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Abstract. We summarize several recent results about hybrid automata. Our
goal is to demonstrate that concepts from the theory of discrete concurrent
systems can give insights into partly continuous systems, and that methods for
the verification of finite-state systems can be used to analyze certain systems
with uncountable state spaces.

1 Hybrid Automata

A hybrid automaton is a formal model for a dynamical system with discrete and
continuous components.

1.1 Syntax

A paradigmatic example of a mixed discrete-continuous system is a digital con
troller of an analog plant. The discrete state of the controller is modeled by the
vertices of a graph (control modes), and the discrete dynamics of the controller
is modeled by the edges of the graph (control switches). The continuous state of
the plant is modeled by points in Rn, and the continuous dynamics of the plant
is modeled by flow conditions such as differential equations. The behavior of
the plant depends on the state of the controller: each control mode determines
a flow condition, and each control switch may cause a discrete change in the
state of the plant, as determined by a jump condition. Dually, the behavior of
the controller depends on the state of the plant: each control mode continuously
observes an invariant condition of the plant state, and by violating the invariant
condition, a continuous change in the plant state will cause a control switch.
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Figure 1: Thermostat automaton

Definition 1.1 [Hybrid automata] [5, 36, 3] A hybrid automaton H consists of
the following components.

Variables. A finite set X = {xi,...,xn} of real-numbered variables. The
number n iscalled the dimension ofH. We write X forthe set {ii,..., x„ }
of dotted variables (which represent first derivatives during continuous
change), and we write X' for the set {x[,.. .,x'n) of primed variables
(which represent values at the conclusion of discrete change).

Control graph. A finite directed multigraph {V,E). The vertices in V* are
called control modes. The edges in E are called control switches.

Initial, invariant, and flow conditions. Three vertex labeling functions init,
inv, and flow that assign to each control mode v G V three predicates.
Each initial condition init(v) is a predicate whose free variables are from A'.
Each invariant condition inv{v) is a predicate whose free variables are
from X. Each flow condition flow[v) is a predicate whose free variables
are from A* U A'.

Jump conditions. An edge labeling function jump that assigns to each control
switch e £ E a predicate. Each jump condition jump(e) is a predicate
whose free variables are from A' U A''.

Events. A finite set S of events, and an edge labeling function event: E -• S
that assigns to each control switch an event. D

Example 1.1 [Temperature control] The hybrid automaton ofFigure 1 models
a thermostat. The variable x represents the temperature. In control mode Off,
the heater is off, and the temperature falls according to the flow condition
x = -O.lx. In control mode On, the heater is on, and the temperature rises
according to the flow condition x = 5 - O.lx. Initially, the heater is off and
the temperature is 20 degrees. According to the jump condition x < 19, the
heater may go on assoon as the temperature falls below 19 degrees. According
to the invariant condition x > 18, at the latest the heater will go on when the
temperature falls to 18 degrees. D



1.2 Safe Semantics

The execution of a hybrid automaton results in continuous change (flows) and
discrete change (jumps). The mixed discrete-continuous dynamics can be ab
stracted by a fully discrete transition system.

Definition 1.2 [Labeled transition systems] A labeled transition system S con
sists of the following components.

State space. A (possibly infinite) set Q of states, and a subset Q° C Q of
initial states.

Transition relations. A (possibly infinite) set A of labels, and for each label
a G .4, a binary relation A on the state space Q. Each triple q-^q' is
called a transition.

A subset R C Q of the state space is called a region. Given a region R and
a label a G -4, we write posta(R) = {q1 \ 3q G R.q-*q'} for the region of a-
successors of R, and we write prea(R) = {q \ 3q' G R.q-^q'} for the region of
a-predecessors of R. •

For a given hybrid automaton, we define two labeled transition systems. Both
transition systems represent discrete jumps by transitions. The timed transition
system abstracts continuous flows by transitions, retaining only information
about the source, the target, and the duration of each flow. The time-abstract
transition system abstracts also the duration of flows.

Definition 1.3 [Transition semantics of hybrid automata] The timed transition
system SfH of the hybrid automaton H is the labeled transition system with the
components Q, Q°, A, and —> for each a £ A, defined as follows.

• Define Q.Q° C V* x En such that (v,x) G Q iff the closed predicate
im>(i>)[A' := x] is true, and (v,x) G Q° iff both init(v)[X := x] and
inv(v)[X := x] are true. The set Q is called the state space of H, and the
subsets of Q are called H-regions.

A = EUi>0.

For each event ueS, define (v,x)—>(v',x') iff there is a control switch
e G E such that (1) the source of e is v and the target of e is v', (2) the
closed predicate jump(e)[X,X' := x,x'] is true, and (3) event(e) = a.

For each nonnegative real S G M>o, define (i/,x)—>(v',x') iff v = v' and
there is a differentiate function /: [0,S] —> Kn, with the first derivative
/: (0,<J) -> Rn, such that (1) /(0) = x and f{8) = x', and (2) for all reals
£ G (0,5), both inv(v)[X := f(e)] and flow{v)[X, X := f{e), f(s)] are
true. The function / is called a witness for the transition (i',x)->(r',x').



The time-abstract transition system Sfj of H is the labeled transition system
with the components Q,Q°, B, and -¥ for each bGB, defined as follows.

• Q and Q° are defined as above.

• B = S U{r}, for some event r £ E.

• For each event a G E, define A as above.

• Define (i7,x)-4(t/,x') iff there is a nonnegative real S G K>o such that
{v,x)->(v',x').

The time-abstract transition system Sfj is called the time abstraction of the
timed transition system S*H. •

Remark. [Definition 1.3] The state space Q and the timed label set A are
infinite. The time-abstract label set B is finite. For all states q of a hvbrid
automaton, g-»g. Sequences of event transitions and time transitions with du
ration (label) 0 are permitted, which generalizes the interleaving semantics for
discrete concurrent systems [7]. •

Remark. [Time vs. phase view] The time-abstract transition system S%,
which projects away the timedimension, can be viewed as the phase portrait of
the timed transition system SlH [22]. D

Remark. [Time-silent transition semantics] None of the results presented in
this paper change if the r-transitions of time-abstract transition systems are
considered silent [26]. •

1.3 Live Semantics

If weconsider the infinite behavior of a hybrid automaton, then we are interested
only in infinite sequences of transitions which do not converge in time. The
divergence oftime isa liveness assumption, and it istheonly liveness assumption
we need to consider [21, 28]. A hybrid automaton isnonzeno if it. cannot prevent
time from diverging. Clearly, only nonzeno designs of real-time systems can be
realized.

Definition 1.4 [Live transition systems] Consider a labeled transition system
S and a state q0 ofS. A q0-rooted trajectory ofS is a finite or infinite sequence
of pairs (a,-, g,),>i of labels a, GA and states q{ GQ such that ft-i^V?,- for all
t > 1. If go is an initial state of S, then (a,-, ?,•),->i is an initialized trajectory
of S. A live transition system (S,L) is a pair consisting of a labeled transition
system S and a set L of infinite initialized trajectories of 5. The set L of infinite
initialized trajectories is machine-closed for S ifevery finite initialized trajectory
of S is a prefix of some trajectory in L.1 If (5,L) is a live transition system,

'Assuming that every initial state of S has a successor state.



and (ai,qi)i>i is either a finite initialized trajectory of S or a trajectory in L,
then the corresponding sequence (a,-),->i of labels is called a (finite or infinite)
trace of (S, I). •

Definition 1.5 [Trace semantics of hybrid automata] We associate with each
transition of the timed transition system SlH a duration in IR>o. For events
a G D, the duration of q-^q' is 0. For reals 8 GK>o, the duration of qAq'
is S. An infinite trajectory (a,-,9j)j>i of the timed transition system SlH di
verges if the infinite sum Yli>ih diverges, where each <J, is the duration of
the corresponding transition g7-1 —^9*- An infinite trajectory (6,-,g,),>i of the
time-abstract transition system S% diverges if there is a divergent trajectory
(oi,gi),'>i of S'H such that for all i > 1, either a, = 6,- or a,, 6, G" E. Let VH be
the set of divergent initialized trajectories of the timed transition system S'H,
and let LaH be set of divergent initialized trajectories of the time-abstract tran
sition system S#. The hybrid automaton H is nonzeno if VH is machine-closed
for S*H (or equivalently, LaH is machine-closed for S%). Each trace of the live
transition system {StH, VH) is called a timed trace of H, and each trace of the
live transition system {S%,L%) is called a time-abstract trace of H. D

1.4 Composition

For two hybrid automata H\ and H2, we define the timed semantics and the
time-abstract semantics of the parallel composition Hi\\H2. The two hybrid
automata H\ and H2 interact via joint events: if event a is both an event of Hi
and an event of Ho, then Hi and H2 must synchronize on a-transitions; if a is an
event of Hi but not an event of H2, then each a-transition of Hi synchronizes
with a 0-duration time transition of H2, and vice versa. For each real 6 > 0, a
time transition of Hi with duration S must synchronize with a time transition
of H2 with the same duration.

Definition 1.6 [Product of transition systems] A consistency check for two
labeled transition systems Si and S2 is an associative partial function © on
pairs consisting of a transition from Si and a transition from £2- The product
Si x S2 with respect to the consistency check 0 is the labeled transition system
with the state space Qi x Q2, the set Qj x Q\ of initial states, the label set
range{(S>), and the following transition relations: for each label a G range(Q>),
define (qi, q2)-^(q'i, q2) iff there is a label ai GAi and a label a2 GA2 such that
a is the (defined) result ofapplying <g> to the two transitions qi^q[ and 92-^9^
D

Definition 1.7 [Composition of hybrid automata] Consider two hybrid au
tomata Hi and H2. A transition qi^\q\ of StHl and a transition 92-^2 °f
Sfj3 are consistent if one of the following three conditions is true.

1. ai = a2. In this case, the consistency check <S>= applied to the transitions
qi-^q'i and q2^q2 yields a\.



x = -100 -* x :€ (1900,4900]\exit /x = 0

Figure 2: Train automaton

approach

Figure 3: Controller automaton

2. ai G £i\D2 and °2 = 0. In this case, the consistency check <S>= yields oi.

3. ai = 0 and a2 G £2X^1- In this case, the consistency check ©= yields a2.

The timed transition system Sj^im., is defined to be the product SfHl x StIi2
with respect to the consistency check ®-. The time-abstract transition system
^Hi\\h2 1S defined to be the time abstraction of5^ ,,H . O

Example 1.2 [Railroadgate control] The hybrid automaton of Figure 2 models
a train on a circular track with a gate. The variable x represents the distance
of the train from the gate. Initially, the speed of the train is between 40 and
50 meters per second. At the distance of 1000 meters from the gate, the train
issues an approach event and may slow down to 30 meters per second. At the
distance of 100 meters past the gate, the train issues an exit event. The circular
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Figure 4: Gate automaton

track is between 2000 and 5000 meters long. We write jump conditions as
guarded commands, which allows us to suppress conjuncts of the form x' = x.
In particular, the jump condition of the control switch from Near to Past is
x = 0 A x' = x, and the jump condition from Past to Far is x = -100 A 1900 <
x' < 4900. The hybrid automaton of Figure 3 models the gate controller.
The variable u is a symbolic constant that represents the reaction delay of the
controller. The variable z is a clock for measuring elapsed time. When an
approach event is received, the controller issues a lower event within u seconds,
and when an exit event is received, the controller issues a raise event within
u seconds. The hybrid automaton of Figure 4 models the gate. The variable
y represents the position of the gate in degrees. Initially, the gate is open
(y = 90). When a lowerevent is received, the gate starts closing at the rate of 9
degrees per second, and when a raise event is received, the gate starts opening
at the same rate. Which values of the symbolic constant u ensure that the
gate is fully closed (y = 0) whenever the train is within 10 meters of the gate
(—10 < ar < 10)? D

Remark. [Shared variables] The consistency check ®= depends only on the
transition labels, and not on the source and target states of transitions. Alterna
tive consistency checks can be used to model read-shared and even write-shared
variables of hybrid automata [8]. •

Remark. [Time-abstract hybrid automata] The time-abstract transition sys
tem Sj^ii/^ is generally different from the product Sjij x S%2 of the time-
abstract component systems. This is not the case for time-abstract hybrid au
tomata [22]. Time-abstract design is desirable, because many useful properties
of time-abstract component systems are inherited by the compound system. D



Remark. [Receptiveness] The composition of two nonzeno hybrid automata
is not necessarily nonzeno. It is an interesting modeling problem for real-time
systems to guarantee the liveness of compound designs [1, 19, 33]. •

2 On the Trace Languages of Hybrid Automata

We identify which requirements on the traces of a hybrid automaton can be
checked algorithmically, and which cannot.

2.1 Verification Tasks

We study four paradigmatic questions about the traces of a hybrid automaton.
The reachability problem is a fundamental subtask for the verification of safety
requirements, and the emptiness problem is a fundamental subtask for the ver
ification of liveness requirements. The timed trace inclusion problem compares
the traces of a hybrid automaton against a timed specification, and the time-
abstract trace inclusion problem compares the traces of a hybrid automaton
against a time-abstract specification.

Definition 2.1 [Reachability, emptiness, and trace inclusion] The reachability
problem for a class ft of hybrid automata asks, given a hybrid automaton H
from ft and a control mode vof H, if there is an initialized trajectory of S'H (or
equivalently,S%) that visits a state of the form (v,x). The emptiness problem for
ft asks, given a hybrid automaton H from ft, if there is a divergent initialized
trajectory of SfH (or equivalently, Sjj). The (finitary) timed trace inclusion
problem for ft asks, given two hybrid automata Hi and H2 from ft, if every
(finite) timed trace of Hi is also a timed trace of H2. The (finitary) time-
abstract trace inclusion problem for ft asks, given two hybrid automata Hi and
H2 from ft, if every (finite) time-abstract trace of Hi is also a time-abstract
trace of H2. •

Remark. [Definition 2.1] Some of these problems are harder than others. In
particular, reachability can be reduced to finitary time-abstract trace inclusion,
and emptiness can be reduced to time-abstract trace inclusion. Also, finitary
trace inclusion can be reduced to trace inclusion. •

2.2 Rectangular Automata

A hybrid automaton is rectangular if the flow conditions are independent of the
control modes, and the variables are pairwise independent. Specifically, in each
control mode of a rectangular automaton, the first derivative of each variable is
given a range of possible values, and that range does not change with control
switches. With each control switch of a rectangular automaton, the value of
each variable is either left unchanged, or changed nondeterministically to a new



value within a given range of possibilities. The behaviors of the variables are
decoupled, because the ranges of possible values and derivative values for one
variable cannot depend on the value or derivative value of another variable.

Definition 2.2 [Rectangular automata] [38, 27] A rectangle I = IIki^1' °f
dimension n is the product of n intervals I, C R of the real line, each with
rational or infinite endpoints. The rectangle I is bounded (a singleton) if each
interval I,-, for 1 < i < n, is bounded (a singleton). A hybrid automaton
H is a rectangular automaton if the following three restrictions are met. Let
A' = {xi...., x„} be the set of variables of H.

1. For each control mode v of H, the initial condition init(v) has the form
X G ltmt^ for a bounded n-dimensional rectangle I"1"^), and the in
variant condition inv(v) has the form A' G I"1"^) for an n-dimensional
rectangle I'ni'(«).

2. There is a bounded n-dimensional rectangle I-^0"' such that for each control
mode v of H, the flow condition flow(v) has the form A' G lfl°w.

3. For each control switch e of H, the jump condition jump(v) has the form
X g Fre(e> A Y' = Y A X' G Iposf(e) for two n-dimensional rectangles
ipre(e) and po5t(e) ?and &^ y g y 0f variables The control switch e is
said to reinitialize the variables in X\Y. For all 1 < i < n, if the variable
xt is reinitialized by e, then the interval l^ost^ mUst be bounded.

The rectangular automaton H is a singular automaton if the flow rectangle I^ow
isa singleton. The singular automaton H isa timed automaton if Iflow = [1, l]n.
D

Remark. [Clocks and drifting clocks] A clock can be modeled by a variable
Xi with the flow interval lfou' = [1,1]. All variables ofa timed automaton are
clocks [6]. A clock with drift e, for s GQ>o, can be modeled by a variable with
the flow interval [1 - s, 1+ e] [12, 31]. •

Remark. [Composition] Timed, singular, and rectangular automata are closed
under composition: for two timed (singular; rectangular) automata Hi and H2,
we can construct a timed (singular; rectangular) automaton H such that S'H =
•Sjfi||#2 (anc* therefore, SaH = Sjj^uJ. If the dimension of Hi is i»i and the
dimension of H2 is n2, then the dimension of H is ni + n2. •

We define two generalizations of rectangular automata. Multirectangular au
tomata allow flow conditions that vary with control switches, and triangular
automata allow the comparison of variables.

Definition 2.3 [Multirectangular and triangular automata] A hybrid automa
ton H is a multirectangular automaton if the restrictions of Definition 2.2 are



met, except that different control modes v and v' of H may have different flow
rectangles jfl0^) and I^ou'(v'). The multirectangular automaton H is a multi-
singular automaton if all flow rectangles of H are singletons. The intersection
of an n-dimensional rectangle with any number of half-spaces of W1 that are de
fined by inequalities of the form Xi < Xj, for 1 < i,j < n, is called a triangle of
dimension n. A hybrid automaton is a triangular automaton if the restrictions
of Definition 2.2 are met, except that every rectangle may be a triangle. D

Remark. [Stopwatches and symbolic constants] A stopwatch can be mod
eled by a multisingular variable x,- with the two flow intervals l?ow^ = [l, i]
(the stopwatch is turned on) and lfow^v )= [0,0] (the stopwatch is turned off).
Stopwatches are useful for measuring accumulated durations, such as the cu
mulative amount of time that is spent in control mode v [4, 32]. An unknown
system constant can be modeled by a singular variable Xj with the flow interval
j/tou _ ^q qj suck t^at ^ ^ .g not reinitialized by any control switch, and
(2) the behaviors of other variables maydepend on the (unknown but constant)
value of Xj [9]. •

Remark. [Initialized multirectangular automata] Some multirectangular au
tomata can be translated to rectangular automata by increasing the dimension.
In particular, this is the case for initialized multirectangular automata, where
for each variable x, and each control switch e, ifthe flow interval I^0"'̂ of the
source vof e is different from the flow interval I^0"'*"') of the target v' of e, then
Xi is reinitialized by e [38]. •

Example 2.1 [Railroad gate control] The train automaton of Figure 2 is an
initialized ID multirectangular automaton and can be translated to a 2D rect
angular automaton with the same timed traces. The controller automaton of
Figure 3 is a 2D triangular automaton with a clock z and a symbolic con
stant u. If the reaction delay u of the controller is known (say, 5 seconds), then
the controller can be modeled by a ID timed automaton. The gate automaton
of Figure 4 is a ID multisingular automaton (not initialized). If the direction of
the gate cannot be reversed midway, then the gate can be modeled by a singular
automaton. D

Remark. [Abstract interpretation] Nonsingular flow intervals permit the con
servative approximation of complex continuous behavior with arbitrary accu
racy [23]: we may split the state space into regions and within each region, use
lower and upper bounds on the first derivatives of all variables. D

2.3 Verification Results

The following theorem ensures the verifiability of rectangular automata against
time-abstract finite-state specifications.
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Theorem 2.1 [Time-abstract traces] [27] Forevery rectangular automaton H,
the set offinite time-abstract traces of H is regular, and the set of infinite time-
abstract traces of H is ui-regular.

Proof. Given an rectangular automaton H of dimension n, we can construct
a singular automaton H' of dimension 2n such that H and H' have the same
timed traces. The construction replaces each variable x,- of H by a variable x\
of H' that tracks the smallest possible value of x,-, and a variable x" of H' that
tracks the largest possible value of H'. In particular, if x; has the flow interval
[£, u], then xf has the flow interval [t, C\ and xj* has the flow interval [u, u]. Alur
and Dill have shown that for every timed automaton H' one can construct a
Biichi automaton H" whose traces are exactly the time-abstract traces of H'
(see Theorem 3.2 below). Their construction can be generalized to singular
automata. D

Corollary 2.1 [Time-abstract trace inclusion] The time-abstract trace inclu
sion problem for rectangular automata can be decided in EXPSPACE.

Remark. [Emptiness] The emptiness problem for rectangular automata is
in PSPACE, and the additional exponential for time-abstract trace inclusion is
caused by an intermediate complementation step. PSPACE emptiness checking
is optimal, because already the reachability problem for timed automata (and
other real-time formalisms) is PSPACE-hard [6]. O

Rectangular automata characterize an exact boundary between the decidability
and undecidability of verification problems. If the flow conditions are allowed
to vary with control switches (multirectangular automata), or if the values of
different variablesmay be related (triangular automata), then already the reach
ability problem cannot be decided.

Theorem 2.2 [Reachability] [5] The reachability problems for multisingular au
tomata and for triangular automata are undecidable.

Proof. Reduction from the halting problem for 2-counter machines. D

Remark. [Theorem 2.2] Theorem 2.2can be sharpened to morespecific state
ments [9, 27]. For example, the combination of clocks with a single stopwatch
causes undecidability, and so does the combination of clocks with symbolic con
stants. D

We have focused on time-abstract trace inclusion, because there is no hope for
deciding timed trace inclusion.

Theorem 2.3 [Timed trace inclusion] [6] The finitary timed trace inclusion
problem for timed automata is undecidable.

Remark. [Complementation] Theorem 2.3 does not contradict the decidability
of the emptiness problem for timed automata (which follows from Theorem 2.1),
because the (finitary) timed trace sets of timed automata are not closed under
complement [6]. •
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3 On the State Spaces of Hybrid Automata

Since the state space of a nontrivial hybrid automaton is infinite, it cannot
be explored by enumerating states. We analyze the state space of a hybrid
automaton by computing with finite symbolicrepresentations of infinite regions.
For example, if x is a real-numbered variable, then the predicate 1 < x < 5 is a
finite symbolic representation of an infinite set of real numbers.

3.1 Symbolic Analysis of Transition Systems

A labeled transition system can be analyzed using symbolic representations of
regions if there are algorithms for performing certain operations on the symbolic
representations.

Definition 3.1 [Theories for transition systems] Consider a labeled transition
system 5 with the state space Q. A theory T for 5 is a set of predicates that
are assigned truth values by the states in Q. Given a predicate p of T, we write
[p] for the set of states in Q that satisfy p, and we say that p defines the region
[pj C Q. A set $ of predicates from T induces an equivalence relation as* on Q:
for all states q and r of S, define qas* r iffq and r satisfy the same predicates
in 3>. The theory T is decidable if for each predicate p of 7\ it can be decided
whether [pj is empty. The theory T is effectively closed under boolean operations
if for all predicates pi and p2 of T, one can construct a predicate Or(pi,p2) of
T that defines the region [pi] U §p2}, and a predicate Not(pi) that defines the
region Q\[pi]. The theory T is effectively closed under transitions if for each
predicate p of T, and each label a of S, one can construct a predicate Post(p, a)
of T that defines the region posta(lp}),2 and a predicate Pre(p, a) that defines
the region prea([[p]). The theory T permits the symbolic analysis of 5 if (1) T is
decidable, (2) T is effectively closed under boolean operations and transitions,
and (3) there is a predicate of T that defines the set of initial states of S. •

Definition 3.2 [Similarity, bisimilarity, and trace equivalence] Consider a la
beled transition system S with the state space Q. and an equivalence relation
as on Q. A ^-simulation ^ of S is a binary relation on Q such that q •< r
implies (1) q as r and (2) for each label a of S, if q-^q', then there exists a
state r' such that rA>rf and q' < r''. A symmetric ^-simulation is called a as-
bisimulation. Two states q and r of S are ^-similar if there is a as-simulation
X such that q <r and r <q. The two states q and r are zz-bisimilar if there is
a «-bisimulation ~ such that q ~ r. The twostates q and r are trace equivalent
if the labeled transition systems S[Q° := {q}] and S[Q° := {r}] have the same
finite traces. If T is a theory for 5, and 0 is a set of predicates from T, then
the «*-(bi)similarity relation of5 is called <&-(bi)similarity. D

2Effectiveclosureunder post is not required for the results presented in this paper.
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procedure BisimApprox:
Input: a labeled transition system S with label set A, and a set

$ of predicates.
Output: the set II of equivalence classes of the ^-bisimilarity re

lation of 5.

let II be the set of as*-equivalence classes;
while there are two regions R, R! e U and a label a E A such that

both RC\prea(R!) and R\prea(R') are nonempty do
(Ri,R2) := (Rnprea(Rf),R\prea(R'));
n = (n\{R})U{RuR2}
od:

return n.

Figure 5: Symbolic bisimilarity computation

Remark. [Definition3.2] We remind the reader of some well-known facts from
concurrency theory. If two states q and r are as-bisimilar, then q and r are
also as-similar. If there is an equivalence relation as such that the two states q
and r are as-similar, then q and r are trace equivalent. The converse of either
statement is not necessarily true. •

Bisimilarity and similarity relations of a labeled transition system S can be
defined as greatest fixpoints of a monotonic operator, and approximated by
iterating the operator. The iteration can be performed in a theory that per
mits the symbolic analysis of 5. The iteration terminates iff the approximated
equivalence relation has finitely many equivalence classes.

Definition 3.3 [Finitary equivalences] An equivalence relation cz is called fini
tary if there are finitely many ^-equivalence classes. D

Proposition 3.1 [Symbolic bisimilarityapproximation] Let S be a labeled tran
sition system with a finite label set, let T be a theory that permits the symbolic
analysis of S, and let $ be a finite set of predicates from T. Each step of
the procedure BisimApprox (Figure 5) is effective, and upon termination the
procedure returns the ^-bisimilarity relation of S. Furthermore, the procedure
BisimApprox terminates iff the ^-bisimilarity relation of S is finitary. D

Proposition 3.2 [Symbolic similarity approximation] [20] Let S, T, and $ be
as in Proposition 3.1. Each step of the procedure SimApprox (Figure 6) is
effective, and upon termination the procedure returns the ^-similarity relation
of S. Furthermore, the procedure SimApprox terminates iff the ^-similarity
relation of S is finitary. D
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procedure SimApprox:
Input: a labeled transition system S with label set A, and a set

$ of predicates.
Output: the set II of equivalence classes of the ^-similarity rela

tion of S.

let II be the set of as*-equivalence classes;
for each region R £ U do sim(R) := R od;
while there are two regions R,R'eU and a label a £ A such that

both Rnprea(sim(R')) and sim(R)\prea{sim(R')) are
nonempty do

(rti./fe) := (Rnprea(sim(R')),R\prea(sim(R')));
U = (U\{R))U{R1};
sim(Ri) := sim(R) nprea(sim(R'))\
if R2 is nonempty then II := II U{i?o}; sim(Rn) := sz'm(i?) fi
od;

return II.

Figure 6: Symbolic similarity computation

Remark. [Proposition 3.2] For twostates q and r of S, there is a as-simulation
^ with q X r iff upon termination of the procedure SimApprox, q £ R and
r € sim(/?) for some region # G IL D

If a finitary bisimilarity or similarity relation of an infinite-state transition sys
tem S can be computed, then many verification problems for 5 can be reduced
to finite-state problems. Alternatively, if a verification task can be stated in the
//-calculus, then we may compute directly on the infinite state space without
computing a finitary reduction. The //-calculus defines monotonic operators on
regions, and the iteration of these operators can be performed in a theory that
permits the symbolic analysisof 5. The iteration is guaranteed to terminate if
a suitable finitary reduction of the state space exists.

Definition 3.4 [The //-calculus] Consider a labeled transition system S with
the state space Q, and a theory T for S. The formulas of the (S,T)-based
p-calculus are generated by the grammar

<j> ::= p\+iV<h\-4\3@4\iiR.4>\R

for predicates p of T, labels a of S, and region variables R. A formula of
the (5, T)-based //-calculus is legal if each occurrence of a region variable is
bound by a //-quantifier and separated from the quantifier by an even number
of negations. Given a map F that assigns to each region variable a region
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of S, every subformula of a legal formula of the (5, T)-based //-calculus defines
a region l<f>]F C Q:

iF = M

H>V = Q\MF
13(q)^f = prea(l<t>}F)
lnR.<l>}F = f]{Q' QQ\Q' = [^1]

F = F{R)

The legal formula <j> of the (5, T)-based //-calculus defines the region |<p| = 16\F,
for some map F. The formula <f> is existential if every occurrence of an 30
connective lies within an even number of negations, and <f> is universal if every
occurrence of an 33 connective lies within an odd number of negations. •

Remark. [Negation-free //-formulas] Let V®<£ stand for -i3©-k£, and let vR. <f>
stand for (->//#. -><f>[R := ->R]). Using the defined connectives A, \Q, and v,
every formula of the //-calculus can be translated into an equivalent formula in
negation-free form, where all -> connectives occur in front of predicates. If <j> is a
formula in negation-free form, then <j> is existential iff <p contains no occurrence
of the MO connective, and <f> is universal iff 0 contains no occurrence of the 33
connective. D

Remark. [Reachability and controllability] We mention two of the many
system requirements that can be checked using the //-calculus. Let S be a
labeled transition system with a finite label set A, let p° be a predicate that
defines the set of initial states of S, and let p" be a predicate that defines a
set of error states of S. There is no trajectory from an initial state to an error
state iff the existential //-formula p° A{pR.p" V\/aeA 3®R) defines the empty
region. Suppose that the behavior of 5 can be influenced by applying a control
map that maps each state of 5 to a label in A [35]: during the execution of S,
in each state q, the control map chooses a label a, and the system proceeds to
an a-successor of q. There is a control map that keeps the system from entering
an error state iff the existential //-formula p° A (///?. p" V f\a€A 3(g)R) defines
the empty region. •

Proposition 3.3 [Symbolic p-calculus approximation] Let T be a theory that
permits the symbolic analysis of the labeled transition system S, let <j> be a le
gal formula of the (S,T)-based ^-calculus, and let $ be the set of predicates
that occur in <f>. Each step of the procedure MuApprox (Figure 7) is effec
tive, and upon termination the procedure returns a predicate p of T such that
!b3 = M- Furthermore, the procedure MuApprox is guaranteed to terminate if
the $-bisimilarity relation of S is finitary. lf<j> is existential or universal, then
the procedure MuApprox is guaranteed to terminate if the ^-similarity relation
of S is finitary. D
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procedure MuApprox (S,<f>):
Input: a labeled transition system S, and a legal formula <j> of the

//-calculus.
Output: a predicate p such that p and <f> define the same region
ofS.

case <j> is a predicate p:
return p

case <j) has the form <j>i V <$>2:
return Or{MuApprox(S,<f>i),MuApprox(S,<j>2))

case <f> has the form ->^':
return Not(MuApprox(S,<j>'))

case <p has the form 3@0':
return Pi-e(MuApprox(S, (j>'),a)

case <p has the form ///?. 4>':
pi := false;
repeat

P2 := Pi; Pi := MuApprox(S, <f>'[R := p2])
until [pj] = [p2J;

return pi
end case.

Figure 7: Symbolic //-calculus model checking
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Proof. For termination, observe that each predicate that is generated by the
procedure MuApprox defines a union ofequivalence classes of the ^-bisimilarity
relation of S. Furthermore, if <j> is existential, then the operator Pre is applied
only to regions R that are closed under simulators; that is, if q £ R and q •< r
for some ^-simulation •<, then r £ R. D

Remark. [Termination] If the procedure BisimApprox terminates, then the
procedure SimApprox terminates also. The converse is not necessarily true. For
any given input formula, the procedure MuApprox may terminate even if the
procedures SimApprox and BisimApprox do not terminate. This encourages
practical experimentation, especially since in practice, with concrete time and
space constraints, strong termination guarantees are always elusive. D

3.2 Linear Hybrid Automata

The hybrid automata that can be analyzed symbolically in the theory of the
reals with addition are called linear.

Definition 3.5 [Linear hybrid automata] A linear term is an expression of the
form k'o + kixi -\ \- kmxm, for real-numbered variables xi,..., xm and integer
constants ko,...,km. If tt and t2 are linear terms, then ti < t2 is a linear
inequality. A hybrid automaton H is linear if the following two restrictions are
met.

1. The initial, invariant, flow, and jump conditions of H are boolean combi
nations of linear inequalities.

2. If A is the set of variables of H, then the flow conditions of H contain
free variables from A' only. D

Remark. [Definition 3.5] The linear hybrid automata are closed under compo
sition. All (multi)rectangular automata and all triangular automata are linear
hybrid automata. The use of general linear hybrid automata for approximating
complex continuous behavior can be more efficient than the use of rectangular
automata [30, 37]. •

Definition 3.6 [Theories for hybrid automata] Consider a hybrid automaton
H with the set A" of variables and the set V of control modes. An H -predicate
is a predicate whose free variables are boolean-valued variables from V and
real-valued variables from A'. A state (v,x) of H satisfies the .//-predicate p if
the closed predicate p[v, V\{v),X := true,false, x] is true. The //-predicate p
is linear if p is a boolean combination of (1) boolean-valued variables from V*
and (2) linear inequalities whose (real-valued) variables are from A'. The linear
H-predicate p is a rectangular H-predicate if each linear inequality in p can be
written in the form x < k or x > k, for a variable x and a rational constant k.
An H-formula of the rectangular ^-calculus is a formula of the (5^,T)-based
//-calculus, for the set T of rectangular //-predicates. •
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Theorem 3.1 [Symbolic analysis of linear hybrid automata] [5, 8] For every
linear hybrid automaton H, the set of linear H-predicates permits the symbolic
analysis of the time-abstract transition system Sfj.

Proof. The linear //-predicates are quantifier-free formulas of the first-order
theory (E,+,<,0,1) of the reals with addition, comparison, and integer con
stants. Each time transition of a linear hybrid automaton has a witness that can
be decomposed into a finite sequence of straight lines. Then, using quantifica
tion over the reals, the Post and Pre operations can be expressed in the theory
(R,+ <,0,1). The proof concludes with the observation that the first-order
theory (R, +, <, 0,1) admits quantifier elimination. •

Remark. [Timed automata]The symbolic analysis of singular automata does
not require the full theory of linear predicates, which leads to more efficient
implementations [18,10,11, 17]. Fora hybrid automaton.4, a linear //-predicate
p is a triangular H-predicate if each linear inequality in p can be written in the
form x < k, x > k, x < y+ k, or x > y+k, for variables x and y and a rational
constant k. For every timed automaton H, the set of triangular //-predicates
permits the symbolic analysis ofthe time-abstract transition system S% [29]. D

Remark. [Polynomial hybrid automata] Since the theory of the reals with
addition and multiplication is decidable, it is possible to define a class of hy
brid automata that are more general than linear hybrid automata and can be
analyzed symbolically in the more powerful theory. The practicality of such a
generalization has not been studied. D

3.3 Bisimilarity and Similarity Relations

From Theorem 2.1 it follows that for every rectangular automaton H, the trace
equivalence relation of the time-abstract transition system Sfa is finitary. If we
can identify subclasses of rectangular automata whose time-abstract transition
systems have finitary similarity or bisimilary relations, then we obtain termina
tion guarantees for the procedure MuApprox applied to hybrid automata.

Definition 3.7 [Timed and time-abstract (bi)similarity] Consider a hybrid au
tomaton H and a set $ of //-predicates. The $-(bi)similarity relation of the
timed transition system S'H is called the timed $-(bi)similarity relation of //,
and the ^-(bi)similarity relation of the time-abstract transition system S% is
called the time-abstract ^-(bi)similarity relation of //. D

The fundamental theorem of timed automata shows the existence of finitary
time-abstract bisimilarity relations for timed automata. This result can be
extended to singular automata.

Theorem 3.2 [Time-abstract bisimilarity ofsingular automata] [6, 5] // H is
a singular automaton, and 4> is afinite set of rectangular H-predicates, then the
time-abstract $-bisimilarity relation of H is finitary.

18



Figure 8: Four finitary equivalence relations on the unit square

Proof. A rectangular automaton H and a finite set 4> of rectangular //-
predicates are normalized if all non-flow interval endpoints in H and all con
stants in $ are integers. Normalization can be achieved by multiplying all non-
flow interval endpoints in H and all constants in 4> by a suitably chosen integer
constant. Assuming that H and $ are normalized, let A" be the largest integer
constant that occurs in H and 4>. If H is a timed automaton, then the (finite)
set 4> of triangular //-predicates with integer constants no larger than A" induces
a finitary ^-bisimulation on the time-abstract transition system S%. The first
panel of Figure 8 shows the induced bisimulation on the unit square [0.1]2 for
a 2D timed automaton H. For instance, if v = v' and 0 < xi < x2 < 1 and
0 < x\ < x2 < 1, then the two states (v,x) and [v',x') of H are time-abstract
$-bisimilar. If H is a singular automaton, then a slight extension of triangular
//-predicates needs to be considered. For example, the second and third panels
of Figure 8 show the induced bisimulationson the unit square for 2D singular
automata with the flow rectangles [2,2] x [1,1] and [1,1] x [3,3], respectively. D

Corollary 3.1 [Symbolic //-calculus model checking forsingular automata] The
procedure MuApprox terminates if given the time-abstract transition system of
a singular automaton H and an H-formula <t> of the rectangular p-calculus.

Remark. [Nonsingular automata and nonrectangular predicates] Singular au
tomata with rectangular predicates identify a boundary between the existence
and nonexistence of finitary bisimilarity relations. In fact, for the following three
generalizations, bisimilarity degenerates to equality on infinite state spaces. Let
$i = {*i = 1,X2 = l,xi < x2} and <J>2 = {xi = l,x2 = 1}.

1. There is an (infinite-state) singular automaton H such that the time-
abstract $i-bisimilarity relation of H is equality.

2. There is an (infinite-state) multisingular automaton H such that the time-
abstract $2-bisimilarity relation of H is equality.

3. There is an (infinite-state) 2D rectangular automaton H such that the
time-abstract $2-bisimilarity relation of// is equality. •
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The boundary between the existence and nonexistence of finitary similarity
relations lies at 2D rectangular automata.

Theorem 3.3 [Time-abstract similarity of2D rectangular automata] [20] // H
is a 2D rectangular automaton, and $ is afinite set of rectangular H-predicates,
then the time-abstract ^-similarity relation of H is finitary.

Proof. The structure of the finitary time-abstract similarity relation is best
illustrated with an example. Let H be a 2D rectangular automaton with the
flow rectangle [1,2] x [1,3]. Assuming that H and $ are normalized, the fourth
panel of Figure 8 shows a finitary kernel of a time-abstract ^-simulation on the
unit square. The simulation is obtained by intersecting the bisimulations for
the two cases of extremal flow: maximal xi and minimal X2, and vice versa. •

Corollary 3.2 [Symbolic //-calculus model checking for 2D rectangular au
tomata] The procedure MuApprox terminates if given the time-abstract tran
sition system of a 2D rectangular automaton H and an existential or universal
H-formula <f> of the rectangular fi-calculus.

Theorem 3.3doesnot generalize to rectangular automata ofarbitrary dimension.

Theorem 3.4 [Time-abstract similarity of 3D rectangular automata] [26] Let
$ = {^l = 1,a?2 = 1,«3 = !}• There is an (infinite-state) 3D rectangular
automaton H such that the time-absti-act ^-similarity relation of H is equality.

In summary, rectangular automata are a maximal class of hybrid automata
with finitary time-abstract traceequivalence relations, 2D rectangular automata
are a maximal class of hybrid automata with finitary time-abstract similarity
relations, and singular automata are a maximal class of hybrid automata with
finitary time-abstract bisimilarity relations.

Remark. [Context-free equivalences] Wehaverestricted ourselves to decidabil
ity results that can be obtained by relating hybrid automata to finite automata.
Additional decidability results can be obtained by relating hybrid automata to
pushdown automata [13, 15]. Little is known, however, about which classes
of hybrid automata are time-abstract trace equivalent (similar; bisimilar) to
pushdown automata. D

Remark. [Timed (bi)similarity] We have focused on time-abstract state space
equivalences, because the timed counterparts are infinitaryalready for nontrivial
timed automata. From Theorem 2.3 it follows that for timed automata, the
timed trace equivalence of two states cannot be decided. It should be noted,
however, that timed similarity and timed bisimilarity can be decided for timed
automata. Specifically, if H is a timed automaton, $ is a finite set of rectangular
//-predicates, and q and r are two states of//, then it can be decided if q and
r are timed $-(bi)similar [16, 39]. •
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3.4 Computation Tree Logics

We have studied the structure of the timed and time-abstract transition systems
of hybrid automata. These transition systems, however, may not be directly
useful for (dis)proving assertions about the behavior of a hybrid automaton //,
because each trajectory of SlH and Sfa only samples a piecewise-continuous tra
jectory of H at certain discrete points. In the following, we restrict ourselves to
the time-abstract view. Since each time transition of Sfj abstracts all informa
tion about intermediate states that are visited, by looking only at a trajectory
of Sjj, it is impossible to check if the corresponding piecewise-continuous tra
jectory of H visits any given state or region. We solve this problem by defining
(time-abstract) observational transition systems, where each time transition is
labeled with a region: the time transition t is labeled with the region R iff
all intermediate states and the target state of /. lie within R. Thus, an obser
vational transition system results from the continuous observation of a hybrid
automaton, with limited observational power: for a given set 71 of regions, it
can be observed whether a continuous trajectory fragment stays within any of
the regions from 71.

Definition 3.8 [Piecewise-continuous semantics of hybrid automata] Consider
a hybrid automaton H and a set 71 of //-regions. The 7l-observational transition
system S# of H is the labeled transition system with the components Q, Q°,
A, and A for each c £ C, defined as follows.3

• Q and Q° are defined as in Definition 1.3.

• C=zZun.

• For each event a £ E, define A as in Definition 1.3.

• For each region R £ 71, define {v,x)—>(v',x') iff there is a nonnegative
real S £ R>o and a witness / for the transition (v,x)—y(v',x') such that
for all reals e £ (0,<51, (v,f(e)) £ R. The real S is a possible duration of
the transition (u,x)—»(r',x').

An infinite trajectory (c,,g,),>i of the 7£-observational transition system S#
diverges if there is an infinite sequence (£,),>o of reals such that (1) the infinite
sum J2i>ih diverges, and (2) for all i > 0, either a, £ E and <5, = 0, or
a,- £ 7Z and <$, is a possible duration of the corresponding transition gi_i-4<7,. A
set $ of //-predicates permits the observational symbolic analysis of the hybrid
automaton H if $ permits the symbolic analysis of the observational transition
system S]j, where 71 is the set of//-regions that aredefinable bypredicates in $.
An equivalence relation ~ on Q is an observational ^-(bi)similarity relation of
H if ~ is the $-(bi)similarity relation of the observational transition system Sj ,
where 71 is the set of ^-equivalence classes. •

3IfV. = {R} for a single //-region R, then we write S$ for the 72-observational transition
system SJJ.
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Since observational transition systems are defined in a time-abstract way, the
results of Theorems 3.1, 3.2, and 3.3 carry over from time-abstract to observa
tional transition systems.

Proposition 3.4 [Observational symbolic analysis of linear hybrid automata]
For every linearhybrid automaton H, the set of linear H-predicates permits the
observational symbolic analysis of H. Consider a finite set $ of rectangular H-
predicates. If H is a singular automaton, then there is a finitary observational
$-bisimilarity relation of H. If H is a 2D rectangular automaton, then there is
a finitary observational ^-similarity relation of H.

For (dis)proving assertions about the infinite behavior of hybrid automata, we
need to take into account the liveness assumption that time diverges. Compu
tation tree logics for hybrid automata are branching-time temporal logics for
stating requirements about divergent piecewise-continuous trajectories.

Definition 3.9 [Computation tree logics] Consider a linear hybrid automaton
H with the state space Q. The H-formulas of linear Ctl are generated by the
grammar

0 ::= p | 4>i V02 | --^ | 0i3W02 I 3D0

for linear //-predicates p. Everv //-formula of linear Ctl defines an //-region
M Q Q-

I0i V 62J = [0,J U I03]
i-0i = q\m
q£ |0i3W02] iff the observational transition system sj^1^2! has a

(finite) <y-rooted trajectory that visits a state in |[02]
q £ f3D0j ifftheobservational transition system S^ hasa divergent,

g-rooted trajectory

The //-formula 0 of linear Ctl is an H-formula of rectangular Ctl if all pred
icates that occur in 0 are rectangular //-predicates. The //-formula 0 of rect
angular Ctl is an //-formula of rectangular 3Ctl if each occurence of the 314
connective in 0 and each occurrence of the 3D connective in 0 lies within the
scope of an even number of negations, and 0 is an //-formula of rectangular
VCTL if all occurrences of 314 and 3D lie within the scope of odd numbers of
negations. D

Remark. [Definition 3.9] Thesemantics of linearCtl is defined to be piecewise-
continuous (it refers to trajectories of observational rather than time-abstract
transition systems), live (it refers to divergent trajectories), and strict (the tem
poral connectives do not imposerequirements on the current state; for example,
a nonstrict version of 0i3£/02 can be defined as 02 V (0i3W02)). The disjunc
tion in the semantic clause for the 3U connective is necessary, because a switch
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from 0i being true to 02 being true may occur from a right-closed to a left-open
interval. In the following, we write 3O0 for true3U<f>, and VD0 for ->3O->0. D

If a system requirement is given as a formula of a computation tree logic, then
the corresponding verification task is a model-checking problem.

Definition 3.10 [Model checking] The model-checking problem for a class ft of
hybrid automata and a computation tree logic Casks, given a hybrid automaton
H from ft and an //-formula 0 from C, if [0| contains all initial states of //. D

For a linear hybrid automaton //, an //-formula 0 of linear Ctl can be trans
lated into a formula 0' of the //-calculus. The piecewise-continuity of linear Ctl
is taken care of by interpreting 0' over an observational transition system S#.
The liveness oflinear Ctl is taken ofby interpreting 0' over an extension ofS]J
with a clock variable that can observe the divergence of time. The translation
leads to a model-checking procedure for linear hybrid automata and linear Ctl.

Definition 3.11 [Clockextension] A clock automaton //. is a timed automaton
with a single variable, z, a single control mode with the initial condition c = 0
and the invariant condition true, and a single control switch with the jump
condition z' = 0. If H is a hybrid automaton and z is not a variable of //,
then the composition H\\H: is called a clock extension of H. A procedure
is an effective procedure for the observational symbolic analysis of the hybrid
automaton H if each step of the procedure is either effective or a subroutine
call of the form MuApprox{S$, 0), for a clock extension //' of //. a linear //'-
predicate p, and a formula 0 of the (Sjj?, T)-based //-calculus, where T is the
set of linear //'-predicates. D

Theorem 3.5 [From Ctl to the //-calculus] [29, 8] Let H be a linear hybrid
automaton and let 0 be an H-formula of linear Ctl. There is an effective
procedure for the observational symbolic analysis of H which, upon termination,
returns a linear H-predicate p with [p]] = J0|. Furthermore, the procedure is
guaranteed to terminate if H is a singular automaton and 0 is a formula of
rectangular Ctl, and if H is a 2D rectangular automaton and 0 is a formula
of rectangular 3Ctl or of rectangular VCtl.

Proof. The Ctl formula 0i 3U<f>2 can be translated to the formula (///?.3@(02V
/?)), for c = ([01 V 02J of the //-calculus. The //-formula 3D0 can be trans
lated to the //'-formula {vR. 03tf(0 A:=lA 03tf(0 A : = 0 A /?))), where
H' = H\\HZ is a clock extension of //. The latter formula asserts that 0 is
true throughout some infinite trajectory along which z = 1 is true infinitely
often and z = 0 is true infinitely often. This can be the case if and only if the
trajectory diverges. D

Corollary 3.3 [Ctl model checking] The model-checking problem for rectan
gular Ctl is PSPACE-decidable for singular automata. The model-checking
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problems for rectangular 3Ctl and rectangular VCTL are PSPACE-decidable
for 2D rectangular automata.

Remark. [HyTech] The procedure ofTheorem 3.5forchecking linearCtl re
quirements of linear hybrid automata has been implemented in the tool HyTech
[24, 25]. The procedure has been found to terminateon several examples ofprac
tical interest that do not fall into any of the classes for which a priori termination
guarantees can be given [31]. D

Example 3.1 [Railroad gate control] Recall the safety requirement for the rail
road gate controller from Example 1.2, namely, that the gate is fully closed
whenever the train is within 10 meters of the gate. This requirement is ex
pressed by the formula [Far A IdleA Open) -> VD(-10 < x < 10 -> Closed)
of rectangular VCtl. HyTech simplifies this Ctl formula, fully automatically,
to a linear predicate whose projection onto the u-dimension is 5u < 49. It fol
lows that the safety requirement is met if and only if the reaction delay u of the
controller is less than 9.8 seconds. D

Remark. [Nonzenoness] The semantics of the 3U connective of linear Ctl is
defined over finite trajectories. The alternative interpretation of 314 over finite
prefixes of divergent trajectories requires that the underlying hybrid automaton
is nonzeno. For a linear hybrid automaton H and a clock extension H\\HZ, the
rectangular existential formula0n. = (i/R.30{z = 1 A 30(z = 0 A R))) defines
the set of states q with divergent ^-rooted trajectories. Hence, if <f>ni can be
simplified to a linear //-predicate pn., then the addition of pnz as a conjunct to
all invariant conditions of H results in a nonzeno linear hybrid automaton Hn:
such that H and Hn: have the same divergent timed traces. From Theorem 3.5
it follows that this is always possible for singular and 2D rectangular automata.
D

Remark. [Ctl with clocks, stopwatches, and symbolic constants] The H-
formulas of linear Ctl can be generalized to permit real-numbered variables
that are not variables of the hybrid automaton //. In this way, linear Ctl has
been extended to include clocks (Tctl) [7,2], stopwatches [14, 8], and symbolic
constants [40]. The symbolic-analysis result of Theorem 3.5 continues to hold
for these logics, and the decidability results of Corollary 3.3 continue to hold for
Tctl. Isolated decidability results are known also for computation tree logics
with a limited use of stopwatches or symbolicconstants [4, 40]. D
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