Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MULTI-VALUED DECISION DIAGRAMS FOR
LOGIC SYNTHESIS AND VERIFICATION

by

Timothy Kam, Tiziano Villa, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/75

3 December 1996

MULTI-VALUED DECISION DIAGRAMS FOR
LOGIC SYNTHESIS AND VERIFICATION

by

Timothy Kam, Tiziano Villa, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/75

3 December 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Multi-valued Decision Diagrams
for Logic Synthesis and Verification

Timothy Kam' Tiziano Villa? Robert K. Brayton®
Alberto L. Sangiovanni-Vincentelli?

'Intel Development Labs
Intel Corporation
Hillsboro, Oregon 97124-6497

2Department of EECS
University of California at Berkeley
Berkeley, CA 94720

Abstract

Many problems can be stated naturally using variables that have multiple values (i.c., take their
values from a discrete scii. Functions defined on these variables can also take on values from a discrete
set. Exampics of such jroblems range from combinatorial optimization such as routing and resource
scheduling, to logic simulation and formal verification, and to logic synthesis such as state minimization
and state assignment. In many cases these problems are NP-Complete or coNP-Complete. Compact
representation and efficient manipulation of such multi-valued functions are key to the design of efficient
algorithms that advance the frontier of the problems that can be solved exactly. Binary decision diagrams
(BDDs) are such a compact representation for problems involving binary variables.

In this paper, we define the multi-valued decision diagram (MDD), which s a canonical representation
of a muhi-valued function as a directed acyclic graph. We analyze its properties, and provide algorithms
for constructing and manipulating MDDs. With our MDD package, an MDD is mapped into a BDD
using either a logarithmic encoding or a 1-hot encoding, each suitable for a different class of applications.
We have applied both kinds of MDD 1o many different applications and this paper scrves as a summary
of the work done so far. Furthermore, general problem solving techniques, such as binate table covering
and othcer graph algorithms have been formulated using MDDs.

1 Introduction

In this paper, we shall introduce techniques for efficient representation and manipulation of objects. We
say that a representation is explicit if the objects are listed internally one by one. Objects are manipulated
explicitly, if they are processed one after another. Animplicit representation means a shared representation
of the objects, such that the size of the representation is not linearly proportional to the number of objects
init. In an implicit manipulation many objects are processed simultaneously in one step.

The objects we need to represent include functions, relations, sets, and sets of sets. In Section 2,
we introduce a new data structure called the multi-valued decision diagram (MDD) which can represent
multi-valued input multi-valued output functions. An MDD is a generalization of a binary decision diagram

(BDD) [6). BDDs represent binary input binary output functions, and they will be reviewed in Section 3
Relations and sets can be expressed in terms of characteristic functions [7] as shown in Section 3. The
remaining of the paper describes efficient representations of multi-valued input binary output functions.
Section 4 shows that an MDD can be mapped to an equivalent BDD after choosing an encoding for each
multi-valued variable. In Section 5, the logarithmically encoded MDD is described. And in Section 6, the
1-hot encoded MDD is introduced. The latter is particularly useful for an efficient representation of set of
sets, S0 an extensive suite of operators will be introduced for efficient manipulations of sets of sets. Issues
of MDD variable ordering will be discussed in Section 7. Applications of logarithmic encoded MDDs are
discussed in Section 8 and of 1-hot encoded MDDs in Section 9. Section 10 closes with final remarks.
First we give definitions pertaining to MDDs.

Definition 1.1 Let F be a multi-valued input multi-valued output function of n variables - 21,22, Tn’
F:PxPyx...x P, =Y

Each variable, z;, may take any one of the p; values from a finite st P: = {0.1,....p;— 1}. The output
of F may take m values from the set } = {0,1,...,m - 1}. Without loss of generality, we may assume
that the domain and range of F are integers. In particular, F is a binary-valued output function if m = 2,
and F is a binary-valued input functionif p; = 2 foreveryi: 1 < 7 < n.

Definition 1.2 Let T; be a subset of P;. z?‘ represents a literal of variable z; which is defined as the
Boolean function:

oI = 0 ifz; T,
t T)1 ifz; €T

Definition 1.3 The cofactor of F with respect to a variable z; taking a constant value j is denoted by F
and is the function resulting when z; is replaced by j:

fr,(xl....,zn)=.7-'(zl,...,:r,-_1,j.:r,~+1 Tn)

Definition 1.4 The cofactor of F with respect to a literal .r?" is denoted by F r, and is the union of the
cofactors of F with respect to each value the literal represents: '

.7: I‘I] = U .r .‘rf
' jET
The cofactor of F is a simpler function than F itself because the cofactor no longer depends on the variable
z;.
Definition 1.5 The Shannon decomposition of a function F with respect to a variable z; is:
pi—l
f = Z :l:‘,? . }- !
i=0 '

The Shannon decomposition expresses function F as a sum of simpler functions, i.e., its cofactors F ;.
This allows us to construct a function by recursive decomposition.

2 Multi-valued Decision Diagrams

This section describes a new data structure - the multi-valued decision diagram [35, 19] that is used to solve
discrete variable problems [19, 21, 41, 22, 36, 2, 4, 27, 31, 30]. Our definition of multi-valued decision
diagrams closely follows that of Bryant, [6], with two exceptions: we do not restrict ourselves to the Boolean
domain, and the range of our functions is multi-valued.

Definition 2.1 A multi-valued decision diagram (MDD) is a rooted, directed acyclic graph. Each nonter-
minal vertex v is labeled by a multi-valued variable var(v) which can take values from a range range(v).
Vertex v has arcs directed towards \range (v)| children vertices, denoted by child,(v) for each k € range(v).
Each terminal vertex u is labeled a value value(u) € Y = {0,1,...,m — 1}.

Each vertex in an MDD represents a multi-valued input multi-valued output function and all used-visible
vertices are roots. The terminal vertex v represent the constant (function) raluc(u). For each nonterminal
vertex v representing a function F, its child vertex child;(v) represents the function F« for each k€
range(v). Therefore F = Y ycrange(v) V* * Fut-

For a given assignment to the variables, the value yielded by the function is determined by tracing a
decision path from the root to a terminal vertex, following the branches indicated by the values assigned to
the variables. The function value is then given by the terminal vertex label.

Example 2.1 The MDD in Figure 1 represents the discrete function F' = maz (0, z — y) where = and y are
3-valued variables.

F=max(0,x-y)

_ —~ nonterminal vertex v

X

1
child1(v) child2(v) child3(v)

terminal vertex u - h value(u) =2

Figure 1: Example of an MDD for a discrete function.

A multi-terminal binary decision diagram (MTBDD) [9} is an MDD, with nonterminal vertices restricted
to binary variables and terminals taking values from a discrete set. A type of MTBDD called algebraic
decision diagram (ADD) [33] has been implemented at the University of Colorado at Boulder and used to
produce implicit algorithms for manipulating matrices. From Section 3 onwards, MDDs will be used only
for binary-valued output functions, however the theory is valid for the more general multi-valued functions.

2.1 Reduced Ordered MDDs

Definition 2.2 An MDD is ordered if there is a total order < over the set of variables such that for every
nonterminal vertex v, var(v) < var(childi(v)) if child(v) is also nonterminal.

Definition 2.3 An MDD is reduced if
1. it contains no vertex v such that all outgoing arcs from v point 1o a same vertex, and

'
2. it does not contain two distinct vertices v and v’ such that the subgraphs rooted at v and v are
isomorphic.

Definition 2.4 A reduced ordered multi-valued decision diagram (ROMDD) is an MDD which is both
reduced and ordered.

Henceforth, we consider only ROMDDs and the name MDD will be used to mean ROMDD.

Variable ordering must be decided before the construction of any MDD. We assume that this has becn
decided and that the naming of input variables has been permuted so that «; < ;4. MDDs are guarantecd
to be reduced at any time during the constructions and operations on MDDs. Each operation returns a
resultant MDD in a rcduced ordered form.

Example 2.2 The ROMDD for the MDD in Figure 1 is shown in Figure 2. The variable ordering is x < y.
Note that one redundant nonterminal vertex and six terminal vertices have been eliminated.

F=max(0,x-Yy)

Figure 2: Reduced ordered MDD for the same function.

A very desirable property of an ROMDD is that it is a canonical representation.

Theorem 2.1 For any multi-valued function F, there is a unique reduced ordered (up to isomorphism)
MDD denoting F. Any other MDD denoting F contains more vertices.

Proof. The complete proof has been given in [35]. O

Corollary 2.1 Two functions are equivalent if and only if the ROMDD:s for each function are isomorphic.

4

2.2 CASE Operator

The CASE operator forms the basis for manipulating MDDs. All operations on discrete functions can be
expressed in terms of the CASE operator on MDDs.

Definition 2.5 The CASE operator selects and returns a function G; according to the value of the function
F:

CASE(F,Go,Gl,...,Gm-1) = Giif (F=14)

The operator is defined only if range(F) = {0, 1, ..., m-1}. The range of the function returned from the
CASE operation is range(G;). In particular, if the G; are binary-valued, the resultant function will also be
a binary-valued output function.

The input parameters to the CASE operator are, in general, multi-valued functions given in the form of
MDDs. The task is to generate the resultant function H = CASE(F, Go, G\, . . .,Gm-1). Since the selector
F can be a function instead of a variable, we need a recursive algorithm to compute the CASE operator.

If the selector is a variable z, the following function returned by the CASE operator corresponds to a
vertex with a top variable 2 and with children functions Go,G1, - - ., Gp;~1- The vertex is denoted by a
(pi + 1)-tuple on the right:

CASE(2,Go.G). - - .,Gp'_l) = (z,Go,G1y....Gp,-1))

Moreover, it holds:
CASE(F,0,1,....m-1)=F)

Equation 1 and 2 will form the terminal cases for our recursive algorithm.
Notice that the Shannon decomposition of H with respect to = can he realized by:

p=1

H = ij'HzJ

3=0
= CASE(x,Ho.Hpu.....H)
= (z,Hp0,Hp,...,Hzp-1) 3

Recursion is based on the following reasoning. Remember that we can express a complex function in
terms of its cofactors using Shannon decomposition. The cofactors of a function are simpler to compute
than the original function. So to compute the CASE of complex functions, we first compute the CASE of
their cofactors and then compose them together using Shannon decomposition. Morce rigorously,

p=1
CASE(F,Go,G1,...,Gm-1) = Zz‘-CASE(F,GO,GI,...,Gm_l)z.'

i=0

p-1
= Zm"(Gj if (F=3))e

1=0

p—1
= Y &' Gz if (F=35)r)

i=0
-1

= Zx' ’ (Gj.r' if (Fp =37))
i=0

= CASE(z,

5

C'ASE(F0.Gg70.G} 10, . -sGme1 20),
CASE(F1,Gog1,Grgty-1Gmo12)s

G}
CASE(Fp-1.Gop-1,Gy zp=1y -+ s Gt zv-1))

CASE(F,Go....,Gm-1) {
if terminal case return result
if CASE(F.Go, ...,Gp-1) in computed-table return result
let x be the top-variable of F,Go, ...,Gm-1
let p be the number of values r takes
forj=0to(p—1)do
H,,=CASFE(F,,. Gg,yev--- G
result = (z, Ho..... H p1)

return result

Figure 3: Pseudo-code for the C AS E' algorithm.

The pseudo-code for the recursive C'ASE algorithm is given in Figure 3. First, the algorithm checks
for terminal cases. Then if the function needed has already been computed and stored in the unique table,
it will be returned. It not, tie cofactors I, of the function // are computed by calling C'4.SE recursively
with the cofactors Fy,.Gg s+ .» Gy 5 8 its arguments. These are composed together using Shannon
decomposition. By Equation 3. Shannon decomposition with respect to is cquivalent to the (p + 1)-tuple
(J:, f],,_.o, vouy H_l.p—l).

It is shown in [35] that the worst-case time complexity of the CASE algorithm is O (pniar- | F | - |
Gol...|Gm-11).

3 Binary Decision Diagrams

The literal z; denotes that variable r; has the value 1 and the literal 7; denotes that variable a; has the value
0. Cofactors with respect to literals are similar to the ones in the previous section, and are formally defined
in Section 3.1.

Binary decision diagrams were first proposed by Akers in [1] and then canonicalized by Bryant in [6].

Definition 3.1 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each nonterminal
vertex v is labeled by a Boolean variable var(v). Vertex v has two outgoing arcs, childy(v) and child, (v).
Each terminal vertex u is labeled 0 or 1.

Each vertex in a BDD represents a binary input binary output function and all used-visible vertices are
roots. The terminal vertices represent the constants (functions) O and 1. For each nonterminal vertex v
representing a function F, its child vertex childg(v) represents the function F and its other child vertex
childy(v) represents the function F,. ie, F=7-F5+v- F,.

For a given assignment to the variables, the value yielded by the function is determined by tracing a
decision path from the root to a terminal vertex, following the branches indicated by the values assigned to
the variables. The function value is then given by the terminal vertex label.

Definition 3.2 A BDD is ordered if there is a total order < over the set of variables such that for every
nonterminal vertex v, var(v) < var(childo(v)) if childo(v) is nonterminal, and var(v) < var(child(v))
if child,(v) is nonterminal.

Definition 3.3 A BDD is reduced if
1. it contains no vertex v such that childy(v) = child(v), and

1
2. it does not contain two distinct vertices v and ¢ such that the subgraphs rooted at v and v are
isomorphic.

Definition 3.4 A reduced ordered binary decision diagram (ROBDD) is a BDD which is both reduced
and ordered.

Any subset .S in a Boolean space B™ can be represented by a unique Boolean function \ s : B" — B,
which is called its characteristic function |7}, such that:

xs(z) =1 ifandonlyifzin S

In the sequel, we will not distinguish the subset S from its characteristic function x s, and we will use S to
denote both.

Any relation R bctween a pair of Boolean variables can also be represented by a characieristic function
R:B?— Bas:
R{x,y) =1 ifand onlyif r isinrelation R 10 y
R can be a one-to-many relation over the two sets in B.

These definitions can be cxtended to any relation R between n Boolean variables, and can be represented
by a characteristic function R : B” — B as:

R(zy,2,....7,) = 1 if and only if the n-tuple (ri.x2,...,&y) isinrelation R

3.1 BDD Operators

A rich set of BDD operators has been developed and published in the literature [6, 3]). The following is the
subset of operators useful in our work.

The ITE operator forms the basis for the construction and manipulation of BDDs. The use of the ITE

operator also guarantees that the resulting BDD is in strong canonical form [3]. The CASE operator is the
multi-valued analog of the ITE operator.

Definition 3.5 The ITE operator returns function G if function F evaluates true, else it returns function
Go.’

G, ifF=1

ITE(F,G),Go) ={ Go otherwise

where range(F)={0,1}.

Definition 3.6 The substitution in the function F of variable z; with variable y; is denoted by:
[a:; — y;]? = .7‘-(3:1, ey Ti—1 Yirs Tigly - .,:c,.)

and the substitution in the function F of a set of variables = = %3 . ..z with another set of variables
Y = Y1¥2 - - . Yn is obtained simply by:

[z = yJF = [z1 = nillz2 = ¥2) - - . [2n = W) F

In the description of subsequent computations, some obvious substitutions will be omitted for clarity in
formulas.

Definition 3.7 The cofactor of F with respect to the literal x; (T; respectively) is denoted by F, (F+;
respectively) and is the function resulting when x; is replaced by 1 (0 respectively):

.7-}'(:::1,...,9:,,) = .7-'(.1'1....‘z;_l.l,:r,-.,.]....,.rn)
ff(.‘l‘],.. .,x,,) = }'(.1-1,...,z,-_,.O,x,-“....,x,,)

The cofactor of F is a simpler function than F itself because the cofactor no longer depends on the variable
Z;.

Definition 3.8 The existential quantification (also called smoothing, or forsome) of a function F overa
variable z; is denoted by 3z;(F) and is defined as:

Az, (F) = Fer+ Fa,
and the existential quantification over « set of variables & = 1. 2.0, is defined us:
Iz (F) = 3z, (Fz2 (... (32 (F))))

Definition 3.9 The universal quantification («/so called consensus, or forall) of a function F over a
variable x; is denoted by V.x;(F) and is defined as:
Vo, (F) =]‘-37 -F

£y

and the universal quantification over a sei of variables r = ry. x2.....7, is defined as:

Vz (F) =Yz (V22 (... (V2a (F))))

3.2 Unique Quantifier

Now we introduce a new BDD operator called the unique quantifier, which is in the same class as the
existential and universal quantifiers.

Definition 3.10 The unique quantification of a function F over a variable z; is denoted by 'z; (F) and is
defined as:

z; (F) = F= & F,

and the unique quantification over a set of variables x = £1,22,...,2n IS defined as:

lr (F) =tz ('z2 (.. (1zn (F))))

Suppose F is arelationon z,y and z. 'z F(z,y,2) = {(y, <)|a pair (y.) is related to a unique z}.
Some properties of the unique quantifier will be presented:

Lemma3l zlyFelylz F
Proof. 'z \yF & (Fr3 & F5y@ Fo @ Fry) @ lyla F
using the distributive property of cofactor over XOR, (F & G)z & Fr & G;.D

It is well known that 3z Vy F = Vy 3z F. Let us investigate if similar properties hold for the unique
quantifier.

Lemma32 23y F=3y !z F

Proof.
T F & (Fg+F)zd(Fg+Fy):
<~ F.ru F:ry Fry+Fry F:ry Fry+FJy F.xy F.ru'l'Fry ij F.T.u
Jyz2F & (FraF)y+(FF9F),
& Fy - Fg+l<-T--F, Fy+F Fy
'rIyF = = ' F
(]

The converse, 3y 'z F = 'r Jy F, is not true in general. Consider the relation F(z,y) =
{(0,0),(0.1),(1.1)},3y 'z Fistrue but !z Jy F is false. For the same F, !z Vy F is true but Vy !x F is
not; therefore 'z Vy F = Vy 'x I' is not true in general. Also, !z Vy [<= Vy !z I is not true in general
because of the counter example F(z,y) = {(0,0), (1, 1)}, where Vy !z F is true but !z Vy F' is false.

The pseudo-code in Figure 4 outlines the BDD unigue algorithm. The BDD function for !» F isreturned
by calling uniguc(F. x. 1) where v = {&).x2....,2,}.

First, the algorithm checks for terminal cases, and checks if the result has already been computed before.
Otherwise if the top variable v of F is the same as z; then the following recursive formula is applied:

22 Ziplee e T (F) = i1 Tigay oo 20 (F57) 5 i1y Tig2s oo oy Zn (Fy,)

If v is below 2, F is independent of variable z; and therefore the result from the next recursion can be
simply returned. If v is above z;, we need to compute !z F; and 'z F,, and merge the results by the JTE
operator. Finally the result is stored in the computed-table, and returned.

4 Mapping MDDs into BDDs

The first-generation MDD package is a direct implementation of the theory presented in Section 2. For
efficiency, our current MDD package uses BDDs as its internal representation. By hiding the mapped-BDD
and its encoded variables from the users, it lets users construct functions, manipulate them and output results
in terms of multi-valued variables only. But only Boolean output (multi-valued input) functions can be
represented by mapped-BDDs.

The mapping of MDD:s into BDDs involves two distinct steps: variable encoding and variable ordering.
Variable encoding is the process of associating a number of binary-valued variables to each multi-valued
variable, and assigning codes to represent the values that the multi-valued variables can take. Variable

9

unique(F, z,1) {
if (1 > |z|) or (top-indez(F) > bottom.index(z)) return F
if unique(F, z,) in computed-table return result
let v be the top variable of F
if (indez(v) = indez(z;)) {
T = unique(F;,,z,i+ 1)
E = unique(Fz,z,i+ 1)
result = ITE(T,E,E)
} else if (top-index(F) > index(x:)) {
result = unique(F,z,7i+ 1)
} else {
T = unique(F,,z,i)
E = unique(Fy, z,1)
result = ITE(v,T,E)
}
insert result in computed-table for unique(F, z,)
return resull

Figure 4: Pseudo-code for the unique quantifier.

ordering is the process of finding an ordcring of the cncoded binary-valued variables such that the size of
the final BDD is minimized. Section 7 will be devoted to variable ordering techniques used in our work,
while we shall first describe the variable encoding process here. To encode each m-valued MDD vertex, we
must decide on:

1. the number of binary variables used: n encoding variables result in 2" code points, and each code
corresponds to a decision path in the full BDD subgraph of these variables.

2. the assignments of codes to values: At least one distinct code point must be assigned to each value.
Therefore 2™ > m must be true.

3. the treatment of unused code points: If 2" > m, there is one or more unused code points. Each unused
code can either be left unassigned, or be associated to a value to which another code has already been
assigned. For the former case, its corresponding path always points to the terminal vertex 0. For the
latter case, the corresponding path can point to the same place as another path in the BDD subgraph.

In the next two sections, we shall investigate two encoding schemes. Logarithmic encoding in Section
5 offers a compact representation of functions, €.g., characteristic functions, whereas 1-hot encoding in
Section 6 is useful for set representation. Once an encoding and an ordering are chosen, there is a unique
way to map each MDD vertex into a BDD subgraph.

Example 4.1 Figure 5a shows an MDD representing the following function:

F={l ifr>y

0 otherwise

10

F=1iftx>y

x0
0 1
X
0 2 x1
1 or—1
yo yo
y y 0 1 or—=1
0 12 01 2
y1 redundant
0 1
0 1
0 1
a) ROMDD b) Mapped ROBDD

Figure 5: MDD and mapped-BDD representing the relation x > y.

x and y are 3-valued variables which can take values from P, = P, = {0,1,2}. To represent the MDD
using BDDs, each MDD nonterminal vertex must be mapped into a number of BDD vertices interconnected
in a subgraph. For example in Figure 5, the MDD vertex labeled by variable z is mapped into the BDD
vertices labeled by zo and z,. In addition, different indices have to be assigned 1o these binary variables.
In this case, since » < y for the MDD, this ordering is respected for the associated binary variables:
10 < 71 < yo < y1. The mapping process dictates the encoding used. The same encoding, as well as
ordering, must be used consistently throughout all function manipulations.

For space’s sake in this paper we do not deal with Zero-suppressed BDDs [29] that are a variant of BDDs
suited to represent sparse combinatorial sets. In matter of principle it is possible to map MDDs to ZBDDs
instead than to BDDs. and experimentally it turns out to be a better choice for some applications [30].

5 Logarithmically Encoded MDDs

In this section, logarithmic encoding (i.e., integer encoding) is used to map MDDs into BDDs. Our prime
concern here is to use the least number of variables and BDD vertices. An m-valued MDD vertex is
represented with [1g, m] Boolean variables, and is mapped to a BDD subgraph of m — 1 vertices. These
numbers are provably minimum in graph theory.

Each value is assigned an integer code. As discrete variables in CAD problems usually take values from
the ordered set of integers and the operations between them are sometimes integer-arithmetic in nature,
integer encoding results in an efficient representation and manipulation.

Of course, not all 2" code points will be used since typically m < 2". On the other hand the mapped-
BDD will have a path for each binary code point. The decision path for each unused code point is chosen so
as to minimize the BDD size. In fact, an unused point is assigned to the same path of the used point whose
encoding is closest to the unused code point. This mapping is related to the generalized cofactor operator
in [37] which was initially proposed in [10] as the constraint operator. Given a function / and a care set c,
the generalized cofactor of f with respect to c is the projection of f that maps a don’t care point z to the care

11

Value | Binary | F
of | Encoding | =
v | wuy
0 000 |G
1 00! G,
2 010 G:
3 011 Gs
4 1*%0 Gs
5 1*%1 Gs

Table 1: Logarithmic/integer encoding with don’t cares.

point y € ¢ which has the closest distance to x. Generalized cofactoring results in a small and canonical
BDD representation of the incomplctely specified function.

Example 5.1 Suppose v is a 6-valued variable taking values from P, = {0.1.2.3.4.5}. Three binary-
valued variables uq. u, and ua can be assigned to encode variable v as shown in Table 1. The last column
is used in the example in Section 5.1.

Note that if the value range is not a power of 2, some codes will not be used, e.g., 110 and 111. These
encodings are used as don’t cares since the values will never occur. In this case these don’t cares are
mapped into the same nodes as 100 and 101 respectively. The notation 1 * 0 is used to represent both
encodings 100 and 110 as we “don’t care” about the variable u,.

5.1 Relationships between CASE and ITE Operators

As the CASE and ITE operators form the basis for manipulation of MDDs and BDDs respectively, mapping
can be conveniently performed by replacing cach CASE operation by a set of ITE operations. The recursion
step in Equation 4 is our starting point. It gives an outer CASE operator in terms of a top-variable v, and
enables conversion to a hierarchy of ITE operators. The conversion can be summarized by the following
recursive formulas:

if pis even: CASE(v,Gg, G1.G3.G3,...,Gpo2,Gpo)

= CASE(v,ITE(u,G),G}), ITE(u,G}GY),
....ITE(x,G),_\.G',_5))
if pis odd: CASE(v,Gh,G},G5,Gh,....G,_3,Gl_3,Gh_1)

= CASE(v,ITE(v,G!,Gb),ITE(v,G5 GY),
o ITE(1,Gp,G}3),Gp-1)

This recursion terminates when there are only two child-functions remaining in the outer CASE operator:
CASE(v,G}, GY) = ITE(v,G},Gp).

While pairing up child-functions with the ITE operator, these formulas replace the big MDD vertex labeled
with variable v with a smaller one, labeled with a new multi-valued variable v/, and a number of BDD
vertices labeled with a new binary variable . This mapping process is best explained by an example.

12

Example 5.2 Suppose v is a 6-valued MDD vertex, and Gy, . . ., G are the six child-functions connected
10 it, the CASE to ITE mapping proceeds as follows:

CASE(v, Gy, G, G2, Gy, G4, Gs)
N e’ N e e e
= CASE(Y,ITE(u,G},G), ITE(uz. G}, G). ITE(u2,G5,G%)
= CASE(v",ITE(u;, ITE(x2,G3,G}). ITE(u, G}, Go)), ITE(u2, G5, G4))

= ITE(uo, ITE(u2,G5,G4), ITE(uy, ITE(u3,G5,G2). ITE(u2, G}, Go)))

Note that while pairing up child-functions for ITE operations in the first step, we effectively replace the
original 6-valued MDD vertex with a smaller 3-valued MDD vertex. During the assignment of BDD
variables, the ordering up < u; < uz is used. Figure 6 shows the bottom-up recursive mapping process.
Note that the original MDD node labeled v has been mapped into a BDD subgraph with 5 internal nodes.

AN £5n

Figure 6: Recursive mapping from an MDD vertex to a mapped-BDD subgraph.

6 1-hot Encoded MDDs

In this section we describe how MDDs can be used to represent and manipulate implicitly sets of objects.
This theory is especially useful for applications where sets of sets of objects need to be constructed and
manipulated, as it is oftcn the case in logic synthesis and combinatorial optimization. In man- .;;vlications
such as FSM minimization, encoding and partitioning, the number of objects (number of stuwes in these
cases) to be handled is usually not large. But their cxact optimization algorithms require exploration of many
different subsets of such objects. For instance exact state minimization requires selection of a miniinum
closed cover out of a huge number of candidate scts of state sets [20]. Therefore our prime concern here is
to have a compact representation for set of sets.

Suppose the elements corresponds to n distinct objects. With 1-hot encoding, a Boolean variable is
associated with each object so n Boolean variables are used. Each singleton element is assigned a distinct
1-hot code. Obviously with this 1-hot encoding scheme, there are a lot of unused code points. Unlike the
logarithmic encoding where unused code points are reassigned to values, these code points are used for a
purpose other than representing elements or values, but to represent sets other than singletons.

6.1 Positional-set Notation

Given that there are 2" possible distinct sets of objects, in order to represent collections of them it is not
possible to encode the objects using logz n Boolean variables. Instead, each subset of objects is represented
in positional-set or positional-cube notation form, using a set of n Boolean variables, £ = z1z2...%n.

S

s 13

- —
-

The presence of an element sj in the set is denoted by the fact that variable z takes the value 1 in the
positional-set, whereas r . takes the value 0 if element sy is not a member of the set. One Boolean variable
is needed for each element because the element can either be present or absent in the set L

In the above example, n = 6, and the set with a single element s4 is represented by 000100 while the
set 2538 is represented by 011010. The elements sy, s, S¢ Which are not present correspond to Os in the
positional-set.

A set of sets of objects is represented as a set S of positional-sets, by a characteristic function
xs : B" — B defined as:

xs(z) = 1if and only if the set represented by the positional-set z is in the set S of sets.

A 1-hot encoded MDD representing x s(z) will contain minterms, each comresponding to a set in S.
Operators for manipulating positional-sets and characteristic functions will be introduced in the next two
subsections.

A 1-hot encoded MDD can be represented as a mapped-BDD where each Boolean variable corresponds
to a BDD variable. From now on, we use BDD to refer to an 1-hot encoded MDD where there is no
ambiguity.

6.2 Operations on Positional-sets

With our previous definitions of relations and positional-set notation for representing set of objects, useful
relational operators on sets can be derived. We propose a unified notational framework for set manipulation
which extends the notation used in [23]. In this section, each operators Op acts on two sets of variables
T =1x,72...2n and y = 1> . . . Yo and returns a relation (z Op y) (as a characteristic function) of pairs
of positional-sets. Alternatively, they can also be viewed as constraints imposed on the possible pairs out
of two scts of objects, .+ and y. For cxample, given two scis of sets .\ and Y, the set pairs (x,y) where r
contains y are given by the product of .X and " and the containment constraint, X(z)-Y(y)(z2vy).

Lemma 6.1 The equality relation evaluates true if the two sets of objects represented by positional-sets
and y are identical, and can be computed as:

n
(r=y)=[[2r & uw
k=1

where 2 < Yk = Tk - Yk + Tk - Yk designates the Boolean XNOR operation and - designates the Boolean
NOT operation.

Proof. [[7_; zx < yx requires that for every element £, either both positional-scts = and y contain it, or it
is absent from both. Therefore, z and y contains exactly the same set of elements and thus are equal. O

Lemma 6.2 The containment relation evaluates true if the set of objects represented by contains the set
of objects represented by y, and can be computed as:

n
z2y) =[] o=z
k=1

where z;. = yx = —Ti + yx designates the Boolean implication operation.

"The representation of primes proposed by Coudert'er al. [11] needs 3 values per variable to distinguish if the present literal is
in positive or negative phase or in both phases.

14

Proof. []?_, yx = T requires that for all objects, if an object k is present in y (i.e., yx = 1), it must also
be present in z (zx = 1). Therefore set r contains all the objects in y. O

Lemma 6.3 The strict containment relation evaluates true if the set of objects represented by z strictly
contains the set of objects represented by y, and can be computed as:

(zDy)=(z2y) ~(z=y))

Alternatively, (z D y) can be computed by:

(@ 9) = [Tl = ol - Slex - ~wi] ©)
k=1 k=1

Proof. Equation 5 follows directly from the two previous theorems. For Equation 6, the first term is simply
the containment constraint, while the second term Y4z - —yx] requires that for at least one object , it
is present in x (x = 1) bu* 1t is absent from y (yx = 0). i.e., x and y are not the same. So it is an alternative
way of computing (x D y}. ©

Lemma 6.4 The equal-union relation evaluates true if the set of objects represented by z is the union of
the two sets of objects represented by y and z, and can be computed as:

n
(r=yUz)= H e & (Ye + k)
k=1

Proof. For each position &, 2 is set 1o the value of the OR between y; and z;. Effectively, k=1 26 &
(yr + 1) performs a bitwise OR on y and = to form a single positional-set 2, which represents the union of
the two individual sets. O ‘

Lemma 6.5 The equal-intersection relation evaluates true if the set of objects represented by x is the
intersection of the two sets of objects represented by y and z, and can be computed as:

n
(r=ynz)=[]vee (-2
k=1

Proof. For each position k, zj is set to the value of the AND between yi. and z;. Effectively, Mz 2k ©

(yx- 2z) performs a bitwise AND on y and z to form a single positional-set z, which represents the intersection
of the two individual sets. O

Lemma 6.6 The contain-union relation evaluates true if the set of objects represented by z contains the
union of the two sets of objects represented by y and z, and can be computed as:

n
(z 2yUz) = J](uk+2) = 2%
k=1

15

Proof. Note the similarity in the computations of (zr 2 yU z) and (z = yU z). (z 2 y U z) performs
bitwise OR on singletons y and =. If either of their k-th bits is 1, the corresponding k-th bit of z, i.e., Zy, is
constrained to 1. Otherwise, z can take any values (i.e., don’t care). The outer product [];=, requires that
the above is true for each . O

Lemma 6.7 The contain-intersection relation evaluates true if the set of objects represented by z contains
the intersection of the two sets of objects represented by y and z, and can be computed as:

n
(z2ynz)=] (- 2) = 2z
k=1
Proof. Note the similarity in the computations of (z 2 y N z) and (r = y N z). (z 2 y N z) performs
bitwise AND on singletons y and =. If either of their k-th bits is 1, the corresponding k-th bit of z, i.e., 24,
is constrained to 1. Otherwise, z, can take any values (i.e., don’t care). The outer product [];—, requires
that the above is true for cach k. O

6.3 Operations on Sets of Positional-sets

The first three lemmas in this section introduce operators that return a set of positional-sets as the result of
some implicit set operations on one or two sets of positional-sets.

Lemma 6.8 Given the characteristic functions x 4 and X g representing the sets A and B, set operations
on them such as union, intersection. sharp, and complementation can be performed us logical operations
on their characteristic functions, as follows:

AAUB = Xxa4 +XB

\4nB = \4°\B
XA-B = \A'TXB
\7 = T4

Lemma 6.9 The maximal of a set y of subsels is the set containing subsets in \ not strictly contained by
any other subset in x, and can be computed as:

Mazimalz(x) = x(z)- By [(y D z) - x(v)]

Proof. The term 3y [(y D z) - x(y)] is true if and only if there is a positional-set y in x such thatz C y.
In such a case, z cannot be in the maximal set by definition, and can be subtracted out. What remains is
exactly the maximal set of subsets in x(z). O

Lemma 6.10 Given a set of positional-sets x(z) and an array of the Boolean variables z, the maximal of
positional-sets in \ with respect to x can be computed by the recursive BDD operator M arimal(x,0, z):

16

Mazimal(x.k,z) {
if (x =0) return 0
if(\=1) return [[{; @i
My = Mazimal(xz. b+ 1)
M) = Mazimal(\z,.k+ 1)
return ITE (2, My, Mo - ~ M)

Proof. The operator starts at the top of the BDD and recurses down until a terminal node is reached.
At each recursive call, the operator returns the maximal set of positional-sets within Y made up of elements
from k to n. If terminal 0 is reached, there is no positional-set within) so 0 (i.e., nothing) is returned. If
terminal 1 is reached, \ contains all possible position-sets with elements from k to n, and the maximum
one is []°, z:. Atany intermediate BDD node, we find the maximal positional-sets Mj on the else branch
of \, the maximal positional-sets Af; on the then branch of \. The resultant maximal set of sets contains
(1) positional-sets in M| each with element ;. added to it as they cannot be contained by any set in M)
which has z; = 0, and (2) positional-sets that are in Mo but not in M), because if a set is present in both
it is already accounted for in (1). Thus the JT E operation returns the required maximal set after each call. O

To guarantee that each node of the BDD is processed exactly once, intermediate results should be
cached in a computed-table.

Lemma 6.11 The minimal of a set \ of subsels is the set containing subsets in x not strictly containing
any other subset in x, and can be computed us:

Minimal-(x) = x(z)- By [(z D y) - x(y)]

Proof. The term Jy [(z D y) - x(v)] is true if and only if there is a positional-set y in \ such thatz O y.
In such a case, z cannot be in the minimal set by definition, and can be subtracted out. What remains is
exactly the minimal set of subsets in x(x). O

A recursive BDD operator Afinimal(\. k..r) can be similarly defined.

The next three operators check set equality, containment and strict containment between two sets of sets,
whereas Lemmas 6.1, 6.2 and 6.3 check on a pair of sets only. These following operators return tautology
if the tests are passed.

Lemma 6.12 Given the characteristic functions x a(r) and \p(x) representing two sets A and B (of
positional-sets), the set equality test is true if and only if sets A and B are identical, and can be computed
by:

Equalz(x4,xB) = ¥z [xa(z) ¢ xB(z)]

Alternatively, Equal can be found by checking if their corresponding ROBDDs are the same bybdd.equal(x 4, XB).

Proof. Y4(z) and xp(z) represents the same set if and only if for every z, either z € Aandz € B, or
r ¢ Aand r ¢ B. As the characteristic function representing a set in positional-set notation is unique, two
characteristic functions will represent the same set if and only if their ROBDDs are the same. O

17

Lemma 6.13 Given the characteristic functions x 4(z) and xp(z) representing two sets A and B (of
positional-sets), the set containment test is true if and only if set A contains set B, and can be computed
b}‘.‘

Containg(x4,x8) = Vz [xB(z) = xa(z)]

Lemma 6.14 Given the characteristic functions x 4 and x g representing two sets A and B (of positional-
sets), the set strict containment test is true if and only if set A strictly contains set B, and can be computed
by:

Strict Containg(x 4, xB) = Containz(x4, x8) - ~Equalz(x4,xB)

Proof. The proof follows directly from previous two theorems. O

Beside operating on sets of sets, the above operators can also be used on relations of sets. The effect is
best illustrated by an example. Suppose .4 and B are binary relations on sets. Containg(\a(v.y). \B(z.2))
will return another relation on pairs (y. z) of sets. Position sets y and z are in the resultant relation if and only
if the set of positional-sets = associated with y in relation A contains the set of positional-sets = associated
with = in B.

The remaining operators in this section take a set of sets and a set of variables as parameters, and return
a singleton positional-set on those variables.

Lemma 6.15 Given a characteristic function x 4(z) representing a set A of positional-sets, the set union
relation tests if positional-set y represents the union of all sets in A, and can be computed by:

n
Unionzy(xa) = [] vk © 3z [xa(z) - 24]
k=1
Proof. For cach position k, the right hand expression sets yx to 1 if and only if there exists an xr in \ 4
such that its k-th bitis a 1 (37 [x4(z) - 7]). This implies that the positional-set y will contain the k-th
element if and only if there exists a positional-set z in A such that k is a member of z. Effectively, the right
hand expression performs a multiple bitwise OR on all positional-sets of x 4 10 form a single positional-set
y which represents the union of all such positional-sets. O

Alternatively, we implemented the set Union operation as a recursive BDD operator. Bitwise OR is
performed at the BDD DAG level, by traversing the BDD and performing OR on BDD vertices with the
variables of interest.

Lemma 6.16 Given a set of positional-sets x(z) and an array of the Boolean variables z, the union of

positional-sets in x with respect to x can be computed by the BDD operator Bitwise Or(x, 0, z), assuming
that the variables in = are ordered last:

18

Bitwise Or(x.k,ri !
if (k > |z|) return)
t = top_var(x)
if (t < zx) {
T = Bitwise Or(x1, k, z)
E = Bitwise Or(x;s k, x)
return ITE(t, T, F)
} else {
if (xz, = 0) return % - Bitwise Or(xzp k + 1, z)
else return z; - Bitwise Or(xz, + xzr k +1,2)
}
}

Proof. 7, denotes the k-th variable in the array z. Assuming that the variables in z are ordered last, the
above recursion terminates after all of them have been processed (k > |2|,and a0 or a 1isreturned as »). At
a BDD vertex where t < zx, the recursion has not reached a variable of interest yet, and we simply recurse
down its right and left children and merge the Bitwise Or results by creating a new vertex ITE(t.T.E).
If { > x4, we have to performi the bitwise OR operation on variable v. If xz, = 0, variable z; never takes a
value 1 in any satisfying assignments of x, so it is set to O by Zx. The bitwise OR of the remaining variables
is given by Bitwise Or(xzr, k + 1.z). Otherwise if xz, # 0, there exists a satisfying assignment of x in
which z; = 1. So zx is set to 1, while a bitwise OR is performed over all remaining satisfying assignments
of \,i.e, \z + Xz O

This recursive BDD operator is very fast, but unfortunately, its operation is valid only if the variables to
he bitwise ORed arc at the bottom of the BDD DAG. So to execute this BDD operator, we need to perform
variable substitutions before and after the operation. Experimentally, these substitution steps are t0o slow
to be practical and sometimes cause an exponential explosion in the BDD size. As a result, we use the
computation in Lemma 6.15 instead.

Lemma 6.17 Given a characteristic function \ 4(x) representing a set A of positional-sets, the set inter-
section relation tests if positional-set y represents the intersection of all sets in A, and can be computed
by:

n
Intersect,yy(\a) = [T yr & Vo [\a(2) - 24
k=1

Proof. For each position k, the right hand expression sets yi to 1 if and only if the k-th bit of all z in x4
is a 1. This implies that the positional-set y will contain the k-th element if and only if all positional-sets
z in x4 have k as a member. Effectively, the right hand expression performs a multiple bitwise AND
on all positional-sets of x4 to form a single positional-set y which represents the intersection of all such
positional-sets. O

6.4 k-out-of-n Positional-sets

Let the number of objects be n. In subsequent computations, we will use extensively a suite of sets of sets
of objects, Tuplen x(z), which contains all positional-sets z with exactly k elements in them (i.e., |z| = k).

19

In particular, the set of singleton elements Tuplen (), the set of pairs Tuplen2(z), the universal set of all
objects Tuple,.n(z), and the set of empty set Tuple, o(z) 2 are common ones. When n is clear from the
context we will write Tuple(z) instead of Tuple, x (). An efficient way of constructing and storing such
collections of k-tuple sets using BDDs will be given next. Figure 7 represents a reduced ordered BDD of
Tuple5,2(a:):

Figure 7: BDD representing Tuplesa(.r).

The root of the BDD represents the set Tuples2(), while the internal nodes represent the sets
Tuple; ;(x) (i < 5.j < 2). For ease of illustration. the variable ordering is chosen such that the top -
variable corresponding to T uple; ;() is x;. At that node. if we choose element 7 to be in the positional-set.
«; takes the value 1 and we follow the right outgoing arc. In doing so, we still have ¢ — 1 elements/variables
left to be processed. As we have put element : in the positional-set, we still have to add exactly j — 1
elements into the positional-set. That is why the right child of Tuple; j(x) should be Tuplc;_, S-1(7).
Similarly, the left child is T uplc;— ;(x) because clement ¢ has not been put in the positional-set and we
have j — 1 elements/variables left. Thus, the BDD for 7 uple; ; can be constructed by the algorithm shown
in Figure 8.

The total number of nonterminal vertices in the BDD of Tuplenx is (n — k+1)-(k+1) -1 =
nk — k2 4+ n = O(nk). With the use of the computed table (3], the time complexity of the above algorithm
is also O(nk) as the BDD is built from bottom up and each vertex is built once and then re-used. Given any
n, the BDD for T'uple,, x is largest when k = n/2.

7 Variable Ordering

We frequently suffer from exponential time and/or space complexities if we neglect the issue of variable
ordering. As with most variants of BDDs, the space and time complexities for constructing an MDD for

2Tuplen o(z) will be denoted by 0(z).

20

Tuple(i, j) {
if (j <0)or (i < j) reun 0
if (i = j) and (i = 0) return 1
if Tuple(i, j) in computed-table return result
T =Tuple(i—1,5-1)
E = Tuple(i - 1,j)
F=ITFE(z;,T,FE)
insert F' in computed-table for Tuple(i. j)
return F'

Figure 8: Pseudo-code for the T uple operator.

any discrete function is in the worst case exponential in the number of variables of the function. Luckily in
real life, many discrete functions of interest have reasonable representations provided that a good variable
ordering is chosen. Friedman et al. in [14] found an O(n?3") algorithm for finding the optimal variable
ordering where n is the number of Boolean variables. Faster variable ordering heuristics for BDDs have
been provided by Malik ef al. in [25) and Fujita er al. in [15). Rudell [32] proposed an effective dynamic
variable reordering heuristic which offers a tradeoff of runtime for compactness of BDD representation.

The goal in this section is to find a good variable ordering so as to minimize the total number of vertices
used. With a mapped-BDD representation of an MDD, the ordering process consists of two steps: order
the BDD variables within each MDD variable, and then merge these orderings into a single BDD variable
ordering.

Two well-known rule-of-thumbs suggested in [25] and [15] can be used for the ordering of BDD variables
within each individual MDD variable:

1. Variables that are closely related should be ordered close to each other.
2. Variables that “control” more the function should be ordered at the top.

There are two ways of merging these individual orderings. Cluster ordering places BDD variables,
which correspond to the same multi-valued variable, in consecutive positions in the final ordering. Within
each cluster, the binary variable which corresponds to the most significant bit (MSB) is ordered first (i.e.,
highest). Then the next significant encoding variable is ordered next, and so on. For state minimization,
cluster ordering is used to merge different sets of input and output variables; they are ordered before (i.e.,
on top of) the state variables because the transition relation depends heavily on inputs and outputs.

Example 7.1 In Figure 9, the relation (z = y) is represented as an MDD on the left and a mapped-BDD
(i.e., logarithmic encoded MDD) by cluster ordering in the middle. Variables z and y each can take four
values. Note that the multi-valued variable z is encoded into two binary variables xo (MSB) and z| (LSB) on
the right. The circled subgraph before reduction has the same number of outgoing arcs as the MDD vertex
and the two representations are equivalent. With the mapped-BDD representation, vertices with equivalent
subgraphs can be merged as shown by the two lowest nonterminal vertices.

The problem of using cluster ordering for variables with large value ranges is illustrated by Figure 9.
Consider the FSM named squares in the MCNC benchmark which has 371 states. Using 1-hot encoding on

21

Figure 9: Comparison between cluster ordering and interleaved ordering.

its states, multi-valued variables z and y require each 371 BDD variables. As mentioned before, there are
2371 that is about 5 x 10'"! outgoing edges from the circled BDD subgraph cluster. In the worst case, it
would have 5 x 10'!! subgraphs below, each rooted at such an edge. Thus the size of the MDD will grow
exponentially in the number of binary encoded variables.

To avoid such exponential growth, we use an interleaved ordering for the BDD variables instead, as
shown on the right of Figure 9. The encoded variables zo and z; for z are interleaved with yo and y, for
y. The more significant bits are compared before the less significant ones as the mapped-BDD is traversed
from top to bottom. With interleaving, the width of thc mapped-BDD can be kept slim. As a comparison
for our example, the mapped-BDD using cluster ordering has 9 nonterminal vertices while interleaved
ordering results in 6 nonterminal vertices. For thc FSM squares, the mapped-BDD for (z = y) has only
3 x 371 = 1113 nonterminal vertices using interleaved ordering. The example in Figure 9 is instructive
in comparing the size of pure MDD representations vs. the size of BDD representations, because the pure
MDD representation has 2* + 3 nodes, while a mapped BDD representation (with interleaved ordering) has
3.k + 1 nodes; this supports the case for mapping MDDs to BDDs.

For state minimization, our implicit algorithms need to operate on multiple sets of state variables, and
cach such variable set can represent a positional-set. Intcrleave ordering must be used for thesc sets of
variables for the reason described above. To avoid exponential complexities, a common wisdom is to use
as few BDD variables as possible. For instance in the application reported in [20], we allocate only 4 sets
of state BDD variables although a total of 10 state vector names are used in the equations. This is possible
because we never have to operate on more than 4 sets of state variables simultaneously within a single BDD
operation. The actual BDD variables are reused for different purposes, by binding at different times more
than one set of variables from the equations to a single set of BDD variables.

8 Applications of Logarithmic Encoded MDDs
8.1 General Paradigm

Many CAD problems can be naturally formulated in a multi-valued setting. Often, we inherit a graph
structure from the problem. For example, the constraint graphs for routing, the flow graphs for scheduling
and the state transition graphs for FSMs. With such information, the problem can be mapped into a number
of multi-valued variables and a set of constraints between these variables. From the inherited graph structure,

22

a good ordering of the multi-valued variables can be derived.

The input constraint file is first scanned and an MDD is built for each constraint. They are ANDed
together as soon as they are created. The final MDD contains implicitly all solutions of the problem.
Satisfiability can be checked trivially, as the final MDD will consist of a single terminal vertex ‘0" if, and
only if, it is not satisfiable.

If the problem is satisfiable, we can enumerate some, or all solutions and print them out. We use MDDs
10 solve the decision problem, instead of its corresponding optimization problem. The latter can be solved
by binary search of an optimal solution by solving multiple decision problems.

8.2 Hardware Resource Scheduling

t1<t2
t2 <13
t2<t4
if (t3 = t4) then (s3 != 543
if (3 = s4) then (13 !=14

Figure 10: Hardware resource scheduling example.

The resource scheduling problem arises frequently in synthesis of VLSI layouts from high level descriptions
of digital systems. We chose a general formulation as follows: given a flow graph specifying temporal and
spatial relationships betwecn operations o). o, € O that can be performed at discrete time intervals on
machine types or functional units oy, . . ., o and a table specifying the single machine type on which each
operation can be performed, determine an optimal schedule for the operations, based on some user-specified
optimality criteria. Some criteria may be: (1) Minimum total time to perform all operations, given an
allocation of ; machines of each type o;, (2) Minimum number of machines of type o, (3) Minimum total
cost of machines, given that all operations are completed in time 7.

With each operation o;, we associate two integer variables, t; and s;, where ¢; denotes the time slot in
which o; is performed and s; denotes the “space” variable or the machine on which o; is performed. If we
would like to construct the MDD for all solutions with 7 time slots, and 6; machines of type o, t; can take
on 7 values and s; can assume #; values, where g; is the machine type on which o; can be performed.

Given the flow graph, for each pair of operations o; and o, if there is an directed edge from o; t0 0;, we
write: t; < t;. For each pair o; and o; that can be performed on the same machine type, if there is no path
between ¢ and j in the flow graph, we write:

if (ti =tj) then (s; # s;)

if (si = s;)then (t; # ;)
Note that the previous conditions are logical equivalent (because a — b ¢ b — @ is a tautology). So they
are redundant and only one is used in order to speed up the construction of the final MDD.

The final MDD that is the conjunction of these constraints will test for the existence of a solution with
T time slots and §; machines of type o;. Cofactoring may be used to test for alternate solutions.

23

8.3 Channel Routing

We make the assumption that each routing layer runs in one direction. Given N nets to be routed in a
channel, the objective is to minimize the number of tracks used to route them. The horizontal interval of
net i is defined as: I(i) = r(i) — (i) , where (%) is the column number in which the rightmost pin of net ¢
lies and {(7) is the leftmost column occupied by net i. Two nets with intersecting intervals cannot be placed
on the same track. The Vertical Constraint Graph (VCG) {42] restricts the relative positions of nets in the
channel. If there is a path from net i to net j in the VCG, then the track of net i must lie above the track of
net j in the channel.

We first construct the VCG for the channel. All directed edges in the VCG that can be implied by other
edges are removed, i.e., the VCG is made irredundant. Let y; denote the track occupied by net 7. Then, for
each net pair i, j if I(i) N I(j) # ¢ and there is no path from i to j in the VCG, we write the following
condition:

Yi # Y-
For each directed edge from i to j in the irredundant VCG, we write:

Yi > Y;.

To determine if a route exists for the channel that uses ¢ tracks, we let each variable y; take on ¢ values in
the ordered set {0,...,7 — 1} and construct the MDD that is the conjunction of the above conditions. If
the resulting MDD is not the terminal vertex with value 0, a solution using ¢ tracks exists. We can then
test for solutions using fewer tracks by cofactoring each of the variables y; with respect to the literal y?
where S = {0.1....,s} and s < t — 1. If however, the MDD is a terminal vertex with zero value, we must
increase ¢ and reconstruct the graph. For extensions to doglegging and multiple layers, the reader is referred
to[12].

8.4 Switchbox Routing

We consider a restricted form of switchbox routing to illustrate the use of if...then... conditions. Extensions
to more general cases are possible. The restriction we place is that nets must connect from the top of the
switchbox to the bottom or from left to right, and that all nets have been decomposed into two-terminal
nets. Also, we only consider one-bend patterns that connect such nets. We form two graphs - the Vertical
Constraint Graph (VCG) and the Horizontal Constraint Graph (HCG). Each graph gives rise to constraints
similar to the channel routing problem. Let y; denote the y position of a vertical net, i.e., a net that connects
from top to bottom. Let z; denote the z position of a horizontal net. For each net pair : and j in the VCG,
if there is no path between them in the VCG, we write:

Yi # Y;-

Similarly, we write constraints for nets in the HCG. The interaction between nets in the VCG and nets in
the HCG generates cross-constraints. Two such sets of cross-constraints are illustrated in Figure 11.

In Figure 11, ¢; and c; are the columns in which pins of horizontal net 1 are located and c; and c4 are for
horizontal net 2. r; and r; are the rows in which pins of vertical net 2 lie. Suppose that the switchbox uses
R rows and C columns. We let the variables y; take on R values and the variables z; take on C values. We
then build the canonical MDD for the binary-valued function that is the conjunction of the above constraints
to test for the existence of a solution that uses one-bend patterns.

24

ct1 c2

1l=
% x1 Z2=c1 then (y1 1=r1
if (x1 <= c2; then (y1 I=r2
if (y1 >= r1; then (x1 I= c3}
if (y1 <=r2) then (x1 !=c1

c3c4
Figure 11: Switchbox routing example.

8.5 Graph Coloring

The objective of the graph coloring problem is to find the minimum number of colors that suffice to color
a given graph G. Starting with a reasonable estimate & of the number of colors, let y; denote the color of
node i in G. The variable y; is allowed to assume k values. For each pair of adjacent nodes in G, generate
the following constraint:

Yi # ;-
The final MDD for the conjunction of these constraints will test for the existence of a graph coloring with

k colors. The problem can be simplified slightly if a maximal clique in the graph is preassigned a unique
color for each node of the clique.

8.6 Cycle-based Logic Simulation

Logic simulation is a critical but time consuming step in the design cycle. Cycle-based logic simulation
computes signal values for outputs and laiches only. The core operation is discrete function evaluation
of combinational logic blocks in between latch boundaries. In [27], a new approach of discrete function
evaluation is proposed using MDDs. Each MDD variable corresponds to a group of inputs to the combina-
tional block, and each output function is represented as a MDD. The MDD of a logic function is translated
into a table on which function evaluation is performed by a sequence of address lookups. The value of
a function for a given input assignment is obtained with at most one lookup per input. This represents a
significant improvement over traditional simulation, because evaluation time becomes independent of the
complexity of the logic network. Theoretically, MDD-based function evaluation offers orders of magnitude
potential speedup over traditional logic simulation. In practices, memory bandwidth becomes the dominant
consideration on large design:

8.7 Formal Verification

Finite state machine (FSM) is a common representation for sequential designs on which many logic synthesis
and formal verification programs are based. An FSM can be viewed as a 5-tuple M = (S, I, 0, T, R) where
S represents the finite state space, / represents the finite input space and O represents the finite output space.
T is the transition relation defined by its characteristic functionT : I x S x S x O — B. On input i, the
FSM can transit from present state p to a next state n and output o if and only if T'(i, p,n,0) = 1 (ie.,
(i, p, n, 0) is a transition). There exists one or more transitions for each combination of present state p and
input i. R C S represents the set of reset states.

A state transition graph (STG) is commonly used as the internal representation of FSMs in sequential
synthesis systems, such as SIS [34]. Many algorithms for sequential synthesis have been developed to apply
to STGs. However, large FSMs cannot be stored and manipulated without memory usage and CPU time

25

becoming prohibitively large. A limitationof STGs is the fact that they are a two-level form of representation
where state transitions are stored explicitly, one by one. This may degrade the performance of conventional
graph algorithms.

Alternatively, FSMs can be compactly represented by decision diagrams such as MDDs. A state s can
be symbolically represented by a multi-valued variable, whose value can range over the discrete state space.
Similarly, input ¢ and output o are represented as multi-valued variables. As a result, the transition relation
can be represented as a characteristic function (four multi-valued inputs, binary output MDD function). The
set of reset states is represented by the MDD of its characteristic function.

Though various synthesis and verification applications use the above MDD representation, each algo-
rithm is different in the way it manipulates intermediate MDD objects to produce the desired results. Here
we will outline a few applications and the reader is referred to the literature for details.

Language containment and CTL model checking are two common verification methodologies. The first
implicit algorithm for language containment [36] using MDDs was implemented within COSPAN [18]. HsIS
[2] is a hicrarchical formal verification system from UCB and its language containment and model checking
algorithms are based on MDDs. This is true also for VIS [4], a package of verification interacting with
synthesis recently developed at UCB.

At the corc of language containment and CTL model checking is some form of statc space exploration,
e.g., state reachability. Implicit methods manipulate sets of states at a time. There are many examples of
large state spaces that can be explored with implicit technigues but not with explicit ones. A straightforward
translation of an explicit algorithm is not necessarily the best for MDDs. The language containment check
is translated to a language emptiness check and this fails if there is an accepting runin the automaton. A fair
state is one that is involved in some cycle satisfying all fairness constraints and thus a reachable fair state
means a failed language containment check.

During and afier logic synthesis, combinational logic verification is used to certify that the resultant
circuit description is functionally equivalent to the initial description. BDD:s have been used very successfully
t compare Boolean logic networks [25] where a BDD function (representing a Shannon decomposition of
the network functionality) is built for each Boolean network. Each BDD is a canonical form of the Boolean
function of binary-valued variables. Hence verifying that two Boolean functions are identical reduces to
verifying that their BDDs are identical. Verification of multi-valued networks is a straightforward extension,
as multi-valued functions are identical if and only if their MDDs are identical. This verification step is
carried out after MIS-MV [21] optimizes a multi-level logic with multi-valued inputs. A lot of efforts
have been invested in the verification of sequential networks with BDDs [37, 17}, but more work is needed
to fill the gap between what can be verified currently (circuits with at most a few hundred latches) and
industrial-strength designs (circuits with thousands of latches).

8.8 Logic Synthesis

MDDs are used also in POLIS [8], a system for hardware-software co-design of embedded systems developed
at UCB. They are utilized in representing the transition relation of a Co-design FSM (CFSM) 3 and the
control-data flow graphs (S-graphs) for software synthesis.

MDDs have also been applied in combinational and sequential logic optimization. An example is the
minimization of multi-valued relations in the program GYOCRO [41].

In GYOCRO a relation R C D x B™ is represented by its characteristic function R : D x B™ — Bsuch
that R(x,y) = 1if and only if (x,y) € R. The characteristic functions are represented by MDDs.

3A CFSM is a globally asynchronous FSM with finite, non-zero, unbounded reaction time and point to point communication to
model both hardware and software implementations.

26

Multi-valued relations arise in many situations [5). An application is in the synthesis of completely
specified FSMs. For a given initial state, a set of equivalent states can be computed as a function E :
S x S = B suchthat E(n, 7) = 1 if and only if n and #i are equivalent. Since a state can be mapped to any
of the equivalent states of the next state, we have the possibility of implementing a more compact machine
using the equivalent states. Namely, the objective is to find a least cost machine compatible with the function
T :1x 8 x S x O — B suchthat T'(i, p, n, 0) = 1if and only if either T'(i, p, n, 0) = 1 or there exists a
state 7 for which T(i, p, %, 0) = 1 and E(n,7) = 1. T can be easily computed using MDDs. T' provides
the complete family of finite state machines equivalent to the original machine under the equivalent states.
Similarly, T° can be extended to include invalid states, which are defined as a set of states not reachable from
some initial set of states.

8.9 Constrained Finite State Machine Minimization

In [22] L. Lavagno has described the following variant of state minimization occurring in asynchronous
sequential synthesis and he has provided an exact solution which uses MDDs. We mention briefly the
problem in regard to the usage of MDDs, referring to the source for an in-depth presentation.

Definition 8.1 An input variable z is enabled in a state s of an FSM if it has a different value in a pair of
edge labels respectively entering and leaving s.

For instance, given (00, s; — s) and (10, s — s;) the first variable is enabled in s, the second one is not
(unless there is another edge label leaving s where the second variable takes value 1).
Given an ISFSM F of Moore type, a set of incompatible pairs of states of F’, and a cost for each input

variable of F, the problem is to find a closed partition of the states of F' and a set D of input variables of
I such thar:

1) no two incompatible states are assigned to the same block,

2) for every pair of adjacent states s — < assigned to different blocks, the set of variables that are enabled
in s’ and not enabled in s is contained in D,

3) no state s has two fanout edges going to two different states <’ and s” such that <’ and s” belong to the
same block, different from the block of s (this last condition may requirc to drastically increase the
number of blocks with respect to the minimum in standard state minimization),

4) the cost of the variables in D is minimized.

The exact algorithm given in [22] for the derivation of an optimal partitioning set is divided into three
steps:

1. Formulation, as a conjunction of logic expressions over a set of multi-valued variables, of the condi-
tions for a set D of STG signals to be a partitioning set with respect to any closed partition = derived
from a closed cover C.

2. Partial solution of the clauses, to find a partitioning set D of minimum cost.
3. Derivation of from C and D.

A minimum cost partitioning set, given the clauses defining it, is found by extending to MDDs the
approach described in [24] to solve the binate covering problem using BDDs. So, given an MDD representing
a conjunction of the clauses, any path from the root to the leaf labeled with 1 corresponds to a partial

27

assignment of values to the variables that satisfies the clauses. Hence this partial assignment represents a
family of partitioning sets and associated closed partitions. A weight is assigned to each edge in the MDD,
according to the cost function.

Then a shortest path from the root to the leaf labeled with 1 corresponds to a minimum cost assignment
that satisfies all the constraints. The proof was given for BDDs, but since every MDD can be translated into
a BDD with an appropriate encoding and the weights assigned to the multi-valued variables are all zero, the
result applies directly to this case as well.

The assignment corresponding to a shortest path gives also a compatible for each state, that unfortunately
cannot be used as its partition block, because the resulting partition may not be closed. In principle, one
could add further clauses expressing the closure conditions, and use again the shortest path formulation.

9 Applications of 1-hot Encoded MDDs

9.1 Implicit Compatible Generation for State Minimization of ISFSMs

An incompletely specified FSM (ISFSM) can be defined as a 6-tuple M = (S.1.0.T.0O.R) where
S, 1,0 and R represents the states, inputs, outputs and reset states. 7 is the next state relation defined by:
T(i.p.n) = 1iff n is the specified next state of state p on input i. O is the output relation defined by:
O(i, p. 0) = 1iff o is a possible output of state p on input i. The following example will be used to illustrate
the implicit computations.

1/-

Figure 12: An ISFSM.

Anexact algorithm for state minimization consists of two steps: generation of various sets of compatibles,
and solution of a binate covering problem. The generation step involves identification of sets of states called
compatibles which can potentially be merged into a single state in the minimized machine. For ISFSMs,
the number of compatibles can be exponential in the number of states. Such state sets can be represented
efficiently as positional-sets so that any set of state sets can be represented as a 1-hot encoded MDD. Input
and output MDD variables are left logarithmic encoded.

The covering step (described in Section 9.2) is to choose a minimum subset of compatibles satisfying
covering and closure conditions, i.e., to find a minimum closed cover. In this section, we describe implicit
computations to find sets of compatibles required for exact state minimization. First, incompatibility
relations between pairs of states are derived from the output and transition relations.

Definition 9.1 Two states are an output incompatible pair if, for some input, they cannot generate the

28

same output. The set of output incompatible pairs, OICP (y, =), can be computed as:
OICP(y, z) = Tuple,(y) - Tupley(z) - 3i Bo[O(i.y,0) - O, 2,0)]

The Jast term is true for state B and D because on some input 1, they can both produce a same output pattern
(i.e., output incompatible). The conditions Tuple; (y) - Tuple) (2) restrict y and z positional-sets to pairs of
singleton states.

OICP(y, z)

0100 B 0001 D
0001 D 0100 B

Definition 9.2 Two states are an incompatible pair if (1) they are output incompatible. or (2) on some
input, their next states are an incompatible pair. The set of incompatible pairs ZCP can be obtained by the
following fixed point computation:

ICPo(y.2) = OICP(y.z)
ICPksr(y,2) = ICPily, =)+ i, uoe [Ty, u) Tl 2 v) - TCP(u, v))

The iteration can terminate when ZCPyyy = ICPy (= ICP).

The iteration starts with the set of output incompatible pairs ZCPo = { BD}. ICP; contains all state pairs
leading to pair(s) in ZCPy under some input, i.e, ZCP; = {BD, AC, AD}. And ICP = ICP, = ICP:.

ICP({y, 2) ICP(y, z) (cont)
1000 A 0010 C 0010 C 1000 A
1000 A 0001 D 0001 D 1000 A
0100 B 0001 D 0001 D 0100 B

So far we established relationships between pairs of states. By complementation, the following definition
introduces compatible sets of states of arbitrary cardinalities.

Definition 9.3 A set of states is a compatible if it is not an incompatible. An incompatible set of states
contains at least one incompatible pair. The set of compatibles, C(c), can be computed as:

C(c) = ~Tupleo(c) By, = [ZCP(y. z) - Contain U nion(c, y, z)]

C(c) simply contains all non-empty subsets of states (i.e., ~Tupleo(c)) which are not incompatibles. A state
set ¢ is an incompatible iff there is an incompatible state pair ZCP(y, z) such that ¢ contains y and z.

The closure condition of a compatible ¢ is captured by its class set d. The class set relation CCS(c. d)
evaluates to 1 iff the next state set d implied by c is in its class set. Its computation [20] will be omitted here.

CCS(c,d)

1100 AB 0011 CD
0110 BC 0011 CD

To solve exactly the covering problem, it is sufficient to consider a subset of compatibles called prime
compatibles. As proved in [16], at least one minimum closed cover consists entirely of prime compatibles.

Definition 9.4 A compatible ¢’ dominates a compatible ¢ if (1) ¢' D ¢, and (2) class set of ¢’ C class set of
c. The prime dominance relation is given by:

Dominate(c’.c) = (¢! D ¢) - Set Containg(CCS(c, d).CCS(c'. d))

i.e.. ¢ dominates ¢ if ¢ covers all states covered by c, and the closure conditions of ¢ are a subset of the
closure conditions of . As aresult, compatible ¢’ expresses strictly less stringent conditions than compatible
¢, thus ¢ can be excluded from further consideration.

Definition 9.5 A prime compatible is a compatible not dominated by another compatible. The set of prime
compatibles is given by:
PC(c) = C(c)- Ac' [C(c') - Dominate(c', c))

prime compatible | class set
2 1100 45 jom1Ch
p» 0110BC [0011CD

ps 0011CD 0
ps 1000 A 0
ps 0100 B i}

9.2 Implicit Binate Covering

Binate covering models a large class of optimization problems in logic synthesis. We refer to [38] for
a detailed presentation of algorithms to solve it. In [20] we have contributed the first binate solver that
represents and transforms the covering table using 1-hot encoded MDDs as the underlying data structure.
Here we outline some key aspects that characterize the new algorithm. In the exposition we continue the
solution of the instance of state minimization shown in Section 9.1.

A minimized machine is obtained by finding a minimum closed cover. The latter is determined by:

1. constructing a product-of-sums expression £, with one variable per prime compatible, and as many
clauses as there are covering and closure conditions;

2. finding a satisfying assignment which has the fewest variables assigned to 1, i.e., the fewest prime
compatibles selected to form the reduced machine.

The clauses of the product-of-sums expression £ are unate clauses for the covering conditions (each original
state is covered by at least one selected prime compatible):

A:(pr+pa)B:(p+p+ps).C:(p2+m),D: (p3)

30

and binate clauses for the closure conditions (if a prime compatible is selected also the prime compatibles

that will be its next states in the reduced machine must be selected):
AB=CD: (pi+pm),BC=CD: (p2+ p3)-
So the final product-of-sums expression is:

€ = (p1+ pa)(pr + P2 + ps) (P2 + P3)p3(P1 + P3) (P2 + P3)-

A minimum satisfying assignmentis py = p3 = landp, = ps = ps = 0.

The same expression can be rewritten as a covering table, where each columnis a prime compatible and

each row is a clause:

l [AB]BC|CD]|A|B|
1

A |

B 1 1 1

C 1 1

D 1
AB=CD | 0 1
BC=CD 0 1

The binate table covering problem is to find a minimum subset of columns such that for each row, either
there is a column in the subset intersecting the row at a 1, or there is a column not in the subset intersecting
the row at a 0. Available explicit implementations represent the table as a matrix, using a sparse matrix

package.

We avoid an explicit representation of each entry, row and column in the table. Instead we represent the

table implicitly by the following encoding scheme:
e p - acolumn label (a positional set), (c,d) - arow label (2 positional sets)
e C(p) - asctof columns (a BDD), R(c,d) - asetof rows (a BDD)
Each column label is a prime compatible:
C) = PC)
Each row label represents a unate or binate clause:

Rynate (Cv d) = m(c)) S(d)
Rbinate(ca d) = PC(C) . CCS(C, d)
R(C, d) = Runale(ca d) + Rbinate(ca d)

At the intersection of column p € C and row (c, d) € R, the following rules hold:
1. tableentryis a 1iff (p 2 d),
2. table entry is a O iff (p = ¢).

In our example the rows are encoded as follows. For each state d, a unate clause (p; + p2 +
has to be satisfied, where py is a prime compatible containing state d. So the unate clauses are:

Runnte(c= d) = @(C) : S(d)

31

o+ pj)

0000 0001 D
For each prime compatible p and each of its class sets d, a binate clause (p+p1 +p2 + -+ pi) has
to be satisfied, where py is a prime compatible containing the class set d. So the binate clauses are:

Rbinate(c' d) = 'PC(C) . CCS((’. d)

1100 AB 0011 CD
6110 BC 0011 CD

As a summary, we annotate the previous table with the labels of the rows and columns. Notice that we
do not need anymore to represent the enirics of the table. With the given rules, we can always determinc
what cntry exists at the intersection of a given row and column, by checking their labels.

AB | BC | CD | A B
1100 | 0110 | 0011 | 1000 | 0100

A 00001000] 1 | 1
B 00000100 | 1 1 1
C 0000 0010 1
D 0000 0001 1

BC = CD 01100011 0 1

AB= CD 110000i1]| © 1]

We solve exactly the binate covering problem with a branch-and-bound algorithm, that differs from a
standard one due to: (1) implicit representation of the covering table, (2) implicit computation of areduced
covering table, and (3) implicit computation of branching column, maximal independent set and table
partitioning.

A covering table is reduced by applying to it a sequence of operations that removc rows and columns.
and still preserve at least one minimum solution. We demonstrate two such operations: detection of essential
columns and column dominance.

A column p is essential iff there is a row having a 1 in column p and no other entry. In our table
there is one such column, labeled by 0011 as highlighted in the above table which is essential to cover row
0000 0001.

The essential columns are computed by:

ess.col(p) = C(p) - 3¢, d [R(c,d) - 0(c) - (p 2 d)- Bp' (C(F)- (0 2d) - (¢' # P))]
Since the essential columns must be in the solution, they are deleted from the table together with all rows
intersecting them in a 1. The computations to add the essential columns to the solution and update the table
are:
solution(p) = solution(p)+ ess_col(p)
C(p) C(p) - ~ess_col(p)
R(c.d) = R(c,d)- Bp (ess-col(p)- (p 2 d))

The resulting table is:

32

AB[BC| A | B
1100 | 0110 | 1000 | 0100

A 00001000]] 1 | [1 |

B 00000100 1 | 1 1

A column p’ dominates another column p iff p' has ail the 1s of p, and p’ contains no 0. In our table
above, the column labeled 1100 dominates all the other columns.
The dominated columns are computed by:

dominated(p) = 3p' {C(¢) - (¢’ # p)- Be,d[R(c,d)- (p2 d) - (¢' 2 d))- Ad R(p',d)}

If p' column dominates p, there is at least one minimum cost solution with column p eliminated (p = 0),
together with all the rows in which it has Os. Therefore dominated columns are deleted, along with the rows
intersecting them in a O:

C(p)
R(c,d)

C(p) - ~dominated(p)
R(c,d) - ~dominated(c)

and the table is reduced to:

AB
- 1100 |
A 00001000] 1 |
B 00000100 || 1

By one more search of essential columns one finds that p; is essential and so we found a minimuin cost
solution = {py,p3} = {AB,CD}!

9.3 Implicit Minimization of Generalized Prime Implicants

The problem of state assignment for optimal two-level implementations has a long history of research
efforts [28, 39). An exact algorithm was proposed in [13]. It extends to the multi-valued input and output
domains the two main features of exact standard two-level minimization: generation of a set of product-terms
sufficient to find at least a minimum cover, i.e., the prime implicants, and computation of a minimum cover
as solution of a set covering problem, represented as a table covering problem [26]. More precisely, in [13]
the notion of prime implicants is extended to the notion of generalized prime implicants (GPIs) and the
set covering problem is extended to a constrained set covering problem, because it is not sufficient to find
a minimum cover of GPIs, but it is necessary to find a minimum encodeable cover, i.e., a minimum cover
of GPIs whose associated encoding constraints are satisfiable so that it can be mapped into an equivalent
encoded cover. This is the problem of exact minimization of GPIs. Since GPIs are a superset of prime
implicants and moreover subsets of GPIs must be checked for encodeability, GPI minimization is absolutely
intractable from the point-of-view of explicit enumerative techniques.

In [40] it is described an implicit procedure to compute minimum or minimal encodeable covers of GPIs.
It uses 1-hot encoded MDDs to check encodeability of encoding constraints, and it relies on the implicit
table solver described in Section 9.2 to select covers of GPIs. The procedure is quite intricate and we refer
the interested reader to the original documentation.

33

10 Conclusions

We have presented the multi-valued decision diagram data structure and along with a suite of operators for its
manipulation. As a natural setting to model problems with discrete variables, MDDs have been successfully
applied to a very wide variety of problems.

We have shown that logarithmic encoded MDDs are particularly useful to represent compactly multi-
valued functions, sets, relations and graphs. They have been applied to combinatorial optimization problems
such as graph coloring, channel and switchbox routing, and hardware resource scheduling. Also, logarithmic
encoded MDDs are capable of representing huge transition relations, and formal verification systems
developed at UCB and at Bell Labs are based on them. Finally, the MDD was the main idea for fast function
evaluation behind a new breed of cycle-based logic simulators.

Positional-sets have been introduced to represent sets of objects so that a set of such sets (e.g., a set of
compatibles) can be represented by asingle 1-hotencoded MDD. This idea has been tested in sequential logic
synthesis, enabling to find an exact solutionof some hard state minimization and GPI minimizationinstances.
While developing such implicit algorithms, we have developed a fully implicit solver of binate covering.
Our solver can be applicd to many problems in computer-aided design and combinatorial optimization. Also
implicit compatible generation has other applications in logic synthesis [31].

An efficient, general purpose MDD package is available and is distributed with U.C. Berkeley’s VIs [4]
and HSIS [2] software.

References

[1] S.B. Akers. Binary decision diagrams. IEEE Transactions on Computers, vol. 27:509-516, 1978.

[2] A. Aziz, F. Balarin, S. Cheng, R. Hojati, T. Kam, S. Krishnan, R. Ranjan, T. Shiple, V. Singhal,
S. Tasiran, }1. Wang, R. Brayton, and A. Sangiovanni-Vincentelli. HSIS: A BDD-based environment
for formal verification. In The Proceedings of the Design Automation Conference, pages 454459,
June 1994.

[3] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In The Proceedings
of the Design Automation Conference, pages 40-45, June 1990.

[4] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. Edwards,
S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan, S. Sarwary, T. Shiple, G. Swamy, and T. Villa.
VIS: A System for Verification and Synthesis. In R. Alur and T. Henzinger, editors, Proc. of the Conf.

on Computer-Aided Verification, volume 1102 of LNCS, pages 332-334. Springer Verlag, August
1996.

[5] R. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In The Proceedings of the
International Conference on Computer-Aided Design, pages 316-319, November 1989.

[6] R. Bryant. Graph based algorithm for Boolean function manipulation. In /EEE Transactions on
Computers, pages C—35(8):667-691, 1986.

[7] E. Cerny. Characteristic functions in multivalued logic systems. Digital Processes, vol. 6:167-174,
June 1980.

[8] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli. Synthesis
of software programs from CFSM specifications. In The Proceedings of the Design Automation
Conference, June 1995.

34

[9] E. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for large Boolean
functions with application to technology mapping. In The Proceedings of the Design Automation
Conference, pages 54-60, June 1993.

(10} O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential machines based on
symbolic execution. Proceedings of the Workshop on Automatic Verification Methods for Finite State
Systems, vol. 407 of Lecture Notes in Computer Science, pages 365-373, June 1989.

[11] O. Coudert and J.C. Madre. Implicit and incremental computation of prime and essential prime
implicants of Boolean functions. In The Proceedings of the Design Automation Conference, pages
36-39, June 1992.

[12] S. Devadas. Optimal layout via boolean satisfiability. In The Proceedings of the International
Conference on Computer-Aided Design, pages 294-297, November 1989.

[13] S. Devadas and R. Newton. Exact algorithms for output encoding, state assignment and four-level
Boolean minimization. IEEE Transactions on Computer-Aided Design, 10(1):13-27, January 1991.

[14] S.J. Friedman and K. J. Supowit. Finding the optimal variable ordering for binary decision diagrams.
IEEE Transactions on Computer-Aided Design, vol. 39(no. 5):710-713, May 1990.

(15) M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improvements of Boolean comparison method
based on binary decision diagrams. In The Proceedings of the International Conference on Computer-
Aided Design, pages 2-5, November 1988.

(16] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in incompletely

specified sequential networks. IRE Transactions on Electronic Computers, EC-14(3):350-359, June
1965.

[17) G. Hachtel and F. Somenzi. Logic synthesis and verification algorithms. Kluwer Academic, 1996.

[18] Z. Har’El and R.P. Kurshan. Software for analysis of coordination. Proc. Int. Conf. Syst. Sci. Eng.,
pages 382-38S5, 1988.

{19] T. Kam and R.K. Brayton. Multi-valued decision diagrams. Tech. Report No. UCB/ERL M90/125,
December 1990.

[20] T.Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm for exact state
minimization. In The Proceedings of the Design Automation Conference, pages 684—690, June 1994.

[21] L. Lavagno, S. Malik, R. Brayton, and A. Sangiovanni-Vincentelli. MIS-MV: Optimization of multi-
level logic with multiple valued inputs. In The Proceedings of the International Conference on
Computer-Aided Design, pages 560-563, November 1990.

[22] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for synthesis and testing of asynchronous
circuits. Kluwer Academic, 1993.

[23] B.Lin, O. Coudert, and J.C. Madre. Symbolic prime generation for multiple-valued functions. In The
Proceedings of the Design Automation Conference, pages 40-44, June 1992.

[24] B.Lin and F. Somenzi. Minimization of symbolic relations. In The Proceedings of the International
Conference on Computer-Aided Design, November 1990.

35

[25] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli. Logic verification using binary
decision diagrams in a logic synthesis environment. In The Proceedings of the International Conference
on Computer-Aided Design, pages 6-9, November 1988.

{26] E. McCluskey. Minimization of Boolean functions. Bell Laboratories Téchnical Journal, 35:1417-
1444, November 1956.

[27} P.C. McGeer, K. L. McMillan, A. Saldanha, A. Sangiovanni-Vincentelli, and P. Scaglia. Fast discrete
function evaluation using decision diagrams. In The Proceedings of the International Conference on
Compuier-Aided Design, pages 402—407, November 1995.

[28] G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for finite state
machines. JEEE Transactions on Computer-Aided Design, pages 269-285, July 1985.

[29] S. Minato. Binary decision diagrams and applications for VLSI CAD. Kluwer Academic, 1996.

[30] A. Oliveira. Implicit minimization of loop free finite state machines using Zero-suppressed BDDs.
INESC Internal Report, Lisbon, Portugal, October 1996.

[31] A.Oliveira, L.Carloni, T. Villa, and A. Sangiovanni-Vincentelli. Exact minimization of binary decision
diagrams using implicit techniques. Tech. Report No. UCB/ERL M96/16, April 1996.

[32) R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In The Proceedings of
the International Conference on Computer-Aided Design, pages 42-47, November 1993.

[33] T. Sasao and M. Fujita. Representations of discrete functions. Kluwer Academic, 1996.

[34] E. Sentovich. K. Singh. C. Moon, H. Savoj. R. Brayton, and A. Sangiovanni-Vincentelli. Sequential
Circuit Design Using Synthesis and Optimization. In 7/ Pioceedings of the International Conference
on Computer Design, pages 328-333, October 1992.

[35] A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete function manipulation. In

The Proceedings of the International Conference on Computer-Aided Design, pages 92-95, November
1990.

[36] H. Touati, R. Brayton, and R. Kurshan. Testing language containment of w-automata using BDDs.
Information and Computation, 118(1):101-109, April 1995.

[37] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit statc cnumeration
of finite state machines using BDD's. The Proceedings of the International Conference on Computer-
Aided Design, pages 130-133, November 1990.

[38) T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-Vincentelli. Explicit and implicit algorithms for
binate covering problems. Tech. Report No. UCB/ERL M95/108, December 1995.

[39] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment for optimal two-level logic imple-
mentations. JEEE Transactions on Computer-Aided Design, 9(9):905-924, September 1990.

[40] Tiziano Villa. Encoding Problems in Logic Synthesis. PhD thesis, University of California, Berkeley,
Electronics Research Laboratory, May 1995. Memorandum No. UCB/ERL M95/41.

[41) Y. Watanabe and R. Brayton. Heuristic minimization of multi-valued relations. IEEE Transactions on
Computer-Aided Design, vol. 12(no. 10):1458-1472, October 1993.

36

[42] T. Yoshimura and E.S. Kuh. Efficient algorithms for channel routing. IEEE Transactions on Computer-
Aided Design, pages 25-35, January 1982.

37

	Copyright notice 1996
	ERL-96-75

