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Abstract

A conflict resolution architecture for multi-agent hybrid systems with emphasis on Air Traffic
Management Systems (ATMS) is presented. In such systems, conflicts arise in the form of
potential collisions which are resolved locally by inter-agent coordination. This results in a
decentralized architecture in which safety issues are resolved locally and central agencies, such
as Air Traffic Controllers, focus on global issues such as efficiency and optimal throughput.
In order to allow optimization of agents’ objectives, inter-agent coordination is minimized by
noncooperative conflict resolution methods based on game theory. If noncooperative methods
are unsuccessful, then cooperative methods in the form of coordinated maneuvers are used to
resolve conflicts. The merging of inter-agent coordination, which is modeled by discrete event
systems, and agent dynamics, which are modeled by differential equations, result in Aybrid
systems.

1 Introduction

We are increasingly confronted with the control of distributed multi-agent systems: such as Air
Traffic Management Systems (ATMS) [1], Intelligent Vehicle Highway Systems (IVHS) [2], control
systems of an interconnected power grid, and communication networks. Let us for the sake of
specificity focus on the first two systems: the common feature of these systems is that agents
compete for usage of a common resource, such as space time on the jetways, airport runways,
highways, etc. There is a need to balance individual safety of the agents with system level optimality
of the utilization of the scarce resource. Indeed, as we have all observed in driving, the optimal
greedy policies of individual agents result in conflict and loss of optimal utilization of the common
resource as a whole.

One of the most important conceptual issues to be addressed in the architecture of these control
systems is their degree of decentralization. The foregoing examples are revealing: current air traffic
control practice is completely centralized (with the regional centers, airport control towers, gate
controllers) providing all of the instructions, while current roadway driving practice is completely
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decentralized with individual drivers (usually adopting “greedy strategies”) setting their driving
control laws. There are clear drawbacks to each: the completely decentralized solution is inefficient
and leads to conflict, the completely centralized control laws are not tolerant of faults in the central
controller, computationally and conceptually complicated and slow to respond to emergencies. The
focus of our research has been to strike a compromise in the form of partially decentralized control
laws for guaranteeing reliable, safe control of the individual agents while providing some measure of
unblocked, fair, and optimum utilization of the scarce resource. In our design paradigm, agents have
control laws to maintain their safe operation, and try to optimize their own performance measures.
They also coordinate with neighboring agents and a centralized controller to resolve conflicts as they
arise and maintain efficient operation.

For reasons of economic and reliable information transfer among the agents and the centralized
controller, coordination among the agents is usually in the form of communication protocols which
are modeled by discrete event systems. Since the dynamics of individual agents is modeled by
differential equations, we are left with a combination of interacting discrete event dynamical systems
and differential equations resulting in hybrid control systems. An important issue in the area of
hybrid systems is the analysis and design of protocols and interfaces between agents as well as
continuous control laws for each agent. Continuous control laws are usually proven correct by
traditional tools of control theory, whereas verification of coordination protocols is performed by
computer verification algorithms (such as in [3), [4]). There are several approaches to hybrid system
design and verification (see for example [5, 6]). One approach is to extend verification techniques
which exist for finite state machines (3] to include timed and dynamical systems. These approaches
abstract the differential equations by clocks [7] or differential inclusions [8] and verify the resulting
abstracted system. More unified approaches in which the hybrid system design is not decoupled
into the design of the individual continuous and discrete components are [9, 10, 11, 12, 13].

A natural framework for formulating problems in which many agents have different objectives is
game theory [14, 15]. Consider at the outset the simplest kind of game: a noncooperative zero-
sum dynamic game with each agent is modeled as a player [16]. In this framework, each agent
treats every other agent (for the sake of pairwise interactions) as a disturbance. Assuming a
saddle solution to the game exists, the agent chooses an optimal policy assuming the worst possible
disturbance. The resulting solution involves switching between different modes of operation and
can be represented as a hybrid automaton. For multiple agent coordination, the kinds of games
that need to be considered are cooperative and competitive with possibly incomplete information.
For such games, there is a large literature available (see for example [17]), but our approach would
be to try to find ways of abstracting the solutions of the games in the form of protocols among the
agents. The extent to which the protocol is centralized or decentralized is an interesting question to
answer. Game theoretic methods have been used in a similar way to prove that a set of maneuvers
in Intelligent Vehicle Highway Systems is safe [18], [19].

The current paper studies conflict resolution for aircraft in the context of a new architecture for Air
Traffic Management that has been proposed in [1] to allow for some shift away from the traditional
completely centralized Air Traffic Control paradigm. It has been motivated by some estimates from
commercial airline sources of savings of close to $15 billion in the United States alone which would
accrue from allowing for so-called “free flight” off the current pre-assigned jetways. Even in the
crowded air space over Western Europe, where free flight is not as important a consideration, it has
been estimated that allowing for more air traffic control functions to be performed in decentralized
fashion on board the aircraft will result in much faster system response and consequent savings on
expensive holding patterns. Related studies in new air traffic management systems include [20] and



[21).

The organization of this paper is as follows. In Section 2, a conflict resolution architecture for
multi-agent path planning systems is described. Long range collision avoidance among aircraft is
noncooperative and is modeled as a zero-sum game. The performance requirement in this case is
encoded by the distance between two agents which should never fall below a minimum threshold.
The long range collision avoidance maneuvers are chosen to be maximally decentralized, i.e. “on
board”. As the range gets shorter, or when the long range conflict resolution maneuvers fail,
coordination (cooperation) among the agents is used and multiple agent coordination strategies are
discussed. Finally, the fully centralized Air Traffic Control strategy is also utilized in our framework.
In Section 3, the agents are kinematically modeled as elements of the Lie groups SE(2) and SE(3).
Section 4 describes a noncooperative zero sum game approach to long range collision avoidance. The
solution of the game is abstracted into a finite state automaton, and the composite hybrid system
is safe by design, obviating the need for further verification. Section 5 describes the predefined,
coordinated maneuvers which guarantee collision avoidance at short range. For two aircraft, the
protocols were derived using two “pilot inspired” maneuvers for overtaking and head-on conflict
avoidance. They involve coordination between the two aircraft, but no others that are outside the
“alert zone”. The use of a verification tool developed at Berkeley called HyTech in verifying the
design is indicated. We also extend the HeadOn conflict resolution protocol to multiple aircraft
agents. These extensions have not yet been verified on HyTech, but are expected to be safe. In the
design of these protocols, we have realized the important connections that they make with Nash
solutions of non-competitive games, but have not yet worked out all the details. Our results, with
their attractive features for current pilot and Air Traffic Control practice, represent an important
first step in finding abstractions to cooperative games which represent trajectories that pilots find
easy to fly. Section 6 discusses issues for further research.

2 Conflict Resolution Architecture

In multi-agent path planning problems, the agents wish to traverse different trajectories which
have been designed in an optimal fashion according to the goals of each agent [22, 23, 24]. Very
frequently, however, the trajectories of two or more agents may be collision bound, in which case
the planned trajectories must be altered in order to avoid collision.

In particular, in current air traffic systems, conflict resolution is performed centrally by Air Traffic
Control (ATC). Centralized control schemes are theoretically more efficient than decentralized
schemes if all information is available to the central decision maker. However, centralization comes
at the cost of extreme complexity, amplified by current computation and communication limitations.
Air traffic controllers have the highly stressful task of manually guiding and sequencing many
aircraft through their sectors of airspace. In an effort to reduce the complexity, the system is
simplified. ATC routes aircraft along well-traveled jetways, and avoids the problems of multi-
aircraft conflict by placing many aircraft in holding patterns. The simplification of the complex,
global system model results in suboptimal or inefficient solutions which may defeat the purpose of
having centralized schemes. Also, centralized schemes are not reliable since any malfunction of the
centralized decision maker is hazardous to all associated agents .

'Indeed, in August 1995, the central computer controlling the air traffic in the FAA Fremont control center
experienced a 65 minute power failure, leaving close to 70 aircraft with no communication to ATC.



On the other hand, decentralized control schemes distribute the problem complexity to all asso-
ciated agents. The computational complexity at the level of each individual agent is clearly less
than is required by the central decision maker in a centralized scheme. However, this also requires
proper distribution of computational power as well as an increase in inter-agent communication.
Fortunately enough, this is permitted by current technological advances (Global Positioning Sys-
tems (GPS), Flight Management Systems (FMS)) which enable the implementation of decentralized
architectures. In addition, decentralized schemes are more fault tolerant than centralized schemes,
since malfunctions are of a local nature and can be potentially hazardous only to the malfunctioning
aircraft as well as to some neighboring aircraft.

The design of a conflict resolution architecture has to choose a proper balance between centralized
and decentralized authority. Central agencies are concerned with global issues while decentralized
agencies are concerned with local problems. For multi-agent path planning problems, a conflict
takes the form of a potential collision which is essentially a local property and it seems natural to
address this problem at a decentralized level. We therefore propose a conflict resolution architecture
in which conflicts are resolved locally by inter-agent coordination.

In this type of architecture, central agencies can focus on more global issues such as optimality; by
avoiding local questions, the complexity of the problem is reduced. This complexity reduction may
result in converting suboptimal solutions of the complex optimization problem to optimal solutions
of a simplified problem. In addition, central control can offer advice in safety critical situations
which may not be resolved locally. The central agency can also serve as a backup in case there
are local inter-agent malfunctions. This, in addition to the natural fault tolerance of decentralized
structures, will result in increased overall system safety and reliability.

In a multi-agent society, different agents are interested in different objectives which may be conflict-
ing. Although conflicts will be resolved locally among agents, it is rather clear that the success of
such an architecture will depend on the relative time that each agent is allowed to optimize its own
goals. It is therefore desirable to minimize inter-agent interaction. For path planning problems,
this will allow aircraft to stay on their nominal optimized trajectories for as long as possible.

Inter-agent coordination is minimized by classifying conflicts according to whether they are long
range or short range, and by attempting to resolve long range conflicts without any coordination
among agents. In the path planning problems addressed in this paper, long range conflict resolution
acts a filter which, by adjusting the velocities of the agents within given bounds, reduces the number
of conflicts which have to be considered at short range. Short range conflicts are more safety critical
than long range, and must be solved by coordination among the agents.

The notions just discussed, of centralized vs. decentralized control schemes, local vs. global system
properties, and short range vs. long range conflict, are captured in the proposed hierarchical
architecture for conflict resolution of Figure 1. The algorithms contained within this architecture,
the subject of the rest of this paper, are resident in and are executed by each agent in the system. In
Air Traffic Management Systems, the algorithms reside in the Flight Vehicle Management System
(FVMS) located on board each aircraft.

As the agents referred to in this paper are actually aircraft in an air traffic system, long range and
short range are conveniently depicted according to the sensor and communication ranges shown in
Figure 2:

e Detection Zone (approx. 100 miles): The detection zone is defined by the radius of the
aircraft’s sensing capability. Conflicts within this region are classified as long range and are
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Figure 1: Conflict Resolution Architecture

resolved noncooperatively by small velocity variations which over the long range horizon will
result in sufficiently large spacings between aircraft.

o Alert Zone (approz. 30 miles): Conflicts within this region are classified as short range.
Within this zone, conflicts are resolved cooperatively using more drastic maneuvers such as
altitude and/or direction changes.

o Protected Zone (approz. 2.5 miles): A collision between two aircraft occurs when their re-
spective protected zones have nonempty intersection. Therefore, protected zones essentially
provide a minimum safety distance between aircraft.

At the lowest level of the architecture, long range Conflict Detection is performed. Conflict detection
is based on sensory information available to the aircraft, which detects the instantaneous position
and heading of each aircraft within the Detection Zone around the given aircraft. The state of the
art detection technology is FAA’s tool called TCAS, which transmits its own IP signal and receives
other aircrafts’ ID signals from within a given vicinity. Once this set of agents involved in potential
conflicts has been identified, it is assumed that no new agents will enter the set until all conflicts
have been resolved. In the case in which new agents are likely to enter the set, an extended problem
which includes these agents in the formulation will be considered.

The first attempt to resolve the conflict is to perform Noncooperative Conflict Resolution with
no coordination between the agents. The agents are treated as players in a n-player, zero-sum
noncooperative dynamic game. Each player is aware only of the possible actions of the other
agents. These actions are modeled as disturbances, assumed to lie within a known set but with
their particular values unknown and uncontrolled. Each agent solves the game considering the
worst possible disturbance. The performance index over which the agents are competing is the
relative distance between the agents, required to be above a certain threshold which is determined



Figure 2: Aircraft Zones

by the size of the protected zone. Assuming that a saddle solution to the game exists, the saddle
solution is safe if the performance index evaluated at the saddle solution is above the required
threshold. In this case the agent follows the policy dictated by the saddle solution and does not
have to coordinate with the other agents. If the saddle solution to the game is unsafe, it may
be because the disturbance sets are too large. Partial Coordination between the agents is then
necessary in order to reduce the disturbance sets. We distinguish between collision avoidance
among heterogeneous agents and homogeneous agents.

Heterogeneous agents are linearly ranked according to some priority system. Priorities are assigned
after considering economic factors, emergency situations, and maneuverability of various agents.
In this case, the agents may choose their own policies as long as they do not interfere with the
policies of the higher ranked agents. The agents are therefore aware of the actions of higher ranked
opponents. From a game theoretic viewpoint this simply results in reducing the disturbance sets to
known functions of time and the game is thus reduced to an optimal control problem. If the agents
are homogeneous, then every agent transmits to all other agents the disturbance sets for which a
safe solution exists for its game. If the intersection of these reduced disturbance sets is nonempty
then collision can be avoided by simply reducing the possible actions of each agent.

If reducing the disturbance set still results in an unsafe solution, Cooperative Conflict Resolution is
necessary. In this scenario, optimality considerations become less significant and safety is ensured
by full coordination among all of the agents. Short range Conflict Prediction is first performed to
determine the point of collision. The agents then follow predefined maneuvers which are proven
to be safe. These maneuvers are a combination of a verified communication protocol as well as
control laws. The class of maneuvers constructed to resolve conflicts must be rich enough to cover
most possible conflict scenarios. Furthermore, different maneuvers may be constructed for resolving
conflicts among heterogeneous agents rather than among homogeneous agents.

At the top of the hierarchy is the centralized ATC, which will intervene and attempt to resolve a
conflict if it cannot be resolved by Cooperative Conflict Resolution among agents.



3 Modeling

Because conflicts between agents depend on the relative position and velocity of the agents, it is
useful in the following analysis to derive relative kinematic models, describing the motion of each
aircraft in the system with respect to the other aircraft. For example, to study pairwise conflict
between the trajectories of two aircraft, aircraft 0 and aircraft 1, a relative model with its origin
centered on aircraft 0 is used. The parameters of the model, such as the velocity of aircraft 1, may
not be known to aircraft 0, yet aircraft 0 has estimates on the bounds of these parameters, which
it can use in noncooperative collision avoidance.

The configuration of an individual agent is described by an element of a Lie group G. The Lie
group G will typically be either the group of rigid motions in R2 or R3, called SE(2) or SE(3)
respectively. In planar situations, in which aircraft are flying at the same altitude, SE(2) will be
used.

Following the example described above, let gop € G denote the configuration of aircraft 0, and let
g1 € G denote the configuration of aircraft 1. The trajectories of both aircraft are kinematically
modeled as left invariant vector fields on G. Therefore
9o = goXo (1)
=X (2)
where Xy, X; € G, the Lie algebra associated with the Lie group G.
A coordinate change is performed to place the identity element of the Lie group G on aircraft 0.
Thus, let g, € G denote the relative configuration of aircraft 1 with respect to aircraft 0. Then
91=9ogr = 9r = g5 91 (3)

Differentiation yields the dynamics of the relative configuration,

g = gr X1 — Xogr (4)

Note that the vector field which describes the evolution of g, is neither left nor right invariant.
However,

g = 9:X1— Xogr
= g [X1 - Adg:lXO] (5)

where Ad -1Xo = g- 1 Xogr €G.

Consider the Lie group SE(2) and its associated Lie algebra se(2). A coordinate chart for SE(2) is
given by z,y, 0 representing the planar position and orientation of a rigid body. In this coordinate
chart, the relative configuration g, is given in homogeneous coordinates by

cosf, —sinb, =z,
gr= | sinf, cosfr y (6)
0 0 1

where z,,y, represent the relative position of aircraft 1 with respect to aircraft 0 and 6, is the
relative orientation. The Lie algebra elements Xg, X, € se(2) are represented as matrices in R3%3
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of the form

0 —-wp w 0 —w un
Xo = Wo 0 0 Xl = w1 0 0 (7)
0o 0 O o 0 O

where v;, w; represent the translational and rotational velocities. Inserting equations (6) and (7) in
equation (4) results in the following model

Iy = -—vg+ v;co80; + woyr
¥r = v1sind, —woz, (8)
0 = w1 —wp

Now consider the Euclidean group SE(3) along with its associated Lie algebra se(3). A coordinate
chart for SE(3) is given by z,¥, 2, ¢,0,% representing the planar position and orientation. The
orientation is parameterized using the yaw-pitch-roll chart where ¥ is the yaw, 6 is the pitch and ¢
is the roll. In this coordinate chart, the relative configuration g is given in homogeneous coordinates
by
C'llJrCG’r C"/’rsorsd’r - S¢r0¢r C¢r50rc¢r + S¢rS'l/’r Ty
_ | Sv:.CO, S4p56,S¢r + CtpCdr S9:56,Chr — S$:Chr yr )
=1 —se, C8,5¢, C8,C¢, 2
0 0 0 1

where z,, yr, z, represent the relative position of aircraft 1 in the coordinate system which is attached
to aircraft 0 and ¢, 0,, %, parameterize the relative orientation. In equation (9), the notation Sa
stands for the sine of the angle @ and Ca for the cosine. The Lie algebra elements Xy, X; € se(3)
are of the following form

00 -wl wgo vo 0l —w} w%l v

_ w3 0 —wj 0 _ w3 0 - 0
Xo=|_00 w0 o0 o XT|-wl o 0 o (10)

0 0 0 0 0 0 0 0

where v;, w}, w}, w} represent the translational and rotational velocities. Inserting equations (9) and
(10) in equation (4) results in the following model

T, = —vo — wgy, wgz,- + v; cos ¥y cos Gy

Yr = —w3:1:,- + wl 2y + vy sin?, cos 0,

% = Wiz, —wiy, —v1siné, (11)
b, = —wiCir + wiCo, + WSt — wiSe,

Yr = —wh+ c S [—w98%, S0, + wiSh, + wiCe, — wICH,S6;]

b = w}+=—[wiCe 50, — WISY, — WICY, + wiS¢,S6;]

CB,

Notice that equations (11) are ill posed when 6, = +% as expected from the singularity of the
yaw-pitch-roll parameterization of SE(3).



4 Noncooperative Conflict Resolution

4.1 Game Theoretic Approach

In this section, a method for noncooperative conflict resolution among agents based on [16] is
presented. Agents are aware of the relative position and heading of neighboring agents but not of
their velocities. The following methodology is used as a long range collision avoidance scheme in
an effort to filter all conflicts that can be resolved without inter-agent cooperation.

A two agent scenario is considered. Scenarios involving more agents, although considerably more
complex, are conceptually similar. Let

= f(za u,d, t) x(tO) = To (12)

model the dynamics of the relative configuration z € R" between the two agents, where v € Y
is the control input of one agent, called the evader, and d € D is the control of the other agent,
called the pursuer. The actions of the evader are controlled whereas the actions of the pursuer are
unknown and uncontrolled but are known to lie within the disturbance set D. Thus, the actions of
the evader are modeled as control inputs whereas the actions of the pursuer as disturbances.

The requirement for collision avoidance is encoded in a cost function J;(zo,u,d) and is simply the
distance between the two agents. A trajectory of system (12) is called safe if

Js(mOa u, d) 2C (13)

for some constant C determined by the size of the protected zones. In a zero-sum, noncooperative

game, the pursuer tries to minimize the distance between the agents whereas the evader tries to

maximize it.

A saddle solution to the game exists when there exists input u* and disturbance d* such that
Js(zo,u,d") = maxmin Jy(zo,u,d)

= minmax Js(zg,u,d
weld deD s( 0y U, )

If a saddle solution exists, the optimal policy for the evader is u* whereas the worst possible
disturbance by the pursuer is d*. If the trajectory of (12) corresponding to the saddle solution
(u*,d*) is safe, then collision is avoided by the evader for the worst possible pursuer disturbance.
In this case, collision is avoided regardless of what the pursuer will do as long as the evader
chooses its optimal policy. This allows the evader to choose a control policy which guarantees
safety without having to communicate or cooperate with the pursuer. This is the fundamental idea
in noncooperative conflict resolution and results in minimal inter-agent interaction.

The safety of a particular control policy also depends on the initial relative configuration zo. The
set of safe initial relative configurations is defined as

Vi = {zo € R"|Js(20,u*,d") > C} (14)

If the initial relative configuration does not belong in V; then collision avoidance is not guaranteed.
In that case, noncooperative methods alone will not suffice. If, however, zo € V; then safety is
guaranteed by choosing the control policy u*. In general, given an initial relative configuration
o € Vs, the following set ‘

Us(zo) = {u € U|Js(z0,u,d") 2 C} (15)
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is defined as the set of control policies which guarantee safety from relative configuration zo. Since
all u € Uy(zp) guarantee safety from zo, it is advantageous to find the control policy u € Us(zo)
which minimizes deviation from the nominal trajectory. Deviation from the nominal trajectory is
encoded in a cost function J, which is usually a quadratic function of the tracking error. There-
fore, minimization of the tracking error which guarantees safety from relative configuration zo, is
performed by solving the following optimal control problem '
min J, 16
u€lds(zo) (16)
subject to the differential eqﬁations (1,2) which describe the dynamics of individual agents in
absolute coordinates and can therefore be used to describe the tracking error dynamics.

Additional system requirements such as passenger comfort can also be incorporated by extending
the above nested chain of games and optimal control problems [16]. The above methodology is now
illustrated in the instance of planar conflict resolution.

4.2 Planar Conflict Resolution

Suppose we consider the special but interesting case of model (8) in which w; = 0, ¢ = 0,1.
The agents are restricted to straight line motion, which, for example, corresponds to two aircraft
flying along straight lines at the same altitude. Conflicts can then be resolved by altering velocity
variations. The model then reduces to

T, = —vo+v;cosb,
yr = v;siné, 17)
6, = 0

where vg is the speed of the evader, v; is the speed of the pursuer, and the constant 0, represents
the relative orientation between the evader and the pursuer.

In this problem, vy is the control and v; is considered the disturbance. Collision is essentially
avoided by altering the velocity profile of the trajectories. The input and disturbance lie in closed
subsets of the positive real line,

vo €U = [ug,Tg] C R (18)
n €D= [gl,?)'l] CR (19)

In the case in which the agents are aircraft, we have vy > 0 and v; > 0. Equations (17) can be
integrated to give

z.(t) = z,(0)- /0 t vo(7)dT + cos 6, /o t v (7)dT

0@ = w0 +sind, [ w(r)ar (20)
6-(t) = 6:(0)
and when vy and v; are constant,’
z.(t) = z,(0)+ (—vp + v1cosb;)t

yr(t) = yr(0) + (v1sinb,)t (21)
6-(t) 6-(0)

10



From now on, let ¢ = [z,y,6]7 denote the state with go denoting the initial state. The requirement
for collision avoidance is encoded in the cost function Jg,

Js(g0,v0,v1) = }gg(lxr(t)l + |- @)D (22)

which is a measure of the distance between the pursuer and the evader. To avoid collisions, we
require
Js(go, vo, 1) 2 C, (23)

where C describes a safety distance margin around the agents and is determined by the radius of
the protected zones. Note that since the L; norm is used in (22), the threshold constant C must
be large enough in order to include the protected zone.

The optimal policy for both the evader and the pursuer will correspond to a saddle point of the
optimizing cost. It is clear from the dynamics that the saddle solution will depend on the position
and orientation of the pursuer with respect to the evader.

Proposition 1 [Saddle Solution] The global saddle solution (v§,v}) to the game described by system
(17) for the cost Js(qo,vo,v1) given by equation (22) is

x vy ifsgn(z,)>0
Y = { vy ifsgn(z.)<0 (24)
o = { 1 if sgn(z,) cos b, + sgn(y,)siné, > 0
T =
Proof: In Appendix. O

1 if sgn(z,) cos O, + sgn(y,)sinf, <0 (25)

As can be seen from equation (24), the optimal control depends on the position of the pursuer
relative to the evader. If the pursuer is ahead of the evader then the evader should move as slowly
as possible whereas if the pursuer is behind the evader then the evader should move as quickly
as possible. The worst possible disturbance is described by equation (25). Simple trigonometric
calculations show that

(sgn(z,) cos 6, + sgn(y,) sinb,) = sgn(y,)V2sin[f, + sgn(zryr)%] (26)

Therefore, if z, and y, have the same sign, then the sign of sin(é, + T) is used in determining the
pursuer’s policy whereas if z, and y, have opposite signs then it is the sign of sin(6, — ) that is
used. Equations (25) and (26) may be interpreted intuitively as follows: if the pursuer is heading
towards the evader, then the pursuer moves as quickly as possible; if heading away from the evader,
the pursuer should move as slowly as possible. This is shown in Figure 3.

Notice that the bang-bang nature of the saddle solution allows us to abstract the system behavior by
the hybrid automaton shown in Figure 4. The automaton switches between four different discrete
states and within each state, there exists a differential equation, namely equation (17) with vy and
v as shown in Figure 4. The invariance conditions for each state are obtained from equations
(24,25) and are summarized in the following table. If the invariance conditions for the current
discrete state are not satisfied, then the hybrid automaton is forced to switch to the state where
the invariance conditions are satisfied.

11
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Figure 3: Interpretation of Optimal Control and Worst Disturbance vy, V]
0, V1

| Discrete State | Invariance Conditions |
PURSUER AHEAD AND HEADING TOWARDS | sgn(z,) cos 0,3 sgn(y,)siné, <0
' sgn(z,) >0
PURSUER AHEAD AND HEADING AWAY sgn(z,) cos Opy+ sgn(yr)sinby. > 0

sgn(z,) >0 ..

PURSUER BEHIND AND HEADING TOWARDS | sgn(z,)cos 0, + sgn(y,)siné, <0
sgn(z;) <0

PURSUER BEHIND AND HEADING AWAY sgn(z,) cos 0, + sgn(yy)sinf, > 0
sgn(z,;) <0

It is also possible to have diagonal transitions in the automaton of Figure 4. These transitions,
however, are triggered only when both the pursuer and the evader change policy simultaneously.
From equations (24) and (25) it is clear that this happens only when thexy pursuer crosses through
the origin, in which case a collision has occurred. \

It is clear from the feedback laws (24,25) that the resulting closed loop system is described by a
discontinuous differential equation. The surfaces of discontinuity, as can be seen from equations
(24,25), are simply the z,- and y,-axes. The following proposition establishes conditions under
which chattering solutions in the sense of Fillipov are possible.

Proposition 2 [Chattering Saddle Solutions] Consider the rélative configuration model (17)

Z, = -—vp+vjcosb,

12
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sgn(xpsinBr+sgn(y)cosfr<0
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Figure 4: Abstraction of Saddle Solution as a Hybrid Automaton

yr = wvsiné;

with control laws (24,25),

if sgn(z,) >0
if sgn(z,;) <0
vy if sgn(z,) cos 0, + sgn(y,)sinf, > 0
1 if sgn(z,) cos O, + sgn(y,)sinf, <0

v3={
vi‘={

S

Then the z,-azis ({(Zr,yr) € R2|yr = 0}) is a chattering surface only if 2

sinf, #0 and v, <0<y

and the yr-azis ({(zr,yr) € R2|z, = 0}) is a chatlering surface only if either

cosf, < 0 and v, cosf, > Ty and T;cosb, < vy

cosf. >0 and Ty cosf, > Ty and v, cosb, < yy

2Note that condition (27) does not apply to aircraft.
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Figure 5: Chattering Solution for [ug, o] = [2,4], [2;,71) = [1,10], 6, = —7/8 and C' = 0.2.

Proof: In Appendix. O

From condition (27), it is clear that the z,-axis is a chattering surface only if the pursuer can move
both forwards and backwards and does not move parallel to the evader. If the pursuer cannot move
backwards, as in the case of aircraft, then the z,-axis cannot be a chattering surface. However,
conditions (28,29) are feasible even when the agents are aircraft with vy > 0, ; > 0 as long as the
disturbance set is sufficiently larger than the control set. In other words, chattering is possible when
the pursuer has sufficiently more control authority than the evader and, thus, the pursuer can move
both faster and slower than the evader. In that case, as shown in Figure 5, the saddle solutions
initially move towards the y,-axis, and once the solution reaches the y,-axis then chattering occurs
and the averaged solution moves along the y,-axis, either towards or away the evader depending
on the relative configuration. If the relative orientation is such that the averaged trajectory of the
pursuer moves towards the evader along the y,-axis then collision is guaranteed. Therefore, for
chattering solutions, the question of collision avoidance can be answered by geometric reasoning
since all that is required to know is where the pursuer hits the y,-axis and what the relative
orientation is.

Having calculated the optimal policies for both the pursuer and the evader, one can find initial
conditions for which the game is won by the evader and therefore collision is avoided regardless of
what the pursuer does. Define the safe set of initial conditions as

Vs = {(2-(0),4-(0)) € R*Js(+(0),y-(0), v, v7) > C} (30)

The analytic calculation of V; is now demonstrated. Consider the representative case, depicted in
Figure 6 where the initial position of the pursuer is such that z(0) > 0, yr(0) > 0, and the relative
angle is 6, € (m, %’i) so that cos 8, < 0 and siné, < 0. Equations (21) simplify to

z.(t) = z,(0)+ (—vg + v cosb;)t (31)

14
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Figure 6: Calculating the safe set of initial conditions for 6, € (m, %E

yr(t) = yr(0)+v]sinb,t

The safe set of initial conditions may be calculated by propagating these equations forward, and
determining the restrictions on (z,(0), y-(0)) so that

J(@+(0), 1 (0),08,7) = inf (12 (8)] + |y (8)]) = C
Initially, z,(0) > 0 and y,(0) > 0. By equations (31) and the fact that v5 > 0, v7 > 0, cos6, <0
and sin @, < 0, it is always true that,

(32)

Therefore, the pursuer must either

1. cross the positive z, axis and then the negative y, axis, or

2. cross the positive y, axis and then the negative z, axis.

From the saddle solution (24,25), it is clear that v = vy and v] = ;. If the pursuer arrives at the

. . . . — 2,102 — zr(0 . .
z, axis first, then it will do so at time ¢; = TR whereas t, = “5g+9:1 cosd; 18 the time needed

to reach the y, axis. If ; < ¢, then the pursuer traverses the first route outlined above whereas the
second route is traversed if ¢, < t;. From now on, it is assumed that the first route is traversed.

Let ¢, represent the time at which the pursuer crosses the positive z, axis, and t3 represent the

. . . . o (0 .
time at which the pursuer crosses the negative y, axis. Clearly, t; = t; = —5&1‘5%7. In the time
interval 0 < t < t;, the saddle solution is

zr(t) = z,(0)— ot
yr(t) yr(0) — 71t (33)

15



No collision occurs if

o, (|2:(0) + (2o + B1sinbr)t| + [yr(0) + D1 sinrt]) 2 C (34)

Since for all time Z, < 0 and g, < 0, the infimum occurs at ¢t = ¢;. But y.(¢;) =0 and z.(¢;) > 0
which simplify (34) to

z,(0) + (—yg + 71 cos 0,)t; > C = z,(0) — (—yg + T cos 9,)% -C20 (35)

X

Therefore, collision in the time interval 0 < ¢t < ¢; is guaranteed if the initial conditions lie in the

half plane

—yg + U1 cos by
7 8in 6,

51 = {(z+(0),4-(0)) € ®?|z,(0) - yr(0) - C 2 0} (36)

At t = t;, depending on the relative strength of cos 8, and siné,, the control policy either remains
the same or switches to

vy =

S

v] =

(e

1

Assuming that the policy switches, the condition for no collisions in the time interval t; <t <t is

o (lzr(t1) + (—uo + 2y cosy)(t — t)l + lyr(t1) + 2y c080, (¢ — 1)) 2 C (37)
Due to linearity, the infimum either occurs at ¢t = ¢; or at ¢t = t;. Since the system was safe at
t = t; from the above calculations, checking safety at ¢ = ¢ is sufficient. At ¢t = t, z,(¢2) =0 and
yr(t2) < 0. Thus, (37) reduces to

—yr(t1) —uysinbp(t2 — 1) > C (38)
But yr(t1) = 0, tp = t) + =224l 5 (t)) = £,(0) + (—vp + Trcosb, )ty and t; = —52 -

—Yp+u, cosb,?
Substituting in (38) results in the following condition on the initial conditions

z.(0) +

—vy +v;cos6,

v (—2g + U1 cosb;)
71 (—ug + v, cos6y)

—; sin 6§,

y:(0)-C 20 (39)
Therefore, collision is avoided in the time interval {; <t < ¢, if the initial conditions lie in the half
plane

1 (=29 + U1 cos by)
1 (—ug + v; cos 6;)

|

—v; sinf, 2,(0) +

— 2 o L e
S = {(z+(0),-(0)) € R I_y0 + v c0s0,

y-(0) - C >0} (40)

<

Using the same line of thought, it is clear that after ¢, the distance between the two agents is
strictly increasing and therefore places no additional constraints on the initial conditions.

The calculations for the safe sets of initial conditions for all three time intervals are summarized
in Table 1. The intersection of S; and S is the safe set of initial conditions in the first quadrant.
A computer program was written to calculate the unsafe sets of initial conditions ((z-(0),y-(0))
which result in a collision) for prespecified 6,, vy, T, 2;,71. Figure 7 illustrates these unsafe sets for
a variety of relative angles 6,. If the initial condition lies in the unsafe set, then the saddle solution
results in a collision. In this case, the agents cannot resolve the possible conflict in a noncooperative
manner and thus some form of coordination among the agents is necessary.

16



| Time Interval | Safe Set of Initial Conditions |

0<t<t z,(0) - 2TE, (0)—C >0
h<tzn | B0+ b S, 0 O30

Table 1: Safe set of initial conditions for z,(0) > 0, y-(0) > 0, and 6, € (m, 3F).
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4.3 Partial Coordination

If the solution to the game of Section 4 is unsafe, meaning that collision occurs for the worst possible
disturbance d* € D, it may be possible that by reducing the disturbance set to

DcCD

and re-solving the game, the new saddle solution (w*,d’) is safe. The disturbance set may be
reduced by partial coordination between the agents.

Consider the collision avoidance architecture of Figure 1. If the agents involved in the potential
conflict are heterogeneous, then each agent communicates its actions to the agents at a lower priority
than its own. In the planar example of (17), this corresponds to v; = v7(t) becoming a known
function of time. Thus the game becomes the optimal control problem of calculating vg € U which
maximizes the cost function (22). If the initial condition to the optimal control problem is unsafe
then full coordination between the agents is necessary.

The more interesting case in a game theoretic sense is the one in which the agents are homogeneous,
so that a ranking system does not exist. In this case, each agent calculates the disturbance set
D for which a solution to its game exists, and broadcasts this information to all the other agents
involved in the collision avoidance procedure. This procedure essentially enlarges the safe set of
initial conditions. If the initial condition becomes safe then collision is avoided by restricting the
actions of each agent in the smaller disturbance set D. If the initial condition is still unsafe then
collision is not avoided by partial coordination.

Consider the safe set calculations of the previous section, for the planar example (17). Reduction
of D to D results in larger safe sets of initial conditions. Figure 8 illustrates the unsafe sets
corresponding to the situations of Figure 7, with reduced disturbance set [v;,71] = [1.5, 2.5). Note
that the unsafe sets using the reduced disturbance set are proper subsets of the unsafe sets using
the original disturbance sets.

5 Cooperative Conflict Resolution

This section addresses the problem of cooperative conflict resolution among aircraft. This is the
kind of collision avoidance scheme which must take place if an aircraft penetrates another aircraft’s
alert zome, which can happen if noncooperative collision avoidance is not sufficient to resolve the
conflict between the two aircraft.

An algorithm to predict conflict between pairs of aircraft trajectories is first described. The algo-
~ rithm is used to determine whether or not a point of conflict exists between the trajectories; if it
does, the information is used in the cooperative conflict resolution algorithm.

Cooperative collision avoidance involves a direction change for at least one of the aircraft involved
in the conflict. Chosen for its simplicity and inspired by [25], the path deviation for each pairwise
conflict is chosen to be two consecutive heading changes resulting in a triangular deviation from
the desired path as shown in Figure 10. For a conflict involving three or more aircraft, a scheme
which guides each aircraft along a circular path around the conflict point is proposed.

18
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Figure 8: Reduced unsafe sets (z,(0),y-(0)) for reduced disturbance set [v;,71] = [1.5,2.5]
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5.1 Conflict Prediction

Conflict prediction is impossible unless one aircraft has some idea of the intentions of another
aircraft. In this section, it is assumed that aircraft are cruising in straight lines at a constant
altitude, with constant velocity (a valid assumption in the relatively sparse en route airspace away
from the airport airspace). The velocities and headings of both aircraft involved in the conflict are
assumed to be known by each aircraft: once an aircraft enters the alert zone of another aircraft, it
transmits its heading and velocity information. This defines its course of action over a certain time
horizon which enables the prediction of possible collisions.

With these assumptions, the relative model is

Z, = —uvp+ v;cosb,
g = wv1sinb, (41)
6. = 0

which is model (8) with wp = w; = 0. Since vg,v; and 6, are known and assumed to be constant,
equations (41) may be solved explicitly. Consider the Euclidean distance between two aircraft given
by

Js(t) = \/=3(t) + 42(2) (42)

and recall that a collision is defined to be the nonempty intersection of the protected zones of two
aircraft. If the radius of the protected zone is r, then two protected zones will intersect if and only
if the distance between the two aircraft is less than or equal to 2r, ie. when Js(t) < 2r. Therefore,
a collision occurs if there exists a time ¢* such that J;(¢*) < 2r and a collision is avoided if for
all time ¢, J,(t) > 2r. Clearly if mins>o J5(f) > 2r then Jy(t) > 2r for all time. The algorithm,
therefore, first minimizes J;(t) over all positive time.

Proposition 3 Given z.(t) and y,(t) by

z.(t) = z,(0)+ (—vo + v1cosb,)t (43)
yr(t) = y(0) + v1 sin 6,

Js(t) = \/z2(t) + y2(t)

—2‘;2 ifas # 0 and ;—:21 >0

t*=argminJi(t) = { 0 ifar#0and 35 <0 (44)
= Rt ifay=0

the global minimum value of

over all positive time occurs at

and the minimizing value is given by

J; -~ mjan(t) = { V _ﬁj;;_oaz ifaz 74 Oandt* >0 (45)
£20 Vao = J5(0) otherwise
where az,a, and ag are defined as
a; = v2sin®6, + (v cosfy — vg)?
2z, (0) (v cos 6, — vp) + 2y-(0)v; sin 6, (46)
22(0) + 42(0) = Js(0)

a1

ao
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Figure 9: Conflict Prediction

Proof: In Appendix. O

Proposition 3 enables prediction of whether or not a collision between two aircraft will occur. Once
heading and velocity information has been broadcast, the minimum distance J; between two aircraft
is analytically computed. If J; > 2r, then the protected zones of the two aircraft will not intersect
as shown in Figure 9, and therefore no collision will occur. If, however, J; < 2r then a conflict is
possible. If J* < 2r then the time and place of possible collision must be determined. Although
the distance between the aircraft reaches its minimum at ¢*, Js(t) is below the safety distance of 2r
from tmin tO tmaz, Where tpmin and t;,,; are the solutions of the equation Js(t) = 2r which can be
converted to the simple quadratic equation J2(t) = 4r2. The protected zones first touch each other
at time tm;n and then overlap until time %4, after which they have empty intersection. Times tmin
and ;4 can be easily computed by the formula

—ai + \/a% - 4a2(a2 - 47‘2)
2a2

tmin,maz = (47)
If J¥ < 2r, it is geometrically clear from Figure 9 that two real solutions exist. Equivalently, it can
be shown that the discriminant of the quadratic is always positive. Furthermore, if ag = J5(0) > 2r
then it can be shown that tmez > tmin > 0. In the degenerate case when a; = 0 then J,(t) = J5(0)
and thus either Jy(t) = J5(0) < 2r in which case the two aircraft have already collided or J,(t) =
Js(0) > 2r in which case the two aircraft will never collide.

Once the projected time of conflict has been determined, the position of the possible collision can
be obtained by simply integrating the model of an aircraft in absolute coordinates (1),(2).

5.2 Protocol for Two Aircraft

A general short range conflict scenario is depicted in Figure 10. Aircraft 1 with speed v; and initial
heading 6, has desired relative trajectory (z¢(t),y%(¢)), which is the straight line path joining point
A and point C a distance d away from the origin (seen as the dotted line in Figure 10). To simplify
the analysis, the protected zone of aircraft 1 is translated to aircraft 0, to make the protected zone
around aircraft 0 twice its original radius. If aircraft 1 were to continue along its original desired
path, it would cut through this protected zone, and come into conflict with aircraft 0. To avoid
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Figure 10: Showing the triangular path deviation (dashed line), at optimal angle 6*, to be used in
pairwise conflict avoidance

the protected zone, the proposed deviation for aircraft 1 is the triangular path ABC tangent to
the protected zone at two places and parameterized by the deviation angle 6 (represented by the
dashed line in Figure 10).

Aircraft 1 follows the specified path ABC if the component of its relative velocity normal to this
path is zero. Since straight line paths are considered, the relative velocity of aircraft 1 is described
by the model (17). The angle 6 is calculated to minimize the time it takes for aircraft 1 to travel
along the path ABC. Its optimal value is obtained by minimizing with respect to 6 the length of
ABC divided by the speed of the aircraft along this path. Only the path AB need be considered,
since by symmetry the path length BC is equal to that of AB.

The component of the relative velocity of aircraft 1 along the path AB may be calculated as:
vap = v cos(@ — 6,) — vg cos @

and the component perpendicular to this path, as
vxp = vy sin(f — 6,) — vosind

The optimal value deviation angle 0* is therefore

6* = arg min 145 (48)
6  VAB lyfp=0

where
r

tana sina

|AB| = +rtana (49)
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Figure 11: Optimal deviation angle 6* vs. speed ratio v, /vg

and
o =0 — tan" ' (§r/,) (50)

For example, consider the scenario in which aircraft 1 has the same initial heading as aircraft 0
(6, = 0), and its original desired path is along the z, axis (d = 0). A potential conflict exists if v,
is greater than vg. The minimum time triangular maneuver to avoid conflict, called an Overtake
maneuver in this case, may be calculated using (48):

Proposition 4 (Overtake Maneuver) For an Overtake, in which aircraft 1 is approaching air-
craft 0 from behind with a greater speed, the minimum time triangular maneuver for aircraft 1
approaches a departure angle of @ — 45° from the horizontal, as the speed ratio v, [vg — oo.

Proof: In Appendix. O

This makes sense intuitively: a deviation angle of 45° means that aircraft 1 remains on the horizontal
path with 6, = 0 for as long as possible, since the speed differential between v, and vy is greatest
along this path. Figure 11 shows a plot of the 6* for various speed ratios v, /vg. Figure 12 illustrates
the distance from the origin at which the deviation maneuver should begin. For a protected zone
radius of 5 miles, this distance approaches 5v/2, or 7.07, miles.

The Overtake maneuver is a special case of the general class of triangular conflict resolution maneu-
vers described by equations (48), (49), and (50). In each aircraft’s FVMS, a routine exists which
computes §* for the different parameters r, d, 0,, and v; fvg:

0* = Overtake(r,d, 0,,v1 /v0) (51)

It is assumed in this architecture that the aircraft with the greater speed must perform the maneu-
ver; the other aircraft remains on its original course.
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Figure 12: Optimal distance from origin to start maneuver vs. speed ratio v; /vg

Consider now a HeadOn conflict, in which aircraft 1 is heading towards aircraft 0 (6, = 180°) along
the z, axis (d = 0). A potential conflict exists regardless of the speeds of aircraft 0 and aircraft
1. Although the conflict may be resolved using the general maneuver discussed above, the issue of
fairness arises. If v; = vy, it is not clear how to choose which aircraft deviates from its original
trajectory. A matural solution is to define a maneuver in which both aircraft deviate from their

original trajectories:
(063 0;) = HeadOn(r, ds ora (4] /‘00) (52)

Inspired by the Overtake maneuver, 63 and 6} are set to 45° and —45°, respectively, when d = 0
and 6, = 180°. The Overtake maneuver is safe by design, since the construction of the deviation
path explicitly avoids the protected zone of one of the aircraft. In order to ensure that the HeadOn
conflict is safe by design, both aircraft must deviate a horizontal distance of 5 miles (the minimum
aircraft separation) away from their original paths. Figure 13 illustrates why, in the absolute frame
of the two aircraft. Aircraft 1 must be 5 miles away from aircraft 0 for all v; /vg. In particular, if
vo were much greater than v;, and aircraft 0 ended up at point C in Figure 13 before aircraft 1
had left point D, then points C and D must be 5 miles apart. This is clearly not optimal, since
it is worse than the previous case in which only one of the aircraft has to deviate a horizontal
distance of 5v/2 miles. It is difficult to prove that less conservative designs, in which the horizontal
deviation for each aircraft is less than 5 miles, are a priori safe for various speed ratios, unless a
formal verification tool such as Cospan [26] or HyTech [4] is used. This type of tool automates a
mathematical proof that, for given sets of initial conditions and constraints on the system variables,
certain states will or will not be reached. For the maneuver discussed here, such a tool could be
used to verify that the positions of the aircraft do not come within 5 miles of each other. The
particular tool which has been used to verify similar maneuvers is the Hybrid system verification
tool HyTech [27).

As with the Overtake maneuver, the HeadOn maneuver in its general form may be used for relative
headings 6, other than 180°. Figure 14 illustrates the partitioning of all two-aircraft, same-altitude
conflicts as either Overtake or HeadOn, depending on the relative position and angle of the two
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Figure 13: Showing the HeadOn conflict and subsequent conflict resolution maneuver

aircraft.

Once the Overtake or HeadOn maneuver is complete, a Catch Up maneuver is performed by the
aircraft, to catch up to their original trajectories in time.

5.3 Protocol for Three Aircraft

For three aircraft coming into potential conflict, there are many more possibilities for types of
conflict. For example, two aircraft could have intersecting trajectories, and then conflict resolution
between these two could result in a new conflict with a third aircraft. Pairwise conflict resolution
may not work in cases such as these: it is worthwhile to design a maneuver which works for three
aircraft, with the possibility to extend it to more than three aircraft. A maneuver which is inspired
by the traffic rotaries on the ground is the Roundabout maneuver, illustrated in Figure 15 for the
case of three aircraft with two initial points of conflict. For this maneuver, a circular path is defined
around the conflict points of all three trajectories as shown. The aircraft are restricted to fly along
- the circular path segments with a given speed, as not to overtake the other aircraft already involved
in the maneuver. An aircraft may not enter the Roundabout until the other aircraft are outside its
protected zone; in extreme cases this may force an aircraft to enter a holding pattern to delay its
entry.

Figure 16 depicts the hybrid automaton describing the conflict resolution architecture described
~ in this paper. If noncooperative conflict resolution (described by the hybrid automaton of Figure
4) results in an unsafe solution, then cooperative collision resolution involving one of the three
maneuvers described in this section must be invoked. Once the maneuvers are complete, the
aircraft enter the Catch Up mode, and the system returns to its original No conflict state. Once
again, HyTech is used to verify the safety of the protocols. '
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Figure 14: Conflicts: Overtake and HeadOn

Figure 15: Conflict Resolution for three aircraft: the Roundabout maneuver
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Figure 16: Hybrid Automaton describing Conflict Resolution

6 Conclusions

In this paper, a conflict resolution architecture for multi-agent systems has been presented. The
architecture consists of both a noncooperative collision avoidance scheme based on game theory,
as well as a cooperative scheme based on inter-agent coordination. The architecture was illus-
trated using a two-agent, planar example which arises frequently in air traffic systems. For long
range collision avoidance, a saddle solution to the noncooperative game was found and the safe
set of initial conditions was computed. For short range collision avoidance, protocols involving
Overtake and HeadOn conflict resolution involving coordination between multiple aircraft were de-
rived. Extensions to multiple aircraft coordination were also suggested. They can be verified using,
for example HyTech. The protocols involving coordination were suggestive of Nash equilibria for
non-competitive games. In future work, this will be worked out in detail, along with information
exchange requirements.

Current research topics include the extension of our planar example (without turning) to the planar
example with turning included as well as collision resolution in three dimensional space. Non
competitive games with n-players will be considered as well, with the design doing its best to
minimize the level of verification required in subsequent stages, using conventional tools such as
HyTech or Cospan.
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7 Appendix

Proof of Proposition 1: Substituting equations (20) into the cost index (22) results in

t i t
Js(g0,v0, 1) = gg('xr(o) _/0 'UO(T)dT'*'coser/o v1(7)d7| + |y-(0) '*'Sinor/(; v1(7)dr])

t t

= }rzxg [sgn(z,)(z-(0) — /0 vo(7)dT + cos 6, /0 v1(7)dT)
+ogn(u)(ur(0) + sind; [ oy(r)ar)]

= infloon(er)ar(0) + sgn()u:(0) — sgn(ar) [ wn(r)ar
+(sgn(z,) cos 0, + sgn(yr)sinb;) _/‘; t v1(7)dr]

Consider the case in which

sgn(z,) >0
sgn(z,) cos 0, + sgn(y,)sinf, > 0

We will show that in this case the saddle solution is v§ = vy and v] = v;. Then,
Js(g0,v5,v}) = inflsgn(zr)z,(0) + sgn(yr)yr(0) — sgn(zr)uet
+(sgn(z,) cos b, + sgn(yr) sin6;)v, 1]

Now let v; = v] and vary vg. Then

t
Tolgo,o0,8) = inflogn(z)z:(0) + sgn(ur)r(0) - sgn(ar) [ vo(r)dr
+(sgn(z,) cos 6, + sgn(y.) sin 6, )v, ]
But we have vg = vy + dvp where dvg > 0. Therefore
t
Js(go,vo,v]) = %I)lg[sgn(z,)xr(O) + sgn(y-)yr(0) — sgn(z,)uoet — sgn(zy) /(; dvo(7)dT

+(sgn(z,) cos 0y + sgn(yr) sin 6, )v, t]
inf[sgn(=)2r(0) + sgn(yr)yr(0) — sgn(zr)uot

IA

+(sgn(z,) cos 0, + sgn(yr) sin6;)v, ]
= Js(g0,v5,1)

since both sgn(z,) > 0 and dvp > 0. Similarly, let vo = v§ and vary v;. Then vy = v, + dv; with
év; > 0. Thus

Js(g0,v5,v1) = inflsgn(z,)z,(0) + sgn(yr)yr(0) — sgn(zr)uet

+(sgn(z,) cos b, + sgn(yr)sinby) /0 t v (‘r)d‘r]
= égg[s.qn(xr)zr(o) + sgn(yr)yr(0) — sgn(zr)vet
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t
+(sgn(z,) cos 0, + sgn(y-)sinb,)v,t + (sgn(z,) cos b, + sgn(y,)siné;,.) / dvy(7)d7]
0

v

inf[sgn(zr )2, (0) + sgn(y-)y- (0) — sgn(zr)uot + (sgn(zr) cosOr + sgn(yr) sinfr)u,1]
t

+ }gg [(sgn(z;) cos b, + sgn(y,)sinb,) ‘/0 dv1(7)d7]

2 Js(qfh vﬁ,vf)

since (sgn(z,)cos 6, + sgn(yr)sinf;) > 0 and, in general, infi>o(z1 + 22) = infi>o 21 + infyxo Z2.
Summarizing, we have shown above that in this case,

Js(g0,v0,91) < Js(do,v5,v1) < Js(go, v, v1) (53)
Therefore, v = vy, v = v; is a saddle solution in this case. The three other cases can be shown

in a similar manner. O

Proof of Proposition 2: Consider first the z,-axis. The switching function in this case is simply
S(zr,Yr,0r) = yr. The evolution of S in the regions y, > 0 and y, < 0 is given by

das ) + o
il = g, = v] sinf;
ds ) - .
il =y, =v; sinb,

where v] is the control law in region y, > 0 and vy is the control law in region y, < 0. From
equation (25) it is clear that v{" and v are either v, or 7; depending on the relative orientation 6.
If 6, is such that sgn(sin(6, + §)) = sgn(sin(6; — §)) then from equation (25,26) we obtain that
(vf,97) = (01,71) or (v{,v7) = (v1,2;) in which case there is no switching at all since %%L_ and
% I_ have the same sign. In this case the pursuer simply crosses through the surface of discontinuity

and no chattering is possible.

If, however, 6, is such that sgn(sin(6,+%)) # sgn(sin(6,— 7)) then (vf,v7) = (B1,2y) or (v, 07) =
(v1,71). Thus, the pursuer switches policy once the z,-axis is crossed. Consider first the case where
(vf,v7) = (v1,71). Then

dS ) .
EL =y, = v, 8iné,
ds ..
=9 = 7 8in0,

Chattering will occur when % |+ < 0and % |_ > 0 or equivalently when v, sin 6, < 0 and 7, sinf, >
0. Clearly, if sinf, = 0 then chattering is not possible. If siné, > 0 then chattering is possible
only if vy; < 0 and 7; > 0 whereas if sinf, < 0 then chattering is possible under the infeasible
conditions v; > 0 and 7; < 0. Therefore, if (v{,v]) = (u;,71), then chattering is possible only
when sinf, > 0 and v; < 0 < 7.

Considering in a similar manner the second case where (v{",v{') = (71, 2;), we obtain that chattering
is possible only when sinf,; < 0 and v; < 0 < 7;. Grouping the two conditions together we obtain
that the z,-axis is a chattering surface only if sin6, # 0 and »; < 0 < 7.
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In the case of the y,-axis, the switching function is S(zr,yr,6r) = z,. The evolution of S in the
regions z, > 0 and z, < 0 is given by

dS )

—(EL &y = —vg + o] cosb,
ds . -

il Iy = —vg + vy cosby

From the control law (24) it is clear that vj = yy and v; = Tp since the evader always changes
policy in the two regions. Again, the pursuer will change policy depending on whether the relative
orientation 6, satisfies the condition sgn(sin(6; + §)) = sgn(sin(é, — §)) or not.

If 6, is such that from equation (25) the pursuer’s policy remains the same, then either (v{,v) =

(71,71) or (v{,v]) = (v1,v;). In both of these cases, a simple calculation shows that it is impossible

to have ‘fi—‘fl_l_ < 0 and %I > 0 since either

ds
-EL_ <0 = -yy+uycosf <0
ds
—| >0 = -Tp+vcos6, >0
dt 1-
in which case the infeasible condition Ty < v; cos 6, < vy must be satisfied or

ds _
EL <0 = -yy+7cosb. <0

%_ >0 = -Ty+7Tjcosf, >0

in which case Ty < ¥) cos @, < y, must be satisfied. Therefore, in both cases chattering solutions
are not possible.

If, however, 6, is such that sgn(sin(6; + §)) # sgn(sin(6, — §)) then by (25,26) the pursuer changes
policy by crossing the y,-axis. Then either (v}",v) = (31,2;) or (v{,v7) = (2;,%1). In the first
case, the pursuer switches policy from v; = v; in the region z, < 0 to v; = 7, in z, > 0. In this
case, we can have %?-L <0and §| >0onlyif

ds
dt
ds
dt

which after simple calculations can be shown to be feasible only if

+<0 = -—yg+7vicosf <0

>0 = —Tg+v;cos6, >0

cosf@, <0
v; cos b, > Ty
T1cos6; < 1y
Similarly, for the case where (v}, v]) = (;,71), chattering is possible if

dS

dt |+
‘fi—f|_>o = —Tp+Tycosb, >0

<0 = -yy+ucos6, <0
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which is feasible only if

cosf, >0
Ty co86, > Ty
v; cos by < 1y

If the above conditions do not hold, then the system will simply cross through the the surface of
discontinuity. O

Proof of Proposition 3: Minimizing J,(t) is equivalent to minimizing J(t). Inserting equations
(43) in the expression for J2(t) results in J2(t) = ast? + a1t + ag where ag, a; and a3 are defined
in (46). The optimal values for ¢ and J,(t) follow from the Kuhn-Tucker conditions [28). Note
that az > 0 which results in JZ(¢) being convex as well as satisfying the sufficient conditions
for minimization. Furthermore, the constraint set ¢ > 0 is also convex. This results in globally
minimizing solutions. If a; = 0 then a; = 0 and thus Js(t) = Js(0) for all time ¢. This corresponds
to the case where 8, =0 and v = v;. O

Proof of Proposition 4: Substituting 6, = 0 and d = 0 into equations (48), (49), and (50), the
optimal angle * may be calculated as

0* = argmin — . : (54)

¢ sin6 cosf(v; cos(d — 6;) — vocosb) |, sin(8—8,)—vo sin 6=0
= argmin . (55)

% sinfcosf(y/v? — v3 sin @ — vy cos §)
0* is thus calculated as the solutions to the following:

2% 2% ‘Uf . 9 . . e . sin @* cos 6* e

(cos® 6" — sin®6*)(4/ =5 — sin® §* — cos6*) + sin6* cos 6" (- —=——=— +sinf )=0  (56)
Yo % — sin’6*

0

For v, < vp, (54) has no solution. When v; > vp, the solution 6* depends on the ratio v; /v, as
illustrated in Figure 11. If v; /vg >> 1, then equation (56) may be approximated by

(cos? 8" —sin?6*) =0 (57)

which has as solution 6* = +45° (corresponding to deviating to the left or right of the circle). O
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