 8: A matching with q(M) =3

Our objective is to find a matching that maximizes the number of matched nodes

(called the quality of the match).

12

Definition 10 The quality of a matching M is the number of matched nodes, i.e.,

q(M) = [{n | M(n) # ¢}|

Definition 11 If it exists, the implied matching of a candidate pair ny ~ ny is the

Sfunction

M) = m
ViM(fanin(ng,k)) = fanin(M(ng),k), ng € tf(ny) U {n,}
M(n) = ¢, ngif(m)

Theorem 4.1 An implied matching is a matching.

We will be combining implied matchings to form bigger matchings, but some
pairs of implied matchings—those that map a node in the new network to two dif-
ferent nodes in the old—can not be combined. We need a formal definition of which

matchings can be merged:

Definition 12 A pair of matchings M, and M, are compatibie (written My = M;)
if (My(n) # 0) A (M2(n) # 0) = My (n) = Ma(n).

Lemma 4.2 Compatibilityis transitive, i.e., if M, = My and My = M3 then M| =
M,

Definition 13 The merge of two matchings M\ and M,, written My 4+ M,, is the
Junction
Ma(n) ifMi(n)=¢

M(n) otherwise

(My+My)(n) = {

Lemma 4.3 If My = M,, then M| + M, is a matching and M, + M, = M> + M,.
Moreover, if My = M3, then (M) + M) +M3 = My + (Ma + M3).

13

Lemma 4.4 Merging only improves quality, i.e., if My = M, then q(M,),q(M;) <
q(My+M,).

4.2 Determining Matchings: A Refinement Algorithm

In order to determine the entire set of implied matchings, we use the following it-
erative algorithm;

We begin by assuming all nodes whose tables (functions) are matched to be matched.
We implement this algorithm with a hash table. Nodes with the same table are put
into the same initial “bucket” in the hash table. The canonical form of the table im-
poses a certafn order on the fanins of the node. If two node tables in canonical form
are equal, then the fanins node corresponding to column i in the node tables, must
correspond. We refine the node matchings iteratively, by “un-matching” two nodes,
if some of their corresponding fanins are un-matched. We accomplish this by re-
bucketing each node in the hash table. At each iteration, the new bucket signature
of a node consists of its table signature (canonical form) and the bucket numbers
of its fanins (in the order imposed by their tables). Thus, if at some iteration, any
nodes in the same bucket have corresponding fanins in different buckets, then after
that iteration, this nodes get put into different buckets.

This algorithm is similar to the algorithm for the computation of equivalent states
in an FSM [10], [1]. After this refinement, all pairs of nodcs in a bucket are candi-
dates. The algorithm is shown in Figure 9.

Though we have described a procedure that matches entire cones, this procedure
can be modified to match sub-regions by restricting the number of iterations of the

refinement procedure. We plan to address this as part of future work.

14

Partition nodes in both networks by function
Refine this partition s.t. all nodes in a bucket have fanins in the same buckets
Form all candidate pairs by considering all pairs of nodes in each bucket

Sort the candidate pairs by the number of nodes in their transitive fanin

Figure 9: Identifying Compatible Nodes.

4.3 An Exact Formulation

Once we have a set of consistent matchings (Section 4.2), we address the problem
of finding a maximum compatible matching exactly.

Lemma 4.4 indicates that merging compatible matchings gives better match-
ings. In this section, we use this idea to exactly characterize the problem of finding
the maximal quality matching. We show that the maximal matching is a “prime”
matching—one for which merging in other matchings is either impossible or un-

productive.
Lemma 4.5 If M is a matching, then it is the sum of a finite number of compatible

implied matchings, ie,. My =My = - -Myand M =M, +M> + - - -+ M;.

Proof Follows from the definition of matching, implied matching, and Lemmas 4.2
and4.3. =

We can define a dominance relation [11] [12] as follows:

Definition 14 A matching M\ dominates a matching M, (written My > M) ifM; =
M, and My +M, = M,.

Definition 15 A prime matching is one that is not dominated by any other match-
ing.

Lemma 4.6 If M, is a prime matching, and M, > M,, then q(M;) > q(M3)).

15

Proof Since M) > My, M, = M, and M, = M, +M,. Lemma4.4 implies q(M,;) <
q(M; + M,). However, since M; + M, = M, it follows that q(M;) < q(M,). =

Theorem 4.7 A maximum matching is a prime matching and can be built from a

set of compatible implied matchings.

Proof Follows from Lemmas 4.5 and 4.6. »

Thus, from Theorem 4.7 the problem of finding the maximum matching is one
of finding the maximum quality prime. We can do this naively by enumerating each
prime matching and calculating its quality (in actuality, we implement a slightly
more efficient procedure). However, since the number of primes of a set of n el-
ements is O(3"/n) [13] and our n can be O(N?), where N is the number of nodes
in each network, it is often impractical to explicitly search the entire set of primes.
This worst case comes when the network consists of a set of zero-fanin nodes with

identical functions.

4.4 A Greedy Algorithm

Our heuristic algorithm finds the set of all candidate pairs with implied matchings
and merges them greedily, trying the highest quality ones first.

First we used the refinement procedure of Section 4.2 to identify candidate pairs.
Once the candidate pairs are identified, we build a matching by merging together
compatible implied matchings. We consider candidate pairs one at a time, starting
with those with the largest number of nodes in their transitive fanins, and “grow” a
matching by merging each compatible implied matching.

The entire algorithm is shown in Figure 10. The performance of our implemen-

tation of this algorithm on example circuits is discussed in Section 5.

16

Partition nodes in both networks by function
Refine this partition s.t. all nodes in a bucket have fanins in the same buckets
Form all candidate pairs by considering all pairs of nodes in each bucket
Sort the candidate pairs by the number of nodes in their transitive fanin
M(n) = ¢, the empty matching
for M; largest to M; smallest

fM=M;

M=M+M,;

return M

Figure 10: The greedy algorithm.
5 Results

We have implemented the algorithms described in the VIS [14] environment.

We had to design a set of experiments to test our procedure. We assume that the
design has been read in, and the designer has computed the output function BDDs
of each node (as functions of the primary inputs). At this point the designer mod-
ifies the original design by either changing the functionality, or just re-optimizing
the hardware for some other objective. The designer would like to use the BDDs
computed for the old network to efficiently compute the BDDs in the new network.
Obviously, we assumc that there is a sufficient amount of structural similarity be-
tween the old and the network design.

To emulate a design change, we took MCNC and ISCAS benchmark examples
and optimized them using a synthesis algorithm (“script.delay” in the SIS [15] sys-
tem), to obtain a circuit called “new”. The original benchmark spec corresponds to
the “old” design.

As an experiment we built the function BDDs associated with the “old” design.

17

Example | §f Nodes | { Nodes | Non-Inc Inc | Match Initial | Match Refine | Total Match
Total | in Match Time Txmé Time Time Time

des 1182 1174 | 5.25 | 0.067 245 0.733 44

i10 2754 2750 2121 0.15 0.75 1.167 345
minmax10 723 87 (800.734| 02 0.133 0.2 0.35
minmax12 914 104 | 352.634 | 0.25 0.15 0.3 0.467
mm9a 682 637 47.75 | 0.033 0.15 0.1 0.683
mm9b 714 106 526 | 02 0.184 0.15 0.367
s15850 | 11591 10272 | 63.816 | 0.75 2.75 345 24.366
clma 11382 10973 11.6 0.8 4.766 3.534 11.783

clmb 10842 10407 11.45 0.8 4.634 3416 1045
$38584 | 23775 20839 10.85 | 1.35 5.767 7.267 138.434

Table 1: Comparison Incremental and Non_Incremental

This is done recursively, by building the BDD at each node as a function of the
BDD:s of its fanin nodes. Next, we ran the matching algorithm on the old and new
designs. If there existed a match from a node in the new network, to the old, we re-
used the BDD for the old node by merely substituting the old network BDD vari-
ables with the corresponding BDD variables in the new network. If there was no
match, we re-computed the BDD by using the BDDs computed for the fanin nodes
of the new node. We reported time for this incremental computation (Inc Time)as
well as the time for computing the matching (Total Match time). We also built the
BDDs for the new network from scratch, and reported this non-incremental time
(Non-Inc Time).

Table 1 reports the results on 9 sample examples. Columns 2 and 3 list the total

and matched number of nodes in the network respectively. Column 4 lists the time

18

for a non-incremental BDD computation. The incremental BDD computation time
is listed in Column 5. The matching times are listed by its component; i.e. time
to get the initial matching(Match Initial Time), time to refine the partition(Match
Refine Time), in Column 6 and 7 respectively, as well as the total time to match
(Total Match Time) = initial + refinc +time to generate and evaluate the quality of
the entire matching cones.

The times for incremental BDD computation alone were always better than the
non-incremental time (obviously using precomputed information is better than no
information). However, when we add in the matching time, this is not always the
case. Of the 9 examples reported, 6 had significantly better total times for the incre-
mental procedure (match time + incremental time) as compared to the non-incremental
procedure. Two (clma, clmb) examples had almost equivalent times, and one (s38584)
had worse time for the incremental method.

We also report the results on the exact computation (Section 4.3)as compared
to the heuristic (Section 4.4). The exact method ran out of memory much faster,
and hence we were only able to deal with small examples with the exact method.
However, Table 2 shows that for examples where the exact method could complete,

the heuristic answers were almost always the same.

6 Conclusions and Future Work

We have implemented the matching algorithms, and demonstrated that on BDD
building the incremental procedures take less time than the non-incremental. We
can conclude that on an average the incremental procedure should less time than
the non-incremental. We have also implemented the exact matching, and shown
that for small examples the exact answer is almost identical to our heuristic. This

demonstrates the effectiveness of our heuristic.

19

Example | Heuristic ff Nodes | Exact #f Nodes
in Matching in Matching

apex7 12 12
bbsse 23 23

c8 15 16
cml63a 11 11
i2 48 48

mark1 18 18
minmax10 87 87
minmax12 104 104
mult32b 253 253
term1 62 62

Table 2: Exact Vs Heuristic

20

We examined the one example where the matching time far exceeded the non-
incremental time, and found that the cause of this problem was the large symmetry
in the circuit coupled with the large size of the circuit. There were many possible
matchings, and examining them all, while determining the qualities of matchings
was expensive. As part of future work, we plan to use the work of Malik [16] to
detect symmetries and speed up our computation. We found that as we increased
the size of the example, the matching time increased significantly. This is due to
our explicit formulation of the matching algorithm. We also plan to try to implicitly
formulate the matching algorithms, so as to overcome some of the size limitations.

Our techniques could be extended to deal with matching arbitrary sections of
the network, rather than the entire transitive fanin cone. One application would be
finding structurally identical sections within a single network, so that information

computed at one section may be re-used for another structurally identical portion.

References

(1] H.Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Implicit State Enumeration of Finite State Machines using BDD’s,” in Proc.

Intl. Conf. on Computer-Aided Design, pp. 130-133, Nov. 1990.

[2] R. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,”
IEEE Trans. Computers, vol. C-35, pp. 677-691, Aug. 1986.

[3]1 D. Brand, “Incremental Synthesis,” in Proc. Intl. Conf. on Computer-Aided
Design, pp. 126-129, Nov. 1992,

[4] D. Brand, A. Drumm, S. Kundu, and P. Narain, “Incremental Synthesis,” in

Proc. Intl. Conf. on Computer-Aided Design, pp. 14-18, Nov. 1994,

21

[5]

(6]

(7

(8]

191

[10]

[11]

J. Burch and D. Long, “Efficient boolean function matching,” in Proceedings
of IEEE/ACM International Conference on Computer-Aided Design, pp. 408—
411, November 1992,

R. K. Brayton, M. Chiodo, R. Hojati, T. Kam, K. Kodandapani, R. P. Kur-
shan, S. Malik, A. L. Sangiovanni-Vincentelli, E. M. Sentovich, T. Shiple,
K. J. Singh, and H.-Y. Wang, “BLIF-MV: An Interchange Format for Design
Verification and Synthesis,” Tech. Rep. UCB/ERL M91/97, Electronics Re-
search Lab, Univ. of California, Berkeley, CA 94720, Nov. 1991.

G. M. Swamy and R. K. Brayton, “Incremental Formal Design Verification,”
in Proc. Intl. Conf. on Computer-Aided Design, pp. 458-465, Nov. 1994,

G. M. Swamy, V. Singhal, and R. K. Brayton, “Incremental methods for Fsm
Traversal,” in Proc. Intl. Conf. on Computer Design, pp. 590-595, Oct. 1995.

O. Sokolosky and S. Smolka, “Incremental Model-Checking in Modal Mu-
Calculus,” in Proc. of the Conf. on Computer-Aided Verification, vol. 818,
pp. 351-363, Springer-Verlag, June 1994,

J. Hopcroft, “An nlogn algorithm for minimizing states in a finite automa-
ton,” in Theory of Machines and Computations. Proceedings of an Interna-
tional Symposium on the Theory of Machines and Computations. (Z. Kohavi

and A. Paz, eds.), (Haifa, Isreal), pp. 189-196, Academic Press, 1971.

T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, “A Fully Im-
plicit Algorithm for Exact State Minimization,” in Proc. of the Design Au-
tomation Conf., pp. 684—690, June 1994,

22

[12] G. M. Swamy, P. Mcgeer, and R. K. Brayton, “An Exact Logic minimizer us-
ing BDD based Methods ,” Tech. Rep. UCB/ERL M92/127, Electronics Re-
search Lab, Univ. of California, Berkeley, CA 94720, 1992.

[13] E.J. McClusky, “Minimization of Boolean Functions,” Bell System Technical
Journal, vol. 35, 1956.

[14] R. K. Brayton et al., “VIS: A System for Verification and Synthesis,” in Proc.
of the Conf. on Computer-Aided Verification, pp. 332-334, 1996.

[15] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “Sequential Circuit Design Using Synthesis and Op-
timization,” in Proc. Intl. Conf. on Computer Design, pp. 328-333, Oct. 1992.

[16] S.Malik, J. Mohnke, and P. Molitor, “Limits of Using Signatures for Permu-
tation Indepedant Boolean Matching,” in Proc. Intl. Workshop on Logic Syn-
thesis, (Tahoe), May 1995.

23

	Copyright notice 1996
	ERL-96-21

