

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

LOGIC SYNTHESIS USING POWER-SENSITIVE

DONT CARE SETS

by

Christopher K. Lennard, Premal Buch, and A. Richard Newton

Memorandum No. UCB/ERL M96/8

6 March 1996

LOGIC SYNTHESIS USING POWER-SENSITIVE

DONT CARE SETS

by

Christopher K. Lennard, Premal Buch, and A. Richard Newton

Memorandum No. UCB/ERL M96/8

6 March 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Logic Synthesis Using Power-Sensitive Don't Care Sets'

Christopher K. Lennard

Premal Buch

A. Richard Newton

Department of Electrical Engineering & Computer Sciences

University of California, Berkeley, CA 94720

March 6, 1996

"This research was sponsored in part by the Semiconductor Research Corp. (SRC) contract 96-DC-324.

Abstract

The Boolean space spanned by the primary input vectors of a combinational function can contain a

large variance in minterm probabilities. We show that it is possible to partition the boolean space

into classes such that classes containing only 1% of the Booleanspace cover as much as 40% of the

total probability. In this paper, we exploit this characteristic of the minterm probability distribution

to reduce power dissipation. The proposed technique uses the Don't Care set for optimizing the

switching activity without compromising the flexibility for area optimization. Experimental results

indicate that our method can yield low power realizations of the circuit without any penalty in area.

1 Introduction

During logic synthesis, the functionality of nodes internal to a circuit can be manipulated within

the Don't Care (DC) set to minimize area orspeed. Althougha reduction in area often corresponds

to a reduction in power, this is not true in CMOS technologiesif the switching activity is increased.

Design of a synthesis algorithm for reducing power consumption must take into account the fact

that for circuits with distributed input switching probabilities, even a minimal Boolean difference

in functionality at a node could dramatically alter the switching activity of that function.

Several existing low-power synthesis algorithms address the issue of input switching probabilities

other than 0.5 [5]. However, these generally are focused on trying to reduce the functional support

from high-activity inputs. One significant problem with this technique is that it supposes that the

power optimality of radically different functional representations can be compared prior to logic

implementation. The work presented in this paper is a more rigorous formalism for exploiting the

distribution of probabilities throughout the Boolean space without forcing support changes. In this

way, it builds upon the well-established techniques for area optimization.

The approach to low-power synthesis described here uses a manipulation of the DC set to

optimally favour area optimization which also minimizes power. The Boolean space is separated

into a set of minterm classes. Each minterm class is denned by the average minterm probability

within it. It is shown that there often exists a set of classes with the same total probability

of occurrence, but containing exponentially increasing proportions of the functional space. The

overlap of the DC set with the classes containingthe most minterms can then be used foroptimizing

the area of a logic function implementation without significantlyaffecting output probability. The

overlap of the DC set with the classes containing the fewest minterms tends to strongly influence

the output switching probability during area optimization. The former case is used when a node

function already has a low switching probability, the latter is used to favour reduction of switching

activity at hot nodes.

The concept of the probability distribution within the Boolean space is described in Sect. 3

after a quick definition of CMOS powerconsumption (Sect. 2). In Sect. 4 an outline is given for the

use of these classes in power optimization, and Sect. 5 is a presentation of the results of applying

this theory to standard benchmarks.

2 Power Dissipation in CMOS Logic Circuits

The energy dissipation of a CMOS circuit is directly related to the switching activity when a

simplified model of energy dissipation is used. The assumptions in the simplified model are: (1)

all capacitance is lumped at the output node of a gate; and (2) current flows only from the supply

rail to the load capacitor, or current flows from the load capacitor to the ground rail; and (3) all

voltage changes are full swings, i.e. from the supply rail to the ground rail voltage, or vice-versa.

For a well-designed gate, the above assumptions are reasonable [3]. For a synchronous digital

system, the average power dissipated by a gate </,- is given by:

where P; denotes the average power dissipated by gate </,-, C,- is the load capacitance at the output

of gate </,-, Vdd is the supply voltage, T is the clock period, and Ei is the average number of gate

output transitions per clock cycle. Given a technology-mapped circuit or a circuit layout, allof the

parameters in Eqn. 1 can be determined, except for 2?,-, which depends on both the logic function

being performed and the statistical properties of the primary input signals.

Eqn. 1 is used by the powerestimation techniques such as [1] [2] [4] to relate switching activity

to power dissipation. The theory presented in this paper assumes that the network primary inputs

are independent. Furthermore, it is assumed that functional switching power (the zero-delay model)

is the predominant effect in determining power consumption. Under this assumption, the power

consumption at a gate gi with onset probability Pi is given by:

fl =Ci-^ •»(!-») (2)
When load capacitance is constant, functional power minimization is equivalent to optimizing p,-

to be close to zero or one.

3 Probability Classes in the Boolean Space

To define the concept of a probability distribution throughout the Boolean space, consider first

a simple example. Take the Boolean space described by two variables {x, y} where Pr(x) = 0.2

and Pr(y) = 0.4. There are four minterms which describe this space: {xy,xy,xy,xy}. which

have respective probabilities: {0.48,0.32, 0.12, 0.08}. For this example there are no two minterms

with the same probabiUty of occurrence, and 80% of the total probability is contained by the two

minterms within the space described by f(x,y) = x. Note also that if the space is partitioned

according to: f(x, y) = x and f(x, y) = a;, the minterm probabilities in each partition only differ

by 0.04 allowing them to be well approximated by their respective averages.

It is desirable to partition the space into sets of minterms all with similar probability. These

partitions will be referred to as "classes". This approximate equality in minterm probability within

a class implies that functional probability is well approximated by a simple proportionality rela

tionship to the number of onset minterms contained in each class. Furthermore, these classes can

be ranked in terms of their likeUhood to influence switching activity of a function if used during

area optimization.

The definition of suitable classes foUows from an analysis of the relationship between functional

ity and probabiUty. Consider a circuit with four inputs Ip = {w, £, y, z}, each with probabiUty p of

being 1. The distinct minterm probabiUties correspond to the number of different ways of choosing

n inputs to be on, and (|JP| - n) inputs off for each {n : 0 < \IP\ < n}. For example, there are

A = 6 minterms with probabiUty p2(l -p)2, namely: {wxyz, wxyz, wxyz, wxyz, wxyz, wxyz}.

These sets of minterms form a set of classes (p°j , the zero superscript indicating that approximating

the minterm probabiUty in each class with the class average is exact. By construction, this is a set

of (\IP\ +1) distinct classes. Now consider a circuit with a set of inputs I with onset probabiUties P

where \P\ < \I\. A set (although not necessarilyminimum) of exact-average classeswhich partition

the \I\ variable Boolean space is then given by the product of the exact-average classes for each Ip,

PGP. i.e. ¥>? = nP6P¥>?p.
Although \<p°j\ is not always minimum, it does show that the number of zero-error classes is

0(llpep(|i'pl + 1)), which is generally unpractically large even if \P\ « \I\. (For example, evenif

\P\ = 5 and \I\ = 30, |<pj| could be as large as: (tP + l)5 ~ 17 thousand!). Furthermore, as the

classes are formed from the "choose" operation, they bear similarities to XOR functions and are in

EnorProb.

0.9

0.8

0.7

0.6

0.5

0.4

03

0.2

0.1

0.0

\ \
» \
» \
\ \

5 \ "^"""
» \
t 1

\

\ 1

\ \
1 I ^^^^—^^^^— ^——

\ \

\ \\
\ \—t

10

p = 0.1

V=o5"
"p =0.3*
p=b.4

No. ofClasses

Figure 1: Error vs. Number of Classes: \IP\ = 10

some sense very disjoint in the Boolean space. In general, smooth functions which are subsets of

the DC set are more suited for synthesis optimization. Consequently, if the intention is to use the

classes to modify use of the DC set, it is necessary to deal with smoother functions. A class in y> j

function can be smoothed by coUapsing classes within a y>J . As was shown in the first example,

this coUapse can be made without significantly affecting error of approximation by the averageclass

minterm probabiUty. A set of Boolean classes for the entire space with minimal minterm-probabiUty

variance can be built from consideringerror/class count trade-off curves for each Ip.

The maximum error in aclass C,- is defined as: maxyicc,- \(Pr(A) - \A\. jfl|'*0l» F°r a specific

pe P,let (pjp = {C\, C2,...} be aset ofclasses chosen from the union ofclasses in y>?p = {Cf, Cj,...}.
The maximum error wiU be minimized if the subset of y>? corresponding to any C; G <pip is

contiguous with respect toindicies of (p°Ip. eg. A =CfUC§, C2 = C§ UC§ wiU have smaller error
than C\ = Cf UC§,C2 = Cj UCj. Generation of (pip for minimal error then becomes equivalent to

the optimal selection ofaset ofcontiguous, mutuaUy exclusive subsets ofy?°Ip. A heuristic technique

to do this is the selection of the subsets of y>/ in order to maximize the uniformity of the total

probabiUty contained in each of the final classes.

A plot of the total error (which is the sum of the error for each class) in (pip against the total

number of classes for this grouping strategy is shown in Fig. 1. For each curve, \IP\ = 10 and

p G{0.1,0.2,0.3,0.4}. Note that in each case, the number of classes can be significantly reduced

with minimalimpact on error. For smallaUowable error (< 10%), this effect increases with decrease

in p.

Now consider the set of classes described by the Boolean product of classes chosen for each

input subset Ip. As each set of classes (pip covers the entire space withmutuaUy exclusive sets, the

overall set of classes formed from the product maintains this necessary property. Let ep be the total

error for the set of classes (pip. An upper bound on the error for the set of classes on I defined by

the product is given by:

€=1_ JJ(l_€p)
peP

The tightness of this bound is iUustrated in Fig. 2. The data on this graph is generated from

a series of statistical tests for input probabiUties p G {0.1,0.2,0.3,0.4} with \IP\ chosen randomly

from [2,10] and \<pip\ from [0, \IP\]. It is clear that the error/class count tradeoff curves generated

for each Ip can be used to define an error/class count sensitivity for the entire class product y>j.

0.1 0.2 0.3 0.4 0.S 0.6
Actual Maximum Possfcle ProbabBftyError

0.7

Figure 2: Actual Global Error vs. Product of Errors Estimate

The practical implementation of this work first approximates the entire set of input probabiUties

(every input has an onset oroffset probabiUty in the range of 0 to 0.5) with a set P, \P\ = 5, chosen

for minimum RMS error. The error curves are then generated for each p G P. The reduction in

the number of classes achieved this way with less than a 10% error tolerance can be several orders

of magnitude for large circuits.

In general, the number of classes remaining after this operation is still too many for practical

use in synthesis. We made the decision that five classes were sufiicient for partitioning the space

into distinct regions for biasing synthesis. The grouping into the final five classes is based upon

the similarity of average minterm probabiUties in the original classes, and an attempt to equally

partition the total probabiUty.

An example of the distribution of minterms between classesis shown in Fig. 3 for a Boolean space

of 30 variables. The curves shown are for five randomly generated sets of variable probabiUties.

Each of the generated classes correspond to approximately the same total probabiUty, namely 0.2.

Note that in each case, over 40% of the total probabiUty is held in about 1% of the Boolean space,

and about 80% of the Boolean space falls within 20% of the total probabiUty. The exponential

characteristic revealed by these classes is critical to biasing an area optimization tool towards

reduced power consumption.

Class Index

Figure 3: Proportion of Boolean Space in Equi-ProbabiUty Classes

4 Biasing Area Optimization Towards Power Reduction

The goal of logic synthesis is generation and optimization of a multi-level logic description which

implements a specified function. In this work, the objective is minimization of power and area.

Logic optimization makes use of the fact that nodes internal to a network do not generally have

a uniquely specified function for satisfying correctness of an implementation. A subset off the

Boolean space known as the Don't Care (DC) set can be generated at each node which gives the

range of functionality possible during a vaUd optimization step [6]. These DC sets are usually

constructed a single time for the entire network in such a way as to ensure that each node can be

optimized independently. This is known as the Compatible DC (CDC) Set construction. Every

CDC contains a subset known as the ObservabiUty CDC (OCDC) set within which functional

manipulation influences node switching probabiUty. (The remainder of the CDC, the Satisfiability

CDC, describes conditions on intermediate inputs to a node which cannot be logically satisfied.

Consequently, any optimization of functionality within this subset does not influence switching

probabiUty.) The contribution of the work presented here is a technique for directing use of the

OCDC to maximize reduction in switching activity.

After the Boolean space is spUt into five classes, subsets of the OCDC are computed to maximize

the influence of area optimization upon switching activity. As power optimization is a combination

of trying to reduce both area and switching activity, it is important that providing subsets of the

DC set to the area optimization algorithm does not reduce available flexibiUty. This is achieved by

two phase process which first addresses reduction in switching activity, then reduction in area.

The concept of separating the optimization phase for reduction in activity and area (therefore,

capacitance)is iUustrated in Fig. 4. Fig. 4a indicates two classes which partition the Boolean space,

each of equal total probabiUty but with Cl encompassing most of the Boolean space as it contains

many small probabiUty minterms. Fig. 4b is a node function, /„, and its ODC set, Dn. Assume

that the onset probabiUty for /n> Pm is greater than 0.5. To reduce switching activity, we need to

increase the onset probabiUty to push it towards 1. Thus it it is desirable during the optimization of

/„ to absorb elements of Cfj with a functional expansion into the set described by: /„ ./(jD„)./(C#).

This region is represented by the black shaded area of Fig. 4c. Clearly, although any expansion wiU

greatly benefit switching activity, this is a very small subset of the DC set and unlikely to provide

sufficient area optimaUty. To optimize for area, flexibiUty in functional representation is important

so a large subset of the DC set must be provided. However, it is important to avoid functional

.

O. Boolean
Space

a. High / Low Minterm Probability
Classes

c. Favouring Optimization which
Maximally Impacts Switching Activity

b. Node Functionality and
Don't Care Set

d. Maximum Flexibility with Minimal
Impact on Switching Activity

Figure 4: Encouraging Power and Area Optimization as Separate Phases, pn > 0.5

contraction within the set Ch as even a small excursion in that direction could dramatically increase

switching activity, (i.e. pn would be move significantly closer to 0.5). The set providing maximum

flexibility without allowing small functional changes to strongly influence switching activity is:

f(Dn)*(Jn + /n•/(£#)). This region is represented by the black shaded areaof Fig. 4d. Although

the subset of the DC set which is very beneficial for activity optimization is within this set, the

disproportionate flexibility provided by the DC set within Cl will tend to reduce the probability

that this area optimization alone strongly benefits activity reduction. An algorithm for exploiting

the beneficial properties of both these DC set restrictions is now described.

Let {C{ : 1 < i < 5} be the set ofclasses ordered from high to lowaverage mintermprobabilityin

the increasingorder of class index (as in the exampleofFig. 3). Let /(C.) be the function describing

10

class t. Consider a node n with function fn and local CDC set Dn (described by function f(Dn)).

Let A(fn, f{Dn)) be the functional manipulation performed on /„ during areaoptimization within

the DC set.

Consider the caseof p(/n) > 0.5. To bias areaoptimization towards reducing switching activity,

the onset probability should be increased. The first step is to use the DC set flexibiUty within the

set Ci (the class with the minterms of largest probability) and the offset of /„. This will produce

a new function f'n which should have lower switching activity. However, this step provided very

little flexibility for area optimization. This is followed by optimizing f'n with greater flexibility in

the set described by: ~f^.f(Dn).(f{C\) + /(C2)). This expansion continues until power is no longer

reduced at which point the node function, /n(p), is said to be activity optimized.

The algorithm then focuses on areaoptimization by allowingthe function probability to shrink.

This step is taken in the hope that the flexibility provided by supplying more of the DC set to the

optimization strategy will provide a win in power through reduction in capacitance. Consequently,

the area optimization step begins by expanding the utilized portion of the DC set inside fn(p)-

The first expansion provides the most flexibility but the least probability of changing the switching

activity in a detrimental way. i.e. f(Dn).(fn(p) + /(C5)). If power is reduced, the f'n(p) produced

by that area optimization is provided further functional flexibility with the set: f(D„).(ffl(p) +

/(C5) + /(C4). This expansion across the classes continues until power is no longer reduced.

The procedure is similar if p(/n) < 0.5, but the DC set are initially ANDed with the onset of

the function to bias area optimization toward reducing the onset probability.

11

for i = 1 to N

fi = fi

if p(/i) > 0.5

fDopt = NULL

for .; = 1 to 5 /* Low Flexibility, High Expected Activity Change */

ifj=lorP(//)<P(/<)

fi = f(

fDopt = fDopt + f(Dn).f(Cj)

f<=A(fi,Q~i.fDopt))

fDopt = NULL

for j = 5 to 1 /* High Flexibility, Low Expected Activity Change */

ifi=lorP(//)<P(/f)

fi = fi

fDopt = fDopt + f{Dn).f{Cj)

fi=A(fi,(fi.fDopt+%fDH))
else

fDopt = NULL

for j —1 to 5 /* Low Flexibility, High Expected Activity Change */

ifj = lorP(//)<P(/0

/. = //

fDopt = fDopt + f(Dn).f(Cj)

f'i=AUu{fi.fDopt))

fDopt = NULL

for j = 5 to 1 /* High Flexibility, Low Expected Activity Change */

ifj=lorP(//)<P(/,-)

/,• = /;

fDopt = fDopt + f{Dn).f{Cj)

f! = A(fi,(7i-fDopt + fi.fDn))

Figure 5: Pseudo-code for Favouring Power Reduction during Area Optimization.

A pseudo-code form of this algorithm is provided in Fig. 5. For that presentation, let N be

the number of nodes in the network, and {nj : 1 < i < N} be the set of nodes indexed in reverse

topological order from the primary outputs to the primary inputs. Assume that the classes and

CDCs for the network have already been produced. Let P(/) be the power consumption of the

12

logical representation of /.

In practice, we found that it was not necessary to test many ofthe increased flexibiUty expansions

to find optimal solutions. To reduce computation time only two test optimizations are performed at

each node; one targeting switching activity and the other area. This had no statistically significant

influence upon the power/area optimality of the final result. Biasing optimization towards altering

the switching activity for a node involved use of the DC set contained in the two highest minterm

probabiUty classes. Optimization for area avoided elements of those same classes which might

detrimentally affect switching activity.

13

5 Results

The algorithms outlined in this paper were implemented inside the SIS logic synthesis package to

guide the node minimization phase during multi-level logic optimization. The resulting programs for

power-sensitivenode minimization - powerjsimplifyQand powerJulLsimplifyQ are counterparts of

the area optimization routines simplify() and fulLsimplifyQ of SIS. Forbenchmarking purposes, we

replaced the occurrences of simplifyQ and fulLsimplifyQ in script.rugged with our powerjsimplifyQ

and powerJulLsimplifyQ command to obtain scriptpower. A subset of the MCNC benchmark set

was used to obtain preliminary experimental results. All circuits were mapped using msu.genlib.

Power estimation and switching activity computation was performed using the symbolic simulation

method of [2] using a zero-delay model. All experiments were run on a DEC-station ALPHA with

a 160Mb memory.

The results comparing the area and power reduction obtained by optimization via script.rugged

and scriptpower are presented in Table 1. Column 1 gives the number of literals in the factored

form. Column 2 shows the area of the circuit prior to optimization. Columns 3 and 4 present

the results after network optimization using script.rugged and scriptpower respectively. Similarly,

Column 5 shows the power dissipation of the unoptimized circuit and Columns 6 and 7 present

the power dissipation results after optimization using script.rugged and scriptpower respectively.

Columns 8 and 9 show the % change in area and power results by using scriptpower instead of

script.rugged.

14

Ta >le 1. Area and Power comparison of scriptrugged and scriptpower

Circuit #ut Area Power Dissipation (y.W) % change

Initial s.rugged s.power Initial s.rugged s.power Area Power

cm82a 31 368 352 360 74.4 91.1 71.1 2.3 -28.1

cml38a 39 480 472 472 67.6 49.2 49.2 - -

cm42a 39 536 528 456 37.9 59.4 34.3 -13.6 -42.3

cm85a 69 808 824 824 100.0 99.6 99.6 - -

pml 65 1000 792 816 198.4 90.3 107.4 3.0 18.9

decod 71 744 704 704 175.2 66.7 66.7 - -

set 194 2128 1336 1264 540.1 248.6 210.1 -5.4 -15.5

f51m 207 2272 1840 1384 474.6 356.3 222.9 -24.8 -37.5

lal 252 3856 1616 1616 630.0 312.1 301.1 - -3.5

9symml 328 3552 3464 3736 912.7 820.4 708.7 7.9 -13.6

ttt2 420 4624 3240 3752 1085.4 458.1 646.2 15.8 41.1

alu2 635 7264 5960 5608 1249.7 931.6 820.5 -5.9 -13.5

vda 1870 19672 10400 8176 3097.1 955.0 803.0 -21.4 -15.4

alu4 1184 13656 11736 10976 3010.8 2223.9 1970.3 -6.5 11.4

Total 60960 43264 40144 8643.1 6762.3 6111.1 -7.2 -9.6

The results demonstrate that in most cases scriptpower yields a circuit with lower power dissi

pation than scriptrugged. There is no significant trade-off in terms of circuit area. Infact, on the

whole, scriptpower performs better in area optimization as weU. Note that scriptpower does not

always give a better result than scriptrugged. This is to be expected since our approach attempts

to favorably bias (from the power perspective) the network optimization process at the node mini

mization level, but cannot guarantee that this wiU always translate in a lower power network. At

the same time, since the area optimization flexibiUty is not strongly affected by our algorithm,

we do expect that in most cases our algorithm wiU yield a lower power network without any area

penalty. This assertionis vaUdated by the experimentalresults (an average 9.6%reduction in power

and a 7.2% reduction in area over the set of benchmark circuits).

We are currently working on testing our approach on other circuits in the ISCAS benchmark

set.

15

6 Conclusions

We have presented a technique to guide area optimization using power-sensitive don't care sets

towards low-power implementations without trading-off the synthesis flexibiUty required for area

optimization. The main contributiuons of this work are :

• An approach to formally exploit the large variance in minterm probabiUties in the boolean

space. We observe that a large part of the probabiUty space is contained in a fraction of the

minterms of the boolean space. This can be used to increase/decrease the onset probabiUties

as required without significantly compromising on the size of the don't care set available for

area optimization.

• We present an effective scheme to partition the boolean space in classes of equal probabiUty

minterms. This problem is non-trivial in general as the minterm-class construction can be

exponential in the number of distinct probabiUties at the inputs.

• A heuristic algorithm to direct the synthesis algorithm towards using beneficial minterm

classes and avoiding classes detrimental to power dissipation, without making any major

reduction in the area optimization flexibiUty was presented. Experiemental results indicate

that this approach can result in lower power implementations of a circuit without incurring

any penalty in area.

16

References

[1] R. Burch, F. Najm, P. Yang, and T. Trick. "McPOWER: A Monte Carlo Approach to Power
Estimation." In Proceedingsof the Int'l Conferenceon Computer-AidedDesign, pp. 90-97, Nov.
1992.

[2] A. Ghosh, S. Devadas, K. Keutzer, and J. White. "Estimation of Average Switching Activity
in Combinational and Sequential Circuits." In Proceedings of the 29th Design Automation
Conference, pp. 253-259, June 1992.

[3] L. Glasser and D. Dobberpuhl. "The Design and Analysis of VLSI Circuits." Addison-Wesley,
1985.

[4] F. Najm. "Transition Density, A Stochastic Measure of Activity in Digital Circuits." In Pro
ceedings of the 28"* Design Automation Conference, pp. 644-649, June 1991.

[5] S. Iman, M. Pedram. "Multi-Level Network Optimization for Low Power." In Proceedings of
the Int'l Conference on Computer-Aided Design, pp. 372-377, Nov. 1994.

[6] H. Savoj, R. K. Brayton. "The Use of ObservabiUty and External Don't Cares for the SimpU-
fication of Multi-Level Networks." in Proceedings of the 28** Design Automation Conference,
pp. 297-301, June 1990.

17

	Copyright notice 1996
	ERL-96-8

