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Abstract

In this paper, we derive tracking control laws for nonminimum phase nonlinear

systems with both fast and slow, possibly unstable, zero dynamics. The fast zero

dynamics arise from a perturbation of a nominal system. These fast zeros can be

problematic in that they may be in the right half plane and may cause large magnitude

tracking control inputs. In this paper, we combine the ideas from some recent work

of Hunt, Meyer, and Su with that of Devasia, Paden, and Chen on an asymptotic

tracking procedure for nonminimum phase nonlinear systems. We give (somewhat

subtle) conditions under which the tracking control input is bounded as the magnitude

of the perturbation of the nominal system becomes zero. Explicit bounds on the

control inputs are calculated for both SISO and MIMO systems using some interesting

non-standard singular perturbation techniques. The method is applied to a suite of

examples, including the simplified planar dynamics of VTOL and CTOL aircraft.

Keywords: Nonlinear control, zero dynamics, exact and asymptotic tracking, non-

minimum phase, singular perturbation.
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1 Introduction

In this paper, we discuss tracking using bounded inputs for nonlinear nonminimum phase
systems with "fast zero dynamics". While exact and asymptotic tracking for nonlinear
minimum phase systems has now been well understood for some time (see [Isidori, 1989] for
a comprehensive discussion), tracking for nonminimum phase nonlinear systems has been
a tougher nut to crack. Early progress was made by the nonlinear regulator approach of
Isidori-Byrnes [Isidori and Byrnes, 1990] which extended to the nonlinear case results of
the Francis-Wonham regulator. Some drawbacks of this approach were the assumption of
an exo-system and small domains of attraction [Teel, 1991]. A major advance in a general
framework for tracking for nonminimum phase systems was made in a collection of papers
by Devasia, Paden and Chen [Devasia et a/., 1996], [Devasia and Paden, 1994] in which
they provide a non-causal exact tracking compensator for nonlinear (possibly multi-input
multi-output) systems. In the time invariant case, their results use a clever technique of
finding a bounded solution to a driven unstable nonlinear system over the time interval
—oo < t < oo, provided that the "linear heart" of the nonlinear system is hyperbolic and
the "residual nonlinearity" is Lipschitz continuous with small linear bounds. The extension

to the time varying case is more subtle and needs some slowly time varying assumptions
on the linearization due to Coppel. These results generalize the earlier results of Lanari

and Wen [Lanari and Wen, 1991] for linear time invariant systems. Once the exact tracking
compensator has been constructed the system is stabilized (through its linearization) about
the trajectory to be exactly tracked.

In parallel with this work, we havebeen interested in the control of MIMO nonlinear systems
where the decoupling matrix is close to being singular. We were heavily motivated in this
regard by the flight control of a Vertical Take Off and Landing aircraft (VTOL) Harrier in
[Hauser et a/., 1992b]. For systems such as this, the presence of the small control terms not
only meant large control effort, but was symptomatic of "fast zero dynamics" which were

possibly nonminimum phase. We explained this phenomenon in [Sastry et a/., 1989], [Isidori
et a/., 1992] and [Godbole and Sastry, 1995] as a singular perturbation of the zero dynamics
and discussed approximate methods for controlling the zero dynamics. A method for better

approximating the exact control law is presented in [Barbot et a/., 1994]. Related work is
presented in [Azam and Singh, 1994] and [Benvenuti et a/., 1993].

In new work on the problem of stable tracking for MIMO systems with fast zero dynamics,

we attempted in [Tomlin et a/., 1995] to apply the Devasia-Paden-Chen techniques to a
model of a Conventional Take Off and Landing (CTOL) aircraft and make comparisons with

the other approximate techniques discussed above. The difficulty that we encountered was



the presence of large magnitude control inputs in directly applying the Devasia-Paden-Chen

scheme. More recently, Hunt, Meyer and Su in [Hunt and Meyer, 1995], [Meyer et a/.,
1995a], and [Meyer et a/., 1995b] proposed an interesting variant to the application of the
Devasia-Paden-Chen scheme by applying the method not to the given system, but to an

"error system" obtained by comparing the given system to a nominal version of the system,

which does not have the fast zero dynamics.

Our paper attempts to close the loop on this entire circleof ideas and to provide a reasonably

complete1 description of conditions under which bounded tracking control laws for nonlinear
control systems with fast zero dynamics exist (in the limit that the perturbation of the

system dynamics goes to zero). The paper considers a general class of both SISO and

MIMO invertible (but not necessarily under static state feedback) nonlinear systems and
as such is a generalization of the results in [Hunt and Meyer, 1995]. Unlike [Hunt and
Meyer, 1995], we consider only systems which are affine in the inputs, yet this allows us to
derive conditions under which bounded tracking may be proved and to work out the details

of explicit bounds on the system inputs. What is striking about the current paper is the

delicacy of the asymptotic calculations involving many interesting concepts from singular
perturbations and differential equations. It is worthwhile to point out that while the two

step procedure suggested in [Hunt and Meyer, 1995] is potentially useful from the standpoint
of helping the numerical calculations, the analysis of whether the tracking input is bounded is

intrinsic to the system rather than the process for calculating the control input. The results

of [Barbot et a/., 1994] are relevant in that they provide a method for improving the accuracy
of the approximate tracking scheme. We view our techniques as being relevant both for small

e perturbations (where they need to be compared with the control laws of [Barbot et a/.,
1994]), as well as for moderate perturbations. Thus this paper appears to finish the program
of finding control laws for a fairly general class of MIMO nonlinear systems. However, we

are still concerned about the magnitude of signals that can be tracked using these methods

(in other words, a resurgence of the concerns expressed by Teel about the Isidori-Byrnes

regulator).

The outline of our paper is as follows. In Section 2, we consider SISO systems: we review the

characterization of the fast zero dynamics and the Devasia-Paden-Chen scheme and show

how these can be combined to produce bounded tracking control laws for the SISO case.

Section 3 contains the MIMO case: there are two subcases to be treated based on whether

the system has vector relative degree or not. Section 4 applies the theory first to some

textbook style linear examples (for which our results are still interesting), and then to two

1We say reasonably, because we have some single time scale assumptions on the "fast" zero dynamics,
which we would like to eventually remove.



MIMO flight control examples, planar models of VTOL and CTOL aircraft. Appendix 1
describes the computation of the steady state response of our systems using a "describing
function" generalization of the Devasia-Paden-Chen method, when the output to be tracked
(and hence the input to the system) is a bounded stationary signal.

2 Bounded Tracking for SISO systems

In this section, we will be concerned by a family of systems depending on a parameter e,
described by equations of the form

x = f(x,e)+g(x,e)u
V= h(x,e) [ ]

where /(x,e) and the columns of g(x,t) are smooth vector fields and h(x,e) is a smooth
function, defined in a neighborhood of (x0,0) in Rn x IR+. We will refer to the system of (1)
with e = 0 as the nominal system and with e ^ 0 as the perturbed system. We will assume
that x = xq is an equilibrium point for the nominal system, that is /(£O,0) = 0, and without
loss of generality we will assume that ^(xo,0) = 0.

2.1 Singularly Perturbed Zero and Driven Dynamics

In the two papers [Sastry et a/., 1989] and [Isidori et a/., 1992], it was shown that if the
system (1) has relative degree r(e) = r for e ^ 0, and relative degree r(e) = r + d for e = 0,
then there are fast time scale zero dynamics for the perturbed nonlinear system. This is
in itself a rather surprising conclusion: we review one such result from these papers. As
a consequence of the definition of relative degree we have that r(e) = r and r(0) = r + d
implies that Ve ^ 0

Lgh(x, e) = LgLfh(x, e) = •••= LgUj 2h(x, e) = 0 Vrc near x0
LgLrf1h(xo^)^0

and for e = 0,

Lgh(x,0) = LgLsh{x^) = •••= LgLrf+d-2h(x,0) = 0 Vx near x0
LgLyd-lh{x0,V)^Q (3)



To keep the singularly perturbed zero dynamics from demonstrating multiple time scale
behavior2 we assume that for 0 < k < d

LgLrf1+kh(x,e) = ed-kak(x,e) (4)

where each ajt(x, e) is a smooth function of (z, e) in a neighborhood of (z0,0). The choice of
LgLTf h(x, e) = 0(ed) rather than 0(e) is made to keep from having to use fractional powers
of e. What is critical about the assumption (4) is the decreasing powers of c dependence as
k increases from 0 to d.

As is standard in the literature, we will denote by f 6 Rr+d the vector corresponding to the
output and first r + d —1 derivatives of the system in (1), given by

i =

/ h(x,e)
Ljh(x, e)

L'r1 /i(x, e)

\

r+d-1V L?-lh(x,e) )

(5)

where the first r coordinates correspond to the first r derivatives of the output, and the full
set of r + d coordinates, at t = 0, are the first r + d derivatives of the output of the nominal
system. It was shown in [Sastry et a/., 1989], [Isidori et a/., 1992] that for small e we have
the following "normal form" (in the sense of [Isidori, 1989]):

6= &

fr = £r+i + eda0(f,7?,e)u
t+l = fr+2 + ed-1<*l (£, 7/, t)w
£r+2 = fr+3 + ed"2«2(f, 7?, C)tt

(6)

£r+d= &(f,?7,e) + a(f,77,e)u

»?= 9(f,»7,e)

Here, we have introduced the smooth functions a, 6, and q\ the details of how a and 6 depend

on /, g, and /i are discussed in [Sastry et a/., 1989], [Isidori et a/., 1992].

2This is an interesting case and though it is no difFerent conceptually, the notation and the details of the
assumptions needed are more involved.



Using the change of coordinates for the perturbed system given by

Zl = fr+l, Z1 —££r+2, ' ** zd = €. ~ fr+d (7)

it may be verified that the zero dynamics (corresponding to the output of the perturbed
system being held identically to zero) have the form

e*2

"1= ~?oZl + Z2
_2l

= -2*21 + 23
oo

ezdtd= -^i + ed6
oo

77 = q(z, 77, e)

(8)

Note that 77 € Rn r d, z € Rd. Also, we have abused notation for qfrom equation (6). Thus,
the zero dynamics appear in singularly perturbed form, ie.

ez= r(z,r},e)
77= g(z,7?,e)

(9)

with n —r —d slow states (77) and d fast states (z). This is now consistent with the zero

dynamics for the system at e = 0 given by

77 = 9(0,77,0) (10)

Thus, the presence ofsmall terms in LgLrf1+kh(x,e) for 0 < k < </, causes the presence of
singularly perturbed zero dynamics. The Jacobian matrix evaluated at z = 0, e = 0 of the

fast zero subsystem is obtained to be

<Zl(0,7?,0) 1 0 • • 0

a2(0,77,0) 0 1 • • 0

•. 0

ad_i(0,7?,0) 0 0 • •• 1

M0,7?,0) 0 0 • •• 0

(11)

Here a,- = —̂ *-(f, 77, e) for 1 < i < d, and ad = —^(£,77,6). It is clear that the perturbed
system may be nonminimum phase either for positive e, negative £, or both positive and

negative e (according to whether the matrix in (11) has eigenvalues in C_, C+ or has indefinite

inertia, respectively). If (10) has a stable equilibrium point at the origin (corresponding to

the nominal system being minimum phase), but the origin of the system (8) is unstable,

(corresponding to the perturbed system being nonminimum phase), we refer to these systems
as slightly nonminimum phase.
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We will need to generalize the preceding discussion of zero dynamics to the driven dynamics
corresponding to the problem of tracking a desired output trajectory 2/d(2)- If the output
y(t) = 2/d(2), it follows that, for the perturbed system,

to be

&(*) =

( vdW \

Vyg_1)(0 )
Then, the driven dynamics of the system are given by (6) with the choice oferror coordinates

vi = fr+i -yk\t), v2 =e(£r+1 -y£+2)(t)), ••• vt = td-\^d -yJS*4-1^)) (13)

and the input
-Vi

eda0

tV\ = aivi + v2

ev2 = a2vi + v3

evd= adv1^ed(b-yi+d)(t))

(12)

(14)

2.2 Two Step Procedure for Bounded Tracking

Forsystems of the form (1), difficulties with bounded tracking, that is the problem of finding
bounded control laws for making y(t) track a prescribed bounded trajectory j/d(0 (with its
first r + d derivatives also bounded) may arise for two reasons:

1. The nominal system may be nonminimum phase. This means that the zero

dynamics (10) of the nominal system are unstable.

2. The presence of terms of 0(ed) for LgLrj~lh(x,e) for the perturbed system.
This, in turn, may cause two different kinds of problems:

(a) The (exact) tracking control law given by (15) may become unbounded as t —> 0.

1
u =

LgUflh(x,e)
»(»£'-!}*(*,«)) (15)

(b) The fast time scale zero dynamics of the perturbed system are likely to be nonmin

imum phase as noted in the discussion following (11).



In this subsection, we combine some interesting new results of Devasia, Paden and Chen

[Devasia. et a/., 1996], [Devasia and Paden, 1994] on output tracking using bounded inputs for
nonlinear systems with hyperbolic3(but not necessarily minimum phase) zero dynamics, with
a two step procedure suggested by Hunt, Meyer and Su in [Hunt and Meyer, 1995], [Meyer
et a/., 1995a], and [Meyer et a/., 1995b] which we use to derive conditions for boundedness
of the tracking control law (15). The algorithm proceeds in two steps:

1. Step 1: One finds a bounded input to cause the nominal system to track y£>(i). W
the nominal system is nonminimum phase, the algorithm of Devasia-Paden-Chen is
applied, as follows. The nominal system with relative degree r + d has driven dynamics
given by

*? = <?(&, >7,0) (16)

with 77 € Rn~r~d and fo given by (12). The Devasia-Paden-Chen scheme (time in
variant version) consists of defining a linear approximant to the smooth function q,
usually

Q'= g-(fi?o^o,o)

and then under the hypothesis that Q is hyperbolic (i.e it has no eigenvalues on the ju;
axis) and that the residual error defined by r(f£>,77,0) := <?(£d,77,0) —Qn is Lipschitz
continuous in both of its arguments, a condition referred to as locally approximately
linear.

Kfl,771,0) -r(|f2, 772,0)| <ffi|6-6l + #2toi-!?2|

with Lipschitz constants K\, K2 small enough, there exists for given bounded f/? a
bounded solutionn(t) satisfying lim^±00 rj(t) = 0, which is obtained as the fixed point
of the following integral equation:

t?(*)= I" $(t - T)r(SD,n,0)dT (17)
«/—00

Here $(t) is the Caratheodory solution of the matrix differential equation

X = QX X(±oo) = 0 X(0+) - X(O-) = /

Furthermore, one can find K3 such that

M<)|< tf3sup |fD(/)|

JMore precisely, in the slowly time varying case, kinematically equivalent to uniformly hyperbolic



The strategy for solving the fixed point equation (17) is to use a Picard Lindelof
iteration scheme with any initial guess n°(t) : —oo < t < oo,

,-+»(<)= H $(t-T)r({D,r,m,0)dT
J—oo

The resulting controller is synthesized by using the bounded n(t) to obtain

u{t) - «(&(<),*W,o) (18)
A drawback of this control law is that it is non-causal. One way this is remedied is

to use a preview of a certain duration. Also, while the algorithm as stated is used for

exact tracking, asymptotic tracking is achieved by stabilizing the linearization of the

system (1). Thus, for small enough £d and (x(0) —z0), bounded tracking is achieved
using a non-causal input. A time varying version of the algorithm is given in [Devasia
and Paden, 1994], which is very useful in applications such as in the linearization of
equation (16) about £d(2) to produce a time varying matrix

<3(<):=|%D(<),t?o,0)
If Q(t) is slowly time varying, and is kinematically equivalent to a two-block diagonal
matrix with an exponentially stable and an exponentially unstable state transition

matrix (uniformly hyperbolic) the Picard iteration can be applied as before.

Remark 1 The generalization of the computation of the steady state solution to (17)
when the signals to be tracked are stationary is presented in Appendix 1.

Remark 2 Step 1 produces in (18) the input required for exact tracking of the

nominal system, which, when applied to the perturbed system results in approximate

tracking. If e and the desired trajectory and its derivatives (j/i>,2/d,. •.,2/jj+ ) are
sufficiently small, then it may be proven that the states of the closed loop system will
remain bounded and the tracking error will be 0(e). The proof requires an adaptation

of the related proof in [Hauser et a/., 1992b] to systems with unstable zero dynamics,
whose state response is calculated using the Devasia-Paden-Chen method. This method
can also be adapted for approximate tracking in systems which are not regular but have
a well defined "robust relative degree" [Hauser et a/., 1992a] provided that the "robust
zero dynamics" are hyperbolic.



2. Step 2: Denote by u°(t) the input (18) required to produce exact tracking with
bounded inputs for the nominal system and let the resultant state trajectory be given

by£°W,77°W. Thatis>

VD= {?= &
yD= e2= g

y{D]= e?= evi
yU+1)= &.i= tf+2 (19)+1 _ Sr+2

I _ CO
+2 — Cr+3

w0*+2)_ CO _ *0

J/D+d,= &* = 6{«o,ij0,0) + a(«o,i/,,0K
7?°= q(e,r)°,0)

Now, define the input u(t) for the perturbed system for exact tracking. The system
equations are now given by the equations (6), repeated here:

6= 6

fr = fr+1 +£%)({, 77, C)U
fr+i = fr+2 + ed~Wf, 77, e)w
6+2 = fr+3 + ^"^(f, TJ, e)u

Cr+d= b(Z,n,c) + a(t,'n,c)u
V= q(t,ri,e)

Note that the first r coordinates of the perturbed system match those of the nominal
system. To obtain the control u(t) for the perturbed system, the expression for {r from
(6) is equated with that of g? from (19). Also, define as before

v{= e'-i(fr+t.-fr0+.) i = i,...,<f
Vi+d = Vi-V? i = l,...,n-r-d

Subtracting equations (19) from equations (6) yields an algebraic equation for the
control, namely:

Vl = -tda0(^n,e)u (20)
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and an error system

evi = v2 + ai(f,7?,e)vi

ev2 = v3 + a2(£,r),e)vi

evd = «„({, 77, t)Vl + ed(b& 77, e) - 6(£°, 770,0) - a({°, 770,0)u°)
t>d+1 = 9i(e,^0-9i(e°^°,0)

(21)

Un_r = 9„_r_d(f,77, C) - qn-r-d(i°, *7°, 0)

Onenow applies the Devasia-Paden algorithm [Devasia and Paden, 1994] to the system
of (21) to find the bounded control u(i) for exact tracking. For the purpose of applying
this algorithm, it is necessary to consider the linear approximant to the right hand side
of (21). This is conveniently chosen to be

«i(«°(0.•>"(*).o) 1 0 • • 0 "

«2(«0(*).«?D(0,o) 0 1 • • 0

: : : ' . 0 0

ad.Y(e(tW(t)^) 0 0 • • 1

Mf°(0i»7O(0,0) 0 0 •
dq(t°(t),V°(t),0)

• 0

dqU°(t),v°(t),0)
dr)

(22)

The matrix in (22) is a time varying one. To apply the results of Devasia-Paden to this

system we need to assume that it is slowly varying in time and kinematically equivalent

to a uniformly hyperbolic matrix. One convenient way to do this is to assume that the

nominal trajectory yp and its first r + d derivatives are small enough and that the

functions at-, 1 < i < d are Lipschitz continuous in their arguments.

Thus for fixed e > 0, the control law u calculated in (20) is bounded. What is less clear

is the magnitude of the control law as e —y 0. The following theorem gives conditions

under which the control law remains bounded as e —> 0.

Theorem 1 (Bounded Tracking as e ->- 0) Assume that

(a) the driven dynamics of the nominal system (16) is hyperbolic and slowly time
varying;

(b) the error system (21) is hyperbolic, and each function a,-(f, 77, e), -2%^, g^,r),cf in
the Jacobian (22) is smooth and slowly time varying; and, in addition,

11



(c) the functions a,(f,77,e) in the Jacobian (22) satisfy the following Lipschitz condi
tion:

MfV.e) - a,-({V,0)| < £,,,(«)!£„ - £+1| + ... + I,-,,(e)|£+d - e+A

+Li,d+i(e)\T)11 -,»| + ... + Z,,-,n.r(£)|i?i_r-d - »?2-r-jl (23)

where

Ly(0= ofe*1) t = !,...,<{, j = !,...,<*

£',j(£) = o(e) = ke1+a i = l,...,d, j = d+l,...,n-r
(24)

Under these assumptions, the input u(t) required for exactly tracking a desired output
signal yo(i) with bounded derivatives (all sufficiently small), is bounded as e —> 0.

Proof: By assumption, the system of equation (21) is hyperbolic. By assuming that
yo and its first r + d derivatives are small enough, we can assume that the conditions

of the Devasia-Paden method apply to this system. Thus, £°,77°,f, and 77 are bounded
by Paden-Devasia construction, and there is a unique bounded v G IRn~r satisfying
u(±oo) = 0. Suppose that Vd+i,Vd+2l •••,u„_r are bounded by M.

Now focus attention on the fast time scale dynamics given by

evi = v2 + ai(£,rj,e)v1

ev2= t>3 + a2(f,?7,e)ui

evd = ad((, 77, e)Vl + ed(b((, 77, e) - 6({°, 770,0) - a(£°, 770,0)u°)

This is of the form of the linear time varying system

(25)

V\ «iK°m,'?0(o,o) 1 ••• 0

• ••. 1

Lad(£°W,i?°(0,0) 0 • 0
0

Vi

+

ai(«0,«/(0.«)-«i(«oW,«J°('),0)

L«*(«0,«K*).«)-*(?(0,«/,('),0)J

(26)

Vd Vd

+ £e

ai(t) 1 •
Let us denote

A(t) := (27)

ad(t) 0

12



which by assumption is kinematicallv similar to

"Mt) 0

0 Mt)
(28)

where Ai(t) corresponds to the exponentially (uniformly, asymptotically) anti-stable
(i.e. stable as t -> -oo) subsystem and A2(t) corresponds to the exponentially (uni
formly, asymptotically) stable subsystem. Write the solution of (26) in integral form,
with $i(t) as the state transition matrix of Ai(t):

Vl
/oo

T(t)
•oo

*i(*-r)

0

0

*2(* - T)

M(n —r —d)

Mi

+ ...+

Ld,d(e)

Vd

ed

Vd

+
/oo

T(t)
-OO

*l(t-T)

d-
+ e

/oo

T(t)
-OO

0

0

0

$2(t - T)

*i(*-t) 0

$2(t - r)
dr

Ma

Here the transformation T(t) is a C1 invertible matrix, T(t) and T~*(t) transform A(t)
from the form (27) to the form (28) and are bounded, and the Mt- denote the bounds
on

0

7-l(t)
0

^,^O-^o,77°,0)-a(eo,77°,0K

The bounds on the state transition matrices are

||$i(<-r)|| < kie^-T)/t for r>t
||^2(<-r)|| < k2e-^-T)/c for t>T

(30)

(31)

for A,/u,ki,k2 > 0. By assumption on the L{j(e), i = 1,..., rf, j = 1,...,d, the first
integral in (29) is o(e). Thus,

Vl

(I-o(e))

Vd

13

<ec

Mi

Md

(32)

(29)



The term (1 —o(e)) is positive for small enough c. Therefore, by integrating equation

(29) we have that the bound on the components Vi(t) is 0(td). This also establishes
that, for 1 < i < d, the error coordinates are

In particular this establishes that the input given in equation (20):

u{t)= 0(e")

This completes the proof. •

An interesting by-product of the calculations in the proof that

is the verification that there is no bounded peaking in the dynamics (see for example, [Suss-
mann and Kokotovic, 1991] for a description of this phenomenon). It is also important to
realize that the control law may not be a continuous function of e, that is there may be a
discontinuity in the formula for the control law u at e = 0.

3 Bounded Tracking for MIMO Systems

To keep the notation in this section from becoming too complicated, we will consider two-
input two-output systems of the form

* = /(z, e) + gi(x, e)ui + g2(x, e)u2
yx= hi(x,e) (33)
2/2 = h2(x,e)

We will need to distinguish, in what follows, between the following two cases:

1. Each perturbed system has vector relative degree at a point x0, but as a function of e
the vector relative degree is not constant in a neighborhood of e = 0.

2. The perturbed system has vector relative degree, but the nominal system with e = 0
fails to have vector relative degree.

One could also consider as a third case, a scenario in which the perturbed system and
nominal system fail to have vector relative degree, but they need different orders of dynamic
extension for linearization. We will not consider this case here.
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3.1 Singularly Perturbed Zero and Driven Dynamics

Case 1: Both the perturbed system and the nominal system have vector relative
degree

Suppose that the system has vector relative degree (n(e), r2(e)), with

ri(e) = s Ve

r2(e) = r Ve ^ 0

r2(0) = r + d

This implies that for the following matrix:

LgxL)hi(x,e) Lg2L)hi(x,c)
_LgxL)h2(x,e) Lg2LJjh2(x,e) _ (34)

1. The first row is identically zero for x near x0 and all t for i < s —1 and nonzero at

(z0,0) for i = s —1.

2. The second row is identically zero for x near x0, when e ^ 0 for j < r —1, and is
identically zero when e = 0 for j < r + tf —1.

3. The matrix (34) is nonsingular at (x0,e) with e ^ 0, for i = s —l,j = r —1, and is

nonsingular at (x0,0) with e = 0 for i = s —1, j = r + d —1.

As in the SISO case, we will assume that there are only two time scales in the zero dynamics,
by assuming that for 0 < k < d,

LgiL) lhx(x,t) Lg7L)-lhi(x,e)
_LgiLrf-1+kh2(x,e) Lg2Lrf1+kh2(x,e) _

1 0

0 ed~k
Ak(x,t) (35)

where Ak(x,e) is a matrix of smooth functions, and both Ao(x0,Q) and Ad(xo,0) are non-
singular. By using elementary column operations to modify gi,g2, we can assume that
A0(x, e) = I e R2x2. Since the first row of the left hand side of (35) does not change with A:,
we can assume A^(x, e) to be of the form

Ak(x,e) =

We define the state variables

1 0

7fc(x,e) ak(x,e)
with Qd(xQy 0) 7^ 0

(I = hi(x,e),
# = /i2(z,e), g+d = Lr+d-lh2(x,e)

15
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Then, using variables 77 GRn-s~r-d to complete the basis, the "MIMO normal form" of the
system is given by

&

e =
f2 -Sr+l —

£?+1 + ed(j0(C, 77, c)ui + a0(f,77, e)u2)
g+2 + ed_1(7i(f,17, e)t*i + on(£, 77, c)«2)

f?+rf = Mf177, c) + 7rf(f, 77, e)ui + ad(f, 77, e)w2

Defining, in analogy to the SISO case,

z\ =f?+i, *2 = e£2r+2» Zd = C Cr+d

it may be verified, using the controls

w = 22.5 _ 1 *L

that the zero dynamics are given by

ezi = axzx + z2 + ed(~7i&i - ai7o&i)
ez2 = a2zi + 2r3 + ed(-726! - a27o&i)

eid = a^ + ed(&2 - 7^ - ad706i)

V= 9(0,^1, f,..., 77, e) + P(Q,Zi,f,..., 77, e) -61

L 00 x etfao J

(37)

(38)

where the a,- are defined as before, with ad = -|J. The difference between the MIMO case
and the SISO case is the presence of input terms in the right hand side of the 77 dynamics in
(38). We will need to verify that no "bounded peaking" occurs in the dynamics of 77 in (38)
when weestimate the magnitude of the variables Z{. Without this verification, it is possible
that some of the 77 variables will also become fast time scale dynamics.

For the driven dynamics one considers, as in the SISO case, new "error coordinates" given
by

vi =Shi - vK«), vt =«(&a - y^t)), ••• Vi-^H&i-vi?-1*®) (39)
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In these coordinates

evi = aivi + v2 + 6^(7/1,! - 6i)(7i + 0170)
et>2 = a2vi + u3 + ed(7/i)i - &1X72 + fl27o)

«* = advi +ed(62 +(7d +adl0)(y{A - bx) - y&d))

V= <l(tD,vu'?,...,r1,e,t) + P(tD,v1,X-y...,rl,e,t)
e-Tflo

(40)

Case 2: The perturbed system has vector relative degree, but the nominal system
does not have vector relative degree

We will suppose that the matrix in (34) satisfies

1. The first row is identically zero for a* near xo and all t for i < s —1 and nonzero at

(x0,0) for i = s —1.

2. The second row is identically zero for x near £0, for all e for j < r —1, and nonzero at

(zo,0) if j = r-1.

3. The matrix is non-singular at (a;0, e) with e ^ 0, for i = 5 —l,j = r —1, but is singular
at (x0,0) with e = 0.

This implies that the system (33) has vector relative degree (ri(e),r2(e)) = (s,r) for e^O,
but its relative degree cannot be defined at e = 0.

Under these assumptions and under dynamic extension of the system through Ui and its first

d derivatives, with u\ ' = ui, the system is decouplable. We will make the two time scale
assumption, namely that the "decoupling matrix" at the kth step of the dynamic extension

algorithm [Descusse and Moog, 1985] has the form

/3k(x,uu...,u[k l\e) 7fc(x,ui,...,t4* x),e)
Sk(x, ui,..., i4*-1), e) Qfc(x, uu..., w(!fc_1), e)

1 0

0 ed~k
(41)

We denote thefirst matrix in (41) above Ak(x, «i,..., u\ 1 , e) for 0 < k < dand assume that
Ad(x, «i,..., u[ ~ , e) isnonsingular. In fact, it may be verified that /?*(£, wi,..., u[ ~ , e) =
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f30(x,e) and 8k(x,ui,... ,u\ x\c) = 80(x,e) for 0 < k < d. Now define

(} = hi(x,e)

q= L)-ihi(x,e)
£+1 = L)hi(x,e) + pQ(x,t)ui

Q+i = L°}+d-1h1(x,e)-rMx,u1,u1,...Ad~2)) +^
f2 = h2(x,e)

i2= Lrflh2(x,e)
&+i = £/M^, c) + S0(x, e)ui

(2+d = L?d~lh2(x, e) + fc(*, in,*!,..., «(1<f-2)) + $,(*, e^1*

Using 77 G Kn-r-s-d to complete the coordinate transformation from Rn x Rd -» lRn x Rd,
the MIMO normal form for Case 2 is given by

£+1 = &2 + ^"17i«,r7,eK

G+d = 6i(^77^) + A(f,7?,e)uT+7d(f,77,e)u2
«= £22 (43)

Jr= (2r+l+td<*0(t,r)>t)v<2
&+1 = ^+2 + ^-1Q1(f,7?,6)u2

ir+d = t2(f,?/,c) + ^o(f,77,e)«r-}-ctd(f,77,e)u2

Note that the variables f*+1,..., f]+rf are affinely related to Ui,uu ...,u^-1*. Defining, as
before, the "fast" zero dynamics variables as

Zl - Sr+1» 22 - e£r+2> •** ^ = C ?r+d

18
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and using the control inputs

«2= -^(^(x^l-l^j^t^e))

the zero dynamics are given by

tz\ — a\Z\ -f- z2

tz2 = a2z\ + 23

eid= ad2i + ed(62 + <50wi)

*? = *(0,*i, f,-.., 77, e) + P(0,2l,f,..., 77, e)

The driven dynamics are derived accordingly.
(44)

3.2 Two step Bounded Tracking

The two step bounded tracking procedure in the MIMO case proceeds exactly as in the
SISO case. The first step is to find a bounded input for exact tracking of the nominal
system, using, if necessary, the Devasia-Paden-Chen procedure. The second step is to apply
to the perturbed system the Devasia-Paden procedure with slowly timevarying linearization
about the trajectory for the nominal system. Finally, the system is stabilized about the
exact tracking input and trajectory using a linear time varying feedback law (about the
linearization, see for example, [Cheng, 1979], [Walsh et a/., 1994]).

4 Examples

We illustrate the theory of the previous section with a comprehensive set of linear and non
linear examples, for both single-input single-output and multi-input multi-output systems.
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4.1 Textbook Linear Examples

4.1.1 Single-Input Single-Output Linear Systems

SISO Example 1

The first example we consider is the linear SISO system

X\ = x2

x2 = xz - eu (45)

x3 = u

with output equation y = x\. The transfer function of the system is given by

It is clear that (r, r + d) = (2,3) and that the singularly perturbed zero dynamics are given

by

tz\ —zi, where z\ = xz (46)

In Step 1 of the bounded tracking procedure, the bounded input required for the nominal

system to track t/£> is calculated as

«° = yf (47)

In Step 2, the control u is generated by solving the differential equation

ev\ = vi —ew°, (48)

where Vi = eu, and i)i = u —u°.

Proposition 2 (Bounded Input for (45)) Suppose that the output y —xi of system (45)
is to track a desired trajectory y^. Then the control u = Vi/e generated by the two step
bounded tracking procedure, where Vi is the solution to (48), is bounded as e —> 0.

Proof: The proof follows from Theorem 1. In this simple example, we present the cal

culations explicitly. We solve equation (48) for v\. Since the system described by (48) is
anti-stable, we calculate its non-causal solution as

/oo

$(t - T)(-u°(T))dr (49)
-oo
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where $(t) = e^cl(-t) and l(t) = { . Restricting u° to bein L^ (ie. supt \u°(t)\
[1 if t > 0

M)
/oo

e-T/£«°(r)(/T

< -eM

Thus, ui is of 0(e), and u = vi/e is of 0(1).

SISO Example 2

The second SISO linear example we consider is

xi = x2 + ex3+ e2u

x2 = 3*3 + eu

x3 = u

with output j/ = x\. The transfer function of the system is given by

H(s) =
1 + 2es + eV

(50)

(51)

(52)

The relative degrees (r,r + d) = (1,3) and the singularly perturbed zero dynamics are

eii = -2*i + z2 (53)

£22 = -£i (54)

where zi = x2 + ex3 and 22 = ex3.

In Step 1 of the bounded tracking procedure, the bounded input required for the nominal
system to track yp is calculated as

(55)«." = V$

In Step 2, the control law u for the perturbed system iscalculated by solving the differential
equation

Vl

. ^2.
=

" -2 r
-1 0

vi

. V2 .
+

0

-e2

where

Vi =

v2 = e(x3 - z°)
—e2u

M (56)

(57)

Proposition 3 (Bounded Input for (52)) Suppose that the output y = xx ofsystem (52)
is to track a desired trajectory yD. Then the control u = —ui/e2 generated by the two step
bounded tracking procedure, where vx is the solution to (56), is bounded as e —• 0.
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Proof: The proof is again in integrating the differential equation (56) for vi\

Vl

v2
=f -(t - r)c-(«-T)/e

-(t - r)e-^-T)/£ - ee"^-T)/(

Restricting u° to be in L^ (sup, \u°(t)\ = M) then

Vl

v2

<
-t2M

-2e2M

Thus, vi is of 0(e2), and u = -vi/e2 is of 0(1).

u0(r)di (58)

(59)

4.1.2 Multi-Input Multi-Output Linear Systems

MIMO Case 1

Consider the two-input two-output system

Xi = x2

&2 = 2:5 —e2U2

£3 = X4 (60)

£4 = e#5 -f Ui

I5 = ^6

#6 = U2

with outputs 2/1 = £3 and y2 = i\y chosen so that the form of the equations conforms with

the theoretical development of the previous section. The transfer function matrix of the

system is given by

0 l~^

The vector relative degree is well defined for both the perturbed and nominal system:

n(e) = 5 = 2

r2(e) = r = 2

r2(0) = r + d = 4

and the singularly perturbed zero dynamics are given by

ezi = z2

ez2 = Zi
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where Zi = x5 and z2 = ex6.

The bounded inputs required for the nominal system to track 2/z?i and 2/D2 are calculated as:

0 _ w(2)
2/diu: =

u° - 7/(4)U2 — i/D2

(63)

(64)

The control law u = [ux u2] for the perturbed system is calculated by solving the differential
equation

Vl
=

'01" Vl
+

0

v2 _ 1 0 . V2 . -e2

where

vi =

v2 - e(x6 - x%)
e2u2

and by solving the algebraic equation

«i = uj - e(vi + £5)

Ur (65)

(66)

(67)

The proof that the control law u = vi/e2 is bounded as e -• 0 follows from that of Theorem
1. Notice that since the system (65) is hyperbolic, we must calculate the causal solution of

the stable subsystem (corresponding to eigenvalue —1), and the non-causal solution of the
anti-stable subsystem (corresponding to eigenvalue 1).

MIMO Case 2

The second MIMO example describes a system in which the vector relative degree of the
nominal system is not well defined:

Xi = x2

£2 = x5 + ui —e2u2

£z = xa (68)

£4 = e#5 + Ui

£5 = #6

£& = u2

with outputs 2/1 = x3 and y2 = x\. The transfer function matrix of the system is given by

J. i-<2»2
«2 ,4
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The vector relative degree is well defined for the perturbed system:

n(e) = 5 = 2

r2(e) = r = 2

At e = 0, the system (68) does not have vector relative degree. The singularly perturbed
zero dynamics are given by

tzi = z2 (69)

ei2 = zi - ezx (70)

where zt = x$-\- ui and z2 = e(:r6 + ui).

The bounded inputs required for the nominal system to track j/di and yo2 are calculated as:

"0 (4)
«i = 2/Dl

0 _ (4) (4)
"2 — 2/D2 ~~ yDl

(71)

(72)

The control law u = [ui u2) for the perturbed system is calculated by solving the differential
equation

Vl o r Vl 0
e — +

. ^ . l-e 0 v2 -e2

where

vi = e2(u2 —v?2)
v2 - e(.r6 - x% + ui - w°)

and by solving the algebraic equation

e
m = if, —

l-e
(*i + *!)

Ur (73)

(74)

(75)

The control u generated by solving equations (73), (74), and (75) is bounded as e -> 0. As
in the previous cases, the proof follows from Theorem 1.

4.2 Flight Control for VTOL/CTOL Aircraft

We may apply the theory of the previous sections to simple planar aircraft models. The
development of section 3.1 using the zero dynamics algorithm was presented in its most

general form so as to enable it to be applied to general MIMO systems. Our examples

are motivated by our study of flight control for vertical take off and landing (VTOL) and
conventional take off and landing (CTOL) aircraft, in [Hauser et a/., 1992b] and [Tomlin et
a/., 1995]. These are two-input two-output systems in which the nominal systems have no
zero dynamics.
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Figure 1: The planar vertical takeoff and landing (PVTOL) aircraft (figure courtesy of J.
Hauser)

PVTOL Aircraft

We consider a model of a planar vertical takeoff and landing (PVTOL) aircraft, an example

being the YAV-8B Harrier of the McDonnell Douglas Corporation. The simplified PVTOL

equations, corresponding to the aircraft in the hovermode, derived in [Hauser et a/., 1992b],
are

Xi
-

x2

£2 = — sin #51*1 + e2 cos x5u2

£3 = X4

£4 = cos X5W1 -f e2 sin X5U-2 — 1

£5 = x&

£& = «2

(76)

where Xi = Z, x3 = y, x5 = 0, and a:, 7/, and 0 are as illustrated in Figure 1. Note that we

have used e2 in the equations instead of the standard e. We choose the standard outputs
2/i = sii 2/2 = £3.

The vector relative degree is well defined for the perturbed system:

ri(e) = 5 = 2

r2(e) = r = 2

At e = 0, the system (76) does not have vector relative degree. The zero dynamics manifold

of the unperturbed system is trivial, and the two time scales assumption is satisfied since

25



the decoupling matrices are

— sin x$ cos x$

cos x$ sin x5

1 0

0 e2

—sin £5 0

cos x$ 0

1 0

0 e

— sin xs — cos x$ui

cos x$ —sin X5W1

1 0

0 e°

with det A2(x,ui,iii) = Ui ^ 0.

Rather than follow the procedure of section 3.1, we proceed more informally for simplicity.
The singularly perturbed zero dynamics are given by

ezi = z2

ei2 = sin zi
(77)

where zi = x5 and z2 = cxq.

The bounded inputs required for the nominal system to track t/di and 2/D2 are calculated as:

"0 20 0 (4) . 0 (4)ux = xeux - sin x5yKD{ + cos x5yyD^

u°2 = -2xlu°xlu\ - y{£l cos zg/uj - y^\ sin a^/uj
(78)

(79)

The control law u = [ui u2] for the perturbed system is calculated by solving the differential
equations

ei>i = v2

ei)2 = u°sinVi —e2u2

where

sinvi = e2w2/w?
v2 = e(x6 - xl)

and by solving the algebraic equation

The control

ui sin(ui + xl) = wj sin x° -f- e2 cos(t>i -f x®)u2

0 • / 2w2 = WiSinui/e

uj sin£5 + e2 cos(vi + x°^)u2
Ui =

sin(ui + x%)

is bounded as e —> 0. The proof does not follow directly from Theorem 1, because the form

of (80) is not in the standard form of section 3.1. We maintain the appealing simplicity of
(80) and use the following proposition, the proof of which is available from the authors.
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Proposition 4 Consider the nonlinear differential equation (85)

£ = Ax + tp(x) + e2i; (85)

in which A € IRnxn is hyperbolic and if) belongs to a class offunctions called Lip(r) in [Hale,
1980]:

sup \^(x)\ < £(r)N
|x|<r

and L is a continuous, nondecreasing, nonnegative function on [0, oo) with L(0) = 0. Then
if e is small enough the unique bounded solution of (85) is of 0(e2).

CTOL Aircraft

The second aircraft model we consider is the planar conventional take off and landing (PC-
TOL) aircraft introduced in [Tomlin et a/., 1995]. The simplified PCTOL equations are

Xi = x2

£2 = (—D + ui)cosz5 —(L —e2«2)sinx5

£3 = x4 (86)

£4 = (—D + Wi)sin.T5 + (L —e2u2)cosx$ —1

£e — u2

where xi = x, x3 —y, x$ = 0. Unlike the example of the hovering VTOL, we now have
aerodynamic forces: L and Z}, the aerodynamic lift and drag forces given by

L = aL(x\ + ar2)(l + ca) (87)

D = aD(x\ + *2)(1 + 6(1 + ca)2) (88)

and a is the angle of attack

a = x5 —tan~1(x4/x2) (89)

The coordinates are illustrated in Figure 2. The angle of attack a is assumed to be zero for
these calculations. The outputs are 7/1 = xi, y2 = x3.

The vector relative degree is well defined for the perturbed system:

n(e) = 5 = 2

r2(e) = r = 2
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Figure 2: The planar vertical takeoff and landing (PCTOL) aircraft

At e = 0, the system (86) does not have vector relative degree. The zero dynamics manifold

of the unperturbed system is trivial, and the two time scales assumption is satisfied.

The singularly perturbed zero dynamics are given by

ezi = z2 (90)

ei2 = —coszi (91)

where zi = x5 and z2 = ex6. Note that we have again used a non-standard form for simplicity.

The bounded inputs required for the nominal system to track yoi and yn2 are calculated as

in the PVTOL case by dynamic extension. The calculations are more involved because of

the presence of the lift and drag and are available from the authors. As before, they result

in bounded values for iij and u2.

The control law u = [ui u2] for the perturbed system is calculated by solving the differential
equations

where

ei>i = v2

0 • r\0 • rO i r 2 0ev2 = Uj sin Vi —V sin Vi — L cos vi + L —e u2

sinui = \(t2u2 —L+ D° smvi + L°cost>i)

v2 = e(rr6 - x%)

and L°, D° correspond to the aerodynamic lift and drag at e = 0.

The control

I
u2 = -^(wj sin vi + L—D° sin i>i —L° cos vi)
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(u° - D°)cosxg - Z,°sing° + Dcos^ + x°) + (L- e2u2) sin(t>i + x°) ._
"' cos^, +xg) (%)

is bounded as e —>• 0. The proof follows from Proposition 4.

5 Conclusions

This work presents a method for tracking systems with singularly perturbed zero dynam
ics. We combined recent results in exact tracking by Devasia, Paden, and Chen, and Hunt,
Meyer, and Su, with a general framework for describing nonlinear nonminimum phase MIMO
systems with singularly perturbed zero dynamics. Using this framework, we prove bound-
edness of the control inputs required for exact tracking. We showed, using planar dynamic
models of VTOL and CTOL aircraft, that this method may be successfully applied to the
slightly nonminimum phase systems characteristic of flight control.

Appendix 1 Computation of the "Steady State" So

lution

Consider the general system

£ = Ax + f(x,u) (97)

in which x eRn represents the driven internal dynamics of the system, A e Rnxn represents
the (hyperbolic) linearization of these dynamics, and f(x,u) is the residual error in the
linearization. We assume, as before, that /(0,0) = 0 and f(x,u) satisfies the Lipschitz
condition

|/(x,u) - f(y,v)\ <ki\x-y\ + k2\u - v\ (98)

Devasia-Paden-Chen solve for the "steady state" response of the system (97) on (—00,00),
given u(t) : —00 < t < 00. We will assume that the state variables x have been partitioned
into xi e Rni,x2 € En2, such that

A = diag (Ai A2)

with the eigenvalues of Ai in C° and those of A2 in CJJ.. By way of notation, we will refer
to the first ni components of / as /1 and the remaining n2 components as f2. Define the
Heavyside state transition function of A on (—00,00) by

$(t) = diag (eMt\(t) - eMtl(-t)) (99)
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Here l(t) is the unit step function defined to be 1 for t > 0, and 0 for t < 0. By using the
variation of constants formula, we have

*,(*) = '̂P-»)«,(<7) + /„< e»'('-T)/1(i(r),U(r))dr

By setting a = —oo in the first of these equations and a = ooin the second, the contributions
due to the initial conditions for bounded solutions of (97) disappear [Hunt and Meyer, 1995].
It may be verified that a bounded solution to (97) on (—00,00), must satisfy the integral
equation

/oo

$(t-T)f(x(T)Mr))dr (101)
-00

Denoting by T the integral operator given by
/oo

•(t-r)/(*(T),tt(r))A
-OO

It may also be verified that for given u(.) € loo, T : L^ -+ L^ [Hunt and Meyer, 1995], and
that for given u(.) e L^ DLu T : L^ n Lx -+ L^ H LY [Devasia et a/., 1996]. Further if the
Li norm of $ is M, then

\T(x)-T(y)\00<Mki\x-y\00

The same estimate holds for the Li norm of T(x) —T(y) as well. Thus, when Mkx < 1, the
map T is a contraction map, and the solution to (101) exists, is unique, and may be found
by the Picard Lindelof iteration scheme

*n+1(.) = r(sB(.))

The fixed point of the map T is the so-called "steady state response" of the system (97). A
local version of this result can also be proven when the condition of (98) holds only for x,y
in a ball of radius r and u,uina ball of radius s. This version of the result requires that
|"(-)loo be small enough. Also, in the instance that u(.) G Li DL^, it may be verified that
x(t) —•Oasi—>±oo. In particular this is the case when u(.) has compact support.

Periodic Inputs

It is of interest to investigate the steady state solution of (97) given by (101) in the special
case that u(.) is periodic with period T. In the instance that A is hyperbolic, it follows from

a basic perturbation theorem ([Wiggins, 1990], page 111) that for |u(.)|oo small enough, there
is a unique periodic steady state solution of (97) which inherits the stability properties of A.
In this section, we show how the solution of (101) can be obtained using some techniques
reminiscent of describing function techniques. These have also been suggested in somewhat
different form by Meyer, Hunt and Su [Meyer et ai, 1995b] as "Fourier techniques".
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Sinusoidal Inputs Consider first the case that u(t) = uiejwt. Since the steady state
solution of (101) is periodic, it may be represented by its Fourier series

*..(<)= E **^*wt (102)
k=—oo

with xk € C. Consider also the approximation of the steady state solution with the Fourier
series truncated to 2N + 1 terms

N

xap-ss= £ xke?kwi (103)
k=-N

Using (102) in the expression for /(x,u), we get that

f(x3S(t),u(t)) = f; fk(...,x-1,x0,xu...,u1)e>kut (104)
k=—oo

Using this in (101) and integrating explicitly yields the following (infinite) set of equations
for the xk:

xfc = diag( (jkujI-Ai)-1 (jkul - A2)~l)fk (105)

Note that the fk are functions of the xk, —oo < k < oo. This set of equations may be

solved approximately by truncating the steady state solution as in (103) to give 2N + 1
equations of the form (105) in 2N + 1 unknowns xk,—N < k < N. The neglect of the
higher order terms can be justified using the same degree theoretic arguments as are used
by Bergen and Franks [Bergen and Franks, 1971] to justify the describing function method.
Since (jkujl —Ai)~l,(jku>I —A2)~l are "low pass", the conditions are roughly that N is
chosen large enough for a given /(x, u) to make the neglected terms xk small enough.

Arbitrary Periodic Inputs When u(.) is merely periodic rather than sinusoidal, the

development of the equation (105) goes through verbatim with the extra condition that

formula (104) is derived using the explicit form of u(.). One truncates the Fourier series of
the response as before to obtain an approximate solution. There is no need to truncate the

Fourier series of the input (or, for that matter, to derive it!).

Stationary Inputs

The foregoing discussion may be generalized to stationary inputs, in the sense that the input

u has a well defined autocovariance ([Sastry and Bodson, 1989]) given by the following limit
(independent of t):

Ru(t) =^im - J u(a)uT(a +r)da (106)
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The autocovariance function of u is a positive semidefinite matrix belonging to IRn,xn« with
Fourier transform Su(w), the power spectral density. Using the techniques of [Sastry and
Bodson, 1989] it may be proved that when u(.) is stationary, then so is x(.). The equation
for the power spectral density of x (the analog of (105)) is

Sx(uj) = &*g[(-jkuI-Ai)-\-jkuI-A2)-l)Sj(u)[(-jk^ (107)

The formula above is not explicit since Sj(u) is also a function ofSx(u) (and Su(u>)). Some
functional approximations of Sx(u) (such as the truncation of the previous subsection are
then needed to solve equation (107)). We omit these details for brevity.
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