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Abstract

Testing and Characterization of Analog Systems Using Behavioral Models and
Optimal Experimental Design

by

Eric James Felt

Doctor ofPhilosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

The presence ofanalog components in today's complex mixed-signal systems com
plicates their testing and statistical characterization significantly. Analog circuits, in gen
eral, are much more difficult to test than digital circuits because performance specifications
must be considered and because few design technology tools are available to aid in the

design ofthe test vectors or the analysis ofthe testing results. Analog testing is currently
performed on a relatively ad-hoc basis, with test suites frequently defaulting to thecomplete
set ofcircuit specifications. This approach is becoming increasingly expensive in both test
development and test execution times.

This dissertation presents a methodology for solving analog testing and characteri
zation problems more systematically by using statistical techniques, especially linear models

and optimal design ofexperiments. These statistical techniques are applied to the problems
of automatic test pattern generation, optimal test structure design, and hierarchical sta
tistical performance characterization. This systematic methodology allows analog systems
to be characterized more accurately and more efficiently. Since testing currently accounts
for approximately 30-50% of total product cost, these algorithms are expected to make a
significant impact on the overall cost ofdesigning and manufacturing analog systems.

Professor Alberto Sangiovanni-Vincentelli """^
Dissertation Committee Chair
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Chapter 1

Introduction

The complexity of electronic systems being designed today is increasing in many

dimensions: on one hand, the number of components is growing constantly; on the other,

several radically different functions must be integrated. For example, in the exploding

personal communications market, a device is the combination of wireless transmission, ana

log and digital signal processing, and digital computing. In this device, antennas, radio-

frequency components, and analog and digital subsystems have to be designed in a unified

way to meet the performance, power, and size requirements of the application.

The intermingling of analog and digital signals in these systems is likely to increase

as more functionality is integrated onto a single chip. Analog components are generally used

in these systems for two reasons [59]:

1. To interface digital processing with applications-specific environments. Many appli

cations include interactions among electronics and various sensors and actuators; such

interactions imply analog signals, since "the real world is analog."

2. To accelerate processing in high-performance systems. Processing analog signals and

images will be important to information delivery technologies in the 21st century, and

digital processing and transmission limit performance to an extent that is unacceptable

for high-performance systems.

Furthermore, decreasing the size of integrated circuits leads to higher frequencies in general,

and hence to more analog behavior of even digital signals.

Because of these requirements and trends, analog components are here to stay.

Today's design and test methodologies must deal with these components systematically,



accurately, and efficiently.

1.1 Design Methodology for Analog Systems

Our design technology research group at the University of California, Berkeley has

developed a new top-down, constraint-driven design methodology for analog and mixed-

signal system design [18, 17, 16, 15]. The methodology has two basic goals: (1) making the

design cycle robust by use of hierarchical partitioning, behavioral modeling, and specifica

tion propagation; (2) drastically reducing the number of design iterations by use of accurate

performance evaluation and early error diagnosis. The key points of the methodology are:

• Top-down hierarchical process starting from the behavioral level based on early veri

fication and constraint propagation;

• Bottom-up accurate extraction and verification;

• Automatic and interactive synthesis of components with constraint-driven layout de

sign tools;

• Maximum support for automatic synthesis tools to accommodate users of different

levels of expertise, but not the enforcement of these tools upon the user; this is not

an automatic synthesis process; and

• Consideration for testability at all stages of the design.

It is this final bullet which is the subject of this dissertation.

1.2 Testing of Analog Systems

According to the Semiconductor Industry Association, in about 10 years design

and test methodology and tools must cost-effectively handle 1-GHz microprocessors with

300 million transistors and 16 Gbyte, 0.1-micron DRAMS. Testers that cost under $2M

(versus the $50M we would extrapolate from today's situation) must thoroughly test 200-

million-gate ASICs with 3,000 I/O pins [87]. With typical testing targets currently being

better than 40 ppm defect levels [102], testing these huge systems poses many formidable

challenges.



The analog portions of these huge systems complicate their testing and character

ization significantly. While less than 20% of a typical mixed-signal ASIC is used for analog

circuitry, testing the analog portion is a major problem and one which will cause production

bottlenecks as devices integrate higher proportions of analog functions onto mixed-signal

chips [29].

Analog circuits, in general, require much longer testing times than digital circuits

because second-order effects must be considered and because few design automation tools

are available to aid in the design of the test vectors. Analog testing and characterization is

currently performed on a relatively ad-hoc basis; a design or test engineer relies primarily

upon intuition about a circuit's internal functionality to derive the circuit's test suite. This

test suite frequently defaults to the complete set of circuit specifications. This approach is

becoming increasingly expensive in both test development and test execution times. The

specifications of mixed analog-digital circuits are usually very large (e.g. see [9]), which

not only results in long manual test development, but also in prohibitive testing times

on very expensive automated test equipment with mixed-signal capabilities; in aggregate,

test-related costs for today's electronic products typically range from 30% to 50% of total

product cost [13]. Furthermore, the use of sophisticated design automation tools continues

to reduce the design cycle time so that the influence of testing on time-to-market and final

cost of the circuit is becoming increasingly significant. For these reasons, analog testing is

considered to be one of the most important problems in analog and mixed-signal design.

The main factors that make analog circuit testing difficult can be summarized as

follows [119]:

• Analog systems are frequently nonlinear, include noise, and have parameter values

that vary widely. Thus, deterministic methods are often inefficient for modeling these

systems.

• Relations between input and output signals in analog circuits are sometimes compli

cated compared to those of digital systems. These relations in analog circuits are

more difficult to model than digital circuit representations, which are based on clas

sical truth tables and thus are precise and easy to model.

• The statistical distribution of faults in analog systems is generally not known with

enough precision. For this reason, probabilistic methods are often ineffective.



• The complexity of today's analog circuits and their many parameters, as well as the

limited accessibility to their internal components, restricts the use of conventional

automatic test equipment. Such equipment does not have enough storage and lacks

the capability of computation during actual testing.

Standard practice tends toward specification testing of analog circuits: testing

some or all of the response parameters for conformity. For linear circuits (such as filters) the

tested parameters could include DC specifications, like input bias currents and impedances;

AC specifications, like the gain bandwidth and total harmonic distortion; and transient

specifications, like the step response settling time [4].

Verifying the entire set of specifications would provide complete confidence in the

tested part. However, the time and cost overheads ofsuch a procedure are high. Moreover,

the high redundancy in specifications causes overtesting of the part. Therefore, in practice,

manufacturers test only a few specifications over a limited input space. The drawback is

that such compromise can lessen the quality of shipped parts.

This dissertation offers alternatives to specification-based testing which will pro

vide benefits such as [13]:

• Shorter time to market,

• Lower manufacturing cost,

• Reduced capital for test equipment,

• Reduced development cost,

• Improved out-of-the-box quality,

• Reduced field-installation time,

• Increased product up-time, and

• Reduced field-maintenance cost.

These new methods use recent advances in behavioral models and optimal design of exper

iments to perform analog automatic test pattern generation (ATPG), to design for test

(DFT), to build optimal test structures, and to statistically characterize large circuits.
Test vectors are chosen to be "maximally orthogonal" so that circuit performance will be



parameters circuit test vectors

Analog ATPG
Optimal test structures
Statistical characterization

fixed

fixed

fixed

fixed

optimize
fixed

optimize
optimize

fixed

Table 1.1: Summary of relationship between parameters, circuit, and test vectors.

characterized as accurately as possible in the presence of measurement noise and model in

accuracies. These techniques allow analog systems to be characterized more accurately and

more efficiently than previously possible, thereby significantly reducing system test cost.

1.3 Overview

Figure 1.1 shows an overview of the typical product design cycle and the role

of testing and characterization within this process [13]. Our research in analog testing

and characterization has impact throughout this design cycle, particularly in the "Design

Evaluation" and "Test" stages. There are three major thrusts to our research. The first is

analog automatic test pattern generation (ATPG), both for circuits which can be modeled in

a linear function space and for highly nonlinear circuits. The second is optimal test structure

design, in which design circuits are optimized for measuring a specific set of parameters as

accurately as possible. The third is the statistical characterization of analog circuits during

the design process.

The relationship between the parameters, circuit, and test vectors for each of these

three situations is summarized in Table 1.1.

1.3.1 Analog ATPG

Our approach to automatic test pattern generation involves combining recent ad

vances in behavioral modeling of analog integrated circuits with statistical algorithms for

optimal design of experiments.

The algorithms are based upon the statistical theory of optimal experimental de

sign, in which test vectors are chosen to be maximally orthogonal so that the system per

formance will be characterized as accurately as possible in the presence of measurement

noise and model inaccuracies. More specifically, for an I-optimal design we wish to choose
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Figure 1.1: Overview of testing within typical product design cycle.



the test vectors to minimize the average standard error of the predicted output, thereby

maximizing the likelihood that we will be able to conclusively verify that the performance

specifications have or have not been met after applying a minimum number of test vectors.

If the minimum number of test vectors is not sufficient to conclusively verify the perfor

mance specifications, then additional test vectors are selected and applied, one at a time,

until the standard error of the predicted output is low enough to verify the performance

specifications. Linear regression is used to analyze the results of the tests and compute the

required standard errors.

Finding an exactly I-optimal design is believed to be NP-complete [23] and hence

only feasible for very small problems. For larger problems, several heuristic algorithms have

been successfully used to find "good" solutions to this and other related problems in the

area of optimal experimental design. These heuristic algorithms include simulated annealing

[23], greedy swap techniques [89], and gradient descent techniques. For this research we used

the gradient descent techniques implemented in the software package GOSSET, which was

recently developed by Hardin and Sloane at AT&T Bell Laboratories [48].

The analog testing algorithm we propose is:

1. Linearize about the nominal parameter values and use GosSET to generate an initial

set of n test vectors from this linear model, where n is the dimensionality of the space

to be characterized.

2. Apply the initial set of n test vectors.

3. Use iterative techniques (Newton-Raphson) to solve for the actual model parameters.

4. Re-linearize about the actual model parameters and construct confidence intervals for

the response function from this model.

5. If the confidence intervals for the response function fall definitely within the system

performance specifications at all points, then accept the chip.

6: If the confidence intervals for the response function fall definitely outside the system

performance specifications at any point, then reject the chip.

7. If the confidence intervals are too wide to make a conclusive decision, then use GOSSET

to generate one additional test vector. Apply the additional test vector and go to

Step 3.



8

For linear circuits the process simplifies because linear regression can be used instead of an

iterative technique and because there is no need to re-linearize in Step 4.

1.3.2 Optimal Test Structures

Fast ATPG algorithms also enable the construction of optimal test structures,

which are circuits optimized to measure a specified set ofparameters as efficiently as possible

in the presence of measurement noise and other potential errors.

We have developed a figure of merit which can be used to evaluate the efficiency of

various candidate test structures. Comparing the efficiencies of test structures will permit

a test engineer to determine which structures are optimal for measuring a certain set of

interesting parameters. This optimality information, when considered with area, shape, and

other factors, can be used to determine which test structures should actually be fabricated.

The figure of merit which we propose is the normalized D-values of the minimum-

size D-optimal test set for each circuit. The D-value is the average variance of the estimated

model coefficients, so a circuit with a lower D-value is a more efficient test structure than a

circuit with a higher D-value. The inputs to the algorithm are a set of candidate circuits and

a listofparameters ofinterest. Theoutput is a listofthe normalized D-values corresponding

to the D-optimal test set for each circuit. Generating the candidate circuits is an open

problem. Once some candidate circuits have been generated, though, this algorithm can be

used to determine which structure is optimal.

One interesting observation that we have made is that extracting parametersfrom

relatively complex structures is often more efficient than measuring single devices. The rea

son for this phenomenon is that in the complex circuit each parameter is, in effect, sampled

multiple times and hence the error due to measurement noise and model inaccuracies is

reduced. This result is similar to measuring a single device multiple times and averaging

the measurements, but fewer tests are required when the complex circuit is used.

1.3.3 Statistical Characterization

The same behavioral models that are used for ATPG can be used to statistically

characterize analog circuits during the design process. We have developed a methodology for

hierarchical statistical circuit characterization which does not rely upon circuit-level Monte

Carlo simulation. The methodology uses principal component analysis, response surface



methodology, and statistics to directly calculate the statistical distributions of higher-level

parameters from the distributions of lower-level parameters. This methodology permits the

statistical characterization of large analog and mixed-signal systems, many of which are

extremely time-consuming or impossible to characterize using existing methods.

In this hierarchical design methodology, two statistical characterizations are per

formed. First, the statistical distributions of the intermediate-level parameters are calcu

lated from those of the low-level parameters. Second, the statistical distributions of the

high-level circuit performance is calculated from the intermediate-level parameters. The

first characterization can be quickly performed with the non-Monte Carlo techniques de

scribed in this dissertation. The second characterization can be performed either in the

same way or using Monte Carlo analysis. Monte Carlo analysis is generally acceptable for

the second characterization if the behavioral model being used is fast and involves only a

relatively small number of statistical parameters, which is often the case.

At each level of the statistical characterization it is essential to consider the correla

tions between parameters, as independent parametersare uncommon. Computing and using

a variance-covariance matrix of the parameters at each level of the hierarchy can properly

account for parameter correlations and, furthermore, provides an excellent conduit for incor

porating parameter mismatch information into circuit models. These variance-covariance

matrices are one of the most important cornerstones of our methodology.

1.4 Main Contributions

The field of analog testing and characterization is still relatively new and there

are many theoretical and practical issues which have not yet been explored. The previously

published research in these areas is reviewed in Chapter 2. We believe that our main

contributions to the field are as follows:

1. Use of statistical confidence intervals for analog testing. This technique allows the

errors due to noise and model inaccuracies to be quantified and properly considered

during testing.

2. Analog ATPG for linear circuits using optimal design. Techniques based on opti

mal design of experiments are more theoretically sound and yield better results than

previous techniques.
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3. Analog ATPG for nonlinear circuits using optimal design. Combining Newton-Raph-

son iterative techniques with optimal design enables the advantages discovered for

linear circuits to be extended to nonlinear circuits.

4. Design for test by incorporating ATPG into analog design cycle. Minimizing test time

is almost never currently considered in the analog design process; our analog ATPG

techniques allow test time to be estimated during design.

5. Optimal test structures. We have defined the concept of optimal test structures and

proposed methods for designing them.

6. Direct statistical circuit characterization. Expected values, variances, and correlations

of higher-level parameters are calculated from those of lower-level parameters, with

proper accounting for parameter correlation and mismatch.

1.5 Organization

This dissertation is organized as follows. Chapter 2 describes previous work in

the area of analog testing and characterization and the relationship between the previous

work and the content of this dissertation. Chapters 3 and 4 describe the testing and

ATPG algorithms, first for circuits which are linear in their statistical parametersand then

for nonlinear circuits. Chapter 5 discusses techniques for optimal test structure design.

Chapter 6 presents our algorithms for statistical characterization. Chapter 7 concludes.
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Chapter 2

Previous Work

This chapter reviews previously published work in the areaofanalog testing. Most

of the previous work in testing of electrical systems has been directed at digital circuits,
and efficient techniques have been developed for testing both combinational and sequential

digital systems [112, 41]. These digital testing techniques are based on the single stuck-at-
O/stuck-at-1 fault model and the controllability and observability of each fault.

Unfortunately most ofthedigital testing ideas cannot bedirectly applied to analog
systems. One of the major differences is that analog systems are, in general, much more
difficult to model because second- and higher-order effects can significantly impact system
performance. The binary nature of digital circuits is much simpler to model.

Another major difference is that analog circuits are susceptible to both catas

trophic and parametric faults, while digital circuits are usually susceptible only to catas
trophic faults. Catastrophic faults consist of stuck-at faults, open faults, and bridging
faults. The parametric fault class consists of faults that result in performance outside ac
cepted limits and are usually associated with variations in design parameters (e.g. passive
component values, device sizes) [75, 78, 124].

The previous research in analog testing can be classified into five main categories:
practical approaches, fault diagnosis, fault-based testing, performance-based testing, and
design for testability. Each of these categories will be considered, in turn, followed by
comments on the relationship between this previous work and the testing methodology
presented in this dissertation.
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2.1 Practical Approaches

Many of the most frequently discussed analog testing problems concern very prac

tical issues relating to the automatic test equipment (ATE) which is used to test analog
and mixed-signal circuits. The mixed-signal tester market is growing at a faster rate than

the logic tester market because the percentage of ASICs containing analog components has

increased dramatically over the past decade; 40% of all VLSI ASIC devices contain some

analog components. LTX and Teradyne dominate the market, with 45% and 30% of dollar

volumes, respectively. A typical mixed-signal test system costs $1.5 million [74].

These expensive test systems require input files that specify which inputs are to

be applied and which outputs are to be measured. These input files are referred to as the

test program. In the majority of cases, these test programs are manually created, with an

accuracy ranging from 100% to as little as 10% [97]. A surprising amount of research has

been directed toward the languages for specifying the test input/output vectors for specific

test equipment [12] and, in particular, toward automating the conversion of tests from the

designers' environments to the specific languages used by the testers [29, 46].

Tektronix sells a Waveform Analysis and Verification Environment which trans

lates test vectors into the format needed for common ATE equipment [91]. LTX offers a

similar product called enVision, which they describe as a "visual test programming lan

guage" [94].

Cadence's DANTES (Design and Test Engineering System) is an integrated de

sign and test environment and a tool set for developing tests for analog and mixed-signal

ICs. Test tools are tightly integrated with the design tools to let engineers consider test

parameters, tester specifications, and testability issues during the design cycle, rather than

at its end. DANTES then produces a test program for a specific tester [92].

These commercial analog testing products aid in the writing of test programs in

the specific languages used by various mixed-signal testers, but they have generally been

quite disappointing because they focus exclusively on practical issues like language and

number of inputs and outputs. Determining which tests to apply is still a human decision.

In 1989 Runyon predicted that we were still 10 years away from any commercial product

which would achieve automatic test program generation [105]; unfortunately, his prediction

has held true.
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2.2 Fault Diagnosis

Fault diagnosis is the process of locating faults in a system, if any exist, by observ

ing the system outputs under various test conditions. Fault diagnosis is useful because it

permits the designer to pinpoint faulty components so that they can be repaired, replaced,

or redesigned. It can also be useful in a production test environment, where circuits with

no faults are passed and circuits with one or more faults are rejected.

As integrated circuits have increased in size and functionality, fault diagnosis has

decreased in importance because defective ICs are generally discarded rather than repaired.

In production testing it is usually not necessary to know why a particular IC has failed,

merely that it has failed. The exception to this is during system prototyping and debugging,

during which fault diagnosis can provide important information about how to modify the

design to make it more robust.

Analog fault diagnosis received a thorough theoretical treatment in the 1970s.

Duhamel and Rault presented an excellent review of the topic [30]. Here we summarize

some of the more recent work.

2.2.1 Linear Network Theory

For systems in which the outputs vary linearly with respect to the possible faults,

linear network theory has been used by many researchers to perform fault diagnosis. The

underlying concept is that a system of linear equations is derived which relates the system

outputs to the possible faults; solving this system of equations diagnoses any faults present

in the system.

The testability of a system generally refers to the solvability of this system of

diagnostic equations. Saeks developed a quantitative evaluation of this testability in [108].

Temes gave a unique measure of how readily elements can be diagnosed from test terminal

measurements, computed from a set of test points on the circuit under test [136]. And Sen

linked the measure of solvability of the system to the fault diagnosis equations [115].

Hemink extended this approach to nonlinearsystems [53, 52]. Hecombined a rank-

test algorithm with statistical methods to find sets of dependent parameters and determine

whether it is possible to calculate a certain parameter with sufficient accuracy. Saeks,

Visvanathan, and Sangiovanni-Vincentelli analyzed the testability of dynamic systems using

a similar approach based on sensitivity analysis and the solvability of the resultant equations
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[109, 145].

When the system of diagnostic equations is rank deficient and hence not solvable,

one can either add more observable test nodes or ignore some of the parameters. An

interesting method for selecting additional test nodes using Boolean algebra is presented in

[100], and a refinement is presented in [98, 99] which improves the computational complexity

from exponential to 0(fp2), where p is the number of nodes and / is the number of faults.

To ignore some of the parameters, one can analyze a circuit's ambiguity groups,

which are the sets of linearly dependent parameters which cause the diagnostic equations to

be rank deficient. Finding ambiguity groups is a computationally intense process which has

been studied by many researchers over the years [7, 115, 5, 133, 65]. Once the ambiguity

groups are found, some of the parameters can be assumed to be fault free (set to their

nominal values) to make the diagnostic equations solvable [67].

Several researchers have applied these linear network theory ideas to the decompo

sition of large networks into subnetworks [110, 62, 131]. These approaches facilitate testing

by localizing the effects of faults to specific subnetworks.

2.2.2 Fault Dictionaries

The fault dictionary is one of the oldest approaches to analog fault diagnosis, and

it is still frequently used in industrial environments. Its popularity is due to:

1. The method is easily understood by test engineers,

2. The fault dictionary is easily upgraded,

3. The on-line computation time is small,

4. It can test both linear and nonlinear circuits, and

5. It measures only a small number of test nodes.

To create a fault dictionary, one simulates the fault-free circuit and each of the

possible faults, recording the output from each simulation. When a circuit is tested, the

measured output is compared to each simulated output and the best match is determined.

Large fault dictionaries require very large storage requirements and long search times; to

limit the number of dictionary entries, these methods always consider only one fault at a
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time and almost always consider only catastrophic faults, since the number of parametric

faults is unlimited for real-valued parameters.

Augusto presented a typical implementation in [3], in which he carefully considers

manufacturing variations among all parameters. First one good and / faulty circuits are

generated, where / is the number of faults. Then a Monte Carlo analysis is performed on

each of the / + 1 circuits, with statistical variation of the circuit parameters. The node

voltages are collected and their means and standard deviations are calculated. Finally,

these statistical parameters are used to construct the ambiguity sets for each node (using a

heuristic algorithm) and to select the test nodes in order to maximize the fault coverage.

To determine which faults need to be included in the fault dictionary, most imple

mentations use inductive fault analysis (IFA) [116]. This technique, which is also used exten

sively on digital circuits, involves randomly placing circular "defects" of various radii onto

the layout and recording the shorts and opens created by each simulated defect. Sachdev

uses IFAdirectly in his fault dictionary approach [107] to generate realistic fault dictionaries.

2.2.3 Artificial Intelligence

The most popular commercial fault diagnosis systems use artificial intelligence

(AI) approaches. In the first AI approach, measurement effects were propagated backwards

though the circuit model until a fault was found [73]. The DC voltage was measured at

different nodes. The AI engine deduced the values of parameters within the circuits by

propagating the effect of measurement through the model. Faults were inferred from the

detection of inconsistencies and located by suspending constraints within the model.

Electra is a commercial product based on a different AI approach. Electra

uses behavioral models and a special troubleshooting decision tree to diagnose errors, similar
to a binary search [117, 101].

AutoTEST is another Al-based commercial product which performs testability

analysis, generating both quantitative and qualitative descriptions of the testability of a

given design. The quantitative measures of testability are:

1. Fraction of faults detected,

2. Fault isolation resolution, and

3. Average ambiguity group size.
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The qualitative descriptions include identifying feedback loops and unique circuit configu

rations which are difficult to test. The qualitative analysis consists of a set of design rules
that are applied to the circuit [61].

2.2.4 Summary

The problem of determining precisely what is wrong with a circuit has been be

coming less and less important for the past three decades as more and more functionality

is integrated on-chip. Since defective chips are discarded rather than repaired, the more

important questions for most production testing are simply whether or not a circuit is faulty

and whether or not a circuit meets its specifications. Thus fault diagnosis is overkill, provid

ing more information than is required. To the extent that this overkill requires more testing

time or cost than would be necessary to answer the aforementioned simpler questions, fault

diagnosis is wasteful of precious testing resources.

Many researchers claim to be improving testability by increasing the rank of the

fault diagnosis matrix by adding additional circuitry to improve the control and/or ob

servability of the circuit, e.g. additional pins or an analog scan architecture [102]. These

"testability improvements" may actually increase testing cost, so an extremely careful anal

ysis should be conducted before blindly adopting these proposed improvements; when the

goal of testing is to verify circuit functionality and specifications, rather than to diagnose

faults, then these testability improvements are rarely of value.

2.3 Fault-Based Testing

Analog circuits are traditionally tested by directly measuring their specifications.

This approach has been increasingly questioned over the past decade due to high implemen

tation costs, the difficulties associated with quantifying the effectiveness of the tests, and

difficulties in accessing embedded analog sub-blocks [102]. Many researchers have promoted

fault-based testing as an alternative to specification-based testing. The idea comes from

the testing of digital circuits: since circuits fail because they contain faults, we assume that

a circuit meets its specifications if we can verify that it does not contain any faults. In the

testing of digital circuits it is generally assumed that at most one fault is present in any

given circuit, and most of the fault-based approaches discussed in this section make that

same single-fault assumption.



17

2.3.1 Fault Modeling and Simulation

In order to apply fault-based testing techniques one must determine which faults

can occur and which faults are to be considered during testing. Daugherty presented the

basic concepts of analog fault simulation in [26]. Early work was based on experimental

manufacturing defect statistics and showed that open faults and bridging faults are the

most frequent catastrophic fault types [70, 148, 157].

Soma and Meixner developed analog fault models by performing Monte-Carlo

defect simulations [124, 75]. Meixner models faulty analog behavior as modifications to the

nominal macromodel. Nagi published some results on fault modeling for both catastrophic

and parametric AC and DC faults in passive and active components [84]. Faults in active

components can be modeled at the behavioral level, which allows the method to be applied

to larger circuits than methods which only consider the circuit level.

2.3.2 Topological Approaches

Several testing methods have been developed which are based directly on these

fault models and the topology of the circuit under test. Wey and Saeks represent a circuit

as a set ofdecoupled state machines togetherwith algebraic connection equations. Using this

model they simulateall possible single and double catastrophic faults, and have developed an

automatic test pattern generation method for circuits with both linear [152] and nonlinear

[153] input/output transfer functions.

Marlett developed a path sensitization method which can be used for DC test

generation using a resistive shunt model [72]. Naiknaware published a similar idea which

can be used hierarchically. A test model is stored with each generic block in a cell library.

The test model is represented by a sequence of tests to be performed on the block. To

generate the test plan for the chip, Naiknaware finds the chip input values that need to

be applied to produce the desired block inputs and the chip output values that need to be

measured to detect the appropriate block outputs [86].

2.3.3 Catastrophic Fault Coverage

Catastrophic faults are generally considered to be random defects that cause fail

ures in various components. They may be structural deformations like short and open

circuits, or cause large variations in design parameters (e.g., a change in a single transis-
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tor's length-to-width ratio caused by a dust particle on a photolithographic mask) [78].
Several researchers have developed automatic test pattern generation techniques for de

tecting catastrophic faults in analog systems using DC tests. Given that the designer can

identify the critical parameters in the design and supply a model of process fluctuations,

Milor described an efficient algorithm in [78]. Her algorithm is based on fault signatures

similar to those used for constructing fault dictionaries, but seeks only to distinguish be

tween faulty and fault-free circuits, rather than to fully diagnose causes of failure. She

concluded that observing the primary outputs of an op amp and low-pass filter during DC

tests detects only 81% and 40% of all catastrophic faults, respectively. Soma reached a

similar conclusion in his study of catastrophic fault coverage of DC parametric tests on

amplifiers, in which he reported coverage of less than 80% [125].

Another DC test generation technique for detecting catastrophic failures was pre

sented by Devarayanadurg in [27]. The algorithm first finds those values of the process

parameters which will cause the faulty and good circuits to behave as close to each other

as possible, and then finds the corresponding input vector which will detect the fault for

this worst case. Thus the test generation problem is formulated as a minimax optimization

problem and solved iteratively as successive linear programming problems. An analytical

fault modeling technique based on manufacturing defect statistics is used to derive the fault

list for the test generation. Devarayanadurg extended the method to AC tests in [28], in

which he determines the time points of a transient analysis at which circuits should be

compared to maximize difference between the faulty and non-faulty circuits.

Bernier presented a comparative analysis of neural networks, simulated annealing,

and genetic algorithms in the determination of input patterns for testing analog circuits

for catastrophic faults. In his formulation the objective is to determine a test signal that

maximizes the quadratic difference between the nominal response and the faulty one due

to a defect in the circuit [8].

While techniques based on catastrophic faults dominate research in the testing of

digital circuits, they are of only limited use when testing analog circuits. Analog circuits

must be tested for parametric faults, and the tests for parametric faults will almost always

detect any catastrophic faults as well.
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2.3.4 Parametric Fault Coverage

Parametric faults are caused by statistical fluctuations in the manufacturing envi

ronment. Since these statistical fluctuations can cause violations of the circuit specifications,

parametric faults are just as important as catastrophic faults; they are, however, much more

difficult to detect. Milor presented algorithms for detecting parametric faults in [76]. Her

approach is based on setting upper and lower bounds on the permissible value of each pa

rameter in the design and then testing the circuit to determine that no parameter falls

outside of its acceptable range. In [19] Chao and Milor generalized this approach to include

behavioral models and both catastrophic and parametric faults.

For circuits with a linear input/output relationship, several researchers have pub

lished interesting approaches. Tsai formulated the problem of detecting parametric faults

as a quadratic programming problem [142]. Nagi developed DRAFTS (DiscRetized Analog

circuit FaulT Simulator), which is an efficient AC fault simulator for linear analog circuits.

Her approach maps good and faulty circuits to the discrete Z-domain, and then uses a

search technique in the frequency domain to determine test frequencies for a given set of

faults. At every chosen input frequency, simulations are performed to determine whether

that frequency could be used as a test for a fault, until all faults have been covered [85]. Nagi

uses inductive fault analysis (IFA) [116] to generate the faults to be considered, and only

specific discretized values of parametric faults are considered. Balivada published a similar

approach based on time-domain measurements and pole-zero analyses. To determine a test,

he chooses the input which maximizes the error for each fault. After determining a test,

he performs fault simulations on the remaining set of faults and eliminates the detected

faults from the fault list. Balivada claims that his approach does not suffer from the error

introduced by the Laplace to Z-domain transformation of the Nagi method [4]. The main

shortcomings of these approaches seem to be the single-fault model assumption and the

failure to address the issue of manufacturing tolerances of the non-faulty parameters.

Slamani proposed a fault-based testing approach for parametric faults which is

very similar to the sensitivity-based fault diagnosisalgorithms. His approach usessensitivity

analysis to solve for the values of the internal parameters [119, 120], In the case of linearly

dependent parameters, one must add additional test points to make the sensitivity matrix

full rank. In [121] Slamani used sensitivities to study fault masking, fault dominance, fault

equivalence, and non-observable faults. For each fault he picks the measurement which
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maximizes sensitivity of the output node with respect to the candidate fault.

Hamida presented a similar sensitivity-based approach. He uses sensitivity analy

sis to formulate a flow problem which is solved with linear programming to deduce which

parameters should be measured, for single faults [43] and for multiple faults [44, 45]. The

approach can be viewed as fault diagnosis for only a limited number of faults. The algo

rithm finds adequate tests for detecting catastrophic and parametric faults, but performs

no optimization to find the best tests. Furthermore, the method is complicated and expo

nential in CPU time complexity for the general case of testing for an arbitrary number of

simultaneous faults.

An algebraic approach to test generation for linear analog circuits was presented

in [71]. The method is based on frequency domain analysis and expressing theinput/output
transfer function in a sum-of-products form. Thefaults considered aresingle abnormal value

changes of elements, e.g. resistors, capacitors, and inductors. The effects of manufacturing

tolerances are considered in test generation, and a procedure is proposed to determine

the output ranges for acceptance or rejection. The method indicates which elements in

the circuit are hard to test. Another fault-based multifrequency test generation and fault

diagnosis procedure for linear circuits was proposed by Mir in [80]. This procedure selects

a minimal set of test measures and generates the minimal set of frequency tests which

guarantee maximum fault coverage and maximal fault diagnosis. Mir chooses several self-

testable linear analog circuits as examples.

2.3.5 Ordering of Tests

In the area of test ordering, Milor described an algorithm for minimizing average

test time by ordering the tests in such a way that those which are most likely to detect

faults are performed first [77]. Given a statistical description of the fabrication process, the

algorithm minimizes the testing time required to verify all of the circuit specifications. This

problem reduces to finding the best choice and order of the specification tests such that all

of the faults in the model are tested.

The only weakness in this approach is the requirement for a statistical description

of the parameters of the design, which may be difficult to obtain when the parameters of

the design are behavioral model parameters rather than SPlCE-level parameters.
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2.3.6 Types of Input Stimuli

Circuits are tested using various types of input stimuli, the most common being

simple DC voltages for detecting DC faults and sinusoids for detecting AC faults.

At least three researchers have studied time-domain techniques. Chin analyzed

the transient response to step inputs with multivariable discriminant analysis [21]. Dai and

Souders described a time-domain approach based on sensitivity analysis [25]. Taylor devel

oped testing techniques using transient response analysis for linear sub-systems embedded

within mixed-signal ICs [135].

Borrowing an effective technique from digital testing, Sloan proposed the use of

random waveforms in [122]. Russell expanded on this idea in [106], presenting two new
types of input stimuli:

1. Residual multiple frequency testing. This technique is derived from concurrent error

detection methods employing 'information redundancy' techniques used for testing

digital circuits. Two information-redundant pilot signals, whose frequencies lie just

outside the operational bandwidth of the analog circuit under test, are continuously

applied to the circuit, and their output values are monitored. Fluctuations in the

output level of these pilot signals, which are generated on chip, indicate a fault in the
circuit.

2. M-sequences. These sequences are similar to the pseudo-random binary signals used
to test digital circuits. The output signature is used to determine whether or not the

circuit is fault free. M-sequences are DC level, not bit sequences. A periodic pseudo-

noise signal is applied to the circuit under test, and the Weiner-Hopf equation is used
to estimate the impulse response of the circuit.

Finally, Schreiber and Corsi apply a sequence of pulses with varying amplitude
[111, 22].

2.3.7 Power Supply Current Monitoring

Several researchers have noted that monitoring the power supply current of the

circuit being tested can detect many catastrophic faults. For digital circuits this technique
is known as Iddq testing [90, 40], and is based on the observation that short-circuit and

open-circuit faults often dramatically impact the quiescent power supply current, especially
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for CMOS logic circuitry with most transistors connected to either the power supply or
the ground. Applying similar techniques to the testing ofanalog and mixed-signal circuits
was first proposed in 1991 [6]; DC faults are detected by monitoring the quiescent power

supply current. This technique was further developed in [14], in which the authors reported

that for a typical circuit, 80% of the catastrophic faults produce a change in the quiescent

power supply current of at least 25%. Robson demonstrated how M-sequence and current

monitoring can be combined to produce a system level technique for testing mixed-signal

circuits, with much of the test hardware being obtained from reconfigured digital system

hardware [103].

In [95, 96] the authors proposed a method for identifying AC faults by using the

spectrum of the power supply current to construct a fault dictionary. [42, 149] presented a

similar approach, in which time-domain testing followed by spectral analysis of the power-

supply current is used to detect both DC and AC faults.

In [82] Miura tested an A/D converter for catastrophic faults by measuring the

integral of the power supply current during one clock period in which a test vector was

applied.

This method is not sensitive enough to detect many parametric faults; most of the

previously published works in this area claim to detect only catastrophic faults.

A much more serious problem with some of these methods stems from neglecting

the fact that the power supply nodes are often designed to have a very high capacitance

to ground. This capacitance severely limits the practical usability of any technique which

relies upon power supply signatures rather than merely quiescent power dissipation, since

the large capacitance smooths out the error signatures. The published papers which examine

power supply signatures are based only upon simulation, and examining their simulation

results reveals that realistic power supply capacitance was not considered.

Note that the power supply current should be considered an output of the circuit,

just like any other output. Therefore all of the techniques described in this dissertation are

directly applicable to monitoring power supply current. A recent study [24] measured the

cross-correlation between power supply current and voltage output for a low-pass Sallen-

Key filter. They concluded that power supply current is more sensitive for detecting faults

in MOS transistors and output voltage is better at detecting faults in passive components.

[2] concluded that the powersupply current and output voltageare complementary in terms

of achieving a high percentage of fault coverage with a high degree of confidence. The best
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approach, therefore, is to simply consider the power supply current as an additional circuit

output rather than as a special kind of analog test.

A related testing technique is to consider the power supply voltage as a controllable

circuit input [1]. By varying the power supply voltages it is possible to expose faults within

the circuits which are difficult to detect by conventional input voltage stimulation.

2.3.8 Summary

While considerable academic research over the past two decades has been devoted

to fault-based testing methods for analog systems, these methods are not generally being

used in production environments. Some of the reasons for this lack of acceptance are:

1. The methods are perceived as too complicated,

2. Some of the methods may require information that is generally not readily available,

such as statistical distributions and correlations among behavioral model parameters,

3. The single-fault assumption is not considered realistic for parametric faults, and

4. Handling multiple faults by enumerating all possible fault combinations is prohibitive

in memory usage and CPU time.

One of the most important problems with fault-based methods, however, is that

testing for all of the faults does not generally guarantee that the performance specifications

will be met. This shortcoming makes it necessary to test directly for performance anyway,

so the fault-based testing becomes irrelevant or, at best, of only minor value. The reason

for this problem is that a fault-free circuit is defined to be any circuit whose parameters

fall within their specified bounds, and designing a circuit which meets specifications for all

possible permutations of non-faulty parameter values is extremely difficult. When this is

possible, the resulting design will be overly conservative and hence probably not competitive

in performance. In addition, there is the problem that some circuits with parameters outside

of their fault limits are perfectly functional and meet their specifications; these circuits will

be wasted if discarded because of the results from a fault-based testing method.
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2.4 Performance-Based Testing

The major alternative to fault-based testing is performance-based testing. Perfor

mance-based testing refers to testing techniques that verify circuit performance specifica

tions. The most direct form of performance-based testing is the direct measurement of all

circuit specifications, which is the way in which almost all analog circuits are presently

tested [107]. But there are several other approaches which have been developed, including

the one described in this dissertation, which are more efficient and at least as effective at

distinguishing circuits which meet specifications from those which do not.

Souders and Stenbakken developed automatic test pattern generation algorithms

for verifying performance specifications using linear models based on the sensitivity of

the output with respect to the internal process/model parameters. These linear models

can be derived either from simulation [132] or from manufacturing data [129] using QR-

decomposition. Souders and Stenbakken select test points by using a greedy method, itera-

tively picking the test point to which the circuit is the most sensitive, given that the previous

tests have been applied. The chosen test points are reasonable, but in no sense are they

optimal. Souders and Stenbakken did not address the issue of circuits which are nonlinear

with respect to their process/model parameters and they never developed a satisfactory

method for dealing with ambiguity groups formed by linearly dependent parameters.

Leenaerts calculates the mathematical relation between DC parameters and per

formances, then uses DC measurements to verify performance intervals [64]. His approach

looks promising, but the algorithm is only illustrated with one parameter, measurement

noise and modeling errors are not considered, and he does not propose a method for auto

matic test pattern generation.

Fares proposed an analog testing method which uses fuzzy optimization models to

determine whether a circuit is good or bad [32]. For example, measurements which are close

to their specifications are treated with more skepticism than measurements which clearly

exceed their specifications. Fares raises the issue of "error" or uncertainty in testing, which

is an important issue that few other researchers have addressed; in this dissertation "error"

is dealt with as a statistical phenomenon.

Lindermeir recently proposed an interesting approach based on characteristic ob

servation inference (COI) [66]. In many situations it is prohibitive to directly verify the

circuit specifications due to the test equipment costs. This approach considers a set of
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reasonable input stimuli and measurements that can be performed with lower-cost test

equipment. From this set a minimal number of measurements is automatically selected

that represent a set of observations characterizing the state of the circuit under test with

respect to parametric faults. For each given circuit specification, a corresponding test in

ference criterion is computed, based on logistic discrimination analysis. By applying these

criteria, the satisfaction or violation of the given circuit specifications can be inferred from

the observations of the circuit under test. They applied the COI method to a complex oper

ational amplifier and found encouraging simulated results with respect to parametric faults

as well as to catastrophic faults. Their main contribution, the idea of verifying performance

specifications by doing simple measurements instead of direct measurements, is a valuable

insight.

2.5 Design for Testability (DFT)

Design for testability encompasses a wide range of techniques which involve mod

ifying circuits to reduce their testing cost. A useful survey of the most common design for

testability techniques for analog and mixed-signal circuits can be found in [156].

Rijsinge proposed a statistical approach; he evaluates the number of test vectors

required to measure a given parameter with a specified accuracy [144]. The technique is

geared more toward fault diagnosis than production testing, but the testing applications

are evident.

Most researchers in this area have attempted to develop circuitry which permits the

various analog sub-blocks to be individually controlled and observed in isolation, e.g. [56].

This can be accomplished by signal multiplexing [147] or the use of MOS switches to isolate

filter stages [123]. •

For op-amp-based modules, Renovell proposed some specific circuit modifications

that can be used to bring controllability and observability to the frontier of each embedded

module by creating transparent paths between external and internal I/Os. The key point of

this transformation is to permit each analog stage to have a test mode for which it is con

verted into a follower stage. Adaptive solutions are proposed depending on the availability

of on-chip digital resources. The testability cost is shown to be very low in terms of addi

tional circuitry, number of extra pins, analog response penalty, and test management. Bratt

proposed a similar architecture in which control voltages are injected into an operational
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amplifier with a configurable internal architecture. Bandwidth performance loss is minimal

and area overhead is approximately 5% for each modified operational amplifier [11].

In general, DFT schemes based on some kind of a structural division of the circuit

have been largely unsuccessful because of their impact on the circuit performance [107].

Analog scan and analog built-in-self-test are efforts to make analog circuits more testable

without sacrificing performance.

The main use for the techniques described in this dissertation in design for testa

bility lies in estimating the number of tests which must be applied to fully verify circuit

functionality. Given several candidate circuit architectures, it is straightforward to run

the automatic test pattern generation algorithms described in Chapters 3 and 4 on each

candidate architecture and compare the number of test vectors generated for each.

2.5.1 Analog Scan

The idea behind analog scan is that a large number of signal storage cells can be

chained together and used to shift in all of the input signals and shift out all of the output

signals for each internal analog block, thereby providing full DC control and observability

over the internal analog modules while using only a few extra pins. Scan techniques are

used extensively in the testing of digital circuits.

Fasang proposed a partial scan architecture for mixed-signal circuits in 1988 [34,

33]. He uses scan methods for the digital sections and a special arrangement ofmultiplexors
and additional test points for the analog blocks.

Signal storage cells for a fully analog scan technique have been presented by Wey,

both for voltages [150] and for currents [151]. These cells allow voltages and currents to be

shifted into and out from internal nodes, but use a large area.

Soma developed analog scan cells for several specific circuit architectures. In [123]

he presented an analog scan technique for active analog filters. In [127] he presented a

technique for switched-capacitor filters. And in [126] he presented a general current-based

analog scan cell. The general cell uses current to represent the analog signal to be scanned

and otherwise functions the same as a digital scan cell.

A new mixed-mode boundary scan architecture was presented by Lee in [63]. The

digital part of this architecture complies with the IEEE Standard 1149.1. For the analog

part, Lee proposed a new boundary scan cell design and defined four analog test instructions.
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2.5.2 Built-in Self-Test (BIST)

Although the difficulty of testing microelectronics products has increased, the cost

of embedding testability enhancements has decreased [13]. This trend explains the increas

ing interest in built-in self-test. For BIST techniques, a chip contains extra circuitry which

enables it to test itself.

As an example, consider the fault dictionary approach to testing. Hatzopoulos

published a method for performing on-chip fault diagnosis using a "healthy signature dic

tionary" which is prestored in an EEPROM chip [50]. The nodes of excitation, the test

points, and the sequence of voltage or current measurements are predefined. A "self-test"

of the circuit "passes" when the measurements agree with the corresponding prestored
signatures, within certain tolerance bounds.

Most research on analog BIST has been directed at specific circuits. Toner pub

lished extensively on using BIST for A/D converter testing [137, 138, 139, 140, 141]. He
developed on-chip methods to automatically verify frequency response, signal-to-noise ratio,

gain tracking, inter-modulation distortion, and harmonic distortion using 8.6 mm2 ofsilicon

on a BiCMOS 0.8 pm process.

Najad presented comprehensive approaches for on-chip measurements of passive

components [88]. The method relies upon precision reference components, which must be

located off-chip. Olbrich designed a switched-current memory cell with BISTwhich achieves

95% coverage for shorts and 60% coverage for open circuits [93]. Chatterjee proposed a low-
cost BIST technique for linear analog circuits using DC checksum codes [20].

Mir et al. published BIST techniques for fully differential circuits in [79] and a
review of general analog BIST techniques in [81]. Finally, Lopresti wrote about some

experimental general analog BIST techniques in [69].

With the continuously decreasing cost of silicon and the increasing cost of mixed-

signal testers, BIST is certain to become an important way of testing analog circuits. The

performance impact and area impact of the BIST circuitry must be minimal, however, for

the technique to be acceptable to designers. Furthermore, most BIST techniques developed
to date are very circuit-specific and require extensive designer involvement.

Note that BIST does not eliminate the need for production testing; at the very

least, a circuit must be powered on, the self-test sequence must be initiated, and an output
signal must be observed to determine whether or not the self-test was successful.
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Additionally, note that the analog testing techniques described in this dissertation

do not depend upon whether the testing circuitry is on-chip or off-chip, so the techniques

can be used either with or without BIST.

2.6 Conclusion

The testing methods proposed in the subsequent chapters of this dissertation have

important advantages over the previous work described in this chapter. The methods de

scribed in this dissertation are performance-based, so circuit specifications are conclusively

verified. In addition, ours is one of the first statistical approaches to the analog testing

problem. The statistical methods allow us to:

1. Consider all possible parametric and catastrophic faults in all possible combinations,

2. Handle large circuits by using behavioral models, without knowing the statistical

distributions of the behavioral model parameters,

3. Account for manufacturing tolerances,

4. Account for measurement noise and modeling errors,

5. Automatically generate optimal test vectors,

6. Perform statistical hypothesis testing, and

7. Handle circuits that are nonlinear in their input/output relationship and nonlinear

with respect to their parameters.

All of the above can be accomplished with very reasonable memory and CPU time require

ments.
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This chapter describes a new algorithm for automatic test pattern generation

(ATPG) for a general class of analog systems, namely those circuits which can be efficiently

modeled as a linear combination of statistical parameters. The algorithm is based on the

statistical technique of I-optimal experimental design, in which test vectors are chosen to

be maximally independent so that circuit performance will be characterized as accurately

as possible in the presence of measurement noise and model inaccuracies. This technique

allows analog systems to be characterized more accurately and more efficiently, thereby

significantly reducing system test time and hence total manufacturing cost. Since testing

currently accounts for approximately 30% of total manufacturing cost, these algorithms are

expected to make a significant impact on the overall cost of designing and manufacturing

analog systems.

3.1 Introduction

In this chapter we present an algorithm for deriving a minimal set of test vectors

for fully testing the performance specifications of a general classof analog systems. The class

of systems to which the algorithm can be applied are those systems which can be modeled

in a linear function space, i.e. the system output function must be a linear combination of



30

the relevant statistical parameters. Mathematically, this model is formulated as

y = Po9o(xo, xu ...) + Pm(x0, xu ...) + ... + /?p_i^p_i {x0, a?lt...) + e (3.1)

where Y is the system output vector, {#,} is a set of arbitrary user-specified basis vectors

that are functions of the system inputs {x0,xi,...}, & is the coefficient of the iih basis

vector, and € is an error term. Many analog systems can be accurately modeled in this

fashion. Note that the {#,•} basis functions themselves do not have to be linear.

The algorithm is based upon the statistical theory of optimal experimental design,

in which test vectors are chosen to be maximally independent so that the system perfor

mance Y will be characterized as accurately as possible in the presenceof measurement noise

and model inaccuracies. More specifically, we wish to choose the test vectors to minimize

the average standard error of the predicted output, thereby maximizing the likelihood that

we will be able to conclusively verify that the performance specifications have or have not

been met after a minimum number of test vectors. If the minimum number of test vectors

is not sufficient to conclusively verify the performance specifications, then additional test

vectors are selected and applied, one at a time, until the standard error of the predicted

output is low enough to verify the performance specifications. Linear regression is used to

analyze the results of the tests and compute the required standard errors.

This chapter is organized as follows. Section 3.2 presents a simple example to

illustrate someof the relevant basicconcepts and motivate this research. Section 3.3 presents

our algorithm for selecting the optimal test set and analyzing the test results. Section 3.4

discusses system modeling issues and, in particular, the selection of the {#,} basis vectors.

Section 3.5 presents the results of applying our algorithm to some actual linear analog

systems and Section 3.6 concludes.

3.2 Motivation

Consider a simple system of six current sources connected in parallel, as shown in

Figure 3.1. Each of the current sources can be turned on or off by the controlling inputs

£5, £4,..., xq. The sources were designed to each output one unit of current when on, but

may actually output slightly more or slightly less than that amount due to manufacturing

nonidealities.

Suppose one wishes to test this system to insure that the amount of current each
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-A V"A »8-A *2-A Xi-A »crA1 1 1 1 1 1

Figure 3.1: Six switchable current sources connected in parallel.

£5

Test Set 1

X4 %3 X2 X\ Xq

Test Set 2

X& X4 £3 £2 X\ Xq

1 0 0 0 0 0 0 0 10 0 0

0 10 0 0 0 0 ]L 0 0 1 0

0 0 10 0 0 0 1L 1 0 0 1

0 0 0 10 0 0 ]L 1 1 0 0

0 0 0 0 1 0 1 ]L 0 0 0 0

0 0 0 0 0 1 1 ]L 1 0 1 0

Table 3.1: Two sets of test vectors for testing current sources.
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output

source outputs is within 1% of its nominal value. There are six independent current sources

which must be measured, so at least six test vectors must be applied. Furthermore, suppose

that the ammeter used to measure the current at the output is known to be accurate to

within 0.5% of the nominal current.

The simplest set of test vectors that can be imagined is probably Test Set 1 in

Table 3.1, which tests each current element in turn by setting one of the X{S to 1 while

leaving the others at 0.

An alternative set of possible test vectors, which also happens to be a provably

optimal set of test vectors for this circuit, is shown as Test Set 2 in Table 3.1. Both sets

of test vectors can be used to estimate the actual current that each source outputs. The

two test sets differ, however, in the accuracy with which they can make this measurement.
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Figure 3.2 shows the 99% confidence intervals which could be constructed after applying

each set of test vectors to a randomly-generated deterministic system. For Test Set 1 it

can be concluded (with > 99% confidence) that the x4 and £3 current sources fall within

their specifications, but it is not possible to draw any definite conclusions about the other

current sources. For Test Set 2, on the other hand, the confidence intervals are much tighter

and it can be concluded (with > 99% confidence) that the £5 and £0 current sources fall

outside their specifications and that the £4, £3, and £2 current sources fall within their

specifications. Thus the simple test set leaves four estimates uncertain while the best test

set leaves only one estimate uncertain.

A common technique for tightening the confidence intervals is to repeat each test

vector several times and then average the results. Each test vector would have to be applied

five times, however, for a total of 30 tests, to obtain the same confidence intervals that can

be found from one application of the six vectors in the best test set.

From this simple example it is clear that choosing a "good" set of test vectors is

desirable because it will lead to more accurate characterizations of system output, and hence

possibly smaller test sets. Good test sets are not intuitively obvious, however, even for very

simple systems. In the remainder of the chapter we discuss some new ATPG techniques

which have been developed and implemented for automatically finding these good test sets

for linear systems such as these current sources.

In this chapter we assume that a suitable linear behavioral model for the system

exists (or can be easily derived from sensitivity analysis), and wefocuson a newoptimization

algorithm for selecting the best set of test vectors.

Because of measurement noise and modeling inaccuracies, the system output pre

dicted from a finite number of measurements will never match the actual system output

precisely. Thus we propose the use of statistical confidence intervals to verify system per

formance in the presence of measurement noise and model inaccuracies, with which we can

guarantee (with 99% probability) that the actual system output falls within the confidence

interval. The test points are chosen to make these confidence intervals as tight as possible.

3.3 Algorithm

The goal of testing is to determine whether a circuit meets its specifications. Given

the behavioral model shown in Equation 3.1, we can determine whether the specifications
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Figure 3.2: (a) Confidence intervals from applying Test Set 1. (b) Confidence intervals from
applying Test Set 2.
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Figure 3.3: Proposed testing algorithm.

CI completely

within

specifications?

yes

accept chip

are met by estimating the system response Y over all inputs x. To minimize cost, we wish to

use as few test vectors as possible to estimate Y. Because of inevitable measurement noise

and modeling inaccuracies, there will always be uncertainty associated with our estimation

of Y; we can reduce this uncertainty by choosing "good" test vectors and/or by applying

more test vectors. Note, however, that if n is the number of independent behavioral model

parameters {&}, then at least n test vectors must be applied in order to fully characterize

Y. If fewer than n input vectors are applied, then at least one dimension of the linear

function space remains unexplored and hence the output function is unconstrained in that

dimension.

With these factors in mind, the testing algorithm that we propose is shown in

Figure 3.3.

The choice of test vectors is a difficult optimization problem. The objective is to

minimize the standard error of the estimated response function, which is a function of the

choice of test vectors. Intuitively, the orthogonality of the test vectors is measured by the
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degree to which each test vector maximizes the contribution of one basis function while

minimizing the contribution of the others.

The algorithm used to derive the maximally orthogonal test vectors is:

1. Eliminate any redundant basis vectors.

2. Run the I-optimality algorithm to select the best n tests, where n is the dimensionality

of the function space after eliminating redundant basis vectors.

3. Run the I-optimality algorithm to select the best additional vectors, one at a time,

for use if the prior tests are not conclusive.

3.3.1 Optimality Criteria

There are several different optimality criteria (A-, D-, E-, G-, and I-), the rel

ative merits of which have been debated extensively in the relevant literature [60, 10].

D-optimality, which is generally considered to be the simplest type of optimality, minimizes

the average prediction variance of the model coefficients. This type of optimality would

be very suitable for fault diagnosis, in which we wish to estimate the actual values of each

circuit component as accurately as possible. D-optimality claims nothing about the average

prediction variance of the system output, however, so it is not the best choice for verifying

that the system output meets its specifications.

The two types of optimality which do consider the prediction variance of the system

output are G- and I-optimality. G-optimality minimizes the maximum prediction variance

over the response surface of interest. It would probably be the most suitable for verifying

that a circuit meets its specifications, since specifications are frequently stated as worst-case

bounds. G-optimality is difficult to optimize upon, however, because it is not continuously

diflferentiable. Hence I-optimality, which is continuously differentiable, was chosen for this

research. I-optimality minimizes the average prediction variance over the response surface

of interest. To formulate these ideas mathematically, let

V= Po9o + Pi9i + P292 + 0393 + . ••+ PP-i9P-i + € (3.2)

where y is the response variable, {(/,} are the p independent basis vectors, /?,- is the coefficient

of the ith basis vector, and e represents the measurement and modeling errors, which are
assumed to be independent with mean 0 and variance a2.
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Let X be the design matrix, which contains one row for each of the n test vectors.

X =

9o(xo) 9\{xq) 92(xq)
9o(xx) gx(xi) g2(xx)

9P-i{xo)

9P-i{*i)

. 9o{Xn-l) 9l(xn-l) 92(xn-l) ••• ^p_l(x„-i)

The design moment matrix Mx can be calculated as

Mx = -X'X
n

and the prediction variance at an arbitrary point x on the response surface is

var y(x) = —f(x)Mx1f(x)'

where

(3.3)

(3.4)

(3.5)

H*)=[go(x) 9i(x) 92(x) ... gp-i(x)] (3.6)
for each point x on the response surface R. An I-optimal design is one which minimizes the

normalized average of var y(x) over R,

I = — var y(x)dfi(x). (3.7)
O J Ji

This integral simplifies [10] to give

I=trace\MM-1} (3.8)

where M is the moment matrix of R,

M= f f(x)'f(x)dv(x). (3.9)

3.3.2 Optimization

Finding an exactly I-optimal design is believed to be NP-complete [23] and hence

only feasible for very small problems. For larger problems, several heuristic algorithms

have been successfully used to find "good" solutions to this and other related problems

in the area of optimal experimental design. These heuristic algorithms include simulated

annealing [23], greedy swap techniques [89], and gradient descent techniques. For this

research we used the gradient descent techniques implemented in the software package



37

Gosset, which was recently developed by Hardin and Sloane at AT&T Bell Laboratories

[48]. The primary focus of Gosset is low-order polynomial models, which are of only

limited use in characterizing typical analog circuits. For this research, therefore, Gosset

was extended to utilize arbitrary Lipschitz continuous functions, such as the piecewise linear

output of common behavioral simulators [68] and Spice [146].

In applying each of the algorithms to the analog testing problem, we found that

the usefulness of the greedy swap and simulated annealing techniques seems to be restricted

to low dimensions and small numbers of design points (maximum of 20-30), making those

algorithms unsuitable for the general analog testing problem. The gradient descent tech

niques, on the other hand, work reasonably well on all sizes of problems. The primary

limitation of the gradient-based techniques is that the basis vectors must be differentiable;

this requirement is usually satisfied in the analog testing problem, so a gradient descent

method was selected.

The problem of finding the best set of test vectors can be understood intuitively

as follows. We want the test vectors to be as orthogonal as possible, in the sense that they

are widely separated from each other in the space defined by the coefficients of the basis

vectors. After choosing an initial set of random test vectors, the direction in which each

test point should be moved to be further away from the other test points can be calculated.

Each test point can be perturbed in the direction of this gradient and the design will have

been improved.

Gosset uses an optimization algorithm known as Hookeand Jeeves pattern search

[54], which isbased on the idea offinding a "valley" and following it downward until reaching

the lowest point on the response surface, similar to the manner in which a stream flows

down a mountain. The optimization begins by selecting a random point on the response

surface, calculating the gradient at that point, and proposing a set of small perturbations

in the direction of the gradient. If this set of perturbations causes the objective function to

improve, then this "move" is accepted and the step size is increased by a constant factor.

Otherwise the set of perturbations is rejected and a smaller move is attempted.

The initial point in the search space, x^°\ is chosen randomly. The initial velocity
vector vW is set to 0, where the velocity u, of input i is defined as being the amount by
which that input is perturbed in a given move. The step size s is set to a small value. The

search then proceeds as

X{i+D = x(i) + „(•'+!) (3 10)
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w(«+i) = w(0 + ^(a.(0) (3>11)

where g(x^) is the gradient evaluated at the point x(0. If

F(x(,+1)) < F(*W), (3.12)

where F is the objective function, then the value for x^x+1^ is accepted, s is multiplied by

1.04, and the iteration is repeated. If F(s(,+1)) jt F(zW) then v® is set to 0 and (3.10)
and (3.11) are tried again. If there is still no reduction in F, then s is divided by 2 and

(3.10) and (3.11) are tried again. The algorithm terminates when the step size is less than

some small accuracy limit. Then, if desired, a new random starting point can be chosen

and the entire minimization algorithm repeated, successively, until a specified number of

random starts have been investigated. At that point the algorithm terminates, returning

the best design found.

If #(') moves outside the feasibility region, which is defined by the limited range

of values that each input can assume, then it is moved to the closest feasible point.

Note that the optimization assumes that all of the inputs to the system are con

tinuous. If the inputs are discrete, as frequently occurs when analog systems are connected

to digital systems, then a post-processing step is performed which is similar to integer pro

gramming. Each of the test vectors is sequentially considered, and discrete inputs with

illegal values are converted to whichever of the two closest discrete values gives the small

est value of F. The technique is essentially greedy integer programming, since the order

in which the inputs are considered could cause the algorithm to become stuck at a local

minimum. We have empirically observed that the algorithm works well because:

1. The optimization pushes many variables to their boundaries, which are usually legal

discrete values, and

2. The [usually slight] non-optimality introduced by the rounding off of one test vector

can frequently be partially compensated for by the rounding off of a similar test vector

in the opposite direction.

Hooke and Jeeves found empirically, in a curve-fitting problem involving a neutron

reactor, that the computation time for their pattern search algorithm increased only linearly

with the number of variables, which makes it especially suitable for the analog testing

problem because analog systems may require large numbers of parameters to accurately

characterize them.
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3.4 Model Derivation

The statistical design and analysis techniques which we use for system testing

require a homoskedastic, linear function space. The linearity requirement means that any

system output can be expressed as an additive combination of a set of basis vectors, as

shown in Equation 3.1. Homoskedastic refers to a requirement that the measurement error

€, which is a combination of model inaccuracies and noise, is not a function of the input;

this assumption is reasonable for many typical analog testing situations.

There are several simple methods which can be used to choose the {gi} basis

vectors. For extremely simple systems the basis functions may be obvious from a simple

description of the expected output. Consider, for example, the current sources discussed in

Section 3.2; the output is modeled as

Y = #3*5 + P4X4 + #5*3 + /te + P\X\ + A)ZO + € (3.13)

where the (3 coefficients are the unknown model parameters we wish to characterize. The

basis functions for this system are simply {£5,£4,£3,:c2,:ei,xo}> the set of contributions from

each current source, which are summed together to form the output.

For more complicated systems, the Taylor expansion can be used to derive a very

useful additive model

f(a +x) =/(«) +xf'(a) +̂ p+...+̂ '^"'^ 0-14)
where a represents the nominal valueof a model parameter, f(a) represents the value of the

output when that model parameter is at its nominal value, and x represents the amount

by which that model parameter deviates from its nominal value because of manufacturing

nonidealities. We wish to estimate f(a + x).

A first-order Taylor series approximation is a reasonably accurate model for many

common analog systems with parameters that do not deviate significantly from their nomi

nal values. This is the model used by Stenbakken and Souders [134], and our discussion of it

here will be brief. Dropping the higher-order terms and generalizing to multiple dimensions,

the expansion becomes

f(a + x) = f{a) + vf(a)x (3.15)

=/w+^ +£xa+- (3'16)
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where a,- is the nominal value of the ith model parameter and X{ is the deviation in that

parameter. The basis functions for this system are thus {/(a), %£-, ^-, ...}. /(a) is the
nominal system performance, and each of the partial derivatives represents an error signa

ture for a particular type of manufacturing defect which can occur. The error signatures are

computed by finding the sensitivity of the output to the parameters of interest at each point

on the response surface. Note that these error signatures could represent either catastrophic

faults, such as shorts and disconnections, or parametric faults, such as small deviations in

capacitance values or process parameters.

3.4.1 Eliminating Ambiguity Groups

Once the basis vectors {g\,g2, ..., gn} are identified, we compute their null space

to verify that they are all independent. The parameters associated with error signatures

that are linearly dependent are said to belong to the same ambiguity group, since variations

in those parameters are indistinguishable at the system output. Ambiguity groups reduce

the number of basis vectors needed to model the response surface and hence the number of

test vectors which must be applied to fully characterize a system.

Let U be the matrix formed from these basis vectors, where </, is the ith column

of U. Suppose U has dependent columns, then its null space is non-empty such that

UN = 0 (3.17)

where N G Rmxr is a matrix with r independent column vectors that spans the null space

of U. Non-zero entries in N indicate that the corresponding components are in ambiguity

groups. A component i belongs to an ambiguity group if and only if row i of N has a

non-zero entry. Furthermore, we have the following theorem.

Theorem 3.4.1 Components i and j are in the same ambiguity group if rows i and j of

N are non-zero and not orthogonal to each other [67].

Proof. Suppose components i and j are not in the same ambiguity group and not orthog

onal. Then, because they are not in the same group, there exists an orthonormal matrix

M 6 RmXm such that if any entry in N{M is non-zero, then the corresponding entry in

NjM is zero, or vice-versa, where Ni G Rlxm and Nj € Rlxm are rows i and j of N. It

follows that

(NiM)(NjMY = NiMM'N'j = 0 (3.18)
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which implies that

NiN'j = 0 (3.19)

since MM' = I. Thus, N{ and Nj are orthogonal, which results in contradiction and

completes the proof. From Theorem 3.4.1, it follows that the components fall into the same

group if their corresponding row vectors of N are non-zero and not orthogonal. In other

words, we have the following corollary:

Corollary 3.4.1 The number of ambiguity groups is equal to the number of orthogonal

subspaces spanned by the rows of N.

The null space of U can be computed using singular value decomposition (SVD)

or Gaussian elimination. In the case of SVD, we first compute U'U, followed by SVD

U'U = XlX2N' (3.20)

where N spans the null space of U'U. Since U'UN = 0, UN = 0, so N is the null space of

U also. The reason for computing U'U in (3.20) is that U often has many more rows than

columns, so computing N for a smaller matrix U'U is more efficient. Furthermore, note

that computing N and checking the rowsof N for pairwise orthogonality can be performed

in polynomial time.

In summary, the approach for finding ambiguity groups is:

1. Given a sensitivity matrix U.

2. Find N, the null space of U, using singular value decomposition (3.20) or Gaussian

elimination. Let ambiguity group number g = 1.

3. Remove the first non-zero row of N and assign to group number g.

4. Check if any remaining rows are orthogonal. If not, assign them to group g and

remove.

5. Increment g and repeat Step 3 until all rows are removed.

To find a set of independent basis vectors for the system, we repeatedly:

1. Remove one vector from each ambiguity group.

2. Recompute the ambiguity groups.
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We continue until no ambiguity groups remain. Once this set of independent basis vectors

is formed, the I-optimality routines, as described in Section 3.3, are executed to find a good

set of test vectors.

3.4.2 Calculating Confidence Intervals

Once the test vectors have been applied, the measured responses are used to es

timate j3, the vector of coefficients for each of the basis vectors. For the special case when

the number of test points is equal to the number of basis vectors, P is found by solving

XP = Y (3.21)

for p, where X is the design matrix as output by the I-optimality routine and Y is the

vector of measured responses. When the number of test points is greater than the number

of basis functions, p is found by using linear regression, solving

X'XP = X'Y (3.22)

for p,

P= (X'X)~XX'Y. (3.23)

The variance-covariance matrix of p, V \p\, is given by

V[p] =s2 (X'X)~l (3.24)

where s2, an estimator of a2, is given by

, _ £"=•[*-y(*.)]2 ,, ,»

where Y|- is the iih observation, j/(z,) is the predicted value of Y{, based on the model, n
is the number of measurements, and p is the dimensionality of the model (the number of

independent basis vectors). Given these values we can calculate the exact confidence interval

for the entire response surface using Scheffe's method for simultaneous interval estimation

[114, Chapter 5]. The Scheffe confidence interval is given by

CI(y(x)) =/(*)4± ^*,_,/(«)(D[/9])/(*)' (3.26)
where 1 —a is the exact overall probability that the actual system response lies completely

within the confidence interval. Typically, a = 1%, which results in 99% confidence intervals.
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Figure 3.4: 6-bit binary-weighted current source D/A converter.

3.5 Results

In this section we describe two Nyquist-rate D/A converters on which our linear

ATPG algorithms have been run. The first is a 6-bit binary converter and the second is a

10-bit interpolative D/A converter.

A 6-bit Nyquist-rate D/A converter based on binary-weighted current sources is

shown in Figure 3.4, which is similar to the simple example presented in Section 3.2 except

that in this case the current sources are binary-weighted instead of unit-weighted. The

basis vectors for the system are chosen to be {1, x5, x4, x3, x2, xx, x0}, where the constant

function 1 is used to model the converter offset. Since there are seven independent basis

functions in the model, at least seven tests must be performed to fully characterize the

system. The I-optimal design is shown in Table 3.2, along with the next seven extra points

which would be chosen, in succession, to tighten the confidence intervals on the estimated

performance.

Application of the seven initial test vectors to a simulated D/A converter [68]
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Code Inputs I-Value

X5 X4 X3 X2 Xi Xq

8 0 0 1 0 0 0

15 0 0 1 1 1 1

21 0 1 0 1 0 1

22 0 1 0 1 1 0

35 1 0 0 0 1 1

44 1 0 1 1 0 0

59 1 1 1 0 1 1 1.27778

61 1 1 1 1 0 1 1.12500

38 1 0 0 1 1 0 0.97619

1 0 0 0 0 0 1 0.83333

48 1 1 0 0 0 0 0.70000

48 1 1 0 0 0 0 0.58333

26 0 1 1 0 1 0 0.55263

10 0 0 1 0 1 0 0.52222

All 64 codes 0.10938

Table 3.2: Test vectors chosen for D/A converter.

produced the following measurements:

The design matrix X is

X =

Y =

6.9303

13.8717

19.8016

20.8288

34.0298

43.0256

57.9037

0 0 10 0 0

0 0 1111

0 10 10 1

0 10 110

10 0 0 11

10 110 0

1110 11

(3.27)

(3.28)



Solving for p,

-lp = (x'xy'x'Y =

-1.0449

32.1143

15.8988

7.9751

3.9811

1.9938

0.9666
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(3.29)

We assume that s2, an estimate of a2, has already been found by measuring all 64 codes on

a previously fabricated part. V \p\ is calculated to be

V[p] = s2(XrX)

= 0.00104'

-l

1.52 -0.37 -0.37 -0.63 -0.63 -0.30 -0.30

-0.37 0.74 0.07 -0.07 0.26 -0.07 -0.07

-0.37 0.07 0.74 0.26 -0.07 -0.07 -0.07

-0.63 -0.07 0.26 0.74 0.07 0.07 0.07

-0.63 0.26 -0.07 0.07 0.74 0.07 0.07

-0.30 -0.07 -0.07 0.07 0.07 0.74 -0.26

-0.30 -0.07 -0.07 0.07 0.07 -0.26 0.74

The response surface R for this converter is the set of all possible input codes,

10 0 0 0 0 0

10 0 0 0 0 1

10 0 0 0 10

10 0 0 0 11

1111111

The 99% confidence interval is therefore

R =

CI(y(x)) = f(x)P±^pF£n_vf(x) (V [/?]) f(x)>

(3.30)

(3.31)

(3.32)

(3.33)



46

-1.0449

-0.0783

0.9489

1.9155

61.8848

-1.0507, -1.0390

-0.0844, -0.0721

0.9428, 0.9550

1.9101, 1.9209

1.5185

1.6667

(7)(2.9706)(0.001042)
1.6667

1.2963

N 1.2963

61.8794, 61.8902

where f(x) is each row of R, in turn.

The INL error of the converter is the difference between the actual output and the

expected output, after correcting for gain and offset errors. Applying these gain and offset

corrections to the above confidence intervals, we obtain the INL confidence intervals shown

in Figure 3.5.

This example illustrates how the entire performance of the D/A converter can

be modeled quite accurately after the application of only seven well-chosen test vectors.

Furthermore, we may be able to draw some conclusions regarding the acceptability of this

D/A converter, depending upon the INL specification. If the INL specification is greater

than 0.2 LSB, then the converter should be accepted with no further tests. If the INL

specification is less than 0.1 LSB, then the converter should be rejected with no further

tests. If the INL specification falls between these bounds, then additional test vectors must

be applied to tighten the confidence intervals.

(3.34)

(3.35)

3.6 Conclusions

We have presented a new ATPG algorithm which automatically generates a min

imal set of test vectors for characterizing a general class of analog circuits, namely those

circuits which can be efficiently modeled as a linear combination of user-defined basis func

tions. The algorithm chooses the set of test vectors so as to minimize the average prediction
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Figure 3.5: Upper and lower bounds on INL error from seven test vectors.
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variance of the model. Applying the minimal set of test vectors to a circuit produces an

estimate of the circuit's performance for all possible input vectors and, more importantly,

confidence intervals on those estimates which can be used to determine whether the com

ponent should be passed or failed, or whether additional test vectors should be applied to

tighten the confidence intervals.

Because these techniques generate the tightest possible confidence intervals after

the minimum number of test vectors, they represent the most efficient way of fully charac

terizing system performance. Tight confidence intervals will lead to reduced testing time

for analog systems because more components will be fully verifiable, to a desired confidence

level, with the minimum number of test vectors. We have applied the algorithm to several

analog systems and shown it to be efficient and effective.
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In this chapter we present a new algorithm for performing automatic test pattern

generation for nonlinear analog systems. As in the linear case, the algorithm is based

upon behavioral modeling and the statistical technique of I-optimal experimental design,

in which test vectors are chosen to be maximally independent so that circuit performance

will be characterized as efficiently as possible in the presence of measurement noise and

model inaccuracies. This technique allows nonlinear analog systems to be characterized

more accurately and more efficiently, thereby significantly reducing system test time and

hence total manufacturing cost.

This algorithm can be applied to those systems that can be modeled by a behav

ioral model of the form

Y=f(x,d)+t (4.1)

where Y is the system output(s) and / is a behavioral model which is a function of x, the

circuit inputs which can be controlled during testing, and 9, a set of process parameters

characterizing the behavioral model, e.g. W, L, fi, Vtq, tox, etc. of each transistor. € is an

error term representing measurement noise and model inaccuracies. Many time-invariant

analog systems can be accurately modeled in this fashion. Note that the linear model

presented in Equation 3.1 is a special case of this more general formulation, with B—p.
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As for the linear case, our nonlinear analog ATPG algorithm is based upon the

statistical theory of optimal experimental design, in which test vectors are chosen to be

maximally independent to characterize the system performance Y as efficiently as possible

in the presence of measurement noise and model inaccuracies, where we define efficiency

to be the ratio of test accuracy to test cost. We choose the test vectors to minimize the

average standard error of the predicted output, thereby maximizing the likelihood that we

will be able to conclusively verify whether the performance specifications have been met

after a minimum number of test vectors. If the minimum number of test vectors is not

sufficient to conclusively verify the performance specifications, then additional test vectors

are selected and applied, one at a time, until the standard error of the predicted output

is low enough to verify the performance specifications. Nonlinear regression based on the

modified Gauss-Newton method is used to analyze the results of the tests and compute the

required standard errors.

Section 4.1 presents our algorithm for selecting the optimal test set and analyzing

the test results. Section 4.2 presents the results of applying our algorithm to two nonlinear

analog systems.

4.1 Algorithm

The goal of testing is to determine whether a circuit meets its specifications. Given

the behavioral model shown in Equation 4.1, we can determine whether the specifications

are met by estimating the system response Y over all inputs x. To minimize cost, we wish to

use as few test vectors as possible to estimate Y. Because of inevitable measurement noise

and modeling inaccuracies, there will always be uncertainty associated with our estimation

of Y; we can reduce this uncertainty by choosing "good" test vectors and/or by applying

more test vectors. Note, however, that if n is the number of independent behavioral model

parameters, then at least n test vectors must be applied in order to fully characterize Y.

If fewer than n test vectors are applied, then at least one dimension of the space remains

unexplored and hence the output function is unconstrained in that dimension.

With these factors in mind, the general testing algorithm that we proposed in

Chapter 3, Figure 3.3, can also be used for testing nonlinear circuits. As with linear circuits,

the choice of test vectors is a difficult optimization problem. The objective is to minimize

the standard error of the estimated response function Y, which is a function of the choice
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of test vectors and the circuit parameters 9. The test vectors are selected by linearizing f

w.r.t. 9 and applying optimal experimental design algorithms to the resultant linear system.

The linearization is a Taylor series expansion based on sensitivities,

f(x,9 +S) * f{x,9)-V^f(x,9)S (4.2)
df{x,9)

= /(m") +

+
69,

d9i

df(x,9)

Si

8

S2 + ... (4.3)

Since the values of the circuit parameters 9 are unknown prior to testing, we generate the

initial n test vectors by linearizing about the nominal parameter values, 9 = 9nom. When

additional test vectors are required for a particular circuit, they are generated by linearizing

about the current estimate of the parameter values for that circuit. Note, therefore, that

the initial n test vectors need only be generated once, prior to testing any circuits, but that

the additional test vectors must be generated on-line for each individual circuit.

Gosset is used in the same manner as for linear circuits, selecting the test vectors

by minimizing the I-value.

4.1.1 Nonlinear regression

Given a behavioral model of the form

y =/(aT,0)+€, (4.4)

nonlinear regression is an optimization problem which involves choosing 9 to minimize a

least squares objective function H,

tf(«) =5E(»-/M)2- (4-5)
Jk=l

To perform the optimization we use a modified Gauss-Newton method with step halving

[58]. The basic iteration is

9j+1 = 9j + a8* (4.6)

where oc represents the step length, which is initially 1, and 6* represents the adjustments

to be made to an independent set of the behavioral model parameters 9. 90 is set to 9nom,
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the nominal parameter values. S* is computed by solving

J{Sj)' J(«•) $' =J[Si)' (y- f (*, ty) (4.7)

where J represents the Jacobian of /,

tm df(x%9)

evaluated at each of the selected test points.

At each iteration, if Hj+i > Hj then a is repeatedly halved until Hj+i < Hj or

a becomes less than —. During the course of the computations, additional test vectors are

generated and applied as necessary, whenever the rank of the current Jacobian exceeds the

number of test vectors which have been applied.

Equation 4.7 is solved using linear regression by robust QR-decomposition, as

described in Section 4.1.2. The iteration stops when 9 converges, which is defined as

ViJ ~ '.--i.il < «i (Iftjl + «2) Vj € {1,.. .,p) (4.9)

where €i = yfeS, e2 = 10ci, and €o is related to the precision of the behavioral models being

used to evaluate / and J.

Under fairly general conditions, 9 which minimizes H(j?) will be distributed
M(0,E), where

S=c72[j((9"),j((9)l . (4.10)
Since we have already computed the QR-decom position of J, E can be easily

computed by noting that

E = o2[(QR)'{QR)]~l (4.11)
= g2[R'Q'QR}-1 (4.12)

= o
2 rn'Dl-1[R'R]-1 (4.13)

= o2»~R-1 (R-1)' (4.14)

and that R~l is easily computed by back substitution because R is upper triangular.

The confidence intervals over the entire responsesurface are calculated in the same

manner as for linear circuits, as described in Section 3.4.2, using the final Jacobian from

the nonlinear regression.
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Q = J{nxp)
for j = 1 to p

while || qj ||= 0
delete jth column from J and R
decrement p
if j > p then return

r5j =11 9j II
for i = 1 to n

for k = j -f 1 to p

rjk = E?=l mjQik
for i = 1 to n

ft* = qik - Qijrjk

Figure 4.1: Pseudo-code for modified robust Gram-Schmidt orthonormalization.

4.1.2 Robust QR-decomposition

One of the distinguishing features of our algorithm is the automatic detection

and correction of dependencies among the behavioral model parameters. Detecting and

correcting these dependencies is essential because it:

1. Reduces the number of test vectors needed to test the system, and

2. Prevents the nonlinear regression algorithms from aborting due to rank-deficient Ja

cobian matrices.

Expecting the user to detect or correct these dependencies is undesirable because the rank

of the Jacobian can change with each iteration of the nonlinear regression algorithm. Our

fully automatic algorithm is embedded within the nonlinear regression loop and requires no

additional CPU time above that already required for performing the regression. Parame

ter dependencies result in ambiguity groups, which are groups of parameters that are not

independent. This algorithm represents a significant computational improvement over pre

viously published algorithms for finding these groups [133, 67]. The improvement is possible

because we correct the ambiguity group problem without explicitly identifying the groups;

explicit identification of the groups is necessary for fault diagnosis, but not for production

testing.
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Each iteration of the nonlinear regression loop involves solving a linear regression

problem of the form

J'J8 = J'h. (4.15)

We use the modified Gram-Schmidt orthonormalization (QR-decomposition) routine shown

in Figure 4.1, which, as part of the matrix decomposition algorithm, sequentially considers

each column of J and automatically discards those columnsfound to be linearly dependent

upon previously considered columns.

Upon exit, the columns of Q will represent an independent subset 5* of the pa

rameters S, and the number of columns of Q will equal the rank of J. To solve for 8m, we

note that

{QR)'(QR)6* = (QR)'h (4.16)

R'Q'QR8* = R'Q'h (4.17)

R'RS* = R'Q'h (4.18)

(R'y^'RS* = {R')~l R'Q'h (4-19)
R&* = Q'h (4.20)

Equation 4.20 is easily solved using backward substitution, since R is upper triangular.

To calculate n, the minimum number of test vectors required to characterize the

nominal system, we perform a robust QR-decomposition of the nominal Jacobian. The

result is a set of independent parameters 9* that is a subset of all parameters 9; n is the

number of parameters in 9*. We need the QR-decomposition of the Jacobian to generate

the confidence intervals, so finding 9" requires no additional computational effort.

4.2 Results

In this section we describe some practical examples of analog systems on which

our ATPG algorithms have been run. The first is a bandpass filter with center frequency of

24.5 kHz [128], which was analyzed using Spice sensitivity analysis. The second is a single

MOS transistor, which was analyzed in Spice with a level 3 transistor model.

We are currently applying the techniques described in this chapter to the testing

of two complexfabricated circuits, namely a E-A A/D converter and a phase-locked loop.
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Figure 4.2: Bandpass filter with center frequency at 24.5 kHz.
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4.2.1 Bandpass Filter

Figure 4.2 shows a linear model for a bandpass filter. The nominal frequency

response is shown in Figure 4.3. The parameters 9 which characterize the filter are R\,C\,

R2, C2, R3, R4, and R§.

Performing a QR-decomposition on the nominal Jacobian reveals that its rank is

5, so at least 5 test frequencies will be needed to estimate the system response. We impose

a constraint that the test frequencies lie between 15kHz and 40kHz, since that is the region

of the response in which we are interested, and run the I-optimality algorithm. The 5 test

frequencies which the algorithm selects are shown in Table 4.1. Note that the fifth test

point is pushed to the user-imposed limit of 40kHz, while the remaining test points sample

the response at intervals of approximately 3 kHz near the nominal center frequency.

Applying the five selected test frequencies to a simulated circuit produces the

estimated output and 99% confidence intervals shown in Figure 4.4. According to the

testing algorithm outlined in Section 4.1, these confidence intervals would be compared

against the filter specifications to determine whether the component should be accepted

or rejected, or whether additional test vectors should be applied to tighten the confidence

intervals.
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20000 30000

frequency

Figure 4.3: Nominal frequency response of bandpass filter.

Frequency | Output |
19.32 kHz 0.914

22.57 kHz 1.65

24.89 kHz 1.99

28.42 kHz 1.30

40.00 kHz 0.482

Table 4.1: Test frequencies chosen for bandpass filter.
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.MODEL nom NMOS LEVEL=3 PHI=0.600000 T0X=2.0300E-08 XJ=0.150000U
+ TPG=1 VTO0.7333 DELTA=9.4450E-01 LD=1.0000E-09 KP=1.2964E-04
+ U0=762.1 THETA=5.2460E-02 RSH=2.3650E+00 GAMMA=0.4481

+ NSUB=1.7500E+16 NFS=2.3560E+12 VMAX=1.4870E+05 ETA=1.4850E-01
+ KAPPA=9.5100E-02 CGD0=2.5516E-12 CGS0=2.5516E-12

+ CGB0=3.0108E-10 CJ=1.1962E-04 MJ=0.4398 CJSW=4.6935E-10
+ MJSW=0.123994 PB=0.800000

Figure 4.5: Spice model for MOS transistor.

4.2.2 MOS Transistor

Suppose we wish to test an MOS transistor to verify that its drain current Ids
falls within certain bounds over all values ofVgs and Vds- The manufacturer has provided
the level 3 Spice model shown in Figure 4.5 for the device, with statistical parameters p.,
Vro> Cox, 7, tox, and 9. The normalized sensitivities of Ids to each ofthese parameters are

shown graphically for three values of VGs in Figure 4.6. Although only three values of VGs
are shown, both Vds and Vgs are treated as continuous variables, so the response surface
is 2-dimensional and continuous.

Performing a QR-decomposition of the nominal Jacobian matrix, we find that the

Cox parameter is not independent. Ifwe include a constant "offset" parameter in our model,
then there are 6 independent parameters, so n = 6 and we will need at least 6 test points
to characterize the device.

To prevent the I-optimality algorithm from selecting unreasonable test points,

we impose constraints on the inputs Vgs and Vds such that 0.1V < VDs < 10.0V and

2.0V < VGs < 5.0V. We then run the I-optimality algorithm; it selects the test points
shown in Table 4.2.

Figure 4.7 shows the estimated response curves for three values of Vgs after ap

plying the indicated 6 test vectors to a device, along with the 99% confidence intervals for

those estimates. The confidence intervals are based upon a measurement accuracy of0.1%.

The expected value of the model error for three values ofVgs is shown in Figure 4.8, from
which we conclude that our estimates are least accurate near Vgs = Vt. This result is not

surprising, since that region of transistor operation is difficult to model.



Vgs Vds Ids
5.0 1.0 19.04910 xlO-3

3.2 0.9 10.00540 xlO"3

5.0 0.1 2.66950 xlO"3

5.0 10.0 33.62560 xlO"3

2.0 10.0 6.24432 xlO"3

5.0 2.2 27.45550 xlO"3

Table 4.2: Test points chosen for MOS transistor.

4.3 Conclusions
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In this chapter we have presented a new ATPG algorithm which automatically

generates test vectors for nonlinear analog systems. The algorithm chooses the set of test

vectors so as to minimize the average prediction variance of the model. Applying the

minimal set of test vectors to a circuit produces an estimate of the circuit's performance

for all possible input vectors and, more importantly, confidence intervals on those estimates

which can be used to determine whether the component should be passed or failed, or

whether additional test vectors should be applied to tighten the confidence intervals.

Because these techniques generate the tightest possible confidence intervals after a

minimum number oftest vectors, they represent the most efficient way offully characterizing

system performance. Tight confidence intervals will lead to reduced testing time for analog
systems because more components will be fully verifiable to a desired confidence level with

the minimum number of test vectors. We have applied the algorithm to several analog
systems and have shown it to be efficient and effective.
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10

Figure 4.7: Estimated response and confidence intervals for MOS transistor from 6 test
points.
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Chapter 5

Designing Optimal Analog Test

Structures
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In this chapter we present a methodology for designing optimal analog integrated

circuit test structures. An optimal test structure is a circuit which allows one to characterize

a specified set of circuit parameters as accurately as possible in the presence of measurement

noise and other potential errors. The methodology is based upon recently developed statis

tical techniques for optimal design of experiments; these techniques allow analog systems

to be characterized as accurately and efficiently as possible, thereby reducing cost and/or

increasing accuracy. The usefulness of the methodology is illustrated with a fabricated

circuit. The most interesting result is that relatively complex circuits are frequently more

efficient than commonly used simple circuits.

5.1 Introduction

The design of test structures is currently performed on a relatively ad-hoc basis;

a design or test engineer relies primarily upon intuition about the parameters of interest

to create test structures which will permit those parameters to be measured. Emphasis is

frequently placed on simplicity in either design or analysis. For example, one might create

a test structure consisting of a single transistor, which is simple to design, or one might

create a test structure consisting of an operational amplifier that is very sensitive to one

parameter and insensitive to other parameters, which is simple to analyze.

In this chapter we attempt to make test structure design more systematic by
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presenting a figure of merit which can be used to evaluate the relative efficiency of various

candidate test structures, where we define efficiency to be the ratio of test accuracy to test

effort. Comparing the efficiency of test structures will permit a test engineer to determine

which structures are optimal for measuring a certain set of interesting parameters. This

optimality information, when considered with area, shape, and other factors, can be used

to determine which test structures should actually be fabricated.

The proposed methodology for optimal test structure design is presented in Sec

tion 5.2. In Section 5.3, the methodology is applied to three example test structures for

measuring MOS transistor current mismatch.

5.2 Methodology

To compare several candidate test structures, we must calculate their relative

efficiencies at estimating the parameters of interest in a small number of measurements.

Under certain reasonable assumptions, accuracy is a monotonically increasing function of

number oftests,sothereisa tradeoff between accuracy and number oftests. Two interesting
questions arise, as follows:

1. After a fixed number of well-chosen tests, how accurate are the predictions from each
of the circuits?

2. To reach a fixed accuracy, how many well-chosen tests must be performed with each
of the circuits?

Quantity 1 is easier to evaluate, and hence has been chosen as the primary figure
of merit for our research. Based on the limited number ofcircuits we have examined, we
conjecture that the relative ranking of candidate circuits obtained from Quantity 1 will
almost always be the same as the relative ranking obtained from Quantity 2.

For a given circuit, the determination of "well-chosen tests" is nontrivial. Our

methodology is based upon the statistical theory ofoptimal experimental design, in which
test vectors arechosen to bemaximally independent sothat the model parameters ofinterest

will be characterized as accurately as possible in the presence of measurement noise and

model inaccuracies. More specifically, we wish to choose the test vectors to minimize the

averagestandard error of the predicted parameters, which is a function of the choice of test

vectors. Intuitively, the test vectors should be asorthogonal to each otheras possible, where
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Figure 5.1: Pseudo-code of optimal test structure design algorithm.

the orthogonality of the test vectors is measured by the degree to which each test vector

maximizes the contribution of the basis function corresponding to one parameter while

minimizing the contribution of the basis functions corresponding to the other parameters.

Given a circuit which is characterized by n independent parameters, at least n

test vectors must be applied to the system in order to fully characterize those parameters.

If fewer than n input vectors are applied, then at least one dimension of the circuit re

sponse space remains unexplored and hence at least one parameter cannot be estimated.

Furthermore, because of inevitable measurement noise, n test vectors may not be sufficient

to characterize the circuit parameters to the desired accuracy. Using additional test vectors

will lower the standard error of the estimates; in practice, if the variance of the predicted

parameters is too large after the minimum number of tests, then additional test vectors can

be selected and applied to reduce the standard error of the predicted parameters until the

desired accuracy is obtained.

To compare the relative efficiency of two proposed test structures, we compare the

normalized D-values of the minimum-size D-optimal test set for each circuit. The D-value

is the average variance of the estimated model coefficients, so a circuit with a lower D-value

is a more efficient test structure than a circuit with a higher D-value. The inputs to the

algorithm are a set of candidate circuits and a list of parameters of interest. The output is

a list of the normalized D-values corresponding to the D-optimal test set for each circuit.

Pseudo-code is shown in Figure 5.1. Calculating the D-value for a given set of test

vectors is described in Section 5.2.1, and finding a D-optimal set of test vectors for a given

circuit is described in Section 5.2.2.

5.2.1 Calculating D-Values

Given a circuit model and a set of test vectors, the D-value can be easily computed

using the method of least squares. Consider an arbitrary circuit with output characterized
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by a linear combination of independent basis functions, as in Chapter 3,

Y = Pog0 + Pigi + P2g2 + P393 + •••+ PP-i9P-i + * (5.1)

where Y is the system output, {p,} is a set of arbitrary basis vectors, Pi is the coefficient

of the ith basis vector, and e represents the measurement and modeling errors, which are

assumed to be independent with mean 0 and constant variance a2. Manyanalog systemscan

be accurately modeled in this fashion by usingsensitivity analysis [132] or QR decomposition

[129]. € may be either specified by the designer or estimated from previous tests. Note that

Equation 5.1 is linear in the unknowns {A}, but the basis functions {#,} can be nonlinear.

Let X represent the n x p design matrix, which contains one row for each of the

n test vectors.

9i{xi) g2(xi) g3(xi) ... gp(xi)

9i{x2) 92(x2) 53(^2) ... 9P{x2)

by

X = (5.2)

. 9l(Xn) 92{xn) 93{xn) •-. 9p{xn).

Using the method of least squares, the best estimate of p, denoted by p, is given

P=(XTX)~1XTY (5.3)

where X is the design matrix described above and Y is a vector of the circuit output from

each of the n test vectors. The variance-covariance matrix of these estimated parameters is

V p] =a2 (XTX) -1

(5.4)

where Vpj is the variance-covariance matrix of Pand a2 is the variance of €, the error
term in Equation 5.1.

The diagonal entries of D correspond to the variances of the model parameters,
and the D-value is given by

D = (XTX) -1

(5.5)

A design which minimizes D is said to be D-optimal. D-optimality minimizes the

average prediction variance of the model coefficients, which is the most appropriate figure
of merit for evaluating competing test structures.
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5.2.2 Generating D-Optimal Test Sets

Generating a set of test vectors for a given circuit model which minimizes D, as

defined in Equation 5.5, is believed to be an NP-complete optimization problem [23]. An

exact solution is only feasible for very small problems. For larger problems, several heuristic

algorithms have been successfully used to find "good" solutions to this and other related

problems in the area of optimal experimental design. For this research we used the gradient

descent techniques implemented in Gosset.

Gosset is a very general computer program for constructing experimental designs

[49]. Variables may be discrete or continuous, discrete variables may be numeric or symbolic,

and continuous variables may range over a cube or a ball. The variables may be required

to satisfy linear equalities or inequalities, and the model to be fitted may be any linear

function (Equation 5.1). The number of tests is specified by the user, and the design may

be required to include a specified set of points. The software is powerful enough to routinely

minimize functions of 1000 variables.

As used in our algorithm, Gosset finds an optimal test set for each test structure

and outputs the normalized D-value corresponding to that test structure. The D-value is

normalized by scaling each variable to range between -1 and +1. This normalization is

essential for meaningful circuit-to-circuit comparisons of D-values.

An important error condition which must be considered is the case when it is

not possible to estimate all of the parameters of interest from a given test structure. This

situation results in a singular X matrix, and the D-value output by the algorithm in these
cases is +oo.

5.3 Results

As an example of the optimal test structure design methodology, suppose we wish

to design a test structure for measuring MOS transistor current mismatch. Mismatch is

defined as the variance in current flowing through identically designed transistors. We

plan to estimate this variance by sampling 10 transistors. Three candidate test structures

are shown in Figure 5.2. The structures all contain the same 10 transistors, which are

represented as switchable current sources, but differ in the extent to which the current

outputs of those transistors are wired together. The 10 parameters of interest are the "on"
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Figure 5.2: (a) Proposed test structure for Circuit 1. (b) Proposed test structure for
Circuit 2. (c) Proposed test structure for Circuit 3.



Circuit Optimum D-value

#1
#2
#3

0.1895

0.1402

0.1063

Table 5.1: Normalized D-values for minimum-size test sets.
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currents through each of the transistors.

The Gosset programs written to calculate the D-values are shown in Figure 5.3.

The constraints imposed by the connectivity of the current source outputs are translated

into constraints on groups of current sources which cannot be simultaneously observed.

The normalized D-values for the best minimum-size test sets are shown in Ta

ble 5.1. The minimum-size test sets themselves are shown in Table 5.2.

Figure 5.4 plots the optimal D-value which can be obtained as a function of the

average number of transistors turned on during each test, i.e. the percentage of ones in the

test set. From this graph it is apparent that the most efficient test structures are those

which permit test sets containing 50% ones.

Figure 5.5 plots D-value as a function of number of tests for each of the example

circuits. From this graph it is apparent that Circuit 3 is always more efficient than Circuits 1

or 2.

Six test structures similar to Circuit 3 have been fabricated by MOSIS to charac

terize CMOS transistor current mismatch. There were 12 replications of each test structure,

with 16-64 transistors per test structure. A summary of the observed variances is shown in

Table 5.3; the complete results of this mismatch characterization experiment are reported

in [35].

With regard to optimal test structure design, the important conclusion to be drawn

from these examples is that extracting parameters from relatively complex structures is often

more efficient than measuring single devices. The reason for this phenomenon is that in the

complex circuit each parameter is, in effect, sampled multiple times and hence the effective

measurement noise and model inaccuracies are reduced. This result is similar to measuring

a single device multiple times and averaging the measurements, but fewer tests are required

when a complex circuit is used.
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10 discrete xO xl x2 x3 x4 x5 x6 x7 x8 x9 0 1

20 model x0+xl+x2+x3+x4+x5+x6+x7+x8+x9

30 constraint x0+xl+x2+x3+x4+x5+x6+x7+x8+x9<1.5

10 discrete xO xl x2 x3 x4 x5 x6 x7 x8 x9 0 1

20 model x0+xl+x2+x3+x4+x5+x6+x7+x8+x9

30 constraint x0+x5<1.5

40 constraint xl+x5<1.5

50 constraint x2+x5<1.5

60 constraint x3+x5<1.5

70 constraint x4+x5<1.5

80 constraint x0+x6<1.5

90 constraint xl+x6<1.5

100 constraint x2+x6<1.5

110 constraint x3+x6<1.5

120 constraint x4+x6<1.5

130 constraint x0+x7<1.5

140 constraint xl+x7<1.5

150 constraint x2+x7<1.5

160 constraint x3+x7<1.5

170 constraint x4+x7<1.5

180 constraint x0+x8<1.5

190 constraint xl+x8<1.5

200 constraint x2+x8<1.5

210 constraint x3+x8<1.5

220 constraint x4+x8<1.5

230 constraint x0+x9<1.5

240 constraint xl+x9<1.5

250 constraint x2+x9<1.5

260 constraint x3+x9<1.5

270 constraint x4+x9<1.5

10 discrete xO xl x2 x3 x4 x5 x6 x7 x8 x9 0 1

20 model x0+xl+x2+x3+x4+x5+x6+x7+x8+x9

Figure 5.3: From top to bottom, GOSSET programs for Circuits 1, 2, and 3, respectively.
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D-value vs. Percentage of Transistors Turned On
D-value x 10'^

40.00 60.00 80.00

Figure 5.4: D-value vs. percentage of transistors turned on.

%On



D-value vs. Number of Tests

D-value x 10"

25.00 30.00

Figure 5.5: D-value vs. number of tests for each circuit.

Circuit 1

Circuit*?'

Circuit 3~

73

Number of Tests
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#of W L area Vgs - Vj measured
description transistors (fim) (/zm) (»m2) (V) oijl

DAC46Jin_lmA 192 121 24 2904 0.679 0.00374
DAC46_bin_lmA 768 48 110 5280 0.288 0.01153
DAC55Jin_lmA 384 21 24 504 1.163 0.00374
DAC55_bin_lmA 384 15 48 720 0.344 0.01005
DAC64Jin_lmA 768 28 21 588 0.660 0.00424
DAC64.bin_lmA 192 22 47 1034 0.278 0.01029
DAC46Jin_0.6mA 192 121 24 2904 0.526 0.00458
DAC46_bin_0.6mA 768 48 110 5280 0.223 0.01374
DAC64_lin_0.6mA 768 28 21 588 0.511 0.00500
DAC64_bin_0.6mA 192 22 47 1034 0.216 0.01300

Table 5.3: Measured mismatch for 10 sets of measurements on 6 "optimal" test structures.

5.4 Conclusions

We have presented a methodology for developing optimal analog IC test structures

which is based on statistical principles of optimal experimental design. To compare the
relative efficiency of two proposed test structures, we compare the normalized D-values of

the minimum-size D-optimal test set for each circuit.

The methodology has been illustrated with three example test structures which

might be used to characterize MOS transistor current mismatch. Of these three candidates,

the optimal test structure was fabricated and mismatch was successfully extracted.



Chapter 6

Statistical Characterization of

Analog Circuits
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This chapter presents a methodology for hierarchical statistical circuit character

ization which does not rely upon circuit-level Monte Carlo simulation. The methodology
uses principal component analysis, response surface methodology, and statistics to directly
calculate the statistical distributions of higher-level parameters from the distributions of

lower-level parameters. We have used the methodology to characterize a folded cascode
operational amplifier and a phase-locked loop. This methodology permits the statistical

characterization of large analog and mixed-signal systems, many of which are extremely
time-consuming or impossible to characterize using existing methods.

6.1 Introduction

Statistical circuit characterization is essential for estimating yield, for designing
manufacturable and robust systems, for deriving "worst-case" models, and for testing. The
most widely used technique for performing statistical characterization is Monte Carlo anal

ysis [47, 104]. Unfortunately, the accuracy of results produced by aMonte Carlo analysis is
only proportional to the square root of the number of simulations performed, and the num
ber of Monte Carlo simulations required to produce a relatively accurate result increases
exponentially with the number of low-level statistical parameters. Therefore Monte Carlo

techniques can be very expensive, unacceptably inaccurate, or both.

One promising approach to dealing with these shortcomings involves the use of
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behavioral models and hierarchical characterization. Hierarchical characterization is illus

trated in Figure 6.1. This characterization method is part of a hierarchical design method

ology which involves different levels of abstraction [18]. The low-level parameters typically

represent transistor model parameters, such as tox and Vyo- The intermediate-level param

eters typically represent behavioral model parameters, such as open-loop gain and offset of

an operational amplifier. The high-level performances represent circuit performance speci

fications, such as signal-to-noise ratio of an analog-to-digital converter. A circuit simulator

such as Spice [57] is used to simulate the intermediate-level parameters as functions of

the low-level parameters, and a behavioral-level simulator such as MlDAS [155] is used to

simulate the high-level performances as functions of the intermediate-level parameters.

In this hierarchical design methodology, two statistical characterizations are per

formed. First, the statistical distributions of the intermediate-level parameters are calcu

lated from those of the low-level parameters. Second, the statistical distributions of the

high-level circuit performances are calculated from the intermediate-level parameters. The

first characterization can be quickly performed with the non-Monte Carlo techniques de

scribed in this chapter. The second characterization can be performed either in the same

way or using Monte Carlo analysis. Monte Carlo analysis is generally acceptable for the sec

ond characterization if the behavioral model being used is fast and involves only a relatively

small number of statistical parameters, which is often the case.

The non-Monte Carlo techniques described in this chapter utilize response surface

methodology (RSM) [83]. RSM involves constructing a circuit model which is locally linear

or quadratic in the statistical parameters. The RSM model is constructed by performing an

"experiment" in which the lower-level parameters are permuted in a regular fashion about

their nominal values. For each permutation of the lower-level parameters, a simulation

is performed and the resultant values of the higher-level parameters are recorded. The

coefficients of the RSM model are then obtained by linear regression. SimPilot [118] is a

commercial tool which implements RSM.

At each level of the statistical characterization it is essential to consider the correla

tions between parameters, as independent parameters are uncommon. Computing and using

a variance-covariance matrix of the parameters at each level of the hierarchy can properly

account for parameter correlations and, furthermore, provides an excellent conduit for incor

porating parameter mismatch information into circuit models. These variance-covariance

matrices are one of the most important cornerstones of our methodology.



low-level parameters: {p}, nominal values, variances, correlations

"experiment"

response surface model (linear or quadratic)

analytic

calculations

intermediate-level parameters: {p}, nominal values, variances, correlations

generate

correlated

samples

'experiment'
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response surface model (linearor quadratic)

Monte

Carlo
analytic

calculations

high-level performances: {p}, nominal values, variances, correlations

Figure 6.1: Hierarchical characterization.
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With these factors in mind, a typical flow ofour statistical characterization pro
cess begins with a set oflow-level process parameters, their nominal values, their variances,
and their correlations. We construct an experiment and carry out simulations to build

the quadratic response surface models for each component in the circuit. We use analytic
formulas to calculate the means, variances, and correlations of the intermediate-level pa
rameters. We then perform Monte Carlo analysis at the behavioral level, using correlated

sets of random variables, to determine the distributions and correlations of the high-level
system performances.

Our key new contributions to this method of hierarchical statistical characteriza

tion, as shown in Figure 6.1, are in three areas:

1. a method for incorporating parameter mismatch and correlation into the response

surface models,

2. a method for directly calculating the expected values, variances, and correlations of

higher-level parameters from those of lower-level parameters, and

3. a method for generating correlated sets of parameters for Monte Carlo analysis at the

behavioral level.

These contributions improve the efficiency and accuracy of statistical circuit characteriza

tion.

6.2 Parameter Mismatch and Correlation

Most MOS models are characterized by a relatively large number of parameters,

only a few of which are statistically independent [158]. Principal component analysis (PCA)

or principal factor analysis (PFA) can be used to extract the statistically relevant combina

tions of parameters and thereby reduce the number of lower-level parameters which must be

considered [154, 55]. Given a set of model cards which have been extracted from fabricated

devices, Spayn [130] is a commercial tool which performs PCA and PFA. This technique

typically results in 2-3 statistically relevant principal components per transistor, which can

explain at least 75% of the observed variation in 15 level 3 MOS model parameters.

In order to properly account for parameter mismatch, we use a separate model

card for each transistor in the circuit. Correlations between transistors are specified in the



Mlpci Mlpc2 M2pcl M2pc2 Cx c2
MlpCi 1 0 0.9 0 0 0

Mlpc2 0 1 0 0.9 0 0

M2pcl 0.9 0 1 0 0 0

M2pc2 0 0.9 0 1 0 0

Ci 0 0 0 0 1 0.8

c2 0 0 0 0 0.8 1
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Figure 6.2: Example variance-covariance matrix for low-level parameters.

variance-covariance matrix. The correlation coefficients will be functions of transistor areas,

distances between transistors, and Vgs, according to appropriate mismatch models. Param

eters on the same die will typically have relatively high correlation coefficients, approaching

the limiting case of 1 for no mismatch. Note that using a single model card for multi

ple transistors, while common, corresponds to this limiting case of no mismatch and can

produce inaccurate statistical characterizations. An example variance-covariance matrix is

shown in Figure 6.2. In this example, there are two orthogonal principal components for

each transistor. There are two transistors whose parameters are 90% correlated. There are

two capacitors which are 80% correlated to each other and uncorrected to the transistor

parameters.

6.3 Analytic Statistical Calculations

Once an appropriate variance-covariance matrix for the statistically-relevant low-
level parameters has been obtained, we use SimPilot or a similar program to construct
the linear or quadratic response surface models for each intermediate-level parameter. Con
structing this model involves defining an appropriate experiment, which in SimPilot is

typically a simplex experiment for linear models or a Latin hypercube for quadratic mod
els, running Eldo [31] (Spice) for each permutation in the experiment, and using linear
regression to solve for the coefficients of the response surface model.

Once a linear or quadratic response surface model has been found, the expected
values, variances, and correlations of the intermediate-level parameters can be directly com
puted, regardless of the distributions of the low-level parameters. Therefore it is usually
not necessary to resort to Monte Carlo analysis, as SimPilot does; direct analytic solutions
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are faster and more accurate.

Let A" be a p-dimensional vector of random variables which represents the lower-

level parameters, with S[X] = 9 and variance-covariance matrix V[X] = E. Let Y be an

w-dimensional vector representing the higher-level parameters. We wish to calculate S[Y]
and V[Y].

Considering the linear case first, let C be an n xp matrix ofconstants representing

the statistically significant coefficients in the linear model, so that Y = CX. Theorems 6.3.1

and 6.3.2 prove that S[Y] = C9 and V[Y] = CT.C, respectively. Note that these theorems

do not make any assumptions about the distribution of the low-level parameters.

Theorem 6.3.1

€[CX] = C9 (6.1)

Proof: Let Y = CX. Then y{ = YZLi cirxr, and

S[CX] = [(£%•])•] (6.2)
' m \

£ cir£ [Xr]

Theorem 6.3.2

Proof: Let Y = CX. Then

(6.3)
<r=l

= [(CS[X])i] (6.4)

= C9 (6.5)

V [CX] = CT.C (6.6)

V[CX] = V[Y] (6.7)

= e[(Y-e[Y])(Y-e[Y)Y] (6.8)
= S[(CX -CS[X]){CX -C€[X])'] (6.9)
= £[C(X-£[X])(X-£[X])'C'] (6.10)
= c^[(x-^[x])(x-£:[x]),]c/ (6.ii)
= CT.C (6.12)

For the quadratic case, let A be a p x p symmetric matrix representing the sta

tistically significant coefficients in the quadratic model for any one higher-level parameter
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y,-, so that ?/,• = X'AX. Note that for any given coefficients in a quadratic equation, A is

uniquely determined [113]. Let tr (A) denote the trace of A. Theorems 6.3.3 and 6.3.4 show

how £[yi\ and var[yi] can be calculated.

Theorem 6.3.3

£ (X'AX) = tr {AL) + 9'A9 (6.13)

Proof:

£[X'AX] = e[(X-0)'A{X-9) +
9'AX-rX'A9-9'A9] (6.14)

Since X'A9 = (X'A9)' = 9'A'X = 9'AX

and S [9'AX] = 9'A£ [X] = 9'A9,

£[X'AX] = £[(X-9)'A(X-9)}+9'A9 (6.15)

= EE^[(i.-^)(ii-y]+^
»' 3

= EE^,ffy +^ (6-16)
i 3

= tr[AZ] + 9'A9 (6.17)

Theorem 6.3.4

var [X'AX] = £ [(X - 9)'A (X - 9)f +
A£[{9'A(X-9))2] +
4£ [9'A {X - 9) [X - 9)' A{X - 9)] -
(ir(AE))2 (6.18)

Proof:

var [X'AX] =£[(X'AX)2] - (S [X'AX])2 (6.19)
X'AX = (X - 9)' A(X-9) + 29'A (X - 9) + 9'A9 (6.20)

Letting W = X - 9,

(X'AX)2 = (W'AW)2 + 4(9'AW)2 + (9'A9)2 +
29'A9 (W'AW + 29'AW) +

49'AWW'AW (6.21)
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Using 6.3.3,

£[(a"ax)2] = £:[(iy,Aiy)2]+4£:[(^Avr)2]4-
(0'A0)2 + 20'A0(ir(AE)) +

4£ [9'AWW'AW]

(£ [X'AX])2 = (tr (AX))2 + (9'A9)2 +29'A9tr (AE)

var [X'AX] = £[(W'AW)2] +4£ [(9'AW)2] +
4£ [9'AWW'AW] - (tr (AE))2

(6.22)

(6.23)

(6.24)

Evaluating (6.18) requires the second, third, and fourth moments of the joint

probability density function for X and thus can be complicated in the general case. When

X can be assumed to follow a multivariate normal distribution, i.e. X ~ Afp (9,E), then

£[(W'AW)2] =(tr (AE))2 +2tr (AE)2 ,

£[(9'AW)2] =9'AEA9, and
£ [9'AWW'AW] = 0.

Theorem 6.3.5 follows immediately [114].

Theorem 6.3.5 If X ~ M (9, E), then

var [X'AX] = 2tr (AE)2 + 40'AEA0

(6.25)

(6.26)

(6.27)

(6.28)

To compute the off-diagonal elements of V\Y], we need to compute cov[yi,yj\ for

all i,j. Let A and B be the symmetric matrices representing the coefficients of the quadratic

models for two higher-lever parameters yA and y#, so that y^ = X'AX and ys = X'BX.

Theorem 6.3.6 is used to compute cov[yi,yj] [113].

Theorem 6.3.6 If X ~ Mp (9,E), then

cov(X'AX, X'BX) = 2tr (AEBE) + 40'AE£0 (6.29)

Proof: Let T = [X' X1] be the (2p)-dimensional vector formed by replicating X. T

J^2P (/*, C), where \x = [9' 9'] and C =
E E

E E
LetW =

A 0

0 B
Then
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T'WT = X'AX + X'BX (6.30)

var[T'WT] = var [X'AX] + var [X'BX]

-2cov [X'AX, X'BX] (6.31)

cov [X'AX, X'BX] = i (2tr (WC)2 +4y!WCWp, -
(2tr (AE)2 +40'AEAfl) -
(2tr (BY)2 +49'BHB9) ) (6.32)

= 2tr (AEJ3E) + 49'AXB9 (6.33)

Our IC fabrication experience has shown that the low-level parameters generally

do follow a normal or log-normal distribution, so normality of the low-level parameters,

as required by Theorems 6.3.5 and 6.3.6, is a reasonable assumption. One frequently-

cited theoretical justification for this assumption is the central limit theorem applied to the

physical fabrication process.

If the low-level parameters X can be assumed to be multivariate normal, X ~

A/p [0, E], and a linear model is used, then the intermediate-level parameters Y will also be

multivariate normal, Y ~ Nn [C9,CEC]. When X is multivariate normal and a quadratic

model is used, then (X - 9)' A(X - 9) ~ xl if and only if AEA = A, where r is the rank
of A [114]. Otherwise the distribution of Y does not follow an easily-computable form. In
practice, however, one introduces little error by assuming that the intermediate parameters

are approximately multivariate normal, even when a quadratic model is used.

Our C functions for calculating the expected values and variance-covariance matrix

using (6.1), (6.6), (6.13), (6.28), and (6.29) accept as inputs the vector 9 and the matrix

E, which define the joint distributions of the low-level parameters, and a coefficient matrix

C in which each row represents the appropriately-ordered response surface coefficients for

one intermediate-level parameter. For example, if the response surface models for two

intermediate-level parameters, po and pi, are

= coo + cqiXi + c02x2 + c03:c2 + co^a-'i + c05xlPO = Coo + CoiZi + C02Zi + CQ3Z2 + Co^^'i + c05x2 (6.34)

and

Pi = Cio + cnx\ + cnx\ + ci3x2 + ci4x2xi + c15x2, (6.35)
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then

COO Coi C02 C03 C04 C05

ClO Cn C12 C13 C14 Cis

The C functions for the linear case are straightforward. For the quadratic case,

the expected value function loops over each intermediate-level parameter, calling (6.13) to

compute the expected value of that parameter. Similarly, the variance-covariance function

loops over each combination of intermediate-level parameters, calling (6.28) or (6.29) to

compute the appropriate entry in the variance-covariance matrix for that combination. A

utility function converts a row of the matrix C into a symmetric matrix of the appropriate

form to be used as A or B.

6.4 Correlated Parameters at the Behavioral Level

Using the techniques outlined in Sections 2 and 3 we can calculate the nominal

values, variances, and correlations of the intermediate-level parameters. If there are a large

number of correlated intermediate-level parameters, then PFA or PCA can be used again,

in the same fashion as for the low-level parameters, to reduce the number of parameters

which must be considered for the behavioral modeling. Given the distributions of the

intermediate-level parameters, the next step is to calculate the distributions of the high-

level performances. We can either repeat the RSM-based procedure used to characterize

the intermediate-level parameters or we can perform a Monte Carlo simulation. Monte

Carlo simulations at the behavioral level are feasible if there are a relatively small number

of intermediate-level parameters and each evaluation of the behavioral model is fast.

When performing these behavioral-level Monte Carlo simulations, it is essential

that the correlations between the intermediate-level parameters be properly considered;

treating them as independent will usually produce overly pessimistic results. The way to

do this is to generate correlatedsets of random numbers. Suppose we want a p x 1 vector

of random variables to be correlated, with variance-covariance matrix E. We can form the

Cholesky decomposition of E to obtain an upper triangular matrix U, where

E = U'U (6.37)

If we generate a p x 1 vector of independent random variables X, with £[X] = 0 and

V[X] = /, then U'X will have £[U'X] = 0 and V[U'X] = E. Therefore pre-multiplying X

by U' induces the desired correlations.

c = (6.36)



for i = 1 to p {

<?ii =y/au - £L\ o2ki
for j = i + 1 to p {

i-1

(Tij =

}

Figure 6.3: Pseudo-code for computing the Cholesky decomposition of E.
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Linear Model Quadratic Model Monte Carlo Analysis
Nominal St. Dev. Nominal St. Dev. Nominal St. Dev.

gain 110.2 dB 2.001 dB 110.2 dB 2.086 dB 110.2 dB 2.000 dB
polei 902.0 Hz 310.1 Hz 911.4 Hz 336.5 Hz 917.2 Hz 347.2 Hz
pole2 4.025 MHz 0.763 MHz 4.028 MHz 0.766 MHz 4.026 MHz 0.783 MHz

Tm 414.2 GQ 19.73 GQ 414.5 GQ 20.34 GQ 413.9 GQ 19.88 GQ
zeroi 3.971 MHz 0.752 MHz 3.973 MHz 0.754 MHz 3.971 MHz 0.770 MHz
CPU 24.1s 120.5 s 2258.6 s

Table 6.1: Expected values and standard deviations of intermediate-level parameters.

Pseudo-code for computing the Cholesky decomposition of a symmetric positive

semidefinite pxp matrix E is shown in Figure 6.3. Note that all variance-covariance matrices

are symmetric and positive semidefinite [114].

6.5 Results

The statistical characterization techniques described in this chapter have been

tested by performing statistical characterizations of two circuits. The first circuit is a folded

cascode operational amplifier, which illustrates the building of a statistical behavioral model

from a SPlCE-level block. The second circuit is a phase-locked loop, which illustrates our

complete methodology using multiple levels of hierarchy.
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6.5.1 Folded Cascode Operational Amplifier

A transistor-level schematic of the folded cascode operational amplifier is shown

in Figure 6.4. We statistically characterized five intermediate-level parameters: gain, polei,

pole2, Tin, and zeroi. These quantities represent the parameters which might be needed for

a behavioral model of this operational amplifier.

For the statistical MOS models we used the example database distributed with

Spayn, which contains level 3 parameters for both p- and n-type transistors. Since no

mismatch data was available, we assumed perfect transistor parameter matching (correlation

= !)•

The statistically relevant transistor parameters were found using PCA in Spayn

to be 7ipCi and npC2 for the n-type transistors and ppci and ppC2 for the p-type. Considering

also the variations in load capacitors and DC voltage sources, the complete set of low-level

parameters for this example was {npci, npc2, ppci, ppc2, c\, c2, vu v2}.

The intermediate-level parameters were defined to be {gain, polei, pole2, rtn,

zeroi}. Offset would have also been included as an intermediate-level parameter if tran-
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sistor parameter correlation (mismatch) information had been available. The linear and

quadratic response surface models for these intermediate-level parameters were found us

ing SimPilot. Using these models, the appropriate functions from Section 3 were used to

compute the expected values, standard deviations, and variance-covariance matrix of the

intermediate-level parameters. The results of these analytic calculations and the CPU times

on a DEC 7000 Model 610 AXP workstation are shown in Table 6.1.

For comparison to these analytic results, a 1,000-run Monte Carlo analysis was

performed on the same circuit. The resulting expected values, standard deviations, and

CPU time are also shown in Table 6.1. Note that the Monte Carlo results match the

analytic results quite closely.

Correlated samples of these intermediate-level parameters were generated by com

puting the Cholesky decomposition U of the variance-covariance matrix found for the

quadratic models, as discussed in Section 4. These correlated samples can be used in

behavioral-level Monte Carlo analysis when this operational amplifier is included in larger
systems.

6.5.2 Phase-Locked Loop

Ablock diagram ofa commercially available PLL which isused asa clock multiplier
and for deskewing isshown in Figure 6.5. The phase/frequency detector compares the phase
and frequency of the input signal to the reference signal. If the frequency of the reference
signal needs to be increased, then the signal up is asserted and the charge pump adds charge
to the node Vc. Similarly, if the frequency of the reference signal needs to be decreased, then
the signal down is asserted and the charge pump subtracts charge from the node Vc. The
voltage controlled oscillator generates a frequency corresponding to the voltage on node Vc;
when the PLL is locked, the frequency generated by the oscillator is 12 times the input
frequency.

The high-level performance which we wish to statistically characterize is the lock

time, which we define as the time after which Vc lies in a band that is within 1.5% of its

average value for the next 1 /zs. Calculating the lock time of the PLL using a transistor-

level netlist requires more than 24 hours ofCPU time on a Sun Ultra Sparc workstation, so
traditional Monte Carlo methods would require thousands ofdays of CPU time and hence
are impractical.



88

Fin _ Phase/

Frequency

Detector

up Iup Low
Vc

Voltage

Controlled

Oscillator
dowjL

Charge

Pump Idn _
Pass

Filter
Fref_

^> ^

Counters

(Divide by N)Outputs •<

Figure 6.5: Block diagram of PLL.

The intermediate-level parameters for the behavioral model of the voltage con

trolled oscillator are

1. gain, in MHz/V, and

2. fo.s, the output frequency when Vc = 0.8 V.

The intermediate-level parameters for the behavioral model of the phase/frequency detector

and charge pump are

1. Iup and

2. Idn-

The behavioral models are written in HDLA [51].

6.5.2.1 MOS Model Extraction

Statistical MOS models are needed to characterize the blocks in the PLL. To

obtain these models, we measured a sample of 100 dies from 5 wafers and 2 lots of a 0.5 p,m

double poly 3.3 V technology. Each die contained 5 NMOS and 5 PMOS transistors with

W/L dimensions of 10 /zm/0.5 /mi, 10 /zm/0.4 p,m, 2 /im/10 fim, 0.8 jim/10 fim, and

10 /zm/10 p.m. SGS-Thomson Level 3 NMOS and PMOS models were extracted for each

die, with 28 parameters per model. The accuracy of the models is within 5%. An example

of extraction is shown in Figure 6.6.

The total measurement time was 45 hours using Utmost [143] and a prober driven

by a Sun Sparc 10. Extracting the models from the measurements took 25 hours of CPU
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Component Distribution

PCI log normal
PC2 log normal
PC3 Gaussian

PC4 Gaussian

PC5 negative log normal
PC6 Gaussian

PC7 negative log normal
PC8 Gaussian

Table 6.2: Distributions of principal components of MOS models.

time on a Sun Sparc 20. The extracted models for 7 of the 100 dies were grossly inaccurate;

those dies were discarded.

The model cards were analyzed using principal component analysis and 8 statisti

cally significant principal components were found. Three distributions were considered for

each principal component: Gaussian, log normal, and negative log normal. Note that a log

normal distribution is the distribution of y = ex when x is Gaussian and a negative log

normal is the distribution of z = t - y where t is any real number. For each principal com

ponent, the distribution which produces the best fit is chosen. The resulting distributions

are shown in Table 6.2 and a histogram of principal component 7 is shown in Figure 6.7.

Regardless of distribution, each principal component is standardized to have mean = 0 and

standard deviation = 1.

6.5.2.2 Behavioral Model Parameters

Given the statistical transistor models, the next step is to compute the distribu

tionsof the intermediate-level behavioral model parameters. We begin by building the linear

and quadratic response surface models of the intermediate-level parameters as functions of

the principal components of the MOS models.

To calculate the voltage-controlled oscillator parameters, gain and fo.s, we run

transient simulations at four input voltages, measuring the frequency as the average fre

quency of the last 25 of 120 periods at each input voltage. Gain is calculated as the slope

of the least squaresestimate of the straight-line function of frequency as a function of input

voltage. F0.8 is the frequency when the input is at 0.8 V. The accuracies of the linear and
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Parameter

Linear Model Quadratic Model
Accuracy Worst Error Accuracy Worst Error

gain

fo.8

Idn

92.46%

77.53%

74.18%

73.28%

2.39%

-13.07%

-7.35%

-7.39%

92.60%

81.48%

78.15%

77.42%

-1.87%

-10.33%

-4.31%

-4.35%

Table 6.3: Comparison of linear and quadratic models for intermediate-level parameters.

Parameters Linear Model Quadratic Model
gain and fo.s
lup and Idn

7.50 hours

4.26 hours

68.0 hours

38.4 hours

total: 11.76 hours 106.4 hours

Table 6.4: CPU times for building linear and quadratic models of intermediate-level param
eters, on a Sun Sparc 20.

quadratic models for gain and f0.8 are shown in Table 6.3. The CPU times required to build

these models are summarized in Table 6.4.

The phase/frequency detector and charge pump parameters, Iup and Ijn, are mea

sured by applying the input and reference frequencies for 200 p.s and averaging the Iup and

Id„ signals over the period (20 //s,180 fis). The accuracies of the linear and quadratic models

for lup and Ijn are shown in Table 6.3, and the CPU times are summarized in Table 6.4. -

We note that the linear models are almost as accurate as the quadratic models, so

we use the linear models for the statistical calculations.

Since not all of the principal components of the MOS models are Gaussian, we

compute the statistical distributions of the intermediate-level parameters in two different

ways. The first method is the theoretical approach, using Equations 6.1 and 6.6. The second

method is a 10,000-run Monte Carlo analysis using the linear RSM model. The results are

summarized in Table 6.5; it is clear that the analytic method and the RSM Monte Carlo

method produce almost identical results. The actual distributions obtained from the Monte

Carlo analyses are shown in Figures 6.8-6.11. The matrix of the correlation coefficients of

the intermediate-level parameters is shown in Figure 6.12.



Parameter

Analytic Calculations RSM Monte Carlo

Nominal St. Dev. Nominal St. Dev.

gain

fo.8
lup

hn

172.3 MHz/V
38.71 MHz

191.1 pk
191.1 pk

2.38%

4.03%

2.21%

2.20%

170.9 MHz/V
37.34 MHz

190.8 pk
190.4 pk

2.45%

4.15%
2.22%

2.16%
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Table 6.5: Expected values and standard deviations of intermediate-level parameters.

Parameter

Linear Model Quadratic Model
Accuracy Worst Error Accuracy Worst Error

lock time 50.68% -3.27% 92.53% -0.93%

Table 6.6: Comparison of linear and quadratic models for high-level performance.

Parameter

Analytic Calculations RSM Monte Carlo

Nominal St. Dev. Nominal St. Dev.

lock time 7.1642 ps 1.21% 7.1643 ps 1.16%

Table 6.7: Expected values and standard deviations of high-level performance.
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gain fo.8 lup Idn
gain 1.000 0.579 0.881 0.880

fo.8 0.579 1.000 0.670 0.671

lup 0.881 0.670 1.000 0.99999

Idn 0.880 0.671 0.99999 1.000

Figure 6.12: Matrix of correlation coefficients of intermediate-level parameters.

6.5.2.3 High-Level Performance

Once the statistical distributions of the intermediate-level behavioral model pa

rameters have been found, we can compute the distribution of the high-level performance

in which we are interested, the lock time of the PLL.

Figure 6.12 shows that Iup and Ijn are very highly correlated and that gain is highly

correlated to Iup and Ijn. We therefore attempt a parameter reduction by performing

a principal component analysis on the intermediate-level parameters. Only the first two

principal components turn out to be statistically significant, and together they explain

96.22% of the parameter variation.

Next we build the linear and quadratic RSM models of the lock time as a function

of PCl and PC2, the first two principal components of the intermediate-level parameters.

The relative accuracy of these models is shown in Table 6.6. Since the quadratic model

is significantly more accurate than the linear model, the quadratic model is used for the

statistical calculations.

We compute the statistical distribution of the lock time by both the analytic

method and the RSM Monte Carlo method (1,000,000-run sample). The results are shown

in Table 6.7. The distribution of the lock time, as computed from the RSM Monte Carlo

analysis, is shown in Figure 6.13.

6.6 Conclusions

We have developed a complete methodology for hierarchical statistical circuit char

acterization which does not rely upon circuit-level Monte Carlo simulation. The main new

ideas are (1) a method for incorporating parameter mismatch and correlation into RSM,

(2) a method for directly calculating expected values, variances, and correlations of higher-
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Figure 6.13: Distribution of lock time.

level parameters from those of lower-level parameters, and (3) a method for generating

correlated sets of parameters for Monte Carlo analysis at the behavioral level. We have

illustrated these ideas on two example circuits, a folded cascode operational amplifier and
a phase-locked loop.

One main area of future workis in determining appropriate correlation coefficients

to accurately model mismatch; in our example circuits we had to assume perfect matching.

We believe this methodology will beuseful for yield analysis, settingrealistic circuit

specifications for large analog circuits, realistic worst-case modeling for both analog and

digital circuits, enforcing matching constraints in constraint-driven place and route, and

top-down constraint-driven design.
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Chapter 7

Conclusions

Statistical techniques for analog testing and characterization can be used through

out the system design process. Automatic test pattern generation can be used to generate

test vectors for production testing and to estimate testing cost during design. Optimal

test structures can be designed by applying automatic test pattern generation to competing

proposed test structures. And statistical performance characterization can be performed

without time-consuming Monte Carlo analyses by using hierarchical modeling and direct

statistical techniques.

This systematic statistical approach to the analog testing problem allows time-

invariant deterministic systems to be fully characterized asefficiently as possible, eliminating

the problems of over-testing, which is wasteful of production resources, and under-testing,

which results in poor product quality. Test sets are generated to contain the minimum num

ber of tests required to fully characterize the system performance specifications, considering

all relevant catastrophic faults and parametric variations of system parameters. The test

set is optimized to minimize the impact of measurement and modeling errors using tech

niques for optimal design of experiments. During production testing, nonlinear regression is

used to generate statistical confidence intervals for determining whether specifications are

satisfied or violated.

The result is a testing methodology which impacts analog and mixed-signal elec

tronic products by decreasing testing time and increasing product reliability. With testing

currently consuming approximately 30-50% of total product cost, there is tremendous po

tential impact on the overall cost of designing and manufacturing analog systems.
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