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Abstract

We study the following problem: a transmitter is connected to N dif
ferent receivers by a single discrete memoryless channel W, with posi
tive Shannon capacity C, whose output is available to all the receivers

and the transmitter, i.e., there is perfect and instantaneous feedback. In

n channel uses, the transmitter wishes to send one of M messages to
one of the N receivers, whose identity is a priori unknown to the re

ceivers. The requirements are that the intended recipient should decode

the transmitted message correctly with high probability, and any other

receiver should recognize with high probability that the message is not.
intended for it (these probabilities are averaged over the M messages).
In this situation, we prove that M and N can simultaneously grow as
exp[nR\ —o(n)] and exp{exp[n/?2 - 0(7?)]}, respectively, for all rate-pairs
(i?i,i?2) satisfying R\ < C and R2 < maxp./(p.jy)>rt, H(PW), provided
the transmitter can use randomized encoding. If the encoding must be
deterministic, we prove that all rate-pairs (i?i,#2) satisfying R\ < C and

R2 < R\ + maxF:/(P;H')>/?1 H(W\P) are achievable. In both cases, we
establish these rate regions as optimal by proving "strong" converses.

Keywords: Identification theory, identification plus transmission, point-
to-multipoint communication.

'Research supported by NSF IRI 9005849, IRI 9310670, NCR 9422513, and the AT&T
Foundation.

tCornell University and U.C. Berkeley.
*Univ. of California, Berkeley.
§Address all correspondence to the first author: 341, Cory Hall, Dept. of EECS, U.C. Berke

ley, Berkeley, CA 94720.



1 Introduction

Consider the following point-to-multipoint communication problem: a transmit
ter is connected to N different receivers by a single discrete memoryless channel
(DMC) W, whose output can be observed by all the receivers. The transmitter
wishes to send one of M messages to one of the N receivers, but the receivers
do not know beforehand who the intended recipient is. The transmitter must
therefore encode both the address and the message in a codeword, and send it
across the channel (the address is just the index of the intended recipient). Each
receiver must then observe the channel output and decide whether the message is
intended for it, and, if so, decode it. The requirements are that (a) the intended
recipient should decode the transmitted message correctly with high probability,
and (b) any other receiver should recognize with high probability that the mes
sage is not intended for it (these probabilities are assumed to be averaged over
the M possible messages). Receivers other than the intended one do not need to
know either the message or the actual recipient. The question of interest, then,
is how fast M and N can simultaneously grow with the number of channel uses
permitted to the transmitter.

If there is only one receiver, i.e. N = 1, then this is just the classical data trans
mission problem of information theory. In 7? uses of the channel, the transmitter
can then reliably send one of M = exp[??7? —o(n)] messages to the receiver, pro
vided R < C, where C = maxp I(P; W) is the Shannon capacity of the channel
W (the maximum, over all input probability distributions P, of the corresponding
mutual information between the channel input and output). It is also well known
that allowing randomization in the encoding process does not help in any way.

On the other hand, if M = 1, we have the identification problem introduced by
Ahlswede and Dueck [2]. Here, we could think of the transmitter as simply send
ing an alarm or "identifying" signal to one of the Ar receivers (there is no message
to be transmitted). In [2], it was shown that one of N = exp{exp[??J? —o(n)]}
receivers (doubly exponential in n) could be reliably identified in n channel uses,
provided randomization was allowed in the encoding process. The identification
capacity of the channel, defined as the maximum achievable (second-order) rate
R in this situation, was shown to equal its Shannon capacity C\ Here, random
ization in the encoding is crucial in the sense that it is impossible to achieve any
positive second-order rate deterministically, i.e., the deterministic identification
capacity is zero.

The general problem of simultaneous identification and transmission was stud
ied by Han and Verdu [5], as a variant of the identification problem with potential
applications in multiuser communication. The straightforward solution to this
problem would be to use classical transmission codes to encode the address in a
header of an symbols and the message in the remaining (1 —a)n symbols (?? is



the number of channel uses, and 0 < o < 1 is a timesharing parameter), and this
would permit N = exp[naC—o(n)] and M = exp[n(l —a)C —o(n)]. However, as
pointed out in [5], this scheme is far from optimal because it needlessly conveys
the address and message information to all the receivers.

We could therefore improve on the above scheme by using an identification
code (instead of a transmission code) to convey the address in an symbols, and
encoding the message in (1 —a)n symbols as before. This scheme would permit
N = exp{exp[?iQ'C —o(??)]} and M = exp[?i(l —a)C—o(n)], provided randomiza
tion was allowed in the address encoding. While this is certainly better than the
straightforward solution, it is still suboptimal. In [5], it was shown that in fact
N = exp{exp[7?C —0(72)]} and M = exp[7?C —o(n)\ are simultaneously achiev
able, if the address and message are jointly encoded using an "identification plus
transmission" code (or IT code), instead of separately as above; moreover, the
joint encoding does not require randomization.

In this paper, we study an analogous identification plus transmission problem
when the transmitter has perfect and instantaneous feedback from the output of
the DMC connecting it to the receivers. It is well known that feedback does not
increase the transmission capacity of a DMC. In marked contrast, feedback can
have a dramatic effect on the identification capacity of a DMC, as demonstrated
by Ahlswede and Dueck in [1] (the sequel to [2]). There, it was shown that
feedback allows positive second-order identification rates even when the encoding
has to be deterministic. In fact, the deterministic feedback identification capacity
of a DMC W with positive Shannon capacity was shown to be maxxi/[M/(-|:r)]
(the maximum, over all input symbols .v. of the conditional output entropy when
x is transmitted). Allowing randomized encoding was shown to increase the
feedback identification capacity to maxp H(PW) (the maximum, over all input
probability distributions P, of the corresponding unconditional output entropy).

In this paper, we determine the region of all rate-pairs (Ri,R2) such that
it is possible for the transmitter to reliably send one of M = exp[ni?i —0(7?)]
messages to one of Ar = exp{exp[/?/?2 —o(??)]} receivers across the DMC II'", with
positive Shannon capacity C, when it is equipped with perfect and instantaneous
feedback (the reliability requirements are as described in the first paragraph). As
in [1], we consider both the case where randomized encoding is allowed, and the
case where the encoding is restricted to be deterministic. The "identification plus
transmission" rate region turns out to be defined by the conditions

Rl < C and R2 < max HiPW)
~ ~ P:I(P;W)>Ri '

in the general case, and by the conditions

/?! < C and R2 < Rx + max H(W\P)



in the deterministic case. The identification theorems of [1] can be viewed as
special cases of the above results, obtained by setting the transmission rate re
quirement Ri to zero. As in [1], the converses proved here are "strong." As a
by-product of these converses, we also have a new proof of the strong converse
to Shannon's coding theorem for DMCs with feedback, a result first proved by
Kemperman [6].

We will formulate the problem more precisely in Section 2 and then state our
main result in Theorem 2.1.

2 Statement of problem and results

The following conventions will be in effect in the rest of the paper. All logarithms
and exponentials will be to the base e. If J is an integer, then [J] will denote
the set {1,2,... , J}. Finally, the notation for all standard information-theoretic
quantities will be that of [4].

The discrete memoryless channel (DMC) connecting the transmitter and the
receivers is assumed to have finite input and output alphabets X and 3^, respec
tively, and transition probability function W = {W(y\x) : x £ X,y £ y}. In the
presence of feedback, the transmitter can choose its channel input at each step of
communication based on the outputs from all previous steps, according to some
feedback strategy. As in [1], we will consider strategies that can be randomized,
as well as strategies that must be deterministic.

We first define an n-step feedback function for the channel W as a vector
/ = (/i,... ,/n), where fk : >l/f_1 -> X. When the transmitter uses this feedback
function for communication, it sends the channel input symbol A* = fk(Yh~1) in
step k, 1 < k < rc, where Y'̂ 1 is the sequence of channel outputs in the previous
k— 1 steps. For each yn £ yn, we will denote by f(yn) the xn £ Xn given by
Xk = fk{y^), l<k<n.

Let Wj{xn,yn) be the probability that (Xn,Yn) = {xn,yn) when the trans
mitter uses the feedback function /, and let Qj (yn) be the corresponding marginal
probability that Yn = yn. Clearly,

Qj(yn) = f[myk\fk(v"))
A-=l

= wn(yBl/(yB)),

and

= /(»");
lerwise.I{X ,2/ J \ 0 other

Let Tn denote the set of all n-step feedback functions (note that Tn is fi
nite). An n-step feedback strategy F for the channel W is defined as a probability



distribution (p.d.) on Tn. To communicate according to the strategy F, the
transmitter randomly chooses a feedback function / £ Tn with distribution F.
and then uses this /, as described earlier, to decide its channel input at each
step. We will denote the probability that (A'", Yn) = (xn,yn) under the strategy
F by WF(xn,yn), and the corresponding marginal probability that Yn = yn by
QF(yn). Then,

WF(T»,y») = £ F(f)Wj(x»,y"),

Qp(yn) = £ m)Qs(yn).

A general strategy, as defined above, is allowed to use randomization. The
strategy F is called deterministic if F(f) = 1 for some / £ Tn. Clearly, such a
strategy does not require any randomization. Moreover, there is an obvious 1-1
correspondence between Tn and the set of n-step deterministic strategies.

We will now define the identification plus transmission codes, or IT codes, to
be studied here.

Definition 2.1 An (??, Ar, M, A,^) identification plus transmission (IT) code is a
collection {{Fa,m,Va<m) : (a.m) £ [N] x [M]}. where Fa,m is an n-step strategy,
T^a,m Q yn. and, for each a £ [N],

1- T>a,m n I>a,m' is empty ifm 7^ 77?'.

2. (l/M)J2^QFa,m(T>a,m) > 1-A.

3. (l/M)Ei?=i QF.,m (Va.) < n for all a' ± a, where Va> = Uif=i Va,,m.

The code is called deterministic if all the strategies Fa(7n are deterministic.

The interpretation of the above code is as follows: if the transmitter wishes
to send message 771 to receiver a, it communicates according to the strategy Fa,m.
After 7? steps of communication, receiver a decides that it is indeed the intended
recipient if the received sequence Yn falls in T>a = Um Pa,m; in this case, because
of Condition (1), there is a unique 77? £ [M] such that Yn £ X>a,m, and it takes
this m as the transmitted message. Otherwise, i.e. if Yn £ T>a, receiver a decides
that the message is not intended for it. Condition (2) in the above definition
guarantees that the intended recipient decodes the transmitted message correctly
with probability greater than 1—A, while Condition (3) guarantees that any other
receiver wrongly decides it is the recipient with probability less than fi. Note that
these probabilities are averaged over the M possible messages.



Definition 2.2 The region of (A,//.)-achievable rate-pairs H(X,n) is the set of
(Ri,R2) for which there exists a sequence 0/(77, Arn, M„,A,/u) IT codes satisfying

liminfn'MogMn = R\ and liminf n_1 loglogNn = R2. (1)
n-Hx> n->oo

The region of deterministically (A, ft)-achievable rate-pairs 7?.£)(A, fi) is the set of
(Ri,R2) for which there exists a sequence of (n, A^n,Mn, A,^j) deterministic IT
codes satisfying (1).

The main result in this paper is the determination of the capacity regions
1Z(X,j.i) and 7^.£>(A,//) when A > 0, fi > 0, and A+ \i < 1.

Theorem 2.1 Let A > 0, (i > 0, and A+ (.1 < 1. // £/ie channel W has positive
Shannon capacity C = maxp /(P; IV). Men

ft(A,//) = j^ft): Hi<C am/ R2 < max #(/W)l, (2)
[ ~~ ~ P:/(P;Vy)>H, V 'J V'

and

nD{X^) =\(RuR2): RX<C and R2 < ft + max ff(W|P)l. (3)
[ ~ P:/(P;W)>Ki J

We will prove the achievability parts of Theorem 2.1 in Section 3, and the
converse parts in Section 4.

Remarks:

1) The assumptions A > 0 and ^ > 0 are of course reasonable. We also need
the assumption A+ ft < 1 in order to get meaningful results. For if A+ // > 1
then arbitrarily high identification rates R2 are achievable. To see this, note
that if 1—A < (l/M)J2mQFm(Vm) < fi for some n-step strategies FU...,FM
and pairwise disjoint subsets Vu..., Vm of yn, then, by setting Fa,m = Fm and
T>a,m = T>m for all (a,777), we have an (n, A\M,A,//) IT code with arbitrarily
large Af. (If Aitself is greater than 1, then we can also achieve arbitrarily large
transmission rates R\.)

2) The assumption that C > 0 prevents trivialities at the other end ofthe spec
trum. It can be verified that ifC = 0, then there does not exist any (n, Ar, M, A, //)
IT code with N > 1 or M > (1-A)-1, assuming A> 0, // > 0, and A+ /.i < 1.

3) We will actually prove the achievability results with Condition (2) in Def
inition 2.1 replaced by the stronger condition "QF0,m (£>a,m) > 1 - Afor all ?n."
However, it is not possible to similarly replace Condition (3) by "QFam (XV) < H
for all m and all a' ^ a" without affecting the results. Averaging over messages
is essential in controlling the probability of a receiver wrongly deciding that it is
the intended recipient (the reason will become clearfrom the achievability proof).



3 Proofs of the achievability parts

We will prove the achievability result for general IT codes in Section 3.1. With
very minor changes, the same proof will work in the deterministic case as well
(see Section 3.2). But first we state a couple of lemmas needed in the proofs.

Lemma 3.1 Let P be an n-type on X for some n > 1 (i.e., P is a p.d. on X
such that nP(x) is an integer for all x £ X).

1. If R! > 0 and J < exp(nR'), then there exist sequences Ci,...,cj in Xn,
all of type P, and a partition ofyn into subsets Ci,... ,Cj, such that

1- Wn(Cj\Cj) < (n^\)4dexp[-nEf(R',P)} for all j £ [J].

Here. d= \X\\y\. and

E'{R'. P) =min {D( V\\W\P) +[I(P; V) - R'f} .

2. If R" > 0 and K < exp{nR"). then for any c £ Xn of type P, and any
C Qyn, there exists a partition of C into subsets Ce,Ci,... ,Ck, such that

Wn(Ck\c) = (l/K)[Wn(C\c)-Wn(Ce\c)] forallk<E[K],
Wn(C€\c) < (n + l)rfexp[-n£"(/r,P)].

Here.

E"(R\P) =min{D(V'||H'|P) +[H(V\P) - R"]+} .

The minima in the definitions of E'('.-) and £"(•.•) are both over the set of all
DMCs V with alphabets X and >\ Both F(/?'.-) and E"(R",-) are continuous
functions. E'(R\P) is positive if R' < I(P:\V) and zero otherwise. Similarly,
E"{R'\P) is positive if R" < H(W\P) and zero otherwise.

Proof: Appendix. •

Lemma 3.2 Let 0 < e < 1, and let J > 2/c. S > 1, and N < exp(e2S/2) be
integers. Thai, there exists an N x ,S' array (N rows and S columns) with entries
from [J], any two rows of which are at a Hamming distance greater than (1 —e)S
from each other (i.e., they differ in more than (1 —e)S positions).

Proof: Appendix. •

The first part of Lemma 3.1 implies the existence of an "equitype" trans
mission code of blocklength n with about exp[nI(P;W)] codewords (P is the



common type of the codewords), whose maximal error probability over W decays
exponentially with n (note that the code is for the DMC W without feedback).
This is of course a standard result in channel coding [4] that can be used to prove
Shannon's coding theorem for DMCs. We will use this result in the following
way: given R\ < C, the transmitter and receivers choose a type P such that
I(P; W) > /?i, and agree on an equitype code as above. In the general case, the
transmitter uses this code to reliably convey one of M = exp(nRi) messages and
an independently generated random variable of entropy about n[I(P; W) —Rx),
to the receivers. In the deterministic case, the transmitter simply conveys the
message alone using the code.

By the second part of Lemma 3.1, the decoding set corresponding to the
transmitted codeword can be partitioned into about exp[nH(W\P)] sets — all
of which have exactly the same probability — and a remaining "error" set whose
probability decays exponentially with n. Thus, by observing which of these
subsets the channel output falls in, the transmitter and receivers can agree on
a random variable of entropy about nH(W\P) (the channel output is known
to the transmitter because of feedback). Since the codeword itself carries an
entropy of about nI(P; W) (in the general case) or nR\ (in the deterministic
case), the transmitter and receivers have a total common randomness of about
nI{P; W) + nH(W\P) = nH(PW) (general case) or nfl, +nH{W\P) (determin
istic case).

Now suppose R2 < H(PW) (general case) or R2 < Ri + H(W\P) (determin
istic case), and A7 = exp[exp(nR2)]. Then, by Lemma 3.2, we can find an N x S
array whose rows are far apart in Hamming distance, with S roughly equal to
exp[nH(PW)] or exp{n[Ri + H(W\P)]} (in the respective cases). We can index
the rows of the array by the N receivers. The common randomness gained by
the codeword transmission can then be used by the transmitter and receivers
to agree on a random column of this array (in either case). If the transmitter
now sends the array element in that column and the row corresponding to the
intended recipient (this can be clone reliably with a constant number of channel
uses), then the Hamming distance properties of the array enable the receivers to
decide reliably whether or not the message is intended for them.

The idea of using channel noise to generate randomness for identification
coding in the presence of feedback is one of the key principles in the results of [1].
The details of the idea there are somewhat different, and the method outlined
here (based on the second part of Lemma 3.1) seems to allow a somewhat simpler
analysis.

Lemma 3.2 is based on the arguments in Section III of [1], though it is not
stated there in this form. It is the essence of the "y/n. trick" of [1] — so called
because the equivalent of the array element encoding was done there with about
x/tT channel uses — and can in fact be used to prove all known achievability



results in identification theory. In its present form, the name "array trick" may
be more appropriate.

3.1 The general case

Given X> 0 and // > 0, let e= (l/4)min(A,/z). We will prove that any rate-pair
(Ri,R2) satisfying

0 < #i < C - 8 and 0 < R2 < max H(PW) - 8 (4)
P:/(P;W)>R,+$ '

for some 8 > 0 is in ft(4e,4e), hence in ft(A,/i). Since ft(A,//) is a closed subset
of R2 (because of the way achievable rate-pairs are defined), it will follow that
any point in the closure of the set of all (Ri,R2) satisfying (4) for some 8 > 0 is
also in 7£(A,/u). By the continuity of max/(P;ir)>fl H(PW) in R, this closure is
precisely the RHS of (2), so that the desired achievability result will be proved.

From now on, fix a 8 > 0 and any [Ri,R2) satisfying (4). Let M„ =
[exp(nRi)\ and Nn = [exp[exp(n#2)]J. To prove that (RUR2) £ ft(4e,4e),
we will show that for all sufficiently large n there exists an (n + t, Nn, Mn,4e,4e)
IT code. Here, t is a constant (i.e., it does not depend on n).

3.1.1 Preliminaries

Let P* be any p.d. on X that maximizes H(PW) subject to the constraint
I{P;W) > Ri +8. Let R' = I(P';W) - 8/2 and R" = H{W\Pm) - 8/2.
Then, E'{R',PX) and E"(R",Pm) are both positive. Pick any sequence {P„},
with Pn an n-type on A', such that Pn —> P" as n —> oo. By continuity,
E'(R',Pn) -> E'(R',P*) > 0 and E"{R".Pn) ->- E"{R",P*) > 0, so that there
must exist a 7 satisfying

0 < 7 < mm{E'(R',Pn).E"{R\Pn)} for all large n. (5)

Let Ln = [exp[n(Rf - flO]]. Then. M„Ln < exp(nR'), and the first part of
Lemma 3.1 guarantees the existenceof sequences cm/ £ Xn of type Pn, and sets
Cmi partitioning yn, such that 1- Wn{Cml\cml) < an = exp[-nE'(R', Pn) + o(n)],
for all (m,/) £ [Mn] x [L„]. By (5), an < e for all large n.

Let A'„ = [exp(nR")\. Then, by the second part of Lemma 3.1, Cmi can be
partitioned into subsets Cmik, k £ {e} U[A'n], such that Wn(Cmik\cmi) is the same
for all k £ [A'„], and Wn(Cmlc\cml) < f3n = exp[-nE"(i2",P„) + o(n)], for all
(m,/) £ [Mn] x [Ln]. By (5), 0n < t for all large n.

Note that limn"1 log(M„L„A'n) = H(P"W)-8 > R2, by assumption. Hence,
for all large n, exp(nR2) < {e2/2)M„L„K„ and Nn < exp[{e2/2)MnLnh'n}. By
Lemma3.2, then, there exists an AfT1 x (M„LnI\'„) array with entries from [J], any



two rows of which are at a Hamming distance greater than (1 —e)MnLnKn, if n
is large. Here, we may take J = [2/e]. We will denote this array by .4, and take
its columns to be indexed by triples (m,/,fc) £ [Mn] x [Ln] x [A'n]. A{a;m,l,k)
will denote the array element in row a and column (777,/,/:),

Finally, pick an integer t large enough that there exist sequences Ci,..., cj in
X1 and a partition Cu... ,Cj of y, satisfying. 1 - W(Cj|cj) < e for all j £ [J].
This is possible because the channel has positive Shannon capacity.

3.1.2 The strategies Fa,m and decoding sets X>a)7n

We will now describe how the transmitter encodes the address-message pair
(a, 777) £ [Nn] x [Mn]. The encoding is in two stages. In the first stage, it picks a
random / £ [Ln] with a uniform distribution, and sends the sequence cm/ across
the channel. There is then a unique triple (777, /,fc) £ [Mn] x [Ln] x ({e} U[A'n])
such that the corresponding channel output sequence lies in C^-lk. This triple, and
in particular k, is known to the transmitter as well as all the receivers because of
feedback. This completes the first stage.

If k £ [A'„], then the transmitter sends the sequence Cj in the second stage,
where j = A(a; m,/, k) is the element in row a and column (m,/, k) of the array
A; correspondingly, there is a unique j £ [J] such that the output sequence falls
in Cj. On the other hand, if k = e, both transmitter and receiver declare an
error, and the transmitter sends a dummy sequence of length *, say ce, in the
second stage. We have thus implicitly defined (n -K)-step strategies F0,m for each
(0,777) £ [Ay x [Mn].

We will now describe what receiver a' {a' £ [Nn]) does at the end of n + t
steps: it simply checks if ^(a';m,/,fc) = j. If so, it assumes that it is indeed
the intended recipient, and that the transmitted message is 777. Otherwise, i.e. if
A(a'; m, /,k) ^ j, it decides that the message is not intended for it. Formally, this
means that the decoding region Va,m C J"+' equals \\x%k4)Cmlk x Cj, the union
extending over all those triples (/, k,j) for which A(a\ m, /', k) = j.

3.1.3 Analysis

We will now bound the error probabilities of the IT code just defined. Suppose
the transmitter attempts to convey message 777 to receiver a. First note that if
(777,/) = (777,/), k^ e, and j = j, then receiver a will recognize that the message
is intended for it, and decode it correctly as 777. Therefore, by a union bound,

l-C?Fa,m(I>a,m) < Q„ +/?„ + €
< 3c for all large n.

10



Next, consider any receiver a' ^ a. Note that if (777.,/) = (m,/), k• ^ e, j = j,
and A{a'; m, /, A:) ^ A(a; 777, /, A:), then receiver a' will correctly recognize that the
transmitted message is not intended for it. As before, the probability that either
(777,/) 7^ (m,/), or A; = e, or j ^ j is at most on -f /?„ + e. Further, given that
(777, /) = (777, /), A: ^ e, and j = j, the probability that A(a'; m, /, A;) = A(a\ m, /, A:)
is equal to (LnKn)~l times Em(a, a'), where /^(a, a') is the number of pairs (/, A:)
such that A(a'\ 777, /, A:) = A(a; m, /, k). This is because / is chosen with a uniform
distribution over [L„], and, conditional on k ^ e, k has a uniform distribution on
[A'n] for all values of (777,/). Thus, we have

<?F0,„(XV) < an+/3B +£+^B(a'°')
so that

LnKr

£7m(a,a')

^^1 a""V "' " Mn^ LnKn
< 4c for all large 77,

because Ylm Em(a,a') is just the number of positions in which rows a and a' of
the array A agree. This completes the proof.

3.2 The deterministic case

The achievability proof in the deterministic case is very similar. Arguing as in
the general case, it suffices to prove that any rate-pair (Ru R2) satisfying

0 < Ri < C - 8 and 0 < R2 < /?i + max H(W\P) - 8
P:/(P;M0>/?i+5 '

for some 8 > 0 is in K{4e,4e), where c = (l/4)min(A,//), and A > 0, n > 0 are
given.

The above statement will be proved if we show that for all sufficiently large 7?
there exists an {n+ty Ar„, M„, 4c, 4c) deterministic IT code, with Mn = [exp(n/?] )J
and N„ = [exp[exp(n/?2)]J {i being a constant, as before).

We have a proof of the existence of such codes if we simply change three
sentences in the proof for the general case, starting from Section 3.1.1. These
are the first sentences of paragraphs 1, 2, and 4 of Section 3.1.1. The first of
these must be changed to "Let P* be any p.d. on X that maximizes H(W\P)
subject to the constraint I(P;W) > R\ + <T; the second to "Let Ln = 1"; and
the third to "Note that limn"1 log(MnLnA'n) = R} + H{W\P') - 8/2 > R2, by-
assumption."

But for these changes, the proof in the general case carries over word-for-word.
The resulting sequence of IT codes is indeed deterministic because Ln = 1 here; an
inspection of the previous proof shows that the transmitter needs randomization
only to generate a random / £ [Ln\.

11



4 Proofs of the converse parts

Let A > 0, ft > 0, and A+ // < 1. Consider any sequence of (n,Nn,Mn,X,fi)
IT codes {(Fa,m,I>0(m)} achieving the rate-pair (RUR2). (To avoid cumbersome
notation, we have suppressed the dependence of Fa,m and Va%m on n.) We will
now outline the ideas for bounding the transmission rate R\ and the identification
rate R2. We will treat the general case and the deterministic case in parallel.

To begin with, note that {(Fhm,Vhm) : 777 £ [M„]} is a sequence of (n,Mn)
transmission codes with average error probability A, for the DMC W with feed
back. The encoding may involve randomization, but this of course does not help
at all in the context of transmission codes. Since A < 1, the strong converse
to Shannon's theorem for DMCs with feedback (first proved by Kemperman [6])
yields limsupn-1 logMn < C. This implies that Rx = liminfn"1 log Mn < C,
which is the required bound on the transmission rate both for general and deter
ministic IT codes. However, it turns out that we can prove Kemperman's result
here with very little additional effort, and will therefore not appeal to it directly.
Our proof of this result is different from the original one.

The idea for bounding the identification rate is similar to that in [1]. Pick any
7 £ (fj, 1 - A), say 7 = (1 - A-f //)/2. Suppose we could find subsets V'a C Va of
the decoding regions such that

I M„
jr E Qr..m W) > 7 and |I>;| < A'n Va £ [Nn]. (6)
iW» m=l

Then, since

I M„ 1 A/n

ili" m=l 1VJn m= i

< 7 for all a ^ a,

the sets X>", a £ [Nn], would have to be distinct. But this would imply that ATn
is no bigger than the number of distinct subsets of yn whose size is at most A'„.
The latter, in turn, is bounded above by |̂ ,n|A", so that we would have

n-MoglogWn < n"1 logA'n + o(l). (7)

We will prove that if n is large enough then there exist subsets Vma C Va for
which (6) holds, with the uniform bound A'„ satisfying

n-1 log A'n = max H(PW) + o(l) (8)
P:l{P;W)>Ili-5 V V

in the general case, and

n-MogA'n = n"1 logMn + max H(W\P) + oil) (9)
P:I(P:\Y)>Ri-S V

12



in the deterministic case. Here, 8 is an arbitrary positive number. The required
bounds on the identification rate R2 = liminf77_1 loglog Nn in the two cases will
then follow from (7), (8), (9), and the continuity in R of maxi(p;w)>r H(PW)
and maiXI{p.iW)>R H(W\P).

Definition 4.1 Let F be an n-step strategy.

1. If{xn,yn) £ Xn x yn, then Pf(.r^^1,^1) is the probability that Xk = x
given (A'*"1,}'*"1) = (xk~1iyk~1), under the strategy F. P£niVn is the p.d. on
X given by

#,.(*) =»-1IX(*|x*-,,yw).
A-=l

2. The "typical set" £{F) for the strategy F is the set of (xn,yn) such that
WF(xn,yn) > 0, and

N(x,y\xn,yn)-nP*tyn(x)W(y\x)\ < n3'4y/\V(y\x) V(z,y).

Here, N(x,y\xn,yn) = \{k : {xk,yk) = (x,y)}\. The "section" of S(F) at yn
isEyn(F) = {xn:(x\yn)e€(F)}.

3. BQ{F) = {yn :3x" ££yn(F) such that I(P£tyn\W) >a}.

Remarks:

1) If the probability that (A^M'^1) = (.r^1,*/^1) under F is zero, then
PkF('\xk~1,yk~1) is not well-defined, but this will be of no consequence (in this
case, PjfHffk"1,!/*""1) can be arbitrarily defined).

2) The condition Wf(xn,yn) > 0 in the definition of £(F) ensures that
Pk ('\xk~l, yAM) is well-defined for all A\ and hence that P£ yn is well-defined. Also,
the term n3^4 appearing in the definition can be replaced by any n1, 1/2 < 7 < 1,
without essentially affecting the results.

Not surprisingly, the typical set £(F) carries most of the probability under
the p.d. Wp (see (10) in Lemma 4.1), and sequences in S{F) are "well-behaved"
in various ways (see Parts (a), (b), (c) of Lemma 4.1).

3) Later, we will choose the set Va to be LL^Vm H BQ(Fa,m) for each a £
[A'n], with a = R\ —8. This amounts to throwing away all sequences yn in
the decoding region Pa,m which are, roughly speaking, either "atypical1' (i.e.,
£yn(Fa,m) isempty) or have "low mutual information" (i.e., I(Pxn;yn; W) < R\—8
for all xn £ £yn(Fa,m))- The intuition is that, if 77 is large, such sequences cannot
contribute significantly to the probability of Va because the IT code is required
to transmit messages at rate R\ (see (11) in Lemma 4.2). The removal of such
sequences also trims down Va to the right size (see (12) and (13) in Lemma 4.2).

13



Lemma 4.1 Let d = 1^113 |̂. Then, for any n-step strategy F,

l-WF(£{F)) < dn-1'2.

U(*n*yn) € £{F), and yn has type Q, then

(a)\\ogQn{yn) +nH{P£ntVnW)\ < dn7l*.
(b)\\ogWn(yn\xn) +nH(W\pFiyn)\ < dn7l\
(c)\\og(^^l)-nI(PT^W)\ < TdnV*.

Proof: Appendix.

(10)

D

Lemma 4.2 Let A\,...,Fj\/ be n-step strategies, and T>\,...,T>m pairwise dis
joint subsets of yn. Then,

^lQFm(VmnBl(Fm)) <exp{»o +2(/nVs}(n+i), +^ ^

Here, BcQ(Fm) = yn - BQ(Fm). Further

M

U VmnBa(Fm) < (n+ l)rfexp{n max HIPW)
P:l(P;W)>a

J7l = l

If F\,...,Fm are deterministic, then

M

U VmnBa{Fm) < M •exp <n
m=l

Proof: Appendix.

max H(W\P)
P.I(P;\Y)>a V

+ dn7/8\. (12)

+ <fn7/8i. (13)

D

We will now return to the sequenceof (n. A',,, Mn,A,-//) IT codes {(Fa,m,T)a,m)}
at the beginning of this section, and complete the proofs of the converses. First,
note that if a = C then BQ(Fi>m) is empty for all 777 £ [M„], so that X>i,m =
VUmr\B%(Fl%m). Therefore,

1 Mn

'"" m=l

exp[nC + o(n)]
- A^ + 0(1)) (14)

where the second inequality is by (11). applied with a = C. Since A < 1, (14)
implies that limsupn-1 log Mn < 0, hence that R\ < C. We have now proved
Kemperman's strong converse for DMCs with feedback. It has already been

14



pointed out that the extra generality of possible randomization in the encoding
is superficial.

Pick any 8 > 0. As mentioned before, we will define the sets T>*a in the
following way:

M„

K = U V°,rn HB0(Fa,m), Q= ft - 8.
m=l

Then, |Z>*| is bounded above by the RHS of (12) in the general case, and by
the RHS of (13) in the deterministic case, with a replaced by ft —8 and M by
Mn. Moreover, for any a £ [Nn],

i M„ i A/„

-rrE<3F..,ra > T7-E<?F,..,„(ZV,„nS0(Faim))
IXin m=l IVJn m= \

J M„ i Mn
= Jf E fe.,,, (Va.m) - — J2 QFa<m (Va,m HBCQ(Fa,m))

n 7n = l n m=l

exp[n(fl1-(?) + o(n)]
> 1_A K ()
> 7 for all large n.

In the second inequality above, we have once again used (11), this time with
a = R\ —8. Thus, the sets Va have all the properties postulated earlier in (6),
(8), and (9), and the converses are proved.

Appendix

Proof of Lemma 3.1: As mentioned earlier, the first part of the lemma is a
standard result in channel coding. A proof can be found in [4] (Theorem 5.2 on
p. 165). We will therefore only sketch the proof of the second part. In the course
of the proof, we will make use of some simple results on types, without explicit
reference (all of them can be found in [4]).

Let W„(P) be the set of those DMCs V (with alphabets X and y) such that
nP(x)V(y\x) is an integer for all x,y. For any such V, define Tv(c) to be the set
of yn such that N(x, y\c,yn) = nP(x)V(y\x) for all x,y. Here, N(x,y\c,yn) is
the number of occurences of the pair (.t, y) in (c, yn).

For each V £ Wn(P), construct A' pairwise disjoint subsets of C D7v(c), say
Ci(V),... ,Ca-(V), each of size exactly [\C fl 7v(c)|/A'J (the subsets are otherwise
arbitrary). Let

ck= U <MV). ke[K].
V'€W„(P)

15



Then M/u(Ca-|c) is the same for all k £ [A'], since the number of sequences in
Ck of a given conditional type w.r.t. c is the same for all k. It remains to upper
bound H/n(Ce|c), where Ce is the set of those sequences in C that are not in any
of the Ck, k £ [A']. Note that Ce contains exactly \C H7v(c)| mod A' sequences
from Tv(c). Since A' < exp(n7?") and \Tv(c)\ < exp[nH{V\P)}, we have

\C fl Tr(c)| mod A" < min{A', |Tv(c)|}
< mm{exp(n.R"),exp[nH{V\P)]}

= exp{n[H(V\P)-(H(V\P)-R")+]}.

For any yn £ Tr(c), VF"(y'l|c) = exp{-n [H(V\P) + £>(V||W|P)]}. Therefore,

Wn(Ce\c) = J2 [\CnTv(c)\modK]-exp{-n[H(V\P) + D{V\\W\P)]}
V£Wn(P)

< \Wn(P)\vmaxp)exp{-n [D(V\\W\P) +(H(V\P) - R")+}}
< (n + l)dexp[-nE"(R".P)}.

The stated properties of E'(R', •) and E"{R". •) are easy to establish. •

Proof of Lemma 3.2: We will actually prove the following stronger statement:
if 0 < 6 < 1, J > 1/e, S > 1, and (N - l)exp{-5 • D(e\\l/J)} < 1, then there
exists an N x S array with entries from [J], in which any two rows differ in more
than (1 —c)S positions. This will prove the lemma because D(p\\q) > 2(p —q)2
for all p, q in [0,1] (see Lemma 12.6.1 on p. 300 of [3]), so that if J > 2/e then
D(e\\l/J) > e2/2, and (N - l)exp{-5 •D{e\\\/J)} < Nexp(-Se2/2).

Let the first row of the array be arbitrary. Then, choose a random second row,
by picking each element independently and equiprobably from [J]. Since e > 1/J,
the probability that the second row matches the first at least in eS positions is,
by a Chernoff bound, no greater than exp{—S • D(e\\l/J)} < 1. Hence, there
exists a "good" 2 x 5 array.

In general, if there exists a "good" L x S array for some L > 2, and we pick an
(L -j- l)th row randomly as above, then the probability that this row matches any
of the other L rows at least in eS positions is bounded by L•exp{—S• D(c\\l/J)}.
which is < 1 if L < N. This proves the existence of a "good,, N x S array. •

Proof of Lemma 4.1: Let (Xn,Yn) be the random pair of input and output
sequence's when the 77-step strategy F is used. Then,

WF(x'\y") = Pr[(.V",V") = (.,-", y")]

= f[ Pr [(A',, >i) =(.,-,. ,„) I(.VM, V*"1) =(.»-w.jA1 )]
A-=l
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= n^F(-n-|.rt-,,J/w)»-(W.|.r,)
A-=l

= nnF(n|.r'M.,«Al)) H"(j,"|*"). (15)
vfc=l

Fix a pair (.r,t/). For 1 < k < n, let Ak = 1 if {Xk,Yk) = {x,y), and 0
otherwise. Then, E[^|A'^,yAM] = Pf(.rlA^1,^1)^*). Thus, if Ak =
Ak - E[Ak\Xh-\Yh'1], then

Jk=l

(16)

It can be verified easily that Var(.4fr) < \V{y\x), and that the Ak's are pairwise
uncorrected. Hence, by Chebyshev's inequality,

Pr

Jk=l

> n3'4y/W(y\x) < n"1'2. (17)

By (16). (17). and a union bound over all (.r.y). we have 1—Wp {£{F)) < dn~ll2.
This proves (10).

Suppose (.i*",t/n) £ £(F) and yn has type Q. Then, for any y £ y.

\Q(y)-PTFn,„,W(y) = 77
-1 £ [A'(.r.</!.»•"..y") - nPr^izWMx)]

X

< \X\n-1''. (18)

Now, if Pi and P2 are probability distributions on a finite set 2. and |Pi(~) —
P2(z)\ < {3 for all z £ 2, then |//(Pi) - //(P2)| < |̂ |v^7. For,

!#(/>!)-ff(P2)| < £|-P,(r) log P.^ + P^) log P2U)|

< |2|G(/i).

where G{/3) = max|—2-log.r + y\ogy\ subject to 0 < x,y < 1 and \x —y\ < 3.
By elementary calculus methods, it can be shown that G{(3) = —/?log/3 if 0 <
/? < 1/e, and G{/3) = 1/e if /? > 1/e. Since -/?log/? < v^ on [0,1/e], and
l/e < V3 on [l/e5°°)* we have G'(/?) < yffl for all /? > 0, which proves the claim
made earlier. Applying this result to (18), we have

H(Q) -H(P^W)\ < \y\yl\X\n-*l*



Since \ogQn(yn) = —nH(Q), Part (a) of the Lemma is proved. Next,

|logH-"(t/"|.r") +n//(»'|Px';,iV„)

= £ [N[x,y\*n,V") ~nPr.y„(r)W(y\x)] logW(y\x)
X,J/

< 52n*4y/W{y\2)\1ogWiy\x)\
x,y

< dn7's, (19)

since |\/Flogc| < 1 if 0 < z < 1, and n3/4 < n7/8. This proves Part (b). Part (c)
is an obvious consequence of Parts (a) and (b). •

Proof of Lemma 4.2: Let F be any ??-step strategy, V C yn, and V =
VnBcQ(F).Then,

QF(P) = WF(XnxV)
< WF ([Xn x V) H£(F)) + dn~1/2
= £ £ 1*>(£>(F) x {</"}) + rfn-1/2, (20)

QeVn(y)y"eV'nTQ

where Vn(y) is the set of n-types on }\ and 7g the set of yn with type (J (the
inequality above is by (10)). Now, for any yn £ V D7g,

H>(^(F)x{t/"})

= £ (n^F('*kw-^1))^B(ynkB)
r»6fyn(F) \A =1 /

^ EMQ tf(**l*w,»w ) Q»(»")exp{na + 2dn7>»}
3TneSyn(F) U-l /

< Qn(7/n)exp{no + 2f/n7/8}. (21

Here, the first equality is by (15). and the first inequality is by Part (c) of
Lemma 4.1, together with the fact that if yn £ BCQ(F) then I(P$, yn; W) < a
for all xn £ Eyn(F). From (20) and (21),

Qf (V) < £ Qn(V' n TQ)exp{na + 2<fn7/8} + dn~ll2
Qev„(y)

< E e"(P)exp{na+2r/n7/8} + dn~1/2.
Qevn(y)
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Thus, ifPi,..., FM are n-step strategies, and Vx,..., VM are pairwise disjoint
subsets of yn,

M

m=l

i M

< —Y J2 QnCDm)exp{7ia + 2dn7'8} + drT1'2
lQern(y)

exp{„Q +2^} E Q/- N+dn_1/2
A/

Q6A.O') ^m=l

< ^"^+ **"%, +!)' + *,->/»,

since |P„(J)| < (n + l)d. This proves (11).

Next, we will prove that

U^(P) < (n + l)rfexpfn max H(PW)
P:J(P:\Y)>a

+ dn7's\ , (22)

where the union is over all n-step strategies P. This will obviously imply (12).
Now, if yn £ Ba(F), then there exists .r" £ £y»(F) such that I(P£«iyn;W) > a.
Therefore, if yn has type Q. then

n-MogQ"^") > -//(P^^vr)-^-1/8
> - max ff(/W) - dn"1/8,
~~ P:I[P;W)>o

where the first inequality is by Part (a) of Lemma 4.1. Hence,

TQr\\jBQ(F) < exp < n max HIPW)
P:I(P,W)>a

+ dll7l& (23)

Since | \JpBQ(F)\ = Y,q \Tq HUf #o(P)|* and the number of types Q is at most
(n + l)rf, (22) is proved.

Finally, we will prove that if F is a deterministic 77-step strategy, then

\BQ(F)\ < exp 77 max H(W\P)
P:/(P;U')>o

+ dn7/8 (24)

From this and the disjointness of the sets Vm, (13) will follow. Suppose F(f) =
1. Then, (xn,yn) £ £(P) implies that .r" = /(*/") (because of the condition
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WF (xn,yn) > 0 in the definition of S(F)). Thus, if yn e Ba(F), we must have
I(P^(y-),yn\W) > O, SO that

QF{yn) = W" (yn\f(yn))

> exp {-nH(W\Pf(ru„) - dn7'8}

- dn7's\ .> exp < —n max H(W\P)
P:I[P\W)>a v ' '

(25)

Here, the first inequality is by Part (b) of Lemma. 4.1. From (25), we obviously
have (24). D
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