
 

 

 

 

 

 

 

 

 

Copyright © 1996, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



IDENTIFYING COMMON SUBSTRUCTURE

FOR INCREMENTAL METHODS

by

Stephen A. Edwards, Gitanjali M. Swamy,
and Robert K. Brayton

Memorandum No. UCB/ERL M96/21

15 April 1996

V



IDENTIFYING COMMON SUBSTRUCTURE

FOR INCREMENTAL METHODS

by

Stephen A. Edwards, Gitanjali M. Swamy,
and Robert K. Brayton

Memorandum No. UCB/ERL M96/21

15 April 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Identifying Common Substructure for Incremental

Methods

Stephen A. Edwards Gitanjali M. Swamy Robert K. Brayton

{sedwards, gms, brayton)@eecs.berkeley.edu

Departmentof Electrical Engineering andComputer Sciences

University of California, Berkeley, CA 94720

Abstract

In this paper we solve the problem of identifying a"matching" between

two logiccircuits or"networks". A matching is a functions that maps each

gate or "node" in the new circuit into one in the old circuit (if a matching

does not exist it maps it to null). We present both an exact and a heuristic

way to solve the maximal matching problem. The matching problem does

notrequire anyinputcorrespondences; the purpose is to identifystructurally

identical regions in the networks.

We apply this solution to the problem of incremental design. Logicde

sign is usually an iterative process where errors are corrected and optimiza

tionsperformed repeatedly. A designer rectifies, re-optimizes, and rechecks a

design many times. In practice, it is common for small, incremental changes

tobemade tothedesign, rather than changing theentirety of thedesign. Cur

rently, each time the systemis modified, theentire setof computations (syn

thesis,verification) are repeated from the beginning. This results in unneces-



sary re-computation of information, which canbe avoided by re-using results

of a previousiteration andinformation aboutchanges to the system.

Synthesisandverification toolsthatrecognize thesesequences ofslightly-

differing inputs may be ableto outperform theircounterparts thatdiscard all

previouswork. This work is concerned with detecting what informationhas

changed in a design, andwhat information may be re-utilized.



1 Introduction

We address the problem of finding a high quality matching between two networks.

We comparepairs ofnetworks—combinationallogic designsrepresentedasdirected

acyclic graphs whose nodes aregeneralized(multi-valued, non-deterministic) gates

andwhose edges aregeneralized(multi-valued) connecting wires. We look formatch-

ings, a function M:N->N'u {§} from each nodein a new networkN to a nodein

an old networkN1 or to "unmatched" ((j>) suchthat if M(n) = n\ then the gates at

nodesn and n'are identical (when theirinputsare permuted) andtheir fanins match

(M(njt) = n'k for corresponding fanins /** and n'k). The quality of amatching is the

numberof matched nodes q(M) = \{n € N\M(n) ^ <J)}|. We solve the problem of

finding the maximum quality matching.

The abilityto reuse informationis the primary motivation for solving this prob

lem. One application, incremental design analysis, stems from the iterative nature

of design. A designerusually wants to analyzeeach versionof a design (with, e.g,

a formal verification check). Analysis can be done more efficiently by identifying

unchanged portionsof a design andreusingthe information computed for them. If

we have amatching M, we canreuse information for each noden whereM(n) / <{>.

Ourtechniques may alsobe used to identifycommon areas within a singledesign,

allowing common information to be computed efficiently. Another application is

incremental synthesis, where the aim is to preserve as much of the old design as

possible.

A matching correspondsto structurallyidenticaltransitive fanin cones ofthe de

sign that start at a node and contain all the nodes and wires in its transitive fanin. We

chooseto identify these because the global function at a nodeis a function only of

its transitive fanin. An example is the transition function [1],used frequentlyin for

mal verification andusuallycomputedusingBDDs [2]. Identifying matchingnodes



allowsus to compute the new BDD by substitutingvariables, which canbe done ef

ficiently. Ourapproach doesnot require anyadditional matchinginformation(e.g.,

correspondences betweenthe primary inputs).We expectmost designswe compare

will be the outputof a compiler that does not supply any correspondence informa

tion. An alternative would be to use names to guess correspondences, but this is

insufficientwhen namesare automatically generated—they are often very sensitive

to small changes in a design. Finally,by not assuming input correspondences, our

algorithms can be applied to more general problems such as identifying identical

portions within the same design.

We propose a greedy three-phase algorithmto find a good matching. Initially,

nodes with identical functions are identified. This information is then combined

with connectivity information to find nodes that have identical structures in their

transitive fanins. Finally, the matchings implied by these nodes are greedily com

bined into a high-quality matching.

This paper is organized as follows. Section 2 describes previous and related

work on the problem. Section 3 describes our approachto the gate function (node)

matching problem and Section 4 contains our exact and heuristic solutions to the

network (structural) matching problem. We present both an exact formulation (Sec

tion 4.3) and a greedyalgorithmthat works well in practice (Section 4.4). Section 5

describes the results of some experiments on the algorithms and presents our con

clusions.

2 Previous Work

Other approaches to incremental synthesis rely on knowing input correspondences.

Brand et al.'s [3,4] work on incremental synthesis identifies regions of common

ality similar to our own, but they require knowledge of input correspondences and



can only detect regions that start at the inputs.

Burch et al. [5] solve a functional matching problem thatdoes not require in

put correspondence information. However, they are only comparing boolean func

tions, and their approach does not generalize to circuit designs. We adopt a similar

notion of a semi-canonical form, but our form is simpler (and hence faster) at the

expense of some precision. Also, we deal with more general multi-valued func

tions [6], ratherthan just binary.

The techniques presented here can be used to drive the incremental verification

algorithms of Swamy et a.l [7] [8] andSokolosky et al. [9]. These use information

about the similarities between two designs to speed up the verification process.

3 Table Matching

The nodesinournetworks havediscrete-valued functions (ageneralizationofboolean

functions) associated withthem. These are represented inBLIF-MV-style tables [6],

suchas that in Figure 1. Each column on theleft represents an inputvariable, and

each row isapattern that, when theinputs match it, produces theoutput intheright

most column. Each entry is either a single value (e.g., 3), a set of values (e.g.,

1,2,5),orthesetof all values (i.e.,"-"). Note that blif-mvpermits symbolic values

of the form red, blue, greeen, which are represented as thevalues 0.1,2. We ignore

the fact that red,blue,greeen can alsobe represented as 2,1,0.

Figure 1represents a function f(xi,x2,x3) that is 3when x\ = 0 and x2 = 2or3,

or when x2 = 1;is 0 when x\ = 1, x2 = 0, and jc3 = 1; and is 1 default.

We wantto be able to quicklyidentifytables that compute the same function.

Transforming each table into apermutation-invariant canonical form isan approxi

mateapproach to solvingthis problem; different tables that are notequivalentmod

ulopermutations mayalso compute thesame function. Computing acanonical form



X\ X2 *3 /

0 2,3 - 3

- 1 - 3

1 0 1 0

default

Figure 1: A multi-valuedtable. *i, x2, andx-$ are the input variables.

(modulo all permutations) is much more expensive([5]).

Definition 1 Two tablesarepermutationequivalentif one can transformed tothe

other bypermutingthe rowsand columns.

Definition 2 Afunction iscanonicalizing iffitmaps allpermutation-equivalentta

bles toa singletable, which is calledthepermutation-invariant canonicalform of

the table.

A function is canonicalizing if it imposes a permutation-invarianttotal order

on rows and columns and then sorts the rows and columns based on this. Finding

such a total order is difficult and expensive, however, so we resort to an order that is

partial for certain tables. We count the number of times a particular value appears

in the entries in a row or column and order the rows and columns based on this sum.

Consider the table in Figure2. If we orderthe rows and columns according the

number of 1's that appear in each row and column, we obtain the table in Figure3.

We were fortunatein this example, since the number of 1's in each row andcolumn

is different, but in general, this strategyonly produces semi-canonical tables.

We can extend these ideas to tables with set-valued entries by converting each

entry to an integer. First, each set is transformed to a vector of O's and 1's. Each 1

represents the presence of a value in the set; each 0 represents the absence, e.g., the



1=

1=

(l 1o^ 2

1 1 1 3

V1 ° °J 1

3 2 1

Figure 2: A simple table annotated with the number of 1*s in each row and column.

1 =

( 0 0 1 ^ 1

0 1 1 2

\\ 1 ij 3

1= 12 3

Figure 3: The table of Figure 2 in canonical form



entry 2,3 would be representedas a vector (0,0,1,1). Summing all such vectors in

a row or column (zero-extending them if necessary) gives a vector than can be used

to impose a partial order.

These vectors can be transformed to integers to make them easier to manipulate.

Note that in a table with n rows andm columns, the total number of l's in a position

in a column cannot exceed n. Similarly, the total number in a row cannot exceed

m. By transforming these vectors to basemax{m,«} +1 integers, we can sum the

integers in a row or column, and still ensure that each column sum only includes

information about that column (no carry between columns).

Definition 3 Fora table with n rows and mcolumns, let mj bethe maximum value

of the input variable in column j, and letEjj(k) be1if the entry in row i and column

j containsthevaluek and 0 otherwise. The numerical representation ofthis table

is annxm matrix T with entries

tij=y£(l+mM{m,?i})kEu{k)
k=0

It is clear that each subset of values at a table entry has unique encoding Uj.

Figure 4 shows the table of Figure 1 converted to a matrix of natural numbers. For

this table, (1 + max{/«,n]) = 4. As an example, theentry2,3 is converted to abase

four number: tU2 = 4°•0+41 •0+42 •1+43 •1= 80.

Definition 4 In anmxn table (/,y), arow i is before row kifJ!j=\Uj < X'j=I tkj. A

column j isbefore a column k*/£=i Uj < JJ"=l t^.

Definition 5 The semi-canonical form ofa table Uj is a permutation of the rows

andcolumns ofUj such that if row i is before row k then i < k, and if column j is

beforecolumnk then j < k.

Figure 5 shows the table in Figure 4 converted to semi-canonical form.



1=

1 =

(l 80 5) 86

5 4 5 14

I4 1 4J 9

10 85 14

Figure 4: The table ofFigure 1 converted to a matrix of natural numbers. Row and

column sums are also shown.

f 4 4 i >

5 5 4

^ 1 '5 80 j

Figure 5: The table of Figure 4 in semi-canonical form



Theorem 3.1 A table in semi-canonicalform represents the samefunction as the

original table undersomepermutation ofvariables.

Hence two tables with the same semi-canonical form represent the same dis

crete function.

4 Network Matching

Our aim is, for each node in the new network, to find a node in the old network with

information we can use for its analysis. This information, by assumption, is only

a function of the node and its transitivefanin. Thus, the matching node in the old

network must have an identical transitive fanin.

We cannot use the implementation verification techniqueof using the simula

tion signaturesof nodes to distinguishthem, because we do not have an input cor

respondence. We identify the set of all potentially matching nodes (called candi

date pairs)and combine a compatible subset of theseto form the matching. In Sec

tion 4.3, we showthat the problemof finding the best subsetcan be reduced to find

ing a maximal primecompatible. In Section 4.4, wepresenta greedy algorithm for

finding a good subset.

4.1 Definitions

Definition 6 Anetwork N = {«/} is a setofnodes with three associatedfunctions:

func(n) is the function of the node, fanins(/i) 6 {0,1,...} is the number of fanins

of the node, andfaxim{n,k)eN,k={\,...,famns(n)} is the kthfanin ofthenode.

Figure 6 depicts a typical network. We only consider acyclic networks. For

mally, n g tf(w), where tf(n) denotesthe set of nodesin the transitivefanin of n.

10



N={nu...,n6}

func(ni) = func(«3) = f\

func(n2) = fi

H4 :/3I fanins(/i2) = 3

fanins(fls) = fanins(/i6) = 0

n$'. f4\ fanin(n2,l) = «3
fanin (n2,2) = «5

fanin (n2,3) = H4

tf(n\) = {n3,n5,n6}

Figure 6: A typical network. The arrows indicate the direction of information flow.

Definition 7 Tlie transitivefanin ofanode nis the setofnodes tf(n) = uja^i1ns(w) (fanin(«, k) U
tf(fanin(«,fc))).

The following definitioncharacterizes which nodes we might consider match

ing. Informally, two nodes could match if their functions are identical and their re

spective fanins could match.

Definition 8 Apairofnodesn\,n2isacandidatepair(denotedn\~n2) j/func(w 1) =

func(rt2), fanins(«i) = fanins(n2), andVk=l fa,uns(«,)fanin("i>*) ~ fanin(/?2,*).

Note that the correspondence between thefanins is determined by reducing the ta

ble toitssemi-canonicalform, and noting that in thatform, the variable ofcolumn

i in the tablefornmust correspond with the variable in column i in the tableforn'.

Note that this definition impliesthat all primary inputsmay match with each

other. We add the caveat that the primary inputs may match provide they can take

the same set of values, i.e. a primary input thatcantake values 0,1,2 cannot match

with a primary input that takes values 0,1,2,3,4,5.

11



Not all candidate pairsleadto consistent matchings. Specifically, it may be nec

essary to match a node in the new network to two or more nodes in the old network

simultaneously. This is particularly nonsensical in the case of zero-fanin nodes,

which represent inputs to the network. Figure7 depicts a contradictory situation.

New

"1 : /i

v

Old

ni-fi n'2 : f2 ri3: f2

n\ ~ n\

n2 ~ n'2

n2 ~ «3

Figure 7: A candidate pair (n\ ~ n\) withnoconsistent matching.

Formally, the consistency constraintrequires a matching to be a function map

ping each node in the new network either a matched node in the old network, or to

"unmatched," represented as (j>.

Definition 9 Given twonetworks N andN', a matching is afunction M:N^N'u

{<{>} such that M(n) ^<J) impliesn~M{n)andVk= l,...,fanins(w) .M(fanin(w,fc)):

fanin(Af {n),k).

New

M(nl) = n\
Old

«i: f\ n\:fx

M{n2) - n2M(n3) = n'3

n2 :fi n3: f2 n2 :h «3: h

Figure 8: A matching with q(M) = 3

Our objective is to find a matching that maximizes the number ofmatched nodes

(called the quality of the match).

12



Definition 10 Tfie quality of a matching M is the number of matched nodes, i.e.,

q(M) = \{n\M(n)^$}\.

Definition 11 If it exists, the implied matching ofa candidatepairn\ ~ n2 is the

function

M(nx) = n2

VkM(famn(na,k)) = fanin{M{na),k), na e tf(«i) U{ni}

M(n) = *, n<ttf(m)

Theorem 4.1 An implied matching is a matching.

We will be combining implied matchings to form biggermatchings, but some

pairsof implied matchings—those that map a node in the new network to two dif

ferent nodes in the old—can not be combined. We need a formal definition ofwhich

matchings can be merged:

Definition 12 Apair ofmatchings M\ andM2 arecompatible (written M\ r± M2)

if(Ml{n)?<b)A(M2{n)j:<b)=>Ml{n)=M2(n).

Lemma 4.2 Compatibility is transitive, i.e., ifMi ^ M2 andM2 ^ M3 then M\ ^

M3.

Definition 13 The merge of two matchings M\ and M2, written M\ + M2, is the

function

(uj.u\t \ \ Ml(n) WM=<t>(Mi+M2)(n) = <
I M\(n) otherwise

Lemma 4.3 IfMi ^ M2, then M\ + M2 is a matching andMi + M2 - M2 + M\.

Moreover, ifM2 ^ M3, then {Mt +M2)+M3=Mi + (M2 + M3).

13



Lemma 4.4 Merging onlyimproves quality, i.e., ifMi # M2, thenq(Mi),q(M2) <

q{Mi+M2).

4.2 Determining Matchings: A Refinement Algorithm

In order to determine the entire set of implied matchings, we use the following it

erative algorithm:

We begin by assuming all nodes whose tables (functions) are matched to be matched.

We implement this algorithm with a hash table. Nodes with the same table are put

into the same initial "bucket" in the hash table. The canonical form of the table im

poses a certain order on the fanins of the node. If two node tables in canonical form

are equal, then the fanins node corresponding to column i in the node tables, must

correspond. We refine the node matchings iteratively, by "un-matching" two nodes,

if some of their corresponding fanins are un-matched. We accomplish this by re-

bucketing each node in the hash table. At each iteration, the new bucket signature

of a node consists of its table signature (canonical form) and the bucket numbers

of its fanins (in the order imposed by their tables). Thus, if at some iteration, any

nodes in the same bucket have corresponding fanins in different buckets, then after

that iteration, this nodes get put into different buckets.

This algorithmis similar to the algorithm for the computation of equivalent states

in an FSM [10], [1]. After this refinement, all pairs of nodes in a bucket are candi

dates. The algorithm is shown in Figure 9.

Though we have described aprocedure that matchesentire cones, this procedure

can be modified to match sub-regions by restricting the number of iterations of the

refinement procedure. We plan to address this as part of future work.

14



Partition nodes in both networks by function

Refine this partition s.t. all nodes in a bucket have fanins in the same buckets

Form all candidatepairs by considering all pairsof nodesin each bucket

Sort the candidatepairs by the number of nodesin their transitivefanin

Figure 9: Identifying Compatible Nodes.

4.3 An Exact Formulation

Oncewehavea set of consistent matchings (Section 4.2),we address theproblem

of finding a maximum compatible matching exactly.

Lemma 4.4 indicates that merging compatible matchings gives better match

ings. In this section,we use this idea to exactly characterize the problemof finding

the maximal quality matching. We show that the maximal matching is a "prime"

matching—onefor which merging in other matchings is either impossible or un

productive.

Lemma 4.5 IfM is a matching, then it is the sum ofafinite number of compatible

implied matchings, i.e., M{ v± M2 # ••-Mk andM = Mx+M2-\ \-Mk.

Proof Followsfrom thedefinitionof matching, impliedmatching, andLemmas 4.2

and 4.3. •

We can define a dominance relation [11] [12] as follows:

Definition14 Amatching Mx dominates a matching M2 (written M\ >M2)ifMx ^

M2 andM\ +M2 = Mi.

Definition 15 Aprimematching is one that is not dominated byany other match

ing.

Lemma 4.6 IfMi is aprime matching, and Mi > M2, then q{Mi) > q(M2)).

15



Proof Since Mx > M2, Mi ^ M2 and Mx = Mi + M2. Lemma4.4implies q[M2) <

q(Mj +M2). However, since Mi+ M2 = Mh it follows that q(Af2) < q(Mx). •

Theorem 4.7 A maximum matching is a prime matching andcan be builtfrom a

set ofcompatible implied matchings.

Proof Follows from Lemmas 4.5 and 4.6. •

Thus, fromTheorem 4.7 the problem of finding the maximum matching is one

of finding the maximum qualityprime. Wecando thisnaivelyby enumerating each

prime matching and calculating its quality (in actuality, we implement a slightly

more efficient procedure). However, since the number of primes of a set of n el

ements is 0(3"/n) [13] and our n can be 0{N2), where N is the number of nodes

in each network, it is oftenimpractical to explicitly searchthe entireset of primes.

This worst case comes when the network consists of a set of zero-fanin nodes with

identical functions.

4.4 A Greedy Algorithm

Ourheuristic algorithm finds thesetof all candidate pairs with implied matchings

and merges them greedily, trying the highest qualityones first.

Firstweusedtherefinement procedure ofSection 4.2to identifycandidate pairs.

Once the candidatepairs are identified, we build a matching by merging together

compatibleimplied matchings. Weconsidercandidatepairs one at a time, starting

with thosewiththe largestnumber of nodes in their transitive fanins, and"grow"a

matching by mergingeach compatibleimplied matching.

The entire algorithmis shownin Figure10. The performance of our implemen

tation of this algorithm on example circuits is discussed in Section 5.

16



Partition nodes in both networks by function

Refine this partitions.t. all nodes in a bucket have fanins in the same buckets

Form allcandidate pairs by considering all pairs of nodesin each bucket

Sort the candidate pairs by the numberof nodes in their transitive fanin

M(n) = <J>, the empty matching

for Mi largest toM; smallest

if Mr±Mj

M = M + Mi

return M

Figure 10: The greedy algorithm.

5 Results

We have implemented the algorithms described in the VIS [14] environment.

We hadto design asetof experiments to testourprocedure. We assume thatthe

design has been read in, and thedesigner has computed the output function BDDs

of each node (as functions of the primary inputs). At this point the designer mod

ifies the original design by either changing the functionality, orjust re-optimizing

the hardware for someother objective. The designer wouldlike to use the BDDs

computed for the old networkto efficiently computethe BDDsin the new network.

Obviously, wcassume that there is a sufficient amount of structural similarity be

tween the old and the network design.

To emulate adesign change, wetook MCNC and ISCAS benchmark examples

and optimized them using asynthesis algorithm ("script.delay" in theSIS [15] sys

tem), toobtain acircuit called "new". The original benchmark spec corresponds to

the "old" design.

As an experiment webuilt the function BDDs associated with the"old" design.

17



Example jj Nodes 0 Nodes Non-Inc Inc Match Initial Match Refine Total Match

Total in Match Time Time Time Time Time

des 1182 1174 5.25 0.067 2.45 0.733 4.4

ilO 2754 2750 21.2 0.15 0.75 1.167 3.45

minmaxlO 723 87 800.734 0.2 0.133 0.2 0.35

minmaxl2 914 104 352.634 0.25 0.15 0.3 0.467

mm9a 682 637 47.75 0.033 0.15 0.1 0.683

mm9b 714 106 526 0.2 0.184 0.15 0.367

S15850 11591 10272 63.816 0.75 2.75 3.45 24.366

clma 11382 10973 11.6 0.8 4.766 3.534 11.783

clmb 10842 10407 11.45 0.8 4.634 3.416 10.45

S38584 23775 20839 10.85 1.35 5.767 7.267 138.434

Table 1: Comparison Incremental and NonJncremental

This is done recursively, by building the BDD at each node as a function of the

BDDs of its fanin nodes. Next, we ranthe matching algorithm on the old and new

designs. If there existed a match from a node in the new network, to the old, we re

used the BDD for the old node by merely substituting the old network BDD vari

ables with the corresponding BDD variables in the new network. If there was no

match, we re-computed the BDD by using the BDDs computed for the fanin nodes

of the new node. We reported time for this incremental compulation (Inc Time)as

well as the time for computing the matching (Total Match time). We also built the

BDDs for the new network from scratch, and reported this non-incremental time

(Non-Inc Time).

Table 1 reports the results on 9 sample examples. Columns 2 and 3 list the total

and matched number of nodes in the network respectively. Column 4 lists the time

18



for anon-incremental BDD computation. Theincremental BDD computation time

is listed in Column 5. The matching times are listed by its component; i.e. time

to get the initial matching(Match Initial Time), time to refine the partition(Match

Refine Time), in Column 6 and 7 respectively, as well as the total time to match

(Total MatchTime) = initial+ refine+time to generate and evaluate the quality of

the entire matching cones.

The times for incremental BDD computation alone were always better than the

non-incremental time (obviously using precomputed information is better than no

information). However, when we add in the matching time, this is not always the

case. Of the 9 examples reported, 6 had significantly better total times for the incre

mental procedure (match time+incremental time) as compared to the non-incremental

procedure. T\vo (clma, clmb) examples had almost equivalent times, and one (s38584)

had worse time for the incremental method.

We also report the results on the exact computation (Section 4.3)as compared

to the heuristic (Section 4.4). The exact method ran out of memory much faster,

and hence we were only able to deal with small examples with the exact method.

However, Table 2 shows that for examples where the exact method could complete,

the heuristic answers were almost always the same.

6 Conclusions and Future Work

We have implemented the matching algorithms, and demonstrated that on BDD

building the incremental procedures take less time than the non-incremental. We

can conclude that on an average the incremental procedure should less time than

the non-incremental. We have also implemented the exact matching, and shown

that for small examples the exact answer is almost identical to our heuristic. This

demonstrates the effectiveness of our heuristic.

19



Example Heuristic {j Nodes Exact {j Nodes

in Matching in Matching

apex7 12 12

bbsse 23 23

c8 15 16

cm163a 11 11

i2 48 48

markl 18 18

minmaxlO 87 87

minmaxl2 104 104

mult32b 253 253

terml 62 62

Table 2: Exact Vs Heuristic

20



We examined the one example wherethe matching time far exceeded the non-

incremental time, and found that thecause of thisproblem wasthe large symmetry

in the circuit coupled with the large size of the circuit. There were many possible

matchings, and examining them all, while determining the qualities of matchings

was expensive. As part of future work, we plan to use the work of Malik [16] to

detect symmetries and speed up our computation. We found that as we increased

the size of the example, the matching time increased significantly. This is due to

ourexplicit formulation of thematching algorithm. We also plan to tryto implicitly

formulate the matching algorithms, so as to overcome some of the size limitations.

Ourtechniques couldbe extended to deal with matching arbitrary sections of

the network,rather thanthe entire transitive fanin cone. One application would be

finding structurally identical sections within a single network, so that information

computed at one sectionmay be re-used for another structurally identical portion.

References

[1] H.Touati, H. Savoj,B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,

"Implicit State Enumeration of Finite StateMachines using BDD's," in Proc.

Intl. Conf. on Computer-Aided Design, pp. 130-133,Nov. 1990.

[2] R. Bryant, "Graph-based Algorithms for Boolean Function Manipulation,"

IEEE Trans. Computers, vol. C-35, pp. 677-691,Aug. 1986.

[3] D. Brand, "Incremental Synthesis," in Proc. Intl. Conf. on Computer-Aided

Design,pp. 126-129, Nov. 1992.

[4] D. Brand, A. Drumm, S. Kundu, and P. Narain, "Incremental Synthesis," in

Proc. Intl. Conf. on Computer-Aided Design, pp. 14-18, Nov. 1994.

21



[5] J. Burchand D. Long, "Efficientboolean function matching," in Proceedings

ofIEEE/ACM International Conference onComputer-Aided Design, pp.408-

411, November 1992.

[6] R. K. Brayton, M. Chiodo, R. Hojati, T. Kam, K. Kodandapani, R. P. Kur-

shan, S. Malik, A. L. Sangiovanni-Vincentelli, E. M. Sentovich, T. Shiple,

K. J. Singh, and H.-Y. Wang, "BLIF-MV: An Interchange Format for Design

Verification and Synthesis," Tech. Rep. UCB/ERL M91/97, Electronics Re

searchLab, Univ. ofCalifornia, Berkeley, CA 94720, Nov. 1991.

[7] G. M. Swamy and R. K. Brayton, "Incremental Formal DesignVerification,"

in Proc. Intl. Conf on Computer-Aided Design, pp. 458-465, Nov. 1994.

[8] G. M. Swamy, V. Singhal, and R. K. Brayton, "Incremental methods for Fsm

Traversal," in Proc. Intl. Conf on Computer Design,pp. 590-595, Oct. 1995.

[9] O. Sokolosky and S. Smolka, "Incremental Model-Checking in Modal Mu-

Calculus," in Proc. of the Conf. on Computer-Aided Verification, vol. 818,

pp. 351-363, Springer-Verlag, June 1994.

[10] J. Hopcroft, "An n\ogn algorithm for minimizing states in a finite automa

ton," in Theory of Machines and Computations. Proceedings of an Interna

tionalSymposium on the Tiieory of Machines and Computations. (Z. Kohavi

and A. Paz, eds.), (Haifa, Isreal), pp. 189-196, Academic Press, 1971.

[11] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, "A Fully Im

plicit Algorithm for Exact State Minimization," in Proc. of the Design Au

tomation Conf, pp. 684-690, June 1994.

22



[12] G. M. Swamy, P. Mcgeer, and R. K. Brayton, "An Exact Logic minimizer us

ing BDD based Methods ," Tech. Rep. UCB/ERL M92/127, Electronics Re

searchLab, Univ. of California, Berkeley, CA 94720,1992.

[13] E. J. McClusky,"Minimizationof Boolean Functions," BellSystem Technical

Journal, vol. 35, 1956.

[14] R. K. Braytonet al.,"VIS: A System for Verification and Synthesis," in Proc.

ofthe Conf. on Computer-Aided Verification, pp. 332-334,1996.

[15] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L.

Sangiovanni-Vincentelli, "Sequential Circuit Design UsingSynthesisandOp

timization," in Proc. Intl. Conf. on Computer Design,pp. 328-333, Oct. 1992.

[16] S. Malik, J. Mohnke, andP. Molitor, "Limits of Using Signatures for Permu

tation Indepedant Boolean Matching," in Proc. Intl. Workshop on Logic Syn

thesis, (Tahoe), May 1995.

23


	Copyright notice 1996
	ERL-96-21

