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Abstract

Retrieving images from very large collections using im-
age content as a key is becoming an important problem.
Classifying images into visual categories and finding ob-
jects in image databases are two major challenges in the
field. This paper describes our approach toward the first
of the two tasks, the generalization of which we believe will
assist in the second task as well.

We define a blobworld representation which provides a
transition from the raw pixel data to a small set of localized
coherent regions in color and texture space. Learning is
then utilized to extract a probabilistic interpretation of the
scene. Experimental results are presented for more than
1000 images from the Corel photo collection.

1. Introduction
Very large collections of images are becoming common,

and users have a clear preference for accessing images in
these databases based on their content—be it the general im-
age category (e.g., animal scenes, landscapes, urban scenes)
or particular objects that are present in them. Creating in-
dexes for these collections by hand is unlikely to be suc-
cessful, because the databases can be prohibitively large.
Furthermore, it can be very difficult to impose order on
the collections. For example, the California Department of
Water Resources (DWR) collection contains on the order
of half a million images; a subset of this collection can be
searched at http://elib.cs.berkeley.edu. Other
examples include the Corel stock photo collection, which
contains 60,000 images, as well as the collection of images
available on the Internet, which is notoriously large and
disorderly.

In this work our goal is to classify images in the Corel
database into categories based on image content. Figure 1
indicates the variability of the images we are working with,
even within a particular category.
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Classical object recognition techniques rely on clean seg-
mentation of the object from the rest of the image and are
designed for fixed, geometric objects such as machine parts.
Neither constraint holds in our case; the shape, size, and
color of objects like cheetahs and polar bears are quite vari-
able, and segmentation is imperfect (even when their cam-
ouflage fails!). Clearly, classical object recognition does not
apply. More recent techniques can identify specific objects
drawn from a finite (on the order of 100) collection, but no
present technique is effective at the general image analysis
task, which requires both image segmentation and image
classification.

We have found that interesting images can often be char-
acterized by localized regions of coherent color and texture,
defined in terms of their relative size and relative location in
the image plane. Following are a few examples:

� In an airplane category, an important characterizing
component is a large, uniform light blue region located
at the top portion of the image, or all across the image,
together with a small, dark region within it.

� In an animal scene category, an important recurring
feature is a brown or green region at the bottom of the
image, an animal-colored and -textured region in the
center of the image, and a uniform light blue region
at the top.

� In a sunset scene the sky colors (e.g., purple and or-
ange) are significant, as is the fact that they are found
in adjacent horizontally elongated patches; the exis-
tence of a distinct yellow or orange circle is also very
informative.

It is evident that in order to analyze general image content,
representing such localized coherent color-texture regions is
key. In our system we shift from the raw pixel domain to
such a representation, which we call the blobworld. We first
perform feature extraction and then group the feature space
into localized regions, or blobs. We believe that these first
steps should be kept general and bottom-up, with no a priori



Figure 1. Sample images from the Corel database.
Each row includes images from one category: air
shows, black/brown bears, polar bears, elephants,
tigers, cheetahs, bald eagles, mountains, �elds,
night scenes, deserts, and sunsets.

(top-down) model bias. We use learning to associate prob-
abilistic interpretations of the blob ensembles in an image
with categories.

In this paper we present an overview of our philosophy
along with a detailed description of an implemented system.

2. Background
Existing content-based retrieval systems can handle

queries about specific colors and textures but are far from
achieving the higher-level content extraction that users pre-
fer.

Object-oriented queries search for images that contain
particular objects; such queries can be seen either as con-
structs on material queries [20], as essentially textual matters
[21], or as the proper domain of object recognition. A third
query mode looks for images that are iconic matches of a
given image [10]. This matching strategy cannot find im-

ages based on the objects present, because it is sensitive to
such details as the position of the objects in the image, the
composition of the background, and the configuration of the
objects—for example, it could not match a front and a side
view of a horse.

As discussed in a review of model-based vision in the
late 70s and early 80s [4], a number of researchers were ad-
dressing the task of scene labeling using hand-crafted image
models. For example, the system developed by Ohta [18]
seeks to label image regions as one of four object classes:
sky, trees, buildings (with windows) and roads (with cars).
The labeling process makes use of several top-down and
bottom-up processing phases whereby segmentation steps
involving color and texture are evaluated and re-evaluated
to determine how well they satisfy a set of pre-programmed
rules. Two example rules are that the sky meets the top
border of the image and that cars appear dark relative to the
road. As one might expect, the rules in this system are very
image dependent and burdensome to itemize. Ohta’s work
nonetheless represents a significant step toward understand-
ing scenes using properties of color and texture.

The best-known image database system is QBIC [16],
which allows an operator to specify various properties of a
desired image. The system then displays a selection of po-
tential matches to those criteria, sorted by a score of the ap-
propriateness of the match. Region segmentation is largely
manual, but the most recent versions of QBIC [1] contain
simple automated segmentation facilities. Photobook [19]
largely shares QBIC’s model of an image as a collage of flat,
homogeneous frontally presented regions, but incorporates
more sophisticated representations of texture and a degree of
automatic segmentation. Further examples of systems that
identify materials using low-level image properties include
Virage [2], Candid [13], and Chabot [17]. None of these
systems codes spatial organization in a way that supports
object queries.

Variations on Photobook [15] use a form of supervised
learning known in the information retrieval community as
“relevance feedback” to adjust segmentation and classifica-
tion parameters for various forms of textured region. When
a user is available to tune queries, supervised learning algo-
rithms can clearly improve performance, given appropriate
object and image representations. Significantly, the repre-
sentations used in these supervised learning algorithms do
not code spatial relationships. Thus, these algorithms are
unlikely to be able to construct a broad range of effective
object queries.

Our approach uses similar kinds of low-level image fea-
tures as a first step but also incorporates spatial information.
The framework for representation and learning is flexible
and can be extended to include shape information as well as
a variety of relationships among meaningful regions in the
image.
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3. Feature extraction

At the lowest level of our system, grouping is based on
coherent local image descriptors, such as color and texture.
In this section we discuss the color and texture feature space.
We investigate each separately, addressing its contribution
to image segmentation, grouping, and description, as related
to the general content-based retrieval task.

3.1. The color space

Color is an important cue in extracting information from
images. Color histograms provide a global image color
characterization and are commonly used in content-based
retrieval systems [16, 17, 24]. They have proven to be
very useful. Still, the global characterization is poor at, for
example, distinguishing between a field of flowers and a
single large flower, because it lacks information about how
the color is distributed spatially. This example indicates the
importance of grouping color in localized regions and of
fusing color with textural properties.

Our color processing is based on partitioning the color
space into perceptually meaningful channels in order to aid
grouping and recognition. The perceptual channels we use
loosely follow the color naming system of the Inter-Society
ColorCouncil and National Bureau of Standards [12], which
uses six levels of detail to designate colors. These levels
range from broad perceptual color names such as red, blue,
and gray (13 colors) to about five million color designations
defined by spectrophotometric measurements [26]. Only
the first three levels correspond to human color names.

Our perceptual color categories are based on the first
level of this system, slightly modified to better match our
application.1 The final list of colors includes red, orange,
yellow, green, blue-green, light blue, blue, purple, pink,
brown, white, gray, and black.

To determine the location and extent of each color in
hue-saturation-value (HSV) space, the space is broken into
20� 10� 10 grid points (taking into account that hue dif-
ferences are more noticeable than saturation and value dif-
ferences). For each grid point we presented a human ob-
server with a patch of the corresponding synthesized color
on a neutral gray background. For each perceptual color,
the observer indicated how good an example of that color
the patch was. (For any given patch, most perceptual colors
had a matching score of zero.) In this way, we created a
lookup table that allows us to divide any image into 13 color
channels.

1We combined olive, yellow green, and green into one “green” cate-
gory, since we found the distinctions among various greens detrimental in
grouping and labeling vegetation. We added “light blue,” which closely
matches the sky in many images, and “blue-green,” which matches ocean
water.
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Figure 2. The color and texture cones, showing the
texture bins and a few sample color locations.

Visualizing color data: the color cone

The standard red-green-blue (RGB) color space is not
very useful for color processing, as distances in RGB space
have little meaning and there is no simple (even approx-
imate) mapping from RGB coordinates to human color
names. A hue-based space such as HSV is superior to RGB
in these respects [11].

In order to find distances in HSV space, we treat the
space as a cone (see Fig. 2): for a given point (h; s; v), h
and s are the angular and radial coordinates of the point on
a disk of radius v at height v; all coordinates range from
0 to 1. Points with small v are black, regardless of their
h and s values. This cone representation maps all such
points to the apex of the cone, so they are close to one
another. The Cartesian coordinates of points in the cone,
(sv cos(2�h); sv sin(2�h); v), can now be used to find color
differences. This encoding allows us to operationalize the
fact that hue differences are meaningless for very small sat-
urations (those near the cone’s axis). However, this scheme
ignores the fact that for moderate and large values and sat-
urations, hue is more perceptually relevant than saturation
and value.

3.2. The texture space
Texture is a well-researched property of image regions,

and many texture descriptors have been proposed, including
multi-orientationfilter banks [14, 9] and the second-moment
matrix [7, 8]. We will not elaborate here on the classical
approaches to texture segmentation and classification, both
of which are challenging and well-studied tasks. Rather, we
introduce a new perspective related to texture descriptors and
texture grouping motivated by the content-based retrieval
task.

In the framework of unconstrained image understand-
ing, general categorizations become very useful and sig-
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nificant. Such is the case of identifying uniform intensity
(non-textured) regions vs. textured regions. This often en-
ables the extraction of foreground vs. background regions
in the image, guiding the search for objects in the scene. In
addition, distinguishing among texture patterns which are
singly oriented (1D texture) or which are multiply oriented
or stochastic in nature (2D texture) can allow for further
categorization of the scene and for the extraction of higher-
level features to aid the recognition process (e.g., singly-
oriented flow is a strong characteristic of water waves; grass
is stochastic; etc).

We extract texture features based on information obtained
from the windowed image second moment matrix. Let us
denote the image intensity (i.e., the v component) by I =
I(x; y). The first step is to compute the gradient, which
we denote by rI, using the first difference approximation
along each dimension. Then the windowed image second
moment matrix M (x; y) is computed via the expression

M (x; y) = G(x; y) � (rI)(rI)T

where G(x; y) is a 9� 9 separable binomial approximation
to a Gaussian smoothing kernel with variance 2. (Note that
at each pixel location,M (x; y) is a 2�2 symmetric positive
semidefinite matrix.) The variance of G has been called the
integration scale or artificial scale by various authors [7, 8]
to distinguish it from the scale parameter used in linear
smoothing of raw image intensities.

Consider a fixed scale and pixel location, let �1 and �2

denote the eigenvalues of M at that location (�1 � �2),
and let � denote the argument of the principal eigenvector.
The relation between the eigenstructure of M and the local
image structure it describes is well known [3, 7]. In particu-
lar, when �1 is large compared to�2, the local neighborhood
possesses a dominant orientation (as specified by�), and can
be characterized as 1D-textured. When the eigenvalues are
comparable, there is no preferred orientation. When both
eigenvalues are negligible in magnitude, the local neigh-
borhood is approximately a constant intensity and can be
characterized as non-textured. For the case of two signifi-
cant eigenvalues, we characterize the region as 2D-textured.
In these cases, the value of � is irrelevant.

We have found it beneficial to study the behavior of three
expressions in particular which are functions of �1; �2 and
�.2 The first is the anisotropy, 1��2=�1. The second is the
texture contrast, �1 + �2. The third is simply the doubled
orientation angle, 2�. These expressions are used to define
texture categories: non-textured (featureless), 2D texture,
and 1D texture. The latter is subdivided into 4 possible ori-
entations: horizontally oriented texture, vertically oriented
texture, and two diagonally oriented textures.

2These are related to derived quantities reported in [8].

Visualizing texture data: the texture cone

Since M (x; y) possesses three values of interest (for a
fixed scale) at each pixel, it is not immediately obvious how
it should be visualized. We draw an analogy between the
texture values and hue, saturation, and value as used in the
HSV color-cone definition. In particular, we set h = 2�,
s = 1 � �2=�1, and v = �1 + �2. In other words, the
hue is set to be twice the orientation angle, the saturation
is assigned the value of the anisotropy, and the value (or
brightness) is associated with the texture contrast. (A simi-
lar color coding was suggested in [3].) In this manner, the
“line of grays” associated with the zero-saturation axis of the
HSV-cone corresponds to 2D textures of varying contrast.
Textures possessing a preferred orientation correspond to
saturated, colorful regions in color space. We refer to this
representation as the “texture cone” to emphasize its rela-
tionship with the HSV cone. Just as the HSV cone tapers
to a point when v is small, the texture cone tapers to a point
when the contrast is small, so as to indicate that when the
contrast is low, differences in orientation and anisotropy are
irrelevant.

The six categories which we have chosen in our repre-
sentation can be visualized as a partitioning of the texture
cone as shown in Fig. 2.

4. From features to blobs

We model the input image as composed of an ensemble of
regions, or blobs. Each blob represents a localized region of
coherent color and texture (e.g., sky is a blue non-textured
blob, usually located at the top of the image; grass is a
green 2D-textured blob, usually located at the bottom of the
image). In this stage of the system we move from the color
and texture features to a blob representation of the image.

In the color domain we have found the need to adapt the
decision boundaries in color space (as above) to the input
image, as groupingbased on color is very context dependent.
The analysis begins with the distribution across the 13 color
channels defined above (see Fig. 3(b)). The channels are
ordered based on the number of pixels that belong to each
and then collected in order of increasing non-overlapping
contribution to image area until 90% of the image pixels are
included. The image is thus reconstructed with the K most
dominant colors which together cover at least 90% of the
image area. K is typically 5 or less.

Upon discarding the weak channels, the means �i and co-
variance matrices Σi (computed in color cone coordinates)
of each of theK dominant color channels are computed. The
initial color labels of each pixel are subsequently dropped,
and the�i’s and Σi’s are used to initialize a parameter search
for a mixture of Gaussians using the Expectation Maxi-
mization (EM) algorithm [6, 22]. An iterative procedure
forms the basis of the algorithm: the Expectation or E-step
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Figure 3. Finding blobs in an image. (a) Sample
image. (b) The color channels; channels that ini-
tialize EM are indicated. (c) Support maps for the
EM results; each gray level represents a di�erent
connected component. (d) The texture channels.
The four 1D texture channels are allowed to con-
tribute blobs to the ensemble. (e) Support maps
for the 1D-texture blob. Here, no connected com-
ponents of the combined 1D texture channel were
large enough to contribute a blob. (f) Resulting en-
semble of blobs; ellipses indicate the principal axes
of each region's spatial extent. (g) Discretized tile
representation of the image.

computes the expected data log likelihood, and the Max-
imization, or M-step, finds the parameters that maximize
the likelihood. The output of the EM algorithm is a set of
K support maps, together with their Gaussian means and
covariances (see Fig. 3(c)).

In the process of iterating, the changes that occur in the
�i’s and Σi’s correspond to a relabeling of regions in the
color cone. To illustrate, consider a patch of sky in an
image which initially falls mostly in the light blue bin except
for a few small bits which go into the white bin, causing
fragmentation. Viewed in the color cone, we would see that

Figure 4. Sample blob ensembles for air show im-
ages. The ellipses indicate the principal axes of each
region's spatial extent; the synthesized textures in-
dicate the contrast, anisotropy, and orientation (if
applicable) of the texture in the region.

the cluster corresponding to sky mostly falls inside the “light
blue” decision region with a minority of points landing in
the “white” decision region. After a modest number of
iterations, the EM algorithm changes the color definitions
so as to offer a “better” explanation of the data in terms of
the mixture model. This explanation manifests itself in a
set of “support maps,” i.e., the K images corresponding to
the most likely color-blob membership for each pixel in the
image.

These support maps, along with the support maps for
the 1D texture channels (see Fig. 3(d-e)), provide an initial
segmentation of the image. In order to spatially localize
the extracted regions, a connected-component algorithm is
utilized. The final output consists of localized, coherent
regions. This output provides us with the desired ensemble
of blobs (see Fig. 4).

5. Learning in blobworld
We wish to recognize images, or image categories, from

the blob ensembles. Of course, we would ideally like to have
a perfect segmentation procedure; the interesting question
is what we can do with a simple, imperfect segmenter.

5.1. Representing blob probabilities
As a discretized encoding of the blobworld representa-

tion, we encode the blob representation of each image as
follows: The image is divided into 3 � 3 tiles (represent-
ing top, center, and bottom, and left, center, and right).
The discrete map consists of 9 tiles, each subdivided into
78 points to represent the 13 � 6 color-texture bins (see
Fig. 3(g)). Each blob contributes a vote in each tile based
on the relative portion of the blob which exists in that part
of the image. The relative votes are indicated via different
size squares (representing different weights). This encod-
ing scheme allows both robustness to fragmentation (a green
field that splits into two blobs will contribute votes to the
same tiles and bins that it would if it were not split) and size
invariance (a small bird in the center tile will contribute the
same weight as a large bird in that tile).
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5.2. Classification
Consider an input image with n extracted blobs. We

would like to find the class which best fits the image. The
selection of a class is based on the evidence provided by
the blobs present in the image as well as on “the dog that
did nothing in the night-time”3: in order for an image to be
classified into class Cj, each blob in the image should be
consistent withCj , and the image should not lack any blobs
which are defining features of the class.

We first address the blobs which are present in the im-
age. For each class we estimate the class-conditional blob
probability density Pr(blobjCj) using histogram averaging;
each histogram bin specifies a particular color-texture bin
and tile position.

To address those color-texture bins which do not match
any blob in the image, we make use of the prior probability
Pr(bin not emptyjCj) that a bin will contain some blob in
an image of class Cj. For each color-texture bin, we take
this prior probability to be the fraction of images in class Cj

which have a blob in that color-texture bin, in any position
in the image. Thirty-seven of the 78 bins were very rarely
filled by blobs in the training data. To reduce noise, we
reduced the fraction to zero in those cases; the result is that
images are not penalized for not containing very rare blobs.

For each input image, we choose that class Cj which
maximizes"

nY
k=1

Pr(blobkjCj)

# " Y
1�i�78 : bini empty

Pr(bini emptyjCj)

#

It is not uncommon that an image has several blobs which
fall in the same color-texture bin and overlap in some spatial
tile. In these cases, we make the approximation of adding
the blob probabilities Pr(blobkjCj). For simplicity we have
assumed that the blobs which support a given class are mu-
tually independent. The above scheme represents a naı̈ve
Bayes classifier [23].

6. Experiments
6.1. The image collection

Our image collection consists of 28,000 of the Corel im-
ages online in a database [5]. The images are arranged in
sets of 100, each with a category name; some of these cat-
egories are visually meaningful (e.g., “Cheetahs, Leopards,
and Jaguars”), while others are not (e.g., “Tour through Eu-
rope”). We selected the following 12 categories4: air shows,
brown and black bears, polar bears, elephants, tigers, chee-
tahs, bald eagles, mountains, fields, night scenes, deserts,
and sunsets (see Fig. 1). We pruned a few images from each

3Sir Arthur Conan Doyle, “Silver Blaze,” Memoirs of Sherlock Holmes.
4Categories were picked under the single constraint that they contain a

significant number of visually consistent images.

category, leaving approximately 90 images in most of the
categories.5 We also rotated images as necessary so that all
were upright.

We divided each category into training and testing sets,
containing 2/3 and 1/3 of the images, respectively. While ex-
ploring various approaches and evaluating their capabilities,
we used four-fold cross-validation on the training set. We
did not look at the testing set or perform any experiments on
it until the complete procedure was fixed; the testing set was
used only once, to find results using the final classification
method.

6.2. Comparison with global color histograms

In order to obtain a baseline for the retrieval results,
we performed an experiment using color histogram com-
parisons [25]. We first found the color histogram for each
image using the 13 perceptual color channels. (Using a low-
dimensional histogram is necessary since there is so much
variability among the images in each category.)

We then found average histograms for each category us-
ing all combinations of the cross-validation partitions. Each
incoming image’s histogram was compared to the average
histograms for the three folds not containing that image.
(For example, the histogram for an image in fold 2 of the air
shows category was compared to the average histogram for
the other three folds for each category.) The image was clas-
sified in that category whose average histogram was closest
to the image histogram.

6.3. Results

The results for each experiment are summarized using a
standard class-confusion matrix and an additional measure
of how often the correct class was selected as the first or
second choice (see Tables 1 and 2). In each case the entries
are percentages.

We can observe from the top-2 statistics that the overall
performance of the two schemes is comparable; however,
these are not the figures which are of most interest to us. It
is most interesting to investigate the nature of the confusions
in each scheme and, more generally, which scheme performs
better on which images.

Consider for example the confusion that occurs in class a
(air shows). The misclassified air show scenes primarily fall
into class c (polar bears) in the color histogram scheme. This
is not surprising, since the global color percentages in these
two classes are quite similar. In our proposed method, the
majority of the misclassified air show images fall into class g
(bald eagle). This is arguably a preferable misclassification,
since the air show and bald eagle images both typically
exhibit gray/white/black textured blobs near the center of

5There are fewer images of polar bears and brown/black bears, because
those two datasets come from one “Bears” category.
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a b c d e f g h i j k l
a. 80 0 0 0 0 0 11 0 3 3 0 0
b. 0 19 0 14 14 9 14 0 14 0 9 4
c. 18 0 54 0 9 0 18 0 0 0 0 0
d. 6 12 6 36 9 9 0 3 12 0 6 0
e. 0 3 0 3 54 15 0 0 12 9 3 0
f. 0 0 0 6 21 36 0 0 12 15 9 0
g. 35 0 0 0 3 3 48 6 0 3 0 0
h. 16 0 3 0 0 0 13 63 3 0 0 0
i. 24 6 0 3 0 6 9 0 48 0 3 0
j. 0 3 0 0 3 0 0 0 3 79 3 6
k. 16 0 8 0 4 4 12 4 0 4 48 0
l. 0 0 0 3 0 0 3 0 0 3 0 89

a b c d e f g h i j k l
96 38 63 51 69 63 77 73 63 86 72 89

Table 1. Class-confusion matrix for the �rst choice
and statistics of a correct match occurring in the
top 2, using the proposed scheme. The classes
are (a) air shows, (b) brown/black bears, (c) po-
lar bears, (d) elephants, (e) tigers, (f) cheetahs,
(g) bald eagles, (h) mountains, (i) �elds, (j) night
scenes, (k) deserts, and (l) sunsets. Entries are per-
centages.

the image, while the rest of the image is essentially blue or
light blue. The same general layout of colors is not found
in the polar bear images.

We take the poor performance of class b (brown/black
bears) in both schemes as evidence that class b does not
constitute a strong visual category. The context of the bear
in these images was highly variable in comparison to the
other animal categories, though class d (elephant) suffered
from a similar lack of consistency.

Class l (sunsets) represents a class for which our pro-
posed scheme is well suited. The confusions we observe
for sunsets in the color histogram case, namely with classes
j, f, and e (night scenes, cheetahs, tigers), are due to global
similarities in color which fail to capture the distinctive hor-
izontally laminated strips of color and darkness which occur
so frequently in sunset images.

Confusion of a similar nature can be observed in both
schemes for those classes which are approximate subsets of
other classes. Classes i and k (fields and desert) are examples
of such confusion.

To the extent that a given Corel category constitutes a
visual category, we feel that the results presented here indi-
cate that there is something to be gained over simple color
histogram matching in terms of making query results more
meaningful.

a b c d e f g h i j k l
a. 70 5 23 0 0 0 0 0 0 0 0 0
b. 0 29 0 11 11 17 11 0 5 0 11 0
c. 27 0 54 0 0 0 9 0 0 0 9 0
d. 0 5 0 64 5 5 0 0 17 0 0 0
e. 0 11 0 11 35 5 0 0 23 0 5 5
f. 0 0 0 29 0 47 0 0 11 0 5 5
g. 35 0 0 0 0 0 47 5 0 0 11 0
h. 17 0 23 0 0 0 5 52 0 0 0 0
i. 0 5 0 0 0 35 5 0 35 0 17 0
j. 0 0 0 0 0 0 0 0 0 76 5 17
k. 17 5 11 0 5 5 5 0 11 0 35 0
l. 0 0 0 0 5 5 0 0 0 5 0 82

a b c d e f g h i j k l
88 52 90 64 47 82 82 70 58 82 64 88

Table 2. Class-confusion matrix for the �rst choice
and statistics of a correct match occurring in the
top 2, using color histograms. The classes are the
same as in Table 1. Entries are percentages.

7. Conclusion

Our goal in this work is to present a general framework for
content-based image retrieval which allows for extensions
on all levels, from the features to the classification scheme
used.

This extensibility is a key advantage of the proposed
scheme. While color histogram matching achieved results
similar to those presented here, this is the best color his-
tograms can do, whereas we have just taken the first step.

A variety of extensions may be made to the system within
the current framework; much work remains to be done. In
the feature extraction stage the next major step will be the
addition of shape cues to the recognition process. Shape is
very important for more accurate blob descriptors, all the
way to full object recognition. We are currently looking at
using the boundaries of the regions extracted in color and
texture space as initializing closed contours in the image
plane. Contour fragments or moments will then help enrich
our feature space with shape features.

As the blob descriptors become cleaner and more rep-
resentative of the image content (i.e. more consistent), a
transition from the naı̈ve Bayes approach will be justifiable.
We can move toward more sophisticated learning schemes
which look for higher-level dependencies between blobs as
well as spatial relationships between blob pairs. Higher-
order Bayesian nets (or Belief nets) are currently being in-
vestigated for learning conjunctions between variables.

The framework which we propose can be made hier-
archical in the grouping and learning processes. We see
this as providing for a new approach to object recognition,
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which will allow for recognition in general environments.
In this approach, an object is modeled as a loosely coordi-
nated collection of detection and grouping rules. The object
is recognized if a suitable group can be built. Grouping
rules incorporate both surface properties (color and texture)
and shape information. This type of model gracefully han-
dles objects whose precise geometry is extremely variable,
where the identification of the object depends heavily on
non-geometrical cues (e.g., color) and on the interrelation-
ships between parts.

A great deal of work is required to fully elaborate and test
this model of feature extraction, grouping, and recognition
and ultimately to incorporate object modeling. Still, there is
reason to believe that it will cover a wide range of categories
and objects.
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