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Abstract

Asymptotic tracking is studied for systems in which the relative degree is not well defined,
meaning that the control law derived from exact input-output linearization has singularities in
the state space. We propose a tracking control law which switches between approximate tracking
[1] close to the singularities, and exact tracking away from the singularities, and we study the
applicability of this law based on the behavior of the system's zero dynamics at the switching
boundary. As in [1], the ball and beam example is used to motivate the study.

Keywords: Switching, nonlinear control, zero dynamics, exact and asymptotic tracking,
nonminimum phase.

1 Introduction

The nonlinear control toolbox has built up a fair level of sophistication with the use of techniques
for input-output and full state linearization, approximate linearization, and bounded tracking for
nonminimum phase systems. One area in which results have been hard to come by is the tracking of
singular or non regularnonlinear control systems, i.e. those that fail to have relative degree. While
the problem of trying to track trajectories that go through singularities was begun by Hirschorn
and Davis [2] who limited the class of outputs that could be tracked, the first set of practical
schemes for approximate asymptotic tracking through singularities was given by Hauser, Sastry
and Kokotovic in [1], using an approximation technique. This in turn spurred the development
of a result by Grizzle, Di Benedetto and Lamnabhi-Lagarrigue [3] which proved the necessity of
"regularity" for asymptotically exact tracking.

In parallel with this activity has been the interest in using switching control laws for adaptive
control ([4], [5]), for steering and stabilization ([6], [7]), as well as activity in hybrid control systems
([8], [9], [10]). In this paper, we combine ideas from switching along with our results on exact
tracking of slightly non-minimum phase systems (developed in [11] building on the techniques and
ideas of [12] and [13]) to describe our results in approximate tracking for singular or non-regular
nonlinear systems.

The outline of our paper is as follows: in Section 2 we describe the ball and beam example of [1] with
some added new insights about the zero dynamics of the singular system under perturbation and
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the subtleties of introducing switching across the singularity surface into the control law. In Section
3, we set up the problem formulation for general single-input single-output nonlinear systems, and
prove approximate tracking for these systems when their zero dynamics are unstable. In Section 4
we discuss the nature of the zero dynamics of singular systems which we classify into three cases,
and in Section 5 we give our current results about tracking using switched controllers.

For the three classes of systems that we obtain in Section 4, we give conditions for approximate
tracking. The basic result is that slow switching is acceptable for the third case, where the equilib
rium structure is preserved between the exact and approximate internal dynamics. In the first and
second case (which is in fact a generalization of our ball and beam example), the change in equi
librium in the internal dynamics across the switching boundary is likely to destabilize the switched
control law. Our results are not counterexamples to the Theorem of [3], since we use discontinuous
control laws and ask for only asymptotic approximate tracking.

2 Motivating Example: the ball and beam

We describe in this section the proposed switching scheme applied to the ball and beam example.
The insights gained by studying the zero dynamics as the system switches across the singularity
surface motivate our general formulation in the next section.

Consider the following system, which describes the motion of a ball rolling along a rotating beam
[1]. The state variables are

(xi,x2,x3,a:4) = (r,r,0,0)

where r is the distance of the ball from the pivot of beam, and 6 is the angle of the beam. In the
following, G is the acceleration due to gravity, and B :— M/(Jb/R2 + M) where M and J& are the
mass and moment of inertia of the ball, and R is the radius of the ball. The input r is the torque
applied at the center of rotation: a preliminary change of coordinates in the input space, as in [1],
is performed to define a new input variable u which appears linearly in the system equations:

X\ = X2

X2 = B(xix^ —67 sin£3)
xz = X4

X4 = U

The output equation is y = x\ —ro, where ro is a given position of the ball along the beam. Thus

0

/(*) =

X2

B(xix1 —Gsmxs)
X4

0

i 9(x) =

(i)

, h(x) = x\

The ball and beam system as modeled by (1) is non-regular, meaning that the relative degree of
the system is not well defined globally over the state space. Indeed, LgL2fh(x) = 2Bx\x±, so that
the feedback linearizing control is undefined when x\x± = 0. In [1], an approximate input-output
linearization scheme is defined using the coordinates

fc = x\ — ro

& = X2

6 = Bxix2 —BG smxz
U = Bx2x\ —BGX4 cos Xz

(2)
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Figure 1: Zero Dynamics of the ball and beam using approximate tracking

The system dynamics in mixed x and £ coordinates is

£3 = £4 + 2BXIX4U
£4 = £(£2:12:4 - £G sin 2:3)2:4 + ££2:4 sin X3 + {2BX2X4 —£G cos2:3)1/

The approximately linearizing u is calculated by ignoring the coefficient of u in £3:

1
u =

2BX2X4 —BG cos 2:3
[—B(Bx\X4 —BG sin 2:3)2:4 —££2:48^12:3 + v]

(3)

(4)

for auxiliary input v. The zero dynamics are zero-dimensional, and consist of the equilibrium points
(Figure 1):

ro ro ro

0 0 0

0
1

— 7T
5

7T

0 0 0

x = with uq = 0.

which correspond to the beam being held in a stationary horizontal position.

This approximate scheme is exact when 2Bx\X4 —0, and approximates the exact scheme well when
|2£2;i2:4| is small. However, results in [1] show that when |2£2:i2;4| becomes large (which is when
the values of the desired trajectory and its derivatives become large) the approximate tracking
scheme is unstable.

We introduce a switching scheme which uses this approximate scheme in a neighborhood of the
singularity, and switches to a tracking control based on exact input-output linearization outside of
this neighborhood. To do this, partition the state space into the regions:

M0 = {2: € I4 : \x\x4\ < 6}
M_ = {2: € R4 : 2:12:4 < -8}
M+ = {x e E4 : X1X4 > 6}

In Mo, we use the control law (4). In the regions M+ and M_, we define a coordinate system:

£1 = x\ — ro

£2 = X2

6 = BxYxl-BGamx*
77 = X4

(5)



Figure 2: Zero Dynamics of the ball and beam using exact tracking

The nonlinear coordinate transformation defined by

$:2:-> (£,t?)

is a local diffeomorphism away from 2:3 = §. The system dynamics are

6= £2

£2 = £3
£3 = £2:22:4 - BGX4 cos2:3 + 2BX1X4U

77 = u

The input-output linearizing u is therefore given by

1 . - 3.
u =

2Bx\X4
(-BX2X4 + £6*2:4 cos2:3 + v)

(6)

(7)

for an auxiliary input v. The zero dynamics are obtainedby setting £1, &, £3, and tneir derivatives
to zero, for which the solutions are:

±4 = ii0, such that w0 = 0 and (2:3,2:4) = (0,0) or (7r,0)

and

±4 = ii0, such that u0 = ^^ and rQx\ = Gsin 2:3

The first solution above is trivial, since it corresponds to holding the ball and beam at the equi
librium position and applying zero input. The second solution is more interesting, since the zero
dynamics evolve on the one-dimensional surface Si, which causes the beam to do "cartwheels"!
(See Figure2) While these dynamics are bounded, they are suchthat tracking schemes using exact
linearization are impossible.

To characterize the more robust features of the zero dynamics (such as the a>-limit sets) we consider
a regular e-perturbation of this system and study its zero dynamics as c —• 0:

2:1 = 2:2

2:2= £(2:12:4 —Gsin 2:3) + eu
2:3 = £4

2:4 = u

(8)



Zero Dynamicsof the Perturbed System
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Figure 3: Zero Dynamics of the perturbed ball and beam

Physically, this perturbation reflects a coupling between the input torque and the velocity of the ball
along the beam. This perturbed system has relative degree 2, with two dimensional zero dynamics
(x\ =r0,X2 =0):

Gsini3-roi? Vy/
2:4 = 1

which are illustrated in Figure 3 for ro = 1, e = 0.1. The zero dynamics have an unstable node at
(2:3,2:4) = (0,0) and a center equilibrium at (2:3,2:4) = (77,0). As e ->• 0, the limit cycles around the
center collapse into the equilibrium, and the center becomes an unstable node.

We would like the system to track a desired output trajectory yo(t) corresponding to a periodic
motion of the ball along the beam. The physics of the ball and beam system insist that the state
trajectory which implements yr>(£) traverse the region in which £12:4 = 0, since 2:4 must necessarily
change sign. We define a J-region around 2:12:4 = 0 by {2; : 12:12:41 < 6} and in this region,
the approximate tracking law of equation (4) may be used to stabilize the system to 2/d(£). The
stabilizing control law may be calculated as

v= y{D ~a4{U ~V{d) - <*3(6 - y$) - a2{& - Vd) - OLiHi - yD)

where the ct{ are selected so that s4 + 0:4s3 + Q3S2 + 0:2s + a\ is Hurwitz. We expect the system to
stabilize nicely in this region since the zero dynamics corresponds to a single equilibrium.

In the region {2; : |2:i2:4| > 6}, the exact tracking law of equation (7) may be used to stabilize the
output of the system to t/dM- Again, the control law may be calculated as

v = y(D - 03(6 - y{D) - ^2(6 - yD) - «i(6 - vd)

where s3 + 03s2 + 0:2s+ ai is Hurwitz. Because the zero dynamics in this region is constrained to lie
on S\, we cannot expect such a nice behavior of the inverse dynamics of the system in this region.



Balland Beam, Switching Control

x(3) beam angle

(4) beam angular velocity

switch from exact to approximate tracking
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Figure 4: Regulating to yo{t) = 1 using switched control

For example, if the desired trajectory is j/dM = &i —r<j = 0, the (2:3,2:4) dynamics traverses S\
which corresponds to the beam rotating between 2:3 = 0 and 2:3 = tt.

Figures 4, 5, and 6 display the results of regulating the ball and beam system to yo(t) —1 using
the switched control scheme compared with using approximate linearization only. Figure 7 shows
the results of tracking 2/d(0 = sin(0.8i) + 3 using switched control. Note that for regulation, the
switched scheme causes the beam to flip upside down (Figure 4), since the zero dynamics of the
system (Figure 5) follow S\ until the switch to approximate tracking occurs. Compare this to the
approximate linearization scheme in Figure 6 which, although it has larger overshoots and longer
settling times, regulates the zero dynamics variables to zero. This problem is accentuated in the
tracking results of Figure 7, where the beam continually flips upside down and right side up.

3 General Formulation

We strive for a nonlinear tracking control law which works well both close to singularities in the
state space, as well as far away from these singularities. The ball and beam example provides
inspiration. The exactly linearizing control law for the ball and beam system is not useful because
of the intrinsic system property that the resulting one-dimensional zero dynamics are constrained
to lie on Si. But the same switching method applied to other systems in which the zero dynamics
(either stable or unstable) are "better behaved" has the potential to be very successful in increasing
the domains of attraction of the control law. For example, the planar flexible robot arm in [14]
has a singularity at cos 62 = §, where 62 is the angle of the elbow. The exactly linearizing control
produces two-dimensional zero dynamics which are unstable but hyperbolic, and so the nonlinear
inversion technique of Devasia, Chen, and Paden [12] may be used away from the singularity to
calculate the asymptotically stable solution to these dynamics.

In the general formulation, we will consider single-input single-output controllable nonlinear systems
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Figure 5: Regulating to j/d(£) = 1 using switched control, showing the zero dynamics

Ball and Beam, Approximate Control
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Figure 6: Regulating to yo(t) = 1 using approximate control



Ball and Beam: Tracking using Switched Control

Figure 7: Tracking yp(t) = sin(0.8i) + 3, using switching control

of the form
i= f{x) + g{x)u
y = h(x)

where x GRn, u GR, y GR, /(a:) and the columns of5(2:) are analytic vector fields, and ^(2:) is an
analytic function. We assume that x = 2:0 is an equilibrium point, that is /(a^o) = 0, and without
loss of generality we assume that h(xo) —0.

In the following we need the definitions of robust relative degree and uniformly higher order [1]:

Definition 1 (Robust relative degree) The nonlinear system (10) is said to have robust rela
tive degree 7 at xq if there exist smooth functions <j>i(x), i = 1... 7 such that

h{x) = (j>i(x)+ip0(x,u)

Lf+gu(f>i{x) = (f>i+i{x) + ipi{x,u) i = 1...7-l
Lj+gu^ix) — b{x) + a(x)u + ipy(x, u)

where the functions ij)i(x,u), i = O...7 are sums of terms of0{x)2, 0(x,u), or 0(u)2 (denoted
0(x,u)2).

Definition 2 (Uniformly higher order) A function $ : Rn x R -> E is said to be uniformly
higher order on Ue x Ba if for some a > 0 there exists a monotone increasing function of e, K{e),
such that

\iP{x,u)\ < eK{e)[\x\ + |u|]Va; GUt1 \u\ < a (11)

(10)

Assume that the system (10) has robust relative degree 7. Adopting the notation of [1], we define



new coordinates (£, 77) by

*7 <f>-r(x)
m(x)

(12)

. %-7 J L*/n-7(z) .
where the functions r)i(x),i = 1,... ,n —7 are chosen so that Lgr)i(x) = 0. The system (10) is
written in mixed coordinates as:

f 1 = 6 + <Mz>u)

£7-1= ^7 + V'7-l(a;'W)
f7 = 6(2:) + a(x)u + ^7(^5w)
*7= 9(C?7)

with output y = £1 + ipo{x,u). The approximate system corresponding to (13) is

6= &

«7-l = «7
6(2:) + a(x)u

(13)

(14)

Since we are interested in tracking a desired trajectory y^(<), which is assumed to be at least 7
times continuously differentiable, define

tD(t) =

( VD(t) \
VD(t)

V y&-1}(*) J

(15)

We consider four possible scenarios for the system (13), which lead to four different nonlinear
tracking control laws:

1. the exact system (13) has stable zero dynamics;

2. the exact system has unstable zero dynamics;

3. the approximate system (14) has stable zero dynamics;

4. the approximate system has unstable zero dynamics.

In the first scenario, feedback linearization results in exact tracking of yo(t) with stable zero
dynamics. In the second, Devasia-Chen-Paden's nonlinear inversion technique [12] may be used to
calculate the stable solution to the zero dynamics, and exact tracking results. For the third, bounded



tracking and 0(e) tracking error are proven in [1] when the functions ipi(x,u),i = 1,... ,7 - 1 are
uniformly higher order in x and u, the zero dynamics of the approximate system (77 = 9(0,77)) is
exponentially stable, and the desired output and its derivatives {yD,yD,'- •,yo) are sufficiently
small. In this section, we extend the result of [1] to prove bounded tracking for the fourth scenario,
using the nonlinear inversion technique of [12].

Theorem 3 (Approximate Tracking for Unstable Zero Dynamics) Consider the system (10)
with normal form (13). Assume that in a neighborhood Ue of xq

1. the zero dynamics of the approximate system, 7) = 9(0,77), is hyperbolic (its Jacobian Q= 5^(0,770)
has no eigenvalues on the jui-axis);

2. the error in Jacobian linearization of the corresponding driven dynamics, defined by r(£,n) :=
rj(£, 77) —Q77, is Lipschitz continuous in both of its arguments:

\r(Zi,m) ~ r(&,%)| < *i|& - 61 + k2\m - 772I

with Lipschitz constants k\, fo small enough;

3. the functions ipi(x,u),i = 1,... ,7 - 1 are uniformly higher order; and

4. the desired trajectory and its derivatives are sufficiently small

Then, for x GUe, u GBa there exists a unique bounded solution to the driven dynamics, called tjd;
the states of the closed loop system defined by (13) with control law

«K,u,fo,no) =—^y[-&to>,')i>) +V&1] +j^l/TK-M+•#<* - •»>) (16)
(where f\ and /2 are chosen to stabilize the closed loop system) remain bounded; and the tracking
error is 0(e2).

Proof: Assumptions 1 and 2 guarantee (see [12]) that thereexists for given bounded £d a bounded
solution r)o G Rn"7 satisfying limt-+±oo77D(t) = 0, which is obtained as the fixed point of the
following integral equation:

roo

nD(t)= Ht-r)r(ZD,riD)dT (17)
J—00

in which $(t) is the Caratheodory solution of the matrix differential equation

X = QX X(±oo) = 0 X(0+) - X(0-) = /

Now, consider the control input (16) and define the error trajectory e GRn as

ei ' 6 ' yD

e7 £7
(7-1)

Vd
e7+i m VDy\

. en . . Vn—y . _ VD,n-y _

10

(18)



Then the closed loop system (13), (16) may be expressed as

ex =e2 + <Mf,77,u(£,?7,f£>,r?D))

e7 = b{£, 77) - 6(£d, nD) + f{tfe +^7(£, 77, u(£, 77, &>, 770))
e7+i = qil^v) ~Qi((d^d)

(19)

e„ =gn-7(4^)-9n-7(^>r?I?)

where f(t) = [/i(i) /2(f)]- Denote by e7 the unit vector in Rn whose elements are all zero except
for a 1 in the jth position. Jacobian linearization about the desired trajectory (ZdiVd) results in

where

and

A(t) =

e = A(t)e + fT(t) e'e + r(£,7j,£D,f)D)

• 0 1 0 • 0 0 0 •

0 0 1 • 0 0 0

;
• 0 •• 0 0 0

0 0 0 •• 1 0 0

c\ C2 C3 •• <h c7+l Cn

*1
ZdMd

0£
drj Zdsid .

I \ 9b
Zd,vd

(C7 + 1

db

Zdsid

^{^•n,iD,nD) =

ii>\{Z,r),ZD,riD)

^{^V^d^d)
0

0

+

0

h.o.t(e)
h.o.t(e)

. h.o.t(e) .

= *Ki»?.€D,»7D) + h.o.t(e)

(20)

(21)

(22)

Here, h.o.t(e) means higher order terms, or terms which are of 0(e2). By our assumption that (10)
is controllable, /1, /2 may be chosen to make the closed loop system with dynamic matrix:

Ac{t) = Mt) + \fT(t)J?(t)]e'r

exponentially stable. By choosing £d small enough, no may be shown to be small enough using
(17). Thus, using the uniformly higher order assumption (11) on $(•)> it follows that

\Zd,Vd\ < e=> |*(£,77,£d,77d)| < e2K1(e) + eK2(e)\e\

Also, by definition
h.o.t(e) < eK3(e)\e\

11

(23)

(24)



Thus, we will abuse notation and write (20) as

e = Ac(t)e + e[K2(e)+K3(e)]\e\ + e2r
= Ac(t)e + e2T (25)

Thus the error system isexponentially stable and is driven by aninputof 0(e2). Thus, the tracking
error is 0(e2). *

In order to keep the notation as simple as possible, we concentrate on an example system in which
the difference between the robust relative degree and the relative degree is 1. That is,

• the robust relative degree is 7, and the approximate zero dynamics have dimension n —7;

• the relative degree is 7 —1, and the exact zero dynamics have dimension n —7 + 1.

Under this assumption, system (13) becomes

C7_i = L}-lh{x) +LgL}-2h(x)u

£7 = Vfh(x) +LgVf 1h{x) u
b(x) a(x)

"0= qfari)

We also assume that LgLj~2h(xo) =0, meaning that the singular surface contains xq.
We have shown in this section that for the system (26) with approximate control law (16), if the
dynamics 77 = 9(0,77) is unstable but hyperbolic, the states of the system remain bounded and the
tracking error is small if the desired trajectory and its derivatives (yr>,yr>,... ,Ud ) remain small.
However, we would like to track trajectories in which the desired output and its derivatives may
be large, meaning that even though the stateof the system is forced through the singular surface of
LgLY2h(x), it is also forced far away from this singular surface. Far away from this singular surface,
\LgLj~2h(x)\ is large, and the approximate control law fails. We propose aswitching scheme which
uses the control law derived from the approximate input-output linearization method of [1] close to
the singular surface, and switches to a control law derived from exact input-output linearization far
away from the singular surface. The remainder of this paper is devoted to deriving conditions under
whichsuch a switching scheme is possible. We approach the problem by classifying the behavior of
the internaldynamics of systems of the form (26) as the state switches through the singular surface
LgL}-2h{x) =0.

4 Classification of the Internal Dynamics

Consider the system (26). The internal dynamics of the system are the (n - 7 + l)-dimensional
"exact internal dynamics" in the region in which LgLj~ h(x) ^ 0:

C7 =L}h(x)+LgL}-1h(x)u^(x) (2?)
v =q(Z,T})

12



and the (n —7)-dimensional "approximate internal dynamics" when LgLj h(x) = 0:

77 = g(£,77) (28)

Let us analyze the exact and approximate zero and driven dynamics as the state switches through
2:0-

Exact Internal Dynamics

Assuming that LgLj~2h(x) ^ 0, consider the exact control law ugx(x) required to hold the output
and its derivatives identically at zero:

L)-lh(x) +LgL}-2h(x)uf{x) =0 (29)

As the state trajectory approaches 2:0, this control law becomes

L)-lh{x)
s '̂o LgLy2h(x)uf{xQ) = Jim -r {y_2,\ (30)

Note that for the class ofsingular systems that we are considering both the numerator Lj h(xo)
and denominator LglPf~2h(x{i) of this limit vanish, since /(a:o) = 0, and xq GMq. But because the
numerator and denominator are both analytic functions, we can rewrite (29) as

(x - xo)rqi(x) + (x - x0)sq2(x)ulx(x) = 0 (31)

where 91 (xo) # 0, 92(2:0) 7^ 0, and r > 0 (again since f{x0) =0).

For the driven dynamics, if the desired output is yr>(<), the required input uex(t) may be calculated
from

(2: - 2:0)r9i(z) + (* - x0)sq2(x)ue*(x) = yD~l(t) (32)
We consider three cases:

1. No Zero Dynamics: s > r, w§x(^o) = co

in this case, there does not exist an input Uqx(xq) to hold the output and its derivatives at
zero.

We may still study the nonlinear zeros of the driven system, which are the eigenvalues of
the Jacobian linearization about 2:0 of the driven dynamics. Substituting uex(x) into the
linearized equation for £7 and forcing the system towards xq results in the term:

L9L} h(x) •({x _Xo)s-rq2{x) +{x _Xo)sq2(x))
X—>XQ

As x goes through 2:0, the denominators of these terms may change sign, depending on s
and r. This corresponds to an eigenvalue of the linearized driven dynamics either moving to
—00 in the left half plane and returning at 00 in the right half plane, or moving to 00 in the
right half plane and returning at —00 in the left half plane. This suggests that the internal
dynamics may become unstable as the system switches through xo-

13



2. Change in Equilibrium of the Zero Dynamics: s = r, Uqx(xo) = —%&(•

The ball and beam is an example of a system of this class. In this case, the zero dynamics
exist and are the dynamics of

x= f(x) +g(xKx(x)\M=:{xMx)=Lfh{x)=.„=Lj-ah(x)=0) (33)

Since Uqx(xq) ^ 0, xo is not an equilibrium of (33). This is interesting, since it means that a
feedback linearizing control may trigger "higher order" zero dynamics in the switching from
an approximate to an exact control law. This is evident in the ball and beam example.

In this case the linearized driven dynamics include the term

L9Li ^g)-(-z7ir+^-^w^)q2(x) {x-x0)sq2(x)
x—*Xq

which, depending on yr>(£), may cause a stable eigenvalue to become unstable as the system
switches through xo-

3. No qualitative change in the Zero Dynamics: s < r, Uqx(xo) = 0.

In this case the zero dynamics exist and have an equilibrium point at xo-

The driven dynamics include the term

7-1
VdWM'H(,_5.aW>

X-*XQ

which again, depending on yD(t)-> may cause the driven dynamics to become unstable on one
side of the singular surface.

Approximate Internal Dynamics

Now consider the approximate control law UqPP(x) required to hold the approximate system's output
and its derivatives at zero:

L)h(x) +LgL}-lh(x)ul™(x) =0 (34)
so that

We can rewrite (34) as

L}h(x)
*=*so LgLylh(x)urM =}^-, J'-Z, (35)

(x - x0)r'9'i(*) + 92(*KPPM = 0 (36)
where 91(2:0) ^ 0, 92(^0) ¥" 0, and r' > 0 (note that L5Ll!-1/i(xo) i=- 0 since the robust relative
degree is 7). The only solution to this is UqPP(xo) = 0, so that xo is always an equilibrium of the
approximate zero dynamics.

For the approximate driven dynamics, if the desired output is yz>(£), the required input uapp(£)
may be calculated from

(x - xo)r'9'iM + 92(*)uapPM = Vl(t) (37)
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state trajectory

M+= {x: Lgl£n(x) >8} [-""""" 2
~ "" M0={x:|LgLfh(x)|<6}

M_={x: LgL7h(x)<-8}

Figure 8: Partition of the state space into Mo, M_, and M+

Thus, uaPP(xo) is always finite.

The analysis in this section indicates that a control scheme which switches between exact and
approximate control laws calculated from (32) and (37) is not likely to work for cases 1 and 2 above,
when there is a change in equilibrium between the exact and approximate internal dynamics. As
we saw in Section 2, the switching control in the ball and beam example triggered higher order zero
dynamics (a limit cycle with no equilibria) resulting in cyclic oscillations of the beam from 0 to n
and back. This seems to be a prototype behavior for the general case: in the tracking problem,
while the driven dynamics would remain bounded, they may not go to zero as (yo, yr>> •••) goes to
zero. Our conclusions are that for this class of singular systems, it is best to not use a switching
control law, but to use the approximate control law (39) for small enough values of vd(') and its
derivatives. Thus, for this class of nonlinear systems there are intrinsic limitations to the magnitude
of the inputs and their derivatives that can be approximately tracked.

In the next section, we prove approximate tracking for "slow switching", for case 3 above.

5 Tracking 2/d(£)

Consider the system (26). Partition the state space as in the ball and beam example, illustrated in
Figure 8:

M0 = {x GRn :\LgL}~2h(x)\ < 6}
M_ = {x GRn :LgL}-2h{x) < -6} (38)
M+ = {x GRn :LgL)~2h(x) > 6}

As in Section 3, we define in analogy to the control (16):

1. an approximate control law

,app _
u"1'1* = ^rvW-WPP)+y°>+/appVpp] (39)
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in the region Mo, where x^p isobtained from ^pp = (yp,... ,y^ ') and

•OTW = fT *app(< - r)raPP(^pp, ^pp)dr; (40)
J-T

2. and an exact control law

uex =
LgL{j~2)h{x**)

in the region M_ and M+, where xf* is obtained from £f* = (y£>,... ,y^~ ) and

•T

(7-l)/,^exx . ..(7-1)[-L^-^^xf) + yj™ + /ex' eex] (41)

*W =f **X(* - ^ex(&x, ijffjdr (42)
J-T

For both cases, the choice of T is discussed below.

Consider the normal form (26) with

(x - x0)s92(z) (z - 2:o)s92(z)

calculated from (31). As was shown in Section 4 the internal dynamics (27) may be nonminimum
phase either in M_ or in M+ or both. If so, the tracking control law that is used in (41) would have
to be calculated using the technique of Devasia, Paden and Chen [12]. The main drawback of the
computations involved in the Devasia et al. scheme is that it involves computation of the "steady
state" response as discussed in [11]. To address this, we will assume that the rate of switching
is slow compared to the zero dynamics of the exact and approximate system. We formalize this
assumption in the following definition:

Definition 4 (Slow Switching) Let {tt}i€/ &e the sequence of switching times indexed by the set
I. The switching between control laws (39) and (41) is called slow if

mf{ti+l-ti}>2T (43)

where T is such that

fjD(t)= [ $(t-T)r(ZD,riD)dT (44)
J-T

is an e-approximation to the infinite time computation of (17), repeated here:

/oo

${t-T)r{t,D,T)D)di
-oo

i.e. that

sup \f)D{t) - nD{t)\ < e (45)
te[-T,T]

In this definition, 7yrj(t) could be either r^v{t) (40) or nj?(t) (42). e will be determined in the
proof of the theorem. We now state the approximate tracking theorem using switching for the case
in which the system satisfies the assumptions of slow switching.
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Theorem 5 (Approximate Tracking Using Switching Control) Consider the system (10)
with normal form (26), and with the control law switching between (39) and (41) at the surfaces

{x GRn :LgL)-2h(x) =±6}

Assume that conditions I —3 of Theorem 3 hold for both the approximate internal dynamics and
the exact internal dynamics, thus the state xq in control laws (39), (41) is computed by applying
the Devasia-Paden-Chen scheme to the approximate internal dynamics dynamics of (28) and exact
internal dynamics of (27) respectively.

Then, if the desired trajectory yr>(-) is such that the conditions of slow switching are satisfied, for
small enough e, the switching control law results in asymptotic approximate tracking with output
error less than or equal to K6 with all state variables bounded.

Sketch of proof: We prove that for the conditions stated above, the error in approximating 770 (£)
(17) with the truncated version rjoit) (44) is small.

Let Abe the smallest eigenvalue of $app in (40) and $ex in (42).

Subtracting equation (44) from (17) and assuming that t is fixed and lies in the interval [— \, \]:
/•oo r-T

\VD-fjD\ < \ $(t-T)r{ZD,nD)dT\ + \ ${t-T)r{(D,nD)dT\
JT J-00

+ ||_ ${t-T)[r{ZD,nD)-r{ZD,fiD)]dT\ (46)
rrt

< Ml(T) +J_ mt-r)\K2\VD-flD\ (47)
Since the zero dynamics are hyperbolic,

|$(*-t)| < K3e-x{t~T) for t > r
|$(*-t)| < Kzex{t~T) for t < r

then it follows from the Bellman-Gronwall lemma that

|r7D-^|<Mi(T)e-M2*r> (48)

with both Mi and M2 decreasing functions of T. Thus, if T is chosen large enough (as per the
definition of slow switching) then the error introduced by switching in the computation of the
desired trajectory is small. Now, continuing the analysis along the lines of [1], we can establish
that \y{t) - yD(t)\ < K$6 for t large enough. •

Though none of the cases discussed above are explicitly mentioned here, the conditions for slow
switching are unlikely to be met in cases 1 and 2, because the change in equilibrium across the
switching boundary would cause larger tracking errors and thus require a longer time T to compute
the stable solution to the internal dynamics. For case 3, provided that the frequency of the signal
being tracked is not too high and the amplitude is small enough, the condition of slow switching is
likely to be met. This presents a limitation to the size of the signal being tracked and its derivatives.

Remark 1 The linear stabilizing terms /app and /ex should be such that the closed loop
system Ac{t) has eigenvalues which are greater than the slowest eigenvalues of the zero dynamics.
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Remark 2 Theorem 5 clearly holds if the number of switches is finite provided that the switches
are placed far enough apart.

Remark 3 In light of the discussion before Theorem 5 about the need for "steady state" calcula
tions in the Devasia-Paden-Chen scheme, we feel that the foregoing switching control is not a good
alternative to approximate linearization if the switching is fast.

Remark 4 Even though the last step of the proof of Theorem 5 uses the method of [1], it is
important to note that the theorem is different and may yield better asymptotic tracking because
of the switching.

6 Conclusions

The ball and beam example is used to motivate the study of a tracking control law which switches
between an approximate tracking law close to singularities in the state space, and an exact tracking
law away from these singularities. We study a general nonlinear system (10) which has relative
degree 7 —1 and robust relative degree 7. We first prove that if the system has unstable zero
dynamics, then approximate tracking can be achieved using the nonlinear inversion technique of
[12] to calculate the stable solution to the zero dynamics. We then classify the zero dynamics of
the general system into three cases, in which the first two involve a change in equilibrium of the
zero dynamics across the switching boundary. We prove approximate tracking for the third case, in
which there is no change in equilibrium, using the assumption that switching must be slow. For the
first two cases, we advise that a tracking control law based on approximate tracking alone should
be used.
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