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Abstract. Hybrid systems are digital real-time systems that are embedded in analog
environments. Model-checking tools are available for the automatic analysis of linear
hybrid systems, whose environment variables are subject to polyhedral differential in
clusions. Most embedded systems, however, operate in nonlinear environments. We
present two methods for translating nonlinear hybrid systems into linear hybrid sys
tems. Properties of the nonlinear systems can be inferred from the automatic analysis
of the translated linear systems using existing model-checking tools. The first method,
the clock translation, replaces nonlinear variables by clock variables. It is only applica
ble when the nonlinear variables are solvable. The second method, linear phase-portrait
approximation, conservatively overapproximates the automaton's phase-portrait using
envelopes that are defined by polyhedral differential inclusions.

Both methods are sound for safety properties; that is, if we establish a safety property
of the translated linear system, we may conclude that the original nonlinear system
satisfies the property. The clock translation is also complete for safety properties; that
is. the original system and the translated system satisfy the same safety properties.
The phase-portrait approximation method is not complete for safety properties, but it
is asymptotically complete; intuitively, for every safety property, and for every relaxed
nonlinear system close to the original, if the relaxed system satisfies the safety property,
then there is a linear phase-portrait approximation that also satisfies the property.

We use HyTech — a symbolic model checker for linear hybrid systems — to auto
matically verify a nonlinear temperature controller using the clock translation and linear
phase-portrait approximations, and we automatically compute population bounds for a
predator-prey ecology using linear phase-portrait approximations. We also identify the
class of pseudo-linear hybrid automata, for which linear phase-portrait approximations
can be generated automatically.

1 Introduction

Hybrid systems combine discrete and continuous dynamics. Their analysis requires techniques from
both computer science and control theory. Computer scientists typically model hybrid systems as

'This research was supported in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER award CCR-
9501708. by the NSF grants CCR-9200794 and CCR-9504469, by the AFOSR contract F49620-93-1-0056, and by the ARPA
grant NAG 2-892.

'Preliminary reports of this work appeared in [HH95a] and [HWT96].



discrete programs that react tocontinuous variables undergoing simple dynamics, whereas control
theorists typically study complex behaviors of continuous variables within simple control loops.
From the field of computer science, there are algorithmic techniques for checking certain prop
erties, such as emptiness, of linear hybrid automata [ACHH93, ACH+95]. These automata have
linearity restrictions on discrete jumps (linear inequalities between sources and targets of jumps)
and continuous flows (differential inequalities ofthe form Ax > b) ofvariables. The model-checking
algorithms [HNSY94, AHH96] have been implemented in HyTech [HHWT95a, HHWT95b], and
used to verify distributed real-time protocols [HH95b, HW95]. It is important to realize that the
definition of linearity used here is more restrictive than in systems theory. For instance, linear
hybrid automata cannot directly model continuous flows of the form x = x. This paper extends
the model-checking approach to the analysis of certain nonlinear hybrid systems, by reduction to
model-checking of linear hybrid approximations. The automaton B is an approximation of the
automaton A if B is empty implies A is empty.

A hybrid automaton defines an infinite-state transition system. Since the verification of safety
properties for hybrid automata can be reduced to emptiness checking, we concentrate on check
ing the emptiness of automata, i.e. whether there is a path from an initial state to a final state.
Checking emptiness of a hybrid automaton involves computing weakest preconditions (or strongest
postconditions) in the underlying transition system. The widest class of systems for which we
know how to compute weakest preconditions reasonably efficiently is that of rational linear hybrid
automata. We therefore propose the following methodology for analyzing a nonlinear hybrid au
tomaton A. First, we attempt to translate each nonlinear variable .t into a (linear) clock variable.
The clock translation of x is only possible when the behavior of x can be solved. Second, we obtain
a rational linear phase-portrait approximation B for the automaton resulting from the first step.
Third, we apply the symbolic model-checking tool HyTech to B. The automaton B is always an
approximation of A. However, it is possible that the approximations are not sufficiently accurate,
and B is nonempty even when A is empty. In this case, we need to refine our approximation.

Step 1. Clock translation

The clock translation [HH95a] replaces nonlinear variables with a clock, a special kind of linear
variable whose slope is always 1. The translation can only be applied to the nonlinear variable x
when all constraints and assignments involving x can be translated into constraints and assignments
of a clock that measures the time between significant events. More specifically, we require the value
of x to be solvable in closed form as a function of the latest assignment to x and the time that has
elapsed since that assignment. If the clock translation of the automaton A yields the automaton B,
then the underlying transition systems are timed bisimilar. The clock translation B is therefore an
approximation of A. Moreover, the clock translation is complete, in that whenever A is empty, so
is its clock translation B. If it is possible to apply the clock translation to all nonlinear variables,
and all linear variables of the original automaton are rectangular, then the resulting automaton is
a rectangular automaton. Because the emptiness of rectangular automata is decidable, it follows
that we obtain a new class of decidable hybrid automata.

Step 2. Linear phase-portrait approximation

Because the clock translation is complete, and involves only a constant blow-up in the number of
control modes, we prefer it where possible. However, many typical control environments follow
unsolvable differential equations, and often the clock translation cannot be applied. The phase-
portrait approximation method [HWT96] approximates an automaton by relaxing all constraints
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defining its transition system. In this way, it enlarges the set of trajectories. In particular, linear
phase-portrait approximations use piecewise-linear envelopes to approximate the variables' flow
conditions. The approximation method may be viewed as involving two steps. First, each control
mode of a nonlinear hybrid automaton is split into several copies, each of which corresponds to
a region of the partitioned state space. Second, within each new control mode, the nonlinear
dynamics is replaced with a linear dynamics, which contains all flow tangents of the nonlinear
system occurring at that control mode. The phase-portrait approximation method is not complete.
We provide an error analysis that shows that linear phase-portrait approximations may be made
arbitrarily close to the original automaton, at a cost of increasing the number of control modes.
The approximation method is demonstrated on a simple predator-prey ecology, for which a control
strategy for altering the ecology to maintain population bounds is verified. We also introduce
the class of pseudo-linear hybrid automata. For a nonlinear system, it is generally nontrivial to
obtain a linear phase-portrait approximation, because some understanding of the solution curves
of nonlinear differential equations is required. However, linear phase-portrait approximations can
be automatically generated for pseudo-linear hybrid automata.

Related work

Phase portraits have been studied extensively in the literature on dynamical systems [HS74, Arn83].
Typically, researchers concentrate on the complex dynamics of a system, and are able to prove com
plex properties, such as stability and convergence. Our work differs in two respects. First, we con
sider products of nondeterministic dynamical systems with discrete transition structures [Hen95].
Second, our goal is to analyze and derive simple properties of such systems automatically. In com
puter science, the technique of deriving system properties using approximations is called abstract
interpretation. In [Hal93, HRP94, HH95c], abstract interpretation techniques are used to provide
linear approximations of linear hybrid systems, whereas here we approximate nonlinear hybrid
systems. The work of Puri et al. [PBV96] is closely related to our phase-portrait approximations.
They consider approximations of a single differential inclusion, providing error bounds and invariant
sets, but do not consider a discrete transition structure. They also consider incomplete approxi
mations using timed automata [PV95]. Olivero et al. [OSY94] study incomplete approximations of
linear hybrid automata with timed automata. In [HH95a], we presented an approximation method
called the rate translation, which is but a special case of the phase-portrait approximation method
presented here.

Outline

In the next section, we define nonlinear hybrid automata, and linear hybrid automata, a subclass
that can be algorithmically analyzed. Theclock translation method appears in Section 3. Section 4
describes linear phase-portrait approximations.

2 Hybrid Automata

We define hybrid automata, used to model systems consisting of mixed discrete and continuous
components. Informally, a hybrid automaton consists of a finite set X of real-valued variables and
a labeled multigraph (V\E). The edges E represent discrete jumps and are labeled with guarded
assignments to A*. The vertices V" represent continuous flows and are labeled with differential
inequalities on the derivatives of A'. The state of the automaton changes either instantaneously
when a discrete jump occurs or, while time elapses, through continuous flows.
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Figure 1: A thermostat

2.1 Syntax

A hybrid automaton A = (X, V, flow, E, jump,12, event, init,final) consists of the following compo
nents.

Variables A finite ordered set A* = {xi,i2,...,i'ri} of real-valued variables. For example, the
thermostat automaton in Figure 1 uses the three variables x, y, and z, where x models the
temperature, y models the amount of time spent in control mode on, and z models the total
elapsed time. A valuation over X is a point (a\, a2,..., an) in the n-dimensional real space Rn,
or equivalently, a function that maps each variable X{ to its value a,. For a valuation x, we
sometimes write x(.t,) or x, to refer to the value of X{ in x. An atomic predicate over X is a
predicate of the form f(xi,X2, ...,xn)~c, for a real-valued algebraic function / : Rn ->• R, a
relation symbol ~ € RelOps = {<, <,=, >, >}, and a real constant c g R. A predicate is an
arbitrary combination of disjunctions and conjunctions of atomic predicates. Each predicate
<p over X defines a set [<?>] C R" of valuations such that x € [<£] iff <f>[X := x] is true.1

Control modes A finite set V of vertices called control modes. For example, the thermostat
automaton has two control modes, on and off. A state (u,x, x) consists of a control mode
v 6 V", a valuation xGR" over the set A' of variables, and a valuation x € Rn over the set A',
where A* = {ii,X2,.. .,xn}. The dotted variable x represents the first derivative of x with
respect to time, i.e. x = dx/dt. Intuitively, a state describes a control mode, a point, and a
tangent for continuous trajectories passing through the point. A region is a set of states.

Flow conditions A labeling function flow that assigns a flow condition to each control mode
v € V. The flow condition flow(v) is a predicate over XUX. While control of A is in control
mode v, the variables change along differentiate trajectories whose first derivatives satisfy
the flow condition. For example, the control mode on in the thermostat automaton has flow
condition ar < 3 A i = —a: + 4 A y = 1 A i = 1. For each control mode v, let the differential
inclusion for v be the function fv :R" -»• 2K" defined by/v(x) = {x | (x,x) € l/?o«;(t;)]}. The
state (u,x, x) is admissible if (x,x) € lflow(v)J. We infer from the flow conditions a function
inv that assigns to each location a predicate over X. We define inv(v) = 3x.flow(v)[X, X :=
x, x], the invariant on X while the automaton control resides in control mode v.

Control switches A finite multiset E of edges called control switches. Each control switch (v, v')
identifies a source control mode v £ V and a target control mode v' € V. For example, the
thermostat automaton has two control switches, (on, off) and (off, on).

'The expression q[X := x] denotes the predicate <j> evaluated with each variable in A* substituted with its value
in x.



Jump conditions A labeling function jump that assigns a jump condition to each control switch
e € E. The jump condition jump(e) is a predicate over X U A* U X' U X', where
A*7 = {x,11...1x,n} and A"' = {x\,.. .,x'n}. The variable x, refers to its value before the
control switch, and the primed variable x\ refers to the value of X{ after the control switch.
The variable X{ refers to the first derivative of xt- before the control switch, and x[ refers to
the derivative of ar, after the control switch. Thus the jump conditions relate the values of the
variables before a control switch with those after (allowing the modeling of guard conditions
and assignments), and also relate the tangents before the control switch with those after (al
lowing, for example, the assertion that trajectories are differentiable across control switches).
When writing jump conditions in the figures of this paper, we use the predicate Stable to
indicate a set of primed variables which must have the same values as their unprimed coun
terparts, i.e. Stable(x,y) denotes x = x' Ay = y'. For example, in the thermostat automaton,
jump(on, off) is x = 3 A Stable(x, y, z, z).

Events A finite set H of events including the silent event r, and a labeling function event that
assigns an event in E to every control switch e € E. Although not done here, the events can
be used to define the parallel composition of hybrid automata [AHH96].

Initial conditions A labeling function init that assigns an initial condition to each control mode
r € V". The initial condition init(v) is a predicate over A'U A'. Control of an automaton may
start in control mode v when init(v) is true. A state (u,x, x) is initial if it is admissible and
(x. x) € [mi7(u)]. In the graphical representation of automata, initial conditions appear as
labels on incoming arrows without a source control mode, and initial conditions of the form
false are not depicted. For example, all initial states of the thermostat automaton are in
control mode on with i = 2Aj/ = 0A: = 0.

Final conditions A labeling function final that assigns a final condition to each control mode
v € V. The final condition final(v) is a predicate over A' U X. A state (t\x,x) is final if it is
admissible and (x, x) 6 \final(v)\. Safety properties can be expressed as invariants on the set
of reachable states. The complement of the invariant represents the set of violation, or error,
states for a system. The system is correct with respect to a safety property if no violation
states are reachable. We use final conditions to define the set of the violation states for a

safety property. For example, for the thermostat automaton, consider the property that the
heater is activated (i.e. control of the automaton resides in control mode on) no more than
60% of the first 60 time units. Correctness with respect to this property is expressed through
the final conditions final(on) = final(off) = y > O.Qz A z = 60.

Remark. The definition used here differs from previous definitions in the literature. First,
we augment the notion of a state with a vector over X, providing the flow tangent at a given
point. Jump conditions also express constraints over X. This addition enables us to model
changes (or absence of changes) in the first derivatives when making control switches. Information
about higher-order derivatives may also be encoded by explicitly introducing additional variables,
e.g. with the variable u such that the flow conditions imply x = u, we may use u to refer to
the second derivative of ar. Second, we omit explicit invariant conditions over X that specify the
allowable values for the variables within a given control mode. Invariant conditions are implicit
in the flow conditions. Third, we add final conditions so that correctness with respect to a safety
property can be conveniently expressed as automaton emptiness.



2.2 Semantics

We provide semantics for hybrid automata in terms of labeled timed transition systems. A labeled
timed transition system T = (S,1, £, ->, F) consists of a (possibly infinite) set S of states, a subset
I C 5 of initial states, a subset F C 5 of final states, a set £ of transition labels (including the
special silent-transition label t), for each label a € £ a binary jump relation 4c52 over the state
space, and for each real S € R>o? a binary y?oiy relation ->C 52 over the state space. Each triple
s A s' is called a transition.

Let ,4 be a hybrid automaton with n variables. The state space Sa Q V x Rn x Rn of A
is the set of admissible states. There are two kinds of transitions: jump transitions and flow
transitions. In jump transitions, the control mode of the automaton and the continuous variables
change instantaneously, in accordance with a control switch e € E and its jump condition jump(e).
Flow transitions model the continuous change of variables over time in accordance to the flow
condition associated with the current control mode of the automaton. The automaton's control

mode remains fixed.

Formally, for each event a € E, the binary jump relation A on the admissible states is defined
by (i',x,x) A (i/, x',x') iff there exists a control switch e = (v, v') such that event(e) = a and
jump(e)[X,X, X',X' := x,x,x',x'] is true. For each real 6 € R>o. we define the binary flow
relation -* on the admissible states by (v,x, x)-»(t/,x',x') iff v = v', and either (1) <5 = 0 and
x = x' and x = x', or (2) 6 > 0 and there exists a differentiable function p : [0,6] —> Rn such that
the following conditions hold:

1. the endpoints of the transition match those of p, i.e. p(0) = x, p(0) = x, p(8) = x', and
p(S) = x;, where p is the first derivative of p with respect to time, and

2. the flow condition is satisfied, i.e. for all / € [0,(5], (p(t),p(t)) € Iflow(v)}.

The function p is referred to as a witness trajectory for (u,x,x)—>(v',x',xr).
We define the transition relation —>a on the state space Sa of the hybrid automaton A to be

UaeE""^ u UjeF->o~*•• Given a hybrid automaton A, we define the infinite-state labeled transition
system [.4] = (SaJa.Ca^a, Fa) by

• the infinite state space Sa of admissible states.

• the set Ia of initial states {(i',x, x) | (x, x) € [tnii(u)]},

• the set of transition labels £a — £.4,

• the labeled transition relation —¥a , and

the set Fa of final states {(v,x, x) | (x, x) € Ifinal(v)}}.•

A trajectory of A is a finite path s0 —£ *i —£ ••• —>' &k in [A] such that s0 € Ia-, and for all
0 < i < k —1, Si —L s,+i. The state s/. is referred to as the end state of the trajectory. A state
is reachable if there is a trajectory for which it is the end state. The set reach(A) is the set of
reachable states of .4. The hybrid automaton is empty if no reachable state is final.

2.3 Simulation and Bisimilarity

We define the concepts of simulation and bisimularity within our framework. They will be used
to establish the completeness of the clock translation and the asymptotic completeness of linear



phase-portrait approximations. For each non-silent label a 6 £\{r}, we define the labeled stutter-
closedjump relation -»C S x S by s -» s' iff there exists a sequence of states S\,..., Sk such that
s = Si and s\ -> S2 A ••• A Sk A s'. For each S € R>o> we define the stutter-closed flow relation

s s
-* by s -* s' iff there exists a (possibly empty) ./im'/e sequence of states Si,..., s2jt-i and constants

8i,...,8k € R>o such that s4sj -V s2 ••• A s2fc-i -4 $' and Ef=1<5/: = <S. The binary relation
y C Si x 52 is a simulation of T2 by Ti if the following four conditions hold:

• £\ = £2, and

• for every state S\ € Si and S2 € S2, if «i b $2> then for each label m € £2 \ {r} U R>o, if

$2 -* s2, then there exists a state sj such that si -» 5J and s[ y 52, and

• for every initial state s2 € 72 of B, there exists an initial state S\ £ I\ of A such that Si y s2,
and

• for every final state s2 € F2 of B, and for every state S\ € Si of .4, if $i y 52. then si € Fi.

All r transitions are silent, so this corresponds to the notion of weak simulation of Milner [Mil89].
The labeled transition system T\ simulates T2, denoted T\ ysim I2, if there exists a simulation >;
of 7"2 by Ti. The hybrid automaton .4 simulates B if {A} y8im IB}. Let = be a binary relation
over Si x S2. Then define =-1 to be the binary relation over S2 x Si such that (s2^i) €=_1
iff (si,s2) €=. The binary relation = C St, x Sj2 is a bisimulation between Ti and T2 if it is a
simulation of T2 by Ti and =~1 is a simulation between Ti by T2. The labeled transition systems
Ti and T2 are bisimilar, denoted Ti =6,s T2, if there exists a bisimulation = between Ti and T2.
The two hybrid automata A and B are bisimilar if [.4] =6,s [B].

Proposition 2.1 Ze/ .4 anrf B be hybrid automata.

• J/,4 simulates B and A is empty, then B is empty.

• If A and B are bisimilar, then A is empty iff B is empty. •

Remark. The notions of simulation and bisimilarity are unnecessarily strong conditions for
emptiness checking. However, they are useful for model-checking more general classes of properties.

2.4 Control mode splitting

We often find it useful to split the control modes of a hybrid automaton in order to enable more
accurate approximations over the split control modes. A flow split V is a function mapping each
control mode v to a finite set {flow1,flow2,...,flowk] of k predicates over X U X, such that
there exists a finite open cover O of flow(v) such that V(v) = {flow(v) C\ 0{ \ 0, € O}. The
definition implies that the disjunction V;=i flow{ is equivalent to flow(v), and also that split
ting of the flow condition does not prohibit flow transitions. Whenever there is a flow tran
sition of the original automaton originating at state s, there is also a flow transition of the
split automaton originating from a state derived from s for one of the flow conditions flowi.
Let .4 = (A',4, VA,flowA,EA,jurnpA,'Z,Ai eventa, inita, finala) be a hybrid automaton. Applying
the flow split V to the hybrid automaton A yields the following flow-split automaton V(A) =
(A*. V,flou\ E,jump, E, event, init, final):

• X = XA.



• V = {(v,<j>) \veVA and <l>€V(v)}.

• For every control mode (v, <f>) € V, flow(v, <f>) = <j>.

• E = Ei UE2, where Ex = {((f^),Kfl) | (t«,r') <E JE^,0 € 7>(u), and <f>' € 7>(i/)} and
£2 = {((*>,</>),(i>,0')) | <£,<£' € V(v)}. Intuitively, control switches in E\ are inherited from
control switches of Ea and control switches in B2 are silent control switches enabling control
to pass freely across copies of the same control mode.

• For all control switches e = ((v,(p), (v',(j>')) € E\, jump((v,4>),(v',<l>')) = jumpA(v, v'), i.e.
the jump condition is inherited from the corresponding control switch (v, v') of A. For all
control switches e = ((v,(f>), (v,<f>')) € B2, jump((v,<f>), (v, <f>')) = Stable(X, X), i.e. the jump
condition requires the state to remain unchanged.

• For every control switch e = ((i\6), (v',<?')) € E\, event((i\6).(v',4>')) = eventA(v, v'), and
for every control switch e = ((r, o), (i\<?')) € E2, event((t\ 6). (i',<£')) = r.

• For every control mode (v,4>) € V, init(v,<f>) = /n?7^(f).

• For every control mode (v.0) € V, final(v,<f>) = finalA(v).

We define the function -K\ : S>(v4) -> S.4 by 7ri((u,0),x,x) = (r,x.x). The function is extended to
sets of states in the natural way.

The hybrid automaton A is splittable if for all flow splits V, V(A) and A are bisimilar. It
may appear to be the case that for some flow split V, the flow-split automaton V(A) does not
simulate .4, since there may be a flow transition in [,4] for which there is no simulating sequence of
flow transitions interleaved with silent transitions in fP(-4)]]. This anomaly could arise if the only
witness trajectory for the flow transition s -» s' in [.4] has unbounded variability and cannot be
mimicked by any finite sequence in V(A). The following theorem states that this scenario cannot
occur.

Theorem 2.2 Every hybrid automaton is splittable.

Proof. Let .4 be a hybrid automaton, and V a flow split for .4. We claim that the relation
= C Sa x S-p(A)- defined by $i = $2 iff 7Ti(s2) = «i, is a bisimulation.

First consider simulation of V(A) by A. Suppose that si -^v(A) s2 -> s3 ~^T(A) s4- By
construction of the jump conditions for silent control mode switches, the witness trajectories for
si A s2 and S3 -4 $4 can be concatenated into a witness trajectory for ni(si) 1-t2 ^1(^4) since
the right derivative at s2 matches the left derivative at s3. An inductive argument shows that

transitions of the form 5 -»t>(a) s' can be simulated in A. It is straightforward to see that jump
transitions are also simulated, since control mode switches in V(A) are directly inherited from A.

Consider now the simulation of A by V(A). Again, it is not hard to see that jump transitions are

simulated. For flow transitions, we prove that if 5 ->m s'» then there exist states s2 and s'2 ofV(A)
s s

such that s2 -* $2 and 7Ti(s2) = s and 7Ti(s2) = s'. It suffices to consider the case where s ->a s',
since sequences of transitions can be concatenated. Suppose that s = (v,x, x) and s' = (i^x^x').
Let p : [0.8] ->• Rn be a witness trajectory for s ->^ s'. Let O be the open cover from which the
set of flow conditions V(v) is derived. For each / € (0,<5), let B, be an open ball containing p(t)



and entirely contained in some open set O € O. Such a ball exists since O is an open cover of
flow(v) and all points in the range of p satisfy flow(v). Since p is continuous, it follows that the
set p~1(Bt) is open, and hence includes an open interval // containing t. Thus the set of intervals
{// | t € (0,8)} is an open cover for [0,8]. The Heine-Borel-Lebesgue theorem states that every
open cover of a closed and bounded subset of the space of real numbers has a finite subcover. Hence
there is a finite open cover of [0,8] consisting of intervals It. Since the cover is open, we can identify
a point in the overlap between each pair of consecutive intervals, and construct a finite sequence
of witness trajectories between the points, where each witness trajectory lies entirely within some
open set from the cover O. •

Remark. Our definition of flow splits precludes the splitting of flow conditions into closed flow
conditions. The above theorem still holds if the definition of a flow split need not require the cover
to be open, but instead that it be flow preserving. A cover T for the flow condition flow(v) is
flow-preserving if for all w satisfying flow(v), there exists an open ball B containing w such that
B D Iflow(v)} = \J{B n F | F € T and w € F}. In particular, this relaxation allows the flow
condition 1 < x < 3 to be split into 1 < 2 and 2 < x < 3, but not into 1 < 2 and 2 < x < 3.

2.5 Linear hybrid automata

Our goal is to approximate hybrid automata by rational linear hybrid automata, since they form
a subclass of hybrid automata that can be analyzed effectively. A linear expression over a set A*
of variables is a linear combination ]£i=i (*iXi of variables with real-valued coefficients a,- 6 R. A
linear expression is rational if all its coefficients are rational. A variable a: of a hybrid automaton
.4 is (rational and) linear if the following four conditions hold:

1. for all v € V, all occurrences of x in the initial condition init(v) and the final condition
final(v) are in (rational) linear expressions,

2. for all f € V, all occurrences of a: and x in the flow condition flow(v) are in (rational) linear
expressions,

3. for all v € V, the flow condition flow(v) can be decomposed into the form v>x A <pT where <px
is a predicate over A' and <?T is a predicate over A", and

4. for all e e E, all occurrences of a:, a\ a*', and x' in the jump condition jump(e) are in (rational)
linear expressions.

Since every linear set has a finite convex cover, it is convenient for us, without loss of generality,
to define linear hybrid automata as having only convex predicates. A predicate <f> is convex if [<£]
is a convex set. A hybrid automaton A is a (rational) linear hybrid automaton if

1. all variables of A are (rational and) linear,

2. for all control modes v e V, the initial condition init(v), the final condition final(v), and the
flow condition flow(v) are all convex, and

3. for all control switches e € E, the jump condition jump(e) is convex.

In flow conditions, linear dependencies between the rates of variables can be expressed, although
the flow field must be independent of the values of the variables in A'. For example, the linear
hybrid automata may have the predicate ar>yAa><3y + 2asa flow condition, but not the
predicate x < x.



Let A be a hybrid automaton. We define the functions post : 2sA-> 2sA by post(W) = {s2 \
3si e W.si -*a s2], and pre : 2Sa -» 2Sa by pre(W) = {si | 3s2 € W.si ->A ^l- The set of
reachable states of A is the set [J^o post* (W0), where W0 is the set of initial states of A. A linear
inequality over a set X is an inequality between linear expressions over A*. A linear predicate is
a disjunction of conjunctions of linear inequalities. A region W is linear if there exists a linear
predicate 4> such that W = [<£].

Theorem 2.3 Let A be a hybrid automaton. If W is a linear region of A, then post(W) and
pre(W) are computable linear regions.

Proof Sketch. The proof of the theorem is similar to that for previous definitions of hybrid
automata in the literature [AHH96], where the notion ofstate does not include a valuation over A'.
Details are omitted here.

We need to compute the successors via jump transitions and flow transitions. The proof for
jump transitions is analogous to that for the definition of state appearing in [AHH96] —one can
treat the variables in A" on the same basis as those in A".

Consider flow transitions originating from the state s = (t*,x, x) where the flow condition of
v is <f = <pT A (pi for the linear predicates <fT over A' and <f± over A". We need to compute not
only the reachable valuations over A', but also the flow tangents obtained at those valuations. Let
post>°(s) be the set {s' \ 38 € R>o-s -> s'}. It suffices to show how to compute post>°(s). Let
post^ :E" -> 2"n be defined by post^(y) = {z | s?x(y) A v?x(z) A38 GR>o-9x[A" := (z - y)/<5]}.
Computing the function post corresponds to computing reachable valuations, independent of the
reachable flow tangents at those valuations. Observe that any reachable valuation y over A can be
reached with a flow tangent y provided there is another reachable valuation y' over X such that
the line between y' and y is in the direction y. Thus

post>°(s) = {(v,z,z) | flow(v)[X,X := y,y] and
flow(v)[X,X := z,z] and
z € post^(y) and
3k € R>o-y + ky € po$ty(y) and
377? € R>o-z - mi 6 post^y)}

This region is linear and computable. •

If a fixpoint is reached when iterating the post function from the initial states, we gain a linear
representation of the set of reachable states.

Corollary 2.4 The emptiness problem for linear hybrid automata is co-recursively enumerable. •

Algorithmic analysis techniques for rational linear hybrid automata have been implemented in tools
such as HyTech [HHWT95a] and Polka [HRP94].

3 Clock Translation

Given a solvable nonlinear hybrid automaton A, we construct a linear hybrid automaton Ax—the
clock translation of .4—by replacing each nonlinear variable x with a clock tx. A clock is a linear
variable whose slope is always 1, i.e. ix = 1 is implied by all flow conditions. The idea behind the
translation is that the clock tx carries enough information about the value of the variable x. \ftx
records the time elapsed since the value of a* was last changed by a control switch, and the value
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of that last change is recorded, and the solution curve of the nonlinear variable can be uniquely
solved, then the current value of x can be determined from the value of tx. All atomic predicates
involving x are replaced by atomic predicates on tx.

3.1 Conditions for solvability

The clock translation can only be applied to the nonlinear variable x in automaton A when the
predicates in A do not compare x to other variables, and the differential equations describing the
flow of x are independent of other variables and solvable.

Our goal is to translate the nonlinear variable x into the clock tx, and translate predicates in
volving x into predicates involving tx. We require the translated predicates to be true whenever the
original predicates are. Before giving the formal definitions, we intuitively describe the conditions
we require for the variable x to be solvable. First, we require that x be simple, i.e. independent
of the other variables in initial, final, and jump conditions. We also require independence of its
flow condition. Thus we need not consider how to translate relationships between x and the other
variables into relationships between tx and the other variables. Second, we require x to have a
unique solution curve from any starting point. This restriction enables us to determine the value
of x if we know its initial value and the elapsed time. Third, in order to determine the truth of
predicates such as x > c, for some real c € R. by the value of tx, we require solution curves for x
to be strictly monotone. For example, if x has initial value b, strictly less than c, and is strictly
increasing, we know that x > c is true iff tx > m where m is the time it takes for the unique
solution curve for x to progress from 6 to c. Fourth, we require that at any instant, we know the
initial value of the solution curve x is currently following as well as the time that has elapsed.
For example, suppose x is initially 1 and subject to a flow condition that implies x —x. Suppose
control of the automaton can switch to another control mode v' when the variable y equals 2. If
the flow condition for control mode v' also implies x = x, then the value of x can be determined
from the time elapsed from the instant when x had value 1. i.e. x = etx, regardless of when the
control switch to location v' took place. However, if flow(v') differs from flow(v), e.g. it implies
x = -x + 4. then it is no longer possible to determine the value of x. Intuitively, we say that the
variable a- is definite for the control switch e € E if the jump condition jump(e) implies x' = c
for some real c GR. We require control switches to be definite for x if the flow conditions for the
source and target locations differ.

3.2 Solvable variables

We now provide formal definitions for the concepts introduced above. An atomic predicate is simple
if it is of the form x ~ c, x' ~ c, x' = x, or aV = a:, where x e X, ~ € RelOps, and c € R. A
predicate 4> is simple for x if every occurrence of a: in (f> is in a simple atomic predicate. The
variable x is simple in the automaton A if every invariant, initial condition, final condition, and
jump condition is simple for a*. The variable x is flow independent in control mode v if flow(v) is
of the form flowvx Aflow^y for some predicates flowvx over {.t, x) and flowvY over YUY, where
Y = A"\{.t}. In this case, we say that x has the independent flow condition flowvx in control mode
v. For example, the variable x is flow independent in the flow condition a: = 4a:2 Ay = zAw<y,
whereas the variables w, y, and z are not. The variable x is uniquely determined in location v if
for all initial values x0 € R, the initial-value problem uy(t) = fv,x(y(t));y(0) = V has a unique
algebraic solution <y«,-.x0(0> and tnat solution is strictly monotone.

The variable x is initially definite for the control mode v if the initial condition init(v) is either
false or implies .r = c, for some initial value c £ R. The variable x is definite for the control switch
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e € E of A if the jump condition jump(e) implies x' = c, for some arrival value c € R-
The variable x of A is solvable if the following four conditions hold:

1. the variable x is simple,

2. for all control modes v £ V of A, x is flow independent and uniquely determined in v,

3. for all control modes of v € V, x is initially definite for v,

4. for all control switches e = (v, v') 6 £ of A, if x is not definite for e, then flowvx —flowv,x
and jump(e) implies x' = x.

The hybrid automaton A is solvable if all its nonlinear variables are solvable.

Example 3.1 The thermostat automaton of Figure 1 is solvable, since its only nonlinear variable
x is solvable. •

Remark. The strict monotonicity condition can be relaxed in various ways, at the expense of
complicating the proofs. The key property we require is that for each initial-value problem T that
arises in the automaton, the unique solution g : R>o —>• R of X is such that for each constant c
that appears in an atomic predicate of the form x ~ c or x' ~ c, if there exists a t > 0 such that
g(t) = c. then t is unique.

Remark. There is a straightforward condition that implies strict monotonicity of solution curves
for a nonlinear variable. Suppose x is flow independent in control mode v with deterministic flow
function /. Then every algebraic solution of / is monotone, since it cannot be both decreasing and
increasing at any point. If for all reals d € R, we have that f(d) ^ 0, then all its algebraic solutions
are strictly monotone, since their derivatives are never 0.

3.3 The clock translation algorithm

The clock translation algorithm applies only to solvable hybrid automata, and it yields a linear
hybrid automaton. For each solvable nonlinear variable a:, let c € R be a starting value for x if
there exists an initial state (r,x. x) of A in which x has value c, or c is the arrival value of x for
some definite control switch2. Let Start(x) = {ci,...,cn}, with c} < ••• < cn, be the set of all
starting values for x. For each solvable nonlinear variable x, the construction proceeds in two steps:

1. Each control mode v of A is split into a collection (v, ci),..., (v, cn) of control modes, one for
each starting value c, of x. We then add the clock tx such that the value of x in control mode
(v,C{) is x(tx), where x(t) is the solution of the initial-value problem "y(t) = flowvx(y(t))\
V(0) = c{\

2. All initial and final conditions, and jump conditions are translated from conditions on x to
conditions on tx, and the variable x is discarded.

For simplicity, we consider a global set of starting values, rather than parametrizing by control modes.
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ts = In 2 A f^ = 0

STEP 2

Figure 2: Clock translation of the thermostat automaton

Step 1. Splitting control modes and control switches

In this step, we create a new automaton Ai derived from an automaton A by splitting each control
mode into a set of control modes, one for each starting value. Thus the control modes of Ai are
VA x Start(x). Each new control mode (v,c,) has flow condition flowAl (v,c,) = flowA(v) A tx = 1,
reflecting the behavior of the clock tx. The new control mode (v,C{) has the initial condition
initAx (v,C{) = initA(v) A tx = 0 if initA(v) implies a- = c,, and initAl(v,C{) = false otherwise. The
final condition of the control mode (t\c,-) is finalAx(v,C{) = finalA(v). For each indefinite control
switch e = (v, v') of .4. the automaton ,4i includes all control switches of the form ((v,C{), (v',C{))
with jump condition jumpA(e) A tx = tx. For each definite control switch e = (v,vf) of A with
the arrival value Cj, Ai includes all control switches of the form ((t\ct), (v'.Cj)) with jump condi
tion jumpA(e) A t'x = 0.

Example 3.2 The thermostat automaton of Figure 1 has only definite control switches. The
starting values of x are 1, 2, and 3, so we split both control modes on and off into three control
modes each. Since the control modes (on, 3), (off, 1), and (off,2) are not reachable by a sequence
of automaton control switches from the initial control mode (on, 2), we remove these three control
modes from the clock-translated automaton. The result of Step 1 is shown on the left in Figure 2.

Step 2. Updating final conditions, flow conditions, and jump conditions

In this step, we derive a new automaton A2 from an automaton ^4i resulting from Step 1 above.
We eliminate the nonlinear variable x from the initial conditions and flow conditions, and replace
predicates involving a* with predicates involving tx in the final conditions and the jump conditions.
Let the function gv,c(t) be the solution of the initial-value problem "y(t) = fv,x(y(t))', 2/(0) = c".
We first define a transformation function FV)C from simple atomic predicates overx to simple atomic
predicates over tx as follows:
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Fv,c{x ~ k) = *

true

false

txitHPvAV
txgtHfivAk)

if Pv,c(k) = J- anc* c~ k
if (3v]c(k) = _L and c/fc
if Pv,c(k) ¥" -L and c ~ &
if 0„,c(fc)# -Land c/fc

where ~ € RelOps, the function /?V)C : R -» R U{1} is defined by 0v,e(k) = d if pv,c(rf) = * and
/?v,c(fc) = -L if there is no solution to the equation gv,c(tT) = k, and It : RelOps -t RelOps and
gt : RelOps —t RelOps are defined by

op Hop) gt(op)

< < >

< < >

= = =

> < >

> < >

We conduct the following four steps for each control mode. Consider control mode (t',c,).

1. We remove all atomic predicates that involve the variablex from the initial condition init(v, c,).

2. We likewise remove all atomic predicates that involve the variables x and x' from the flow
condition flow(v,C{).

3. We translate the final condition of control mode (t',c,). Suppose that x ~ k, for some
~ € RelOps, is an atomic predicate of the final condition final(v,C{). Replace x ~ k with
FVXl(x^k).

4. We translate the flow condition of control mode (v,C{). Suppose that x ~ k, for some
~ € RelOps, is an atomic predicate of the flow condition inv(v, c,). If c, -/- k, remove control
mode (v,C{). since the flow condition cannot be satisfied. Otherwise, replace x ** k with
FVtCi(*~*).'

5. We translate the jump conditions of all control switches that leave the control mode (v, c,).
Consider the control switch e = (v, v'). First, we delete all atomic predicates of the form
x' ~ k from the jump condition jump(e). Then, replace in the jump condition jump(e), each
atomic predicate of the form x ~ k, for some ~ € RelOps, with FViCi(x ~ k).

Example 3.3 In the thermostat example, we have solutions gon,i(t) = -3e~* + 4, gon,2(t) =
-2e-/ -}- 4, and ^^(f) = 3e~*. Consider the predicate x = 3 of the jump condition of the control
switch from on2 to off3. Since In2 is the solution of -2e_/+4 = 3, it follows that x = 3 ifHx = In2.
Hence the predicate a* = 3 is replaced by tx = In 2. The final result of Step 2 is shown on the right
in Figure 2. •

3.4 Bisimilarity

We show that the clock translation is complete for checking the emptiness of solvable automata.
Let A be a solvable hybrid automaton, and let Ax be the automaton derived from A by translating
a nonlinear variable x into a clock tx. W7e show that A and Ax are bisimilar. We define the function
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<*x Sax -»• Sa such that ax((v,c),xi,xi) = (u,x2,x2), where the control mode (v,c) is split from
the control mode v for the starting value c, the vectors x2 and x2 agree on all variables except
x and tx, x2(x) = 0„,c(xi(*x)) if tne function gVtC(t) is the solution of the initial-value problem
"2/(0 = fv,x(y(t)); 2/(0) = c", and vectors ii and x2 agree on all variables except x and ix, and
x2(x) = /V)X(Pt;,c(xi(^))). We define the binary relation =XC Sax *Sa by {(<ri,a2) \ <r2 = ax(<Ti)}.

Lemma 3.1 Let A be a hybrid automaton with a solvable nonlinear variable x, and let Ax be
the clock translation of A that results from replacing the variable x by the clock tx. Suppose
((v, c),Xi, Xi) =x (u2, x2, x2). Then, for all predicates of the form x ~ k for ~ € {<, <, =, >, >}
and k € R. Xi satisfies FVjC(x ~ k) iffx2 satisfies x ~ k.

Proof. Let si = ((v, c),xi,xi) be a state of Ax and let s2 = (tf2,x2,x2) be a state of A such that
Si =x s2. Let gVlC(t) be the solution of the initial-value problem uy(t) = fv,x(y(t))',y(0) = c," and
let x2(.t) = k. Then by the definition of =x and ax, we have gvx(xi(tx)) = k = x2(ar). We now
consider the four cases arising in the definition of Fl%c in Subsection 3.3.

1. Assume ftv,c(k) = ±, and c ~ k. In this case, ~ cannot be the equality relation. Since gv,c(l)
is monotonic, c = gv,c(0) ~ A- for the inequality relation ~, and for all t > 0, gv,c(t) ^ k, it
follows that for all / > 0, gv,c[t) ~ k. Hence x2(.t) ~ k, and so x2 satisfies x ~ k iff Xi satisfies
true.

2. Assume fiv,c(k) = _L, and c / k. Suppose ~ is the equality relation. Then since for all t,
gVjC(t) ^ k, it follows that x = k is not satisfied in x2, and also xi does not satisfy Fu,c(x = k),
which is the predicate false. If ~ is an inequality, then by continuity, gv,c(t) ^ k for all t > 0.

3. Assume (3v,c(k) ^ ±, and c ~ A\ If ~ is the equality relation, then it is clear that
x2 satisfies x ~ c = k iff xi satisfies fx ~ /3i.,c(^) = /^t,c(c) = 0. For inequalities <p of the form
x < k or x > k, by monotonicity, x2 satisfies <p exactly when xi satisfies *x < 0v,c(k), i.e.
as long as a: has not reached the cutoff value k, tx has not reached the cutoff value 0v,c(k).
Similarly, for inequalities <p of the form x < k or x > k, x2 satisfies 9 exactly when Xi satisfies

*x</C(*).
4. Assume (3VtC(k) ^ ±. and c rf> k. The proof is analogous to that of Case 3 above. •

Lemma 3.2 Let A be a hybrid automaton with a solvable nonlinear variable x, and let Ax be the
clock translation of A that results from replacing the variable x by the clock tx. Then =x is a
simulation of {A} by [.4J.

Proof. Let s2 = (t\x2,x2) and s2 = (vf,x2,x2) be states of A. Let Si = ((v,c),Xi,xi) be
such that si =x s2. We show that if s2^s2> tnen there exists a state s[ such that si Qs\ and
qx(5/1) = s2. This is sufficient to show that if s2 -*» s2, then there exists a state s\ such that si -» s\
and Qj-(s'i) = 52.

Consider first flow transitions. Suppose that s2—^^2, with witness trajectory />2 : [0,8] —>
R having duration 8 > 0. We will construct a witness trajectory pi : [0,8] —> R from Si to
some state s\ such that s\ =x s'2. Let ta = Xi(/X). For all t € [0,8], define pi(t) such that
pi(t)(y) = p2(t)(y) for y =fi tx, and pi(t)(tx) = ta + t. Clearly pi satisfies the flow condition, since
tx is a clock and all other variables are unaffected by the clock translation. By Lemma 3.1 and
the clock translation for the invariant, it follows that for all t € [0,8], pi(t) £ {inv(v,c)] since
/M0 ^ [mt?(i')]]. It is straightforward to see that pi(0) = Xi and pi(0)(tx) = 1 = xi(/x). Finally,
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we establish that ax((u,c),/>i(<5)) = s'2. Let gVtC(t) be the solution of the initial-value problem
«y(t) = fv,x(y(t)):y(0) = c". By definition of ax, <*x((v,c),pi(8))(x) = gv,c(8 + ta) = x2(x), and
ax((v,c),pi(8))(x) = fv,c(9vAt + ta)) = /v,c(x'2(x)) = x'2(x). The other variables agree because x
is flow independent.

We now consider jumptransitions. Suppose s2 -^ s2 where m = eueni(e2) for the control switch
e2 = (r, u'). We will consider two cases to show the existence ofa state s\ = ((v(, c'),Xi,Xi) £ Sax
such that s\ =x s'2 and si -^s^ in [AJ.

1. Assume that jump(e2) implies x' = d, for some d € R. In this case, according to the clock
translation, there is a control switch ei = ((v,c),(v',d)) in Ax such that jump(e{) implies
t'x = 0 and euen/(ei) = m. Let xi be such that for all y ^ tx, x\(y) = x'2(y) and x[(tx) = 0,
and for all y ^ tx, x\(y) = x2(y) and x'i(ix) = 1. Then by construction of jump(ei) and
Lemma 3.1, «i 4 ((v',d),x'l,x'1) = si- Furthermore, «i =x s2 since the action on all variables
other than x in x\ is the same as for x2, and x'2(x) = d is the initial value of the solution
curve for control mode (v',d). and the action on all variables other than .t in x^ is the same
as for x2, and x2(.r) = fv,r(d) = gvA^i(lx))-

2. Assume that jump(e2) implies x' = x. In this case, according to the clock translation, there is a
control switch ej = ((v, c), (r', c)) in .4X such that jump(ei) implies t'x = tx and event(ei) = m.
Let x'j be such that for all y ^ 1x x'i(y) = x'2(y) and x\(y) = x2(y), and x^/x) = Xi(fx)
and x\(ix) = 1. Then by construction ofjump(ei) and Lemma 3.1, «i ^ ((r',c),xi,xi) = s[.
Furthermore, s\ =x s2 since the action on all variables other than x and x in (X|,Xj) is the
same as for (x2,x2), and x'2(x) = x2(.r), x'2(x) = x2(ar), and Xi(/X) = x;i(fx).

Finally, we show the conditions on initial and final states hold. Let s2 = (t>,x2,x2) be an initial
state of .4. Then since control mode v is definite for x, initA(v) implies x = c for some c G R. Let
s} = ((i%c),xi,xi). where Xi is the same as x2 over all variables yfitx, and xi(tx) = 0, and xi is
the same as x2 over all variables y ^ ix, and xi(/x) = 1. Then si =x s2 by definition of =x. The
clock translation for initial conditions init(v) and Lemma 3.1 imply $i is an initial state of Ax as
required.

Let 52 be a final state of .4, and suppose that s\ =x s2. By Lemma 3.1 and the transformation
of final conditions in the clock translation. «i is a final state of ,4X. •

Lemma 3.3 Let A be a hybrid automaton with solvable nonlinear variable x, and let Ax be the
clock translation of A that results from replacing the variable x by the clock tx. Then =~l is a
simulation o/[.4x] by [.4].

Proof. Let si = ((u,c),Xi,xi) and sj = ((vf, c^x'^xj) be two states in Sas- Let ax(si) = s2 =
(i',x2,x2) and qt(s'j) = s'2 —(v',x2,x2). We need to show that si -» s'j implies 52 -» s2. We do
so by showing that si -^ s\ implies s2 -^ s'2.

We first consider flow transitions. Suppose si —> s\ for some 8 > 0 and witness trajectory
pi : [0,8] -¥ Rn. We need to show that s2 —• s2. By definition of —>, we have that v = t/ and c = c'.
Let the function </v,c(0 be the solution of the initial-value problem "y(t) = fv,x(y(t));t/(0) = c".
Suppose Xi(fx) = ta. Then x\(tx) = ta + 8. Let /?2 be the trajectory such that for all t 6 [0,8],
p2(t)(y) = Pi(t)(y) for all variables y ^ x, and p2(t)(x) = ^,c(^ + <a)- We claim that the trajectory
P2 is a witness for s2—ts2. By definition of qx, it follows that /)2(0) = x2 and p2(8) = x2. By
Lemma 3.1 and the clock translation for the invariant, for all t £ [0.8], />2(<) € [mv(t;)] since
P\(l) € \inv(v,c)]. Finally, since the function gv,c(t) is the solution of the initial-value problem
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"y(0 = /v,x(y(0);2/(0) = c'\ it follows that (/>2(0>/M0) € t/?ow(i;,c)] since a- is flow independent
with flow(v) = flowvj\{x) A x' = /v,x(*), and for all variables y^x, p2(y) = pi(y).

We now consider jump transitions. Suppose si -^ s[ where m = eueni(ei) for the control switch
ei = ((v,c),(v',c')). By definition of the clock translation, there is a control switch e2 = (v,v')
of A such that event(v, v') = m. Since a: is a simple variable, we need only consider the effect
of the clock translation on atomic predicates over x since other variables are unaffected by the
clock translation and the function ax. By Lemma 3.1, x2 satisfies all atomic predicates of the form
x ~ k in jump(e2). In order to show s2-^s2, we now consider atomic predicates involving x' for
the following two cases:

1. jump(e2) implies x' = d, for some d € R. In this case, according to the clock translation,
jump(ei) implies tx = 0. Since tx = 0 in x[, x = d as required in x2.

2. jump(e2) implies x' = x. In this case, according to the clock translation, c' = c and jump(e{)
implies t'T = tx, and so tx has the same value in xi and x[. Hence a* has the same value in x2
and x2 as required.

Finally, we consider the conditions on initial and final states. Letsi = ((v,c),xi,xi) be an initial
state of .4X. Then xi(/x) = 0. Let s2 = (u,x2,x2), where x2 is the same as Xi over all variables
y ^ x, and x2(.r) = c, and x2 is the same as Xi over all variables y ^ x. and x2(i) = fvAc)-
Then &i =x s2 by definition of =x. According to the clock translation, the initial condition initA(v)
implies x = c. Then by Lemma 3.1, s2 is an initial state of A as required. The argument for the
condition on final states is analogous to that in the proof of Lemma 3.2. •

Theorem 3.4 If A is a solvable hybrid automaton and B is the clock translation of A, then A and
B are bisimilar.

Proof. By Lemmas 3.2 and 3.3. the relation =x is bisimulation between [.4] and {Ax}, where
.4X is the automaton that results from replacing the nonlinear variable x with the clock tx. Since
bisimilarity is transitive, if B results from A by replacing several nonlinear variables with clocks,
A and B are bisimilar. •

It follows from Theorem 3.4 that the clock translation is sound and complete. We conclude that
for solving the emptiness problem for the solvable nonlinear automaton .4, it suffices to solve the
emptiness problem for the linear automaton AT. A solvable hybrid automaton A is rationally
solvable if its clock translation .4X is rational.

Corollary 3.5 The emptiness problem is co-recursively enumerable for the class of rationally solv
able hybrid automata. •

A variable x in a hybrid automaton A is a rectangular if it is simple, and for each control mode
v, it is flow independent with flow function /V)X of the form x £ [/, u] for some /, u £ R. A hybrid
automaton is rectangular if all its variables are rectangular. The emptiness problem for rectangular
automata is decidable. Therefore, when the clock translation results in a rectangular automaton,
emptiness is decidable. We thus obtain the first decidability result for a class of nonlinear hybrid
automata, whereas all previously published results refer to linear hybrid automata [KPSY93, AD94,
HKPV95] only. However, when the clock translation -4X is not rational, the emptiness problem
cannot be solved exactly.

Corollary 3.6 The emptiness problem is decidable for the class of rationally solvable hybrid au
tomata for which all linear variables are rectangular. •
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4 Linear Phase-Portrait Approximation

A hybrid automaton may be simulated (and therefore approximated) by another automaton by
relaxing the initial conditions, the final conditions, the flow conditions, or the jump conditions.

4.1 Phase-portrait approximation

Two hybrid automata are compatible if they have the same set of variables, control modes and
control switches. Let A and B be compatible hybrid automata. We say A is a basic phase-portrait
approximation of B if A and B are compatible, and the following four conditions hold:

•

•

for all control modes v, flow(B)(v) implies flow(A)(v), and

for all control modes v, init(B)(v) implies init(A)(v),

for all control modes v. final(B)(v) implies final(A)(v), and

• for all control switches e, jump(B)(e) implies jump(A)(e).

An automaton A is a phase-portrait approximation of B if there exists a flow split V such that A
is a basic phase-portrait approximation of V(B).

Observation If A is a phase-portrait approximation of B, then A ysim B.

Proof. For any flow split V for B, the identity relation is a simulation of V(B) by A. •

An automaton A is a linear phase-portrait approximation of B if it is a linear hybrid automaton
and it is a phase-portrait approximation of B. Linear phase-portrait approximations can often be
obtained by first splitting the control modes using a flow split, and then approximating, for each
control mode, the flow field using a convex linear predicate containing the convex hull of the set of
flow vectors occurring in its flow field.

As a special case of linear phase-portrait approximation, notice that linear hybrid automata
need to be approximated by rational linear hybrid automata before being input into the model-
checking tool HyTech. We advocate taking rational phase-portrait approximations of linear hybrid
automata by rounding up or down irrational constants.

Example 4.1 The constraint /x = In 2 in the clock translation of the thermostat automaton in
Figure 2 can be replaced by the rational predicate 69/100 < tx < 70/100, since In 2 is approximately
equal to 0.693. Similarly, we can approximate tx = In3 with 109/100 < tx < 110/100. Suppose
we are interested in showing that in its first 60 seconds of operation, the heater is not on for more
than 60% of the time. The final condition for each location is then z = 60 A y > Z/bz. HyTech
verifies the property for the rational linear phase-portrait approximation of the clock translation
described above. HyTech also determines that after exactly 60 time units, the thermostat has
been in control mode on between (753/15)% « 50.2% and (760/15)%= 50.7% of the time. •

Example 4.2 To demonstrate the linear phase-portrait approximation technique, we suppose that
we directly approximate the thermostat automaton of Figure 1 without first performing a clock
translation. Figure 3 depicts a linear phase-portrait approximation for the flow split Vi dereived
from the cover with predicates 1 < x < 2 and 2 < x < 3 for control mode on, and the predicates
1 < a: < 2, 2<ar<3, and x > 3 for control mode off. However, HyTech does not verify
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x= 2A

y = 0 A z = 0

turnon

i=l A Stable(x,y, 2)

turnoff
x = 3 A Stable(x, y, 2)

Figure 3: Linear phase-port rait approximation of the thermostat automaton

the property that the heater is on for less than 60% of the time during its first 60 time units of
operation. This approximation is much coarser than in the previous example, with the time the
heater is on ranging from « 35.6% to %64.2%. The approximation can be tightened using a finer
flow split. For example, consider the flow split V2 that additionally splits the control mode on2
in Figure 3 according to the condition x < 2.5 and splits the control mode offl according to the
condition x < 1.5, i.e. the flow split derived from the predicates 1 < x < 2, 2 < x < 2.5 and
2.5 < .t < 3 for control mode on, and the predicates 1 < x < 1.5, 1.5 < x < 2, 2 < .t < 3, and
x > 3 for control mode off. Using HyTech to analyze the automaton with the flow split V2 shows
that the heater is on between 40.7% and 59.2%, of the time, and the property we are interested in
is now verified.

The finer the flow split, the tighter the approximation, but the greater the computational cost.
Using flow split P2, computation time is also twice as long (10.6s versus 5.5s on a Sun Sparcstation
5) as for V\* By contrast, HyTech required only 2.5s to generate the much better bounds for the
clock-translated automaton in Example 4.1. This example demonstrates the benefits of using the
clock translation where possible. •

4.2 Example: predator-prey systems

We demonstrate the use of phase-portrait approximations on nonlinear systems modeling the popu
lation growth of two interacting species [Lot20, HS74]. We show that several interesting properties
of the system can be discovered automatically through algorithmic analysis.

A predator-prey ecology with limited growth

Much ofour exposition defining predator-prey systems is derived from Chapter 12 of [HS74]. One
species is the predator, whose population is modeled by the variable y, and the other its prey,
modeled using the variable .r. The prey forms the entire food supply for the predator, and we
assume that the per capita food supply for the predator at any instant of time is proportional
to the number of prey. The growth of the predator population is proportional to the difference
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x = x0 A y = j/o

Figure 4: Predator-prey hybrid automaton

between its actual per capita food supply and a basic per capita food supply required to maintain
its population. The population of the prey is subject to two competing forces. First, the population
may grow because there is a constant food supply available: the prey's population would increase
without bound in the absence of predators. Furthermore, we assume this rate of increase would
be proportional to the number of prey. Second, the predators consume the prey at a rate that is
proportional to the number of predators and to the number of prey. Thus the rate of increase for
the variable x is given by the equation:

x = Ax —Bxy

The flow conditions describing the entire system may be rewritten as:

x = (A-By)x (1)

y = (Cx-D)y (2)

for positive real-valued constants .4, B, C, and D. No population really has the potential to
increase without bound. There are social phenomena, such as overcrowding, spread of disease,
and pollution, that imply that most populations will experience negative growth once they exceed
a threshold limiting population. Assuming these negative growth factors are proportional to the
species population and its difference from the threshold population leads to the Volterra-Lotka
predator-prey equations [Lot20, HS74]

x = (A-By-Xx)x (3)

y = (Cx-D-py)y (4)

where .4, B. C, D, X. and p are all positive real-valued constants. The automaton for the system
appears in Figure 4. By examining the flow field determined by the flow condition above, we
partition the state space with lines where either .f or y have value 0, i.e. along the coordinate axes,
and along the lines L : A - By - Xx = 0 and M : Cx - D - py = 0. If the lines L and M do
not intersect in the upper right quadrant, then the phase portrait of the system looks like that of
Figure 5.

Linear phase-portrait approximation

In the region R, to the right of the line M in Figure 5, we infer tighter constraints on x and y than
their signs. The values taken by the function £(x,y) = y/x in the region R determine the flow-
vectors in R, since i is nonpositive and y nonnegative. The absolute value of £(x,y) is bounded
above by any Max/Min. where Max is an upper bound on the value of y in R and Min is a lower
bound on the absolute value of x. We can take Cxy for Max, since D + py is always positive. Since
the lines L and J\/ do not intersect in the positive quadrant of R2, we know that A/X < D/C, and
hence that A - XD/C < 0. Because x is no less than D/C in R, we infer that A —Xx < 0, and
hence that A - Xx - By < -By. We may therefore take Byx for Min. We conclude that £(x,y)
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A/B

A/X D/C

Figure 5: Phase portrait for pred-prey populations: L, M non-intersecting

A/B

A/X D/C

Figure 6: Reachability using linear phase-portrait approximation

is bounded below by -Cxy/(Bxy) = -C/B, and thus that all flow vectors in R have direction
between (-B,C) and (-1,0), i.e. they all satisfy the flow condition y > 0 A y < -Car/5.

The automaton for a linear phase-portrait approximation appears in Figure 7, where the pred
icate Stable is shorthand for Stable(x,y,x,y). The layout of the control modes matches the parti
tioning of the state space as shown in Figure 5. The implicit invariant constraint a: > 0 Ay > 0
has been omitted from all invariants. The constraint M refers to all valuations on line M, i.e. all
valuations where Cx - D - py = 0. The constraint M^ refers to all valuations at, or to the right
of, the line M, i.e. M* isCx >D + py. Similarly M^ \sCx < D+ py, L is A- By - Xx = 0, L^
is Xx < A - By, and L- is Xx > A - By.

Computing bounds on the population growth

The phase-portrait approximation above can be used to compute, for given starting populations,
bounds on the populations ofboth species. In particular, this shows that the populations areindeed
bounded. For example, suppose the initial populations, a:0 and y0 say, lie in the region R of the
state space. The set of time-step successors of the state (x0, yo) is obtained by following all flow
vectors in the cone indicated in Figure 6. First, the states in region Si are reached. Control may-
then pass to the control mode corresponding to the central region in the partition, where both x
and y are nonpositive. After adding the states in region S2, and then S3, reachability analysis
terminates. The maximum value of y among the reachable states is (By0 + Cx0 - D)/(B + p). For
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y = A/B
A Stable

Figure 7: Phase-portrait approximation for predator-prey system

example, using the equations x = (2000-y-5a-).r and y = (4.r-2600-4y)y, and initial population
vector (900,150), we can use HyTech to obtain a bound of 230 on the predator population y.

It can be shown that when the lines L and M intersect in the upper right quadrant, reachability
analysis on a phase-portrait approximation demonstrates that the populations are bounded in this
case too.

Iterated approximations

In general, bounds on the reachable region can be used to generate better phase-portrait approx
imations. Let 9 be a predicate such that [yj] is a superset of the reachable states of a hybrid
automaton .4. The restriction of A to <p is the automaton A |v- that differs from A only in its flow
conditions, where for all control modes v, flow* ,(t>) = flowA(v) A <p. The automaton A 1^ is an
approximation of A. It may be possible to find tighter linear phase-portrait approximations for
A |^ than for A, since the flow condition has been restricted, and need not contain as many flow
tangents as in A.

In our predator-prey example, it can be shown that in the rightmost region R of Figure 6, the
absolute value of £(x, y), the flow tangent at (x, y), is bounded above by Cy/(Xx-\-By—A). Let Z be
a bounded subset of R. Let ymax be an upper bound for y over all valuations in Z, and £m,n (resp.
ymin) be a lower bound for x (resp. y) over Z. It follows |/(.T,y)| < Cymax/(Aarmtn + Bymin - A),
provided (A.rm,n + Bymjn —A) > 0. Previously, we showed how reachability using the automaton
in Figure 7 leads to the region Si in R, from which we infer bounds of ymox = 230, ymin = 150,
and xmin = 800. We can therefore replace the flow condition y < —Cx/B in region Si with
y < -92i/215. Recomputing now shows that a proper subset of region Si is actually reachable. In
particular, we obtain a tighter bound of ymax = 55250/307 « 180. We could iterate this procedure,
gaining successively lower values of ymax, and more restrictive flow conditions.

Controlling the ecology

Standard analysis techniques can be used to show that the predator population always tends toward
0, while the prey population tends to A/X [HS74]. Suppose, however, that we wish to keep the
predator population above a nontrivial minimal value, or more generally, that the populations need
to be controlled so that they remain within given lower and upper bounds. Assume that the prey
population can be accurately measured, but that the predator population is unobservable. Our
control strategy consists of monitoring the prey population, and releasing a fixed number k of

22



additional prey into the system whenever it reaches its minimal allowable value. In general, it is
unwise to increase the prey population to its maximal allowable value, since the abundance of prey-
may cause the predator population to grow too large.

For the ecology above, we require the predator population to lie within the range [100,350], and
the prey population within [800,1100]. Using the tool HyTech, we can verify that the bounds are
successfully maintained whenever k < 200. For larger valuesof k, the phase-portrait approximation
admits trajectories where the predator population exceeds the upper bound of 350. Note, however,
that this does not imply that all values of k greater than 200 lead to excessively large predator
populations, since the approximation yields more reachable states than the true system.

4.3 Error analysis

Linear phase-portrait approximations are not complete. However, under certain conditions, a
hybrid automaton may be approximated arbitrarily closely by choosing a sufficiently fine splitting
of its flow conditions.

Approximation operators

Let %be the class of hybrid automata. An approximation operator is a map 7 : R>o x W—• 2W.
The approximation operator 7 is sound if for all hybrid automata .4. and for all 8 > 0, B £ 7(8,A)
implies B is an approximation of A. In this case, proving emptiness of B also provesemptiness of A.
We define a notion of asymptotic completeness. We define the infinity metric dist :EnxKn-> R>o
by dist(x,y) = maari<j<n{|x,--y,-|}. The distance dist(x,y) between points x and y is the maximal
componentwise separation. Let $ be a predicate over R". The e-relaxation of <j>, for e > 0, is the
predicate 4>s such that for all x £ Rn, x € J>E] iff there exists y £ Rn such that y £ [<£] and
dist(x,y) < s. Given a hybrid automaton .4, let the e-relaxed automaton As', for s > 0, be the
automaton obtained from A by replacing all flow conditions, initial and accepting conditions, and
jump conditions with their ^-relaxations. If the hybrid automaton A models a system with sensors
and actuators, then A' models the same system where measurement errors of the sensors and
actuators are bounded by e, and the flow and jump transitions are subject to a modeling error of
e. The approximation operator is asymptotically complete if for all hybrid automata A £ Ti, and
for all s > 0, there exists a 8 > 0 such that for all B £ -)(8.A) As y B. In particular, asymptotic
completeness implies that for a hybrid automaton .4, if automata very close to A are empty, then
the approximating automata for a sufficiently small 8 are also empty.

Asymptotic completeness

Asymptotic completeness holds even when linear phase-portrait approximations are of a very re
stricted form, namely when the flow conditions provide independent lower and upper bounds on
the rates ofeach variable [HH95a]. A predicate 4> is rectangular if [0] is rectangular, i.e. if [</>] is of
the form I]t=i..n A' where each /, is an interval over R. A linear phase-portrait approximation is a
rectangular phase-portrait approximation if every initial condition, final condition, jump condition,
and flow condition is rectangular. The rectangular phase-portrait translation rect(A) of A is the
minimal rectangular phase-portrait approximation of A with respect to the order y. The minimal
approximation exists since the minimal rectangular predicate implied by a predicate is well-defined:
take the projection onto the x axis to obtain the interval for x.

Example 4.3 The linear phase-portrait approximation in Figure 3 is the rectangular phase-portrait
approximation for the given flow split. •
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A predicate <p is of width 8 if, for all valuations xx,x2 £ [<£], dist(xi,x2) < 8. A flow split V is of
width 8 if each predicate <j> occurring in V is of width 8.

Proposition 4.1 The approximation operator 7 defined by 7(8, A) - {rect(V(A)) \V is ofwidth 8}
is asymptotically complete.

Proof. For a given e, choose 8 £ R>0 such that 8 < e. Let V be a flow split of width 8.
We show that the predicates of rect(V(A)) imply the corresponding predicates of Ae, and hence
Ae ysim rect(V(A)).

For example, let s be an initial state of rect(V(A)) with control mode (v,<p). Since the value
of each variable x in s is the projection of some valuation satisfying 9, and <p is of width 8, there
exists a state s' within distance 8 of s that satisfies y>. Thus the state s satisfies y>e, and hence tti (s)
is an initial state of AE since 9 implies fnit^fv) and thus ips implies initA(v)€, which is initAt(v).
Similarly, for all control modes (v,9) of rect(V(A)), the final condition final(v, <p) implies finalM (v),
and flow(v, ip) implies flowAt (v). Analogously, for all control switches e £ E directly inherited from
.4, the jump condition ju™prect\V(A))(e) imPnes JumPAt (€)- Silent control switches between copies
of a control mode need not be directly simulated. •

It is easy to see that asymptotic completeness also holds for the approximation operator that
yields linear phase-portrait approximations that are simulated by the rectangular phase-portrait
approximations. In practice, rectangular approximations are often easier to compute (since we need
only bound the rate of the derivative for each variable). Linear phase-portrait approximations,
however, are sometimes more accurate, as seen in the predator-prey example.

4.4 Example: pseudo-linear automata

It is not obvious how to compute useful linear phase-portrait approximations of an arbitrary hybrid
automaton, since it may involve partially solving a set of differential inequalities. However, we
describe a restricted class of hybrid automata for which approximations may be found automatically.
We assume every flow condition is given as a finite conjunction of inequalities. A hybrid automaton
is pseudo-linear if (1) for every flow condition, substituting every occurrence of a variable x £ X
with an arbitrary real-valued constant results in a convex linear predicate over A", (2) for every
control mode r. every operator in the flow condition flow(v) is monotonic in every argument over
the domain inv(v), and (3) all initial, final, and jump conditions are linear. Many automata can
be made to satisfy Condition 2 through flow splitting.

Given a pseudo-linear hybrid automaton A, the following transformation yields a linear phase-
portrait approximation A(.4). Every instance of a variable x,- in a flow condition is replaced with
either ar™,n or x™ax depending on its force in the inequality. The variable a:, is replaced with a
constant value that guarantees the transformed inequality is satisfied whenever the original is. The
value x™tn is a lower bound on the values xt may take along any curve satisfying the flow condition
and the control modes invariant. Similarly, x™ax is an upper bound on ar,\ For simplicity, we
consider only bounded automata3, where bounds may be inferred from the invariants. Without
loss of generality, we assume every inequality in every flow condition asserts its left-hand side is less
than its right-hand side. An operator is positive, with respect to an invariant, in its i-th argument if
it is monotonically nondecreasing in its ?'-th argument, over the domain of the invariant. Otherwise,
it is negative. Both of the following conditions affect the force of an instance of the variable X{ in
a flow condition for a given control mode.

'The generalization to unbounded automata is straightforward.
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1. the instance occurs on the right-hand side of the inequality.

2. the force of the instance of the variable occurs within the scope of an even number of negative
operators.

If an even number of the above conditions is true, then the instance of X{ in A has positive force,
and is replaced with a:™ax in X(A). Otherwise, it is replaced with a:™". For example, x and y occur
positively, whereas z occurs negatively, in the inequality yex - y3 < x + 1/z2.

Theorem 4.2 Given a pseudo-linear hybrid automaton A, the automaton X(A) is a linear phase-
portrait approximation of A. •

Example 4.4 The thermostat automaton of Figure 1 is pseudo-linear. In control mode on, the
flow condition i = -a: + 4Ay=lAi=lis replaced byi>lAj/=lAi = l, since
—x+ 4<x< —.t + 4 is transformed to —3 + 4 < x < —oo + 4. The flow condition for control mode

off is transformed toi<-lAj/ = OAi = l. •

Example 4.5 The predator-prey systems of the previous section are also pseudo-linear. However,
the phase-portrait approximation we obtain using the algorithmic technique above gives no addi
tional constraints than the signs of the derivatives of x and y in the control mode with invariant
M-. This demonstrates the limitation of automatic methods: often a more careful, handwritten
analysis can provide tighter approximations. To gain the maximal benefits of computer-aided anal
ysis, one often needs to draw on an understanding of nonlinear equations governing continuous
behavior. •

Acknowledgement. We thank Peter Kopke for numerous helpful suggestions.
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