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Abstract

We present a canonical form for the possible spatial linear filtering operations which can
be performed on the CNN Universal Machine [1] when running a finite algorithm using single-
transient CNN spatial convolution and image addition. Convolution by arbitrary kernels of any
finite size can be shown to be implementable by algorithms ofthis form using only 3x3 templates.
Equivalently it can be considered a general form capable of implementing arbitrarily large B-
template effects by using only 3x3 connectivity. Methods for performing arbitrary convolution
involving either summations of multiple applications of small B-templates[2] or partitioning
and shifting[3] can be unified under this form. When implementing a desired convolution with
this form the choice of templates is under-determined and either of these previous methods
can be used to demonstrate completeness. A CNNUM algorithm is given for implementing the
partition-shift approach with special concern given to practical issues of addition and accuracy.
It is presented both as a constructive proofof the general convolution capabilities ofthe CNNUM
and as a practical approach in some cases.

1 Introduction

In recent years, there has been much interest in using large scale homogeneous cellular arrays
of simple circuits to perform image processing tasks. The Cellular Neural Network (CNN), first
introduced[4] as an implementable alternative to fully connected neural networks, has evolved into
a paradigm for these types of arrays[5]. The CNN Universal Machine (CNNUM) architecture [1]
allows the results of CNN operations to be used in further processing stages.

As linear filtering is the workhorse of image processing algorithms, the question of whether the
CNNUM canimplement any convolution and how to do sois important. It has long been understood
that the B-template of the simple CNN performs a correlation (reflected convolution) with the input
image. However, due to implementation concerns the B-template, and therefore the convolution
kernel, is restricted to be small in size - typically 3x3. By also using the A-template[6, gives
an overview], or by cascading B-template operations, large kernel convolutions can be performed
but the coefficients of the impulse response cannot be arbitrarily specified. However, the need to
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exactly specify a large convolution mask arises in many situations, such as template matching for
object detection, dilation or erosion by large structuring elements, and interpolation.

Toovercome this problem it has been demonstrated that several series of small B-templates can
be applied to the input, and the results combined, to implement larger effective B-templates[2].
The form of the decomposition, and a related specific example, was given for which the effect of
arbitrary 5x5 template could be produced from five 3x3 templates. It was also observed that
in principle such an approach could be generalized in form for the production of arbitrarily larger
effective templates. The proof relies on induction, that is, a 7 x 7 template could be produced by
series of 5 X5 templates, etc[7]. To be usable, a systematic method for determining and computing
an appropriate solution to a large system of under-determined equations needs to be devised. A
second approach to overcomethe problem is the partition and shift method introduced in [3]. The
technique is to partition the desired convolution kernel into 3x3 blocks. These weighted sums
can be performed by the B-template and then shifted to the correct output location, where they
are accumulated. In fact, this technique can be considered a particular choice of solution of the
generalized form.

Here we present a unified form for these techniques which includes a broader class ofimplementa
tions, for instance, those that use the A-template. We demonstrate how the elementary operations
used by this form can be implemented on the CNN Universal Machine. A simple constructive
algorithm based on the partition-shift method is given to implement arbitrary convolutions (equiv-
alently, arbitrarily large effective B-templates) to demonstrate completeness. The advantages of
this choice are conceptual simplicity, ease of determining the decomposition, and ready application
to nonlinear B-templates (where the template elements are operators). In addition, an example is
given to illustrate some practical issues.

Spatial convolution is discussed in Section 2. The general form for performing convolutions on
the CNNUM is given in Section 3. In Section 4 it is shown how each operation can be performed
on the CNNUM. Finally, in Section 5, a formal approach for the automation of convolutions with
desired kernels on the CNNUM is given. The use of this algorithm is demonstrated by an example
which also includes some useful enhancements.

2 Spatial Convolution

Let tt(»i,n2) be the two-dimensional input sequence. Typically, on part of its support, this will be
an image of interest. Areas off the image will be defined to be zero for our purposes. The output
y(ni,7i2) of the filtering operation is defined by the spatial convolution as follows:

oo oo

y(nun2)= 53 2 fe(Ri-*i)n2-Wi,W (1)
fcl=—OO fcgss—OO

where ^(fci,^) is known as the convolution 'kernel', 'mask', or 'impulse response'. A reasonable
way of interpreting this equation is that each pixel of the output is formed by a weighted average
of the input around that pixel. Typically, convolution by a mask is considered to be a functional
mapping of the input sequence to the output sequence and so the notation

y(ni,ti2) = h* tt(tti,»i2)

is useful.

Two important facts about convolution are now stated:

hi * (hi * u(niyn2)) = (h2 * h\) * u(ni,ri2)



hi * «(ni,n2)+ h2 * u(ni,n2) = (hi + ^2) * u(ni,n2)

3 Canonical Form for CNNUM Spatial Convolution

We nowintroduce a canonical form for the linear spatial filtering operations which canbe performed
on the CNNUM. Let H be a spatial filtering mask which can be realized by a single set of CNN
templates. The output of such an operation can be combined with other outputsby image addition
or can be filtered again by another set of templates. A complex signal flow diagram of CNN filter
blocks and addition units can be built up in this way. The implementation of these blocks is
described in Section 4. Scalar multiplication, and specifically negation, can easily be accounted for
in the CNN filter or addition blocks.

Now, by using the properties of convolution described above, these complex networks of cas
cading convolutions and summations can be written in the sum of products form:

y(nun2) =

#i,i * #1,2* ... * Hi%Px * u(nun2)
+#2,1* #2,2* •••* #2,P2 * u(rci,n2)
+

+HQii * HQt2 * ... * HQtpQ * u(nun2) (2)

Then, by using the properties of convolution above, the effective convolution kernel implemented
by the CNNUM can be identified as:

h(ni,n2) =

#1,1 * #1,2 * ... * #1,P!

+#2,1 * #2,2 * ... * H2tp2

+

+#Q,l * #Q,2 * ... * Hq,Pq (3)

This equation describes the span of filtering operations which can be performed on the CNNUM
although it may not be the most efficient or robust implementation. The methods presented in
[2] and [3] can both be considered examples of this form. Even if the H are restricted to the FIR
filtering of a B-template with 5-neighbor connection pattern, this form can be shown to be able
to implement any desired (finite) impulse response. The choice of templates is, in fact, under-
determined for a given desired convolution as P and Q are left unspecified by the form. A proof
was mentioned in [2] which depends on an inductive approach[7], A constructive argument was
given in [3] by which most of the convolutions are shifting operations. Since this partition-shift
method is the most straightforward technique, an algorithm for its implementation on the CNNUM
is given in this paper.

For the direct implementation of the canonical form, the only necessary operations are the
single-transient spatial convolutions and accumulating of intermediate results. The next section
focuses on how to implement these steps by the CNN Universal Machine.



4 Necessary CNN Operations

The simplest CNN cell has a single capacitor, giving it first-order dynamics, and is coupled to
neighboring cells through non-linear controlled sources. A single transient of the CNNis described
by:

-ftS.jW =-«tj(0 + 2 Ak,iyi+kj+l(t) + 53 BkjUi+kj+l +1 (4)

where Af = {—r, ••-,0, ••«,r} is the set of indices1 for which the templates are defined, and with
saturation output nonlinearity

y(*) =i[|*-l|-|* +l|]
The input, state, and output, represented by tiij, xt^,and yij respectively, are definedon 0 < * < Ni
and 0 < j < N2. In a real circuit there are various ways to deal with the boundary.

Due to implementability concerns, the template neighborhood radius is generally restricted to
be as small as possible and the templates are applied in a space-invariant manner. The methods
shown here use templates no larger than 3x3, i.e. r = 1, although the ideas apply to larger
neighborhoods as well.

The elementary image processing tasks performed on the input data by a single template set
can be combined into more complicated operations by an invention known as the CNN Universal
Machine[l]. The machine uses the simple CNN in a time-multiplexed fashion, analogous to the
ALU of a microprocessor, by controlling the template weights and the source of the data inputs
for each operation. The machine supplies memory and register transfers at each cell which allow
the outputs of simple CNN operations to be combined and/or supplied to the inputs of the next
operation, thereby allowing more complex algorithms to be implemented. For our purposes, we
assume that the machine allows output (y,x) to be sent to and inputs (x(0),u, J) taken from two
local analog memories (LAM1, LAM2) which are used for temporary storage.

4.1 Single Transient Spatial Convolution

It has long been understood that by choosing A = 0 for the A-template, the CNN performs a
spatial correlation with the B-template. This can be seen by setting the dynamics of Equation 4
equal to zero giving:

xiA°°)= S Bk,lui+kj+l (5)

This CNN processing step will be written as B • u. Since convolution can be considered
a correlation with the reflected convolution kernel, this step is equivalent to convolution by the
reflected version of the B-template.

By using the A-template, convolutions with arbitrarily large impulse responses can be ac
complished in a single transient. And, although the following discussion does not consider these
possibilities, such templates may be very useful.

1Alternatively, the sums can be written in shifted-template form. The notation is then

(fc,l)€-V(,,j) (k,l)e/f(i,j)

whereM(it j) = {(Jfc, /) : k —i, J—j € {—r, •••, 0, •••, r}} is the set of indices for the cellsin the r-neighborhood of cell
(*>i)> This was presented incorrectly in [6, page 584].



4.2 Shifting

Spatial translation of images by a single pixel can be considered a particular example of the cor
relations in the previous subsection. And, therefore shifting over a distance can be considered a
cascadeof convolutions. However,because this particular operation is so important, it is mentioned
with special consideration.

Shifting of results can easily be performed by the CNN by use of a the B-template or by
special shifting hardware within the CNNUM implementation. Implementations which support
hardware shifting have been considered for various applications in addition to the fact that some
one-directional shifting is almost always supplied by the read in/out circuitry.

It is well-known that by supplying the image to be shifted to the CNN input, the simple B-
template

'0 0 0
B= 0 0 1 (6)

0 0 0

with A = 0 will supply a left-shifted image to the CNN output. That is

*fj(oo) = u,+i,j (7)

Templates for shifts in the other 7 directions are obvious. This output can then be transferred to
the input for further shifting. When shifting from the boundary, zeros are shifted into the array.

The CNNUM processing steps for shifting an image J cells to the right and / cells down (by
whichever of the methods) will be written as SHIFT(J, J,image). Note that if diagonal shifting is
available (as in the B-template shifting method) this will take only max(|/|, \J\) shifting steps plus
the necessary register transfers needed to setup the shift.

4.3 Accumulating

Summing ofimages can be performed in variousways depending on assumptions about the CNNUM
hardware. We mention three approaches.

The simplest method would be a hardware analog adder at the Local Analog Output Unit
(LAOU) of each cell. This is currently being implemented in next generation CNNUMs.

The second-to-simplest requires two forms of input to the dynamics. For instance the standard
input and a space variable bias. These two inputs would be added together directly into the
dynamics making addition trivial by choosing A = 0.

The third method only requires the ability to halt the dynamics of the CNN at a specified
time during the transient. This is a capability which has been incorporated into current CNNUM
designs. Let

"0 0 0
A= 0 l + o 0 (8)

0 0 0

£ =

0 0 0

0 6 0

0 0 0

so that the CNN dynamics can be written in the linear region as

d

dt
Xij(t) = axifj(t) + buij

(9)

(10)



A straightforward way to perform addition withthese templates is the special case2, of choosing
a = 0. Then the solution to Equation 10 is

xi,j(t) = xiA0) + tbuiJ (u)

So, for instance, depending on the sign of 6, stopping the transient at t = 1/|6| provides either the
sum or difference of the initial condition and the input images. Some scaling might be necessary
beforehand to insure that the result fits within the linear region of the dynamics.

A more general approach is to choose a < 0 with 6 = —a. Then the solution to Equation 10 is

Xij(t) = eatxitj(0) + (1 - eat)(-b/a)uitj (12)

If the system is stopped at time t' the state can be written as the convex sum

xitj(t') = axitj(0) + (1 - a)uitj (13)

where

a = e°*'€(0,l] (14)
This approachhas the advantage that the result will alwayslie in the linear region if the inputs

do. The CNNUM processing steps for performing the convex sum of two images (by whichever of
the methods) will be written as ADD(a,x0,u).

5 CNNUM Partition-Shift Algorithm

First, we present the most general algorithm for implementing convolution by a desired kernel
h(ni, n2) using the partition-shift method. More efficient algorithms are possible, rather, the intent
is to demonstrate that the convolutionimplementation procedure can be automated for an arbitrary
desired convolution kernel.

By making the following definitions:

BhMn n =i M-'i - 3*i,-/2 - 3*2) for - 1<lul2 <1 (15)
Vi> 2) S q otherwise

and

Yk»k>(mum2) = £ £tf***(/if ««(*! +mi,Z2 +ro2) (16)
/1=-i /2=-i

the spatial convolution can be written as:

»(»i,«2)= £ E Yk^(m + 3*1,113 +3*2) (17)

which is just the sum of shifted 3x3 correlations. Note that this decomposition can be considered
to be in the canonical form, Equation 2, by recognizing that shifting operators can be written as
simple B-template convolutions.

Now, this decomposition can be implemented directly. Choose M and N so that the desired
impulse response fits snugly inside {(^1,712): -3M - 1 < rti < ZM + 1, -3N —1 < n2 < 3N + 1}.
The *i, *2th B-template can now be found by Equation 15. Then, the convolution can be performed
by the following CNNUM algorithm:

2The a —0 case was first pointed oat to the authors by Akos Zarandy. Later, a particular example cameto our
attention of a similar approach used to implement the sums of a 4 x 4 convolution[8].



LAM1 +- 0

for *i = —M to M
for *2 = -JV to JV

LAM2 «- SEWT(-Zku-Zk2yYk^)
LAM1 4- ADD(LAM1, LAM2)

end

end

Note that a 3(2M + 1) x 3(2JV + 1) convolution can be implemented in (2M + 1)(2N + 1)
loop iterations. Each of these involves approximately 1+ 3max(|*i|, |*2|) + 1 CNN operations. For
instance, a full 21 x 21 convolution can be performed in about 434 transients, and a full 9x9
convolution can be performed in about 42 transients - all independent of the input image size of
the CNN.

Depending on the noise properties and speed of the CNNUM implementation under considera
tion, some improvements to the basic algorithm as presented will need to be considered.

First, some of the 3x3 B-templates might have only very little energy. It may be wise to
scale-up the template values to improve signal to noise ratio during shifting and accumulating.
Then, they can be scaled back to their original size during farther accumulation.

Second, if the kernel is sparse or lopsided, it will not be necessary to perform and shift blocks
corresponding to zero templates.

One might wonder if it is necessary to shift the partial correlation results immediately to their
destination but instead accumulate them with other partial results on the way home. The number
of shifts could be drastically reduced by such a method. However, there are some complicated
boundary management problems when partially accumulated results get shifted off the array. In
principle this could be solved by some complex buffering scheme.

It is also worth mentioning that there is an equivalent general algorithm to the one described
above where the input, rather than the intermediate results, is shifted about the array to perform
the partial correlations.

An Example

Figure 1 shows an impulse response for which we will write the CNNUM algorithm. The function
is mostly zero excepting along a line which ends in a blob. This might be considered a simulation
of motion blur. Figure 2 shows the 9x9, albeit sparse, B-template which must be implemented
on the CNN to perform the specified convolution. In order to implement this on a CNN with 3x3
templates, the desired template is partitioned according to Equation 15, as shown in the figure.
Since most of these templates have all zero entries, they do not need to be performed. The whole
process of performing the convolution can be written out:

y^sflOxB-1'1)* U
LAM1 «- SHIFT(3,3,Y-1»1)

Y°'0 = (5x£0'°)*c7
LAM2 «- y°'°
LAM1 4- ADD(§,LAM1, LAM2)



y0.i = (3|xB0'1)* U
LAM2 «- SHIFTtO,^,!'0'1)
LAM1 <- ADD(|,LAM1, LAM2)

y-1'° = (2|xB-1»0)* U
LAM2 4- SHIFT^Ay-1'0)
LAM1 4- ADD(^,LAM1, LAM2)

The total number of CNN operations can be estimated to be about 17, although it will depend
on the Universal Machine implementation. Note that each B-template was scaled so that the
correlations could take advantageof the full dynamic range. The partial results were then re-scaled
when being accumulated. The partialaccumulated sum was also kept at maximal scale throughout
the calculation. These scalings are likely to improve the overall signal-to-noise ratio during each
calculation. Finally, care was taken to perform the accumulation of templates which have the
smallest overall effect first as a heuristic to form meaningful summations.

6 Conclusion

A general canonical form describing the span oflinear spatial filtering operations achievable on the
CNNUM was given. It is a superset of previous methods which were shown to be complete even
when only using 3x3 templates, and therefore the CNNUM is known to be able to implement any
desired convolution.

We haveconstructively demonstrated how this can be done by choosing a specific solution of the
canonical form. When using the shift-accumulate method the number of transients needed increases
dramatically with kernel size. The point at which the scheme becomes impractical will depend on
the speed and analog error of the particular CNNUM implementation. It is our expectation that
this approach will be most useful when implementing templates that havea complicated non-zero
support such as those used for binary shape detection by correlation, those with a sparse but
broad spatial extent, or those that are asymmetric. Other convolutions will probably be better
implemented by using other solutions to the canonical form, for instance by using CNNs with
A-templates.
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