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Abstract

The generalized synchronization (GS) of two identical chaotic systems through an

unknown channel is studied. First, some theoretical results of GS through an unknown

channel are derived. Finally, an application of GS to channel-independent chaotic secure

communication is presented.

1 Introduction

The basic setup in most chaos-based synchronization schemes for secure communication sys

tems consists of a specially-designed transmitter and a receiver. To enhance the degree of secu

rity, we always send a chaotic signal to the receiver. It is well-known, however, that if the trans

mitted signal is too "simple", then security cannot be guaranteed[Yang, 1995, Short, 1994].

On the other hand, if a more complex signal, e.g., a hyper-chaotic signal, is used as the

transmitted signal, the robustness of the synchronization will be weakened. Moreover, it

will be very difficult to design adaptive methods for compensating the inevitable parameter

mismatch and channel distortions [Chua et a/., 1996a, Chua et a/., 1996b, Wu et a/., 1996].



A simple method had been proposed [Yang et a/., 1996] for enhancing the security of low-

dimensional secure communication schemes so that it would be difficult to break them with

current cryptanalysis techniques for chaotic systems[Yang, 1995, Short, 1994].

Non-ideal channels pose a serious problem in chaos-based secure communication schemes.

The experimental results in [Chua et a/., 1996a, Chua et a/., 1996b] have demonstrated that

a time-varying or distorted channel can desynchronize the systems. In [Chua et a/., 1996a]

and [Chua et a/., 1996b], the authors used an adaptive channel compensation method to

overcome the non-ideal channel problem. Recently, Carroll [1996] presented an amplitude-

independent synchronization scheme, which was very promising for overcoming the non-ideal

channel problem. In this letter, we study the channel-independent synchronization problem

in the more general framework of generalized synchronization(GS)[Kocarev h Parlitz, 1996,

Rulkov et a/., 1996].

While most previous works would scramble the message signal with only one chaotic state

variable, Yang et ai [1996] had presented a message scrambling scheme which used two

chaotic state-variables. In this letter, we propose the possibility of utilizing the non-ideal

channel property to scramble the message signal. This channel scrambling scheme is used

to overcome the time series identification attack scheme presented in [Short, 1994], which is

sensitive to the amplitude of the transmitted signal.

2 Generalized synchronization through non-ideal chan

nels

Consider two dynamical systems

x = f(x) <— driving system

y = <jr(y,/i(x)) <— driven system

where x £ Rn,y € Rm, h : Rn »->• Rm is an arbitrary function.

Definition 1: Generalized synchronization(GS)[Kocarev &Parlitz, 1996, Rulkov et al., 1996]

The two systems in (1) are said to be in a state of generalized synchronization, henceforth



referred to as GS, if there exist a transformation H : Rn *-> Rm, a manifold M = {(x,y)|y =

#(x)}, and a set B C Rn x Rm with M C B such that all trajectories of (1) with initial

conditions in B approach M as t —> oo.

Remark: Synchronization in the normal sense is a special case of GS with m = n, and

H(x) = x.

Assume that a chaotic system can be decomposed into two parts

x = <£(x) + tf(x) (2)

where <f>{x) satisfies the condition

cf>(Xx) = A*(x) (3)

where A € R is a nonzero constant. Let the signal ^>(x) be transmitted to the driven system

and consider the unidirectional synchronization scheme

x = 4>(x) + t/'(x) <- driving system

y = </>(y) -f Xxp(x) <— driven system

where A ^ 0 is the channel gain.

Theorem 1: If<j>(x) is decreasing in D e Rn,x0€ D and \y0 € D, then the two dynamic

systems in Eq. (4) are GS via the transformation

H(x) = Ax (5)

Proof: Since A^ 0, let z = ^y and recast the driven system in Eq.(4) into

z = ^(y) +tf(x) (6)

= <£(z) + 0(x)



Let the error be e = x —z so that the error system is given by

e = (f>{x) - <f>{x)

Since ly0 € D, we have z0 G D. Construct the Lyapunov function

Observe that

V= ieTe
2

V = eTe = eT(<?!>(x) - <f>(z)) < 0

(7)

(8)

(9)

Since <f>(.) is decreasing in Z), by hypothesis, the last inequality is satisfied, and the x-z system

is identically synchronized (synchronization in the common sense) as t —> oo, i.e.,

lim y(t) = lim Xz(t) = Xx(t)

It follows that y = H(x) = Ax is the associated GS transformation.•

Example

Consider the Chua's oscillator defined by[Chua, 1993]

where

x = a[y - x - f{x)]

y = x-y-\- z

z = -(3y - 72

/(x) =6z +i(a-6)(|z +l|-|i-l|)

(10)

(11)

(12)



Equation (11) can be decomposed as follow:
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If <j>(x) is decreasing globally1, we have D —R3. It follows that we only need to transmit

a scalar signal f(x) for achieving GS. The receiver system is simply:

/
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0

0

(14)

V'(x)

Our simulation results are shown in Fig.l. Fig.1(a) shows the attractor of the driving

system, which resembles the lower branch of a Chua's spiral attractor. The Lissajous figures,

henceforth called the GS plots between the three respective pairs of variables x\ vs. x, yi

vs. y, and z\ vs. 2, are shown in Figs.1(b), 1(c), and 1(d), respectively. Observe that the

1We can choose a, 0 and 7 such that the following matrix

(-a a 0 \

0 -0 -1 )

is negative definite. It follows from Theorem 4 in [Wu & Chua, 1994] that <f>{x) is decreasing globally.



associated GS transformation function //(•) for these systems is linear in accordance with

Eq.(5) of Theorem 1. Comparing the two attractors in Figs.1(a) and 1(e) one can see that

they have the same shape. Indeed, they are scaled versions of each other.

3 Secure Communication

In this section, we propose an application of the preceding channel-independent GS schemes

to chaotic secure communicationof binary signals. Our proposed schemeis significant because

practical channels are always distorted. We will use a chaotic switching scheme to scramble

the binary message signal. At the transmitter end, the binary signal is used to switch some

parameter of the function VKX) between two parameter sets, which correspond to bit-0 and

bit-1, respectively. At the receiver end, our parameter change can be detected by comparing

the received signal and a state-variable signal generated by the receiver. The block diagram

of our proposed scheme is shown in Fig.2. Observe that before the signal is transmitted to

the channel, we use a random gain to scramble it. Observe also that a clock signal is used to

ensure that during the time period of every bit, the adaptable gain is kept unchanged.

Observe that our random signal can be a truly random signaP sampled from the real

physical world and that both the transmitter and the receiver do not need to know anything

about this random sequence. However, for an intruder trying to figure out the message signal

from the transmitted signal by using standard identification methods, he has to figure out

first what the random sequence is. This security improvement scheme can be efficiently used

to protect our system from such possible eavesdropper attack proposed in [Short, 1994].

In the following illustrations, we will use Chua's oscillators as the chaotic transmitter and

receiver. For convenience of hardware implementation, we will use the following actual circuit

equations of Chua's oscillator

% = ±[0^ - v2) + i3] (15)

$ = i(-t*-/W3]

}Here, a truly random signal means that even the transmitter cannot reproduce this random signal.



(c) (d)

-0.5.

Figure 1: Simulation results with a linear channel with unknown gain, (a) Attractor of the
driving system, (b) the x —x\ GS plot, (c) the y —y\ GS plot, (d) the z —z} GS plot, (e)
Corresponding attractor of the driven system.
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Figure 2: Block diagram of a GS-based secure communication scheme,

where G= ^ and /(vi), the piece-wise linear v—i characteristics of Chua's diode, is given by

/(„,) = GbVl -f -(Ga - GMv, + E\- \v, - E\ (16)

where E is the breakpoint voltage of Chua's diode. We will choose f(v\) as our transmitted

signal. The receiver is given by:

$ = £[<?(«» -«,)-!•(*)]

§ = il-b2-Rok}

(17)

where ?*(^) is the received signal.

We modulate the digital signal by switching the value of the two parameters Ga and G't

in Eq.(16). At the receiver, we determine the value of

G= r^
6,(<)

(18)

at the moments when both V\ = 0 and sgn(vi)v\ < 0, where Vi(t) is the voltage across

capacitor C\.

In the following simulation, the parameters for coding bit-0 are: C\ = 17nF, C2 = 178nF,

G = lmS, L = 12m//, Ga = -1.139m5, G6 = -0.711mS, E = W, Ro = 20H. The

parameters for coding bit-1 are the same except for Ga = —1.189m5 and Gb = —0.611mS. A

fourth-order Runge-Kutta method with fixed step-size 10~55 is used in our simulation.

To recover the binary message signal at the receiver end, let us study first the difference

8



between the \vi\-G maps when different parameter sets and channel gains are used. For each

fixed parameter set, the values of \vi\ and G will vary as we change the channel gain parameter

A. Let us plot the values of |z>i | and G in the |{>i| vs. G plane as A varies from 0.01 to 1,

as shown in Fig.3(a) in two colors: the "red" curve corresponding to bit 0, and the "blue"

curve corresponding to bit 1. It should be noted that only those points corresponding to the

moments when i}\ —0 and sgn(vi)vi < 0 are plotted. The difference between these two "bit

detection" plots are significant. In fact, it is the direct foundation for recovering the message

signal from the received signal. When the transmitter parameters are switched between two

parameter sets the corresponding \vi\-G plot will switch between these two curves. Observe

that the spacings between these two plots are essentially independent of the channel gain A.

Hence, to recover the binary message signal, we only have to measure the peaks of \v\{t)\

and the corresponding values of G. The waveform of r(2)(in red) for coding bit-0 with A= 1

is shown in Fig.3(b). The waveform of r(t)(m blue) for coding bit-1 with A = 1 is shown

in Fig.3(c). Observe that these two waveforms reveal no discernible qualitative differences

between them and it is not obvious at all that they hide a binary message.

The message recovering process is as follows. First, we use the received signal to derive

a |vi|-6* "bit-detection" map. We can even fabricate this map together with the receiver to

serve as another hardware key. In practical applications, the receiver recovers the message

signal by matching the GS results with the \vi\-G bit detection map.

In particular, it is very important for our chaotic switching method to work at a high bit-

rate—both from securityconsiderations[Yang, 1995], and for increasing transmission efficiency.

To achieve this goal, we can set up a look-up table at the transmitter end. Whenever a bit

change occurs (i.e., from bit-1 to bit-0 or from bit-0 to bit-1), the transmitter randomly selects

a point in the stable attractor corresponding to the next bit. This point should satisfy the

condition that f(v\) is the sameas that of the last instant of the former bit. This can be easily

implemented by finding v\ from /(vi) and then using V\ to locate the point. Our simulation

results are shown in Fig.4. Fig.4(a) shows the received signal. Fig.4(b) shows the randomly

changed (or scrambled) global channel gain X(t) (in blue), the binary message signal (in green)

and the recovered signal(in red). From Fig.4(b) one can see that the digital signal can be easily

recovered by using a moving average filter and thresholding.

9
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Figure 3: Bit detection maps corresponding to two qualitatively similar waveforms, (a) The
difference between the two \i>i\-G plots corresponding to the two parameter sets for coding
bit-0 and bit-1. (b) Waveform of r(t) for coding bit-0. (c) Waveform of r(t) for coding bit-1.
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Figure 4: Simulation results of channel-independent chaotic switching, (a) The receivedsignal,
(b) The message signal (green), recovered signal(red) and the global channel gain(blue).

4 Concluding Remarks

One disadvantage of a chaotic-synchronization based spread-spectrum communication is its

sensitivity to variations in the channel gain. In this letter, we present a new scheme which is

insensitive to channel distortions. Since the amplitude of our transmitted signal is scrambled

by a randomly varying gain, it would be nearly impossible to apply any identification-based

method to break the security of our proposed scheme.
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