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Abstract

Cellular neural networks are considered here for efficient

implementation of the most computationally intensive steps of dynamic
image coding. Several analogic CNN algorithms are presented for the
generation of binary image masks and image decomposition.
Measurement results for the first CNN universal chips executing an
analogic algorithm for size classification are also presented. Based on
measured execution times, the viability of the CNN implementation of
efficient but computationally expensive compression algorithms such as
dynamic imagecoding is assessed.

1. Introduction

Second generation video coding techniques [1] provide for sophisticated and efficient
methods in low bit-rate video coding. Even their dynamic frame-by-frame optimization has
been developed [2]. Using these techniques, high quality video can be transmitted over
regular phone lines (16-64kb/s). Current development of the MPEG4 standards suggests
the use of these techniques, as well. The underlying algorithms, however, require
enormous computing power for the complex analysis of images. These analyses yield also
several masks which identify qualitatively different regions ofconsecutive image frames. In
order to apply second generation techniques in hand-held and portable devices, new, high-
performance chips need to be used which can execute close to Tera (1012) image analysis
operations per second. The CNN Universal Machine (CNNUM) architecture [3,4,5] and
its VLSI implementations (CNN universal chips) [12,13] are capable of delivering the
required computational performance in a chip-set architecture [17], where handling of
larger images and transparent interface to sensors and to digital environment is provided.

We are considering the CNN universal machine architecture as a new computing
platform for dynamic image coding. CNN universal chips and chip-sets can be used as
coprocessors for high-speed manipulation of 2-D analog signal arrays, i.e. gray-scale or
color images. On aCNN chip, analog processors are arranged on a rectangular grid and
perform operations defined by atranslation invariant local interconnection pattern, called
cloning template (or synaptic law). This template, consisting of a feedforward convolution



matrix (^-template) which computes a waited sum of the input values within the
neighborhood, a feedback convolution matrix (^-template) which acts similar to an IIR
filter, and a scalar bias term (7), is the basic instruction in the CNN computer. The CNN
universal machine architecture facilitates quick reprogramming of templates to allow for
stored-program operation of the analog processor array. Such instructions, plus local and
global logic are combined on the universal chip to form analogic CNN algorithms. In
recent months the first experimental CNN universal chips have appeared. Our
measurements confirm the trillion operations per second computing speed.

In [9] it has been shown that some complex image segmentation techniques can be
carried out via CNN algorithms. In this paper, we present results concerning the
implementation of many computationally intensive steps of segmentation and coding
algorithms via CNN technology. For the first time, we measured the execution of some
algorithmson operational CNN universal chips. We also show how morphology operators
for video coding can be implemented using linear templates only. These templates can be
implemented on upcoming CNN universal chips and their algorithmic combination leads to
implementationof complex systems on a single chip-set. These results prepare the way to
develop dynamic image coding systems [2] incorporating CNN chip-sets and digital signal
processing.

In Section 2, the implementation ofbinary morphological operators and a segmentation
algorithm using a 20x22 CNN universal chip is presented. CNN implementation of two
other important morphological operators, reconstruction and marker extraction is
summarized in Section 3. Section4 showshow some nonlinear CNN algorithms for object
oriented image segmentation can be implemented using linear CNN templates only. In
Section 5, the CNN implementation of a perceptual three-component image
decomposition scheme is presented. Finally, in Section 6, we show how these techniques
can be combined to solve a complex task.

2. Implementation of a size classification algorithm

using binary mathematical morphology on a 20x22
cnn universal chip

It was shown in [1] that both intra- and inter-frame image segmentation can bedone by
using morphological operators. The problem with the morphological tools is that they
have high computational demand which is hardly met by any digital machine in hand-held,
on-line, video coding applications. It was shown in [8], that the basic operators of the
mathematical morphology (erosion, dilation) can be effectively implemented on the CNN
Umversal Machine (CNNUM). In this section, we demonstrate the viability of this
approach by presenting measurement results obtained from aVLSI implementation of a
20x22 CNNUniversal Chip [12]. Later we show, that not only thebasic, but even a more
complex morphological operator, namely the reconstruction operation, can be
implemented on the CNNUM. Due to its high computational power, the CNNUM can be
a"morphology engine", which can execute the morphological operators in real-time.



During the test phase of the 20x22 CNN Universal Machine (CNNUM), we
implemented several image manipulation operators (templates and template sequences).
Here we show a complex morphological operator for size classification. There are two
key-points in the algorithm:

• The algorithm fully exploits the capabilities of the CNNUM chip: uses several
templates, employs internal storage for intermediate results, and uses the internal logic
of the processor array. Input images can either be captured by the optical sensors of
the chip, or can be downloaded electrically. Both the templates and the images can be
downloaded in advance to the chip, and then processing can be performed on the chip
without I/O operations. This provides for extremelyhigh processing speed.

• This example proves that complex image processing tasks can be efficiently
implemented on the CNNUM. Some simple operators (dilation, erosion,
reconstruction, etc.) can be implemented with a single CNN template, while other
more complex tasks (like size classification), can be implemented by using an analogic
CNN algorithm.

2.1 Size classification algorithm

The goal ofthe algorithm is to extract objects larger than a given size (size A\ but not
larger than anothergiven size (size B). This is doneby the following steps:

1. With ultimateerosion, the markers of those objects which are larger than sizeA are
extracted. In our example, this operation was realized by applying the erosion template (5)
twice.

2. Usingthis marker image, we reconstruct those objects, which were larger than size
A. This operationwas realized by using the RECALL template(6).
3. Then, with ultimate erosion, the markers of those objects which are larger than size
B are extracted. This operation was realized by applying the erosion template (5) once
more to the previous marker image.
4. Using thismarker image, we reconstruct those objects, which were larger than size
B. This operation was realized byusing theRECALL template (6).
5. We apply XOR operation to the two reconstructed images and we get the objects
which are larger than size A, but smallerthan size B.



The flow-chart ofthe algorithm is as second follows:

Figure 3a

[ Erosion J
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Figure 3g

Figure 3e
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Figure 3f

The algorithm uses two templates. The first is the erosion template. This realizes a
binary erosion with a 3x3 plus shaped structuring element set:

A = , /--4

"0 0 o" "0 1 0*

0 1 0 ,B = 1 1 1

0 0 0 0 1 0

(5)

The second one is the reconstruction template, which is the single template
implementationofthe binary reconstructionoperator.

A = ,7 = 4.5

'0 1 o" "0 0 0*

1 2 1 ,B = 0 2 0

0 1 0 0 0 0

(6)

2.1.1 Implementation

We implemented the algorithm on a 20x22 CNN universal chip [12], using our CNN
Chip Prototyping System [14]. The results of the implementation are shown in Figure 1.
As it can be seen in the figure, the chip solved the problem properly, without any error. In
this algorithm, two different types of templates were used. The first one (erosion
template) uses local information on an image, while the second (reconstruction template)
uses global information of the image. Hence, the transient time of the first is shorter than
the later. Theerosion template settles in 2 us, while thereconstruction template settles in
12 [is.

As a comparison, we estimated the required number of instructions and the elapsed
timefor a digital microprocessor when solving the same problem on the same sized image.
We got, that a single erosion operation takes about 10,000 assembler instruction, while



the reconstruction needs 120,000. Considering an up-to-date high performance
microprocessor (like Pentium-Pro), the erosion would take 100 u,s, while the
reconstruction would take 1200 us. This means, that the erosion is roughly 50 times
faster, while the reconstruction is 100 times faster on this CNN chip. We also have to
know, that the silicon area ofthis test CNN chip ismuch smaller (0.3cm2) than the silicon
area of the microprocessor mentioned above (which is over 3cm2), and this chip was
fabricated with a conservative (0.8 us) technology, while the above mentioned processor
is fabricated with 0.35 \xs) technology.
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Figure J. (a) original test image; (b) result ofthefirst erosion operation; (c) result ofthe
erosionoperation; (d) reconstruction with(c); (e) resultofthe third erosion
operation; (f) reconstruction with(e); (g)final result: XOR of(d) and (f).



3. Morphology based image reconstruction and

segmentation implemented on the cnn universal

CHIP

In this section we show the major steps of the morphology based image segmentation
[1]. These steps are the image simplifications, the marker extraction, and the
DECISION. The first step deletes the high frequency parts of the image, but preserves the
major edges and segment boundaries. This step prepares the image for the second step. In
the second step, we extract the markers, which mark the individual regions. After this
step, there are still some pixels in the image, which does not belong to any regions. The
last step works on these uncertain regions, and melts each pixel to one of the regions.

3.1 Image simplification

During the image simplification phase

• the secondary non-relevant information is removed;

• and flat zones are produced in the interior of homogenous regions.

Usually the h-minima, h-maxima operators [1, p. 110] are used for image
simplification. These operators are grayscale reconstruction operators, where the mask
image (/*) is the original image, and the marker image is (f±h). (h is a constant.) A simple
example for the h-maxima operator can be seen in Figure 2. On Figure 2, the h-maxima
operator is applied to a ID signal (for example to a line of a grayscale image). The
interesting property of these operators that they simplify the image by removing small or
poorly contrasted regions without corrupting the contour information. Moreover, they
produces flat zones on the interior of the regions, which is very useful in the Marker
extraction step (described below). Here, we describe the CNN implementation of the h-
maxima operator. The h-minima operator can be implemented on very similar way.

intensity

location

mask

marker = mask-/7

h-maxima

Figure 2. The h-maxima operatorfor a ID signal. The h- operatorfiles up the large
domes, and createsflat areas under them.

The h-maxima, h-minima operators can be directly implemented with single CNN
templates. The idea is the following. The marker image is loaded to the initial state, and a
global maximum template (GLOBMAX in [10]) is applied to it. The state values of the



cells will start growing until they have brighter direct neighbor. The mask is loaded to the
input, and a pixel-wise difference of the input and the state is calculated permanently. If
the result of the subtraction is negative in a cell, (that is the state larger than the input), a
strong negative current source will be activated, and it will stop the state growing.

With other words, the state of the cell (marker) is increasing while it has a larger direct
neighbor, and it is not larger than the input (mask). If the mask image is/, and the marker
image is (f-h), than the h-maxima operator is implemented. In the (f-h) image all pixel
values are decreased with h. The template is as follows:

A =

0.25

0.125

, D=[b],I =0.

o

-0.1

a a a

a 1 a

a a a

-1
yki-y,j

Figure 3 shows an example for the h-maxima operation.

0)

Uij-Xij

(a) (b)(c)
Figure 3. The h-maxima operator, (a): the mask image f, (b): the marker image (f-h), (c)

the result (h-maxima). h was 0.25, and the values were between -1 and +1.

3.2 Marker extraction

In the previous section, we used the marker word for identifying one of the argument
of the h-maxima function. In that case, the marker meant a grayscale ID or 2D signal
(image). In this section, the marker will mean a black-and-white image, which contains
black objects for marking regions.

The goal of this step is to produce markers identifying a major part of the interior of
the regions which will be the segments. The simplification process produces flat zones in
the interiors of the regions. These flat zones can be extracted by applying a Laplacian
operator to the image. We consider an area flat, if the result of the Laplacian operator is
around zero. This can be tested with the following algorithm:



Simplified
image

f Template (TEMl)for ^
calculating the Laplacian, and
extracting those pixels where
. it is greater than-e v

Areas where the

Laplacianis
greater than -e

r Tcmplate(TEM2) for ^
calculatingthe Laplacian, and
extracting those pixels where

. it is smaller than g .

Areas where the

Laplacian is
smaller than e

The templates are as follows:

TEM1: A =

Logic AND

—J—

TEM2: A =

"0 0 0"

0 4 0 . B =

0 0 0

'0 0 0"

0 4 0 . B =

0 0 0

0.25 0.25 0.25

025 -2 0.25

0.25 0.25 0.25

-0.25 -0.25 -0.25

-0.25 2 -0.25

-0.25 -0.25 -0.25

The input and the output of the algorithm can be seen on Figure 4a,b. As it can be
seen, there are many single pixel (black) noise can be found in the image. These can be
deleted with the filter template:

,I = e

,I = e

A =

0 0 0 0.5 0.5 0.5

0 2 0 , B = 0.5 4 0.5

0 0 0 0.5 0.5 0.5

./—5

The extracted markers can be seen on Figure 4c.

(2)

(3)

(4)



(a) (b) (c)

Figure 4. Marker extractionfrom the simplified image, (a): the simplified image; (b): the
flat areas; (c): thefilteredflat areas (markers ofthe segments). In our example, s

was 0.05.

Note: in the first segmentation level only the large segments are separated, and the
details will be segmented in the subsequent segmentation levels.

3.3 Decision

In this phase, decision about the uncertainty areas (white areas in Figure 4c), which
have not been assigned to any region must be taken. This is also image a local problem,
hence a CNN algorithm can provide an effective solution for it.

4. Implementing selective gradient nonlinear

templates with sequences of linear ones

First generation CNN chips apply only linear templates. Fortunately, many of the
nonlinear templates used for video coding can be implemented using a sequence of linear
templates. Because ofthe high speed ofthe CNN, a series of linear template operations
will still be well within constraints for real-time operation of video coding algorithms.
Here we illustrate how the nonlinear selective gradient template used for detecting
contours in an image can be implemented using a series of linear templates. For other
templates see a general method in [18].

4.1 Implementation of Selective Gradient using LinearTemplates
We want to implement the following nonlinear template using linear templates and a
space-varyingthreshold.

A =

"o o o" a a a

0 1 0 ,B = a 0 a

0 0 0_ a a a

where a is a nonlinear function of the following form:

I = -d



Calculate the8 g(yy-Hd)'s for
the 8 neighbors yu.

Yf-yu
•2 -min min 2

The general structure of the algorithm equivalent to the nonliear template is the following:
inputyy

Calculate the8 h(yr^,)'s fa
the 8 neighbors >Vj.

SgCyy-yJ+My^-yj
Calculate u

Multiplyoutput by 16

Done

The first step isto construct g(yq-yu) for each yu, aneighbor ofyiJt where

* gov-yu)

1/8

y*ry*
'/omin 1

This is done with the following algorithm. Let oc= l/(4-2min), p= V&O+Vfcmin).
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input figure
\ i

[(
(

A-0,B-l(

> o o'
> 0 -1

> 0 0 .1 = 0

1

Save output as temp

A-0.B-

0 0 0

0 1 0

0 0 0'J, I =• temp

|feed output back asinput

A-0.B

0 0 0

0 a 0

0 0 0'J.H)

I
output=g(yryij.,)

To calculate g(yij-Vij-i) etc., we just need to change the B-template in the first step of the
To o o"

above algorithmto B = _ i o o , etc.

0 0 0

We next calculate h(yy-yki) where h is
h(yy-*i)

A » 0, B =

linput figure

ooo

o o -I

ooo ,1 = 0

Save output as temp

A-O.B'

0 0 0

0-10

0 0 0 , I = temp

-1 -'/jmin

This is done with the following algorithm which is similar to the algorithm for g().

feed output back as input

A » 0, B'

0 0 0

0 a 0
0 0 0

T

,H>

output- nov-y^O
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Then the next algorithm for calculating the selective gradient proceeds as follows:

input = g(y,ryij*i)

0 0 0

0 1 0

0 0 0A = 0, B = . . i" g(y<j-yy.i)

Feed output back as input.

A = 0, B= -

0 0 0

0 1 0

0 0 0
•. i = g(yj-y^ij)

Feed output back as input-

repeat with the other neighbors

Feed output back as input.

A = 0, B = .

0 0 0'

0 1 0

0 0 0 ., I = h(y|j-yij.i)

I
repeat with the other neighbors

Zg(y,j-yu)+h(ys-yu)
OUtpUt = kl

A = 0,B= .

0 0 0

0 16 0

0 0 0 .,1=0

output = selective gradient, as desired.

— 15 steps

The entire algorithm needs a total of (8+8)*3 +15+1 =64 template operations. Using min
= Ohas .05 and d = 0.2, we obtain Figure 5b from the original image in Figure 5a. The
next step in extracting contours will be a combination of edge detection and
skeletonization operations.

(a) (b)
Figure 5: (a) original image, (b) after applying selective gradient with min=0.05 and

d=0.2.

12



5. Image decomposition using a perceptual image model

Based on a technique described in Chapter 9 of [1], a CNN algorithm has been developed
for decomposition of gray-scale images into a so called primary (strong edge), smooth,
and texture components. Such a decomposition originates from a perceptual image model
which assigns primary importance to the edge information to be processed by the human
visual system. While such a decomposition is attractive as part of a high performance
compression scheme (the threecomponents can be coded more efficiently then the original
image), it is computationally expensive. The CNN implementation offers now the required
performancethrough the unique capabilities ofthe CNN Universal Machine.
The flow-diagram ofthe algorithm is shown in Figure 6. While its basic structure is similar
to that of [1], the implementation of the transformation blocks are tailored to efficient
implementation on the CNN Universal Machine. It is worth noting that after coding,
transmission, and decoding, reconstruction of the original involves only simple additions
eliminating the need for a complex decoder.

Original Stressed

ImageImage
Space-variant

Filter

Strong Edge
Extraction

Space-variant
Smoothing

i '+I(T" +*r~

i f i t i

Texture

Component

Reconstructed

Image

Smooth

Component

•*>

Primary
Component

Figure 6: Flow diagram oftheperceptuallybased decompositionalgorithm

5.1 Space-variant low-pass filtering

First, a type of space-variant low-pass filtering is applied to the input image to produce
a so called stressed image. The stressed image which contains accentuated edge and low
spatial-frequency information can be used directly to obtain the texture component by
subtracting it from the original. The flow-diagram of the iterative CNN algorithm
implementing the space-variant filtering is shown in Figure 7. The main device of the
transformation is the smoothing operator (15) which is essentially an approximation to the
Poisson equation. It is applied in each cycle with new boundary conditions which are
generated by the second step in the form ofbinary fixed state maps. Iteration starts with a
blank fixed state map and stops when all cells are included in the map. In each cycle
parameters oti and Pi (0 < cii, Pi < 1) are changed such that for stronger edges (larger Pi)
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weaker smoothing operators (smaller ai) are chosen. The templates used in the subroutine
are the following:

Teml:A = af

0.5 1 0.5"

1 -6 1

0.5 1 0.5

Tem2: B =

0.5 1 0.5"

1 -6 1

0.5 1 0.5

Tem3:^ =[2], / =#

£ =[1]

Original Image

Smoothing: Teml(oO
with fixed state map

Fixed state generation

Curvature estimation: Tem2

I 1
Thresholding: Tem3(Pi) Thresholding: Tem3(-p0

Logical logic: NOT

1 £
Logical logic: OR

14

Stressed Image

Figure 7: Flow-diagram ofthe space-variantfiltering step

(15)

(16)

(17)



5.2 Strong edge extraction

Next, strong edges are located within the stressed image. Using another algorithm, a
binary map is generated to mark the location of pbcels corresponding to strong edge
contours. The flow-diagram of the process is shown in Figure 8. In addition to the
previousones the following templates are used in the subroutine:

Tem4:i4 =[2], B =

Tem5:>4 =[2], B=

Tem6: A =

"1 1 f

1 2 1

1 1 1

'0 0 0'

1 0 1

0 0 0

'0 1 0"

0 0 0

0 1 0

S =[2]

1 = 1

7 = 1

Stressed image

Curvature energy estimation: Tem2

Thresholding: Tem3(y)

Horizontal fill: Tem4

Vertical fill: Tem5

Spurious pixel removal: Tem6

Strong edge map

Figure8: Flow-diagram ofthe strong edge extraction step
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5.3 Space variant smoothing

Based on extracted edge information, space-variant smoothing is performed on the
stressed image to obtain the primary image component which represents the visually most
relevant edges. Template (19) is run on the stressed image using the strong edge map as a
fixed-state mask to provide for appropriate boundary conditions for the smoothing
process.

"0.5 1 0.5"

Tem7: A = 1 -5 1

0.5 1 0.5

The difference image obtained by subtracting the primary image from the stressed
image contains features represented by low spatial-frequencies and is called the smooth
component.

Using these three subroutines, the three-component decomposition is easily and
efficiently implemented on the CNN Universal Machine. Assuming a x = 100ns time
constant for the computing cells and n=10 recursions for the space-variant filtering step,
the conservative estimate of nx50i+100i=600x=60|is can be given for the overall
processing time of a single input frame. Allowing another 40|j.s for I/O, a 64x64 cell CNN
array, image sequences over 1000x1000 pixels/frame size can be processed at 30Hz video
rate.

As an example, a segment of a video frame and its three-component representation
generated by the above algorithm is shown in Figure 9.

^^T^MM^rl^i-'JJfT-f^iiiJB

(c)

Figure 9: Original image (a) and its decomposition intoprimary (b), smooth (c), and
texture (d) components.
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It is worth noting that the above decomposition can be naturally extended into a multi
level representation. When in the first step the space-variant filtering is performed, by the
particular choice of the parameters oti and Pi, a decision is made about what will be
considered primary information and what is regarded as detail/texture. Further processing
ofthe texture component with another set of a* and Pi parameters yields the next level of
the representation. A multi-level representation generated by such a recursive scheme
allows for more efficient coding while the computational complexity can be easily tackled
by the CNN UM. It is also attractive that the proposed solution provides for dynamic
control over the amount ofdetail transmitted andthat it can naturally facilitate progressive
transmission.

6. Luminance Compensated Segmentation

This section presents a segmentation algorithm based on luminance information.
Computational effort can be minimized by using an edge detection technique that creates
regions where luminance changes in similar ways. These regions can be created by
passing the gradient through two thresholds. By choosing a low threshold, major features
in a picture are marked; a higher threshold will then fill in the smaller details. Each
respective threshold is multiplied by a space varying scalar that depends on local
luminance levels. In a final segmentation step, smaller segments arecombined and all lines
that do not form closed contours are removed. This overview is shown in Figure 10.

Input Picture

i

Output Segmentation

Figure 10. Overviewofthesegmentation scheme

6.1 Obtaining the Gradient

To approximate the gradient, we sumthe absolute values of the directional derivatives.
The directional derivatives can be calculated by using the A template as a FIR filter. In
Figure 11, we summarize the steps taken to obtain the gradient.

17



x-directional derivative

Truncate negative values Truncate posotivevalues
From other directional

derivatives

Take sum ofother directional derivatives

Figure11. Flowchart ofthe algorithmfor obtaining the gradient

Luminance Compensation

One optional step is the compensation for luminance levels. It is noted that the human
eye is more sensitive to intensity changes in the medium luminance levels while less
sensitive to changes in the high and low luminance ranges. Thus, the resulting gradient is
weighted by a space varying scalarthat depends on local luminance levels. This re-scaled
version simplifiesthe segmentation in the extreme luminance levels.

6.2 Double Thresholding and Final Segmentation

After the low threshold is obtained, it is processed before being combined with the
higher threshold. Such processing includes a small hole filling template (a variation of the
hollow filling template) and binary edge detection. The final segmentation step comprises
ofone final hole filling followed by a skeletonization to remove small "bubbles" that occur
on the boundaries oftwo segments. This is summarized in Figure 12.

From Gradient

Hole Filling

Skeletonization

Final Output

Figure 12. Thresholding and segmentation algorithm

The hole filling template is given below:

18



A =

"l 1 1

1 6 1

1 1 1

, B=0 , 1=1

Other templates can be found in the CNN template library.

6.3 Simulation results

(a) (b) (c)

Figure 13. Comparison ofcompensated and uncompensated segmentationalgorithms:
input image (a), uncompensated output (b), and compensatedoutput (c)

This algorithm does an adequate job segmenting the image into areas of comparable
luminance. Many features on the face are clearly marked. The luminance compensated
output provides some advantages in simplification compared to the uncompensated
version, but some aspects of the background in the compensated version are also lost. For
many applications, as long portions of the background are intact, the human viewer may
be able to unconsciously supply the implied lines to recreate the background.

CONCLUSIONS

As it has been demonstrated in this paper, several prototype image segmentation and
coding algorithms, as well as related mathematical morphology operators can be
implemented using analogic CNN algorithms. The most time consuming operations of
dynamic image coding are those involving generation of various masks. CNN is very
efficient in doing such transformations while other, computationally less intensive and
global operations can be better implemented using DSPs and specialized digital chips.
Hence the combination of these two technologies via a CNN chip-set [17] which is fully
transparent to digital technology, seems to be a viable solution. Below is a table
comparing the performance of a CNN and two digital processors in executing image
simplification using gray-scale morphology on a 500x500 pixel input image.
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Pentium Pro

@200MHz
C80DSP

@40MHz
CNAPS

@20
CNNUM

64x64

analogic
Number of proces
sors on chip

1 5 64 4096

Technology 0.35 u 0.5/ 0.6 u in 0.8 u
Processing time 1.4 s 2s 0.2s 2 ms

From measuring the execution times of some ofthe presented algorithms on existing CNN
universal chips andextrapolating from these measurements, it seems to be clear that CNN
technology is the only one presently that allows for low-power, hand-held implementation
of efficient but computationally expensive compression algorithms such as dynamic image
coding.
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