

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

MULTI-VALUED DECISION DIAGRAMS FOR

LOGIC SYNTHESIS AND VERIFICATION

by

Timothy Kam, Tiziano Villa, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/75

3 December 1996

MULTI-VALUED DECISION DIAGRAMS FOR

LOGIC SYNTHESIS AND VERIFICATION

by

Timothy Kam, Tiziano Villa, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/75

3 December 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Multi-valued Decision Diagrams

for Logic Synthesis and Verification

Timothy Kam1 Tiziano Villa2 Robert K. Brayton2
Alberto L. Sangiovanni-Vincentelli2

'Intel Development Labs
Intel Corporation

Hillsboro, Oregon 97124-6497

department of EECS
University of California at Berkeley

Berkeley, CA 94720

Abstract

Many problems can he stated naturally using variables that have multiple values (i.e., lake their
valuesfrom a discretesci». Functionsdefined on thesevariables can also take on valuesfrom a discrete
set. Examples of such problems range from combinatorial optimization such as routing and resource
scheduling, tologic simulation and formal verification, and tologic synthesis such asstate minimization
and state assignment. In many cases these problems are NP-Complete orcoNP-Complete. Compact
representation and efficient manipulation ofsuch multi-valued functions are key to the design ofefficient
algorithms that advance the frontier ofthe problems that can be solved exactly. Binary decision diagrams
(BDDs) are such a compact representation for problems involving binary variables.

In this paper, we define the multi-valued decision diagram (MDD), which isacanonical representation
ofa multi-valued function asa directed acyclic graph. We analyze itsproperties, and provide algorithms
for constructing and manipulating MDDs. With our MDD package, an MDD is mapped into a BDD
using either alogarithmic encoding or a1-hot encoding, each suitable for adifferent class ofapplications.
Wc have applied both kinds ofMDD to many different applications and this paper serves as a summary
ofthe work done sofar. Furthermore, general problem solving techniques, such asbinate table covering
and other graph algorithms have been formulated using MDDs.

1 Introduction

In this paper, we shall introduce techniques for efficient representation and manipulation ofobjects. We
say that a representation isexplicit if the objects are listed internally one by one. Objects are manipulated
explicitly, ifthey are processed one after another. An implicit representation means ashared representation
ofthe objects, such that the size ofthe representation isnot linearly proportional to the number ofobjects
in it. Inanimplicit manipulation many objects are processed simultaneously in one step.

The objects we need to represent include functions, relations, sets, and sets of sets. In Section 2,
we introduce a new data structure called the multi-valued decision diagram (MDD) which can represent
multi-valued input multi-valued output functions. An MDD isageneralization ofabinary decision diagram

(BDD) [6]. BDDs represent binary input binary output functions, and they will be reviewed in Section 3.
Relations and sets can be expressed in terms ofcharacteristic functions [7] as shown in Section 3. The
remaining of the paper describes efficient representations of multi-valued input binary output functions.
Section 4 shows that an MDD can be mapped to an equivalent BDD after choosing an encoding for each
multi-valued variable. In Section 5, the logarithmically encoded MDD isdescribed. And in Section 6, the
1-hot encoded MDD isintroduced. The latter isparticularly useful for an efficient representation of set of
sets, so an extensive suite ofoperators will be introduced for efficient manipulations ofsets ofsets. Issues
ofMDD variable ordering will be discussed in Section 7. Applications oflogarithmic encoded MDDs are
discussed inSection 8and of 1-hot encoded MDDs in Section 9. Section 10 closes with final remarks.

First we givedefinitions pertaining to MDDs.

Definition 1.1 Let T be amulti-valued input multi-valued outputfunction ofnvariables - a?i, «2,.... **.*

J:PixP2x...x?n->y

Each variable, x{, may take any one ofthe p, values from afinite set P, ={0.1,.... pt: - 1}. The output
ofT may take 777 values from the set V = {0,1,..., m- 1}. Without loss ofgenerality, we may assume
that the domain and range ofT are integers. In particular, T is abinary-valued output function if m= 2,
and T is abinary-valued input function if p, = 2 for every i: 1< i < n.

Definition 1.2 Let T, be a subset ofFt. xf represents a literal ofvariable x{ which is defined as the
Boolean function:

t,_ J 0 ifxiiTi
Xi " \ 1 ifxi €Ti

Definition 13 The cofactor oj F with respect to avariable x, taking aconstant value j is denoted by :Fj
and is thefunction resulting when x, is replaced by j:

?,(xl,...,xn) = F{xu •••,*i-l, j. xi+] xn)
1

Definition 1.4 The cofactor ofT with respect to a literal xj' is denoted by Txt, and is the union of the
cofactors ofT with respect to each value the literal represents:

r# =U *:

The cofactor ofT isasimpler function than T itselfbecause the cofactor no longer depends on the variable
Xi.

Definition 1.5 The Shannon decomposition ofafunction T with respect to a variable x{ is:

pi-i

i=o

The Shannon decomposition expresses function J7 as asum of simpler functions, i.e., its cofactors T^.
This allows us to construct a function by recursive decomposition.

2 Multi-valued Decision Diagrams

This sectiondescribes a newdata structure- the multi-valued decisiondiagram [35,19] that is used to solve
discrete variable problems [19, 21,41, 22, 36, 2,4, 27, 31, 30]. Our definition of multi-valued decision
diagrams closely follows that ofBryant, [6], with two exceptions: we do not restrict ourselves tothe Boolean
domain, and the range of our functions is multi-valued.

Definition 2.1 Amulti-valueddecision diagram (MDD) isa rooted, directed acyclic graph. Each nonter
minal vertex v islabeled by amulti-valued variable var(v) which can take values from a range range(v).
Vertexv hasarcs directedtowards\rangc{v)\chi1drenvertices, denotedby chi1dk{v)for each k € range{v).
Each terminal vertex u is labeled a value value(u) € Y = {0,1,..., m - 1}.

Each vertex in an MDD represents a multi-valued input multi-valued output function and all used-visible
vertices are roots. The terminal vertex v represent the constant (function) valve(u). For each nonterminal
vertex v representing a function F, its child vertex childk(v) represents the function Fv* for each k e
range{v). Therefore F = £*€ro„5e(v) vk •F„*.

For a given assignment to the variables, the value yielded by the function isdetermined by tracing a
decision path from the root to aterminal vertex, following the branches indicated by the values assigned to
the variables. The function valueis then given by the terminal vertex label.

Example 2.1 The MDD in Figure Jrepresents the discretefunction F = max{0, x-y) where xand yare
3-valued variables.

F = max(0, x - y)

nonterminal vertex v

terminal vertex u ' value(u)=2

Figure 1: Example of an MDD for adiscrete function.

Amulti-terminal binary decision diagram (MTBDD) [9] is an MDD, with nonterminal vertices restricted
to binary variables and terminals taking values from adiscrete set. A type ofMTBDD called algebraic
decision diagram (ADD) [33] has been implemented at the University ofColorado at Boulder and used to
produce implicit algorithms for manipulating matrices. From Section 3onwards, MDDs will be used only
for binary-valued output functions, however the theory is valid for the more general multi-valued functions.

2.1 Reduced Ordered MDDs

Definition 12 An MDD is ordered ifthere is a total order < over the set ofvariables such thatfor every
nonterminal vertex v, var{v) < var(childk{v)) ifchildk{v) isalso nonterminal.

Definition 23 An MDD is reduced if

1. it contains no vertex vsuch that all outgoing arcsfrom vpoint to a same vertex, and

2. it does not contain two distinct vertices v and v such that the subgraphs rooted at v and v are
isomorphic.

Definition 2.4 Areduced ordered multi-valued decision diagram (ROMDD) isan MDD which isboth
reduced and ordered.

Henceforth, we consider only ROMDDs and the name MDD will be used to mean ROMDD.
Variable ordering must be decided before the construction ofany MDD. We assume that this has been

decided and that the naming ofinput variables has been permuted so that .r, -< xi+l. MDDs are guaranteed
to be reduced at any time during the constructions and operations on MDDs. Each operation returns a
resultant MDD in a reduced ordered form.

Example 12 The ROMDDfor the MDD in Figure Jis shown in Figure 2. Tl\e variable ordering is x<y.
Note that oneredundant nonterminal vertex and sixterminal vertices have been eliminated.

F = max(0, x - y)

Figure 2: Reduced orderedMDD for the same function.

A very desirable property of an ROMDD is thatit is a canonical representation.

Theorem 2.1 For any multi-valued function T, there is a unique reduced ordered (up to isomorphism)
MDD denoting 7. Any other MDD denoting T contains more vertices.

Proof. The complete proof has been givenin [35]. •

Corollary 2.1 Twofunctions are equivalent ifand only ifthe ROMDDsforeach function are isomorphic.

2.2 CASE Operator

TheCASE operator forms thebasis for manipulating MDDs. All operations on discrete functions can be
expressedin terms of the CASE operator on MDDs.

Definition 13 Tlie CASE operatorselects and returns afunction G, according tothe value ofthefunction
F:

CASF(F,G0,Gi,...,Gm-i) = Giif(F = i)

The operator isdefined only ifrange(F) = [0, 1, ..., m-1}. The range ofthe function returnedfrom the
CASE operation isrange(d). In particular, ifthe Gt are binary-valued, the resultantfunction will also be
a binary-valued outputfimction.

The input parameters tothe CASE operator are, ingeneral, multi-valued functions given inthe form of
MDDs. The task istogenerate me resultant function # = a4SF(F,Go,Gi,...,Gm_i). Since the selector
F can be a function insteadof a variable, we needa recursive algorithm to computethe CASEoperator.

If theselector is a variable x, the following function returned by the CASE operator corresponds to a
vertex with a top variable x and with children functions G'o,Gi, •. .,Gp,-i. The vertex is denoted by a
{pi + 1)-tuple on the right:

C^5F(2',G0,Gi,...,GPl_i) = (a:,Go,Gi,....GPl_i) (1)

Moreover, it holds:
CASF(F,0,l,...,m-l) = F (2)

Equation 1and 2 will form the terminal cases for our recursive algorithm.
Notice that theShannon decomposition of H with respect to x canbe realized by:

p-\

H = "£XJ'H*>
j=o

= CASE{x,Hx*.Hri Hrt-i)

= {x,Hxa,Hxi,...,HtP-i) (3)

Recursion is based on the following reasoning. Remember that we can express a complex function in
terms of its cofactors using Shannon decomposition. The cofactors of a function are simpler to compute
than the original function. So to compute the CASE of complex functions, we first compute the CASE of
their cofactors and then compose them together using Shannon decomposition. More rigorously,

p-i

CA5E(F,G0,Gi,...,Gm_i) = !>' •CAS,E(F,G0,Gi,...,Gm-i)xi
»=o

= i:^-(Gix,z7(F =i)x,)
t=0

»=0

= CASE{xy

CASE{Fxo, Go x0' G\ r°> •••» ^m-l x0)'
Cj4S£(Fri,Goxi,Gixi,...,Gm_i xi),

CAST(FxP-i, G0 xp-i ,G\ xp-\ ,. ••,Gm_i xp-i))

Ci4SE(F1G0....,Gm-i){
if terminal case return result
ifCA9F(F,G0,...,Gm-i) incomputed-table returnresuft
let x be thetop-variable of F,Go, ••., Gm_1
let p be the number of values .r takes
for j = 0to(p- l)do

//,.,= CASFV-^.Gosj G,,.,,,):
result —(x, IITo HTp-\)
insert rtsult incomputed-table for CASE(F, Go,.. •,Gm_i)
return result

}

(4)

Figure 3: Pseudo-code for the C.45F algorithm.

The pseudo-code for the recursive CASE algorithm is given in Figure 3. First, the algorithm checks
for terminal cases. Then if the Junction needed has already been computed and stored in the unique table,
it will be returned. It not, the cofactors 11x3 of the function 11 are computed by calling CASE recursively
with the cofactors FxJ, G0xJ Gm_x xJ as its arguments. These are composed together using Shannon
decomposition. By Equation ?. Shannon decomposition with respect to .r isequivalent to the {p + l)-tuple
(x,lITo,.. .,Hxp-i).

It is shown in [35] that the worst-case time complexity of the CASE algorithm is 0{p„in.r- I F | • |
Go | ... | Gm-\ |).

3 Binary Decision Diagrams

The literal a-, denotes that variable j, has thevalue 1and theliteral xj denotes that variable x-, has thevalue
0. Cofactors with respect to literals are similar tothe ones in theprevious section, and are formally defined
in Section 3.1.

Binary decision diagrams were first proposed by Akers in [1] and then canonicalized by Bryant in [6].

Definition 3.1 A binary decision diagram (BDD) isa rooted, directed acyclic graph. Each nonterminal
vertex v is labeled by a Boolean variable var(v). Vertex vhas two outgoing arcs, childo(v) and child\ {v).
Each terminal vertex u is labeled Oorl.

Each vertex in a BDD represents a binary input binary output function and all used-visible vertices are
roots. The terminal vertices represent the constants (functions) 0 and 1. For each nonterminal vertex v
representing a function F, its child vertex child0(v) represents the function Fv and itsother child vertex
child\{v) represents the function F„. i.e., F = v • F* + v •Fv.

For agiven assignment to the variables, the value yielded by the function is determined by tracing a
decision path from the root to aterminal vertex, following the branches indicated by the values assigned to
the variables. The function value is then given by the terminal vertex label.

Definition 3.2 ABDD is ordered ifthere is a total order < over the set ofvariables such thatfor every
nonterminal vertex v, var{v) <var(child0(v)) ifchild0(v) is nonterminal, and var(v) -< var^htld^v))
ifchildi{v) isnonterminal.

Definition 33 A BDD is reduced if

1. itcontains no vertex v such that childo{v) = child\(v), and

2. it does not contain mo distinct vertices v and v such that the subgraphs rooted at v and v are
isomorphic.

Definition 3.4 Areduced ordered binary decision diagram (ROBDD) is aBDD which is both reduced
and ordered.

Any subset 5 in aBoolean space Bn can be represented by aunique Boolean function \$: B" -* B,
which is called its characteristic function L7J, such that:

Xs(z) = 1 if and only if ar in S

In the sequel, we will not distinguish the subset Sfrom its characteristic function \s, and we will use S to
denote both.

Any relation Rbetween apair of Boolean variables can also be represented by acharacteristic Junction
R : J32 -* B as:

lZ{x,y) = 1 if and only if x is in relation TZ to y

TZ can be a one-to-many relation overthe two sets in B.
These definitions can be extended to any relation U between nBoolean variables, and can be represented

bya characteristic function H : Bn -¥ B as:

H{xux2,....x„) - 1 ifand only ifthe »-tuple (.n. .r2,..., xn) is in relation 1Z

3.1 BDD Operators

Arich set ofBDD operators has been developed and published in the literature [6, 3J. The following isthe
subset of operatorsuseful in our work.

The ITE operator forms the basis for the construction and manipulation ofBDDs. The use ofthe ITE
operator also guarantees that the resulting BDD is in strong canonical form [3]. The CASE operator is the
multi-valuedanalogof the ITE operator.

Definition 33 The ITE operator returnsfimction G\ iffunction F evaluates true, else it returnsfunction
Go:

ITE(F,Gl,G0) =[GGl Jj^i
where range(F)={0,l}.

Definition 3.6 The substitution in thefimction T ofvariable x,- with variable y, is denoted by:

[xi -*• yi\F = F{x\,...,*i-i,y»»i+i» •••i*n)

and the substitution in the function Jofa set ofvariables x = x\xi.. .xn with another set ofvariables
y = y\Vi •••t/n is obtainedsimplyby:

[x ->y]?=[x\-¥ y\][x2 -f yi]...[x„ -• yn]F

In the description of subsequent computations, some obvious substitutions will be omitted for clarity in
formulas.

Definition 3.7 Tlie cofactor ofT with respect to the literal .r, (xj respectively) is denoted by Tr, (F^
respectively) and is the function resulting when .r, is replaced by 1(0 respectively):

Fx,{x\,..., xn) = F{x\ art—1.1, a*i+i- •••*x»)
7x7(3*11..., ar„) = F{xu..., x,_i. 0,x,+1...., xn)

The cofactor ofT is asimpler function than T itself because the cofactor no longer depends on the variable
X{.

Definition 3.8 The existential quantification (also called smoothing, or forsome) ofafunction T over a
variable x{ is denoted by 3a-, [T) and is defined as:

3xt(7) = 7xT-i-7Xt

and the existential quantification over aset of variables x - x\. .v2 •',. is defined as:

3x(F) = 3xl(3x2(...(3xn(F))))

Definition 3.9 The universal quantification (also called consensus, or forallj ofafimction T over a
variable xl is denoted byVx, [F) andis defined as:

V.r,(J) = F*;'?,;

and the universal quantification over aset ofvariables .r = .*• i. •»•: -7v, " defined as:

Vx(7) = Vx,(Vx2(...(Vxn(7))))

3.2 Unique Quantifier

Now we introduce a new BDD operator called the unique quantifier, which is in the same class as the
existential and universal quantifiers.

Definition 3.10 The unique quantification ofafunction T over avariable xt is denoted by !x; {?) and is
defined as:

\xi(F) = Fx7®FXl

and the unique quantification over aset ofvariables x= x\, x2,..., xn is defined as:

\x{F)=\xl(\x2{...(\xn(F))))

Suppose T is arelation on x, yand z. !x F(x, y, z) ={(y, ;)|apair (y, z) is related to aunique x}.
Some properties of the unique quantifier will bepresented:

Lemma 3.1 \x \y F & !y !x F

Proof. !x !y F ^ (F?y 6 F^eFij ® Fry)^!y!if
using the distributive property ofcofactor over xor, (F®G)X<& FX®GX. o

It iswell known that 3x Vy F =» Vy 3x F. Let us investigate if similar properties hold for the unique
quantifier.

Lemma 32 !x 3y F =* 3y !x F

Proof.

!x3yF « (F?+_£i)x_£_(FF+Fy^
4=> Fj17 •Fry •Fry + Fry *Fx^ •Fxy -f F,y • F717 */"xo + tXy ' tXy ' r-.y

3y!xF «• (fiefx)y+(^eF,),
<=> F7 y•^5 +^ • r " ~ F~ •' F*y + ^cy ' fxy

!x3yF =* r ' r

The converse, 3y !x F - !x 3y F, is not true in general. Consider the relation F(x, y) =
{(0,0), (0.1), (1,1)}, 3y !x F is truebut !x 3y F is false. For the same F, !x Vy F is truebutVy !x F is
not; therefore IxVy F => Vy !.r F is not true in general. Also, !x Vy F <^Vy]x F is not true in general
because of the counterexample F(x, y) = {(0,0), (1,1)}, whereVy !x F is true but !x Vy F is false.

The pseudo-codein Figure 4 outlines the BDD unique algorithm. The BDD function for !.r F is returned
by calling vniqut(F. x. 1) where x = {x\. x2 x„}.

First,the algorithm checks tor terminal cases, and checks if the result has already been computed before.
Otherwise if the top variable v of F is the same as xt then the following recursive formula is applied:

!x,. xl+i...., xri (F) = !x,+i. x,+2, r„ (F^) 4- !x/+i, a-4-+2...., xn (FXj)

If v is below Xi, F is independent of variable x, and therefore the result from the next recursion can be
simply returned. If v is above x,, we need to compute !x Ft and !x Fv and merge the results by the ITE
operator. Finally the result is stored in the computed-table, and returned.

4 Mapping MDDs into BDDs

The first-generation MDD package is a direct implementation of the theory presented in Section 2. For
efficiency, our current MDD package uses BDDs as its internal representation. By hiding the mapped-BDD
and its encoded variables from the users, it lets users construct functions, manipulate them and output results
in terms of multi-valued variables only. But only Boolean output (multi-valued input) functions can be
represented by mapped-BDDs.

The mapping of MDDs into BDDs involves two distinct steps: variable encoding and variable ordering.
Variable encoding is the process of associating a number of binary-valued variables to each multi-valued
variable, and assigning codes to represent the values that the multi-valued variables can take. Variable

unique(F,x,i) {
if (i > |x|) or {top.index[F) > bottomJndex{x)) return F
if unique{F, x, i) in computed-table return result
let u be the top variableof F
if (index(v) = tndex(xt)) {

T = ttntgue(FX|1 x, t + 1)
E = unique(Fxr^ x, i + 1)
results ITE(T,E,E)

} else if {topJudex(F) > index(x,)) {
resu/i = wntgue(F, x, i + 1)

} else {
T = imi</ue(Fv,x,/)
E —unique(Fyy x, i)
result = ITE(v,T,E)

}
insert resw/f in computed-table for unique(F, x, i)
return /'c.»-u//

}

Figure 4: Pseudo-code for theunique quantifier.

ordering is the process of finding an ordering of the encoded binary-valued variables such that the size of
the final BDD isminimized. Section 7 will be devoted to variable ordering techniques used inour work,
while we shall first describe the variable encoding process here. To encode each revalued MDD vertex, we
must decide on:

1. the number ofbinary variables used: nencoding variables result in 2n code points, and each code
corresponds to adecision path in the full BDD subgraph ofthese variables.

2. the assignments of codes to values: At least one distinct code point must be assigned to each value.
Therefore 2n > m must be true.

3. the treatment ofunusedcode points: If2n >m, there is one or more unused code points. Each unused
code can either be left unassigned, or be associated to avalue to which another code has already been
assigned. For the former case, its corresponding path always points to the terminal vertex 0. For the
latter case, the corresponding path can point to the same place as another path in the BDD subgraph.

In the next two sections, we shall investigate two encoding schemes. Logarithmic encoding in Section
5offers acompact representation of functions, e.g., characteristic functions, whereas 1-hot encoding in
Section 6is useful for set representation. Once an encoding and an ordering are chosen, there is aunique
way tomap each MDD vertex into aBDD subgraph.

Example 4.1 Figure 5a shows an MDD representing thefollowingfunction:

-{i
ifx > y
otherwise

10

F = 1 if x > y

mapping

a) ROMDD b)Mapped ROBDD

Figure 5: MDD and mapped-BDD representing the relation x > y.

x and yare 3-valued variables which can take values from Px = Py = {0,1,2}. To represent the MDD
using BDDs, each MDD nonterminal vertex must be mapped into anumber ofBDD vertices interconnected
in asubgraph. For example in Figure 5, the MDD vertex labeled by variable x is mapped into the BDD
vertices labeled by x0 and x\. In addition, different indices have to be assigned to these binary variables.
In this case, since r •< yfor the MDD, this ordering is respected for the associated binary variables:
xo < x\ < y0 < y\- The mapping process dictates the encoding used. The same encoding, as well as
ordering, must be used consistently throughout allfunction manipulations.

For space's sake in this paper we do not deal with Zero-suppressed BDDs [29] that are avariant ofBDDs
suited to represent sparse combinatorial sets. In matter ofprinciple it is possible to map MDDs to ZBDDs
instead than to BDDs. and experimentally it turns out to be abetter choice for some applications [30].

5 Logarithmically Encoded MDDs

In this section, logarithmic encoding (i.e., integer encoding) is used to map MDDs into BDDs. Our prime
concern here is to use the least number of variables and BDD vertices. An /n-valued MDD vertex is
represented with [lg2 m] Boolean variables, and is mapped to a BDD subgraph ofm- 1vertices. These
numbers are provably minimum in graph theory.

Each value isassigned an integer code. As discrete variables inCAD problems usually take values from
the ordered set of integers and the operations between them are sometimes integer-arithmetic in nature,
integer encoding results in an efficient representation and manipulation.

Of course, not all 2n codepoints will be used since typically m <2n. On the otherhand the mapped-
BDD will have a path for each binary code point. Thedecision pathfor each unused code point is chosen so
as to minimizethe BDD size. In fact, an unusedpoint is assigned to the same path of the used point whose
encoding is closest to the unused code point. This mapping is related to the generalized cofactor operator
in [37] which was initially proposed in [10] as the constraint operator. Given a function / and a care set c,
thegeneralized cofactor of / with respect to c is theprojection of / thatmaps adon't care pointx to the care

11

Value Binary F

of Encoding =

V U<)U\U2

0 000 Go
1 001 G*i
2 010 G2
3 on G3
4 1*0 G4
5 1*1 G5

Table 1: Logarithmic/integerencoding with don't cares.

point y € c which has the closest distance to x. Generalized cofactoring results in a small and canonical
BDD representation of the incompletely specified function.

Example 5.1 Suppose v isa 6-valued variable taking values from P, = {0.1.2.3.4.5). Tfxree binary-
valued variables uq. u\ and u2 can be assigned toencode variable vas shown in Table J. The last column
is used in theexample in Section 5.1.

Note that ifthe value range is not apower of2, some codes will not be used, e.g., 110 and 111. These
encodings are used as don't cares since the values will never occur. In this case these don't cares are
mapped into the same nodes as 100 and 101 respectively. The notation 1*0 is used to represent both
encodings 100and 110as we "don't care" about the variable u\.

5.1 Relationships between CASE and ITE Operators

As the CASE and ITC operators form the basis for manipulation ofMDDs and BDDs respectively, mapping
can beconveniently performed by replacing each CASE operation by aset ofITE operations. The recursion
step inEquation 4 isour starting point. It gives an outer CASE operator interms ofa top-variable r, and
enables conversion to a hierarchy of ITE operators. The conversion can be summarized by the following
recursive formulas:

ifpis even: CASE(v,G0,G\,G2,G'3,...,GJ,_2,Gp_i)

= CASE{v',lTE{u,G'hG'o),ITE{u,G^G2),
....lTE{u,Gp_x.G'p_2))

ifpisodd: CASE(v, G0, G'„ G2, G'3,..., GJ,_3, G;_2, G'p.{)

= CASE(v', ITE(u, G; G0), ITE(u, G3, G'2),
...JTE^G'^G'^G'^)

Thisrecursion terminates when there areonly twochild-functions remaining in theouter CASE operator:

CASE(v,G'0,G\) = 7TF(i;,G;,G0).

While pairing up child-functions with the ITE operator, these formulas replace the big MDD vertex labeled
with variable v with a smaller one, labeled with a new multi-valued variable v\ and a number of BDD
vertices labeled with anew binary variable u. This mapping process isbest explained by an example.

12

Example 52 Suppose v isa 6-valued MDD vertex, and G0,..., G's are the six child-functions connected
to it, theCASE to ITE mappingproceedsasfollows:

CASE(v, G0, G\, G^, G^GQ
= CASE{v\ ITE(u2, G\,G'0)JTE(u2. G3, G2), ITE(u2, G'5, Gj))

= CASE(v", ITE(uu ITE(u2, G3, G2)? lTE(u2, G'^G'q)), ITE(u2, G'5, G'a))

= ITE(u0, ITE(u2y G's, Gj), /TF(u„ lTE(uh G3, G2), ITE(u2, G\,G'0)))

Note that while pairing up child-functions for ITE operations in the first step, we effectively replace the
original 6-valued MDD vertex with a smaller 3-valued MDD vertex. During the assignment of BDD
variables, the ordering u0 -< wi -< u2 is used. Figure 6 shows the bottom-up recursive mapping process.
Note that the original MDD node labeled vhas been mapped into aBDD subgraph with 5internal nodes.

Figure 6: Recursive mapping from an MDD vertex to amapped-BDD subgraph.

6 1-hot Encoded MDDs

In this section we describe how MDDs can be used to represent and manipulate implicitly sets ofobjects.
This theory is especially useful foi applications where sets of sets of objects need to be constructed and
manipulated, as it is often the case in logic synthesis and combinatorial optimization. In man-. .;rPlications
such as FSM minimization, encoding and partitioning, the number ofobjects (number ofstate> in these
cases) to be handled is usually not large. But their exact optimization algorithms require explorationofmany
different subsets ofsuch objects. For instance exact state minimization requires selection ofa minimum
closed cover out of ahuge number ofcandidate sets of state sets [20]. Therefore our prime concern here is
tohave a compact representation for set of sets.

Suppose the elements corresponds to ndistinct objects. With 1-hot encoding, aBoolean variable is
associated with each object so nBoolean variables are used. Each singleton element isassigned adistinct
1-hot code. Obviously with this 1-hot encoding scheme, there are alot ofunused code points. Unlike the
logarithmic encoding where unused code points are reassigned to values, these code points are used for a
purpose other than representing elements or values, but to represent sets other than singletons.

6.1 Positional-set Notation

Given that there are 2n possible distinct sets ofobjects, in order to represent collections of them it isnot
possible to encode the objects using log2 nBoolean variables. Instead, each subset ofobjects is represented
in positional-set or positional-cube notation form, using a set of nBoolean variables, x = x\x2.. .xn.

13

The presence of an element sk in the set is denoted by the fact that variable xk takes the value 1in the
positional-set, whereas xk takes the value 0if element sk is not amember of the set. One Boolean variable
is needed for each element because theelement can either bepresent or absent in theset .

In the above example, n = 6, and the set with asingle element s4 is represented by 000100 while the
set s2s3ss is represented by 011010. The elements si. s4, s6 which are not present correspond to 0s in the
positional-set.

A set of sets of objects is represented as a set S of positional-sets, by a characteristic function
Xs '• Bn -¥ B defined as:

\s{x) = 1ifand only ifthe set represented by the positional-set x is in the set 5 ofsets.
A1-hot encoded MDD representing \s{x) will contain minterms, each corresponding to a set in S.

Operators for manipulating positional-sets and characteristic functions will be introduced in the next two
subsections.

A1-hot encoded MDD can be represented as amapped-BDD where each Boolean variable corresponds
to a BDD variable. From now on, we use BDD to refer to an 1-hot encoded MDD where there is no
ambiguity.

6.2 Operations on Positional-sets

With our previous definitions ofrelations and positional-set notation for representing set ofobjects, useful
relational operators on sets can be derived. We propose aunified notational framework for set manipulation
which extends the notation used in [23]. In this section, each operators Op acts on two sets of variables
.t = xix2.. .xn and y = y\y2...yn and returns a relation {x Op y) (as a characteristic function) ofpairs
ofpositional-sets. Alternatively, they can also be viewed as constraints imposed on the possible pairs out
oftwo sets ofobjects, x and y. For example, given two sets ofsets A" and V, the set pairs (x, y) where x
contains y are given by the product ofA" and Yand the containment constraint, A' (x) •Y(y) •(x Dy).

Lemma 6.1 The equality relation evaluates true ifthe two sets ofobjects represented by positional-sets x
and y are identical, andcan becomputed as:

n

(•'• = y) = IIXk ** vk

where xk «=>• yk = xk •yk + ->xk •->yk designates the Boolean XNOR operation and -idesignates the Boolean
not operation.

Proof. n?=i xk <* yk requires that for every element A\ either both positional-sets x and ycontain it, orit
is absent from both. Therefore, x andy contains exactly the samesetof elements andthus areequal. D

Lemma 62 The containment relation evaluates true if the setofobjects represented byx contains the set
ofobjects represented by y, and can be computed as:

n

{x 2 y) = J] yk =* Xk
Jfc=l

where xk => yk = ->xk + yk designates the Boolean implication operation.

'The representation ofprimes proposed by Coudert el at. [11] needs 3values per variable to distinguish if the present literal is
in positive ornegative phase or in both phases.

14

Proof. nLi yk => *k requires that for all objects, ifan object kis present in y (i.e., yk = 1), itmust also
bepresent in x (xk - 1). Therefore setx contains all theobjects in y. D

Lemma 63 The strictcontainment relation evaluates true if the set ofobjects represented by x strictly
contains the setofobjects represented by y, and can becomputed as:

(xDy) = (xDy)- -.(x = y) (5)

Alternatively, (x D y) can becomputed by:

n n

(* 3 y) = II fo* =*• **] ' £[**' "wd (6)

Proof. Equation 5follows directly from the two previous theorems. For Equation 6, the first term is simply
the containment constraint, while the second term EJ-ifr* •-«yjk] requires that for atleast one object fc, it
is present in x (xk = 1) tor mis absent from y(yk = 0)? i.e., x and yare not the same. So itis an alternative
way of computing {x D y). G

Lemma 6.4 The equal-union relation evaluates true ifthe set ofobjects represented by x is the union of
the two sets ofobjects represented by y and z, andean be computed as:

n

(.t = !/U:)= Y[Tk<*{yk + Sk)

Proof. For each position k, xk is set to the value ofthe or between yk and zk. Effectively, nLi *k <*
(yA. + rA) performs abitwise OR on y and z to form asingle positional-set .r, which represents the union of
the two individual sets. •

Lemma 6.5 The equal-intersection relation evaluates true if the set ofobjects represented by x is the
intersection ofthe two sets ofobjects represented by yand z, and can be computed as:

n

(x = yDz)= Y[xk*>{yk'Sk)
k=l

Proof. For each position fc, x* isset to the value ofthe and between yk and zk. Effectively, niUi xk <*
(yjt •2k) performs abitwiseandon yand zto form asinglepositional-set x,which represents the intersection
of the two individual sets. •

Lemma 6.6 The contain-union relation evaluates true if the setof objects represented byx contains the
union ofthe two sets ofobjects represented by y and z, and can be computed as:

n

(x 3 yUz) = Y[{yk + zk) => xk
fc=i

15

Proof. Note the similarity in thecomputations of (x D y Uz) and (x = y Uz). (x D yUz) performs
bitwise OR on singletons y and z. Ifeither of their fc-th bits is 1,thecorresponding fc-th bitof x, i.e., a?*, is
constrained to 1. Otherwise, xk cantake any values (i.e., don't care). Theouter product FILi requires that
the above is true for each k. D

Lemma 6.7 The contain-intersection relation evaluates true ifthe setofobjects represented by x contains
the intersection ofthe two sets ofobjects represented by y and z, and can be computed as:

(xDynz) = Y[{yk'Zk)=>xk
k=\

Proof. Note the similarity in the computations of (x D y n z) and (x = y n z). (x D yf\z) performs
bitwise and on singletons y and ~. If either of their fc-th bits is 1, thecorresponding fc-th bitof x, i.e., xkt
is constrained to 1. Otherwise, xk can take any values (i.e., don'tcare). The outer product nZ=i requires
dial the above is true for each k. D

6.3 Operations on Sets of Positional-sets

The first three lemmas in this section introduce operators that remm a setofpositional-sets as theresult of
someimplicitset operations on one or twosetsof positional-sets.

Lemma 6.8 Given the characteristic functions xa and xb representing the sets A and B, set operations
on them such as union, intersection, sharp, andcomplementation can be performed as logical operations
on theircharacteristicfunctions, as follows:

XauB - Xa + XB

\.4nB = \.4 • \B

XA-B = \j4 ' "'XB

\j = ""U

Lemma 6.9 The maximal ofa set \ ofsubsets is the set containing subsets in \ not strictly contained by
anyother subset in \, andcan becomputed as:

Maximalx{x) = x(*)' jBy [(y D x) •x(y)]

Proof. The term 3y [{y D x) •x(y)] is true if and only if there is a positional-set y in x such that x C y.
In such a case, x cannot be in the maximal setby definition, and can be subtracted out. What remains is
exactly the maximal setof subsets in xix)- D

Lemma 6.10 Given a set ofpositional-sets xix) and an array ofthe Boolean variables x, the maximal of
positional-sets in \ with respect to x can be computed by the recursive BDD operator Maximal{x, 0, x):

16

Maximal(\.k,x) {
if(X = 0) return 0
*/(\ = l) return TY!=kxi
Mo = Maximal{x^ k+ \)
Mi —Maximal(xrk<k+ 1)
return lTE(xk, Mi, Mo •->Mi)

}

Proof. The operator starts at the top ofthe BDD and recurses down until a terminal node is reached.
At each recursive call, the operator returns the maximal set ofpositional-sets within \ made up ofelements
from Ar to n. If terminal 0 is reached, there is no positional-set within \ so0 (i.e., nothing) is returned. If
terminal 1 is reached, \ contains all possible position-sets with elements from k to n, and the maximum
one is]"I"=a xi- At anv intermediate BDD node, we find the maximal positional-sets M0 on the else branch
of \, the maximal positional-sets Mi on the then branch of \. The resultant maximal set ofsets contains
(1) positional-sets in Mi each with element xk added to it as they cannot be contained by any set in Mi
which has xk = 0, and (2) positional-sets that are in M0 but not inMi, because if a set ispresent inboth
itisalready accounted for in (1). Thus the ITE operation returns the required maximal set after each call. D

To guarantee that each node ofthe BDD x is processed exactly once, intermediate results should be
cached in a computed-table.

Lemma 6.11 The minimal ofa set \ ofsubsets is the set containing subsets in x not strictly containing
any other subset in x, and can becomputed as:

Minimalx{\) = Xix)- ~fiy [ix 3 y) • \{y)]

Proof. The term By [{x Dy) •x(y)] is true if and only if there isa positional-set y inx such that x D y.
In such a case, x cannot be in the minimal set by definition, and can be subtracted out. What remains is
exactly the minimal set of subsets in xix)• D

Arecursive BDD operator Minimal(\. A\ ./•) can be similarly defined.
The next three operators check set equality, containment and strict containment between two sets ofsets,

whereas Lemmas 6.1, 6.2 and 6.3 check on a pair of sets only. These following operators return tautology
if the tests are passed.

Lemma 6.12 Given the characteristic functions xa(x) and \a(x) representing wo sets A and B (of
positional-sets), the set equality test is true ifand only ifsets Aand Bare identical, and can be computed
by:

Equalx{xA,XB) = Vx [xa(x) <* Xb{x)]

Alternatively, Equal can befoimdbychecking iftheircorresponding ROBDDs are the same bybddxqual(xA ,Xb)>

Proof. xa(x) and xb(x) represents the same set if and only if for every x, either x € Aand x € B, or
x £ Aand x g B. As the characteristic function representing aset inpositional-set notation isunique, two
characteristic functions will represent the same set if and only if theirROBDDs arethe same. D

17

Lemma 6.13 Given the characteristic functions xa{x) and xb{x) representing two sets A and B (of
positional-sets), the set containment test is true ifand only ifset Acontains set B, and can be computed
by:

Containx{XA,XB) = Vx [xb{x) => Xa{x)]

Lemma 6.14 Given the characteristicfunctions xa and xb representing two sets AandB (ofpositional-
sets), the set strict containment test is true ifand only ifset Astrictlycontains set B, and can be computed
by:

StrictJOontainx(xA, Xb) = Containx(xA,XB) •-*Eqitalx(XAi Xb)

Proof. The prooffollows directly from previous twotheorems. D

Beside operating on sets ofsets, the above operators can also be used on relations of sets. Tiie effect is
best illustrated by an example. Suppose .4 and Bare binary relations on sets. ContainT(\a (r. y). \ b{*•=))
will return another relation on pairs (y. 2) ofsets. Position sets yand zare in the resultant relation ifand only
ifthe set ofpositional-sets x associated with yin relation Acontains the set ofpositional-sets x associated
with c in B.

The remaining operators in this section take aset ofsets and aset ofvariables as parameters, and return
a singleton positional-set on those variables.

Lemma 6.15 Given a characteristicfimction xa{x) representing a set Aofpositional-sets, the set union
relation tests ifpositional-set y represents the union ofall sets in A, and can be computed by:

n

UnionT^y{\A) = II ^ ^ 3* Ixa{x) •xk]

Proof. For each position A\ the right hand expression sets yk to 1if and only if there exists an x in \.^
such that its A--th bit is a 1 (3a- [\.4(x) •xk]). This implies that the positional-set y will contain the fc-th
element ifand only ifthere exists apositional-set x in .4 such that A- is amember ofx. Effectively, the right
hand expression performs amultiple bitwise OR on all positional-sets of x^ to form asingle positional-set
y whichrepresents the unionof all suchpositional-sets. •

Alternatively, we implemented the set Union operation as a recursive BDD operator. Bitwise OR is
performed at the BDD DAG level, by traversing the BDD and performing OR on BDD vertices with the
variables of interest.

Lemma 6.16 Given a set ofpositional-sets x(x) ond an array ofthe Boolean variables x, the union of
positional-sets in \ with respect to xcan be computed by the BDD operator Bitwise.Or(x, 0, x), assuming
that the variables in x are ordered last:

18

Bitwise .Or(x, k, x) (
if {k > \x\) return x
t = top.var(x)
if{t<xk){

T = Bitwise.Or(xt, k, x)
E —Bitwise.Or(xv *ix)
T&amITE(t,T,E)

} else {
if {Xxk = 0) return xT •Bitwise-Or{xxTi k+ 1, x)
else return x* •Bitwise.Or(xXk + Xx*> fc +1»*)

}
}

Proof. .ta. denotes the A*-th variable in the array x. Assuming that the variables inx are ordered last, the
above recursion terminates after all ofthem have been processed (A: > |x|, and a0ora lis returned as x). At
a BDD vertex where / < xk, the recursion has not reached a variable ofinterest yet, and we simply recurse
down its right and left children and merge the Bitwise.Or results by creating anew vertex lTE(t. T. E).
If / > xk, we have to perform the bitwise or operation on variable v. IfxXfc = 0,variable xk never takes a
value 1in any satisfying assignments of x, so itis set to 0by xT. The bitwise or ofthe remaining variables
is given by Bitwise.Orix^ k+l.x). Otherwise ifXifc # 0, there exists asatisfying assignment of x in
which xk = 1. So xk isset to 1, while abitwise OR isperformed over all remaining satisfying assignments
of \, i.e., \Xfc + XxT• D

This recursive BDD operator isvery fast, but unfortunately, its operation isvalid only ifthe variables to
be bitwise ORed are at the bottom ofthe BDD DAG. So toexecute this BDD operator, we need to perform
variable substitutions before and after the operation. Experimentally, these substitution steps are too slow
to be practical and sometimes cause an exponential explosion in the BDD size. As aresult, we use the
computation in Lemma6.15 instead.

Lemma 6.17 Given a characteristic function \A[x) representing a set Aofpositional-sets, the set inter
section relation tests ifpositional-set y represents the intersection ofall sets in A, and can be computed

Intersectx^y{\A) = II W** V,r *W 'xd
k=\

Proof. For each position A:, the right hand expression sets yk to 1if and only if the fc-th bit ofall x inxa
is a 1. This implies that the positional-set ywill contain the fc-th element ifand only if all positional-sets
x in x,4 have k as a member. Effectively, the right hand expression performs a multiple bitwise AND
on all positional-sets of xa to form asingle positional-set ywhich represents the intersection of all such
positional-sets. •

6.4 /c-out-of-rc Positional-sets

Let the number ofobjects be n. In subsequent computations, we will use extensively a suite ofsets ofsets
ofobjects, Tuplen,k{x), which contains all positional-sets xwith exactly kelements in them (i.e., |x| = k).

19

In particular, the set ofsingleton elements Tuplen,i{x), the set ofpairs Tuplen,2{x), the universal set ofall
objects TuplenM{x), and the set ofempty set Tuplenfi{x)2 are common ones. When nis clear from the
context we will write Tuplek{x) instead ofTuplen>k{x). An efficient way ofconstructing and storing such
collections of it-tuple sets using BDDs will be given next. Figure 7represents areduced ordered BDD of
Tuple5i2(x):

T5.2

T4f> J4.1

(X4) { X4 }

T3.2 S \j3.1^/ NJ3.0
(X3 J (x3j A*3)*

T2,2 V

(x2)

NJ2.1 .

1*2)
Vs—*N

\Jl,l/

(X1)

(x2 J
1 ^-x

0

>Ji.°y^
0 (xi) 0

0 1 0

Figure 7: BDD representing Tvph5.2 (r).

The root of the BDD represents the set rup/e5.2(*), while the internal nodes represent the sets
Tvpltij{x) (/ < 5. j < 2). For ease of illustration, the variable ordering is chosen such that the lop
variable corresponding to TupUi.j{x) is a-,-. At that node, ifwe choose element ?to be in the positional-set,
xi takes the value 1and we follow the right outgoing arc. In doing so, we still have i - 1elements/variables
left to be processed. As we have put element i in the positional-set, we still have to add exactly j - 1
elements into the positional-set. That is why the right child of Ttiphijx) should be TvpU;-\,j-\(r).
Similarly, the left child is Tuple;-i.j{x) because clement / has not been put in the positional-set and we
have j - 1elements/variables left. Thus, the BDD for Tuples can be constructed by the algorithm shown
in Figure 8.

The total number of nonterminal vertices in the BDD of TupleUyk is (n - k + 1) • (k + 1) - 1 =
nk_tf + n-0(nk). With the use ofthe computed table [3], the time complexity ofthe above algorithm
is also O{nk) as the BDD is built from bottom up and each vertex is built once and then re-used. Given any
n, theBDD for Tuplen,k is largest when k = n/2.

7 Variable Ordering

We frequently suffer from exponential time and/or space complexities if we neglect the issue ofvariable
ordering. As with most variants ofBDDs, the space and time complexities for constructing an MDD for

27uplen,0(x) will bedenoted by0(x).

20

Tuple{iJ){
if (j < 0) or {i < j) return0
if (/ = j) and {i = 0) return 1
if Tuple{i,j) in computed-table return result
T = Tuple{i- l,j- 1)
E = Tuple(i- IJ)
F=ITE{xiyT,E)
insert F in computed-table for Tvple{i, j)
return F

Figure 8: Pseudo-code for the Tuple operator.

any discrete function is inthe worst case exponential inthe number of variables of the function. Luckily in
real life, many discrete functions of interest have reasonable representations provided that a good variable
ordering is chosen. Friedman et al. in [14] found an 0(n23n) algorithm for finding the optimal variable
ordering where n is the number of Boolean variables. Faster variable ordering heuristics for BDDs have
been provided by Malik etal. in [25] and Fujita etal. in [15]. Rudell [32] proposed an effective dynamic
variable reordering heuristic which offers atradeoff of runtime for compactness of BDD representation.

The goal inthis section isto find agood variable ordering so as tominimize the total number of vertices
used. With a mapped-BDD representation of an MDD, the ordering process consists of two steps: order
the BDD variables within each MDD variable, andthen merge these orderings into a single BDD variable
ordering.

T\vo well-knownrule-of-thumbs suggested in [25] and [15] can beusedfor theordering of BDD variables
within each individual MDD variable:

1. Variables that areclosely relatedshould be orderedclose to each other.

2. Variables that "control" more the function should be ordered at the lop.

There are two ways of merging these individual orderings. Cluster ordering places BDD variables,
which correspond to thesame multi-valued variable, inconsecutive positions in the final ordering. Within
each cluster, the binary variable which corresponds to the most significant bit (MSB) is ordered first (i.e.,
highest). Then the next significant encoding variable is ordered next, and so on. For state minimization,
cluster ordering is used to merge different sets of input and output variables; they are ordered before (i.e.,
on topof) the state variables because thetransition relation depends heavily on inputs and outputs.

Example 7.1 In Figure 9, the relation (x = y) is represented asan MDD on the left and a mapped-BDD
(i.e., logarithmic encoded MDD) by cluster ordering in the middle. Variables x and y each can takefour
values. Notethatthemulti-valued variable x is encoded intotwobinary variablesxo (MSB) andx i (LSB) on
the right. The circled subgraph before reduction has the same number ofoutgoing arcs as the MDD vertex
and the two representations are equivalent. With the mapped-BDD representation, vertices with equivalent
subgraphs can bemerged as shown bythe two lowest nonterminal vertices.

The problem of using cluster ordering for variables with large value ranges is illustrated by Figure 9.
Consider theFSM named squares in theMCNC benchmark which has 371 states. Using 1-hot encoding on

21

Figure 9: Comparison between cluster ordering and interleaved ordering.

its states, multi-valued variables x and y require each 371 BDD variables. Asmentioned before, there are
2371, that is about 5 x 10m outgoing edges from the circled BDD subgraph cluster. In the worst case, it
would have 5 x 10''' subgraphs below, each rooted at such an edge. Thus the size of the MDD will grow
exponentially in the number of binary encoded variables.

To avoid such exponential growth, we use an interleaved ordering for the BDD variables instead, as
shown on the right ofFigure 9. The encoded variables x0 and xi for x are interleaved with yo and yi for
y. The more significant bits are compared before the less significant ones as the mapped-BDD istraversed
from top tobottom. With interleaving, the width ofthe mapped-BDD can bekept slim. As a comparison
for our example, the mapped-BDD using cluster ordering has 9 nonterminal vertices while interleaved
ordering results in 6 nonterminal vertices. For the FSM squares, the mapped-BDD for (x = y) has only
3 x 371 = 1113 nonterminal vertices using interleaved ordering. The example in Figure 9 is instructive
in comparing the size ofpure MDD representations vs. the size ofBDD representations, because the pure
MDD representation has 2* + 3nodes, while amapped BDD representation (with interleaved ordering) has
3.A- + 1nodes; this supports thecase formapping MDDs to BDDs.

For state minimization, our implicit algorithms need to operate on multiple sets of state variables, and
each such variable set can represent a positional-set. Interleave ordering must be used for these sets of
variables for the reason described above. To avoid exponential complexities, a common wisdom is to use
as few BDD variables as possible. For instance inthe application reported in[20], we allocate only 4 sets
ofstate BDD variables although a total of 10 state vector names are used inthe equations. This ispossible
because we never have to operate on more than 4sets ofstate variables simultaneously within asingle BDD
operation. The acmal BDD variables are reused for different purposes, by binding atdifferent times more
thanoneset of variables from the equations to a single setof BDD variables.

8 Applications of Logarithmic Encoded MDDs

8.1 General Paradigm

Many CAD problems can be naturally formulated in a multi-valued setting. Often, we inherit a graph
structure from the problem. For example, the constraint graphs for routing, the flow graphs for scheduling
and the state transition graphs for FSMs. With such information, the problem can be mapped into anumber
ofmulti-valued variables andasetofconstraintsbetween thesevariables. Fromthe inheritedgraphstructure,

22

a good ordering ofthe multi-valued variables can bederived.
The input constraint file is first scanned and an MDD is built for each constraint. They are ANDed

together as soon as they are created. The final MDD contains implicitly all solutions of the problem.
Satisfiability can be checked trivially, as the final MDD will consist of asingle terminal vertex *0' if, and
only if, it is not satisfiable.

If the problem is satisfiable, we can enumerate some, or all solutions and print them out. We use MDDs
to solve the decision problem, instead of its corresponding optimization problem. The latter can be solved
by binary search ofan optimal solution by solving multiple decision problems.

8.2 Hardware Resource Scheduling

t1 <t2
t2<t3
t2<t4
if (t3 = t4) then (s3 != s4
if (s3 = s4) then (t3 != t4

Figure 10: Hardware resource scheduling example.

The resource scheduling problem arises frequently insynthesis ofVLSI layouts from high level descriptions
ofdigital systems. We chose ageneral formulation as follows: given a flow graph specifying temporal and
spatial relationships between operations o, on € 0 that can be performed at discrete time intervals on
machine types or functional units ox,..., ok and atable specifying the single machine type on which each
operation can be performed, determine an optimal schedule for the operations, based on some user-specified
optimality criteria. Some criteria may be: (1) Minimum total time to perform all operations, given an
allocation of0j machines ofeach type aj, (2) Minimum number ofmachines oftype ct„ (3) Minimum total
cost of machines, given that all operationsare completedin time r.

With each operation o„ we associate two integer variables, J, and s„ where Udenotes the time slot in
which o, is performed and s, denotes the "space" variable or the machine onwhich o, isperformed. Ifwe
would liketo construct the MDD forall solutions with r limeslots, and0j machines of typea,, /, can take
onr values and Si can assume 6j values, where oj is the machine type onwhich o, can beperformed.

Given theflow graph, for each pair ofoperations o, and oj, if there is andirected edge from o, to o3;, we
write: U< tj. For each pair o; and oj that can be performed on the same machine type, ifthere isno path
between i and j in the flow graph, we write:

if (t{ = tj) then (s,- ^ Sj)
if (s{ = Sj) then (f,- ^ tj)

Note that the previous conditions are logical equivalent (because a-+6+*fe->aisa tautology). So they
areredundant andonlyoneis used inorder to speed uptheconstruction of the final MDD.

The final MDD that is theconjunction of these constraints will testfor theexistence of a solution with
r time slots and 0j machines of type oj. Cofactoring may beused to test for alternate solutions.

23

8.3 Channel Routing

We make the assumption that each routing layer runs in one direction. Given N nets to be routed in a
channel, theobjective is to minimize the number of tracks used to route them. TTie horizontal interval of
net t isdefined as: I{i) = r(i) - l(i), where r(i) isthe column number inwhich the rightmost pin ofnet i
lies and l(i)isthe leftmost column occupied by net i. Two nets with intersecting intervals cannot be placed
onthe same track. The Vertical Constraint Graph (VCG) [42] restricts therelative positions of nets in the
channel. Ifthere isapath from net t tonet j inthe VCG, then the track ofnet i must lieabove the track of
net j in the channel.

We first construct theVCG forthechannel. All directed edges in theVCG thatcanbeimplied byother
edges are removed, i.e., the VCG is made irredundant. Let y, denote the track occupied by net i. Then, for
each net pair i,j if l{i) n /(j) # 4> and there is no path from i to j inthe VCG, we write the following
condition:

yi i- y.r

Foreach directed edgefrom i to j in theirredundant VCG, wewrite:

y« > y.r

To determine if a route exists for the channel that uses t tracks, we let each variable y, take on / values in
the ordered set {0,..., t - 1} and construct the MDD that is the conjunction of the above conditions. If
the resulting MDD is not the terminal vertex with value 0, a solution using t tracks exists. We can then
test for solutions using fewer tracks by cofactoring each ofthe variables y, with respect to the literal y,
where S = {0,1,..., s] and 5< / - 1. Ifhowever, the MDD is aterminal vertex with zero value, we must
increase / and reconstruct the graph. For extensions to doglegging and multiple layers, the reader is referred
to [12].

8.4 Switchbox Routing

We consider arestricted form ofswitchbox routing to illustrate the use ofif...then... conditions. Extensions
to more general cases are possible. The restriction we place is that nets must connect from the top of the
switchbox to the bottom or from left to right, and that all nets have been decomposed into two-terminal
nets Also, we only consider one-bend patterns that connect such nets. We form two graphs - the Vertical
Constraint Graph (VCG) and the Horizontal Constraint Graph (HCG). Each graph gives rise to constraints
similar to the channel routing problem. Let y, denote the yposition ofavertical net, i.e., anet that connects
from top to bottom. Let xj denote the xposition of ahorizontal net. For each net pair iand j in the VCG,
if there is nopath between them inthe VCG, we write:

yi ¥> yy

Similarly, we write constraints for nets in the HCG. The interaction between nets in the VCG and nets in
the HCG generates cross-constraints. Two such sets ofcross-constraints are illustrated in Figure 11.

In Figure 11, ci and c3 are the columns in which pins ofhorizontal net 1are located and c2 and c4 are for
horizontal net 2. n and r2 are the rows in which pins of vertical net 2lie. Suppose that the switchbox uses
Rrows and Ccolumns. We let the variables yt take on Rvalues and the variables xj take on Cvalues. We
then build the canonical MDD for the binary-valued function that isthe conjunction ofthe above constraints
to test for the existence of a solution that uses one-bend patterns.

24

d c2

ySr

r1i

•Y*
31

r2

y1 !=y2
if (x1 >= . . . „
if (x1 <= c2) then (y1

if (y1 <= r2) then (x1

ft (xi >=c1)then(y1 !=r1|
if (y1 >= rl jthen (xi != c3|

c3c4

Figure 11: Switchbox routing example.

8.5 Graph Coloring

The objective of the graph coloring problem is to find the minimum number ofcolors that suffice to color
agiven graph G. Starting with a reasonable estimate kof the number of colors, let yt denote the color of
node i inG. The variable y, isallowed toassume kvalues. For each pair ofadjacent nodes inG, generate
the following constraint:

Vi # Vj-

The final MDD for the conjunction ofthese constraints will test for the existence ofa graph coloring with
kcolors. The problem can besimplified slightly if a maximal clique inthe graph is preassigned a unique
color for each node of the clique.

8.6 Cycle-based Logic Simulation

Logic simulation is a critical but time consuming step in the design cycle. Cycle-based logic simulation
computes signal values for outputs and latches only. The core operation is discrete function evaluation
of combinational logic blocks in between latch boundaries. In [27], a new approach of discrete function
evaluation is proposed using MDDs. Each MDD variable corresponds toa group of inputs to thecombina
tional block, and each output function is represented asa MDD. The MDD of a logic function is translated
into a tableon which function evaluation is performed by a sequence of address lookups. The value of
a function for a given input assignment is obtained with at most one lookup per input. This represents a
significant improvement over traditional simulation, because evaluation time becomes independent of the
complexity ofthelogic network. Theoretically, MDD-based function evaluation offers orders ofmagnitude
potential speedup over traditional logic simulation. Inpractices, memory bandwidth becomes thedominant
consideration on large design.*

8.7 Formal Verification

Finitestatemachine (FSM)is a commonrepresentation forsequential designsonwhichmanylogicsynthesis
and formal verification programs are based. An FSM can beviewed as a5-tuple M = (S,I,0,T,R) where
5 represents thefinite state space, / represents thefinite input space andOrepresents thefinite output space.
T is the transition relation defined by its characteristic function T:IxSxSxO-*B. On input i, the
FSM can transit from present state p to a next state n and output o if andonly if T(i,p, n,o) = 1 (i.e.,
(i, p, n,o) is a transition). There exists oneor more transitions for each combination of present statep and
input i. RC S represents the set of reset states.

A state transition graph (STG) is commonly used as theinternal representation ofFSMs in sequential
synthesis systems, such as sis [34]. Many algorithms for sequential synthesis have been developed to apply
to STGs. However, large FSMs cannot be stored and manipulated without memory usage and CPU time

25

becoming prohibitively large. AlimitationofSTGs is thefact that they areatwo-level form ofrepresentation
where statetransitions arestored explicitly, onebyone. Thismaydegrade theperformance of conventional
graph algorithms.

Alternatively, FSMs can becompactly represented by decision diagrams suchas MDDs. A state s can
besymbolically represented bya multi-valued variable, whose value canrange over thediscrete state space.
Similarly, input t and output oare represented as multi-valued variables. As aresult, the transition relation
can be represented as acharacteristic function (four multi-valued inputs, binary output MDD function). The
set of resetstatesis represented by theMDD of itscharacteristic function.

Though various synthesis and verification applications use the above MDD representation, each algo
rithm isdifferent inthe way it manipulates intermediate MDD objects toproduce the desired results. Here
we will outline a few applications and the reader is referred to the literature for details.

Language containment and CTL model checking are two common verification methodologies. The first
implicit algorithm for language containment [36] using MDDs was implemented within cospan [18]. hsis
[2] is ahierarchical formal verification system from UCB and its language containment and model checking
algorithms are based on MDDs. This is true also for vis [4], a package of verification interacting with
synthesis recently developed at UCB.

At the core oflanguage containment and CTL model checking is some form ofstate space exploration,
e.g., state reachability. Implicit methods manipulate sets of states at atime. There are many examples of
large state spaces that can be explored with implicit techniques but not with explicit ones. Astraightforward
translation of an explicit algorithm is not necessarily the best for MDDs. The language containment check
is translated to alanguage emptiness check and this fails ifthere is an accepting run in the automaton. Afair
state isone that is involved insome cycle satisfying all fairness constraints and thus a reachable fair state
means a failed language containmentcheck.

During and after logic synthesis, combinational logic verification is used to certify that the resultant
circuit description is functionally equivalent to the initial description. BDDs have beenused very successfully
to compare Boolean logic networks [25] where aBDD function (representing aShannon decomposition of
the network functionality) is built for each Boolean network. Each BDD is acanonical form ofthe Boolean
function of binary-valued variables. Hence verifying that two Boolean functions are identical reduces to
verifying that their BDDs are identical. Verification ofmulti-valued networks is astraightforward extension,
as multi-valued functions are identical if and only if their MDDs are identical. This verification step is
carried out after MIS-MV [21] optimizes a multi-level logic with multi-valued inputs. Alot of efforts
have been invested in the verification of sequential networks with BDDs [37,17], but more work is needed
to fill the gap between what can be verified currently (circuits with at most a few hundred latches) and
industrial-strength designs (circuits with thousands oflatches).

8.8 Logic Synthesis

MDDs areused also inPOLIS [8], asystem for hardware-softwareco-design ofembeddedsystems developed
at UCB. They are utilized in representing the transition relation of aCo-design FSM (CFSM) and the
control-data flow graphs (S-graphs) for software synthesis.

MDDs have also been applied in combinational and sequential logic optimization. An example is the
minimization of multi-valued relations in theprogram gyocro [41].

In gyocro arelation RCDxBmis represented by its characteristic function R:Dx Bm -+ B such
that #(x, y) = 1ifand only if(x, y) € R- The characteristic functions are represented by MDDs.

3A CFSM is aglobally asynchronous FSM with finite, non-zero, unbounded reaction time and point to point communication to
model both hardware and software implementations.

26

Multi-valued relations arise in many situations [5]. An application is in the synthesis of completely
specified FSMs. For a given initial state, a set of equivalent states can be computed as a function E :
SxS^ B such that E(n, n) = 1ifand only ifnand hare equivalent. Since astate can be mapped to any
of the equivalent states of the next state, we have the possibility of implementing amore compact machine
using the equivalent states. Namely, the objective is to find aleast cost machine compatiblewith the function
T:lxSxSxO-+B such that f(t,p,n,o) = 1ifand only ifeither T(t,p,n,o) = 1orthere exists a
state nfor which T{i, p, n, o) = 1and £(n, h) = 1. f can be easily computed using MDDs. f provides
the complete family offinite state machines equivalent to the original machine under the equivalent states.
Similarly, f can be extended to include invalid states, which are defined as aset ofstates not reachable from
some initial set of states.

8.9 Constrained Finite State Machine Minimization

In [22] L. Lavagno has described the following variant of state minimization occurring in asynchronous
sequential synthesis and he has provided an exact solution which uses MDDs. We mention briefly the
problem in regard to theusage of MDDs, referring tothe source for anin-depth presentation.

Definition 8.1 An input variable x isenabled in a state s ofan FSM ifithas a different value in apair of
edgelabelsrespectively entering andleaving s.

For instance, given (00, si -> s) and (10, s -> s2) the first variable is enabled in s, thesecond one is not
(unless there is another edgelabel leaving s where thesecond variable takesvalue 1).

Given an ISFSM F of Moore type, a setof incompatible pairs of states of F, anda costforeach input
variable of F, the problem is tofind a closed partition ofthe states of F and a setD of input variables of
/•' such that:

1) no two incompatiblestates are assigned to the same block,

2) for every pair of adjacent states * -> s' assigned todifferent blocks, thesetof variables that areenabled
in s' and not enabled in s is contained in D,

3) no state s has two fanout edges going totwo different states *' and s,(such that s' and s" belong to the
same block, different from the block of &(this last condition may require to drastically increase the
numberof blocks with respect to the minimumin standardstate minimization),

4) the cost of the variables in D is minimized.

The exact algorithm given in [22] for the derivation of an optimal partitioning set is divided into three
steps:

1. Formulation, as a conjunction of logicexpressions overa set of multi-valued variables, of the condi
tionsfor a set D of STGsignals to be a partitioning set withrespect to anyclosedpartition-n derived
from a closed cover C.

2. Partial solution of the clauses, to find a partitioning set D of minimum cost.

3. Derivation of v from C and D.

A minimum cost partitioning set, given the clauses defining it, is found by extending to MDDs the
approachdescribed in[24] tosolvethebinate covering problem using BDDs. So, given anMDD representing
a conjunction of the clauses, any path from the root to the leaf labeled with 1 corresponds to a partial

27

assignment of values to the variables that satisfies the clauses. Hencethis partial assignment represents a
family ofpartitioning sets and associated closed partitions. Aweight is assigned to each edge in the MDD,
according to the cost function.

Then a shortest pathfrom therootto theleaflabeled with 1corresponds to a minimum cost assignment
that satisfies all theconstraints. Theproof was given for BDDs, butsince every MDD canbetranslated into
a BDD with an appropriate encoding and the weights assigned tothe multi-valued variables are all zero, the
result applies directly to this case as well.

Ilieassignmentcorresponding toashortest path gives also acompatible for each state, that unfortunately
cannot beused as itspartition block, because the resulting partition may not be closed. In principle, one
could add further clauses expressing the closure conditions, and use again the shortest path formulation.

9 Applications of 1-hot Encoded MDDs

9.1 Implicit Compatible Generation for State Minimization of ISFSMs

An incompletely specified FSM (ISFSM) can be defined as a 6-tuple M = (S.l.O.T.O.R) where
5, /, Oand Rrepresents the states, inputs, outputs and reset states. T is the next state relation defined by:
T(Lp, n) = 1iff n is the specified next state ofstate pon input i. Ois the output relation defined by:
0(t, p, o) = 1iff ois apossible output ofstate pon input t. The following example will be used to illustrate
the implicit computations.

Figure 12: An ISFSM.

An exact algorithm for state minimizationconsists oftwo steps: generationofvarious setsofcompatibles,
and solutionofabinate covering problem. The generation step involves identificationofsets ofstates called
compatibles which can potentially be merged into asingle state in the minimized machine. For ISFSMs,
the number of compatibles can be exponential in the number of states. Such state sets can be represented
efficiently as positional-sets so that any set of state sets can be represented as a1-hot encoded MDD. Input
and output MDD variables are left logarithmic encoded.

The covering step (described in Section 9.2) is to choose a minimum subset ofcompatibles satisfying
covering and closure conditions, i.e., to find aminimum closed cover. In this section, we describe implicit
computations to find sets of compatibles required for exact state minimization. First, incompatibility
relations between pairs of states are derived from the output and transition relations.

Definition 9.1 Two states are an output incompatible pair if, for some input, they cannot generate the

28

same output. The set ofoutput incompatible pairs, OXCV{y, z), can be computed as:

OXCV(y, z) = Tuplei{y) •Tuplex{z) •3i flo [0(i. y, o) •0(i, z,o)]

The lastterm is true forstateB andD because on some input 1,they canboth producea sameoutput pattern
(i.e., output incompatible). Tlie conditions Tuplei (y) •Tuplei (z) restrict yand z positional-sets to pairs of
singleton states.

OICP(y, z)

0100 B 0001 D

0001 D 0100 B

Definition 92 Two states are an incompatible pair if(l) they are output incompatible, or (2) on some
input, their next states are an incompatible pair. Tl\e set ofincompatible pairs XCV can be obtained by the
followingfixedpointcomputation:

XCVo(y.z) = OXCV(y.z)
ICTk+i(y,z) = lCrk{y,z)+ 3/,u. v[T(/\y,ii) •T(/\-, r) -!CVk{u,v)]

The iteration can terminate when XCVk+i = lCVk (= XCV).

Theiteration starts withthe set of output incompatible pairs XCVo = {BD}. XCVi contains all state pairs
leading topair(s) inXCVo under some input, i.e., XCVi = {BD, AC. AD}. And XCV = XCVi = XCV2.

ICP{y, z) ICP(y,z)(cont)

1000 A 0010 C 0010 C 1000 A

1000 A 0001 D 0001 D 1000 A

0100 B 0001 D 0001 D 0100 B

Sofarweestablished relationships between pairs of states. Bycomplementation, the following definition
introduces compatible sets of states of arbitrary cardinalities.

Definition 93 A set of states is a compatible if it is not an incompatible. An incompatible set of states
contains at least one incompatible pair. Tlie setofcompatibles, C(c), canbe computed as:

C{c) = -*Tuple0{c)- fiy, z [XCV{y, z) •Contain.Union{c,y, z)]

C{c) simplycontains allnon-empty subsets of states (i.e., -«Tup/eo(c)) whichare notincompatibles. A state
set c is an incompatible iff there is anincompatible state pair XCV(y, z) suchthatc contains y andz.

C(c)

1100 AB

0110 BC

0011 CD

1000 A

0100 B

0010 C

0001 D

29

The closure condition ofa compatible c iscaptured by its class set d. The class set relation CCS{c. d)
evaluates to1iffthe next state set dimplied by cisinits class set. Itscomputation [20] will beomitted here.

CCS(c,d)

1100 AB 0011 CD

0110 BC 0011 CD

To solve exactly the covering problem, it issufficient to consider a subset ofcompatibles called prime
compatibles. As proved in [16], at least one minimum closed cover consists entirely ofprime compatibles.

Definition 9.4 Acompatible c' dominates acompatible cif(l) c' Dc, and (2) class set ofc' Cclass set of
c. Tl\e prime dominance relation is given by:

Dominate{cf.c) = (c' Dc) •Se1.Conftiind(CCS(c,d).CCS{c'.d))

i.e., c' dominates r if c' covers all states covered by c, and the closure conditions ofc' are a subset of the
closure conditions ofc As aresult, compatible c* expresses strictly less stringent conditions than compatible
c, thus r can be excluded from further consideration.

Definition 9.5 Aprime compatible is acompatible not dominated by another compatible. The set ofprime
compatibles is given by:

VC{c) = C(c). £c' [C{c') •Dominate{c\ c)]

primejcompatible class set

P\ ihxm;* OOl 1 CD

P2 0110 BC 0011 CD

P3 0011 CD 0

P4 1000 A 0

P5 0100 B 0

9.2 Implicit Binate Covering

Binate covering models a large class of optimization problems in logic synthesis. We refer to [38] for
adetailed presentation of algorithms to solve it. In [20] we have contributed the first binate solver that
represents and transforms the covering table using 1-hot encoded MDDs as the underlying data structure.
Here we outline some key aspects that characterize the new algorithm. In the exposition we continue the
solution of the instance of stateminimization shown in Section 9.1.

Aminimized machine isobtained by finding aminimum closed cover. The latter isdetermined by:

1. constructing aproduct-of-sums expression Z, with one variable per prime compatible, and as many
clauses as there are coveringand closureconditions;

2. finding asatisfying assignment which has the fewest variables assigned to 1, i.e., the fewest prime
compatibles selected to form thereduced machine.

The clauses ofthe product-of-sums expression Sare unate clauses for the covering conditions (each original
state is covered byat least oneselected prime compatible):

A: {pi+p4),B: {pi+p2 +Ps),C : {p2-rPi),D: fa),

30

and binate clauses for the closure conditions (ifaprime compatible is selected also the prime compatibles
that will be its next states in the reduced machine must be selected):

AB => CD : (pi+P3),BC => CD : (& + pa)-

So the final product-of-sums expressionis:

£ = (Pi +P4) (Pi +Pi + PS) (P2 + P3)P3(PT + P3) (P2 + PS) •

A minimum satisfying assignment is pi = P3 = 1and p2 = pa = Ps = 0.
The same expression can be rewritten as acovering table, where each column isaprime compatible and

each row is a clause:

AB BC CD A B

.1 1 1

B 1 1 1

C 1 1

D 1

AB => CD 0 1

BC^CD 0 1

The binate table covering problem is to find a minimum subset of columns such that for each row, either
there is acolumn in the subset intersecting therow at a 1, orthere is acolumnnotin the subset intersecting
the row at a 0. Available explicit implementations represent the table as a matrix, using a sparse matrix
package.

Weavoid an explicit representation ofeach entry, row and column inthetable. Instead werepresent the
table implicitly by the following encoding scheme:

• p - acolumnlabel (a positional set), (c,d) - arowlabel (2 positional sets)

• C{p) - a set of columns(a BDD), R{c, d) - a setof rows(a BDD)

Each column label is a prime compatible:

C(p) = VC(p)

Each row label represents a unate or binate clause:

Runate(c.d) = 0(c)- S(d)

Rbinate(c,d) = VC(c) •CCS(c, d)

R(C, d) = Runate{c, d) + Rbinate(c, d)

At the intersection of column p € C androw (c, d) e R, the following ruleshold:

1. table entry is a 1 iff [p 3 d),

2. table entry is a 0 iff (p = c).

In our example therows are encoded as follows. For each state d, a unateclause (pi + P2 + \-Pj)
has to be satisfied, where pk is a primecompatible containing stated. So the unate clauses are:

Runate(c,d) = <b(c).S(d)

31

Ru(c , d)

0000 1000 A

0000 0100 B

0000 0010 C

0000 0001 D

For each prime compatible pand each ofits class sets dt abinate clause {p + p\ + pi+ —I- Pi) has
to besatisfied, where pk is a prime compatible containing theclass setd. Sothebinate clauses are:

Rbinate(c,d) = VC(c).CCS(c.d)

Rb(c, d)

1100 AB 0011 CD

0110 BC 0011 CD

As a summary, we annotate the previous table with the labels ofthe rows and columns. Notice that we
do not need anymore to represent the entries oftiie table. With the given rules, we can always determine
what entry exists at the intersection ofagiven row and column, by checking their labels.

AB

1100

BC

0110

CD

0011

A

1000

B

0100

A 00001000 1 1

B 00000100 1 1 1

C 00000010 1 1

D 0000 0001 1

BC^CD 01100011 0 1

AB=?CD 1100 0011 0 1

We solve exactly the binate covering problem with a branch-and-bound algorithm, that differs from a
standard one due to: (1) implicit representation ofthe covering table, (2) implicit computation ofareduced
covering table, and (3) implicit computation of branching column, maximal independent set and table
partitioning.

Acovering table is reduced by applying to ita sequence ofoperations that remove rows and columns,
and still preserve at least one minimum solution. We demonstrate two such operations: detection ofessential
columns and column dominance.

Acolumn p is essential iff there is a row having a 1 in column p and no other entry. In our table
there isone such column, labeled by 0011 as highlighted inthe above table which isessential tocover row
0000 0001.

The essential columns are computed by:

ess.col(p) =C(P) •3c,d [fl(c, d) •0(c) •(p 2 <*)' flpf (C(p') •(p' 2 d) •(p' ? p))]
Since theessential columns must be in thesolution, they are deleted from thetable together with all rows
intersecting them in a 1. The computations to add the essential columns to the solution and update the table
are:

solution(p) = solution{p) + ess.col{p)
C(p) = C{p)-^ess.col{p)

R(c,d) = R(c,d)-Pp(ess.col(p)'{pDd))

The resulting table is:

32

AB

1100

BC

0110

A

1000

B

0100

A 00001000 1 1

B 00000100 1 1 1

Acolumn p' dominates another column piff p' has all the Is ofp, and p' contains no 0. In our table
above, the columnlabeled 1100 dominates all the other columns.

The dominated columns are computed by:

dominated(p) = 3p' {C(p') •(p' ^ p)- /Be, d[R(c, d)-(pDd)- (p' 2 d)\ fid R(p', d)}

Ifp' column dominates p, there is at least one minimum cost solution with column peliminated (p = 0),
together with all the rows in which ithas 0s. Therefore dominated columns are deleted, along with the rows
intersecting them in a 0:

C{p) = C(p) -->dominated(p)
R{c, d) = #(c, d) •->dominated{c)

and the table is reduced to:

AB

1100

A 00001000 1

B 00000100 1

By one more search ofessential columns one finds that pi is essential and so we found a minimum cost
solution = {pi,P3} = {AB,CD}\

9.3 ImplicitMinimization of Generalized Prime Implicants

The problem ofstate assignment for optimal two-level implementations has a long history of research
efforts 128, 39]. An exact algorithm was proposed in [13]. It extends tothe multi-valued input and output
domains thetwomainfeatures ofexactstandard two-level minimization: generation of asetof product-terms
sufficient to find at leasta minimum cover, i.e., the primeimplicants, andcomputation of a minimum cover
as solution ofaset covering problem, represented as atable covering problem [26]. More precisely, in[13]
the notion ofprime implicants is extended tothe notion ofgeneralized prime implicants (GPIs) and the
set covering problem is extended to a constrained set covering problem, because it is not sufficient to find
a minimum cover of GPIs, but it is necessary to find a minimum encodeable cover, i.e., a minimum cover
of GPIs whose associated encoding constraints are satisfiable so that it can be mapped into anequivalent
encoded cover. This is the problem of exact minimization of GPIs. Since GPIs are a superset of prime
implicants and moreover subsets ofGPIs must be checked for encodeability, GPI minimizationisabsolutely
intractable from thepoint-of-view of explicit enumerative techniques.

In [40] itisdescribed an implicit procedure tocompute minimumorminimal encodeable covers ofGPIs.
It uses 1-hot encoded MDDs to check encodeability of encoding constraints, and it relies on the implicit
tablesolver described in Section 9.2 to select covers of GPIs. Theprocedure is quiteintricate andwe refer
the interested reader to the original documentation.

33

10 Conclusions

We have presented the multi-valueddecision diagram data structure and along withasuite ofoperators for its
manipulation. As anatural setting to model problems with disaete variables, MDDs have been successfully
applied to a very wide variety of problems.

We have shown that logarithmic encoded MDDs are particularly useful to represent compactly multi
valued functions, sets, relations and graphs. They have been applied tocombinatorial optimization problems
such as graph coloring, channel and switchboxrouting, and hardware resource scheduling. Also, logarithmic
encoded MDDs are capable of representing huge transition relations, and formal verification systems
developed at UCB and at Bell Labs are based on them. Finally, the MDD was the main idea for fast function
evaluation behind a new breed of cycle-based logic simulators.

Positional-sets have been introduced torepresent sets ofobjects so that aset of such sets (e.g., aset of
compatibles) can berepresented by asingle 1-hotencoded MDD. This idea has been testedin sequential logic
synthesis, enabling to find an exact solutionofsome hard state minimizationand GPI minimizationinstances.
While developing such implicit algorithms, we have developed a fully implicit solver ofbinate covering.
Our solver can be applied to many problems in computer-aided design and combinatorial optimization. Also
implicit compatible generation has other applications in logic synthesis [31].

An efficient, general purpose MDD package is available and is distributed with U.C. Berkeley's vis [4]
andHSis [2] software.

References

[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, vol. 27:509-516,1978.

[2] A. Aziz, F. Balarin, S. Cheng, R. Hojati, T. Kam, S. Krishnan, R. Ranjan, T. Shiple, V. Singhal,
S. Tasiran, H. Wang, R. Brayton, and A. Sangiovanni-Vinccntelli. HSIS: A BDD-based environment
for formal verification. In 77k? Proceedings ofthe Design Automation Conference, pages 454-459,
June 1994.

[3] K. Brace, R. Rudell, and R. Bryant. Efficient implementation ofaBDD package. In The Proceedings
ofthe Design Automation Conference, pages 40-45, June 1990.

[4] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. Edwards,
S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan, S. Sarwary, T. Shiple, G. Swamy, andT. Villa.
VIS: ASystem for Verification and Synthesis. In R. Alur and T. Henzinger, editors, Proc. ofthe Conf
on Computer-Aided Verification, volume 1102 of LNCS, pages 332-334. Springer Verlag, August
1996.

[5] R. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In The Proceedings of the
International Conference on Computer-Aided Design, pages 316-319, November 1989.

[6] R. Bryant. Graph based algorithm for Boolean function manipulation. In IEEE Transactions on
Computers, pages C-35(8):667-691,1986.

[7] E. Cerny. Characteristic functions in multivalued logic systems. Digital Processes, vol. 6:167-174,
June 1980.

[8] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli. Synthesis
of software programs from CFSM specifications. In The Proceedings of the Design Automation
Conference, June 1995.

34

[9] E. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for large Boolean
functions with application to technology mapping. In The Proceedings of the Design Automation
Conference, pages 54-60, June 1993.

[10] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential machines based on
symbolic execution. Proceedings ofthe Workshop on Automatic Verification Methods for Finite State
Systems, vol. 407 ofLecture Notes in Computer Science, pages 365-373, June 1989.

[11] O. Coudert and J.C. Madre. Implicit and incremental computation of prime and essential prime
implicants of Boolean functions. In The Proceedings ofthe Design Automation Conference, pages
36-39, June 1992.

[12] S. Devadas. Optimal layout via boolean satisfiability. In The Proceedings of the International
Conference on Computer-Aided Design, pages 294-297, November 1989.

[13] S. Devadas and R. Newton. Exact algorithms for output encoding, state assignment and four-level
Boolean minimization. IEEE Transactions on Computer-Aided Design, 10(1):13-27,January 1991.

[14] S. J. Friedman and K. J. Supowit. Finding the optimal variable ordering for binary decision diagrams.
IEEE Transactions on Computer-Aided Design, vol. 39(no. 5):710-713, May 1990.

[15] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improvements of Boolean comparison method
based onbinary decision diagrams. InThe Proceedings ofthe International Conference onComputer-
Aided Design, pages 2-5, November 1988.

[16] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in incompletely
specified sequential networks. IRE Transactions on Electronic Computers, EC-14(3):350-359, June
1965.

[17] G. Hachtel andF. Somenzi. Logic synthesis andverification algorithms. Kluwer Academic, 1996.

[18] Z. Har'El and R.P. Kurshan. Software for analysis of coordination. Proc. Int. Conf. Syst. Sci. Eng.,
pages 382-385,1988.

[19] T. KamandR.K. Brayton. Multi-valued decision diagrams. Tech. Report No. UCB/ERLM90/125,
December 1990.

[20] T. Kam, T. Villa, R. Brayton, andA. Sangiovanni-Vincentelli. A fully implicit algorithmforexact state
minimization. In Tlie Proceedings of the Design Automation Conference, pages 684-690, June 1994.

[21] L. Lavagno, S. Malik, R. Brayton, and A. Sangiovanni-Vincentelli. MIS-MV: Optimization of multi
level logic with multiple valued inputs. In The Proceedings of the International Conference on
Computer-Aided Design, pages 560-563, November 1990.

[22] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for synthesis and testing of asynchronous
circuits. Kluwer Academic, 1993.

[23] B. Lin, O. Couden, and J.C. Madre. Symbolic prime generation for multiple-valued functions. In The
Proceedings of theDesign Automation Conference, pages 40-44, June 1992.

[24] B. Lin and F. Somenzi. Minimization of symbolicrelations. In The Proceedings of theInternational
Conference on Computer-Aided Design, November 1990.

35

[25] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli. Logic verification using binary
decision diagrams inalogic synthesis environment. In The Proceedings ofthe International Conference
on Computer-Aided Design, pages 6-9, November 1988.

[26] E. McCluskey. Minimization of Boolean functions. Bell Laboratories Technical Journal, 35:1417-
1444, November 1956.

[27] P. C. McGeer, K. L. McMillan, A.Saldanha, A.Sangiovanni-Vincentelli, and P. Scaglia. Fast discrete
function evaluation using decision diagrams. In The Proceedings ofthe International Conference on
Computer-Aided Design, pages 402-407, November 1995.

[28] G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for finite state
machines. IEEE Transactions on Computer-Aided Design, pages 269-285, July 1985.

[29] S.Minato. Binary decision diagrams and applicationsfor VLSI CAD. Kluwer Academic, 1996.

[30] A. Oliveira. Implicit minimization ofloop free finite state machines using Zero-suppressed BDDs.
1NESC Internal Report, Lisbon, Portugal, October 1996.

[31] A. Oliveira, L. Carloni, T. Villa, and A. Sangiovanni-Vincentelli. Exact minimizationofbinary decision
diagrams using implicit techniques. Tech. Report No. UCB/ERLM96/16, April 1996.

[32] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In The Proceedings of
the International Conference on Computer-Aided Design, pages 42-47, November 1993.

[33] T. Sasao and M. Fujita. Representations ofdiscrete functions. Kluwer Academic, 1996.

[34] E. Sentovich. K. Singh. C. Moon, H. Savoj. R. Brayton, and A. Sangiovanni-Vincentelli. Sequential
Circuit Design UsingSynthesis and Optimization. In The Proceedings ofthe International Conference
on Computer Design, pages 328-333, October 1992.

[35] A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete function manipulation. In
The Proceedings ofthe International Conference on Computer-Aided Design, pages 92-95, November
1990.

[36] H. Touati, R. Brayton, and R. Kurshan. Testing language containment of ^-automata using BDDs.
Information and Computation, 118(1): 101-109, April 1995.

137] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state enumeration
of finite state machines using BDD's. The Proceedings ofthe International Conference on Computer-
Aided Design, pages 130-133, November 1990.

[38] T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-Vincentelli. Explicit and implicit algorithms for
binate covering problems. Tech. Report No. UCB/ERL M95/108, December 1995.

[39] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment for optimal two-level logic imple
mentations. IEEE Transactions on Computer-Aided Design, 9(9):905-924, September 1990.

[40] Tiziano Villa. Encoding Problems in Logic Synthesis. PhD thesis, University ofCalifornia, Berkeley,
Electronics Research Laboratory, May 1995. Memorandum No. UCB/ERL M95/41.

[41] Y. WatanabeandR. Brayton. Heuristic minimizationofmulti-valued relations. IEEE Transactions on
Computer-Aided Design, vol. 12(no. 10): 1458-1472, October 1993.

36

[42] T. Yoshimura and E.S. Kuh. Efficient algorithms for channel routing. IEEE Transactions on Computer-
Aided Design,pages 25-35, January 1982.

37

	Copyright notice 1996
	ERL-96-75

