

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

BINARY DECISION DIAGRAMS ON NETWORK

OF WORKSTATIONS

by

Jagesh V. Sanghavi, Rajeev K. Ranjan, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/9

6 February 1996

BINARY DECISION DIAGRAMS ON NETWORK

OF WORKSTATIONS

by

Jagesh V. Sanghavi, Rajeev K. Ranjan, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/9

6 February 1996

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720

Binary Decision Diagrams on Network of Workstations

Jagesh V. Sanghavi* Rajeev K. Ranjan* Robert K. Brayton Alberto Sangiovanni-Vincentelli
Department of Electrical Engg. andComputerScience

Universityof California at Berkeley
Berkeley, CA 94720

Abstract

Thesuccess of all binary decision diagram (BDD) based synthesis and verification algorithms depend onthe
ability toefficiently manipulate very large BDDs. We present algorithms for manipulation of very large Binary
Decision Diagrams (BDDs) onanetwork of workstations (Now). A Nowprovides acollection of main memories
and disks which canbe usedeffectively to create and manipulate very large BDDs. To makeefficient use of
memory resources of a Now, whilecompleting execution in areasonable amountof wallclock time, extensionof
breadth-first technique isusedtomanipulate BDDs. BDDs are partitioned suchthat nodes for asetof consecutive
variables are assigned to the same workstation. We present experimental results todemonstrate thecapability of
such anapproach and point towards thepotential impact for manipulating verylarge BDDs.

'Supported by Micro Grant
tSupported byMotorola and SRC Grants

1 Introduction

The manipulation of boolean functions is oneof the most important operations in several areas ofcomputer-aided
design such as logic synthesis, testing, checking sequential equivalence, design verification, etc. Theefficiency of
thelogic function manipulationsdepends onthedata structure used forrepresenting boolean functions. The reduced
ordered binary decision diagram (ROBDD) [1,5] is a canonical, directed acyclic graph representation of boolean
functions. ROBDD (henceforth referred toas BDD) representation is compact formany functions encountered in
practice. The canonicity and compactness properties of the BDD led to itswidespread usage in the area of logic
synthesis and testing. Theapplication of BDD is further extended with its use in symbolic computation, which
include symbolic simulation [6], reachability analysis [8,15], and BDD based formal design verification [4,7,11].

However theBDD representation suffers from thedrawback that the size of a BDD required to represent a
complex logic circuit is very large. Thisresults in large computation and memory requirements. These problems
have been tackled on both the fronts.

Reducingthe computationtime: Kimura etal. [10] have presenteda parallel algorithm toconstruct BDDs that
uses a shared memory multiprocessor to divide thetasks thatcan beperformed in parallel on several processors.
Shared memory machine allows theuse ofa single global hash table to maintain canonicity. Ochi etal [12] have
proposed a breadth-first manipulation approach thatuses a vector processor to exploit thehigh vectorization ratio
andlongvector lengths byperforming a BDDoperation ona level-by-level basis.

Increasing theavailablememory: When thesizeofaBDDexceeds themain memory, BDD nodes areswapped
totheharddisk. The conventional depth-firstBDD manipulationalgorithmresults inrandom accesses tothememory
leading toa large number of page faults. Since a page access time is of the order of tens of milliseconds, a large
number ofpage faults lead toimpractical amount ofwall clock time, even though thetime spent byprocessor doing
useful work isquite small. Ochi elal [13] have proposed the breadth-first implementation approach toregularize
thememory accesses, which leads tofewer page faults. Asa result, BDDs ofvery large size(upto 12million nodes)
can behandled. Ashar etal [3] have presented animproved breadth-first algorithm, which enables manipulation of
BDDs with up to 100 million nodes.

Inthis work, weproposea technique tomanipulate BDDs ona network ofworkstations (Now). ANow provides
a large amount of collective memory resources, both main memories and disks. Thecollective memory resources
of Now provide a potential to manipulate very large BDDs.

The advantage of ourapproach as compared to existing ones is two fold. Unlike theapproaches in [10,12],
which require special computing hardware (shared multiprocessor or vector processor), a Now is a part of the
existing infrastructure. Secondly, theapproaches in [3,13] are limited by the memory available on a particular
machine. When using a network of workstations, theavailable memory increases significantly.

Therestof thepaperisorganized as follows. Weexplain therelevant attributes of thenetwork ofworkstations in
Section 2 andthatof theBDD algorithm inSection 3. After explaining thecharacteristics of theavailable resources
andthealgorithmic requirements, wepropose a new BDD algorithm ona network of workstations inSection 4. We
present the implementation details in Section 5. We present experimental results in Section 6. Finally, wedraw
some conclusions and outline the direction of the future work in Section 7.

2 Network of Workstations

A network of workstations is a computing resource that usesas its building block, an entireworkstation. These
building blocks are interconnected by a local area network such as ethernet, FDDI, switched ethernet, or ATM.
Using a network of workstations as a large computer system to solve large scale problems is attractive, since it
uses theexisting infrastructure as opposed to buying a dedicated scalable parallel computer, a server, or a shared
memory multiprocessor machine. Further, when the system is upgraded to use faster processors, faster network,

larger capacity DRAMs, orlarger capacity disks, a networkof workstations leverage eachof the enhancements.
Let us first understand the nature of Now computing resource to exploit it fully to match the requirements of

BDD algorithms. An existingcomputing infrastructure with two yearold technologymay consistof a networkof
workstations, each with SO MHz processor, 64KB cache, 64MB mainmemory,and200MB of disk space. It takes
about 0.1-0.6 microseconds to access data from the main memoryand about6 milliseconds to move a page of
memory from the disk to the mainmemory. The software overhead andlatency fora local area networkis of the
order of about 10milliseconds andbandwidths are 10Mbits persecond for ethernet and 100Mbitspersecond for
FDDI network.

It is clear from the above discussion that the time taken to access the data from the disk or from across the
network is about 10000-50000times more thanthe time to access the data from the main memory. Over the next
few years, the networksareexpected to become faster [2] in termsof the latency, the software overhead, and the
bandwidth. However, the ratioof time to access the remote memory which involves a network transaction vs. the
time to access the mainmemoryis stillexpected to be the order of 1000. This qualitative analysis has important
implicationwhen distributingthe BDD nodes acrossthe several workstationmemories.

Fordeveloping distributed BDD algorithms on Now, the message passing model of computation is assumedfor
the following reasons: 1) it closely resembles the underlying Now architecture and 2) easy availability of robust
message passing software in the public domain. The message passing programming model makes the cost of
communication explicit, however, the programmer hasto worry about resource management, sending andreceiving
messages, and overallorchestration of the collectionof processesspreadacross severalworkstations.

3 BDD Algorithms

To implement BDDalgorithms usingthe message passing model overa Now, we need to design distributed BDD
data structures. However, it is important to understand the requirements of BDDalgorithms on a uniprocessor to
helpguideourdesign decision aboutdistributing thedata andscheduling the interprocessor communication.

The conventional depth-first recursive BDDmanipulation algorithm performs a boolean operation by traversing
the operand BDDs on a path-by-path basis (see Figure 1), which results in extremely disorderly memory access
pattern. Therandom memory access pattern withno spatial locality of reference translates intosevere page faulting
behavior whenthe BDDdoesnot fit the available mainmemory.

dfjop(op,F,G)
if (terminalcase(op, F, G)) returnresult;
else if (computed table has entry(op, F, G)) return result;
else

let x be the top variableof F, G; .
r = df-op(op,F„G*);
E = dfjop (op, Fx>, Gxi)\
if (T equals E) returnT;
result= findor add in the unique table (x, T, E);
insert in the computed table ((op, F, G), result);

endif

return result;

Figure 1: Depth-FirstBDD ManipulationAlgorithm

Since theaccess to the main memory of ananother workstation involves a network transaction, theaforemen
tioned disk access behavior of the depth-first algorithm translates toalarge numberofnetwork transactions for any
distribution of the BDD nodes among main memories ofaNow. Since itisvery expensive toaccess the Hata across
the network compared tothe workstation main memory, any attempt touse depth-first manipulation algorithm on a
Now will meet limited success.

The breadth-first iterative algorithm [3,13] (see Figures 2,3, and 4)attempts toregularize the memory access
pattern by traversing theoperand BDDs ona level-by-level basis and by using acustomized memory allocator that
allocates theBDD nodes for aspecific variable id from thesame page. However, since theresult BDD isconstructed
level-by-level, it isnotpossible toperform certain isomorphism checks while constructingthe BDD. The redundant
nodes created during the Apply phase (see figure 3)inthe result BDD have tobeeliminatedbyabottom-upReduce
phase (see figure 4). In [3], Ashar et al obviate the need to access the BDD node to determine its variable id
by using a lookup table that returns the variable id from the BDD node pointer. The memory access pattern for
servicing the Request inApply and Reducephases isalso regularized by processing them inasorted order.

bfjop(op, F, G)
if terminal case(op, F, G) return result;
minJd =minimum variableid of (F, G)
maxJd = number ofvariables

create a Request (F, G) andinsertin RequestQuEUE[minJd];
/* Top down Apply phase*/
bf_apply(op,mm Jd, maxJd);
I* Bottom up Reduce phase*/
bf-ieduce(maxJd, minJd);
returnRequest or the node to which it is forwarded;

Figure 2: Breadth-First BDDmanipulation algorithm

Wemake the following observations toguide the implementation ofbreadth-first search algorithm for aNow.

1. Weneed a mechanism to determine the variable id from the BDD node pointer without accessing the BDD
node.

2. While processing the Request for aspecific variable idduring the Apply phase, weneed toaccess only those
BDD nodes that have the same variable id.

3. The forwarding mechanism, which allows temporary creation of redundant nodes can facilitate thecreation
of aRequest on oneworkstation and servicing of that Request onan another workstation.

4 Binary Decision Diagrams on Network of Workstations

4.1 Issues:

Thefollowing issues need toberesoved before wecan implement the breadth-first BDD manipulation algorithm on
a NOW.

NodeDistribution How to distribute theBDD nodes among theworkstations onanetwork? Thenumber of nodes
assigned per workstation should beproportional tothe memory resources available on the workstation. The high

bf_apply(op, minJd, maxJd)
for (id =minJd; id < maxJd; id-H-)

I* processeach request queue */
x is variable with id "id";
while (Request QuEUE[id] not empty)

Request (F, G) =unprocessedrequestfrom Request QuEUEpd];
/* processREQUEST by determining its THEN andELSE */
if (NOT terminal case((op, Fs, Gx\ result))

nexLid = minimum variable id of (Fx, Gx)
result= findor add (Fx, Gx) in REQUEST QUEUE[nexLid]

Request -> Then=result;
if(NOT terminalcase ((op, Fx>, Gx>\ result))

nexLid = minimum variable id of (Fx>, Gx»)
result= findor add(Fx#, Gx>) in Request QUEUE[nextJd]

Request -> Else = result;

Figure3: Breadth-First BDDmanipulation algorithm - Apply

overhead and latency of accessing a remote memory byperforming network transaction implies that performing
a large number ofcommunications which involve small messages would result in unacceptably high performance
penalty. Therefore, a distribution that results in exchanging information at the level of a BDDnode wouldnotbe
satisfactory.
Naming BDDNodes How to uniquely identify each BDD node regardless of where it resides on thenetwork, i.e.,
regardless of workstation address space it belongs to? For a single address space, each BDD node is uniquely
identified byitspointer, weneed toextend thepointer mechanism tohave a generalized address fora BDD node.
Variable Id Determination How todetermine thevariable idofa BDD node given itsgeneralized address? Inthe
breadth-first algorithm, weneed todetermine thevariable id from theBDD "pointer" toavoid random access to the
BDD node. However, theBDD node toindex lookup table solutionproposed byAshar etal.,isunattractive forNow
case for three reasons: 1)each workstation will need to maintain a private copy of thelookup table to determine
the variable idfrom a generalized address for allthe nodes inthe BDD, 2)this private copy will have tobeupdated
every time any workstation allocates a page of memory, and 3) since generalized address would augment 32-bit
address space, it may benecessary toimplement the node toindex lookup table ashash table instead ofanarray.

We have designed a generalized addressing scheme that works in conjunction with a partitioning scheme to
solve theaforementioned problems, while resulting ina very compact representation fortheBDD nodes.

4.2 Solutions:

Node Distribution The breadth-first algorithm constructs the result BDD one level at a time by accessing the
operand BDD nodes ona level-by-level basis, the natural choice for the decomposition ofthe BDD is topartition it
by levels. To make number ofnodes ina partition (BDD section) proportional tothe amount ofmemory resources
per workstation, we can use the flexibility ofdetermining the location ofand the number oflevels in the partition.
For example, a BDD section closer to the root nodes can have more levels than a BDD section at the halfway
between root and leaf nodes.

Naming BDD Nodes By assigning nodes for a set ofconsecutive variables tothe same workstation, it ispossible to
determine the workstation on which a BDD node resides by knowing its variable id. Hence a (variable id, memory

bfjreduce(maxJd, minJd)
for (id = maxJd; id > minJd; id- -)

x is variable with id "id";
I* processeachrequest queue*/
while (Request QuEUE[id] not empty)

/* processeachrequest*/
Request (F, G)=unprocessedRequest from Request QuEUE[id];
if (Request-»Then is forwarded to T) Request-* Then = T;
if (Request-*Else is forwarded to E) Request-* Else = E;
if (REQUEST-4THEN equalsREQUEST-*Else) forward REQUEST to REQUEST -¥ THEN;
else if (BDDnodewith (Request-* Then , Request -* Else) foundin Unique T/ABLElid])

forward Request to that BDD node;
else

insertRequest to the Unique TABLEfid] with key (Request Then , Request Else)

Figure4: Breadth-First BDD manipulation algorithm - Reduce

address) tuplecanserve asageneralized address thatuniquely identifies each nodein the BDD.
Variable Id Determination We could have used the pair (workstation number, memory address) to represent a
generalized address thatuniquely identifies each node in theBDD. However, the reason for choosing (variable id,
memory address) tupleto represent the generalized address under the constraint of specific levelized partitioning
scheme is tosolve thevariable id determination problem for free. Further, thischoice of generalized address results
in very compact representation for a BDD node.

Giventhe partitioning schemeandthemechanism to determine thevariable id, we needtoaddress onemoreissue
before we can perform computations related to theBDD sections assigned to a workstation. Servicing aRequest
in the Apply phase may result in creation of an another Request , topvariable id for which belongs to another
workstation. The newlycreated Request witha specific topvariable id shouldnowbe serviced on the workstation
that ownsthe BDD section containing that variable id. Request can be generated on a source workstation and
processed onadestination workstation, aslongasthesource workstation receives acorrect generalized address that
should result from processing theRequest . It isaneasy matter touse forwarding mechanism in theApply phase
for the source workstation by forwarding the generated Request to the generalized address. SincetheRequest
node that gets generated on the source workstation is a shadow of the Request nodethatgets processed on the
destination workstation, we call this as shadow node forwarding. By using shadow nodes, a nodewhich creates
theshadow node can nowbe processed in theApply phase without accessing theremote memory. Using thesame
shadow node forwarding concept, asetof Request , which belong tothesetofconsecutive variables assigned tothe
processor, canbe processed withoutaccessing remote memories. The mechanism of shadow nodeforwarding also
helps to separate thecomputation and thecommunication for thecollection of sequential processes. Theseparation
helps simplify thedevelopment of theNow BDD package. Thealgorithm for manipulation of BDDs ona Now is
presented in Figure 5.

The breadth-first BDD manipulation algorithm on a Now is obtained by suitablemodifications of Apply and
Reduce phase of thebreadth-first algorithm for a single address space. The assignment of BDDsections imposes
a total order on theworkstations. Each workstation receives a setof Request from allits predecessor workstations
before thebeginning of the Apply phase. The Apply phase is nowmodified to process only those Request , the
variable ids for which belong to the workstation. The set of generated shadow requests are sent to appropriate
successor workstations for processing. The workstation then waits to receive from the successor workstation, the

nowJxidjop(op,F,G)
if(NOT a terminalcase (op, F, G))

if(processor id = 0)
minJd = minimum variableid of (F, G)
createa Request (F, G) andinsertin requestjqueue[minJd];

fortjjrocJd =0; procJd <processor id;procJd++)
bf_apply_recv(procJd, set ofrequests);

bf_apply(op, first-varJd, last_varJd);
fortjjrocJd = processor id +1; procJd <num processors; procJd++)

bf_apply_send(procJd);
for(procJd =num processors -1; procJd >processor id;procJd-)

bf_reduce_recv(procJd);
result = bLreduce(first_varJd,last_varJd);
for(procJd= processor id -1; procJd >= 0 id; procJd-)

bf_reducejsend(procJd);
return result;

Figure 5: BF BDD Algorithm on Now

generalized address to which each shadow Request gets forwarded to. It then performs modified Request , the
variable idsfor which belong totheworkstation. AftertheReducephase, theworkstation sends asetof generalized
addresses to each of its predecessor workstations. Theoverall procedure can be viewed as top-down Apply phase
followed with bottom-up Reduce phase for a distributed BDD which is partitioned into set of sections each of
which is made up of set of consecutive levels. A graphical representation of thisconcept which also illustrates
thealgorithm in Figure 5 has been given in Figure 6. The communication serves as a glue to hold together the
computations performed indifferent memories by using shadow nodeforwarding concept.

5 Implementation

5.1 Data Structures

The BDD generalized address represents a tuple (variable id, memory address).The BDD node represents two
generalized addresses, one each for theTHEN and the Else BDD nodes. TheBDD node has aNEXTpointer tolink
thenextBDD node ina hash chain. It is of utmost importance tohave acompact representation for theBDD node.
The minimum requirement for thesizeof a BDD node with 32-bit memory pointers is 16bytes: 4 bytes for the
NEXT pointer and 6 bytes x 2= 12 bytes for representing theTHEN and theELSE generalized addresses. We usea
custom memorymanager so thateach page fits 4096/16=256BDDnodes, allof whichbelongto thesamevariable
id. The custom memory manager aligns each bdd node on aquad word boundary, which makes itpossible totag last
4 bits each of the Then, the Else, and the next memory pointers (see Figure 7). The Thenand the Else memory
pointers require onecomplement bit each, leaving a total of 10bitsoutof which8 are used forthe reference count
and 2 are used internally to mark thestatus during thecourse of a BDD operation.

At the end of the Reduce phase, a BDD node is obtained from a Request node that is not forwarded. To
overload theuseofRequest data structure with the BDDnodedata structure, theRequest data structure is limited
to 16 bytes. Before Apply phase each Request represents operand BDD nodes, a generalized address for each
of which requires 6 bytes. Therefore, we allow only two operand operations. Three operand operations such as

APPLYtad REDUCE pc*»es forprocessor PI

WSI1

| APPLY PhMe |

ROOCIVO ID^QCSt DOOM

fromprooowoci

Pk.k=0.1t._l-1

Process therequest nodes

Sendrequestnodesto processors

Pk,b4+l,-,n

REDUCE Phoe

Receive rorwtrdod

tesutstroni processors

Pk.kcn....4+1

Process therequestnodes

Send forwsrded results to

processors Pk,kd-l,....0

Figure6: BDD Manipulation Algorithm on a NOW

ITE(f, g,h)can besimulated bycombination of two operand operations if necessary.

5.2 Implementation Issues

Thefollowing issues are unique to thebreadth-first implementation onNow.

1. Shadow Request duplication: Shadow Request may have multiple shadow Request on different work
stations. However, themultiple shadow Request areidentified before theRequest isprocessed, hence, only
a single Request getsprocessed andtheresulting generalized address is senttoall theworkstations withits
shadow Request.

Complement Pointer Bit

NEXT POINTER

Internal Us

Reference Count Bite

Figure 7: BDD Node Data Structure

2. Reference count management for nonlocal BDD nodes:

(a) Even if a Request can be simplified without accessing the remote memory (e.g. F AND F), it is
importanttocreatea newshadow requestandprocessit on appropriateworkstationso that thereference
count of the node in the uniquetable is maintained correctly.

(b) During the Reduce phase if a redundantnode is found for which one of the Then and or the Else
generalized addresses point to a nodeon a successor workstation, we need to adjustreference count
of that remote BDDnode. Thiscan be achieved by delayed evaluation to avoid communication to all
successor workstations aftercompletion of Request phase on a workstation. The delayed evaluation
can be performed duringthe garbage collection step whenreference count for the remotenodescan be
adjusted appropriately.

3. Caching shadow Request vs. on-line issue of remote requests: If the shadow request are notcached,
we need a network transaction for every shadow Requestcreated during the Apply phase. Given the high
network overhead andlatencies thismay notbeacceptable. However, thismay change if communication can
beoverlapped with computation and low latency, low overhead networks, which can pipeline several small
messages, become available.

6 Experimental Results

We have used aheterogenous network ofworkstations as the computing environment to perform our experiments.
This environment contains approximately 60 workstations with 64MB (about 40MB available) main memory and
256MB (about 200MB available) disk space and MIPS-R4000 processor.

We have used PVM [9] (Parallel Virtual Machine) software toprovide the communication between the work
stations in the cluster during aBDD operation. This software permits anetwork ofheterogeneous UNIX computers
to be used as asingle large parallel computer by providing user level routines to send and receive messages among
clusters of workstations.

To evaluate the performance we integrated our BDD package with SIS [14]. In order to systematically analyse
the performance of ouralgorithms with increase in the BDD size, we have used a series of sub-networks of the
ISCAS benchmark C6288. We have suitably taken sub-networks ofthis benchmark such that the shared BDD sizes
ofthe outputs are roughly multiple ofone million. For instance, C6288-3M isone ofsuch examples, for which
creating theBDD's ofallitsoutputs will involve creating about three million nodes.

In the following subsections we describe the experiments that highlight the salient features ofour approach.

6.1 To Exploit Collective Main Memories

The main emphasis ofour approach isto exploit the collective main memory available across all the workstations.
This would lead to less page faults and hence reduced wall clock time to complete the computation. To observe this
phenomenon, we have used avirtual machine consistingof4workstations. The results have been given in Table 1.

From Table 1, we observe that for small BDDs, performance on uniprocessoroutperforms that on multiprocessor
by about afactor of2-3. The reason being small examples did not result in significant number ofpage faults for a
single processor and network transaction overhead incurred in the multiprocessor approach resulted in large elapsed
time. However, as the number ofBDD nodes increase, causing the uniprocessor implementation to page fault
enormously, themultiprocessor scheme outperforms uniprocessor scheme.

Examples # Nodes Uniprocessor Scheme Now Scheme
Page Faults Elapsed Time (in sees) # Maximum Page Faults Elapsed Time (in sees)

C6288.1M 1x10* 0 877 0 2589
C6288.2M 2x 106 0 1918 0 3743
C62883M 3xl06 4392 3587 280 4818
C6288.4M 4x 106 70184 7234 450 5530
C6288.5M 5xl06 187843 10676 3060 6454
C6288J6M 6x 106 780361 15844 8090 10397

Table 1: Exploiting Collective Main Memories

6.2 To Exploit Collective Disk Space

Table 6.2indicates thepotential of aNOWinmanipulating large BDDs. Inthisexperiment, we increased thenumber

C6288 subekts Elapsed Time
Nodes OneWS TwoWS Four WS

9x10° 26098 24074 n.p.

10 x 10* S.O. 24853 21617

11 x 106 S.O. 36802 n.p.

12 x 106 J.0. 49801 35652

13 x 10* S.O. 47521 n.p.

14 x 10° S.O. 58383 n.p.

15 x 10° S.O. 60139 n.p.

Table 2: BDDs on Multiple Workstations.

s.o.: could not complete due to disk space limitation
n.p.: data could not be collected due to time constraint

of BDDnodesto be manipulated increased to the extentthatit did not fit the disk spaceofa singleworkstation. We
observethatwe areable to manipulateBDDs of much larger size using the collectivedisks of many workstations.

6.3 Analysis of Experiments

In previoustwo subsectionswe have presented resultswhich demonstrate the two key advantages of manipulating
BDDs on a Now, namely, exploiting collective main memory for improved performanceand using collective disk
space to build large BDDs. However, we note that the time taken to manipulateBDDs on a Now is large. We
monitored the elapsed time in our algorithmand found that a large partof die elapsed time is due to the network
transaction. Hence, the performance of our approach is significantly dominated by the penalty incurred during
message transfers. The hope is that with the ongoing research in NOW community [2] which includes using
asynchronous transfermode, parallel file server, andactivemessagepassing will result in low network latency and
overhead. Ourapproach will takeadvantage of performance enhancements achieved by NOW research community.

10

7 Conclusions and Future Work

We have presented algorithm for manipulation of binary decision diagrams (BDD) on a network of workstations
(Now). A Now provides a collection of main memoriesand disks which can be used effectively to create and
manipulate very large BDDs. We use breadth first manipulation technique to exploit the memory resources of a
Now efficiently. The prototypeimplementationpointsto thepotentialimpactthisapproach canhavein manipulating
very large BDDs.

The effectivenessofourapproach was demonstrated with experiments. This paper servesas a proof of concept
for our approach. The work is still in the development stage and we need to add many features to support the
assortment ofBDDoperations. Furthermore, we expect to carry outa multitudeofoptimizationsatvarious stepsto
improvethe computational efficiency.

Apart from adding necessary features of a BDD package (garbage collection, quantification routines etc), we
planto extend the currentpackage with following features:

1. Utilizing the computation power of Now: In the current approach, the computations are carried out one
processor ata time. Hence, we haveonly exploited thememory resources ofworkstations in thenetwork. We
plan toextend ourapproach to utilizetheparallel computation power offered by Now. Thiswillbeachieved
bypipelined processing of Request's during theApplyand Reduce phase. Inpipelinedscheme, Request's
areprocessed on morethanone processor concurrently. Hence, a processor neednotwaitto collectRequest's
from predecessor processors during Applyphase and from successor processors during Reducephase. This
willresult in improved computation timeof theprocessing of theRequests. However twodrawbacks of this
scheme are: i) On-line issueof remote requests, willresult in significant increase in thenetwork transaction.
Weobserved inSection 6 that the performance of our approach was signigicantly hamperted by thenetwork
latency and overhead, ii)Further, itwill result induplication ofeffort due toinability torecognize aRequest
after it isprocessed inthe Apply phase. Consequently, itwill also increase the working memory requirements
andamountof work during the Reduce operation.

We need toinvestigate these thebenefits of this approach inview ofthese two drawbacks. A plausiblesolution
could betoadopt ascheme inbetween two extremes and issue remote requests inagroup only.

2. Dynamic load balancing: In the current scheme the variable indices are statically distributed over several
processors. This has the disadvantage that if the number of nodes incertain levels grow very large then it leads
touneven distribution of BDD nodes. A better approach would betodynamically change thedistribution of
set of variables among the processors tobalance the number of nodes oneach processor.

References

[1] S. B. Akers. Binary Decision Diagrams. IEEE Trans. Compute C-37:509-516, June 1978.

[2] T. E. Anderson, D. E. Culler, andD. A. Patterson. A Case for NOW: Network of Workstations. Technical
Report UCB/ERL M94/58, Electronics Research Lab, Univ. ofCalifornia, Berkeley, CA94720, Nov. 1994.

[3] P. Ashar and M. Cheong. Efficient Breadth-First Manipulation of Binary Decision Diagrams. In Proc. Intl.
Conf. onComputer-AidedDesign, pages 622-627,Nov. 1994.

[4] A. Aziz, F. Balarin, S.-T. Cheng, R. Hojati, T. Kam, S. C. Krishnan, R.K. Ranjan, T. R.Shiple, V. Singhal,
S.Tasiran, H.-Y. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. HSIS: A BDD-Based Environment
for Formal Verification. In Proc. ofthe Design Automation Conf.% pages 454-459, June 1994.

11

[5] R.Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEETrans. Comput.,C-35:617-69L
Aug. 1986.

[6] R. Bryant Amethodology for hardware verification based on logic simulation. Journal ofthe Associationfor
Computing Machinery, 38(2):299-328, Apr. 1991.

[7] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Verification Using Symbolic
Model Checking. InProc. ofthe Design Automation Conf., June 1990.

[8] O. Coudert, C. Berthet, and J. C. Madre. Verification ofSequential Machines Based on Symbolic Execution.
In J. Sifakis, editor, Proc. ofthe Workshop on Automatic Verification Methodsfor Finite State Systems, volume
407of Lecture Notes inComputer Science, pages 365-373, June 1989.

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 User's Guide and
Reference Manual OakRidgeNational Laboratory, Sept. 1994.

[10] S.Kimura and E.M. Clarke. A Parallel Algorithm for Constructing Binary Decision Diagrams. In Proc. Intl
Conf. on Computer Design,pages220-223, Nov. 1990.

[11] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[12] H. Ochi, N. Ishiura, and S. Yajima. Breadth-First Manipulation of SBDD of Boolean Functions for Vector
Processing. InProc. of theDesign Automation Conf., pages 413-416,June 1991.

[13] H. Ochi, K. Yasuoka, and S. Yajima. Breadth-First Manipulation of Very Large Binary-Decision Diagrams.
In Proc. Intl Conf. on Computer-AidedDesign, pages 48-55, Nov. 1993.

[14] E. M. Scntovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, andA. L. Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis. Technical Report
UCB/ERL M92/41, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, May 1992.

[15] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Implicit State Enumeration
of Finite State Machines using BDD's. InProc. Intl. Conf. onComputer-Aided Design, pages 130-133, Nov.
1990.

12

	Copyright notice 1996
	ERL-96-9

