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Preface

We describe an integrated collection of algorithms and data structures to serve as the basis for a practical incremental soft-
ware development environment. A self-versioning representation provides a uniform model that embraces both natural and
programming language documents in a single, consistent framework. Software artifacts in this representation provide fine-
grained change reports to all tools in the environment. We then present algorithms for the initial construction and subsequent
maintenance of persistent, structured documents that support unrestricted user editing. These algorithms possess several
novel aspects: they are more general than previous approaches, address issues of practical importance, including scalability
and information preservation, and are optimal in both space and time. Since deterministic parsing is too restrictive a model
to describe some common programming languages, we also investigate support for multiple structural interpretations: in-
cremental non-deterministic parsing is used to construct a compact form that efficiently encodes syntactic ambiguity. Later
analyses may resolve ambiguous phrases through syntactic or semantic disambiguation. This result provides the first known
method for handling C, C++, COBOL, and FORTRAN in an incremental framework derived from formal specifications.

Our transformation and analysis algorithms are designed to avoid spurious changes, which result in lost information and
unnecessary recomputation by later stages. We provide the first non-operational definition of optimal node reuse in the
context of incremental parsing, and present optimal algorithms for retaining tokens and nodes during incremental lexing
and parsing. We also exploit the tight integration between versioning and incremental analysis to provide a novel history-
sensitive approach to error handling. Our error recovery mechanism reports problems in terms of the user’s own changes
in a language-independent, non-correcting, automated, and fully incremental manner.

This work can be read at several levels: as a refinement and extension of previous results to address issues of scalability,
end-to-end performance, generality, and description reuse; as a ‘cookbook’ for constructing the framework of a practical
incremental environment into which semantic analysis, code generation, presentation, and other services can be plugged;
and as a set of separate (but interoperable) solutions to open problems in the analysis and representation of software artifacts.
Our results are promising: in addition to embracing a realistic language model, both asymptotic and empirical measurements
demonstrate that we have overcome barriers in performance and scalability. Incremental methods can now be applied to
commercially important languages, and may finally become the standard approach to constructing language-based tools and
services.
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Chapter 1

Introduction

Delays in developing, maintaining, and understanding software documents continue to affect the time to market for soft-
ware companies and the time to deployment within corporate MIS divisions. Despite advances in many areas—computer
and network hardware, programming languages, and user interfaces—the compilation and analysis of programs remains
a bottleneck in the development process and a limiting factor in programmer productivity. Increasingly sophisticated lan-
guages, software systems, and analysis demands have outpaced aggressive performance growth in both computing hardware
and network bandwidth, resulting in a net increase in compilation delays [2]. In this chapter we discuss methods to mitigate
these problems, then motivate and characterize our solution in the form of software development environments that operate
incrementally.

1.1 Software Development Environments

The term ‘environment’ is typically used to describe an integrated collection of tools that assist the programmer in de-
veloping or maintaining software artifacts [12, 29, 47, 83]. Though historically derived from a collection of independent
programs—compilers, debuggers, recompilation managers, etc.—the software development environment (SDE) attempts
to be more than the sum of its parts. Its twin goals are to simplify and speed the development process through a tighter in-
tegration of the underlying tools. Benefits can be realized through common user interface conventions, control integration,
and low-bandwidth data sharing among the tools. The implementation also benefits from functionality specialization: by
working cooperatively, tools can avoid duplication of effort in many cases.

The first goal, simplifying the development process, is well addressed by the state of the practice in commercial SDEs:
interactive design and better tool cooperation, along with such useful additions as hypertext manuals, have clearly reduced
the learning curve for these complex tools [15, 68]. Unfortunately, the second goal—improved productivity—has gone
unrealized. Since these environments can operate no faster than the collection of batch programs they replace, development
time for an experienced programmer—and overall productivity—remain essentially unchanged.

The limitations of existing systems are a direct result of their continued reliance on batch technologies. The need to
reconstitute the syntax and semantics of a file or module ‘from scratch’ whenever a small change is made (either directly or
in some related module) forces the programmer to wait after virtually every update. Increased complexity in languages and
improved compile-time checking, coupled with the growing size of software systems have outpaced gains in hardware and
network performance: recompilation after a minor change to the program often takes minutes or even hours to complete [2].
Lengthy delays decrease productivity and cause programmers to lose track of their working context when attempting to
debug or maintain a complex program [93]. Despite the appearance of an array of techniques to salvage incrementality
without discarding batch algorithms (parallelmake, incremental linking, pre-compiled system headers), compilation delays
remain, and remain fundamentally limiting.

Furthermore, the batch nature of these environments precludes an entire class of useful services that can be provided
only in the presence of a persistent structural representation and incremental consistency maintenance. One example is error
recovery: because each compilation unit is recomputed in its entirety whenever the user modifies it (directly or indirectly),
error recovery is limited to guessing strategies based on the state of the current analysis. In our approach to error recovery,
discussed in Chapter 8, the user’s own changes are the basis of error handling and presentation. This represents a new
service paradigm: user-centered tools that understand the history of the document and provide real-time feedback. The
combination of incrementality and the availability of a fine-grained development log enables the construction of powerful
interactive services that are impossible (or impractical) to provide in a batch environment.

Other services, encumbered by the batch nature of the underlying implementation, sacrifice correct semantics to achieve
reasonable performance. For instance, program databases can provide the developer with a rich set of data to assist in brows-
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ing, understanding, and transforming programs. However, changes to the program are often not immediately reflected in
the content of the database, allowing it to produce incorrect results. Restoring database consistency is so time-consuming
that it is often done overnight [17].

Incremental software development environments (ISDEs) provide the foundation to maintain a consistent executable
image, database, or other program-wide analysis results with truly interactive speeds [6, 8, 54, 77, 66, 81]. By integrating
the (typically small) set of new changes with the results of a previous analysis, incremental services can operate ‘instanta-
neously’. At the same time, the persistent representations used by these algorithms allow high-bandwidth data integration
that enables new classes of functionality: services like history-sensitive error recovery are not only possible, but actually
easier to implement than the conventional batch alternatives.

However, despite their promise, and more than two decades of research and investment, incremental environments have
not enjoyed either commercial success or widespread use. The reasons are simple: existing systems have failed to address
key issues in generality, efficiency, and scalability.

Many early approaches to building incremental systems imposed restricted editing models that were simply unrealistic—
programmers cannot be asked to give up the power and flexibility of arbitrary text editing to simplify the implementation
of the environment. Even worse, the language model proposed by previous systems has been too limited to address the
needs of many real programming languages, including C, C++, COBOL, and FORTRAN; even such ‘academic’ languages
as Haskell, Icon, and Oberon possess features that are difficult, if not impossible, to model within the framework of existing
incremental systems. Prototypes that addressed the needs of toy languages and commercially irrelevant languages, such as
Pascal, had no obvious migration path to handling more challenging (and useful) languages.

Despite its centrality, the incrementality of the algorithms used in previous systems was often imperfect.1 Most pub-
lished methods for incremental parsing, for example, exhibit running times that are linear in the size of the entire file or
module, even in some common case editing scenarios. Many incremental algorithms and environments ignored both con-
stant factors and scalability, with the result that large programs could not be represented successfully. Research ISDEs have
also ignored existing specification formats in favor of proprietary formalisms, imposing needless burdens on the specifica-
tion writer. Commercial adaptation of incremental technology, though it offers an overwhelming potential for decreasing
the time and cost of producing software products, cannot be expected to occur until the research community provides con-
vincing demonstrations using the languages and large-scale programs that reflect real-world development.

Our goal is to address these needs through the design of an effective, multilingual ISDE, providing interactive services
for the development, maintenance, and documentation of complex software systems. By avoiding delays and preserving
the user’s working context, overall productivity can be significantly enhanced. By providing tighter tool integration, espe-
cially with respect to the fine-grained history log, existing services can be improved and new classes of functionality can
be provided that are impractical in a batch setting.

1.2 Requirements

A successful ISDE must exhibit a number of characteristics:

Support for multiple languages
The environment must be multilingual, supporting multiple documents in different languages, and single (compound)
documents expressed in multiple languages.

Mostly declarative language description
Language-specific analysis and transformation tools should be automatically generated from high-level, declarative
descriptions. Compiled tools should be dynamically loaded into the running environment as needed. (This allows
new languages and services to be introduced without shutting down the environment.) It should be possible to merge
tools generated from formal specifications with others described procedurally, in order to provide flexibility, backward
compatibility, and a simple integration mechanism for prototyping new services.

General language model
The language model should be (at least) sufficient to embrace C, C++, COBOL, FORTRAN, Java, Lisp, and the com-
mon dialects and versions of these languages.

Uniform, structured document representation
Software artifacts and natural language documents should be represented in the same fashion. Common editing, nav-
igation, storage, and presentation services can then be employed across languages and document types in addition to
allowing for customization on a per-language or per-document basis.

1Beyond their obvious restriction to single-language development, this appears to have been the central technological problem with commercial mono-
lingual environments, such as SmartSystemTM [77].
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Unrestricted editing model
The environment should not contain inherent restrictions on the type of edits (textual, structural), their location within
the program, or the timing of user modifications with respect to consistency restoration.

Efficiency
Constant factors in both time and space consumption should be reasonable with respect to hardware capabilities and
projected increases in the size and complexity of the software systems being developed. Efficiency should be demon-
strated by empirical measurement of common operations on real programs.

Scalability
The needs of large source files, modules, and programs must be effectively addressed. Analysis or transformation
algorithms that require time or space linear in the size of the document, rather than the changed portion, are inherently
unscalable and therefore inappropriate in the implementation. Where possible, scalability should be ensured by an
asymptotic analysis based on realistic assumptions.

1.3 Scope of Work

Our work encompasses the definition of a persistent (versioned) structural document representation and algorithms for main-
taining the consistency between its structure and content, including the handling of errors. These topics must be considered
as a whole if the results are to be interoperable, efficient, and scalable. (Chapter 8 expands on the need to treat these sub-
jects in conjunction.) Other services, including semantic analysis and presentation concerns, can be considered separately.
While their functionality is related to, and partially dependent on, the representations developed here, their implementa-
tions are distinct. The primary interaction with additional tools and services is through the change reporting and document
navigation interfaces described in Chapters 3 and 4.

1.4 Outline of the Report

In Chapter 2, we continue the introduction by describing the Ensemble environment, the research prototype in which our
work was performed. Ensemble’s goals, background, architecture, and implementation are discussed.

Chapter 3 presents a model of self-versioning documents, documents that can store their own history efficiently and
produce incremental change reports for clients. Low-level versioned objects are constructed using conventional object-
oriented techniques, then combined into a structured framework to provide versioned documents. We correct previous the-
oretical work on persistent graphs and extend these results to provide an efficient mechanism for document representation
in an ISDE.

Chapter 4 builds on the results of the previous chapter, discussing models for editing, analyzing, and transforming pro-
grams and other formal language documents. This chapter also covers the interaction between analysis/transformation al-
gorithms and versioning/history services, including a discussion of information preservation through node reuse techniques
during transformations. The run-time language object model, which represents instances of language-specific analysis and
transformation services, is also described here.

Chapter 5 introduces the first of several analysis algorithms. We begin with a novel approach to incremental lexing that
possesses features lacking in existing systems. Existing (batch) lexical specification formalisms are permitted in all their
generality: unbounded lookahead, user-controlled start states, and match rejection; in addition, we admit a clean integration
with ad hoc procedural pattern recognition code. The incremental lexical analyzer we develop has novel support for token
reuse and unrestricted editing as well as optimal time and space results.

In Chapter 6 we present the first of two incremental parsing methodologies. Sentential-form parsing, covered in this
chapter, is designed for deterministic languages. It is the simplest and most general parsing technique for common grammar
classes (LR(1), LALR(1)), runs in optimal time and space, and supports both textual and structural editing. Support for
grammatical ambiguity, balanced sequences, and node reuse during parsing is also covered in this chapter.

Chapter 7 presents a second approach to incremental parsing based on non-deterministic methods. These techniques
allow the construction of an intermediate form capable of directly expressing unresolved ambiguities in the context-free
syntax of a program. Further analysis (including incremental static semantic analysis) can continue the resolution process
through a variety of dynamic disambiguation techniques. This approach provides a truly general language model, allowing
the natural context-free syntax of C, C++, Fortran and other languages to be expressed directly.

Chapter 8 combines incremental analysis with fine-grained versioning to provide history-sensitive error reporting. In-
formation about the program’s history enables a non-correcting recovery and a presentation of errors in terms of the user’s
own modification sequence. This method is automatic, language-independent, and provides more informative recoveries
that any previous batch or incremental system.
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Appendix A contains two algorithms required by the self-versioning document representation developed in Chapter 3:
changing the cached version of an object when its history is recorded differentially and computing nested changes during a
specified time period.

Appendix B contains the algorithm for incremental non-deterministic parsing developed in Chapter 7.
Appendix C discusses the integration of explicit whitespace, embedded comments, and other ‘non-grammatical’ mate-

rial with the persistent program representation. Two mechanisms are provided for creating and maintaining the additional
structure: a transformation of the original grammar and an extension to the incremental parsing algorithm.



Chapter 2

The Ensemble Environment

Ensemble is an interactive Unix program for displaying, editing, analyzing, and transforming both software artifacts and
natural language documents. Users interact with this system to view, create, modify, maintain, and understand collections
of documents. Figure 2.1 shows a screen dump of the running environment.

The Ensemble research project centers around this prototype implementation. Ensemble marries two lines of research:
the development and maintenance of information-rich software artifacts and the authoring and presentation of multimedia
natural language documents. Primary areas of investigation include designing a uniform model of documents, achieving true
interactivity through the use of incremental algorithms and appropriate representations, and establishing a coherent dialog
with the user through multiple presentations, unrestricted editing, and extensive customization. Our research provides the
basis for some of this functionality and builds on the results of others’ efforts.

2.1 Background

The Ensemble research project was begun in 1990 at the University of California at Berkeley by Professors Susan L. Graham
and Michael A. Harrison. Over 20 graduate and undergraduate students have contributed to its implementation.

As a research program, Ensemble represents the confluence of two earlier projects: Pan [8], a prototype of an incre-
mental, multilingual programming environment, and VORTEX [16], an interactive document typesetting system formulated
as an incremental version of TEX [55]. The synthesis of these two lines of research provided leverage in the form of local
expertise, common environment functionality, and interesting synergism between algorithms for incremental analysis and
transformation developed in the context of programming language environments, and powerful mechanisms for typesetting,
presentation, and user interaction formulated for natural language documents.

While both projects had independent research goals that continued in the context of the joint system, the integration
raised additional research questions: could a uniform model of programming and natural language documents be developed,
and would the tight integration of presentation and analysis/transformation services provide significant benefits in terms of
user services, implementation leverage, or design simplicity? (We discuss the answers in Section 2.5.)

2.2 Design Principles

Several design principles have served as long-term goals, guiding the direction of research in Ensemble and determining
choices in its implementation. Here we survey the most important criteria.

� Incrementality is the basis of powerful interactive services. Incrementality is not limited to editing or presentation; it
includes everything conventionally described as ‘compilation’.

� Tight integration (control and data) between tools is a necessary design strategy for interactive environments, and
encourages new types of functionality lacking in current systems.

� A common document model must embrace both programs and natural language documents. There should be a single
way of storing, viewing, editing, navigating, and reporting changes in a document. The document model must include
multimedia elements, compound documents, multiple interpretations of structure, and multiple-language documents.
Document ‘content’ should be distributable; information about a document may be expressed as structure, media-
specific data, node attributes, annotations, or database entries.

5
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Figure 2.1: Screendump of Ensemble. Two documents have been loaded: a Java program and a dataset. Both structural
and textual presentations of the program are shown. The dataset is displayed as a graph on the left and as text on the right.
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� Generality in document manipulation is crucial to acceptance; this implies an unrestricted editing model, but also
requires multiple presentations and multiple views, customizable interaction, and both language-independent and
language-specific behavior.

� Multiple languages must be supported. Language descriptions should be as high-level as possible. The language
model must be realistic, capturing the languages of significant commercial and academic interest.

� Efficiency, scalability, and usability issues must be part of the design; they cannot be retro-fitted.

� Customization and extendibility are necessary at every level. Multiple mechanisms for achieving these goals must
be present to provide a variety of points in the power/performance/ease-of-use design space.

2.3 Architecture

Ensemble as a system is divided into two conceptual entities: a language specification system and a run-time environment.
The latter is the environment proper: it includes the services to edit, analyze, and transform structured documents. Some of
this functionality is provided in a language-neutral fashion; other services must be specialized for the language in which a
document is written. Code and data specific to a particular language are intentionally separate from the core environment.

2.3.1 Language Specification

Ensemble’s language-specific elements are typically derived from formal specifications. Each language description is trans-
lated into a set of C++ files, which are then compiled and linked to produce a shared (‘dynamically linked’) library. This
compilation is performed off-line, permitting optimizations that result in time- and space-efficient representations and al-
gorithms. Multiple dialects and multiple versions of each language can be supported simultaneously in the environment.

Several language-specific services are currently supported. These include incremental lexical, syntactic, and semantic
analyses; structure-based transformations; and specification-based presentation. The language model is object-based: these
services are produced by sub-classing, adding language-specific code and/or data to parameterize a generic algorithm. A
separate class is used to represent the language as a whole, providing run-time access to its grammar, instances of its analysis
and transformation tools, and any additional information or services particular to the language.

The shared libraries representing compiled language objects are loaded on demand into the running environment. This
arrangement makes it possible to support a large number of languages without the environment itself becoming unman-
ageably large, and precludes the need to specify the set of available languages when the environment is built.1 Compound
documents are supported in a natural manner by using several language objects simultaneously.

Language specification per se is not part of the research objective of this dissertation. Our specification methods inten-
tionally reuse the notation of familiar batch tools whenever possible, in order to decrease the time and effort required to port
existing language descriptions to Ensemble. Other Ensemble researchers have investigated specification language design
in the context of particular domains, including semantic attribution [63] and presentation [65, 70].

2.3.2 Document Model

Documents in Ensemble are always represented structurally, although users typically choose to view and edit them as text.
Each node in the document structure is an instance of a C++ class identified with a production in the language’s grammar.
Information specific to a particular production is translated into data fields in the appropriate class; routines to compute
these attributes become methods. Attributes that sparsely populate the document structure can be represented as annotations
(‘property lists’) or as separate maps. Each terminal symbol in the grammar is translated into a token class.2 In this report
we concentrate primarily on programs and other documents expressed in formal languages. Discussions of representations,
history services, and editing models should be understood to apply to all document types.

In a program, lexical analysis partitions the text into the lexemes of the tokens; parsing produces the structure of the pro-
gram by creating nodes and edges to represent the parse tree. Semantic analysis attributes the nodes with cached attribute
values, and updates maintained relations in the program database. Because the environment is interactive, these operations
are achieved incrementally by repairing only the regions of the program affected by the user’s modifications since the previ-
ous analysis. A new program can be introduced to the environment by treating it as a single text insertion into an (otherwise
empty) structural representation.

1Thus Ensemble is not a ‘template-based’ monolingual environment as are the environments produced by the Synthesizer Generator [81].
2In addition to text, terminals and node attributes can consist of such multimedia elements as graphic objects, images, audio/video clips, etc. The

representation and editing of multimedia components and natural language documents is described elsewhere [65]. Additional tokens are used to represent
material outside the grammar, including explicit whitespace, textual comments, and so forth.
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Incrementality is only productive when it results in rapid response times for the user. This constraint on performance
requires care in the choice of a document representation: to provide rapid access to every section of the document, lengthy
sequences must be represented in a balanced fashion. A balanced representation of sequences guarantees logarithmic access
time to each node, even for ‘unstructured’ documents such as simple text. Subsequent chapters explore the specification and
representation issues surrounding sequences in greater detail.

Ensemble supports a fully general editing model. Text editing can change the contents of the tokens by inserting, delet-
ing, or overwriting characters; structural editing can alter the shape of the tree. It is not necessary for either type of editing to
maintain a legal representation with respect to the language definition: the user will eventually invoke the analysis services
to restore consistency to the program. There is no restriction on the location or types of edits or on the timing of consistency
restoration with respect to modifications.

All Ensemble documents are persistent: each direct modification introduces a conceptually distinct version. Any
changes needed to restore consistency when the user requests re-analysis are also treated as an (atomic) update. Unlike
existing commercial or research systems, Ensemble can restore any version quickly, even if it involves reversing or re-
applying a complex, language-based transformation.

We focus primarily on single-language programs represented as trees. Ensemble’s compound document architecture
has been described elsewhere [65], and is largely orthogonal to the issues discussed here. Chapter 7.3.2 investigates the
construction of multiple representations within a single program module through non-deterministic parsing.

2.3.3 Presentations and Views

Several presentation services have been developed within the context of Ensemble, providing specification-driven display
based on the document content model. These include general purpose tools, such as Proteus [39, 70] and tree-transformation
systems [40], as well as several specialized tools for program presentation [65]. Each presentation instance is derived from
a presentation schema, separate from the document content, which determines the appearance of the document. In addition,
the user can override (temporarily or permanently) any automatically generated presentation attribute.

Multiple presentations, using the same or different schemas, may be active simultaneously. Multiple presentations are
useful for natural language documents; for example, the user can compare a one-column presentation to a two-column ver-
sion. However, it is also a powerful tool for formal documents, allowing the structure (in the form of a tree) to be viewed
next to a conventional text-based display.3 In keeping with the unrestricted editing model, all presentations of document
content are editable.

2.3.4 Customization and Extensibility

Ensemble supports customization and extension at a variety of levels. From the point of view of this work, language-specific
functionality represents the most important customization of the core environment. New languages can be described, com-
piled, and dynamically loaded to extend or modify (through replacement of an existing language object) a running environ-
ment. Dynamic loading can be used to add new environment services in other areas, facilitating rapid prototyping of the
environment itself.

Central elements of Ensemble’s domain model are exported through ExL, a Lisp-based extension language [24]. As
in the EMACS editor, key and mouse bindings can be modified through ExL, which also provides customization of cursor
management and event mapping in compound documents.

Ensemble’s user interface is written in Tcl/Tk [74], making it easy to add new features or to change existing elements
of the user interface quickly. The user interface is accessible from ExL, allowing extension writers to associate visual com-
ponents with new functionality.

New presentations can be created and used to alter the display of a document. Users can override the default attributes
assigned by a specific presentation, and can choose to make the settings permanent.

The user can select optional analyses to apply to any loaded document. Additional semantic descriptions can be intro-
duced to the environment; these descriptions can make use of existing analyses, as well as exposing their results through a
program database, the user interface, or the extension language.

Transformations can be applied to documents from a suite of existing transformation services. New transformations can
be added as part of an existing language specification or as stand-alone tools.

3Multiple views of a single presentation are also provided. Views encapsulate device-dependent details by rendering a presentation onto a specific
physical device.
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2.4 Implementation

The environment itself runs as a single-threaded Unix process on a variety of platforms, including SunOS, Solaris, HPUX,
and Linux. The user interface runs as a separate process, connected via a local socket. Ensemble currently consists of
approximately 300,000 lines of code, most of it in C++. (The remainder is written in C, ExL, and Tcl/Tk.)

Language specifications exist for C, Exl, Fortran, Java, and Modula-2, though not all languages possess semantic de-
scriptions. Lexical descriptions are written using the flex specification language [75]. Grammars can be written in either
extended BNF or the syntax of bison [18]. Semantic attribution is defined by a specialized language, adl [63].

The algorithms described in subsequent chapters have all been implemented as part of Ensemble, and have been tested
with multiple languages and multiple documents. All measurements were conducted using gprof or quantifyTM on an
otherwise-unloaded sparc20TM processor.

2.5 Retrospective and Future Work

The original question posed by the integration of Pan and VORTEX has been answered: a common document model is not
only possible, but desirable as a design principle and as an implementation strategy. Tight integration between document
processing technology and language-based analysis and transformation mechanisms has provided the Ensemble architecture
with powerful capabilities lacking in both commercial and research platforms.

However, Ensemble remains strictly a prototype; further development is required before this experiment can be consid-
ered complete. Shortcomings in the current implementation limit the ability to customize the editing model to accommodate
differences between formal and natural language documents, particularly with respect to explicit whitespace and comments
(Appendix C). While coarse-grained compound documents are already available, extensive presentation and semantic anal-
ysis support for multiple structural interpretations (Chapter 7) is incomplete.

Current research efforts involve the construction of additional correctness-preserving transformations (including code
generation by tree transformation), support for non-deterministic semantic attribution, and the extension of the user interface
to provide additional access to document history and change information. Ensemble’s storage model will be replaced in
the future with an object-oriented database. Other ‘programming-in-the-large’ features are needed, including support for
macro languages and a richer model of the translation process itself. Semantic analysis is being extended to support on-
the-fly queries of the program database. Existing language specifications are being revised in accordance with emerging
standards.





Part I

Versioning and History Services
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Chapters 3 and 4 describe the representation of software artifacts in Ensemble. Special attention is given to the problems of
fine-grained versioning and change reporting—the mechanisms by which client services record and communicate updates.
Chapter 3 describes the low-level representation itself, providing a uniform model for creating self-versioning documents.
In Chapter 4 we focus on one particular document type, programs, which will be of central importance to later chapters. This
chapter develops a model for editing and transforming programs and discusses the use of versioning and history services
by the algorithms that maintain consistency between the program’s content and structure. Part II of this report focuses on
the incremental analysis algorithms themselves.





Chapter 3

Efficient Self-Versioning Documents

This chapter discusses methods for producing software and multimedia documents that are self-versioning—they efficiently
capture changes as the document is modified, providing access to every version with extremely fine granularity. The ap-
proach uses an object-based spatial indexing scheme that combines fast access with very low storage overhead. Multiple
tools can extract change reports from these documents without requiring their queries to be synchronized. We describe
and evaluate a working implementation of these ideas, suitable for use in software development environments, multimedia
authoring systems, and non-traditional databases.

3.1 Introduction

Documents based on linked, hierarchical data structures with media content in their leaves are at the core of software de-
velopment environments, multimedia authoring systems, and various types of non-traditional (‘engineering’) database im-
plementations [52]. The management of versions and configurations is essential to each of these domains, requiring the
environment to capture and organize both large-scale and small-scale updates. Coarse-grained changes provide the basis
for release and configuration management and are conventionally handled by a source code control system. Fine-grained
changes are typically managed by the ‘undo’ and recovery activities of an editor. The two levels are combined in our ap-
proach: the timing and granularity of checkpoints is a policy decision.

We build on theoretical results developed for persistent linked data structures to createself-versioning documents. These
documents cache their current contents, just as conventional representations do, but also provide access to previous versions
by recording modifications as they occur and indexing the history of changes. The approach is designed to support high-
bandwidth, fine-grained recording: individual textual and structural modifications as well as complex transformations (e.g.,
incremental compilation) can be treated as atomic updates.

This chapter covers the implementation of lightweight versioned objects and a document representation that utilizes
these objects to provide fine-grained versioning for main memory history logs. The design is object-based: the primary in-
dex for updates is spatial, with each object encapsulating its own history by recording the association between modification
times and values. This is in contrast to the usual design of editor ‘undo’ logs, where the primary indexing method is tempo-
ral (and often limited to a single entry). Our work augments techniques for object caching and off-line storage developed
for object-oriented databases [13] and for multi-user locking and nested transaction support [64].

Recording modifications at this level of granularity requires attention to bandwidth constraints and representation is-
sues: a typical document has many nodes, each containing several versioned fields. Existing methods for capturing doc-
ument updates (such as rcs [91]) are too slow and heavyweight to support fine-grained capture, and lack crucial support
for structural representations and multimedia elements. Our approach is based on efficient methods for producing persis-
tent linked data structures and is fully incremental: current values are accessible in constant time and non-current values in
O(lg jlocal modificationsj) time, with minimal overhead in both cases.

The representation described here has been used as the underlying document representation in Ensemble. Measurements
of this system indicate that less than 4% of its running time is attributable to versioning. Recording a change to most ver-
sioned datatypes requires only 34 additional bits of storage. Caching policies and inlined query methods enable the current
document content to be accessed as quickly as in unversioned documents. Lazy history log instantiation optimizes storage
for unmodified objects.

The interface provided by the versioning scheme is both simple and largely media-independent.1 Objects transparently

1We do not describe multimedia encoding methods; formats such as MPEG are well-known [33], and Section 3.5 describes data structures for versioning
such datatypes as pointers, booleans, and large text buffers.
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Figure 3.1: Document node representation. Each node typically contains both versioned and unversioned fields. The latter
include read-only data and any value whose lifetime is global or restricted to a single update.

record the modifications made to them, stamping each change with the current ‘global’ version number. Each object is
fully persistent (can provide its value for any existing version). Access to the current value is optimized. Self-versioning
documents are built simply by using versioned objects for the edges (link fields) in document nodes. Data fields can be
versioned as well; the nodes themselves retain their identity to simplify reference maintenance. Any version of the document
can serve as the basis for a new version.

In addition to a low-level versioning approach that enables us to record modifications and answer queries about the his-
tory of a document component, we provide a flexible change reporting framework that allows clients to efficiently discover
the regions of a document modified during some time period. The interface supports unrestricted queries, since different
clients will have different needs. (For example, the presentation services will need to update the on-screen image of a pro-
gram after every keystroke, but the user may wish to make several changes before incrementally recompiling the executable
image.) Only a single versioned boolean field per internal document node is required to enable change reporting.

The remainder of this chapter is organized as follows. In Section 3.2 we describe our document model and the client
interface to versioned objects in greater detail. In Section 3.3 we examine two concrete implementations of self-versioning
documents: programs and essays. Section 3.4 describes the run-time representation of the version hierarchy and its role in
grouping updates. The implementation of versioned objects is described in Section 3.5.

3.2 Document Representation and Services

Although versioned objects can be instantiated individually, they most commonly occur as fields within document nodes.
When a graph is constructed using versioned fields, the data structure as a whole will be versioned. Document nodes can
contain other types of versioned data in addition to links. In Ensemble, nodes are instances of C++ classes containing both
versioned and unversioned fields.

For the applications of interest to us, documents are primarily represented as trees, although dags and more general
graph structures can also be modeled. Interior nodes provide structure while terminal nodes typically contain media-specific
content (text, graphics, etc.). (Figure 3.1 illustrates an interior document node.) Information associated with a document
node can be represented as field values, annotations, or entries in a separate database. The relationship between structure,
content, annotations, and database entries may be maintained in whole or in part by automatic mechanisms. In the case of a
program, for example, incremental analysis and transformation mechanisms preserve the relationship between the abstract
syntactic structure, the textual content, and the binary representation of the compiled program. Although multilingual/multi-
media documents are supported both by the model and by Ensemble, in this work we will assume a single language for
the entire document (the structure can thus be described by a context-free grammar) and primarily text-based content.2 We
assume a single current (cached) version for each document, although the techniques can be generalized to support multiple
cached versions.

Our primary applications are highly interactive, requiring incremental algorithms and efficient access paths to all regions
of a document. To guarantee logarithmic access to each document node, we augment the document’s intrinsic structure
with a balanced representation of sequences of document components. Lists of paragraphs, graphical objects, statements,
and so forth are represented internally as balanced binary trees that are incrementally rebalanced at each commit point (see
below). A balanced sequence representation allows both natural and formal language documents to be stored, accessed, and
transformed using efficient incremental services.

In a typical scenario, a document is modified repeatedly using one or more tools. Modifications are grouped by the
client into atomic updates using begin/end edit methods of the global version tree (Section 3.4). Our approach makes no
assumption regarding the frequency of updates; in fact, the finest level of granularity consistent with user expectations and
interactive performance should be provided. When combined with high-performance object-oriented database technology,

2Extensions to the Ensemble document model to support compound documents and a discussion of issues involving multimedia elements and natural
language documents are described by Maverick [65].
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<T> get ()
void set (<T> value)
bool changed ()
bool changed (from_version, to_version)
void alter_version (version_id)
bool had_value (<T> value, from_version, to_version)
bool exists ([version_id])
void discard ()
void mark_deleted ()
void undelete ()

Table 3.1: Interface to low-level versioned objects. Several of these functions are expressed as templates; an instantiation
is provided for each versioned datatype. Arguments in square brackets are optional. Versions are identified by clients using
an opaque type, which is implemented as an integer. (Its value is simply the index of the version in the creation sequence.)

bos eos

token stream

tree

UltraRoot

Figure 3.2: The relationship between the three permanent sentinel nodes and the document’s structure. Two permanent
tokens bracket the terminal yield of the tree, while a third sentinel (the UltraRoot) points to both of these tokens as well
as the current root of the document tree.

the techniques described here enable a seamless integration of source code control, editor undo logging, and filesystem
caching for software documents [34], and a similar degree of support for natural language documents (for which commercial
application programs rarely provide useful history-related services).

The document’s own structure (along with any imposed tree structure for sequences) is used as an ‘implicit’ spatial
indexing scheme for many version-related operations. These operations include answering client change queries (see below)
and altering the version of the entire document, which uses the same change reporting interface internally. Versioned data
fields in document nodes are automatically synchronized with the version of the document as a whole.

Analysis and transformation tools discover document changes by performing a tree traversal that is restricted to only
those areas that have been modified. Queries from different tools need not be synchronized with one another. An individual
node is generally considered changed whenever any of its versioned fields have been modified since the tool’s previous
interrogation. To enable efficient traversal of only the updated regions of a document, tools must also know whether there
are additional changes within the subtree rooted at a given interior node. This nested change information is summarized by
a versioned boolean field in each interior document node that indicates whether the subtree the node roots (excluding itself )
was changed. These bits provide a ‘trail’ to all the local changes for every version of the document.3 Nested change bits
are ignored during local change queries and are cleared prior to each document update. Unchanged values are not explicitly
recorded for any datatype; storage for change bits is thus naturally minimized by editing locality. Multiple edit categories
can be supported by using several nested change bits per node.

Table 3.1 contains the basic interface to a versioned object; this API will be described in greater detail in subsequent
sections. The portion of the document node interface relevant to history-based queries and versioning is shown in Table 3.2.
(Functions to handle transient and undefined values and other miscellaneous state management operations are omitted.)

Tools in the ISDE use permanent sentinel nodes to locate starting points in the mutable tree structure. Three sentinel
nodes, shown in Figure 3.2, are used to mark the beginning and end of the token stream (bos, eos) and the root of the
tree (UltraRoot).

To create a program from a textual representation, a null tree corresponding to only the sentinels in Figure 3.2 and an
empty (‘completing’) production for the start symbol of the grammar is constructed. The initial program text is assigned

3Nested change bits represent document transitions rather than document values per se, and thus require specialized query methods. Appendix A
contains the algorithm to compute the status of a boolean object representing nested change information between two points in time.
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bool has_changes([local|nested])
bool has_changes(version_id, [local|nested])

These routines permit clients to discover changes to a single node or to traverse an entire subtree, visiting only the
changed areas. When no version is provided, the query refers to the current version. The optional argument restricts
the query to only local or only nested changes.

node child(i)
node child(i, version_id)

These methods return the ith child. With a single argument, the current (cached) version is used. Similar pairs of
methods exist for each versioned attribute of the node: parent link, versioned semantic data, etc.

void set_child(node, i)
Sets the ith child to node. Because the children are versioned, this method automatically records the change with the
history log. Similar methods exist to update each versioned field.

void discard(and_nested?)
Discards any uncommitted modifications to either this node alone or in the entire subtree rooted by it when
and_nested? is true.

bool exists([version_id])
Determines whether the node exists in the current or a specified version.

bool is_new()
Determines if a node was created in the current version.

void mark_deleted()
void undelete()

Used to indicate that a node has been removed from the tree (or to reverse the decision). undelete can only be
used prior to committing the deletion.

Table 3.2: Summary of node-level interface used by incremental analyses. Each node maintains its own version history,
and is capable of reporting both local changes and nested changes—modifications within the subtree rooted at the node.
The version_id arguments refer to the document as a whole; they are efficiently translated into names for values in the
local history of each versioned object.
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Find root of each deleted substructure.
void process_deletions (NODE *node) {

if (!node!is_new && node!has_changes(local))
for (int i = 0; i < node!arity; i++) {
NODE *old_kid = node!child(i, previous_version);
if (old_kid!exists() && !node!has_child(old_kid) &&

(old_kid!parent() == NULL || !in_tree(old_kid)))
old_kid!handle_deletion();

}
if (node!has_changes(nested))

for (int i = 0; i < node!arity; ++i) process_deletions(node!child(i));
}

Mark contiguous deleted nodes.
void handle_deletion (NODE *node) {

int i;
Copy children so we can mark the versioned objects in this node deleted.
NODE *kids[node!arity];
for (i = 0; i < node!arity; ++i) kids[i] = node!child(i);
node!mark_deleted(); Future calls to node!exists() will return false.
Iterate over kids, checking each one for deletion.
for (i = 0; i < node!arity; ++i)

if (kids[i] && kids[i]!exists())
if (kids[i]!parent() == NULL || kids[i]!parent() == node)

handle_deletion(kids[i]);
else if (!node_in_current_tree(kids[i])) handle_deletion(kids[i]);

}

A node is in the current version of the tree if a retraceable path to the root exists.
bool node_in_current_tree (NODE *node) {

if (!node!exists()) return false;
for (NODE *p = node!parent();

p != UltraRoot && p!exists() && parent!has_child(node);
p = p!parent()) node = p;

return node == UltraRoot;
}

Figure 3.3: Processing deleted nodes. This algorithm locates unreachable nodes—nodes present in the previous version
of the tree but not in the current version—and marks them as deleted. The search is performed in O(d + s lg N) steps for
d deleted nodes, s modification sites since the previous commit, and N total nodes in the new tree.

temporarily as the lexeme of bos. Then a (batch) analysis is performed, which constructs the initial version of the persistent
program structure; all subsequent structure is derived solely through the incorporation of valid modifications.

At commit time, each versioned object that is no longer in use must be placed in a deleted state to indicate the end of
its lifetime. Deleted objects are contained in the set of deleted nodes—nodes present in the previous version but not the
current version. The set of deleted nodes is discovered at commit time by the algorithm in Figure 3.3. It uses the standard
client change reporting interface internally: each structural modification indicates a location from which nodes may have
been removed. Deleted structure is recursively investigated (by traversing the previous structure of the document) until it
merges with retained structure or a leaf node is reached. The mark_deleted()method is invoked on each deleted node.
(Nodes are not deleted in the C++ sense until the document as a whole is discarded or the user indicates that the range of
versions that constitutes a node’s lifetime is no longer needed.)

3.3 Applications

We consider two examples from Ensemble to illustrate self-versioning documents: programs and simple natural language
documents (‘essays’) composed of text and graphics.
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3.3.1 Programs

Each program module is represented as a document; the document’s structure corresponds to the program’s abstract syntax
tree. Tokens are represented by terminal nodes that contain text. (Stream-style comments and explicit whitespace are inte-
grated with the structure of the program; see Appendix C.) Associative sequences, such as declaration and statement lists,
are identified in the grammar using regular expression sequence operators (Section 6.6).

In Ensemble, each character inserted or deleted creates a new version, as does any structural modification applied di-
rectly by the user. More complex structural reorganizations, carried out with the aid of tools, apply multiple changes within
a single version. When the user requests, consistency is restored to the program representation using a collection of incre-
mental analysis/transformation algorithms, which are supplied with the set of accrued changes since their previous invoca-
tion. (The model for editing, analyzing, and transforming programs using language-based tools is discussed in Chapter 4.)

Programs represent a stress case for fine-grained versioning because the structure itself is both large and dense (pos-
sesses a high ratio of nodes to textual content). Analysis and transformation tools that operate on the program (including
such ‘tools’ as editing and presentation services) require precise change reporting in order to avoid time-consuming recom-
putation in their own analysis, and to avoid triggering unnecessary work during subsequent analyses. Incremental syntactic
and semantic analyzers use the query methods provided by the document node interface (Table 3.2) to discover regions
of the program structure that have changed since the previous analysis. Internal details of document nodes and versioned
objects are fully encapsulated from the implementation of these and other tools in the environment.

3.3.2 Essays

Natural language documents are ‘flat’, possessing minimal intrinsic hierarchical structure. As with formal language doc-
uments, a context-free grammar describes the permissible structure of this document type to the environment. Balanced
binary trees are used to represent sequences of paragraphs. Each keystroke or collection of related keystrokes is normally
treated as an atomic update, as are certain ‘compound’ operations, such as splitting a paragraph.

Essays differ from programs by containing multiple media and text strings of non-trivial length.4 The string storage
method must therefore record substring modifications to avoid wasting space and to support fine-grained change reporting.
Such differential storage differs from the state-based ‘snapshot’ recording used for small datatypes, such as links and inte-
gers. Note that object-based graphics can be handled without additional mechanisms, since the attributes of these objects
( location, radius, angle, etc.) can be represented as versioned real numbers, and the set of graphic objects in a figure can be
treated as a sequence.

3.4 The Global Version Tree

Each atomic update creates a new version, derived from its parent version. The global version tree (GVT) captures this
hierarchical relationship among the versions of a document.5 The GVT is materialized in our approach: it provides the
version naming service to document clients and serves as a shared portion of the implementation of the versioned objects.

The GVT also serves as the focus of transactional control. Clients use explicit begin_edit/end_edit methods on the GVT
object to define each version and associate it with a set of modifications. Each call to end_edit indicates a commit point.6

Between the committing of one version and the construction of a new version, clients can use additional GVT methods to
change the cached version. (To simplify the exposition here, we assume a single GVT, a single document, and at most one
version in progress at any time.) The current version becomes the parent of the new version created when begin_edit
is invoked.

Figure 3.4 shows a sample GVT containing five versions. The leftmost tree represents the conceptual GVT; on the right,
its physical realization as a collection of data structures is shown. Each version is named by a unique integer, which indexes
an array mapping ordinal version names to GVT nodes. Within the GVT, chains—linear ‘runs’ of successive versions, each
derived from the previous version—are collapsed. The efficient representation of chains minimizes the size of the GVT
and speeds the calculation of values (other than the current value) within versioned objects. A new GVT node is added as
the leftmost child of its parent. Both pre- and post-order sorted lists of the GVT nodes are maintained to support efficient
‘ancestor-of’ queries.7 Each versioned object’s private history is a subset of the global version tree; an efficient array-based
representation for these local version ‘trees’ is described in the following section.

4In a program, tokens average only a few characters in length [102]; in an essay, however, each ‘token’ typically represents an entire paragraph.
5We do not consider the merging of different versions here. In coarse-grained merging individual versioned objects rarely conflict; in cases where they

do, the resolution is necessarily media-specific.
6Commit-time operations, such as rebalancing sequences and computing the set of deleted nodes, are performed at this time.
7The pre-order sort of the GVT corresponds to the version list in Driscoll et al. [26]. The implementation of these lists is not shown in Figure 3.4.
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Figure 3.4: Global version tree. The version hierarchy is defined by the ancestor relationships between the nodes. The figure
on the left illustrates the conceptual relationships among the versions. The figure on the right shows the actual implementa-
tion, which differs in several ways: the addition of a sentinel version, ordering of the children, compression of linear runs,
and the three sorted lists (pre-order, post-order, and creation-order) to enable efficient name lookup and ancestor-of tests.
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Figure 3.5: Representation of a versioned object. The current_global_version field can typically be eliminated as
an optimization.

As with document structure, a sentinel root node (version 0) is used to simplify the implementation of algorithms that
manipulate the GVT. Version 0 also has a convenient semantic interpretation as ‘pre-historical’ time, which is useful in
bootstrapping documents created from outside sources.

3.5 Implementing Versioned Objects

In this section we describe the data structures and algorithms required to implement the versioned object interface described
in Section 3.2, while meeting the time and space requirements of interactive applications. The theoretical basis for the design
is a corrected version of the ‘fat node’ approach to persistent linked data structures developed by Driscoll et al. [26].

3.5.1 Full-State Storage

Many of the elements of a self-versioning document, such as the links between the nodes themselves, are small datatypes that
are treated as intrinsic values. These datatypes are versioned by recording their values (when changed) at each checkpoint;
the historical representation is conceptually an array of <version, value> pairs. The versioned object itself is implemented
as a pointer to this log, coupled with one or more log indices that denote the current (cached) values of the object. In addition
to the global version identifiers and the values themselves, the log also contains state information, allowing deleted and
undefined object states to be supported. Figure 3.5 illustrates the implementation of a typical versioned object.

A versioned object’s log can be implemented in a variety of ways. Ensemble uses dynamically sized arrays to minimize
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Figure 3.6: Representation of a differential versioned object. In this case, the log entries store deltas, instructions to create
the child version from its parent and vice-versa, instead of values. The current value is cached with the object itself.

space overhead.8 For additional time efficiency, the log can be maintained as a pair of arrays stored in contiguous mem-
ory with an ‘edit gap’ between them. This arrangement is consistent with typical application requirements: documents are
frequently changed at multiple points, but it is less common for the user to back up and begin modifications from a previ-
ous version. To alter the current version of a full-state object, the index field of the object is simply changed to point to a
different value in the log. Section 3.5.3 describes the mapping of global versions to local log indices.

Recall from Section 3.4 that the structure of the global version tree is partially defined by the order of version construc-
tion, which establishes the parent,child relationships among the GVT nodes. The Driscoll algorithm produces a complete
ordering by arranging sibling GVT nodes left-to-right by decreasing version numbers. The log entries are sorted by their
global version fields, ordered according to the pre-order linearization of the nodes in the global version tree. When a new
value is recorded in the object, an additional entry is needed if the version following the current global version in the the
pre-order sort is not already represented in the local log.9

3.5.2 Differential Storage

Some datatypes, such as lengthy text strings, audio and video recordings, etc., are too large to store in full at each checkpoint.
Instead, only the difference from one version to the next is stored. Although representation details vary from one medium
to another, the framework for accessing and manipulating ‘differential’ objects is identical.

As with other versioned objects, the fundamental storage model is a log, in this case recording deltas, rather than com-
plete values, for each changed version. An entry in this log describes how to build the local value associated with a particular
version by applying the stored delta to the object’s value in the parent version.10 Deltas must also be reversible, in order to
build the parent version’s value when the object is in the child version’s state. The current value is cached in the versioned
object itself (Figure 3.6).

To query the object’s value at a different point in time without changing the cached value, a temporary copy is made
and then progressively modified into the target version by applying deltas from the (shared) log.

3.5.3 Projection

The most frequently requested value for a versioned object is its current (cached) value. To produce the value corresponding
to a different time requires mapping the name for the target global version (its position in creation order) into a name for
the local version—an index into the object’s local history log. (This mapping thus projects the global version onto the local
history.) The projected index is the rightmost one such that the global version recorded for that entry is not to the right of
the target version in the pre-order linearization of the GVT. The project algorithm in Figure 3.7 computes this result
efficiently using a logarithmic search of the object’s log, keyed to the global version field.

The compact form of GVT nodes, which collapse linear runs in the GVT, optimizes the comparisons performed by the
projection algorithm in the common case. When two global versions belong to the same GVT node, the pre-order compari-
son is implemented as an integer comparison on the values of the two keys. When global versions belong to different GVT
nodes, the pre-order comparison can be made efficient by representing the GVT’s pre-order sorted list as a data structure
supporting O(1) order queries [25].

8An implementation based on balanced binary trees can be used to guarantee logarithmic access time to each local value at a modest increase in space
overhead.

9Driscoll’s original test for determining the need for a second entry is flawed: i+ < i2 should be replaced with i+ 6= i2. This change prevents incorrect
results in projecting global versions onto the local log; with the change, the correctness proof provided in the original paper is valid.

10Any additional log entries required by the Driscoll algorithm are represented as empty deltas.
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Map a global version to a local version (log index).
int VObject::project (int version) const {
int l = 0, r = RightmostLogIndex;
int x, result;
const GvtNode *gd1, *gd2;
gd1 = gvt!VersionToGvtNode(version);
do {

x = (l + r) / 2;
gd2 = gvt!VersionToGvtNode(versions[x]);
Use integer comparisons within a GvtNode
if (gd1 == gd2) result = version - versions[x];
else result = gvt!PreorderCompare(gd1, gd2);
if (result < 0) r = x - 1;
else if (result > 0) l = x + 1;
else return x;

} while (l <= r);
return r;

}

Figure 3.7: Projection algorithm.

Datatypes that employ full-state storage use the projected index to return the appropriate entry of their value array as the
result. Objects stored differentially require additional computation, since multiple deltas must be applied to the currently
cached value to produce the target value. Repeated calls to project are made as the value computation traverses the
path through the local version tree corresponding to the path in the GVT between the current and target versions. (See the
function alter_version in Appendix A.)

3.5.4 Lazy Log Construction

In a typical application, the contents of the document will be loaded into main memory from a disk or network image
and subsequently modified by the user. For all but the smallest documents, however, many versioned objects will remain
unmodified—their initial value will be maintained until the in-core representation is destroyed. This observation suggests
that a log representation, while appropriate for the general case, adds unnecessary space and time overhead to the majority
of versioned values.

Instead, we optimize space consumption by initially instantiating all versioned objects as single-valued temporary con-
tainers. These are conceptually single-entry logs, but lack the arrays and corresponding overhead. If a temporary object
is subsequently modified, it is first transformed into a normal log containing the (sole) value; the temporary container is
then destroyed, and the modification continues using the newly created log. The use of a temporary representation for a
versioned object can be detected by setting its index field to a negative value.

3.6 Conclusion

We have described self-versioning documents that support fine-grained recording of their modification history using an
object-based mechanism. The approach is useful for representing programs in software development environments, on-
line hypermedia documents, and time-varying data within a database. The techniques are based on an efficient theoretical
model, augmented with special support to make the common cases fast and to minimize overall space consumption. Highly
efficient change reporting is provided by adding a nested change summary bit to internal document nodes. The combination
of intrinsic document structure and a balanced binary tree representation of sequences enables clients of this representation
to achieve incremental performance when navigating or modifying the document.





Chapter 4

Integrating Incremental Analysis with
Version Management

In the previous chapter we introduced self-versioning documents as the basis for a persistent, structured representation of
programs, where the history of changes is spatially distributed throughout the tree. Later chapters describe specific algo-
rithms for maintaining the consistency of the program structure through incremental lexing and parsing.

In this chapter we bridge these concerns. We first introduce the language object model, which extends the basic en-
vironment services with information and algorithms specific to a particular language. We then describe a general model
for editing programs, using the change reporting mechanism supplied by self-versioning documents to inform incremental
analysis tools of the modified areas, which in turn determine the portions of the program that require inspection. Language-
based transformations are themselves captured in the history log, providing uniform reporting and full reversibility of even
the most complex updates.

Changes made by a tool are reported to any subsequent analyses; when such changes involve the program structure,
it is essential that each tool minimize its impact by avoiding unnecessary changes. A strategy of information preservation
through node reuse decreases total response time, saves space in the history logs, and improves the user interface by elim-
inating spurious updates.

4.1 Introduction

In formal language documents such as programs, important subsets of the relationships among content, structure, attributes,
annotations, and database entries are derived and checked automatically. This consistency maintenance is accomplished
through analysis and transformation algorithms, which modify the document by replacing existing components or construct-
ing new components in order to integrate the user’s changes.

Batch compilers read characters from a persistent storage device and construct various temporary data structures to per-
form their work. In an incremental SDE, the program representation serves a dual function: it records the user’s changes
and it serves as the target of the language-based transformation. It is the need for this single data structure to serve as both
the input and output of the transformation that makes the self-versioning document model so powerful: the model provides
efficient, fine-grained access to multiple versions simultaneously.

Ensemble’s analysis and transformation algorithms operate incrementally to provide scalable performance and interac-
tive response times. This fundamental requirement extends to the services used by these tools, specifically the discovery of
changes to the document by the user and the recording of changes made in the course of applying a language-based transfor-
mation. Due to their limited document models and batch tools, conventional software development environments need not
integrate analysis algorithms and history services. In an ISDE, however, the lack of a history mechanism would require ev-
ery analysis tool to track user edits (as well as relevant changes by other tools) and to summarize the set of pending changes
on demand. Our approach generalizes and integrates such ‘change tracking’ services, simplifying the implementation of all
tools and improving overall performance. In addition, the uniformity of change recording and reporting allows any trans-
formation to be undone using conventional editor services. Generic development services, such as computing differences
between versions or checkpointing the current environment state, treat updates identically, regardless of their source.

The self-versioning document framework makes analysis/transformation algorithms easier to implement and to com-
bine. The history interface provided by this framework allows each version of the document to appear distinct, making it
possible for a single tool to read from several versions of the document in order to create a new version without regard to
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Figure 4.1: Class hierarchy for run-time language objects.

the relationship among the versions.1 Using the history mechanism as an inter-tool protocol to report changes encapsu-
lates transformations: the relative order in which tools read and write the document structure is immaterial. The versioning
system also enables a clear separation of functionality: different transformations can be performed at different times and
each can discover the exact set of changed components since its previous execution. There is no a priori commitment to
the number, frequency of application, or relationships among the environment services.

The shared nature of the document representation in an ISDE imposes certain design considerations on the tools that
modify this data structure. Information associated with the document—profiles, hyperlinks, comments, semantic attributes,
and other information crucial to software development—should be preserved across any transformation that does not log-
ically remove the component to which the information is attached. Previous incremental algorithms have largely ignored
this fact, and often generate new structure instead of reusing existing elements. Regeneration fails to preserve user context
(such as debugger breakpoints, comments, and profile information) as well as tool context (cached tool data used for incre-
mental analysis). Although retained information may have additional dependencies that render it invalid in the transformed
document, maintaining the association when possible provides greater flexibility and typically results in better end-to-end
performance and improved user services.

This chapter is organized as follows. We first complete the discussion of document representation by introducing the
language object model: the run-time representation of language services derived from formal specifications. Section 4.3
describes a generalized model of user editing and its integration with incremental analysis algorithms via the change re-
porting service. Section 4.4 discusses the analysis model, in which incremental tools use the history mechanisms to gain
access to multiple versions of the program in order to restore consistency among the document’s components. Section 4.5
discusses the impact of transformations on subsequent analyses and the user, and how information can be preserved through
node reuse.

4.2 Language Object Model

Languages are specified via formal definitions, which are compiled off-line and loaded into the running environment. Lan-
guages are organized into a (relatively flat) hierarchy that permits the relationship between dialects, vendor-specific ad-
ditions, and different language versions to be expressed directly. An explicit hierarchy also provides a clean method for
establishing default behavior for both natural and and programming language documents that can be overridden as needed.
Figure 4.1 illustrates a sample hierarchy; Table 4.1 contains the interface to the base language class.

As in batch environments, certain analyses and transformations are needed by every formal language: lexing, pars-
ing, semantic analysis, etc. These services are complex, more so than in batch systems due to the added complexity of
incrementality. To simplify the description of new languages to the environment and to reuse existing implementations and
correctness proofs, we use generic run-time mechanisms. These take the form of methods associated with the class of for-
mal languages, which implement the language-independent logic for each analysis/transformation tool. Language-specific
customization is produced by compiling a high-level specification meta-language, such as a grammar.2

The language hierarchy enables the replacement of generic analysis services on a per-language basis when some feature
of a particular language renders the generic algorithm unsuitable. Inheritance allows a natural formulation of multiple eval-
uation strategies; for example, Chapters 6 and 7 describe two incremental parsing strategies optimized for deterministic and

1In the absence of an explicit history mechanism, each language-based tool must simulate multiple-version access and non-destructive updates of
unread document structure, complicating its implementation and potentially exposing its internal invariants to other tools.

2Novel descriptive formalisms for presentation and semantic analysis have been developed as part of Ensemble. Meta-language notation for the lexical
and context-free syntax was not a specific focus of our research, which reuses established formalisms [18, 75]. An integrated language specification
language that permits the automated derivation of efficient incremental evaluators remains an area of active research [96].
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<LanguageClass> (filename)
Construct a new instance of a language class by dynamically loading a compiled language specification in the form
of a shared library.

LanguageObject *copy ()
Construct a new instance of a language class by duplicating an existing instance.

String name ()
Retrieve the name of the language/dialect.

String release ()
Retrieve the release (version) number of the language/dialect.

Grammar grammar ()
Retrieve a (shared) copy of the grammar.

void update (ultra)
Restore consistency to the program representation associated with this language object instance by invoking one or
more incremental evaluators.

Table 4.1: Run-time interface to language objects. Additional functionality may be provided for the class of natural or
formal languages. Each language customizes the implementation of the update method by specializing implementations
of the analysis/transformation tools, which may be further refined for individual dialects or versions of the language.

non-deterministic syntax, respectively. The language object model also provides a clean integration with ad hoc procedural
code by permitting it to replace a generated tool.

Once a compiled description has been loaded into the environment, separate instances of the language class are con-
structed for each document expressed in that language. (The language instance is a field of theUltraRoot; see Figure 3.2.)
Every language instance includes instances of each of the language-specific tools, which are applied to the document to pro-
vide the language-based services. Much of the code and data is shared among these instances; for example, all parsers for
the same language share a single copy of the (read-only) parse table. Data structures required for evaluation, such as the
parse stack, are created on a per-instance (and therefore per-document) basis.

Each language instance also shares a copy of the grammar. Since tree nodes are instances of productions, each produc-
tion in the grammar is translated into a C++ class inheriting from a common NODE type. (Terminals inherit from a more
specific class, TOKEN.) These classes are automatically generated when the language description is compiled. Other tools,
such as semantic analysis, can further specialize the representation of productions by adding additional fields and/or meth-
ods [41, 63]. The grammar provides a constructor routine for each production (node class). Information can also be associ-
ated with nodes via annotations or as references from a program database, both of which operate on the generic NODE type
and therefore require no special customization for a particular language.

4.3 Editing Model

We permit an unrestricted editing model: the user can edit any component, in any presentation, at any time. The user’s
changes typically introduce inconsistencies among the program’s components. The frequency and timing of consistency
restoration is a policy decision: in Ensemble, incremental lexing, parsing, and semantic analysis are performed when re-
quested by the user, which is usually quite frequently but not after every keystroke.3 Between incremental analyses, the user
can perform an unlimited number of mixed textual and structural4 edits, in any order, at any point in the program. Incre-
mental performance is not adversely affected by the location of the edit site(s)—changes to the beginning, middle, or end
of the program are integrated equally quickly. The user can also create or modify explicit annotations on document nodes
and, depending on the policy and environment tools, may be permitted to directly update a subset of the semantic attributes
or database entries as well.

3This policy reflects experience showing that re-analysis after every keystroke is unnecessary for adequate performance and the (typically invalid)
results will be distracting if presented to the user [93].

4There are no restrictions on structural updates save that a node’s type remain fixed and that the resulting structure remain a tree. Structural changes
not compatible with the grammar are permitted; special error nodes are introduced as necessary to accommodate such changes (see Section 8.5.1). Each
textual modification is represented as a local change to the terminal symbol containing the affected characters.
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Figure 4.2: Language-based document transformations. This figure illustrates the general form of an incremental anal-
ysis/transformation of a formal language document. The previous version of the document (left) is transformed into the
current version (right) by the application of an incremental tool. Language-based tools, such as incremental parsing, also
require a reference version (top) that represents a state of the document where the structure is consistent. The difference
between the reference and previous versions determines the document components that are potentially reusable. As a spe-
cial exception, the initial analysis of a newly entered program has no reference version, since it represents a batch scenario.
(The version numbers shown correspond to the example in Figure 4.3.)

The self-versioning document model handles all transformations, including both user changes and those applied by tools
such as incremental parsing, in a uniform fashion. Changes made when a tool performs a language-based transformation
are captured using the same history mechanism that records user updates, and propagated to other services through change
reporting. In addition to providing a rational user interface, the integrated treatment of updates provides a novel capability
in the form of full reversibility: the same interface used to undo textual and structural edits can be used to undo the effects
of incremental lexing, parsing, error recovery, and other complex transformations.

4.4 Analysis Model

An ISDE includes a variety of tools for analyzing and transforming programs. The persistent program structure, in the form
of a self-versioning document, is the central data structure shared by these tools.

‘User edits’ are distinguished within the environment as document transformation that are not guaranteed to maintain
the invariants among a document’s components, resulting in potential inconsistencies. When the user chooses to restore
consistency, language-based analysis and transformation tools are applied to restore the maintained relationships by incre-
mentally modifying the document to produce a new, consistent document state.

The history mechanism described in Chapter 3 provides the protocol by which different transformation and analysis
tools communicate their effects. The interaction between analysis-based transformations and history services follows a
general form, illustrated in Figure 4.2. The tool examines (a portion of) the document representation and applies zero or
more changes to restore consistency for the relationships it manages. Destructive modifications of the document structure,
content, annotations, etc., are captured by the history mechanism in the same fashion as user edits. Language-based trans-
formations typically compare the previous state to another consistent state; the difference determines the set of reusable
components. The three document versions are referred to symbolically:

Reference: A version of the program that represents a consistent state (one constructed through an analysis/transformation
that restored consistency).5

Previous: The state of the program immediately prior to the start of re-analysis. This is the version read by the incremental
tool in order to perform its analysis. (The modifications accrued between the reference version and the previous
version determine the potentially reusable material, and thus constitute the inherent limit on incrementality.)

Current: The version being written (constructed) by the incremental tool. This constitutes another consistent version
that can potentially serve as the reference version for a future application of this tool.

The analysis model allows significant flexibility: multiple tools may act cooperatively to produce a new version, or they
may be applied sequentially, producing intermediate (committed) versions that are logically grouped into a compound trans-
formation by the user-level version management interface. Figure 4.3 illustrates a simple example. Two user modifications
(one textual, one structural) are processed by incremental lexical and syntactic analysis. The result can either be commit-
ted or the analysis can continue by applying semantic analysis or other tools before reaching a final result. The resulting
sequence of versions is shown in Figure 4.4. Recall from Chapter 3 that the conclusion of each atomic update sequence is



4.4. ANALYSIS MODEL 29

NUMNUM

list1

stmt1

expr0expr0 IF

stmt0

list0

CALL

s

stmt0

"1" "3"

stmt1

NUM

expr0

NUM
stmt0

IFCALL

"1+2" "3"

s

list1

list0

stmt0

expr0

3a. Initial state of the program: the text and structure are con-
sistent.

3b. After a text edit to the first number (from “1” to “1+2”).
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3c. After a structural edit (swapping the two expression sub-
trees).

3d. After incremental lexing and parsing. Two new nodes have
been created; all others continue to function in their previous
roles.

Figure 4.3: Sample editing sequence, starting from a consistent state, (a). In (d) an intermediate point in the analysis is
shown: incremental lexical and syntactic analysis have completed their transformations to the document structure, and
semantic analysis is now preparing to restore consistency to the semantic attributes. Gray indicates local changes, black
indicates new nodes, and dashed lines indicate paths to modification sites. Figure 4.4 illustrates the sequence of versions in
this example.
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Figure 4.4: Version sequence for Figure 4.3. The starred versions represent consistent states.

indicated by a call to end_edit that commits the changes; once committed, the version becomes read-only.6

Apart from incremental lexing and parsing, which maintain the persistent document structure, the choice to version or
recompute tool-specific data is a policy decision. Placing data under control of the history services causes it to be updated
‘automatically’ if the user changes the current version of the document, but requires slightly more space to represent than
unversioned data. In Ensemble, semantic attributes are cached in unversioned fields; these values are recomputed (on de-
mand) if the current version of the document is changed or when the document structure has been updated since semantic
attributes were last computed.7 Presentation information is also computed on demand, with the exception of explicit user
overrides and attributes set by error recovery (Chapter 8), which are logically part of the document and are therefore repre-
sented as versioned annotations.

4.5 Node Reuse

Within an ISDE, many analysis and transformation tools cooperate to provide incremental compilation and associated en-
vironment services. The overall performance of the environment is therefore affected not just by the speed of a tool’s indi-
vidual performance, but also by the impact of its changes on other tools.8

Minimizing unnecessary updates is especially important for tools early in the ‘pipeline’, specifically incremental lexing
and parsing. These tools have the primary responsibility for maintaining the central data structure in the environment—the
program’s structural representation. Other tools typically establish one or more maps from nodes in this structure to their
internal data, associations which are used during analysis to achieve incrementality. The manner in which the incremental
lexer and parser integrate changes while transforming the program’s structure is thus important. Updates should be precise,
since spurious updates unnecessarily inflate the changed set for subsequent analyses. Reusing a physical tree node instead of
destroying and re-creating it can result in significant savings in time and effort for tools further down the analysis pipeline.9

In the case of semantic analysis in particular, a subset of the node attributes will represent the distributed symbol table;
loss of this information can require significant recomputation time, due to its non-local nature. While node reuse by the
lexer or parser cannot guarantee that semantic or other attributes of a given node remain valid, the destruction of the node
can only increase the cost of maintaining any associated information. Reuse is especially important for nodes high in the
tree (the so-called ‘spine’ nodes on the path from the root of the tree to the modification sites), since such nodes represent
both the major syntactic units of interest to the user and the likely targets for associated tool data.

Node reuse also has a strong impact on the user interface. In a visual presentation of the changed portions of the pro-
gram, inexact or spurious modifications by the environment tools are confusing, since they violate the user’s intuition. Un-
necessary node reconstruction may also discard annotations created by the user, forcing him to manually restore any such
associations. (Such annotations may also be generated by a time-consuming process, such as profiling; failing to reuse nodes
in this setting can result in lost information that is difficult to replace.)

Chapters 5 through 8 discuss specific implementations of reuse techniques in the context of each incremental algorithm
we present.

6The user’s view of versions may be distinct from the sequence of low-level commit operations. Multiple versions may be grouped into a single ‘logical’
version, which appears to the user as an atomic update. In particular, separating the transformations of multiple tools applied in succession allows their
effects to be distinguished: each change will be ‘tagged’ with the version in which it occurred, uniquely identifying the authoring tool.

7Thus the reference version for semantics is not necessarily the same as the reference version for lexing and parsing.
8With the exception of Larchevêque’s parsing algorithm [58], previously published incremental algorithms have largely ignored tool interaction.
9Additional node reuse also saves space by decreasing the size of the history log, since fewer modifications will be outstanding when the version is

committed.
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4.6 Related Work

Many proposals for handling versioning have been discussed in the database community [52]; the focus has been primarily
on coarse-grained updates and non-incremental tools.

Magnusson, et al. describe the sharing and collaborative framework of the Mjølner project [54, 64]. Our concept of
integrating analysis-based transformations with history services is compatible with such an approach. Our analyses are
designed to maximize component (and information) preservation within structured documents, rather than duplicating paths
as the Mjølner system does.

Document processing systems have explored the role of structure in the context of natural language rather than program-
ming language documents [78]. Our approach provides interoperability with these designs, and also suggests a framework
in which automated transformations (e.g., page breaking) can be considered as first-class edit operations similar to the in-
cremental analysis performed in formal languages.

Fraser and Myers [34] present a single-level storage model for integrating an editor’s undo/redo facility with a source
code control system. They use a text-based model (developed fromvi) where revisions are described in line-oriented terms.
Hierarchical document models are a more natural representation for structural changes and support the specialization of
media-specific updates.

Larchevêque [58] discusses the motivation for component reuse in the context of an ISDE, and describes how the in-
cremental parser for O2 was designed to accommodate this goal. Our parsing algorithm provides both a higher rate of reuse
and better asymptotic performance (Section 6.7).

4.7 Conclusion

This chapter presented a model for editing and transforming structured formal language documents using the self-versioning
representation of Chapter 3. Designing incremental algorithms to operate in this framework exposes their fundamental re-
liance on multiple versions and the relationship between reuse detection and the preservation of document information.
The analysis model permits complex transformations involving simultaneous access to multiple versions of the document.
The integration of fine-grained versioning with incremental algorithms is a novel feature of Ensemble, simplifying the al-
gorithms by extracting common code for detecting and reporting changes, providing full reversibility of any update, and
enabling entirely new services, such as history-sensitive error recovery (Chapter 8).
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Incremental Analysis and Transformation
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Part I established the fundamental representation of documents in Ensemble, and the framework for a language-based anal-
ysis and transformation of programs and other formal language documents. In Part II we focus on the specific algorithms
that operate within that framework. These tools maintain the persistent program structure, establishing consistency between
the structure and content after changes made by the user.

Chapter 5 describes a general model of incremental lexical analysis that improves on existing approaches by generalizing
the language model, while maintaining optimal time and space results.

Chapter 6 investigates the incremental parsing of deterministic syntax. Previous results on sentential-form parsing are
corrected and extended to provide an optimal time and space evaluator. The handling of lengthy sequences in grammar
specification and parse table construction are discussed here.

Chapter 7 extends the language model to include non-deterministic syntax, through a generalization of the abstract syn-
tax tree to an abstract parse dag. Our incremental analysis model is thus capable of describing and evaluating syntactically
ambiguous languages, such as C, C++, COBOL and FORTRAN.

Chapter 8 introduces history-sensitive error recovery, which combines the analyses in Chapters 5 through 7 with the
self-versioning document model to provide a new and powerful method for handling program errors.





Chapter 5

General Incremental Lexical Analysis

In this chapter we present the first fully general approach to the problem of incremental lexical analysis. Our approach
utilizes existing generators of (batch) lexical analyzers to derive the information needed by an incremental run-time system.
No changes to the generator’s algorithms or its run-time mechanism are required. The entire pattern language of the original
tool is supported, including such features as multiple user-defined states, backtracking, ambiguity tolerance, and non-regular
pattern recognition. No a priori bound is placed on the amount of lookahead; dependencies are tracked dynamically as
required. This flexibility makes it possible to specify the lexical rules for real programming languages in a natural and
expressive manner. The incremental lexers produced by our approach require little additional storage, run in optimal time,
accommodate arbitrary (mixed) structural and textual modifications, and can retain conceptually unchanged tokens within
the updated regions through aggressive reuse. We present a correctness proof and a complete performance analysis and
discuss the use of this algorithm as part of a system for fine-grained incremental recompilation.

5.1 Introduction

Batch lexers derive a stream of tokens by processing a stream of characters from left to right. Several tools that facilitate
the construction of such lexers have been devised, including the well-known Unix tools lex [59] and flex [75]. These
tools support an extension of regular expression notation as their pattern set. Each pattern is associated with a rule; in many
problem domains the goal is to partition the character stream into tokens, and each rule typically constructs (part of) a token
from the text matched by its associated pattern.

In some situations, such as in an ISDE, a series of character streams1 are repeatedly analyzed with few differences (rel-
ative to the total number of characters) between one application of lexical analysis and the next. Since each token typically
has a very limited dependence on its surrounding context, the resulting differences in the token stream are typically lim-
ited to the area immediately surrounding each modification site. In this setting it makes sense to retain the token stream
as a persistent data structure and use it to decrease the time required for subsequent analyses. We refer to the technique of
reusing the previous token stream to decrease the time required to produce the new version as incremental lexing; a tool that
performs this transformation is an incremental lexer. We exploit existing technology by combining a specification-derived
batch lexical analyzer with a novel run-time system that provides the incremental behavior.

Our approach has several advantages. No change to the generator’s implementation is necessary. No assumption re-
garding the implementation of the batch lexer is made. No new descriptive formalism is introduced (Ensemble uses the
specification language of flex),2 and very few changes to a given lexical description are required to ‘port’ it to an incre-
mental setting. The resulting incremental lexers exhibit performance competitive with hand-coded implementations.

Our approach is novel in supporting the full expressive power of the underlying tool’s pattern language, including user-
defined states, multiple tokens per pattern match, multiple pattern matches per token, ambiguity tolerance, and unbounded
lookahead. Clean integration with procedural analyses is also permitted on a per-pattern basis.

Our approach also provides extremely fine granularity. By capturing the state of the batch lexing machine at the con-
clusion of each token’s creation and saving it within the token, we are able to restart lexical analysis at any point within
the token stream. Restarting the lexer within a token is unnecessary; although performance is linear in the length of an
individual lexeme, tokens such as whitespace and textual comments can be defined such that newlines or other logical sep-

1In an incremental setting we use the term ‘stream’ to mean the persistent character or token sequence implied by a left-to-right ordering of the terminal
symbols in the program structure.

2The flex specification language is simple, though somewhat low-level. Higher-level or special-purpose lexical specification formalisms can also be
used by transforming them into this formalism.
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arators serve as token boundaries (see Figure C.2), exposing sufficient granularity for incremental lexing without requiring
additional complexity in the generation of the state machine or the size of the token stream.

In general, the mapping between a token and its lexeme is dependent on the surrounding context; a token is lexically
dependent on the set of tokens that establish sufficient context for determining this mapping. A common, though restric-
tive, method for handling lexical dependencies in an incremental environment is to place an a priori bound on the maxi-
mum amount of (textual) lookahead, either by having the language designer provide a limit or by having the lexer generator
compute it through analysis of the lexical description. Either way, the expressive power of the language suffers: any fixed
bound on the length of a dependency may be insufficient for a particular language. Languages with unbounded lookahead
and natural descriptive techniques that similarly lead to unbounded lookahead are precluded by a fixed bound approach. We
remove this restriction by tracking dependencies dynamically, resulting in a more general language model and potentially
faster running times (since the actual dependencies can be used in place of the worst-case assumption).

Dynamic dependencies can be recorded explicitly in tokens at a modest space cost and no asymptotic performance cost.
But even for languages or descriptive techniques requiring potentially unbounded lookahead, the vast majority of cases
involve a token relying only on the following character. For this reason, we can typically avoid explicit storage by using
appropriate implicit values, with the exceptional cases represented using a data structure appropriate for sparse annotations.
The full power of the specification language can thus be used with no performance penalty and negligible additional space
in practice. (For the sake of clarity, lexical dependencies are shown explicitly in the figures in this chapter.)

Our incremental lexing algorithm is optimal, taking O(c+s lg N) steps for s modification sites in a tree containing N nodes
and c affected characters—the lexemes of modified tokens and of tokens lexically dependent on any changed token.3 The
batch lexer is invoked the minimal number of times: once for each token in the updated token stream whose contents, looka-
head, or starting state may have been modified. No additional asymptotic overhead accrues due to the incremental run-time
service; it operates in time linear in the number of old and new tokens containing affected characters.4

In addition to permitting the full expressive power of the underlying batch pattern language and unbounded lookahead,
our algorithm is novel in addressing the problems of mixed structural and textual edits with arbitrary timing of analyses. We
also discuss issues related to the use of incremental lexing within the context of an ISDE, including token reuse, reversibility
of the lexer’s transformation, and error recovery.

The remainder of this chapter is organized as follows. Section 5.2 discusses related work. In Section 5.3 we provide
the background for incremental lexing: the editing model, interface to the batch lexer, and persistent representation of state
and contextual dependency information in the token stream. We also discuss the pass structure of the incremental lexing
algorithm and introduce a running example. The next three sections elaborate on the implementation and analysis of each
pass. In Section 5.4 we discuss the algorithm for combining a set of textual and/or structural modifications and dynamic
dependency information to discover the appropriate starting location of each section requiring lexical analysis. Section 5.5
describes incremental lexing per se as an algorithm that traverses each outdated region to restore the consistency of its text-
to-token mapping. Finally, Section 5.6 discusses the post-pass that updates information recording lexical dependencies.
Each section discusses the correctness and performance of the algorithms it contains. The use of incremental lexing as part
of an integrated approach to incremental software development is discussed in Section 5.7.

5.2 Related Work

Previous incremental environments have largely ignored the problem of incremental lexing by restricting the language
model, the editing model, or the form of lexical dependencies. All previous approaches to incremental lexing require a
static bound on the length of lexical dependencies.

Several monolingual environments have included incremental lexical analysis [23, 83]. These systems only require
sufficient expressiveness for a single language, and do not constitute general solutions.

The Galaxy environment [10] touches every token on any textual modification to the program, and is therefore not an
incremental approach. The Synthesizer Generator [81] limits the user to a single outstanding edit, for which batch lexical
analysis is employed to incorporate a textual modification. PSG [6] permits either textual or structural modifications, but
not both, and halts its incorporation of textual modifications at the first error it encounters, rather than continuing its analysis.
Its lexical generator, Aladin [31], produces incremental lexers that cannot use more than a single character of lookahead.

The Pan system [8] possesses truly incremental lexical analysis, in that an unlimited number of disjoint textual edits
can be applied to the program between analyses, and lexing is then applied only to the out-of-date portions of the program.
However, this system also limits contextual dependencies to a single token.5

3This result assumes a balanced representation for lengthy sequences (such as declaration and statement lists); Chapter 3 explores this assumption in
greater detail.

4Dependency analysis can be super-linear in the number of extant lookaheads; we make the reasonable assumption that this parameter is bounded by
a small constant in any practical description.

5Regular expression notation is used for the pattern language, but many of the language features offlex are not provided. A special-purpose syntax is
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Before:
. . .;
/* check for debugging */ # if(DEBUG==1) . . .

After:
. . .;
/* check for debugging */ if(DEBUG==1) . . .

Figure 5.1: A sample editing scenario used as our running example. The deletion of the # character changes the meaning
of the line by altering it from a preprocessor directive to a sequence of ordinary tokens in C or C++. The edit disturbs the
context surrounding the preprocessor keyword PP_IF, requiring the incremental lexer to replace it with a normal keyword
token (IDENT), even though the lexeme remains unchanged. The lexical specification is shown in Figure 5.2.

The POE environment [32] provides per-keystroke error reporting by using a lexical analyzer capable of stopping and
resuming at any character. This approach does not provide additional functionality relative to our system,6 and actually
decreases performance, due to the additional overhead required.

Other researchers have focused on the problem of incremental generation of batch lexical analyzers, as opposed to incre-
mental lexing [43, 88]. Since language specifications are long-lived and infrequently changed relative to the number and
frequency of changes made to programs written in those languages, we have been more concerned with the speed of the
compile cycle than the speed of the compiler-compile cycle. Nevertheless, an incremental lexical specification for a typical
programming language (C) can be generated in under 3 seconds on a typical Unix workstation and dynamically loaded into a
running environment in under 1/10 second, permitting the development of the lexical specification itself to be an interactive
process, without resorting to incremental or lazy generation techniques.

5.3 Framework and Overview

In this section we discuss the framework of incremental lexing, including the editing model, the representation of individual
tokens and the token stream, and the interface to the batch lexer. This section also introduces our running example and
concludes with an overview of the pass structure of the incremental lexical analysis algorithm.

5.3.1 A Running Example

Figure 5.1 contains the original and modified program text that serves as our sample editing sequence. The code fragment
shown is in the preprocessor language used by C and C++. The user has modified the text in order to delay the choice be-
tween normal and debugging mode to run-time. (Previously it was decided at compile-time, requiring the use of a prepro-
cessor conditional.) The lexical description in Figure 5.2 uses flex’s notation [75] to specify a portion of the tokenization
required by the preprocessor language. No previously published work or existing environments supporting incremental lex-
ing can correctly implement this combination of language features and editing sequence. Our approach not only supports
this transformation, but does so optimally.

5.3.2 Token Representation

Incremental lexing is the incremental maintenance of the mapping between a text (character) stream and a token stream.
Each character belongs to exactly one token, and the lexer must partition the textual stream by locating the inter-token
boundaries and assigning a type to each resulting lexeme. We will assume that the mapping from a token to its lexeme
is explicit and computable in constant time. Tokens persist until deleted explicitly through editing or implicitly when an
invocation of incremental analysis fails to retain them in the resulting token stream. Tokens are created by the batch lexer;
if the editor explicitly constructs tokens, it must ensure the correctness of their fields or consider them as outdated portions
of the stream. The sentinel nodes bos and eos(Figure 3.2) are treated as the first and last elements, respectively, of the
token stream. Figure 5.3 summarizes the internal representation of a token; the incremental fields are described below.

available for describing nested comment conventions (which would otherwise be inexpressible). Our approach supports non-regular patterns in a general
fashion, by permitting arbitrary code to be used in the construction of tokens.

6While it is not our belief that character-by-character analysis is beneficial to the user, our approach can be used to implement this policy simply by
requesting consistency restoration following every keystroke.
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Attach symbolic names to regular expressions.
whitespace [ \t]*
comment "/*"([ˆ*]|"*"[ˆ/])*"*/"
ident [_a-zA-Z][_a-zA-Z0-9]*
intconst [1-9][0-9]*
Declare each user-defined state.
%start pp_directive
%%
Patterns: Rules:
{comment} return CMNT();
{whitespace} return WS();
\n BEGIN(INITIAL); return WS();
ˆ/({whitespace}|{comment})*# BEGIN(pp_directive);
<pp_directive>if return PP_IF();
"#" return PND();
"(" return LP();
{ident} return IDENT();
"==" return EQEQ();
{intconst} return INTCONST();
")" return RP();
Collect contiguous, otherwise-unmatched text into an error token.
. error();
%%

Figure 5.2: A partial lexical specification for our running example, using the notation offlex. The specification establishes
a set of patterns, composed of regular expressions for identifying lexemes, and corresponding rules that indicate which
token class to construct for each pattern. (Rules can also change the current state using the BEGIN directive.) The notation
<state> restricts a rule’s applicability to the named state. INITIAL refers to the machine’s normal state. / indicates
trailing (right) context that is required to match the pattern, but that is not part of the lexeme. A caret at the beginning of a
pattern indicates that the pattern is only active when preceded by a newline or bos.

struct TOKEN {
int type; Token type (class).
STRING lexeme; Token’s text.
NODE *parent; Parent in tree.
Fields used and maintained by the incremental run-time mechanism:
int state; State of lexing machine when the token is constructed.
int lookahead; Number of characters read beyond lexeme.
int lookback; Earliest preceding token whose lookahead reached lexeme.

};

Figure 5.3: Representation of tokens. The type field is set once, when the token is constructed. The parent field is
used by the editor to maintain a balanced tree representation. The lexeme and state fields are set when the token is
constructed and maintained thereafter by the incremental run-time service, which also maintains the dependency-related
fields. In practice, the incremental fields are represented implicitly, but for clarity we include them here.
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Functions exported by the batch lexer:
int get_state ()
void set_state (STATE state)
list of TOKEN* more_tokens ()

Functions called by the batch lexer:
int next_char ()

Figure 5.4: Interface to the batch lexing machine. The primary connection is through the function more_tokens, which
constructs an atomic token sequence (Section 5.3.5) and returns it. Two new operations are required of the batch machine
when it is used in an incremental setting: get_state and set_state. These have no counterpart in batch analysis; they
are used to record the current state when a token is constructed and to place the batch machine into a preserved inter-token
state in order to re-start it at a location other than the beginning of the token stream. The next_char function is provided
to the batch lexer by the incremental run-time service: it uses the lexemes of the persistent token stream to provide the input,
as opposed to the buffering and file I/O used in a conventional batch setting.

5.3.3 Lexical Analysis Model

Explicit editing of both text and tree structure is permitted, with an unlimited number of edit sites and arbitrary timing in
the application of lexical analysis. Both textual and structural editing will, in general, temporarily violate the consistency
between tokens and their lexemes; invoking the incremental lexer will restore consistency.7

Since the editing model is fully general, the exact form of various operations is immaterial. A textual insertion between
two tokens, for example, can be recorded as an insertion to the end of the earlier lexeme,8 as an insertion to the beginning
of the latter lexeme, or even as a structural operation that introduces a new ‘placeholder’ token between them. (Deleting
the entire lexeme of a token offers a similar variety of representation choices.)

The incremental lexing algorithms as we present them make use of the ability to operate on multiple versions of the
program simultaneously (Chapter 4). The order of the characters between the previous and current versions remains un-
changed, but the token types and boundaries will, in general, be different. The lexemes of the previous version supply the
input to the batch lexer. The regions requiring re-analysis are determined by the textual and structural edits applied since
the reference version (along with additional areas dependent upon them, as discussed below).

5.3.4 Batch Lexer Model

The model of the batch lexer is represented by the interface in Figure 5.4. The incremental run-time system uses the batch
lexer as a subroutine, calling more_tokens to produce the next token sequence. The incremental lexer provides the batch
lexer with the next_char function to read characters from the lexemes of the previous token stream.

Reusing a batch lexer in an incremental environment requires addressing two additional issues: the ability to restart the
batch machine at a point other than the beginning of the character stream (when it is in theINITIAL state) and the contextual
dependencies that result when the batch lexer calls next_char to read characters beyond a token’s own lexeme.

5.3.5 Preserving Lexing States

The state field in each token is used to preserve a snapshot of the internal configuration of the batch lexing automaton.
At the conclusion of a rule that constructs a token, the constructor will call get_state to read the state of the lexer and
preserve it in the token. At some later time, this preserved state information will permit the incremental run-time service to
restart analysis immediately to the right of this token by passing the saved state to the set_state function.

Our approach does not specify the form of the state information, but does assume that it is small enough to be con-
veniently recorded in each token and that it can be passed to/from the batch lexer in constant time using the functions of
Figure 5.4. flex and lex, for example, both require only a small integer to record an inter-token state (referred to as the
‘start state’ in those generators). Since any user-defined states have already been incorporated into the start state by the
generator, no additional run-time mechanism is required to support this feature of description languages.9 The beginning
state (called INITIAL in flex) is stored as bos’s state.

7Note that consistency is distinct from correctness: a consistent program may contain textual sequences not permitted by the language definition (‘er-
rors’). Section 5.7.3 discusses the representation and handling of lexical errors.

8This is the representation used in Ensemble. Insertions at the beginning of the program are added to the ‘lexeme’ of bos.
9One feature provided by some lexical description languages is the ability to define patterns exclusive to a particular user-defined state. If a particular

pattern can occur in multiple, exclusive states and the state no longer matches, a token must be re-created in order to re-label its state. While this behavior
is optimal with respect to the description (and the techniques of Section 5.7.1 can restore the original token), improved incremental performance would
be obtained by modifying the description to create an equivalence class for the patterns common to multiple states.
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In our example, there are two states, one for handling preprocessor directive lines and another (the normal state) for
processing tokens in the base language. The presence of a ‘#’ character after a newline with only whitespace or comments
between them signals the start of a preprocessor directive. Once in the preprocessor directive state, another newline signals
the shift back to the normal state.

The relationship between patterns in the lexical description and lexemes is not necessarily straightforward. Multiple
pattern matches (and their corresponding rule invocations) may be required to construct a single token, in which case only
the state at the conclusion of the final rule needs to be preserved. Multiple tokens may also be constructed from the text
matching a single pattern, in which case all the tokens involved are returned simultaneously from more_tokens. The
alternative, returning a single token for each invocation of the batch lexer, requires an additional interface function to inform
the incremental service when the batch lexer has reached a consistent stopping point.

Arbitrary code may be used during the construction of a single token. This seamless integration between generated anal-
ysis and user-supplied procedures is useful in constructing tokens that have non-regular syntax, such as nested comments,
or for complex patterns where standard library code exists, such as floating point constants. Rules that construct (pieces
of) different tokens may not communicate except by contextual dependencies that are reflected in the lexical description.10

Doing so would introduce additional dependencies not visible to the incremental run-time service, and would thus result in
incorrect incremental behavior.

This restriction can be relaxed by permitting a contiguous sequence of tokens to be treated as a single entity for the
purposes of incrementality. The incremental lexer will be unable to restart analysis within such a sequence and it will require
the batch lexer to reconstruct it (when necessary) in its entirety. However, as long as such regions are kept reasonably
short, this represents a useful technique for constructing contiguous token sequences using unrestricted techniques without
a significant loss of incremental performance. Each token in such a sequence except the final one will possess a special state
value that indicates it is not a valid starting position.

5.3.6 Computing and Using Lookback Counts

To construct a token, the lexer must scan at least the characters of that token’s own lexeme. In some cases, this is sufficient—
parentheses are a simple example where the text of the token is sufficient to determine its right boundary. In many cases,
however, at least one additional character beyond the end of the lexeme must be examined to detect that the lexeme is com-
plete. For example, identifiers in most programming languages can be of arbitrary length, and the lexer can only be certain
that an identifier is complete when it encounters a character not in the legal set of identifier spellings. In general it is not even
possible to place a compile-time limit on the number of characters (or even the resulting number of tokens) of lookahead
involved; doing so will artificially restrict the set of languages that can be described or the instances of those languages that
will exhibit correct incremental behavior.

In a batch environment, the need to support lookahead affects buffering and I/O operations but not token construction. In
an incremental setting with a persistent token stream, lookaheads must be preserved within tokens, because this information
helps to provide the link between modifications made by the user and the set of tokens that require re-analysis when the
incremental lexer is next invoked. Previous approaches have all used a simple, restricted scheme: a token’s lookahead
set is required to lie within its own lexeme and the characters of the following token. This restriction results in a trivial
relationship between modifications and re-analysis: each modified token and each token that precedes a modified token
requires re-analysis.

While the one-token dependency assumption is valid for many languages, it is not always sufficient, as our running ex-
ample demonstrates: the lookahead of the newline token spans several lexemes. Our approach supports arbitrary lookahead
by computing and maintaining dynamic dependency information. Contextual dependency information is stored within the
tokens themselves, using the lookahead and lookback fields shown in Figure 5.3.

The lookahead is computed by monitoring the batch lexer’s calls to next_char and the length of the resulting tokens
it produces.11 The batch machine itself does not need to be modified in any way. The character read set is the number of
characters read by the batch lexing machine during the construction of a token; by subtracting the length of its own lexeme,
we derive the character lookahead—whenevera character in this range is disturbed through textual editing (insertions, dele-
tions, or overwrites) or structural editing, the token just constructed must be re-analyzed, since it might not be constructed
in the same fashion given the possibly changed text to the right of its lexeme. Figure 5.5 illustrates how the incremental
run-time system computes a token’s lookahead set from the construction and read locations in the previous version of the
token stream.

10Either left context, in the form of a specific state, or right context, in the form of lookahead as discussed in the next section. Long-range dependencies
such as name binding [45] are outside the purview of incremental lexing, and we will never mean this type of relationship when we use the term ‘contextual
dependency’.

11Some generators require a special option to indicate that minimal lookahead is to be used. Such flags should be used to generate the best possible
performance in an incremental setting.
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token stream

token stream
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current (new)

lookahead
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Figure 5.5: Extracting lookahead information from the batch lexer. By monitoring the difference between the construction
location (the start of a re-lexed token) and the read location (the rightmost character examined by the batch lexer through
a call to next_char), the incremental run-time system can determine the length of the character read set. The lookahead
is the difference between this value and the length of the token. (Because the token boundaries in the new stream are not
necessarily related to those in the previous stream, locations are <token, offset> pairs.)
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Figure 5.6: The relation between the characters read to produce a token and the resulting token lookback counts. Lookahead
sets are shown in the figure as horizontal lines. During the dependency update phase, lookahead sets are converted into token
lookback counts, shown at the bottom of the figure.

Token lookback counts are used to summarize and invert the information contained in the character lookaheads of pre-
vious tokens. Token lookback counts represent the previous tokens that are dependent on one or more characters of a given
token: if a token t has a lookahead that reaches y, then y’s lookback is sufficient to reach t. Lookback counts are necessary as
well as sufficient: no lookback count can be reduced without violating correctness. Figure 5.6 demonstrates the relationship
between lexemes, lookahead sets, and lookback counts in our running example.

The advantage of permitting unbounded token lookahead is the ability to reuse natural lexical descriptions in an incre-
mental setting. However, most token lookahead and lookback counts in a program written in a conventional programming
language will be zero or one. We can choose conservative implicit values for the character lookahead and token lookback
values that cover the vast majority of tokens. This choice reduces the space requirement to that of a fixed dependency ap-
proach without loss of performance—at worst we will re-lex a fixed number of additional tokens for each modified token
sequence. (The techniques of Section 5.7.1 can prevent loss of conceptually retained tokens in this case, so there is truly
no penalty for the implicit representation.) The exceptional cases can be represented via an associative data structure. In
the case that inter-token states are predominantly a single value, a similar technique may used to effectively eliminate the
entire space cost of incrementality.

The computation of lookback values requires special handling for eos. Even though it possesses no explicit lexeme,
the detection that no further text is present represents a type of lookahead information. Thus, we treateos as if it contained
a single character; any preceding tokens which read and detect the end-of-stream condition include this pseudo-character
in their lookahead sets. The translation to a lookback count is then treated uniformly by the algorithm in Section 5.6.

5.3.7 Overview of the Algorithm

Incremental lexing begins with a tree where all the nested and local changes have been identified; together these form a set
of paths defining an embedded tree structure within the larger tree. There are three main stages to the analysis. In the first
stage (marking), the dynamic dependencies of the previous token stream are combined with the embedded change tree and
used to discover the prefix set, the set of tokens that begin each contiguous region requiring re-lexing. Having expanded
the embedded change tree to incorporate this lookback set, the second stage (lexing) then traverses each out-of-date region
until the new and old token sequences once again coincide. In the third stage (dependency updating) the embedded change
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Figure 5.7: The effect of a textual edit on incremental lexical analysis. This figure illustrates the marking process when
the # character is deleted in our running example. The bottom row in each token contains the preserved state (‘P’ denotes
the pp_directive state), lookahead count, and lookback count while marking is in progress. The token containing the
modification and the path from it to the root of the tree are shown in black. The lookback count in the modified PND token
is used by the marking routine to discover the set of tokens affected by this change; these tokens and the additional interior
tree nodes required to locate them are shown in gray.

tree (updated once again from the results of the second stage) is traversed a final time to update dynamic dependencies for
each token created by phase two and any unchanged tokens that were examined. (If the range of lexical dependencies is
fixed to an a priori value, the final stage is simply omitted.)

The three passes are conceptually distinct, although they could be applied simultaneously during a single traversal of
the tree. Ensemble uses explicit passes both for simplicity of implementation and because a single-pass implementation
would greatly complicate the interaction with incremental parsing. Separating the passes does not degrade asymptotic or
practical performance.

Our incremental lexing algorithm can be used as a subroutine of incremental parsing, producing a single token (or atomic
token sequence) on each call.12 The client interface to the incremental lexer consists of the subroutines in Figure 5.11, which
support starting and stopping on a region-by-region basis. (Normally, each invocation of first_new_token (other than
the first) is for a location to the right of the previous re-lexed token, but regions guaranteed not to overlap may be processed
in any order.)

5.4 Marking Phase

In order to re-lex the token stream efficiently, we need to know the starting point of each outdated region. These regions
comprise the tokens that have received direct modifications, either through textual edits or by modification of the tree struc-
ture. The affected regions also include any tokens that are lexically dependent on one or more modified tokens.

5.4.1 Effect of Textual and Structural Editing on Dependencies

It is easy to see how a textual edit affects token dependencies: if a character is inserted to, deleted from, or overwritten
within a token, then the token’s lookback field gives the number of preceding tokens that must be considered suspect.
Figure 5.7 illustrates the particular case of our running example.13 No interaction with the incremental lexer is required at
the time of the edit; when lexing is next requested, the current structure of the tree is used, in conjunction with the lookback
counts computed when the reference version was constructed, to determine the extent of the effect.

Structural edits are more complex to handle (and also complicate the situation for text editing by potentially re-arranging
the order of tokens). While it is possible to treat a structural edit as a textual edit that modifies every token in the yield of
the subtree, doing so would require O(N) time to analyze a subtree containing N tokens. Instead, we perform a precise
computation of the possible effect of the change through history-based dependency analysis.

12As described in Chapter 4, the update operations of the lexer and parser occur to a logically separate tree from the version being read; thus both tools
are able to traverse the previous structure of the program even though the current version of the program structure is invalid during the re-analysis.

13Slightly greater theoretical precision can be achieved by also using the lookahead fields: not all the tokens in the lookback set necessarily reach
the modified token, and those that do reach it typically depend only on its left edge. However, this level of precision does not improve the asymptotic or
practical performance, and requires knowledge of intra-lexeme modification sites.
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Figure 5.8: The effect of subtree replacement on incremental lexical analysis. For each replaced subtree, the lookback count
in its leading token is used to determine the set of tokens affected by the edit. Both the structural traversal and the depen-
dency analysis are with respect to the reference version. The same analysis is done for the token immediately following the
replaced subtree, in order to include tokens within the subtree that are now out-of-date. (For insertions, the first step can be
skipped; for deletions the latter step.)

Each structural operation is treated as a replacement; insertions replace a sentinel (completing production) with new
material and deletions replace a subtree with a sentinel. The dependency analysis for a structural edit is similar to a modi-
fication of the first character in the subtree being removed and the first character following the subtree. More specifically,
for each replacement point, the first token in the subtree (if one exists and if it existed in the reference version of the tree) is
used to invalidate tokens with lookahead sets that reached it. The tokens affected are determined by traversing the reference
token stream, not the current one. The token following the subtree replacement point is treated similarly. No other tokens
can be affected by this subtree replacement, since their lookahead sets were not disturbed by it. The effect of structural
editing is shown schematically in Figure 5.8.

5.4.2 Algorithm

Marking is the process of discovering the prefix set, the set of tokens that prefix each region requiring action by the in-
cremental lexer. The input to this phase is a tree where all tokens and internal nodes modified since the last analysis are
marked. (We refer to the modified nodes as ‘implicitly’ marked and the additional tokens discovered by this phase as ‘ex-
plicitly’ marked.) In order to locate the modified areas of the tree efficiently, each interior node on a path to one or more
modified nodes is identified as possessing nested changes; additional nested changes are added as needed for later passes
to locate the explicitly marked tokens.

The driver for the marking phase traverses an optimal path through the tree that reaches each edited site. For internal
nodes (structural modifications), it first locates the tokens that may have been affected by the subtree replacement. Each
implicitly marked token is then passed to a marking routine that discovers additional tokens dependent upon the changed
material by using the dynamic dependency information in the lookback fields of the modified tokens.

Since the state field of each token records the batch lexer’s internal state at the completion of a rule, the incremental
lexer will pass the state saved in the token before the first affected token in each region to the batch lexer’s set_state
function. One complication is that only startable tokens (the final token of each sequence returned by more_tokens) can
serve as valid starting points. For each marked token, we must therefore step backwards in the current version of the tree
until we find a node whose state field indicates a valid point for re-initializing the batch lexing machine. (In practice, this
is typically the previous node.) Because the nodes marked by mark_from are not necessarily contiguous in the current
tree, ensure_startablemust be applied to each marked node. Figure 5.9 contains the entry point to the marking phase.

The following theorem demonstrates the correctness of the marking phase (the extension to multiple-token sequences
is straightforward).
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Locate all the edit sites within node.
Call mark_from() on each edited terminal and the boundaries of each structural edit.
void apply_marking (NODE *node) {

if (is_token(node) && node!text_changes(reference_version))
mark_from(node); Handle textual changes.

else {
Handle structural changes.
if (node!child_changes(reference_version))
for (int i = 0; i < node!arity; i++) {
NODE *old_child = node!child(i, reference);
if (old_child != node!child(i)) {

Mark first token not earlier than the leading edge of the original subtree.
mark_from(first_token(old_child, reference_version));
Mark first token after the original subtree.
mark_from(first_token_after(old_child, reference_version));

}
}

Recursively process any edits within this subtree.
if (node!has_changes(reference_version, nested))
for (int i = 0; i < node!arity; i++)
apply_marking(node!child(i));

}
}

Figure 5.9: Driver routine for marking algorithm. This routine locates all modifications (both textual and structural) ap-
plied since the previous invocation of lexical analysis. first_token returns the first token in the yield of its argument
concatenated with the remainder of the token stream. first_token_after is similar, but returns instead the first token
after the yield of its argument node. All functions that access structure have an optional argument to specify the version of
the tree used for the query.

Explicitly mark tokens dependent upon tok for re-lexing.
This backup occurs in the reference version.
void mark_from (TOKEN *tok) {

if (!tok!exists() || !tok!exists(reference_version)) return;
ensure_startable(tok);
Check everything in its lookback set.
for (int ov = tok!lookback; ov > 0; --ov) {
tok = previous_token(tok, reference_version);
if (tok == bos) return;
if (!tok!exists() || marked(tok)) continue;
mark(tok);
ensure_startable(tok);

}
}

Ensure that we have a valid state to re-start the lexer here.
This backup occurs in the current tree.
void ensure_startable (TOKEN *tok) {

for (TOKEN *tok2 = previous_token(tok);
!startable_state(tok2) && !marked(tok2);
tok2 = previous_token(tok2)) mark(tok2);

}

Figure 5.10: Marking algorithm. All tokens from the reference version that are still present in the token stream and that
read one or more characters in tok’s lexeme are explicitly marked. In addition, the algorithm ensures that the batch lexer
can be restarted at the beginning of each outdated region by calling ensure_startable for both tok and any explicitly
marked tokens.
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Theorem 5.4.2.1
The marking algorithm marks all and only those tokens requiring re-analysis that are not themselves modified.

Proof To see that this test is sufficient, suppose there exists a token t with at least one modified character in its lookahead
set. If the character is within its own lexeme, then t is marked by the modification itself. If the character was in a different
token modified through a textual edit, then the token that contained it must have had a lookback field at least large enough
to encompass t, and mark_from would thus have marked t. The only remaining possibility is that the altered lookahead
arose through a structural edit. In this case t was separated from a token containing one or more characters in its lookahead
set through a subtree replacement. Without loss of generality, assume that t was to the left of the original replaced subtree
in the reference version. Since t’s lookahead set extends into the left edge of the subtree, the marking algorithm must have
included t in the set of tokens marked when this structural edit point was processed. Hence t is actually marked.

To see that the test is also necessary, we merely observe that any explicitly marked token had at least one character in
its lookahead set modified through one or more editing operations since the previous lexical analysis.

With regard to running time, marking per se examines only old tokens containing affected characters. It is thus linear
in the number of affected characters and affected tokens and clearly optimal.

5.5 Lexing Phase

Lexing is the process of repairing a contiguous region of affected characters by reading the (possibly changed) lexemes from
the previous token stream and invoking the batch lexing machine to re-create that portion of the new token stream. Lexing
is applied to each outdated region in turn, beginning with the next token in the prefix set not yet visited. In order to stop
lexing a region, we must ensure that the construction location (Figure 5.5) is at the beginning of an unmarked token and
that the last newly lexed token contains a startable state matching the state in the previous token of the previous stream.

The routines comprising the lexing pass are shown in Figure 5.11. These routines can also be called directly by an incre-
mental parser. Figure 5.12 illustrates the use of these routines by implementing the lexing phase as a standalone operation.

Theorem 5.5.1
At the conclusion of the lexing phase, the token stream is identical to the token stream that would result from executing the
same batch machine on the concatenation of the lexemes. Furthermore, each token records the state of the batch lexing
machine at the point of the token’s construction.

Proof The correctness of the marking phase and batch lexer are assumed. We proceed by induction over the token stream
as it exists immediately prior to the start of the lexing phase. The base case is simple: the beginning of stream markers and
initial lexical states are clearly the same in both the batch and the incremental streams.

For the inductive case, assume that the lexemes of the preceding N � 1 tokens have been correctly lexed and that the
internal state of the batch lexer is the same in both cases. If the current token is unmarked, then the state of both machines
is equivalent, the characters of the token’s lexeme and lookahead set are unchanged from the previous invocation, and thus
the old token may be safely reused (and the state with which it is labeled corresponds to the state of the batch machine at
the conclusion of the rule creating the token).

If the current token is marked, then the batch lexers will read the same set of characters in the same state, and thus
produce the same stream of tokens until the stopping condition obtains. At this point, the next character to be consumed and
the state of the batch lexing machine correspond to the ‘leading edge’ of an unmarked token in the old stream, completing
the inductive step.

This phase touches only old tokens that are marked, for which the starting state or offset has been changed, or that are
part of a previous atomic sequence. The number of invocations of the batch lexer (and number of tokens examined in the
new stream) is therefore optimal and is clearly linear in the total number of affected characters.

5.6 Lookback Update Phase

When the lexing phase completes, all the fields in each token in the stream are correct with the exception of the lookback
counts. The lookback field will be undefined for each token produced by either first_token or next_token. In
addition, newly constructed tokens may have read characters from lexemes in unchanged tokens. (Conversely, they may
have failed to read as far as previous analyses did into the unchanged region.) The lookback phase handles both types of
updates.14

14It is possible to perform this update in parallel with the lexing phase, but doing so greatly complicates the algorithm. When lexing is performed in
parallel with incremental parsing, on-line dependency updating is even more difficult, since the new tree structure is fragmented until parsing completes.
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Begin incrementally lexing a new region starting at tok.
TOKEN *first_new_token (TOKEN *tok) {

read_token = construction_token = tok;
read_location denotes <read_token, read_offset>;
construction_offset = read_offset = 0;
construction_location denotes <construction_token, construction_offset>;
if (tok == bos) batch_lexer!set_state(INITIAL_STATE);
else batch_lexer!set_state(previous_token(tok)!state);
token_list = ;;
return next_new_token();

}

Return the next re-lexed token.
TOKEN *next_new_token () {

if (token_list == ;) token_list = batch_lexer!more_tokens();
for each tok in token_list {
if (tok is last element) tok!state = batch_lexer!get_state();
else tok!state = unstartable_state;
advance(construction_location, tok!length);
tok!lookahead = delta_in_chars(read_location, construction_location);

}
return last_token = remove first token in token_list;

}

Determine when previous and current token streams merge again.
bool can_stop_lexing () {

return
token_list == ; && construction_location.offset == 0 &&
!marked(construction_location.token) && is_startable(last_token!state) &&
last_token!state ==

previous_token(construction_location.token, previous)!state;
}

Incremental run-time service provides this to batch lexer to read from
lexemes in the previous version of the token stream.
int next_char () {

while (read_offset == read_token!length && read_token != eos) {
read_token = next_token(read_token, previous_version);
read_offset = 0;

}
if (read_token == eos) return -1;
return read_token!lexeme[read_offset++];

}

Figure 5.11: Lexing algorithm. The input to this algorithm is a marked token stream. The output is a (possibly changed)
token stream that is identical to one produced by executing the batch lexer on the concatenation of the previous stream’s
lexemes. The next_subtree function returns the node following its argument’s rightmost descendant in a DFS ordering.
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Restore consistency to the entire token stream.
(Operations to incorporate tokens into the tree structure are not shown.)
void lex_phase () {
for (TOKEN *tok = find_next_region(root);

tok != eos;
tok = find_next_region(tok)) {

tok = first_new_token(tok);
while (!can_stop_lexing()) tok = next_new_token(tok);

}
}

Find the next marked token within or after node.
TOKEN *find_next_region (NODE *node) {
if (node == eos || (is_token(node) && marked(node))) return (TOKEN*)node;
if (node!has_changes(nested)) return find_next_region(node!child(0));
return find_next_region(next_subtree(node));

}

Figure 5.12: Driver routine for the lexing phase, when used in a standalone fashion. Incremental lexing can be intermixed
with parsing by having the incremental parser call the routines in Figure 5.11 directly.

Region Token Lexeme Length Lookahead list
re-lexed WS1 \n 1 <WS1,28,0>

WS2 1 <WS1,27,1> <WS2,1,0>
CMNT /*...*/ 25 <WS1,2,2>
WS3 1 <WS1,1,3> <WS3,1,0>

IDENT if 2 <IDENT,1,0>
synching LPAREN ( 1 <LPAREN,0,0>

Figure 5.13: Updating lookback counts in a section of the token stream. The bootstrap section is empty in our running
example, so processing begins with the first re-lexed token (the newline). We maintain the invariant that the list of lookahead
sets contains all and only the lookaheads that reach the lexeme of the current token. When we finish processing lookaheads
for re-lexed tokens and find a match between the computed and stored lookback counts, the region is complete. In the
example, this occurs when the left parenthesis is encountered.

5.6.1 Algorithm

During lexing, the character lookahead set for each token is preserved in its lookahead field at the time the token is con-
structed. The lookback update phase consists of transforming these character lookahead counts into token lookback counts.
The algorithm’s central data structure is a character lookahead list that keeps track of multiple outstanding lookaheads. As
each token is processed, its character lookahead is added to this list and any lookaheads that terminate within this token’s
lexeme are removed from the list.

The lookahead sets for our running example are shown graphically in Figure 5.6. When the comment token is processed,
one lookahead is removed (the preceding whitespace token) and one remains (the newline token). The comment token itself
has no lookahead, so no entries are added. Figure 5.13 shows the lookahead list immediately after processing each token.

Each region is processed in three parts: a bootstrap section, a re-lexed section, and a synchronization section. For the
middle section, composed of the re-lexed tokens, the algorithm computes the lookback count for the token based on the
contents of the lookahead list. Then each lookahead set in the list is advanced by the length of the token’s lexeme, and the
token’s own lookahead is added.

In order to maintain the invariant that the lookahead list contains all and only lookahead sets from the current version
of the token stream that reach the token being processed, we may need to initialize the lookahead list from lookaheads in
tokens that precede the first re-lexed token. To determine which tokens are included in the bootstrap section, we first note
that the token preceding the first (re-lexed) token in the region must exist in the current, previous, and reference version of
the token stream. The token that follows it in the reference version contains the relevant lookback count, and we continue
adding preceding tokens to the bootstrap section until this count is exhausted or until we discover a point where the token
streams differ (indicating that tokens to the left have already been processed).

The symmetric problem arises following the re-lexed tokens: because their lookahead sets may have penetrated (or now
fail to penetrate) unchanged tokens that follow, we must continue updating lookbacks until we reach eos or the next re-
lexed token or until we meet two conditions simultaneously: the lookback list contains no elements from re-lexed tokens
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Find and update each modified region of tokens.
void update_lookbacks () {

NODE *node = root;
while (node)

if (is_token(node)) {
TOKEN *tok = (TOKEN*)node;
if (was_re_lexed(tok)) node = fix_lookbacks(tok);
else node = next_subtree(node);

} else if (node!has_changes(nested)) node = node!child(0);
else node = next_subtree(node);

}

Figure 5.14: Driver routine for lookback recomputation.

(which would imply that we haven’t finished updating all the relevant lookback counts)and the lookback computed from the
lookahead list is the same as that stored in the token being processed. The latter condition is necessary to handle shrinking
lookaheads from one version of the token stream to the next.

Figure 5.14 contains the driver that locates each region requiring lookback processing. The actual updating is performed
by the fix_lookbacks routine, shown in Figure 5.15.

Theorem 5.6.1.1
At the conclusion of the lookback update phase, each token t in the new stream has a lookback value b such that the earliest
token in the stream with a lookahead extending into t is the bth previous token.

Proof Consider the tokens processed by a call to fix_lookbacks. The search for the left edge of the bootstrap section
is terminated either by the earliest token whose lookahead penetrates the current token, by a token that was re-lexed, or by
bos. In the first case, the local token stream is the same in the current, previous, and reference versions, so the lookback
count itemized all and only the tokens with relevant lookaheads. In the latter case, the re-lexed token’s lookahead has already
been processed in full by induction, so again the lookahead list contains all and only the relevant lookahead sets.15

We assume the correctness of the lookahead list operations; the lookback count assigned to each re-lexed token is there-
fore necessary and sufficient by the invariant that the lookahead list contains all and only the lookahead sets reaching the
current token. The processing of each re-lexed token clearly maintains that invariant.

For unchanged tokens to the right of the re-lexed section that include characters read by one or more re-lexed tokens,
the invariant on the lookahead list’s contents remains unchanged. We now examine the stopping condition. The cases of
encountering a re-lexed token or eos are trivially correct. The remaining case requires two conditions to hold simultane-
ously: the lookahead list consists entirely of tokens that have not been re-lexed, and the lookback count to be assigned to
the current token matches its stored value. The conjunction is clearly sufficient, since the lookback count computed for the
next token would necessarily match the value of its lookback field. The test is also necessary: it is straightforward to ex-
hibit a counter-example to demonstrate that a violation of either condition results in insufficient or over-estimated lookback
counts.

When the outer loop in fix_lookbacks terminates, the token returned possesses a lookback count that is necessary,
sufficient, and unchanged from its reference value (or is eos). The unchanged token sequence terminated by the next call
to fix_lookbacks therefore possesses the same property.

Corollary 5.6.1.2 Lookback processing examines the minimal number of tokens.

Lookback processing is clearly linear in the number of affected tokens and characters; the overhead of tree traversal is
the same as in the previous phases.

5.7 Incremental Lexical Analysis in an ISDE

Batch lexical analysis is useful in a number of situations, and incrementality is applicable to several of them. Our primary
interest, however, is the use of incremental lexical analysis as a component of an ISDE. In this case the token stream is part
of the persistent (structural) program representation, and an incremental parsing algorithm is the ‘client’ of the incremental
lexer.

15It is true that not all of the tokens in the bootstrap section necessarily have lookaheads reaching the first character of the first re-lexed token in the
region: as always, a lookback count represents the union of of lookahead sets, and one or more earlier tokens may have been changed. However, the
bootstrap region’s processing is sufficient and, given that the only tokens it enters are ones that could possess relevant lookaheads, necessary.
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Process a re-lexed region starting at tok.
TOKEN *fix_lookbacks (TOKEN *tok) {
la_set = ;;
if (tok != bos) {

Extract lookback count (if different in current version, use old value).
int lb = next_token(previous_token(tok), reference_version)!lookback;
TOKEN *boot_tok = tok;
while (--lb > 0 &&

previous_token(boot_tok, reference_version) ==
previous_token(boot_tok, previous_version) &&

!was_re_lexed(previous_token(boot_tok)))
boot_tok = previous_token(boot_tok);

Initialize the lookahead set from the bootstrap region.
while (boot_tok != tok) {

la_set.advance(tok!length);
la_set.add_item(tok);
tok = next_token(tok);

}
}
do {

Set the lookback for re-lexed tokens.
while (was_re_lexed(tok)) {

tok!lookback = la_set.compute_lookback();
la_set.advance(tok!length);
la_set.add_item(tok);
tok = next_token(tok);

}
Symmetric to bootstrap: process unmodified tokens reached by lookahead from re-lexed area.
while (tok != eos && !was_re_lexed(tok) &&

!la_set.all_items_discardable() &&
tok!lookback != la_set.compute_lookback()) {

tok!lookback = la_set.compute_lookback();
la_set.advance(tok!length);
la_set.add_item(tok);
tok = next_token(tok);

}
} while (was_re_lexed(tok));
return tok; Return first clean token or eos to caller.

}

Figure 5.15: Update algorithm for a contiguous range of modified tokens. The driver routine is shown in Figure 5.14. The
operations on the list of lookaheads are defined in Figure 5.16.

advance (int offset)
replace <tok,cla,cnt> in list with <tok,cla - offset,cnt + 1>

int compute_lookback ()
remove <tok,cla,cnt> s.t. cla <= 0 from list
if (list == ;) return 0;
else return max cnt j <tok,cla,cnt> in list

add_item (TOKEN *tok)
add <tok,tok!lookahead,0> to list

bool all_items_discardable ()
8 <tok,cla,cnt> in list, !was_re_lexed(tok)

Figure 5.16: Routines to update the lookahead list during lookback processing. Each entry in the list is a triple consisting
of a token, a character lookahead count, and a token lookback count.
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bool bottom_up_reuse_test (TOKEN *tok) {
if (construction_location.token!type == tok!type &&

construction_location.token != last_reused_token &&
construction_location.token != eos) {

construction_location.token!state = tok!state;
construction_location.token!lexeme = tok!lexeme;
construction_location.token!lookahead = tok!lookahead;
Treat this token as re-lexed during lookback update phase.
set_tok_was_re_lexed(construction_location.token, true);
last_reused_token = construction_location.token;
return true;

}
return false;

}

Figure 5.17: Computing bottom-up reuse during incremental lexing. next_new_token is modified to apply this test to
all tokens passed over when updating the construction location through calls to advance. If an old token can be reused,
the new information is copied into its fields. (Although more aggressive strategies could be employed, they are typically
subsumed by top-down reuse. The simple scheme shown here captures the common cases and creates additional top-down
reuse possibilities by ‘seeding’ the discovery process.)

The algorithms we have discussed so far can be applied without change in this setting. In this section we describe three
additional topics primarily of interest within an ISDE: the preservation of information through token reuse, the reversibility
of the transformation induced by incremental lexical analysis, and the issue of error detection and recovery.

5.7.1 Token Reuse

As described in Section 4.5, the analysis and transformational tools in an ISDE should be designed to reuse physical nodes
whenever they are logically unchanged: the maintenance of associated information can be implemented most efficiently
when the physical identity of an item matches its conceptual identity. Token reuse also improves performance because reuse
calculation is significantly faster than additional incremental reevaluation by semantic analysis and other tools, lowering the
total amount of work performed in response to the original program modifications.

Because our incremental lexical analysis algorithm is optimal, it intrinsically reuses that portion of the token stream
provably unaffected by the user’s modifications. However, any analysis is inherently conservative, and many common
modifications result in re-lexing tokens that are conceptually unchanged, constructing new tokens isomorphic to deleted
tokens. (For example, consider an editing sequence where the user ‘undoes’ a character insertion by deleting it, rather than
reverting to the previous version of the document.)

At other times some field of a token that is not part of the user model is the only change; in this case the token can also be
reused simply by updating the appropriate field’s value. (The latter case occurs in our running example, where the state
fields of the re-lexed tokens are altered, but the user-visible information—location, type, and lexeme—remain unchanged.)

We will consider two different approaches to reuse.16 The first, bottom-up reuse, is computed directly by the incremental
lexer as it operates. In our running example, it is easy to see that the re-lexed tokens can be reused: only the state fields
will change from the previous version of the stream to the new version.

More generally, we compute bottom-up reuse by examining tokens in the previous version of the stream that would not
otherwise be incorporated in the new version. When the type of a newly constructed token matches the type of a token being
eliminated, the old token can be reused by copying the lexeme, state, and lookahead fields from the new token (the
new token is then discarded). A simple heuristic for discovering reuse possibilities is shown in Figure 5.17.

Bottom-up reuse captures the reuse cases that can be easily discovered using only local information, and it is both effi-
cient and simple to implement. Bottom-up reuse is also necessary to allow the parser to reuse interior nodes in the program
structure. However, the inability of the bottom-up reuse process to consider more complex comparisons between the old
and new versions of the token stream (such as out-of-order reuse) can result in missed opportunities. We therefore apply
another type of reuse based on structural comparisons, referred to as top-down reuse.

Unlike bottom-up reuse, which is performed in parallel with incremental lexing, top-down reuse is performed as a fourth
pass, after incremental lexing and parsing have completed. It involves a recursive traversal of the current document struc-
ture, limited to the modified regions. Each non-new node with one or more changed children is subject to the top-down
check, which attempts to replace any new child with its counterpart from the previous version of the tree. (A more general

16Node reuse by the incremental parser, including a definition of optimality, is discussed in Chapter 6.
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ID PLUS ID

original
tokens:

a + b

after
deletions:

a

after
re-typing:

a+b

bottom-up
reuse:

a + b

top-down
reuse:

a + b

Figure 5.18: Example of token reuse. In this scenario, the user deletes the text corresponding to two lexemes, then ‘re-
verses’ his decision by re-typing the characters instead of undoing the operation (a common pattern). After re-lexing with
only bottom-up reuse, the initial token in the sequence will be reused, but the remaining two tokens will be re-created; any
annotations associated with them would then be lost. Applying top-down reuse results in the restoration of all three tokens.
In more complicated examples, bottom-up and top-down reuse must be used in combination to achieve the best results.

discussion of top-down reuse, and the algorithm to compute it, are provided in Section 6.7.) In combination, the two types
of reuse restore virtually every token that the user would consider unchanged.17

5.7.2 Reversibility

The transformation induced by incremental language analysis, including lexical analysis, should be considered an update
to the program in the same manner as textual or structural edits. Since any user operations will be undoable, it is desirable
for the language-based transformations to be undoable as well. A uniform treatment of program updates results in a more
coherent and comprehensible user interface: every update can be undone using the same interface, and every transformation
possesses the same semantics in the user’s model. Since we use low-level history services to enable efficient analysis in
the first place, it is only natural that they should record the resulting transformation in a manner that is uniform with user-
supplied modifications.

To enable efficient reversibility of the incremental lexing operation, all that is required is that versions of the token stream
other than the current one can be restored by the history services without violating correctness. In our representation, the
history services will already be versioning the user-visible information in each token (the lexeme and the parent link—the
type field is read-only information, and therefore is the same in every version). Reversibility requires that we also version
data specific to the incremental lexer: the state, lookahead, and lookback fields.18 When this is done, the history
services can be used to alter the current version of the program without involving the incremental lexer.

5.7.3 Error Recovery

There is an important distinction between inconsistency, which is a transient state where one or more modifications have
rendered the token/lexeme relationship potentially invalid within some regions, and errors, which indicate character se-
quences that are not admitted by the language definition. Our model is one where both valid and invalid editing operations
are permitted, with the various analysis/transformation tools discovering the maximum amount of information in the pres-
ence of any errors that arise.19 Errors in the program text (such as characters not in the language’s accepted character set)

17The bottom-up mechanism allows the incremental lexer to operate in tandem with the incremental parser, but does not guarantee the maximum number
of reused tokens. If incremental lexing occurs instead as a separate pass, the optimal set of reused tokens (defined as the set of tokens for which the offset
range and type are unchanged between the previous and current version) can be discovered easily using a left-to-right scan of the changed regions. Various
heuristics (such as retaining a majority or a subset of the original characters in the new version of the token) can be employed to retain additional tokens that
represent reuse from the user’s perspective. (Additional reused tokens may also be discovered by top-down reuse when such heuristics are considered.)

18The lookback updating stage already requires that we retain access to the last-lexed value of lookback counts until that pass has completed. As men-
tioned in Section 5.3.6, an explicit representation of some or all of these fields can be avoided in most cases.

19Another solution is to prevent erroneous modifications from being made. While we feel that restrictive, generative approaches to software development
are unnecessary and undesirable, the algorithms described here can be easily applied to this editing model as well. By running the lexical analysis algorithm
in a read-only mode, an alteration can be checked for compatibility, with the analysis algorithm returning an error indicator instead of permitting an invalid
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or at the lexical level may discovered most naturally by the lexer.
In a batch environment, a lexical description often includes a simple scheme for handling characters that cannot be in-

corporated by other (‘normal’) patterns. The rule accompanying this default pattern then emits an error message. A similar
solution can easily be provided in an interactive domain by defining a distinguished token type to represent unmatched text.
(Either the pattern in the lexical description or the incremental run-time service should ensure that contiguous unmatched
characters are always combined into a single ‘unmatched text’ token.) The representation of unmatched tokens in the parse
tree can be handled similarly to those for explicit whitespace (Appendix C). In the lexical description for our running ex-
ample (Figure 5.2), the final pattern absorbs unmatched characters.

A similar approach can be taken to programmer-supplied error patterns, which typically operate by recognizing a su-
perset of the actual language and then distinguishing correct lexical structures from ‘near misses’. A simple example would
be a language that limited the length of identifiers; the rule would construct either a normal or erroneous identifier depend-
ing on the number of characters in the lexeme. Error tokens of this form are explicitly typed, are are distinct from normal
tokens. No special support is required in the incremental lexer to detect or handle programmer-supplied error patterns.

A more general approach to error recovery that uses the interactive and history-based nature of the ISDE to its full
advantage is described in Chapter 8.

5.8 Conclusion

The algorithms presented in this chapter constitute the first published technique for language-independent incremental lex-
ical analysis that supports the full pattern set of conventional batch generators and runs in optimal space and time. It thus
provides the maximum amount of expressiveness, enabling the lexical characteristics of real programming languages to be
described in a natural manner without requiring either the language description writer or the lexical generator to compute
a limit on the length of lexical dependencies. Existing lexical analyzer generators can be used without modification. The
performance of our automatically generated incremental lexers rivals hand-written approaches, and the generation process
itself is fast enough to enable rapid debugging and prototyping of new lexical descriptions.

In an interactive software development environment, our approach to incremental lexing retains useful information and
minimizes changes through aggressive reuse computation, using both bottom-up and top-down strategies. The incremental
lexer can be invoked as a separate transformation pass or as a subroutine of the incremental parser. Explicit error patterns
and the efficient reversibility of the lexing transformation are supported without changes to the generator or incremental
evaluator.

update. Alternatively, lexical analysis can be allowed to proceed normally, followed by a post hoc check to determine whether all transformations it induced
were legal; if not, some or all of the transformations can be efficiently discarded (Table 3.2).



Chapter 6

Efficient and Flexible Incremental Parsing

Previously published algorithms for LR(k) incremental parsing are inefficient, unnecessarily restrictive, and in some cases
incorrect. In this chapter we present a simple algorithm based on parsing LR(k) sentential forms that can incrementally parse
an arbitrary number of textual and/or structural modifications in optimal time, and with no storage overhead. The central role
of balanced sequences in achieving truly incremental behavior from analysis algorithms is described, along with automated
methods to support balancing during parse table generation and parsing. Our approach extends the theory of sentential-form
parsing to allow for ambiguity in the grammar, exploiting it for notational convenience, to denote sequences, and to construct
compact (‘abstract’) syntax trees directly.

Combined, these techniques make the use of automatically generated incremental parsers in interactive software devel-
opment environments both practical and effective. In addition, we address information preservation in these environments:
optimal node reuse is defined, previous definitions are shown to be insufficient, and a method for detecting node reuse is
provided that is both simpler and faster than existing techniques. The self-versioning document representation of Chapter 3
is used to detect changes in the program, generate efficient change reports for subsequent analyses, and allow the parsing
transformation itself to be treated as a reversible modification in the edit log.

6.1 Introduction

Batch parsers derive the structure of formal language documents, such as programs, by analyzing a sequence of terminal
symbols provided by a lexer. Incremental parsers retain the document’s structure, in the form of its parse tree, and use this
data structure to update the parse after changes have been made by the user or by other tools [7, 36, 49, 58, 104]. Although
the topic of incremental parsing has been treated previously, no published algorithms are completely adequate, and most
are inefficient in time, space, or both. Several are incorrect or overly restrictive in the class of grammars to which they
apply. The central issue required for actual incremental behavior—balancing of lengthy sequences—has been ignored in
all previous approaches.1 Our incremental parser is thus the first to improve on batch performance while reusing existing
grammars.

Our incremental parsing algorithm runs in O(t + s lg N) time for t new terminal symbols and s modification sites in a tree
containing N nodes. Performance is determined primarily by the number and scope of the modifications since the previous
application of the parsing algorithm. Unlike many published algorithms for incremental parsing, the location of the changes
does not affect the running time, and the algorithm supports multiple edit sites, which may include any combination of
textual and structural updates. The technique applies to any LR-based approach; our implementation uses bison [18] and
existing grammars to produce table-driven incremental parsers for any language whose syntax is LALR(1).

The parsing algorithm has no additional space cost over that intrinsic to storing the parse tree. The algorithm’s only
requirements are that the parent, children, and associated grammar production of each node be accessible in constant time.
No state information, parse stack links, or terminal symbol links are recorded in tree nodes. A transient stack is required
during the application of the parsing algorithm, but it is not part of the persistent data structure.2 Our presentation assumes
that a complete versioning system exists, since this is necessary in any production ISDE.

Many parser generators accept ambiguous grammars in combination with additional specifications (e.g., operator prece-
dence and default conflict resolution rules).3 These techniques provide notational convenience and often result in signifi-

1Gafter [35] is the notable exception, but his approach precludes possibly-empty sequences, which arise in virtually every programming language.
2In most systems, nodes will already carry run-time type information. Thus, no additional space is typically required to encode the production rep-

resented by a node. In the absence of the history services we describe, two bits per node are needed to track changes made between applications of the
parser, and the old value of each structural link must remain accessible until the completion of parsing.

3This is essentially a form of parse forest filtering [53] that can be statically encoded so that the parser remains deterministic.
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cantly smaller parse trees, especially in languages like C that are terse and expression-dense. We provide new results that
allow incremental sentential-form parsing to accommodate ambiguity of this form, preserving both the notational benefits
to the grammar and the space-saving properties of the resulting compact trees.

ISDEs use incremental parsing not just for interactive speed, but because the retained data structure is important in its
own right as a shared representation used by analysis, presentation, and editing tools. In this setting, the demands placed on
the incremental parsing algorithm involve more than just improved performance relative to batch systems. It should also
provide intelligent node reuse: when a structural component (such as a statement) is conceptually retained across editing
operations, the parser should not discard and recreate the node representing that component. With intelligent reuse, changes
match the user’s intuition, the size of the development record is decreased, and the performance of further analyses (such
as semantics) improves.

Our incremental parsing algorithm is capable of retaining entire subtrees before, after, and between change points; nodes
on a path from the root of the parse tree to a modification site are also reused when doing so is correct and intuitive for
the user. Retaining these nodes is especially important since they represent the structural elements (functions, modules,
classes) most likely to contain significant numbers of irreproducible user annotations and automated annotations that are
time-consuming to restore (such as profile data).

No previously published work correctly describes optimal reuse in the context of arbitrary structural and textual mod-
ifications. We present a new formulation of this concept that is independent of the operation of the parsing algorithm and
is not limited by the complexity, location, or number of changes. In common cases, such as changing an identifier spelling,
our parser makes no modifications to the parse tree. Our reuse technique is also simpler and faster than previous approaches,
requiring no additional asymptotic time and negligible real time to compute.

The rest of this chapter is organized as follows. Section 6.2 compares previous work on incremental parsing to our
requirements and results; it is not needed to understand the material that follows. Section 6.3 introduces sentential-form
parsing and presents an incremental parsing algorithm that uses existing table construction routines. These results are ex-
tended in the next section, which develops an optimal implementation of incremental parsing. Support for ambiguous gram-
mars in combination with conflict resolution schemes is covered in Section 6.5. Section 6.6 addresses the representation
and handling of repetitive constructs (sequences) and constructs a model of incremental performance to permit meaningful
comparison to batch parsing and other incremental algorithms. Section 6.7 develops the theory of optimal node reuse and
discusses how reuse computation can be performed in tandem with incremental parsing using the history mechanisms of
Section 4.3. Error detection is discussed in conjunction with the incremental parsing algorithm; error recovery is described
in Chapter 8.

6.2 Related Work

Several early approaches to incremental parsing use data structures other than a persistent parse tree to achieve incremen-
tality [3, 106]. While these algorithms decrease the time required to parse a program after a change has been made to its
text, they do not materialize the persistent syntax tree required in most applications of incremental parsing.

Some incremental parsing algorithms restrict the user to single-site editing [81] or to editing of only a select set of syn-
tactic categories [21], or can only parse up to the current (single) cursor point [86]. Our goal was to provide an unrestricted
editing model that permits mixed textual and structural editing at any number of points (including erroneous edits of indef-
inite extent and scope) and to analyze the entire program, not merely a prefix or syntactic fragment.

A description of incremental LR(0) parsing suitable for multiple (textual) edit sites was presented by Ghezzi and Man-
drioli [36]. Their algorithm has several desirable characteristics, but its restriction to LR(0) grammars limits its applicability.
LL(1) grammars are more practical (having been used in the definitions of several programming languages) and techniques
have been developed for incremental top-down parsing using this grammar class [10, 71, 86]. Li [60] describes a sentential-
form LL(1) parser that can accommodate multiple edit sites.

Jalili and Gallier [49] were the first to provide an incremental parsing algorithm suitable for LR(1) grammars and mul-
tiple edit sites and based on a persistent parse tree representation. The algorithm associates parse states with tree nodes,
computing the reusability of previous subtrees by state matching.4 This test is sufficient but not necessary, decreasing per-
formance and requiring additional work to compute optimal reuse. (The effect is especially severe for LR(1) grammars,
due to their large number of distinct states with equivalent cores.)

More recently, Larchevêque [58] has extended to LR(k) grammars the matching condition originally formulated by
Ghezzi and Mandrioli, which allows the parser to retain structural units that fully contain the modification. His work fo-
cuses on the indirect performance gains that accrue from node reuse in an ISDE. But unlike the original LR(0) algorithm,
his algorithm exhibits linear (batch) performance in many cases. (For example, replacing the opening bracket of a func-
tion definition requires reparsing the entire function body from scratch.) The definition of node reuse provided does not

4Section 6.3 reviews state matching.
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describe all opportunities for reuse and cannot be considered truly optimal. (It is also linked to the operational semantics
of the particular parsing algorithm.) The history mechanisms we define subsume the mark/dispose operations described by
Larchevêque.

Petrone [76] recognizes that explicit states need not be stored in nodes of the parse tree. However, his parsing theory
is unnecessarily restrictive; it requires the grammar to be in LR(k) \ RL(h) for incremental behavior. Grammars outside
this class require batch parsing to the right of the first edit in each region (as defined by a matching condition similar to
Larchevêque). Node reuse is a subset of that discovered by Larchevêque’s algorithm.

Yang [105] recognizes the utility of sentential-form parsing, but still records parse states in nodes and thus requires a
post-pass to relabel subtrees. Li [61] describes a sentential-form parser, but his algorithm can generate incorrect parse errors
on grammars with �-rules. (It is also limited to complete LR(1) parse tables, since invalid reductions can induce cycling
in his algorithm.) Both of these authors suggest ‘improving’ the parsing algorithm through matching condition checks that
actually impede performance and require additional space to store the state information in each node.

None of these approaches is ideal. Those that work for unrestricted LR(1) grammars all require additional space in every
node of the parse tree (for example, Larchevêque [58] requires five extra fields per node). Only Degano et al. [21] address
the problem of mixed textual and structural editing, but they then impose a restricted editing framework and require novel
table construction techniques. The algorithms that employ matching conditions fail to reuse nodes that overlap modification
sites. Existing reuse definitions are sub-optimal and tied to the details of particular parsing algorithms. No sentential-form
algorithms support ambiguous grammars.

Our approach addresses all these concerns. Our incremental parsing algorithm is based on a simple idea: that a
sentential-form LR(1) parser, augmented with reuse computation, can integrate arbitrary textual and structural changes in an
efficient and correct manner. Our results are easily extended to enforce any of the restrictions of previous systems, includ-
ing top-down expansion of correct programs using placeholders, restricting structural editing to correct transformations, and
limiting text editing to a subset of nonterminals that must retain their syntactic roles across changes. The technique is suit-
able for LR(1), LALR(1), SLR(1), and similar grammar classes, and works correctly in the presence of �-rules. The theory
extends naturally to LR(k) grammars, although we do not address the general case in the proofs presented here. Existing
table construction methods (such as the popular Unix tool bison) may be used with very little change. The technique uses
less time and space and offers more intrinsic subtree reuse than previous approaches. (Its nonterminal shift check is both
necessary and sufficient.) Finally, our approach is designed to provide a complete incremental parsing solution: it incor-
porates a balanced representation of sequences, supports ambiguous grammars and static parse forest filters, and provides
provably optimal node reuse.

6.3 Incremental Parsing of Sentential Forms

Our incremental parsing algorithm utilizes a persistent parse tree and detailed change information to restrict both the time
required to re-parse and the regions of the tree that are affected. The input to the parser consists of both terminal and non-
terminal symbols; the latter are a natural representation of the unmodified subtrees from the reference version of the parse
tree. We begin by discussing tests for subtree reuse, then present a simplified algorithm for incremental parsing that intro-
duces the basic concepts. Section 6.4 extends these results to achieve optimal incrementality; subsequent sections discuss
representation issues and additional functionality.

6.3.1 Subtree Reuse

Many previous algorithms for incremental parsing of LR(k) or LALR(k) grammars have relied on state matching, which
incrementalizes the push-down automata of the parser. The configuration of the machine is summarized by the current
parse state, and each node in the parse tree records this state when it is shifted onto the stack. To test an unmodified subtree
for reuse at a later time, the state recorded at its root is compared to the machine’s current state. If they match, and any
required lookahead items are valid, then the parser can shift the subtree without inspecting its contents. Testing the validity
of the lookahead is usually accomplished through a conservative check: the k terminal symbols following the subtree on
the previous parse are required to follow it in the new version as well.

One disadvantage of state matching is the space associated with storing states in tree nodes. State matching also restricts
the set of contexts in which a subtree is considered valid, since the state-match test is sufficient but not necessary. The
overly restrictive test is particularly limiting with LR(1) parse tables, as opposed to LALR(1), because the large number of
similar distinct states (i.e., distinct item sets with identical cores) practically guarantees that legal syntactic edits will not
have valid state matches. The failure to match states for a subtree in a grammatically correct context causes a state-matching
incremental parser to discard the subtree and rebuild an isomorphic one labeled with different state numbers. LALR(1)
parsers fare better with state-matching algorithms because a greater proportion of modifications permit the test to succeed.
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Figure 6.1: Incremental parsing example. This figure illustrates a common case: a change in the spelling of an identifier
results in a ‘split’ of the tree from the root to the token containing the modified text. The shaded region to the left becomes
the initial contents of the parse stack, which is instantiated as a separate data structure because it contains a mixture of old
and new subtrees. The shaded region to the right provides the potentially reusable portion of the parser’s input stream. This
stack is not explicitly materialized—its contents are derived by a traversal of the parse tree as it existed immediately prior
to reparsing. Except when new text is being scanned, the top element of the right stack serves as the parser’s lookahead
symbol. The remaining nodes in this figure are all candidates for explicit reuse (Section 6.7). In the example shown, the
tree will be ‘sewn up’ along the path of nested changes; the parser will not need to create any new nodes to incorporate this
change to the program.

Sentential-form parsing is a strictly more powerful technique than state matching for deterministic grammars, capturing
more of the ‘intrinsic’ incrementality of the problem. For LR(0) parsers, the mere fact that the grammar symbol associ-
ated with a subtree’s root node can be shifted in the current parse state indicates that the entire subtree can be incorporated
without further analysis. The situation is similar, though more complex, for the LR(1) case. Stated informally, the fact
that a subtree representing a nonterminal is shiftable in the current parse state means that the entire subtree except for its
right-hand edge (the portion affected by lookahead outside the subtree) can be immediately reused. Sentential-form parsing
provides incrementality without the limitations of state matching: no states are recorded in nodes, subtrees can be reused
in any grammatically correct context, and lookahead validation is accomplished ‘for free’ by consuming the input stream.

Like Jalili and Gallier, we conceptually ‘split’ the tree in a series of locations determined by the modifications since
the previous parse. Modification sites can be either interior nodes with structural changes or terminal nodes with textual
changes,5 and the split points are based on the (fixed) number of lookahead items used when constructing the parse table.
The input stream to the parser will consist of both new material (in the form of tokens provided by the incremental lexer)
and reused subtrees; the latter are conceptually on a stack, but are actually produced by a directed traversal over the previous
version of the tree. An explicit stack is used to maintain the new version of the tree while it is being built. This stack holds
both symbols (nodes) and states (since they are not recorded within the nodes). Figure 6.1 illustrates a common case, where
a change in identifier spelling has resulted in a split to the terminal symbol containing the modified text.

We now formalize the concept of shifting subtrees.

Notation Let ti denote a terminal symbol and Xi an arbitrary symbol in the (often implicit) grammar G. Greek letters denote
(possibly empty) strings of symbols in G. k denotes the size of the terminal lookahead used in constructing the parse table.
si denotes a state. Subscripts indicate left-to-right ordering. LA(si) denotes the union of the lookahead sets for the collection
of LR(1) items represented by si. GOTO(si, X) indicates the transition on symbol X in state si. (This is not a partial function;
illegal transitions are denoted by a distinguished error value.) We use additional terminology from Aho et al. [5].

Theorem 6.3.1.1
Consider a conventional batch LR(1) parser in the configuration:

5All textual and structural modifications are reflected in the tree itself. Section 4.3 discusses the representation of programs and the techniques for
summarizing changes.
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Remove any subtrees on top of parse stack with null yield, then
break down right edge of topmost subtree.
right_breakdown () {
NODE *node;
do { Replace node with its children.
node = parse_stack!pop();
Does nothing when child is a terminal symbol.
foreach child of node do shift(child);

} while (is_nonterminal(node));
shift(node); Leave final terminal symbol on top of stack.

}

Shift a node onto the parse stack and update the current parse state.
void shift (NODE *node) {
parse_stack!push(parse_state, node);
parse_state = parse_table!state_after_shift(parse_state, node!symbol);

}

Figure 6.2: Procedures used to break down the right-hand edge of the subtree on top of the parse stack. On each iteration,
node holds the current top-of-stack symbol. Any subtree with null yield appearing in the top-of-stack position is removed
in its entirety.

. . . s0X1s1X2s2 . . . sn�1Xnsn t1t2 . . . tmtm+1 . . .

Suppose A
�

) t1 . . . tm (m � 0). Note that A may derive the empty string (�). If GOTO(sn, A) = si and tm+1 2 LA(sn), then
the parser will eventually enter the configuration:

. . . s0X1s1X2s2 . . . sn�1Xnsn A si tm+1 . . .

Proof By the correctness of LR(1) parsing and the fact that X1 . . . XnAtm+1 is a viable prefix.

The results of Theorem 6.3.1.1 cannot be used directly: testing whether the terminal symbol following a subtree is in
the lookahead set for the current state is not supported by existing parse tables, even though such information is available
during table construction. Instead, we use this result in a more restricted fashion.6

If a subtree has no internal modifications and its root symbol is shiftable in the current parse state, then all parse oper-
ations up to and including the shift of the final terminal symbol in the tree are pre-determined, and we can put the parser
directly into that configuration, without additional knowledge of legal lookaheads. This transition is actually accomplished
by shifting the subtree onto the parse stack, then removing (‘breaking down’) its right edge (Figure 6.2). The situation is
complicated slightly by the possibility that one or more subtrees with null yield may need to be removed from the top of the
parse stack as well, since they also represent reductions predicated on an uncertain lookahead.7 Figure 6.3 illustrates the
breakdown process. The following theorem relates the configuration of a batch parser to that of an incremental parser that
has shifted a nonterminal and then invoked right_breakdown, by showing that the parse stack contents, parse state,
and lookahead symbol are identical.

Theorem 6.3.1.2
Let A

�

) t1 . . . tm, m � 1 be a production in G, and X1X2 . . . XnA a viable prefix. Let B denote a (batch) LR(1) parser for
the grammar G in the configuration:

. . . s0X1s1X2s2 . . . sn�1Xnsn t1t2 . . . tm . . .

Let I denote an incremental LR(1) parser for the grammar G in the configuration:

. . . s0X1s1X2s2 . . . sn�1Xnsn A . . .

6In Section 6.4 we describe a technique that involves minimal changes to table construction methods and provides better incremental performance than
terminal lookahead information could achieve.

7Right-edge breakdowns are done eagerly to avoid cycling when the parse table contains default reductions or is not canonical (e.g., is LALR(1) instead
of LR(1)) and the input is erroneous. If complete LR(k) tables are used, right-edge breakdowns can be done on demand, in an analogous fashion to the
left-edge breakdown shown in Figure 6.5.
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Figure 6.3: Illustration of right_breakdown. The shaded region shows the reductions ‘undone’ by the breakdown—all
nodes representing reductions predicated on the following terminal symbol (J) are removed. Any subtrees with null yield
are discarded, then the right-hand edge of the subtree on top of the stack is removed, leaving its final terminal symbol in the
topmost stack position. (The parse stack holds both states and nodes; only node labels are shown here.)

where yield(A) = t1 . . . tn. The configurationof I following a shift of A and subsequent invocation of the breakdown procedure
(Figure 6.2) is identical to the configuration of B immediately after it shifts tm.

Proof Each iteration of the loop in right_breakdown leaves a viable prefix on I’s stack. At the conclusion of the routine,
tm will be the top element. Since the parse tree for the derivation of A is unique, I’s final stack configuration must match
that of B; the equivalence of the parse states follows.

6.3.2 An Incremental Parsing Algorithm

We now use Theorem 6.3.1.2 to construct an incremental parser. Figure 6.4 presents pseudocode for this algorithm.
The algorithm in Figure 6.4 represents a simple ‘conservative’ style of incremental parsing very similar to a state-

matching algorithm. The input stream is a mixture of old subtrees (from the previous version of the parse tree) that is
constructed on the fly by traversing the previous tree structure using the local/nested change information described in Sec-
tion 4.3. The parse stack contains both states and subtrees, and is discarded when parsing is complete. Incremental lexing
can either be performed in a separate pass prior to parsing or, as shown here, in a demand-driven way as the incremental
parser encounters tokens that may be inconsistent. We assume that the incremental lexer resets the lookahead (la) to point
to the next old subtree when it completes re-lexing of a contiguous section.

Reductions occur as in a conventional batch parser, using a terminal lookahead symbol to index the parse table. Shifts,
however, may be performed using non-trivial subtrees representing nonterminals. Unlike state matching, the shift test is
not only sufficient but also necessary: a valid shift is determined based on the grammar, not the relationship between two
configurations of the parse stack.

Subtrees that cannot be shifted are broken down, one level at a time, as if they contained a modification. Af-
ter a non-trivial subtree is shifted, all reductions predicated on the next terminal symbol are removed by a call to
right_breakdown. (These reductions are often valid, in which case the discarded structure will be immediately re-
constructed. In the following section we eliminate this and other sources of sub-optimal behavior.)

The correctness of this algorithm is based on Theorem 6.3.1.2, which associates the configuration of the incremental
parser immediately prior to each reduction with a corresponding configuration in a batch parser.

Theorems 6.3.1.1 and 6.3.1.2 apply equally well to LALR(1) and SLR(1) parsers, so the algorithm given in Figure 6.4
can be used for these grammar classes and parse tables as well. The only restriction, which applies to any grammar class, is
that table construction techniques cannot use lossy compression on the GOTO table (it cannot be rendered as a partial map).
While only legal nonterminal shifts arise in batch parsing, as the final stage in a reduction, sentential-form parsing needs an
exact test to determine whether a given subtree in the input can be legally shifted.

To establish the running time of the algorithm in Figure 6.4,8 suppose that the height of a subtree containing N nodes
is O(lg N). If there are s modification sites, the previous version of the tree will be split into O(s lg N) subtrees. Tokens
resulting from newly inserted text are parsed in linear time. When the lookahead symbol is a reused subtree, O(lg N) time is
required to access its leading terminal symbol in order to process reductions. If the subtree can be shifted in the new context,

8Section 6.6 discusses the model of incremental parsing and the assumptions regarding the form of the grammar and parse tree representation.
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void inc_parse () {
Initialize the parse stack to contain only bos.
parse_stack!clear(); parse_state = 0; parse_stack!push(bos);
NODE *la = pop_lookahead(bos); Set lookahead to root of tree.
while (true)
if (is_terminal(la))

Incremental lexing advances la as a side effect.
if (la!has_changes(reference_version)) relex(la);
else

switch (parse_table!action(parse_state, la!symbol)) {
case ACCEPT: if (la == eos) {

parse_stack!push(eos);
return; Stack is [bos start_symbol eos].

} else {recover(); break;}
case REDUCE r: reduce(r); break;
case SHIFT s: shift(s); la = pop_lookahead(la); break;
case ERROR: recover(); break;

}
else this is a nonterminal lookahead.

if (la!has_changes(reference_version)
la = left_breakdown(la); Split tree at changed points.

else {
Reductions can only be processed with a terminal lookahead.
perform_all_reductions_possible(next_terminal());
if (shiftable(la))

Place lookahead on parse stack with its right-hand edge removed.
{shift(la); right_breakdown(); la = pop_lookahead(la);}

else la = left_breakdown(la);
}

}

Figure 6.4: An incremental parsing algorithm based on Theorem 6.3.1.2. The input is a series of subtrees representing
portions of the previous parse tree intermixed with new material (generated by invoking the incremental lexer whenever
a modified token is encountered). After each nonterminal shift, right_breakdown is invoked to force a reconsider-
ation of reductions predicated on the next terminal symbol. Non-trivial subtrees appearing in the input stream are bro-
ken down when the symbol they represent is not a valid shift in the current state or when they contain modified regions.
next_terminal returns the earliest terminal symbol in the input stream; when the lookahead’s yield is not null, this
will be the leftmost terminal symbol of its yield. The pop_lookahead and left_breakdown methods are shown in
Figure 6.5; has_changes is a history-based query from Figure 3.2. bos and eos are the token sentinels illustrated in
Figure 3.2.
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Decompose a nonterminal lookahead.
NODE *left_breakdown (NODE *la) {
if (la!arity > 0) {
NODE *result = la!child(0, previous_version);

if (is_fragile(result)) return left_breakdown(result);

return result;
} else return pop_lookahead(la);

}

Pop right stack by traversing previous tree structure.
NODE *pop_lookahead (NODE *la) {
while (la!right_sibling(previous_version) == NULL)

la = la!parent(previous_version);
NODE *result = la!right_sibling(previous_version);

if (is_fragile(result)) return left_breakdown(result);

return result;
}

Figure 6.5: Using historical structure queries to update the right (input) stack in the incremental parser. The lookahead sub-
tree is decomposed one level for each invocation of left_breakdown, conceptually popping the lookahead symbol and
pushing its children in right-to-left order (analogous to one iteration of right_breakdown’s loop). pop_lookahead
advances the lookahead to the next subtree for consideration, using the previous structure of the tree. The boxed code is
used to support ambiguous grammars (Section 6.5).

O(lg N) time is also consumed in reconstructing its trailing reduction sequence using right_breakdown. If we assume
that each change has a bounded effect (results in a bounded number of additional subtree breakdowns), then the combined
cost of shifting a nonterminal symbol is O(lg N). For t new tokens, this yields a total running time of O(t + s(lg N)2).

Note that there is no persistent space cost attributable solely to the incremental parsing algorithm, since the syntax tree
is required by the environment. The ability to shift subtrees independent of their previous parsing state avoids the need to
record state information in tree nodes.

6.4 Optimal Incremental Parsing

The previous section developed an incremental parsing algorithm that used existing information in LR (or similar) parse
tables. In this section we improve upon that result by avoiding unnecessary calls to right_breakdown and by elimi-
nating the requirement that only terminal symbols can be used to perform reductions. The result is an optimal algorithm
for incremental parsing, with a running time of O(t + s lg N). (We focus primarily on the k = 1 case, but also indicate how
additional lookahead can be accommodated.)

The algorithm in Figure 6.4 can perform reductions only when the lookahead symbol is a terminal; when the lookahead
is a nonterminal, that algorithm must traverse its structure to locate the leading terminal symbol. By providing slightly
more information in the parsing tables however, we can use nonterminal lookaheads to make reduction decisions directly,
eliminating one source of the extra lg N factor without maintaining ‘next terminal’ pointers in the tree nodes.

When the lookahead symbol is a nonterminal with non-null yield that extends the viable prefix, there is no need to ac-
cess the leftmost terminal symbol of the yield in order to perform reductions: If Z can follow Y in a rightmost derivation
and Z

�

) t1 . . . tm(m � k), then a reduction of a handle for Y by a batch parser when the first k symbols of Z constitute the
lookahead can be recorded in the parse table as the action to take with the nonterminal lookahead Z.9 This change avoids
the performance cost of extracting the initial k terminals from the subtree representing the current lookahead symbol. Only
when the lookahead is invalid (does not extend the viable prefix) or contains modifications must it be broken down further.

Basing reductions on nonterminal lookaheads is not itself sufficient to improve the asymptotic performance results of
the previous section’s algorithm; unnecessary invocations of right_breakdown must also be eliminated. Spurious re-
constructions can be avoided by parsing optimistically: the parser omits the call to right_breakdown after shifting a
subtree, and performs reductions even when the lookahead contains fewer than k terminal symbols in its yield. When such
actions turn out to be correct, unnecessary work has been avoided. If one or more actions were incorrect, the problem will

9The change to existing table generators is minor: the parse table must be augmented slightly to represent all valid (and invalid) nonterminal transitions
explicitly. Algorithms for constructing parse tables for the classes of parsers described here [5] are easily modified to enumerate all lookahead symbols
rather than terminals alone.
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void inc_parse () {
bool verifying = false;
Initialize parse stack to contain only bos.
parse_stack!clear(); parse_state = 0; parse_stack!push(bos);
NODE *la = pop_lookahead(bos); Set lookahead to first subtree following bos.
while (true)

if (is_terminal(la))
if (la!has_changes(reference_version)) relex(la);
else switch (parse_table!action(parse_state, la!symbol)) {
case ACCEPT: if (la == eos) {

push(eos); return; Stack is [bos start_symbol eos].
} else {recover(); break;}

case REDUCE r: verifying = false; reduce(r); break;

case SHIFT s: verifying = false; shift(la);
la = pop_lookahead(la); break;

case ERROR: if (verifying) {
right_breakdown(); Delayed breakdown.
verifying = false;
}
else recover(); Actual parse error.

}
else this is a nonterminal lookahead.
if (la!has_changes(reference_version))
la = left_breakdown(la); Split to changed point.

else switch (parse_table!action(parse_state, la!symbol)) {

case REDUCE r: if (yield(la) > 1) verifying = false;

reduce(r); break;
case SHIFT s: verifying = true; shift(la);

la = pop_lookahead(la); break;
case ERROR: if (la!arity > 0) la = left_breakdown(la);

else la = pop_lookahead(la);
}

}

Figure 6.6: Improved incremental parsing algorithm. Its correctness is expressed by Theorem 6.4.1.1. It works on any LR(1)
or LALR(1) table in which the set of nonterminal transitions is both complete and correct. The boxed statements are in-
cluded only when canonical LR(k) tables are used; they improve performance slightly by also validating reductions when
the lookahead symbol is not an �-subtree. Since all parsing classes we consider have the viable prefix property, the ability
to shift any non-�-subtree automatically validates any tentative reductions, including speculatively shifted �-subtrees. If a
real parse error occurs, the algorithm invokes recover() in the same configuration in which a batch parser would initiate
recovery of the error.

be discovered before k terminal symbols past the point of the invalid action have been shifted. The parser backtracks effi-
ciently from invalid transitions; in the k = 1 case, backtracking is merely a delayed invocation of right_breakdown.10

Optimistic behavior thus improves both the asymptotic and the practical performance of the incremental parser.
The algorithm in Figure 6.6 implements the optimistic strategy by a technique similar to the trial parsing used in batch

parser error recovery [14]. Suppose we can legally shift a reused subtree, and, in the resulting state, can continue by shifting
additional symbols deriving at least one terminal symbol (or incorporating the end of the input). The only way this can hap-
pen is if the first subtree was correct in its entirety, including its final reduction sequence. Further shifts of k terminal symbols
indicate they were in the lookahead set of the initial subtree, proving that any reductions optimistically retained (or applied
based on insufficient lookahead) were indeed valid.11 These reductions include any subtree with null yield (�-subtree) on
top of the parse stack, as well as the right-hand edge of the topmost non-�-subtree.

With this optimistic strategy, several possibilities obtain when the lookahead symbol does not indicate a shift or reduce
action. (Figure 6.7 illustrates the sequence of events.) The parser begins by incrementally discarding structure in a non-
terminal lookahead until either a valid action is indicated by the parse table or the lookahead is a terminal symbol. At that
point, if the error persists, the algorithm uses right_breakdown to discard tentative (unverified) reductions. At this

10If the grammar contains V nonterminals, the amount of backtracking is limited to O(kV).
11The k > 1 case is complicated by the fact that up to k � 1 terminal symbols can be shifted before the error is discovered.
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7a. Discarding left edge of right stack. 7b. Discarding right edge of left stack.

Figure 6.7: The situation when an error is detected. The first course of action is to progressively traverse the left edge of the
subtree being considered for reuse (a). This action is the counterpart to right_breakdown except that it is implemented
incrementally simply by changing the lookahead item on top of the right stack. If an error persists with a terminal symbol
in the lookahead position, then right_breakdown is used to ensure that the topmost element of the parse stack is also
a terminal symbol. If the input is correct, parsing will continue as usual from this point. In the event an actual parse error
exists, one or more invalid reductions will typically be (re)performed at this point unless the parse tables are canonical. In
any event, the error will be detected before any further terminal symbols are shifted, and error recovery will be initiated in
exactly the same configuration as in a batch parser.

point the top of the parse stack and the lookahead are both terminal symbols. If the input is valid, the incremental parser
proceeds to shift it after zero or more (valid) reductions.

In the event of an actual parse error, the algorithm of Figure 6.6 invokes error handling in exactly the same configuration
where a batch parser would discover the error. For canonical tables, this configuration will have a terminal symbol on the
top of the parse stack and in the lookahead position. For other classes of parsers, one or more invalid reductions may be
performed before the error is detected.12 (When this happens, note that settingverifying tofalse is essential to prevent
the incremental parser from cycling. Otherwise the invalid reductions would be re-applied, only to be followed once again
by a call of right_breakdown.)

When using canonical LR(1) tables, reductions based on a non-�-subtree lookahead validate any speculative actions,
just as shifting the following terminal symbol would. Lossy compression of the terminal reduction actions and the invalid
reductions permitted by other parsing classes (LALR(1), SLR(1)) limit validation to shifts of non-�-subtrees.13 However,
if an LALR or SLR parser generator identifies reductions guaranteed never to be erroneous, reduction validation can be
employed on a case-by-case basis.

The flow of control in the algorithm in Figure 6.6 is similar to that of the previous algorithm, except for the two optimiza-
tions defined above. In simple cases, such as the example illustrated in Figure 6.1, each subtree appearing in the input stream
is shifted with no breakdowns except for those required to expose the modification sites. The conservative invocation of
right_breakdown after each nonterminal shift has been replaced by theERROR cases, which use right_breakdown
to implement backtracking. The ability to reduce on a nonterminal lookahead results in a new REDUCE case that is similar
to its terminal counterpart.

6.4.1 Correctness

We now demonstrate that the parse tree produced by the algorithm in Figure 6.6 is the same as the parse tree resulting from
a batch parse using an identical parse table, thus establishing correctness in the k = 1 case.14

First, we justify the optimized shifting strategy. Recall that Theorem 6.3.1.1 does not apply to the set of reductions
removed by right_breakdown. But if the parser can continue by shifting (or, in the case of a canonical parse table,
reducing) using a non-�-subtree lookahead, then clearly the configuration immediately after the shift represented a valid
prefix of a rightmost derivation and the use of right_breakdown was unnecessary. Since the lookahead is known to
be valid, Theorem 6.3.1.2 ensures that the configuration of the batch and incremental parsers are identical after the shift
operation, even without the breakdown procedure.

12Replacing error entries in the terminal transition portion of a canonical parse table with reductions has the same effect.
13All the parsing classes we consider here retain the viable prefix property when k = 1, which ensures that a shift of a non-�-subtree is possible only if

the preceding reduction sequence was valid.
14The general case is similar, but bookkeeping in the proof, as in the algorithm, is more complex due to the need to backtrack after shifting a non-

�-subtree.
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Second, consider making parsing actions on the basis of a lookahead symbol represented by an �-subtree in the input
stream. Since the length of the terminal yield of the lookahead is less than k, any decisions based on it are potentially invalid.
Three cases can arise:

� In the case of an error, left_breakdown(la) is invoked. Eventually either a non-�-subtree lookahead is reached
or one of the cases below applies.

� In the case of a REDUCE action, a new node is created without advancing the lookahead.

� In the case of a SHIFT action, the �-subtree is pushed onto the parse stack. (This is equivalent to the application of
one or more reductions.)

Shifting or reducing based on an �-subtree lookahead merely adds to the set of pending reductions. No subsequent
shift of a non-�-subtree can occur unless it extends a viable prefix; if any of the reductions are invalid, an eventual call to
right_breakdownwill remove the entire reduction sequence and apply the correct set of reductions using the following
terminal symbol.

We can now establish that the configuration of this parser is identical to that of a batch parser at a number of well-defined
match points.

Theorem 6.4.1.1
The configuration of the incremental parser defined by the algorithm in Figure 6.6 matches that of a batch parser using the
same parse table information in the following cases:

1. At the beginning of the parse, with an empty stack and the lookahead set to bos.

2. At the end of the parse, when the accept routine is invoked.

3. When an error is detected (and the recover routine is invoked).

4. Immediately prior to a shift of any non-�-subtree by the incremental parser.

Proof Sketch Equality clearly holds in the first case. (2) can be modeled as a special case of (4) by treating it as a ‘shift’ of
one or more end-of-stream (eos) symbols in order to reduce to the start symbol of an augmented grammar. The argument
for (3) has already been presented. Case (4) relies on the argument for optimized shifting in conjunction with backtracking
as presented above, observing that the incremental parser has performed all possible reductions when a shift is about to
occur.

Corollary 6.4.1.2 The incremental parsing algorithm of Figure 6.6 produces the same parse tree constructed by a batch
parser reading the same terminal yield.

6.4.2 Optimality

We now investigate the claim that the algorithm in Figure 6.6 (algorithm A) is optimal with respect to a general model of
incremental shift/reduce parsing. We do this by establishing that no other algorithm A0 of this form can improve asymptot-
ically on the total number of steps, independent of the grammar and edit sequence. First, assume as input

� A sequence of reused subtrees and new tokens; the reused subtrees are provided by a traversal of the changed regions
of the previous version of the tree.

� A parse table for a grammar G, in which nonterminal transitions are both complete and correct.

We use the conventional model of shift/reduce parsing, augmented with the ability to shift nonterminals in the form of
non-trivial subtrees retained from the previous version of the tree. A node may be reused in the new version of the tree if its
child nodes are identical in both trees. (Section 6.7 explores models of node reuse in greater detail.) The cost model charges
O(1) time for each node visited or constructed.

As stated previously, our version of sentential-form parsing uses a subtree shift test that is both necessary and sufficient.
It follows immediately that no other parsing algorithm can perform fewer shifts.

To understand why the number of reductions is asymptotically optimal, we first consider a restricted case: LR(1) parse
tables in which the terminal action transitions are also complete (i.e., no use of ‘default reductions’). We also make a
straightforward replacement of the right_breakdown routine in Figure 6.2 with one that operates in a stepwise fashion.
Now assume some other algorithm A0 avoids a reduction that our algorithm performs. Since the reduction can be avoided
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by A0, it must reuse a node N to represent the same reduction in both trees. If N was marked with nested changes prior to
parsing, then the cost of the extra reduction is asymptotically subsumed by the traversal needed to generate the input to the
algorithm. Otherwise N was broken down by left_breakdown unnecessarily in order to trigger one or more calls to
right_breakdown. But the order in which reductions are reconsidered when two non-trivial subtrees adjacent in the
input stream cannot be adjacent in the new tree is arbitrary: without additional knowledge, no algorithm can choose an opti-
mal order for these tests a priori. Thus some different combination of grammar and edit sequence must result in A0 requiring
more reductions than our algorithm.

Now suppose a parser class that permits erroneous reductions and/or lossy compression of terminal reduction actions
in the parse table, along with the version of right_breakdown shown in Figure 6.2. In this case, a reduction performed
by A0 and not by our algorithm may also be due to the fact that right_breakdown removes a reduction unnecessarily.
(Recall that this routine must assure a configuration in which a terminal symbol is on top of the parse stack in order to avoid
cycling in the presence of erroneous reductions.)

First, suppose A0 predicates a node’s reusability (in part) on the lookahead symbol, as is done in state-matching ap-
proaches. Since the two subtrees in question were not necessarily adjacent in the previous version of the parse tree, we can
easily exhibit grammars and edit sequences in which A0 performs more reductions than A by arranging for the following
terminal symbol to be different than in the previous parse tree.

Now suppose A0 does not predicate reusability on the lookahead symbol. To avoid configurations in which A invokes
right_breakdown, A0 must either shift sub-optimally or remove reductions unnecessarily in some circumstances. If A0

does enter such a configuration, then to avoid cycling it must remove all reductions dependent upon the lookahead symbol(s),
exactly as A does.

6.5 Ambiguous Grammars and Parse Forest Filtering

Ambiguous grammars frequently have important advantages over their unambiguous counterparts: they are shorter and sim-
pler and result in faster parsers, smaller parse trees, and easier maintenance. Many parser generator tools, such as bison,
permit some forms of ambiguity in conjunction with mechanisms for eliminating the resulting non-determinism in the parse
table.15 These methods include default resolution mechanisms (prefer shift, prefer earliest reduction in order of appearance
in grammar) as well as a notation for expressing operator precedence and associativity [4].16

Resolving the conflicts in the parse table through additional information (including default mechanisms built into the
parser generator) interferes with sentential-form parsing, which assumes that the parse table reflects the grammar of the
language. In particular, transitions on nonterminal lookaheads that appear to be valid may result in a parse tree that would
not be produced by a batch parser.

Figure 6.8 illustrates one such problem. A text edit converting addition to multiplication should trigger a re-structuring
to accommodate the higher precedence of the new operator. However, the grammar is ambiguous, and a straightforward
implementation of incremental sentential-form parsing produces the wrong parse tree. This situation occurs because conflict
resolution encoded in the parse table is not available when the lookahead symbol is a nonterminal.

Incremental parsing methods based on state matching do not have this problem, because their incrementality derives
from re-creating configurations in the pushdown automaton itself. With respect to unambiguous grammars, state matching
is a sufficient but not necessary test. In the case of ambiguous grammars, however, the stronger state-matching test is useful:
treating the parse table as definitive permits the incremental parser to ignore the relationship between the parse table and
the grammar. State matching thus intrinsically supports any (static) conflict-resolution mechanism. Since most existing
and future grammars are likely to be ambiguous, incremental sentential-form parsers will only be practical if they can also
support this type of ambiguity.

One possible solution would be to encode the dynamic selection of desired parse trees in the incremental parsing al-
gorithm itself. For example, an existing theory of operators [1] could be extended to produce an incremental evaluator by
maintaining synthesized attributes that describe, for each expression subtree, the precedence and associativity of the ‘ex-
posed’ operators within it. The incremental parser would expose operands through additional left- and right-breakdown
operations in accordance with the operator specifications. This technique would be limited to the class of ambiguities ad-
dressed by the operator notation.

15The methods we describe in this section also apply to unambiguous grammars that are non-deterministic (with respect to a particular parsing algorithm)
in the absence of conflict resolution during parse table construction. The following chapter discusses incremental parsing of languages in which ambiguity
cannot be statically resolved.

16These resolution methods are the most widely used, but have several theoretical disadvantages, including the fact that they may result in incomplete
or even non-terminating parsers. Thorup [90] examines methods to eliminate conflicts while preserving the completeness, termination, and performance
results of conventional LR parsers. Klint and Visser [53] describe parse tree filters, some of which can be applied at parse table construction time.
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%token IDENT
Order indicates precedence:
%left ’+’ low
%left ’*’ high
%%
s : e;
e : IDENT
| e ’+’ e
| e ’*’ e
| ’(’ e ’)’
;
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8a. Bison input file. 8b. Original program with edit site marked.
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8c. Incorrect parse due to ambiguity; the reused subtree is
shaded.

8d. Correct parse due to additional breakdowns.

Figure 6.8: Incremental parsing in the presence of ambiguity. The grammar in (a) would be ambiguous without the prece-
dence/associativity declarations, which control how the parser generator resolves conflicts. As shown in (c), a sentential-
form parser produces the wrong parse tree, since its test for subtree reuse does not take conflict resolution into account
(unlike state-matching methods). Forcing the parser to break down fragile productions when they occur as lookaheads will
result in correctly parsed structure (d).
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6.5.1 Encapsulating Ambiguity

A second, more general, solution is to employ the less efficient state-matching implementation on a restricted basis, limiting
it to just those portions of the parse tree involving ambiguous constructs. In ambiguous regions, the parser uses state match-
ing to determine the set of reusable subtrees; in unambiguous regions, sentential-form parsing can be used. State matching
is required when the current state (item set) contains a conflict or when the lookahead symbol is a node constructed using
state-matching (a fragile node). Both conditions signal the parser to switch to the more conservative subtree reuse test.

The set of fragile nodes is determined through a combination of grammar analysis and dynamic (‘parse-time’) tracking.
First, the set of directly ambiguous productions can be output by the parser generator: these are the productions that appear
in any state (item set) containing a conflict, and any node representing an instance of a production in this list is fragile. (Most
parser generators already provide this information in ‘verbose mode’.) The analysis applies to any framework that produces
a deterministic parse table by selective elimination of conflicts, including both shift/reduce and reduce/reduce conflicts.17

Nodes can also be indirectly fragile; for example, a chain reduction of a fragile production would likewise be fragile.
This propagation stops when a number of terminal symbols equal to the lookahead used for parsing (k) has been accumulated
at the beginning and end of a fragile region; in the example of Figure 6.8, adding parentheses to an arithmetic expression
encases the fragile region and results in an unambiguous construct.

Indirect, or dynamic, fragility is determined by synthesizing the exposure of conflicts along the left and right sides of a
subtree, as shown in Figure 6.9. As each node is shifted onto parse stack its dynamic fragility can be determined: a node is
explicitly fragile (and therefore requires a state) if either the left or right side of its yield exposes a fragile production. Each
entry in the parse stack can be extended to include the additional information needed to track terminal yield counts and left
and right conflict exposure.18

6.5.2 Implementing Limited State-Matching

Constructing a sentential-form parser that applies state matching to fragile nodes is a straightforward combination of the two
algorithms. However, we prefer to avoid the additional space overhead of explicit state storage: instead of applying state
matching to the portions of the parse tree not correctly handled by sentential-form parsing, these areas are simply re-created
on demand. (The ‘state’ information on affected nodes is effectively reduced to a single boolean value.) This approach
is simple, can often be implemented with no explicit storage costs whatsoever, and—given the small size of the regions
affected—is very fast in practice.

In order to implement this approach, regions of the parse tree described by ambiguous portions of the grammar must be
re-created whenever any modification occurs that might affect their structure. The only change required to the sentential-
form algorithm is the inclusion of the boxed code in Figure 6.5, which replaces each fragile node appearing in the input
stream with its constituents.

Unambiguous symbols (even those containing ambiguous structures, e.g., parenthesized expressions in the grammar of
Figure 6.8) continue to be parsed as fast as before. Only a lookahead with exposed ambiguous structure must be broken
down further in order to determine the next action. Fragile nodes constitute a negligible portion of the tree across a variety
of programs and languages studied (C, Java, Fortran, Modula-2); the additional (re)computation has no noticeable impact
on parsing performance. For grammars of practical interest, the combination of sentential-form parsing and limited state
matching uses less time and space than full state-matching parsers, while supporting the same class of conflict resolution
mechanisms.

6.6 Representing Repetitive Structure

The asymptotic performance results presented in this chapter require the parse tree to support logarithmic search times. This
is not the usual case: repetitive structure, such as sequences of statements or lists of declarations, is typically expressed in
grammars and represented in trees in a left- or right-recursive manner. Thus parse ‘trees’ are really linked lists in practice,
with the concomitant performance implication: any incremental algorithms degenerate to at best linear behavior, providing
no asymptotic advantage over their batch counterparts.

There are two types of operators in grammars that create recursive structure: those that might have semantic significance,
such as arithmetic operators, and those that are truly associative, such as the (possibly implicit) sequencing operators that

17Visser [95] examines an alternative approach that instead modifies the item set construction to encode parse forest filters [42]. To use this approach
in conjunction with incremental parsing, the productions to which priority constraints apply must be indicated in a manner analogous to the itemization
of conflict-causing productions in an LR parser generator.

18In practice it is unnecessary to store yield counts persistently; the count for a non-trivial subtree reused by the parser can be approximated conser-
vatively by the minimum yield of the production it represents. If the environment already maintains the length of a subtree’s text as a synthesized node
attribute, this information can replace yield computation in the k = 1 case.
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bool is_fragile (NODE *node) {
return grammar!is_fragile_production(node!prog) || node!dyn_fragility;

}

class PARSE_STACK_ENTRY {
protected:

int beginning_state;
NODE *node;
void push (int old_state, NODE *node);
...

}

Extend the normal parse stack entry object with additional fields
class EXTENDED_STACK_ENTRY : public PARSE_STACK_ENTRY {
private:

bool left_fragile, right_fragile;
int total_yield;

public:
Push node onto the stack; its children are the nodes in the stack entries represented by the children array.
EXTENDED_STACK_ENTRY (node, PARSE_STACK_ENTRY children[]) {

int i;
int num_kids = node!arity;
Compute conservative estimate of each child’s yield, as well as total yield.
int yield[num_kids];
for (i = 0; i < num_kids; i++) {
if (is_token(children[i]!node)) yield[i] = 1;
else if (has_type(EXTENDED_STACK_ENTRY, children[i]))

yield[i] = children[i]!yield;
else return grammar!estimate_yield(children[i]!node);
total_yield += yield[i];

}
Compute and record left side’s fragility.
left_fragile = false;
int exposed_yield = 0;
for (i = 0; i < num_kids; i++) {
if (grammar!is_fragile_production(children[i]!node!type) ||

has_type(EXTENDED_STACK_ENTRY, children[i]) &&
children[i]!left_fragile)

{left_fragile = true; break;}
else if ((exposed_yield = yield[i]) >= k) break;

}
Compute and record right side’s fragility (symmetric).
. . .
Set node’s dynamic fragility status.
node!dyn_fragility = left_fragile || right_fragile;

}
};

Figure 6.9: Computation of dynamic fragility.
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separate statements. The former do not represent true performance problems because the sequences they construct are nat-
urally limited; for instance, one assumes that the size of an expression tree in C is bounded in practice. The latter type are
problematic, since their sequences are usually substantial in any program of non-trivial length. Depending on the form of
the grammar, modifying either the beginning or end of the program—both common cases—will require time linear in the
length of the program text.

To avoid this problem, we represent associative sequences non-deterministically; the ordering of the yield is maintained,
but otherwise the internal structure is unspecified [35]. This convention permits the environment and its tools the freedom
to impose a balancing condition, of the sort normally used for binary trees. (The small amount of reorganization due to
re-balancing does not affect user-visible tree structure and results in a net performance gain in practice.) The appropriate
data structures and algorithms are well-known [89], so we will concentrate instead on the interaction of non-deterministic
structure with incremental parsing.

An obvious way to indicate the freedom to choose an internal representation for associative sequences is to describe the
syntax of the language using an extended context-free (regular right part) grammar [56]. We can use the grammar both to
specify the syntax of the language and to declaratively describe the representation of the resulting syntax trees. Productions
in the grammar correspond directly to nodes in the tree, while regular expressions denoting sequences have an internal
representation chosen by the system—one that is guaranteed to maintain logarithmic performance. Choice operators are
not provided, since alternatives are conveniently expressed as alternative productions for the same grammar symbol. We
will assume that any unbounded sequences are expressed in this fashion in the grammar.

Note that changes to the grammar are necessary—the parser generator cannot intuit the associativity properties of se-
quences, since it must treat the grammar as a declarative specification of the form of the parse tree. (Other tools will also
base their understanding of the program structure on the grammar.) Associativity, while regarded as an algebraic property
of the sequencing operator, is essentially a semantic notion, determined by the interpretation of the operators.

Since sequence specification affects only the performance of incremental parsing and not its correctness, existing gram-
mars can be introduced to an environment and then subsequently modified to provide incremental performance. Changes
required to port existing grammars to Ensemble (including Java and Modula-2) amounted to less than 1% of their text. These
changes also simplify the grammars, since regular expression notation is more compact and readable than the recursive pro-
ductions it replaces.

Given a grammar containing sequence notation, we transform it to a conventional LR(k) grammar by expanding each
sequence into a set of productions for a unique symbol.19 The form of the productions expresses the associativity of the
sequence; Figure 6.10 illustrates the transformation.

The incremental parsing algorithm requires no changes in order to process sequences.20 The expanded grammar will
be ambiguous, but—unlike conflicts in the original grammar—conflicts induced by the expansion of sequence notation do
not require the special handling described in the previous section.

The simple ‘reconstruction’ approach to handling ambiguity requires that a left-recursive expansion of sequence no-
tation result in a grammar that contains no conflicts involving the sequences themselves. Such conflicts would represent
an impediment to incremental performance, requiring the sequence to be reconstructed in its entirety whenever it appeared
as a lookahead symbol. The general approach to combining state-matching with the sentential-form framework does not
impose this limitation, but running time increases to O(t + s(lg N)2) without the assumption that sequences do not conflict
with other productions.

6.6.1 Performance Model

Although the techniques of earlier sections produce correct incremental parsers for any grammar accepted by the parser
generator, the choice among grammars accepting the same language matters greatly for incremental performance. We now
examine the assumptions that accompanied the performance analysis of the algorithms in Sections 6.3 and 6.4.

The basic goal is to ensure that any node in the tree can be reached in logarithmic, rather than linear, time. The tree must
therefore be sufficiently well balanced; in particular, any sequence that is unbounded (in practice) must be represented as
an associative sequence in the grammar. Note that non-associative sequences, though syntactically unbounded, are limited

19Note that the most powerful transformations—those involving right-recursive expansions of sequences [44]—cannot be employed, since the goal of
non-deterministic sequences is to reuse non-trivial subtrees as they occur in the input stream, which precludes delaying all reductions until the symbol
after the final sequence element has been seen. The class of grammars permitted will be exactly those that are acceptable given a left-recursive expansion
of all sequences. Existing techniques for constructing batch parsers directly from ELR(k) grammars [85] cannot be used; these algorithms treat sequences
in an inherently batch fashion.

20It is not only not necessary but undesirable for the incremental parser itself to restore the balancing condition. Not only would this complicate parsing,
it would not assist any other transformation tool in maintaining the balancing condition. Instead, the environment should always re-balance modified
repetitive sections immediately before processing a commit (Chapter 3). Tools should perform on-line re-balancing only when performance would be
severely degraded by waiting until the completion of the edit.
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Figure 6.10: Supporting balanced structure. Regular expressions in the grammar (a) are used to denote the associative
sequences. Instead of the conventional left-linear expansion employed in batch parsing (b), each sequence operator is ex-
panded into an additional symbol whose productions allow non-deterministic grouping (c). The tree constructed by the
parser for a sequence of new tokens is initially unbalanced (d). Commit-time processing restores the balancing condition (e);
the actual representation will vary depending on the exact location of modifications and the specific re-balancing algorithm
used. The meta-syntax for sequence operators is summarized in Figure 6.11.

in size by semantic or pragmatic considerations. (For example, the length of individual expressions and declarations in
imperative languages, rules in Prolog, and primitive forms in Lisp are all effectively bounded.)

Given the assumption that all unbounded sequences appear in the grammar using the list notation, we can only violate
the performance guarantee if the interpretation of the yield of a sequence depends on its context. Consider a ‘bad’ grammar
for the regular language (AjB)X+:

s ! A c+ j B d+

c ! X
d ! X

This grammar is clearly problematic, since the reduction of an X to either c or d is determined by the initial symbol in
the sentence, which is arbitrarily distant. O(jsentence j) recomputation is therefore needed each time the leading symbol is
toggled between A and B.

Situations like this cannot arise when the interpretation of an associative sequence’s terminal yield is independent of its
surrounding context. In fact, as long as the contextual effect on the structure of the phrase is limited to a bounded number

rhs ! symlist
symlist ! � j symlist sym

sym ! basesym
j basesym type separator
j ( baselist ) type separator

baselist ! basesym j baselist basesym
type ! * j +

separator ! � j [ seplist ]
seplist ! basesym j seplist basesym

basesym ! ident j charlit j stringlit

Figure 6.11: Meta-syntax for describing non-deterministic sequences. This is one possible notation: it differentiates be-
tween zero-or-more and one-or-more sequences, and allows multiple symbols in each sequence element as well as an op-
tional separator. A non-empty, comma-separated list of identifiers, e.g., would be written as idlist!ID+[’,’].
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of terminals, the performance constraints hold. Since ‘incrementalizing’ a grammar to gain optimum performance already
requires the determination of its associative sequences, the check for invalid dependencies can be handled by inspection.21

6.7 Node Reuse

Incremental parsing is only one of several tools that collectively support incremental compilation and associated environ-
ment services. Overall performance is affected not just by the time it takes the incremental parser to update the program’s
structure, but also by the impact of the parser’s changes on other tools in the environment. The reuse of nonterminal nodes by
the parser is essential both in achieving overall environment performance and in maintaining user annotations (Section 4.5).
Figure 6.1 indicates the set of nodes that can be retained through explicit reuse calculation in the common case of changing
an identifier spelling.

6.7.1 Characterizing Node Reuse

We first define and justify the concept of reuse paths, then discuss a specific policy for determining the set of available paths.
A second, more aggressive, policy is described in the following section. Methods for computing both policies are covered
in Section 6.7.3.

Any node reuse strategy must consider both tool and user needs. Our approach is based on a simple concept: reuse of
a given node is indicated whenever its context or its contents (or both) are retained. Thus reuse is justified by exhibiting
one or more paths from some base case to the node in question. Reused context typically corresponds to a path between
the UltraRoot and a reusable node. This is referred to as top-down reuse. Reused content corresponds to a path from a
reused token to the reusable nonterminal node, and is referred to as bottom-up reuse.22

In both cases, the existence of such a path justifies the node’s reuse by ‘anchoring’ it to another retained node. Given
the goals of node reuse, in particular the need to avoid spurious or surprising results from the user’s perspective, we also
assert that the converse is true: the absence of such a path warrants the use of a new name for the associated nonterminal.
(Note that other formulations of optimality, such as minimal edit distance, are not useful in the context of an ISDE, given the
objective of preserving conceptual names for program entities.) Each reuse path establishes an inductive proof justifying
the reuse of nodes along the path, in a manner that matches user intuition and is likely to improve overall environment
response time. (The description of reuse paths is actually a schema: different policies can be employed in determining the
local constraints on node reuse, generating different sets of paths in general.)

Bottom-up reuse is a natural extension of the ‘implicit’ node reuse that occurs when an incremental parser shifts a non-
trivial subtree. In the unambiguous policy, the physical object representing a nonterminal node can be reused whenever
all its children from the reference version are reused. Even with an optimal incremental parser, explicit bottom-up reuse
checks are necessary to reverse the effect of a breakdown that turned out to be unnecessary, since an optimal choice of
breakdown order cannot be known in advance (Section 6.4.2). Explicit reuse of modified tokens by the incremental lexer
and the presence of errors in the input stream introduce additional possibilities for node reuse through explicit bottom-up
checks.

Top-down reuse is defined analogously: if a node exists in both the current and previous version of the tree and its ith

child is changed but represents the same production in both versions of the tree, then the ith child node may be reused in the
new version. Figure 6.12 illustrates both types of reuse paths.

Several incremental parsing algorithms have tried to capture a subset of top-down reuse by implementing a matching
condition [58, 61, 76]. This is a test that indicates when a change can be ‘spliced’ into existing tree structure, thus avoiding
the complete reconstruction of the spine nodes. The technique has a historical basis (it was first introduced by Ghezzi and
Mandrioli [36]) that has precluded better approaches: the time to test matching conditions and maintain the data needed to
perform the tests outweighs the cost of a simple parsing algorithm followed by a direct reuse computation.23

The combination of bottom-up and top-down reuse results in optimal node reuse: the set of reuse paths computed are
globally maximal, and no additional reuse is justified given the unambiguous policy decision. This definition of reuse is
expressed without reference to a particular parsing algorithm, language, or editing model.

21Fortunately, the form required for good incremental performance is also the simpler and more ‘natural’ expression of the syntax.
22Recall from Section 3.2 that the UltraRoot persists across changes. We also assume that the set of reused tokens is known and that the incremental

lexer does not change the relative order of any reused tokens. �-subtrees retained by the parsing algorithm can also serve as starting points for bottom-up
reuse paths.

23In addition, the use of matching conditions precludes incremental synthesized attribution in conjunction with parsing.
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a

b

c d

Figure 6.12: Illustration of reuse paths. In each case, the circle represents a reused node, and the lines indicate the reuse
path the justify its retention in the current version by linking it to some base case.
(a) Unambiguous bottom-up reuse (reused contents). (b) Top-down reuse (reused context). (c) Ambiguous bottom-up reuse
policy; only a subset of the children are required to remain unchanged. (d) Additional top-down reuse that can result under
the ambiguous model.

6.7.2 Ambiguous Reuse Model

The policy of restricting bottom-up reuse to only those nodes for which all the children are reused may appear overly re-
strictive. We can relax the bottom-up reuse constraint to include any case where at least one child remains unchanged. This
expanded definition can only increase the total number of reused nodes, since cases of partial overlap with new material
are now included. As an example, consider changing the conditional expression in an if/then statement: the statement
node itself can be retained despite the replacement of one of its children.

The relaxed constraint on bottom-up reuse introduces a potential ambiguity. Consider what happens if two children of
a node both exist in the new version of the tree but with different parents—which, if either, should be the reuse site? Such
decisions require resolution outside the scope of syntactic reuse computation per se: the desired outcome may depend on
the specific language, details of the environment, or the user’s preference. The policy we adopt in our implementation is
first-come/first-served; the order is determined by operational details of the parser.24 Ambiguous bottom-up reuse can also
create new starting points from which top-down reuse paths can originate (Figure 6.12d).

Under the ambiguous policy, the set of reuse paths is maximal (no path can be legally extended), but a global maximum
is not well-defined; it depends in general on the policy for resolving ‘competition’ when the reuse paths do not form a tree.
(However, such differences are slight, and the time required to compute more elaborate metrics—such as maximizing the
total number of reused nodes—require more time to compute than they could potentially save.)

6.7.3 Implementation

We now consider implementation methods for discovering bottom-up reuse during incremental parsing, and top-down reuse
as a post-pass following the parse. Our methods avoid the space overhead and sub-optimal behavior associated with reuse
computed through matching conditions.

Bottom-up reuse is computed most easily by adding an explicit check whenever the incremental parser performs a re-
duction. In the unambiguous case, each node representing a symbol in the right-hand side of the production must itself be
reused and must share the same parent node from the previous version. Figure 6.13 illustrates this test.

Ambiguous bottom-up reuse can be computed in a similar manner by relaxing the reuse condition (Figure 6.14). Under
this policy, only a single retained child is required to trigger the reuse of its former parent. Since the previous set of children
may be split across multiple sites in the new version of the tree, this algorithm must guard against duplicate reuse of the
parent by maintaining an explicit table of reused nodes during the parse. (In the unambiguous policy, competition for a
single node cannot occur.)

Top-down reuse is computed as a separate post-pass. It involves a recursive traversal of the current tree, limited to the
regions modified by the incremental parser. Each non-new node with one or more changed children is subject to the top-
down check, which attempts to replace each new child with its counterpart from the previous version of the tree.

The algorithm in Figure 6.15 illustrates this process. Reachability analysis discovers nodes in the previous version of
the tree that have been eliminated in the new version (Section 3.2); the deleted nodes constitute the (only) candidates for
top-down reuse. (Without the reachability check, top-down reuse could duplicate nodes reused implicitly by the incremental
parser.) No changes to the algorithm in Figure 6.15 are required to support the ambiguous reuse model.

24Other reasonable policies, such as refusing to reuse a node if there are competing reuse sites or a voting scheme based on the site with the larger
number of children, are facilitated by replacing the bottom-up reuse check with the creation of a list of potential sites; these sites can be processed once
parsing is complete and the tree is intact, but before top-down reuse takes place.
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Reuse a parent when the same production is used and all children remain the same.
NODE *unambig_reuse_check (int prod, NODE *kids[]) {

if (arity of prod == 0) return make_new_node(prod);
NODE *old_parent = kids[0]!parent(previous_version);
if (old_parent!type != prod) return make_new_node(prod);
for (int i = 0; i < arity of prod; i++)
if (node!is_new(kids[i])) return make_new_node(prod);
else if (old_parent != kids[i]!parent(previous_version))
return make_new_node(prod);

return old_parent;
}

Figure 6.13: Computing unambiguous bottom-up node reuse at reduction time. The reuse algorithm will either return a node
from the previous version of the tree (when the production is unchanged and all the children have the same former parent)
or create a new node to represent the reduction in the new tree (make_new_node). Access to the previous children is
provided by the history interface presented in Figure 3.2.

Reuse a parent when the same production is used and at least one child is unchanged.
NODE *ambig_reuse_check (int prod, NODE *kids[]) {
if (arity of prod == 0) return make_new_node(prod);
for (int i = 0; i < arity of prod; i++)

if (!node!is_new(kids[i])) {
NODE *old_parent = kids[i]!parent(previous_version);
if (old_parent!type == prod && !in_reuse_list(old_parent)) {
add_to_reuse_list(old_parent);
return old_parent;

}
}

return make_new_node(prod);
}

Figure 6.14: Computing ambiguous bottom-up node reuse at reduction time. This method differs from that of Figure 6.13
by allowing a partial match to succeed: if a reuse candidate can be found among the former parents of reused children, it
will be used to represent the production being reduced. A simple FCFS policy resolves competition for the same parent
when its former children appear in multiple sites in the new tree. Duplicate reuse is avoided by maintaining a list of the
explicitly reused nodes.
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Compute top-down reuse in a single traversal of the new tree.
top_down_reuse () {
process_deletions(UltraRoot); Section 3.2.
top_down_reuse_traversal(root);

}

Apply a localized top-down reuse check at each modification site.
top_down_reuse_traversal (NODE *node) {
if (node!has_changes(local) && !node!is_new())
reuse_isomorphic_structure(node);

else if (node!has_changes(nested))
foreach child of node do top_down_reuse_traversal(child);

}

Restore reuse paths descending from node.
reuse_isomorphic_structure (NODE *node) {
for (int i = 0; i < node!arity; i++) {

NODE *current_child = node!child(i);
NODE *previous_child = node!child(i, previous_version);
if (current_child!is_new() && !previous_child!exists() &&

current_child!type == previous_child!type) {
replace_with(current_child, previous_child);
reuse_isomorphic_structure(previous_child);

} else if (current_child!has_changes(nested))
top_down_reuse_traversal(current_child);

}
}

Figure 6.15: Computing top-down reuse. The algorithm performs a top-down traversal of the structure that includes each
modification site, attempting to replace newly created nodes with discarded nodes. process_deletions identifies the
set of nodes from the previous version of the tree that were discarded in producing the current version; these nodes are the
(only) candidates for top-down reuse.
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6.7.4 Correctness and Performance

Adding explicit reuse to the incremental parser can never result in a node being used twice. Unambiguous bottom-up reuse
avoids node duplication by construction. Bottom-up reuse in the ambiguous model and top-down reuse both contain an
explicit guard against duplication. Each bottom-up check is performed in constant time and adds no significant overhead
to incremental parsing. Top-down reuse does not affect the asymptotic results in Section 6.6, since only nodes touched
by the incremental parser are examined. The combination of optimistic sentential-form parsing, reuse checks at reduction
time, and a separate top-down reuse pass results in optimal reuse in the unambiguous case and a maximal solution in the
ambiguous model, computed in optimal space and time.

Our preferred approach in practice is to apply ambiguous bottom-up reuse without the top-down pass: this locates vir-
tually all the reusable nodes including most of those on top-down reuse paths. (Only some cases involving �-subtrees and
chain rules can be missed, when no children exist to anchor the parent node’s reuse.) In the example shown in Figure 6.1,
this simple method results in only one changed node in the entire tree: the modified token.25

6.8 Conclusion

This chapter provides four main research contributions. First, it offers a general algorithm for incremental parsing of
LR grammars that is optimal in both time and space and supports an unrestricted editing model. Existing techniques for
constructing LR(k), LALR(k), and SLR(k) parsers can be used with very little modification.

Second, it extends sentential-form parsing theory to permit the use of ambiguous grammars (in conjunction with static
disambiguation mechanisms), allowing the sentential-form approach to apply to grammars in widespread use. Extensions
to the parsing algorithm to support static filtering of the parse forest are both simple and efficient.

Third, it describes the importance of balancing lengthy sequences, providing a solution in terms of grammar notation,
parse table construction, and run-time services. In conjunction with this representation, a realistic performance model is
offered that allows for meaningful comparisons with batch parsing and other incremental algorithms.

Finally, we define optimal node reuse independent of the operational details of parsing. General models of ambiguous
and unambiguous reuse are presented, along with simple and efficient methods to implement both approaches.

25If the lexer reuses this token, the tree will possess no changes whatsoever after the lexing/parsing analysis. Obviously the user’s modification has
semantic significance; the original edit, along with its path information, remains available to tools, such as semantic analysis, for their own analyses.



Chapter 7

Non-deterministic Parsing and Multiple
Representations

A major research goal for compilers and environments is the automatic derivation of tools from formal specifications. How-
ever, the formal model of the language is often inadequate; in particular, LR(k) grammars are unable to describe the natural
syntax of many languages, such as C++ and Fortran, which are inherently non-deterministic. Designers of batch compilers
work around such limitations by combining generated components with ad hoc techniques (for instance, performing par-
tial type and scope analysis in tandem with parsing). Unfortunately, the complexity of incremental systems precludes the
use of batch solutions. The inability to generate incremental tools for important languages inhibits the widespread use of
language-rich interactive environments.

We address this problem by extending the language model itself, introducing a program representation based on parse
dags that is suitable for both batch and incremental analysis. Ambiguities unresolved by one stage are retained in this rep-
resentation until further stages can complete the analysis, even if the resolution depends on further actions by the user.
Representing ambiguity explicitly increases the number and variety of languages that can be analyzed incrementally using
existing methods.

To create this representation, we have developed an efficient incremental parser for general context-free grammars. Our
algorithm combines Tomita’s generalized LR parser with reuse of entire subtrees via state-matching. Disambiguation can
occur statically, during or after parsing, or during semantic analysis (using existing incremental techniques); program errors
that preclude disambiguation retain multiple interpretations indefinitely. Our representation and analyses gain efficiency by
exploiting the local nature of ambiguities: for the SPEC95 C programs, the explicit representation of ambiguity requires
only 0.5% additional space and less than 1% additional time during reconstruction.

7.1 Introduction

Generating compiler and environment components from declarative descriptions has a number of well-known advantages
over hand-coded approaches, especially when the result is intended for an incremental setting. However, existing formal
methods use limited—and unrealistic—language models. In particular, ambiguity, in both syntactic and semantic forms,
is outside the narrow constraints of LR(1) parsing (the conventional method for syntax analysis) and is not addressed by
attribute grammars (the most common form of formal semantic analysis).

Batch systems cope with such language ‘idiosyncrasies’ by remaining open; ad hoc code is coupled with generated
components to overcome limitations in the language model. Those solutions succeed because the language document is
static and the analysis order is fixed. (For example, it can be assumed that necessary symbol table information is available
when needed.) The greater complexity of incremental algorithms precludes simple ad hoc solutions, due to the need to
support incomplete documents and partial analyses that depend on the order in which the user modifies the program. The
result is a collection of standard representations and algorithms unable to directly model the analysis of C, C++, Fortran,
Haskell, Oberon, and many other languages. Thus many potential applications—compilers, environments, language-based
tools—forgo incrementality in favor of slower, less informative batch technologies.

Rather than lament the design of these languages, we address the underlying issue by extending the language model,
producing a framework that allows existing formalisms to apply to a wider variety of languages. Our solution utilizes a
new intermediate representation (IR) for the early portions of the (possibly incremental) compilation pipeline: the abstract
parse dag allows multiple interpretations to be represented directly and efficiently. The familiar pass-oriented compiler
organization is supported, even in incremental settings, by allowing ambiguities to be resolved at different stages of the

77
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int foo () {
int i;
int j;
a (b);  ambiguous—could be
c (d);  decls or stmts.
i = 1;
j = 2;

}

Figure 7.1: A simple example of ambiguity in C and C++. In this case, type information is necessary for disambiguation:
the middle two lines can be either declarations or function calls, depending on howa and c have been declared previously
in enclosing scopes.

analysis. Semantic filters address the ‘feedback’ problem (syntactic structure dependent upon semantic information) aris-
ing in C and Fortran. Parsing filters [53] address such problems as the declaration/expression ambiguity in C++ [28] and
the ‘off-side’ rule in Haskell [46]. We describe mechanisms for applying both types of resolution using existing formal
techniques, such as attribute grammars, while also permitting ad hoc resolution. Pre-compiled filters such as precedence
and associativity declarations in bison [4] are supported in a uniform fashion. In the presence of missing or malformed
program text, multiple interpretations may be retained indefinitely as a direct expression of the possibilities.

We have developed a novel algorithm for incremental, non-deterministic parsing to (re)construct this IR. The parser ac-
cepts all context-free grammars: generalized LR parsing [79, 92] is used to support non-determinism and ambiguity, elim-
inating restrictions on the parsing grammar and the attendant need for abstraction services. Shifting of entire subtrees via
state-matching [49] provides efficient incremental behavior, and explicit node retention minimizes the work of subsequent
analysis passes. (Together they also ensure the preservation of user context and program annotations.) Lookahead infor-
mation is dynamically tracked and encoded in parsing states stored in the nodes, eliminating the space overhead of previous
approaches that require persistent maintenance of the entire graph-structured parse stack [30].

As an example of an inherent context-free syntax ambiguity addressed by this representation, consider the syntax of C.
Figure 7.1 illustrates a case where the interpretation of several lines is context-sensitive, i.e., ‘static semantic’ analysis is
needed to resolve the ambiguity.1 A similar problem arises in C++, Fortran, Oberon, and other languages. This problem
arises whenever the natural context-free syntax depends on non-local type information [103].

Ambiguity is discovered during analysis of the context-free syntax, leaving multiple alternatives encoded in the parse
dag. Early stages of semantic analysis resolve typedef declarations; binding information for type names is then used to
complete the resolution of the program’s syntax. (In the case of a correct program, the parse dag will become a conventional
abstract parse tree.) Semantic analysis then continues, using the resolved structure. This approach preserves the familiar
compilation pipeline model, and allows existing formal methods to be applied to C and other ‘ill-designed’ languages to
produce either batch or incremental environments.

Encoding alternatives for later resolution is useful in a number of stages in the compilation pipeline. Lexical deci-
sions are often deferred until parsing or semantic analysis by having the lexer recognize only equivalence classes of tokens.
Visser [97] makes this integration explicit for a batch system by using a single GLR parser for both lexical and context-free
analysis. This approach can be made incremental using the techniques we describe. Code generation also benefits from
retaining multiple representations until additional information has been gathered. Giegerich [37] applies context-sharing in
this domain to intersperse code selection and register allocation.

We have measured the space costs of our representation and the time overhead to rebuild it incrementally using a bench-
mark suite that includes both C++ programs and the C programs in SPEC95. Both measurements indicate that the significant
increase in the flexibility of the language model comes at virtually no cost. The efficiency results from exploiting an in-
herent property of programming (and natural) languages: ambiguity is both constrained (the number of interpretations is
small) and localized (the length of an ambiguous construct is limited).

The remainder of this chapter is organized as follows. In Section 7.2 we describe the basic form of the program represen-
tation, concentrating on the handling of alternative interpretations. Section 7.2 also summarizes empirical studies demon-
strating the highly localized nature of ambiguity in programs and the minimal space overhead achievable through sharing.
In Section 7.3 we consider in detail the construction of our program representation using an incremental, non-deterministic
parser. We introduce a performance model and analyze the asymptotic behavior of the parser to demonstrate the efficiency
of incremental updates. We conclude this section with a return to the issue of sharing in the abstract parse dag, demonstrating
optimality and correctness properties unique to our method. A trace of the parser actions on a small C++ example is given

1Batch systems typically handle this problem by having the lexer query the symbol table in order to separate identifiers into two distinct categories.
Attribute-influenced parsing [51, 84] is a combination of LR parsing and a restricted class of attribute grammars that addresses the same problem in a
formal way. Neither of these solutions can be applied to an incremental setting where non-trivial subtrees appear in the parser’s input stream.
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Figure 7.2: Comparison of the abstract parse dag to other proposed representations. The grammar productions illustrated
are X!ABC j EF. Ferro and Dion’s approach (a) makes the GSS itself persistent; this requires semantic attributes associ-
ated with a production (right-hand side) to be attached to a constellation of nodes rather than an individual object. Rekers’
representation (b) is more like a classic parse tree but separates the symbol (phylum, left-hand side) and rule (production,
right-hand side) into separate nodes. This imposes significant overhead, since the vast majority of the program is deter-
ministic. Our approach represents the deterministic portions of the tree in the conventional manner (c), using Rekers-style
splitting only where multiple representations actually exist (f ). (Not shown are the additional state collections required by
the Ferro and Dion approach or the problems with under- and over-sharing of epsilon productions eliminated in the abstract
parse dag.)

in Section 7.4. Mechanisms for disambiguation at various points in the analysis phase—particularly semantic disambigua-
tion involving type information—are presented in Section 7.5. Implementation details and empirical comparisons between
deterministic parsing/parse trees and non-deterministic parsing/abstract parse dags are given in Section 7.6. A discussion
of future work and our conclusions end the chapter. The incremental GLR parsing algorithm is provided in Appendix B.

7.2 Representing Ambiguity

A phase-oriented incremental system can succeed only if the intermediate representation explicitly represents unresolved
ambiguities. The abstract parse dag is similar to a parse tree except that a region may have multiple interpretations. This
section describes the representation itself; subsequent sections describe its construction, via non-deterministic parsing, and
the resolution of ambiguities expressed through this IR.

In the presence of ambiguity, many parse trees potentially represent the program. To avoid exponential blowup, this
entire forest is collapsed into a single, compact data structure. Subtree sharing merges isomorphic regions from different
trees, and requires no special changes—each instance of a production is represented by a single node, just as in a parse
tree. Merging contexts,2 however, requires a new type of node to indicate the choices. A symbol node represents a phylum
(left-hand side) instead of an entire production; its children represent the possible interpretations of their common yield. In
the case of a correct program, later stages of analysis will disambiguate the program by selecting exactly one child of each
symbol node. Figure 7.2 illustrates the distinction between symbol and production nodes and compares our representation
to other proposals. Figure 7.3 shows the abstract parse dag corresponding to the example in the introduction.

If the number of alternate interpretations at a single point is large, the children of a symbol node can be represented as a
balanced binary tree to ensure the performance characteristics described in Section 7.3.3. In practice, however, the number
of alternatives is effectively bounded and a simple list provides sufficiently fast access.

In a typical batch compiler, a grammar from a restricted grammar class is used to produce a parser for the concrete syn-
tax. A separate (often implicit) grammar defines the abstract syntax representation of the parsed program after artifacts of
the concrete parse have been removed. GLR parsing enables a single grammar to formally define both the representation

2Sometimes referred to as ‘packing’ in natural language analysis.
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itemitem
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Figure 7.3: Representation of ambiguous structure in the abstract parse dag. This is the result of parsing the example in
Figure 7.1 as a C++ program. Most nodes represent both productions and symbols. Choice points, shown as circles, represent
only symbols; their children comprise the alternative interpretations. In this case the shared subtrees are trivial—they are
the terminal symbols in the ambiguous region. The structure shown represents a simplification of the complete grammar.

Program Lines Lang %ov
compress 1934 C 0.21
gcc 205093 C 0.10
go 29246 C 0.00
ijpeg 31211 C 0.02
m88ksim 19915 C 0.02
perl 26871 C 0.01
vortex 67202 C 0.00
xlisp 7597 C 0.02
emacs 19.3 159921 C 0.47
ensemble 294204 C++ 0.26
idl 1.3 29715 C++ 0.10
ghostscript 3.33 128368 C 0.52
tcl 7.3 26738 C 0.31

Table 7.1: Programs used in this study. The first eight are from SPEC95. idl is the SunSoft IDL front end and ensemble
is our prototype ISDE.

and the mechanism that builds it: support for multiple syntactic interpretations and non-deterministic parsing permit arbi-
trary CFGs to be used in describing the language. This generality allows the grammar to serve as a pure definition of the
resulting structure, rather than requiring it to conform to the restrictions of some particular parsing class.3 Since our parse
dag representation inherits this benefit of GLR parsing, we refer to it as ‘abstract’. (We will sometimes omit this modifier.)

The abstract parse dag differs from the ordinary shared forest discovered by a GLR parser: Instances of productions are
always represented by individual nodes, and sharing of both subtrees and contexts is optimal. We return to issues of sharing
in Section 7.3.4 after explaining incremental GLR parsing.

7.2.1 Space Overhead for Ambiguity

Cognitive studies suggest that localization of ambiguity is an inherent property of natural languages, a constraint imposed
by limitations on short-term memory [62, 69]. Our studies find an identical result for programming languages.4 Since an
abstract parse dag exploits localization of ambiguity through the sharing of subtrees and contexts, the increase in space

3Even with GLR parsing, some erasing of concrete elements unnecessary for the abstract structure, such as parentheses, is often done.
4This property was indirectly measured by Tomita [92] and Rekers [79], who compared the speed of a batch GLR parser to Earley’s algorithm [27] on

natural and programming language grammars, respectively. Both authors concluded that grammars are ‘close’ to LR(1) in practice, and therefore GLR
parsing exhibits linear behavior despite its exponential worst-case asymptotic result.
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Figure 7.4: Distribution of ambiguities by source file in gcc. This histogram groups the source files of gcc according to the
amount of syntactic ambiguity they possess. The syntax of C++ was used to determine these counts; the percentages would
be lower using a C grammar, due to the more restrictive statement syntax of that language. All ambiguities are semantically
resolved (the ‘typedef problem’ ). They consist of two interpretations each, and share only terminal symbols.

required relative to a fully disambiguated parse tree provides an ideal measure of the amount of ambiguity (as well as the
space overhead of adopting our IR). For the suite of C and C++ programs in Table 7.1, we measured the increased space
consumption required to represent the multiple interpretations of each syntactically ambiguous construct. The increase is
relative to the parse tree produced by a batch compiler (using semantic feedback to the lexer and with the corresponding
ambiguity in the grammar resolved through different identifier namespaces). The average increase for each program in the
suite is shown in the final column of Table 7.1. Figure 7.4 shows the ambiguity distribution by source file for gcc.

7.3 Constructing the Abstract Parse Dag

We now consider the construction of the abstract parse dag via incremental, non-deterministic parsing. We first review
batch GLR parsing and incremental parsing, which will jointly form the basis for the incremental GLR (IGLR) parser. We
introduce a performance model to analyze the asymptotic behavior of the parser, and conclude the section by proving that
sharing in the abstract parse dag is both optimal and correct. The algorithm itself appears in Appendix B.

7.3.1 Generalized LR Parsing

Batch GLR parsing [73, 79, 92] is a technique for parsing arbitrary context-free grammars that utilizes conventional LR table
construction methods. Unlike deterministic parsers, however, a GLR parser permits these tables to contain conflicts: when
a state transition is multiply defined, the GLR parser simply forks multiple parsers to follow each possibility. In the case of
a deterministic parse requiring additional lookahead, all but one of these parsers will eventually terminate by encountering
a syntax error. In the case of true ambiguity, multiple valid representations will be discovered. In both cases, the graph-
structured parse stack (GSS) represents the combined parse stacks compactly. This sharing is made possible by having
the GLR parse proceed breadth-first: each terminal symbol is shifted simultaneously by all active parsers in the collection.
Figure 7.5 illustrates a GLR parser processing the non-LR(1) grammar of Figure 7.6.

As demonstrated in batch environments, GLR parsing simplifies the specification of programming languages by remov-
ing restrictions on the parsing grammar and eliminating the need for a separate abstraction mechanism. The ability to use
additional lookahead allows a more natural expression of syntax and enables the description of truly ambiguous languages.

7.3.2 Incremental GLR Parsing

We now turn to the construction of an incremental GLR (IGLR) parser that can parse an arbitrary CFG non-deterministic-
ally, while simultaneously accepting non-trivial subtrees in its input stream. The abstract parse dag is (re)created during
parsing; Section 7.3.4 explores this process in more detail. Section 7.4 contains a sample trace of the IGLR parser’s actions
using our running example and a simplified C++ grammar.
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Figure 7.5: Illustration of non-determinism in a GLR parser. When the grammar is ambiguous or requires lookahead greater
than that of the table construction method (typically a single terminal), a GLR parser will split into two or more parsers. Here
two parsers are being used in a region requiring two terminals of lookahead with an LR(1) table. (The grammar appears
in Figure 7.6.) In this case the parse is non-deterministic but unambiguous: when sufficient lookahead has been scanned
dynamically, the GLR automaton will collapse back to a single parser. In cases of true ambiguity, multiple interpretations
are preserved in the resulting abstract parse dag.

The IGLR parser combines subtree reuse in deterministic regions with GLR methods in areas requiring non-
deterministic parsing. This aggregation of the two algorithms is complicated by the unconstrained lookahead of non-
deterministic parsing: even though such regions are limited in practice, locating the boundary of such a region is necessary
in order to reuse unchanged subtrees.

As in previous GLR algorithms, we employ a graph-structured parse stack (GSS) to permit non-deterministic parsing.
During parsing, deterministic behavior is assumed to be the common case. (Sections 7.2.1 and 7.6 validate this assumption
through empirical measurements.) As with a deterministic state-matching parser, each node of the parse dag requires an ad-
ditional word of storage to record the parse state in which it was constructed. LALR(1) tables are used to drive the parser:
not only are they significantly smaller than LR(1) tables, but they also yield faster parsing speeds in non-deterministic re-
gions [57] and improved incremental reuse in deterministic regions (due to the merging of states with like cores).5

Left context checks involve the same integer comparison used by a deterministic state-matching incremental parser.
When elements of the parse are non-deterministic, however, the right context check is more complicated than its determin-
istic counterpart, which simply verifies that the terminal symbol following a potentially reusable subtree is unchanged. For
general context-free parsing, there is no fixed bound on right context; an incremental GLR parser cannot assume that the
amount of lookahead encoded in the parse table (usually one) is sufficient to determine when a reduction’s right context is
unchanged.

Instead, the incremental GLR parser must track lookahead use dynamically; this information is recorded in the nodes of
the abstract parse dag, where it is used to influence future parses. The use of extended right context can be encoded in the
same field normally used to record the parse state. All non-deterministic states are represented as an equivalence class with
a unique state value. When any node possessing this state value occurs as the lookahead symbol in subsequent analyses,
the matching test will fail and the parser will decompose the lookahead into its constituent subtrees.

Additional (dynamic) lookahead is required only when several parsers are simultaneously active. The IGLR parsing
algorithm tracks this condition with a boolean flag. After shifting the lookahead, the flag is set to true if there are multiple
active parsers. The flag is also set to true when a parse table interrogation returns multiple actions. During a reduction, the
state value recorded in the newly created dag node is the state of the single active parser, if the flag is false, and the value
representing all non-deterministic states (and thus the use of additional lookahead), if the flag is true. Figure 7.6 shows a
simple case where dynamic lookahead is used by our IGLR parser to analyze an LR(2) grammar using LR(1) tables.

When both the previous state (preserved in the root node of the lookahead subtree) and the current state are deterministic,
parsing proceeds as in Chapter 6. Shifted subtrees may contain non-deterministic areas as long as they are not exposed.
Subtrees containing modifications (textual and/or structural edits) are decomposed to expose each change site. Subtrees
from non-deterministic regions are similarly broken down, triggered by a failure of the normal state matching test. If a
conflict is encountered, the parser splits just as in batch GLR parsing, and subtrees in the input stream are fully decomposed
until a deterministic state is re-established (see the shifter routine in Appendix B).

Shifting an unmodified, non-trivial subtree condenses a sequence of transitions by the corresponding batch GLR parser.
The portion of the abstract parse dag reused when the incremental algorithm shifts a non-trivial subtree reflect any splitting
or merging that would occur in the GSS of the batch algorithm as it parsed the subtree’s terminal yield. The correctness of

5In the case where the grammar is LR but not LALR, the IGLR parser will try all the conflicting reductions, resolving the uncertainty when it shifts
the following terminal symbol.
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Figure 7.6: Tracking lookahead information dynamically. This example illustrates a grammar that requires two tokens of
lookahead. A GLR parser based on a single-lookahead table will require non-determinism to parse the sentence xzc. Since
the grammar is unambiguous, a unique parse tree results after c is read. The unsuccessful parser is discarded. Black ellipses
indicate nodes for which increased lookahead must be recorded during parsing; note that they coincide with reductions
performed while more than one parser was active. Nonterminals representing reductions in a deterministic state (A!Bc)
require only the implicit (one token) lookahead; they are marked with the (singleton) parser’s state when they are shifted
onto its parse stack.

skipping the intermediate steps is guaranteed in deterministic states by the usual incremental context checks, and in non-
deterministic states (which are treated as an equivalence class) by the restriction to terminal lookaheads. The correctness
of incremental GLR parsing can then be established by an induction over the input stream.

Our approach differs significantly from the non-deterministic PDA simulator of Ferro and Dion [30], which uses the
GSS itself as the persistent representation of the program. Their representation requires more space than our parse dag,
in part because unsuccessful parses (used to overcome lookahead limitations) must be retained for the sake of future state
comparisons. (In Figure 7.5, the portion of the GSS constructed by Parser 2 must be kept, even though it represents an
unsuccessful search.) Their algorithm also makes state comparisons and semantic attribution more expensive, since both
must refer to a collection of nodes.

As with deterministic parsing, IGLR parsing can be extended to retain existing program structure through node reuse [58,
76, 99]. Both ambiguous and unambiguous reuse models are valid for abstract parse dags, and both bottom-up and top-down
reuse mechanisms can be applied. (For on-the-fly bottom-up reuse, we advocate retaining a single, shared list of reused
nodes; maintaining separate lists when multiple parsers are active imposes a performance and complexity cost for minimal
gain in the number of reused nodes.)

7.3.3 Asymptotic Analysis

The IGLR parsing algorithm works for any context-free grammar and, like GLR parsing, is exponential in the worst-
case [50] but linear on actual programming language grammars. To ensure incremental performance that improves on batch
parsing, we impose the same restrictions on the grammar and the representation of associative sequences in the abstract parse
dag as in deterministic parsing (Section 6.6).

In addition, we need to assume that no non-deterministic region spans a lengthy sequence, since this would naturally
require the entire sequence to be reconstructed whenever any part of it was changed. (Note that the elements of the se-
quence can be parsed non-deterministically or even be ambiguous, as is the case with C++.) Similarly, the interpretation of
a sequence’s yield cannot have more than a bounded dependence on its surrounding context, so that changes to adjacent
material will not induce a complete reconstruction of the sequence.

Given this assumption regarding the form of the grammar and the representation of the abstract parse dag, we can analyze
the time performance of the IGLR parser. In the typical case where the left and right context of a subtree are unchanged, a
state-matching algorithm will shift that subtree in O(1) time. In the event the context has changed, a valid subtree containing
M nodes can be shifted in O(lg M) steps by reconstructing its leading or trailing edge. Reductions and the deterministic right
context check are often accomplished in O(1) time using the following subtree; in the worst case the following terminal
symbol is located in O(lg M) steps. Locally non-deterministic regions are reconstructed in their entirety, but our assumption
that the size of such regions is effectively bounded (Section 7.2.1) implies a constant bound on the time to parse them. The
result is a typical parsing time of O(t + s lg N), for t new terminal symbols and s modification sites in a tree with N nodes,
and O(t + s(lg N)2) time in the worst case. (Empirical results are discussed in Section 7.6.)
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7.3.4 Correct and Optimal Sharing

Our approach treats the GSS as a transient data structure of the parser, using it to construct the abstract parse dag in the same
way deterministic parsers construct a concrete parse tree with the help of a parse stack. However, the connection is more
complex than in the deterministic case. In this section we discuss the removal of parsing artifacts from the shared parse
forest discovered by GLR methods to produce the representation described in Section 7.2.

The parse forest produced by GLR parsing results in both over- and under-sharing, complicating (in some cases preclud-
ing) the application of existing methods for semantic attribution and similar tools. GLR parsing as originally defined [92]
results in under-sharing in the shared parse forest when isomorphic subtrees with the same yield are created in different states
(i.e., by different parsers) due to left or right contextual restrictions.6 Rekers corrects under-sharing in his batch GLR parser
by merging nodes that have identical yields [79]. Merging is performed separately for both symbol and ‘rule’ (production)
nodes. The same approach can be applied in our algorithm, since non-deterministic regions are reconstructed atomically.

A different problem exhibited by GLR algorithms is over-sharing. A GLR parser does not distinguish non-determinism
to acquire additional lookahead information from its use in parsing ambiguous phrases. In most cases, non-determinism for
dynamic lookahead results in deterministic (and unshared) structure in the parse tree, since unsuccessful parses eventually
terminate. In the GSS, however, sharing needed to handle certain types of grammars with �-productions results in sharing in
the parse tree even for unambiguous grammars [73]. We consider this a flaw; among other problems, it prohibits semantic
attributes or annotations from being uniquely assigned to productions with a null yield, since separate instances may not
exist in the parse tree. (Rekers’ algorithm exacerbates this problem by merging additional null-yield subtrees, violating
left-to-right ordering.) We correct this problem by adding a post-pass that incrementally duplicates any null-yield subtrees
updated by the parser. Since a unique maximal sharing of these subtrees does not necessarily exist, this is the only approach
that is consistent, correct, and practical. Node reuse strategies (Section 6.7) can be used to prevent unnecessary recreation
of these and other subtrees.

7.4 Sample C++ Trace

In the example shown in Figure 7.7, we trace the parser’s actions in constructing the dual interpretations of the ‘typedef’
problem in C++, using a simplified grammar. Consider the input stream as it appears in (1), and suppose the semicolon has
been deleted and then re-inserted. The region to the left of the semicolon was an ambiguousitem; the edit to the semicolon
causes the parser to discard the non-deterministic structure and read id(id) as terminal symbols.

Distinguishing between a normal identifier and a type-name identifier is not context-free; the ambiguity manifests as a
reduce/reduce conflict in (2), causing the parser to split. Each of the two parsers now active will create one of the two pos-
sible interpretations. A subsequent incremental semantic analysis pass will perform the scope resolution and name binding
needed to distinguish the desired interpretation, based on earlier declarations. In a correct program, either a typedef or a
function declaration will have established the correct namespace for the leading id. (The situation would be similar in C,
assuming that further input did not yield a purely syntactic resolution.)

While multiple parsers are active, only terminal symbols can be read by the parser. ( In this example the breakdown of
the ambiguous subtree has already accomplished this.) The breadth-first nature of GLR parsing means that each terminal
symbol is shifted in tandem by all active parsers (3, 4, 7, 11).

In (13) context sharing occurs as the two parsers merge into a single parser. The item node shown on top of the stack
is a symbol node;7 its two children represent the two interpretations of its terminal yield. Now that the state is once again
deterministic, the parser returns to shifting entire subtrees.

7.5 Resolving Ambiguity

The ultimate use of the abstract parse dag is to enable disambiguation once the needed information is available. This ‘fil-
tering’ of alternatives can be static (decided at language specification time) or dynamic (decided at program analysis time).
Dynamic filtering can involve both syntactic and semantic information. The abstract parse dag and incremental GLR parser
together provide a uniform and flexible framework for implementing ambiguity resolution at any point in the analysis pro-
cess.

6This is the same effect that causes incremental deterministic parsers based on state-matching to fail to reuse subtrees as aggressively as sentential-form
parsers.

7Not shown is its lazy instantiation. The first item production serves as a proxy for its symbol node; the attempt to add the second item production as
an alterate interpretation forces the installation of a real symbol node. The real symbol node replaces the proxy, which becomes its first child. The second
item production becomes the second child.



7.5. RESOLVING AMBIGUITY 85

( id ) ; 
R: func_id->id
R: type_id->id

( id ) ; 

id

type_id ( decl_id

func_id ( arglist
) ; S: )

1

2

3

4

5

6

7

8

9

10

11

12

13

id ( id ) ; 

func_id ( arg
) ; 

R: arglist->arg

type_id ( decl_id

type_id ( id

func_id ( id
) ; 

R: decl_id->id

R: arg->id

S: id
type_id (

func_id (
id ) ; 

func_id

S: id

decl

funcall
; 

R: expr->funcall

decl

expr
; 

R: stmt->expr

type_id ( decl_id )

func_id ( arglist )
; 

item

decl

stmt
S: ; ; 

decl ;

stmt ;
R: item->stmt ;

R: item->decl ;

S:  

item->stmt ; item->decl ;

R: funcall->func_id(arglist)

R: decl->type_id(decl_id)

S: (
type_id

Figure 7.7: Sample trace of IGLR parser on a small example.
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7.5.1 Syntactic Disambiguation

Static syntactic filters, in conjunction with ambiguous grammars, are used frequently in compiler construction. Examples
include the operator precedence and associativity specifications in bison [4] as well as techniques associated with a partic-
ular parse table construction algorithm, such as ‘prefer shifting’. Such methods can be applied at language specification time
by selectively removing conflicts from the parse table, and therefore do not result in non-deterministic parsing or multiple
representations. Since state-matching incrementalizes transitions in the pushdown automaton, any disambiguation statically
encoded in the parse table is supported by the IGLR parser.

When the selection of a preferred interpretation cannot be determined a priori based on the left context and the implicit
(‘builtin’) lookahead, a dynamic filter is required. For example, the syntactic ambiguity in C++ expressed as ‘prefer a decla-
ration to an expression’ requires a dynamic filter, since competing reductions cannot be delayed until sufficient lookahead
has been accumulated [28]. The abstract parse dag allows ambiguities of this form to be encoded using multiple interpre-
tations; an incremental post-pass can then select the preferred structure by directly applying rules such as the one above.8

Syntactic disambiguation of this form can also take place on the fly, provided it occurs only in a deterministic state to avoid
contaminating the dynamic lookahead computation. Unlike Ferro and Dion [30], we do not retain interpretations eliminated
by syntactic filters.

In general, disambiguation specifications [42, 53] can be compiled into a combination of static and dynamic filters.
Encoding as much filtering as possible at language specification time decreases both the size of the representation and the
analysis time. (This contrasts with existing batch GLR environments, which perform all syntactic filtering dynamically [79,
92], and thus require quadratic space for each expression, in contrast to the negligible increases we report in Section 7.2.1.)

7.5.2 Semantic Disambiguation

Filters for which the selection criteria are not context-free are referred to as ‘semantic’ filters. They may be applied in an
ad hoc manner or as part of a formal semantic attribution process (using attribute grammars or other approaches). Semantic
filters are always dynamic; they are typically applied only after incremental parsing and any syntactic filtering passes have
completed. This organization preserves the familiar pass-oriented framework of batch compilation even though the analysis
techniques are incremental—it thus avoids the feedback that characterizes the solution to the ‘typedef problem’ in existing
batch systems. While a complete discussion of incremental semantic analysis is beyond the scope of this work, in this section
we briefly outline the sequence of events by which incremental semantic analysis can resolve our running example.

Figure 7.8 illustrates the sequence of events. After context-free analysis is complete, the first stage of semantic analy-
sis is applied to process typedef declarations. Type names introduced by such declarations are gathered into a binding
contour, which is then propagated throughout the scope. (This information will be inherited by both children of a symbol
node, reaching each identifier in an ambiguous region twice.) In a correct program, the binding contour’s contents uniquely
determine the namespace for each identifier.

With identifier namespaces decided, disambiguation per se can take place: ‘parsing’ is completed by propagating the
namespace decision throughout the ambiguous region. Boolean semantic attributes indicate nodes filtered out of the parse
dag in the unwanted interpretation. Since all syntactic and semantic ambiguities have now been resolved, each symbol node
can be logically identified with its single remaining child in subsequent passes, allowing tools to treat the result as a normal
parse tree.9

The order of the passes is the same for both batch and incremental scenarios. In the incremental case, each stage inspects
or updates only those portions of the program that have changed or could possibly be affected by preceding changes [63]. An
interesting case occurs when a typedef declaration is removed: Binding information stored in semantic attributes allows
the former uses of the declaration to be efficiently located. At each use site, the interpretation of the ambiguous region will
change from a variable declaration to a function call as the namespace of the region’s initial identifier is altered. Note that
the use sites themselves require no action from the parser; other attributes of the reinterpreted regions are re-evaluated as
semantic analysis progresses.

7.5.3 Program Errors

When the program is correct with respect to the language description (and the language as a whole is unambiguous) a single
structural representation will eventually be discovered. In the presence of semantic errors, such as missing, malformed, or
inconsistent declarations, it may not be possible to determine a single interpretation of the entire structure. In such cases
the abstract parse dag maintains multiple interpretations persistently; future edit/analysis cycles may eventually correct the

8Contrast this with non-GLR approaches, such as spawning a separate, hand-coded parser for potentially ambiguous regions.
9Unlike syntactic disambiguation, semantic disambiguation requires that the unwanted interpretations be retained in the abstract parse dag. Semantic

filtering uses non-local information (such as declarations in enclosing scopes) that can change and thus require a different resolution without a change to
the local structure.
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Figure 7.8: Illustration of semantic disambiguation. This shows our running example (using C++, although the situation is
similar in both C and Fortran) during the semantic analysis passes. In (a) the basic context-free analysis has been completed,
and the first stage of semantic analysis now resolves typedef definitions. In (b) this binding information is propagated to
the ambiguous regions, allowing the selection of the appropriate namespace for each identifier. In (c) disambiguation per se
occurs, as the unwanted interpretation is filtered out (it is retained in case future edits reverse the decision). In (d) semantic
analysis continues, using the embedded tree discovered by stages a–c. (Note: The right-hand side of production labels are
omitted.)
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errors and allow the resolution to succeed. These regions are re-evaluated by the parser only when they are modified and
by semantic analysis only when they require re-interpretation.

Maintaining every potential interpretation in the presence of an error provides tools in the environment with all relevant
information. While the presence of persistent ambiguities may preclude some services, such as code generation, analyses
not dependent on the missing information and services that do not require complete resolution (such as presentation) can
continue to operate using the unresolved parse dag.

Errors in the context-free syntax may also occur and are detected in the usual fashion: when no parser can successfully
shift the (terminal) lookahead symbol. History-sensitive error recovery for deterministic parsing is covered in Chapter 8;
the only change required to support IGLR parsing is an extension of the isolation boundary test to ensure that each non-
deterministic region is treated as an atomic unit: partial update incorporation within such a region is not permitted. (This
has no practical effect on the efficacy of the recovery, due to the small size of these regions in actual programs.)

7.6 Implementation and Empirical Performance

The IGLR parser has been implemented in the Ensemble system as an alternative to the sentential-form parser used for deter-
ministic grammars. The IGLR implementation, which includes the parse table interface but not error recovery code, occu-
pies less than 2000 lines of C++ code, including all tracing and assertion checking. The actual implementation corresponds
closely to the algorithm given in Appendix B. Support for abstract parse dags required very little change to Ensemble’s
low-level representation. Parse table information is produced using a modified version of bison that explicitly records all
conflicts in the grammar except for those arising from the expansion of the associative sequence notation.

Despite the slightly less efficient stack representation used for GLR parsing relative to deterministic parsing, the IGLR
parser performs an initial (‘batch’) parse nearly as fast as its deterministic counterpart. C,10 Java, and Modula-2 programs
were parsed with both parsers, and yielded an average of 12% overhead due to parsing per se for the deterministic parser,
compared with 15% for the IGLR parser. Most of the remaining time was spent in constructing the nodes. In incremental
tests (self-cancelling modifications to individual tokens, parsing after each such change) the difference in running times for
the two parsers was undetectable.

Compared to sentential-form parsing for deterministic grammars, the space consumption of the abstract parse dag is
approximately 5% higher, due to the need to record explicit states in the nodes. The difference becomes negligible when
semantic attributes, presentation data structures, and other per-node storage is also considered.

The restriction that each non-deterministically parsed region be reconstructed in its entirety whenever it contains at least
one edit site imposes little overhead in practice: since none of these regions spanned more than a few nodes in any of our
sample programs, the additional reconstruction time was well under 1%, independent of the program, source file, or location
of the ambiguous region within the file.

7.7 Extensions and Future Work

Techniques for expressing both syntactic and semantic filtering in a uniform language would both simplify the language
description process and allow optimized performance by applying resolutions at the earliest possible stage. Visser uses
priorities and tree patterns to produce static filters [95], but further work is needed.

An integrated model of semantic attribution and dynamic (semantic) filters remains an open problem. It requires ex-
tending scheduling algorithms to dags, balancing the restrictions required for efficient static scheduling with sufficient ex-
pressive power to model disambiguation methods that arise in practice. This would improve language specifications and
enable verification of the combined description.

Incremental, non-deterministic parsing may also find application in rewrite systems and in the iterative analysis of nat-
ural language documents.

7.8 Conclusion

This chapter provides a mechanism for applying the open, pass-oriented framework of batch analysis tools to incremental
environments. A new IR, the abstract parse dag, is introduced to model ambiguity in programming language analysis. Cir-
cular analysis dependencies as they exist in C, C++, Fortran, and other common languages are eliminated by the ability to
apply disambiguation filters at any point in the analysis process. Arbitrary CFGs may be used to describe the form of the
parse dag, as well as to produce fast incremental parsers based on our IGLR algorithm. Optimal and correct subtree and

10For this comparison, the ‘typedef’ ambiguity was removed artificially.
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context sharing in the abstract parse dag are obtained by removing parsing artifacts from the shared parse forest. Empirical
measurements demonstrate the space efficiency of our representation and the time efficiency of our reconstruction methods,
both of which exploit an underlying language property: localized non-determinism.





Chapter 8

History-Sensitive Error Recovery

In this chapter we present a novel approach to incremental recovery from lexical and syntactic errors in an ISDE. Un-
like existing techniques, we utilize the history of changes to the program to discover the natural correlation between user
modifications and errors detected during incremental lexical and syntactic analysis. Our technique is non-correcting—
transformations intended to restore consistency between the structure and text of the program will not incorporate invalid
modifications, while still permitting valid modifications to be applied. Errors are presented to the user simply by highlight-
ing his invalid changes.

The approach is automated—no user action is required to detect or recover from errors. Multiple textual and structural
edits, arbitrary timing of incremental analysis, multiple errors per analysis, and nested errors are supported. History-based
error recovery is language independent and is compatible with the methods for incremental lexing and parsing described in
the preceding chapters, adding neither time nor space overhead to those algorithms. Effective integration with the environ-
ment’s history services ensures that other tools can efficiently discover regions of the program (un)affected by errors, and
that any transformations of the program required to isolate or present errors are themselves efficiently reversible operations.

8.1 Introduction

Syntactic error recovery in batch systems is essentially a solved problem, involving a heuristic computation based on the
configuration of the parser when the error is detected [22]. The best methods known rely on the ability to delay actions
or reproduce part of the parse on demand, so that a variety of repairs may be tried at locations other than the detection
point [14, 19, 38]. Since the recovery routine has no knowledge of the user’s changes with respect to previous versions
of the program, it attempts to correlate the problem with the detection point by comparing the results of different repairs.
When the error is significantly complex or distant from its detection point, a less informative ‘second stage’ recovery may
be needed.

In an ISDE, errors can arise as they do in batch systems, since arbitrary modifications to the text and structure of the
program are permitted. Errors introduced by changes will be discovered when the user next requests incremental analysis.
Many types of problems can occur, including a variety of static semantic errors (type inconsistencies, missing definitions).
However, errors associated with the lexical and context-free syntax play a special role in an ISDE: the structural represen-
tation is a fundamental data structure, and language specifications typically do not prescribe the representation of erroneous
programs.1 Thus the system is faced not only with the task of effectively detecting and reporting any errors, as in a batch
compiler, but also with integrating some representation of the problem into the persistent, structural representation of the
program. No satisfactory approach to this problem has previously been available.

Several systems have tried to minimize or circumvent the difficulty of error handing in an ISDE by limiting the class of
modifications available to the programmer [11]; in the extreme case, only structural operations that preserve all correctness
properties are permitted [72]. Our approach is the other extreme: we place no restrictions on the editing model, allowing
arbitrary textual and structural modifications and arbitrary timing of the analysis. Multiple errors, including nested errors,
may exist simultaneously and do not preclude the incorporation of other modifications. Errors may persist indefinitely; the
environment must tolerate the presence of any invalid or inconsistent material and continue to provide as much functionality
as possible [93]. The goal of the environment is to isolate problematic regions, inform the user of their location, and provide
assistance by explaining the reason these modifications could not be adopted successfully.

Our approach is fully automatic—no user intervention is required to detect errors, and the user is free to correct errors
in any order, at any time. In contrast, several researchers have addressed error recovery in an ISDE by attempting to utilize

1Static semantic errors, on the other hand, can be represented without leaving the framework of the attribute grammar or similar formalism.
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Initial (correct) program.
int f () {

g(a + b);
if (c == 3) c = 4;
else c = 5;

}

Introducing three errors.
int f () { f Inserted extra opening brace

g(a + b ); Deletion

if (c == 3) c = 4; Deletion

else c = 5;
}

Result: only one error is detected.
int f () { {

g(a + b ERROR
else c = 5;

}

Figure 8.1: An example where batch non-correcting techniques fail. The first error (extra opening brace) is hidden by subse-
quent problems. The second error, a deletion, is detected, but the non-correcting nature of the recovery precludes discovery
of the third error (else without matching if), since what remains after the deletion is a valid substring. Our approach
discovers all three errors without attempting to correct the program; the visual presentation would be similar to the second
version above with the explanatory text removed.

the interactive nature of the environment [6, 49, 87]. Unfortunately, these approaches all demand direct user intervention at
each error site and therefore impose an unnecessary serialization on the analysis and the user’s (manual) recovery actions.
A few research and commercial environments support unattended incremental error recovery in the context of incremental
parsing [8, 48, 83] but there has been little discussion or analysis of the technologies employed. No existing systems make
use of the vast amount of information available in the development log being maintained by the environment.

The central idea in our approach is to recognize that some user modifications introduce (locally) valid changes while
others do not: modifications successfully incorporated into the structure and content of the program representation are re-
tained, while invalid changes remain in their ‘unanalyzed’ form. This is a non-correcting strategy: unlike most automated
recovery schemes, it does not attempt to guess the programmer’s intention. The well-known drawbacks of correcting strate-
gies are avoided: no conjectures are necessary, spurious repairs never arise, and no heuristic ‘language tuning’ is needed.
The correctness of any repair we perform can be established easily, even in a multilingual, incremental setting.

Non-correcting approaches [20, 80, 82] have not received much attention in batch compilers. Despite the theoretical
advantages described above, the practical limitations imposed by a batch setting cause even the best of these approaches to
be less useful than correcting methods. The most critical shortcomings involve errors in bracketing syntax and the fact that
the initial error typically obscures detection of subsequent problems, since the following text is often a valid substring in
some sentence.2 Figure 8.1 illustrates these deficiences.

Our recovery scheme overcomes these deficiences by using historical information: the sequence by which the program-
mer arrived at the current state affects the treatment and reporting of errors [104]. Changes recorded in the development
log permit comparisons between the current and previous versions of the program, providing a guide for determining the
source of a given problem in terms of the user’s own modifications. This approach can discover the relationship between
the point where an incorrect change was applied and the point where the error was finally detected even when they are far
apart or separated by intervening errors.

Determining the relationship between changes to the program and subsequent errors is a novel and powerful tool for
error handling. While the best known batch correcting recoveries handle the example in Figure 8.1 better than their non-
correcting counterparts, they will typically fix the initial error by adding an extra closing brace at the end of the program.
Our approach instead ‘corrects’ the problem by refusing to insert the extra opening brace into the structural representation
of the program (although it remains visible in the text)—a better and more comprehensible response given the actual change
made by the user.

2Right-to-left substring parsing (interval analysis [9, 82]) has been proposed to further constrain the location of detected errors, but common mistakes
can result in intervals so large that the user must still locate the problem manually. Interval analysis does not address the detection problems of batch
non-correcting recoveries.
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Figure 8.2: The recovery and presentation of a simple error. In V1, the dashed lines indicate the path from the root to the site
of the unincorporated modification. In V2, the isolated region is indicated by light shading; the token shown in black has
been marked to indicate that it contains an invalid textual deletion. The visual presentation corresponding to each version is
shown above the subtree. The arrow from V2 to V0 indicates the structural correlation that allows the presentation system
to display the deleted text responsible for the problem.

The dependencies between program components induced by lexical and syntactic analysis methods provide a natural
way to discover and limit the scope of a given error. This isolation process makes it possible to treat unrelated errors indepen-
dently and allows correct modifications outside the isolated regions to be successfully incorporated. Isolation is computed
incrementally, by comparing the current (partial) structure of the program to the previous structure stored in the development
log.

Not all of the modifications within an isolated region are necessarily incorrect, and even a well-chosen isolation region
can be very large. Thus some mechanism to detect legal modifications within an isolated region is needed. Two techniques
are used: retention of partially analyzed regions, which avoids discarding legal updates prior to the detection point, and out-
of-context analysis, which applies incremental analysis techniques to modified subtrees within the isolated region. Together,
these techniques typically allow legal modifications to be incorporated, even in close proximity to one or more errors.

History-sensitive error recovery is language independent, using only information derived from the grammar and the
user’s own editing actions. The recovery is guided by existing mechanisms for lexical and syntactic analysis; the language
designer is not required to provide additional specifications in order for error recovery and reporting to function.3 The ap-
proach is compatible with incremental lexing (Chapter 5) and both deterministic (Chapter 6) and non-deterministic (Chap-
ter 7) parsing.

Errors are represented in a simple fashion: the invalid modifications are simply maintained as unincorporated edits. This
suggests a presentation of errors that is at once trivial and powerful: the unincorporated edits are visually distinguished to
indicate the recent user changes responsible for the problem. The need to generate explanatory messages and associate
them with locations in the program text is thus avoided. (For newly inserted material, error messages can be assigned in the
conventional manner.) This approach reuses existing mechanisms: the presence of errors imposes no additional require-
ments for persistent storage, change reporting, analysis, transformation, or editing. Tools in the environment can locate
errors efficiently, and can restrict their attention to the syntactically valid structure, since unincorporated modifications are
clearly identified. Since both the representation and presentation of errors are integrated with the structure and content of
the program, any transformations induced by error recovery are completely reversible.

Figure 8.2 illustrates a simple example. In the initial version (V0), the program is in a consistent state. The user then
modifies the program to create version V1. At this point, the structure of the program is no longer consistent with its textual
content, due to the unincorporated deletion of the addition operator. In V2, the user requests that consistency be restored;
incremental analysis detects the error at this time. The expression enclosing the deletion is then isolated, and the token
containing the deletion is flagged as possessing a change that could not be successfully incorporated. The error ‘message’
is simply the difference in the content of the isolated region between V2 and V0 (shown as a box around the deleted operator).

The rest of this chapter is organized as follows. Section 8.2 describes the basic framework for our approach, includ-
ing the representation of errors and algorithms for isolating and recording errors. In Section 8.3 we discuss techniques for
incorporating additional ( legal) modifications within an isolated region by retaining partially analyzed results and by ap-
plying out-of-context analysis to modified, unanalyzed subtrees. Section 8.4 considers a simple presentation scheme that

3Large insertions of new text, which require batch analysis and for which batch techniques represent the only possible (local) error recovery solution,
may rely on language-specific information to tailor their recovery. Section 8.5.5 discusses the application of batch approaches within a contiguous region
of inserted text.
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combines analysis results, unincorporated material, and the contents of the distributed development log to display errors in
an informative manner. Several extensions to the basic framework are covered in Section 8.5.

8.2 Modeling Errors

Chapter 4 introduced a basic program representation and a model for the editing and transformation of programs through
language-specialized analysis. Here we extend that representation to include errors, in the form of persistent, unincorpo-
rated modifications.

8.2.1 Maintaining Unincorporated Modifications

In a program without errors, the correctness properties of the incremental lexical and syntactic analyses guarantee that the
text, tokens, and structure of the program are all consistent with one another and are valid with respect to the language
definition. Any modifications performed by the user introduce temporary inconsistencies among (and possibly within) these
different representations. When such modifications lead to another correct program state, the next invocation of incremental
analysis will transform the program representation to the new state.

When one or more modifications introduced by the user do not result in a syntactically correct program state, the result
of incremental lexing and parsing is unspecified: the language definition and the correctness proofs of these transformations
do not address the construction of a persistent representation involving errors, despite its overarching practical importance
in an incremental environment. Our solution is based on an observation that is simultaneously simple and powerful: not all
modifications need to be incorporated. We permit the inconsistency induced by one or more user modifications to persist
indefinitely; the goal will be to incorporate as many valid edits as possible while leaving all the invalid edits unincorporated.
Clearly this policy cannot violate the correctness properties of incremental lexing or parsing, as long as we consider all the
unincorporated edits as pending modifications when incremental analysis is next invoked.

When only textual modifications and legal structural edits are permitted, the structure of the program representation
remains well-formed (with respect to the grammar) at all times, although the lexeme,token mapping may be inconsistent
until outstanding user modifications have been incorporated through analysis. (Section 8.5 discusses support for structural
edits that violate grammatical well-formedness.) The correctness of the program structure with respect to the grammar can
then be established by induction over the sequence of program transformations. There is a simple relationship between the
presence of errors and consistency properties: the program text as defined by the left-to-right concatenation of the lexemes
constitutes a correct program if and only if the representation is free of unincorporated modifications following the analysis.

During re-analysis of a program containing errors, the incremental lexer and parser must investigate the site of each
unincorporated change, since additional modifications may have changed the surrounding context in such a way that the
former error is now valid. (In the next section we describe mechanisms to limit the scope of an error.) For these and other
tools in the ISDE to locate errors efficiently, each node containing an error must be distinguished, and the path between
the root of the tree and each error-containing node must be marked. This is accomplished with boolean node annotations
similar to the nested attribute provided by the history services for change reporting.4 The incremental lexing and parsing
algorithms treat error and error path annotations in the same fashion as local and nested change attributes when determining
which regions of the program structure require re-analysis.

8.2.2 Isolating Errors

The drawback to the model described above is that it applies globally: every error site must be treated as a pending modifi-
cation when re-analysis is requested, and no legal modifications can be incorporated until all the errors have been corrected.
However, it is not necessary to treat the entire program as a unit; in this section we use incremental analysis and the rela-
tionship between the current analysis and the previous structure of the tree to isolate errors from one another.

Isolation makes our model of error recovery as unincorporated changes meaningful, by allowing legal modifications
outside the isolated regions to be successfully integrated by the incremental lexer and parser. By separating the errors, iso-
lation also improves the performance of subsequent analyses: it is not necessary to re-inspect the errors in an isolated region
unless that region contains new user modifications or is affected by changes to the surrounding context. The independence
of isolated structure is also useful within the region, since (by construction) its recovery can be computed separately from
the analysis of surrounding structure or from other erroneous regions of the program.

4Changes to local and nested error attributes must themselves be captured in the history log—this allows the transformation induced by incremental
analysis to be fully reversible, even when it involves error recovery.
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96 CHAPTER 8. HISTORY-SENSITIVE ERROR RECOVERY

Isolation is defined by the analysis techniques: the dependencies between program components induced by lexical and
syntactic analysis determine the size of an isolated region. However, computing an isolation region solely through the anal-
ysis of the current program state is problematic, since it amounts to implementing a conventional (batch) non-correcting
recovery, subject to the shortcomings described in Section 8.1. Fortunately there is an additional source of information in
an ISDE: the previous structure of the program is accessible, and can be used along with the dependency information to
separate and contain errors.

Once an error has been detected by the lexer or parser, the previous structure provides a useful guide for constraining
its effect. The isolation algorithm locates a well-formed subtree that existed in the previous version and that can be re-
tained in the current version of the program structure to contain the site of the error. (The ‘matching condition’ used by
some state-matching incremental parsers computes a similar relationship between the old and new trees [36, 58].) When
isolated regions are small, each is likely to contain only a single error (thus preventing the recovery of one problem from
contaminating another) and most correct modifications will lie outside all isolated regions (allowing them to be successfully
incorporated).

Figure 8.3 contains a simple isolation example. Here the user has mistakenly inserted an additional right parenthesis fol-
lowing the test expression in a condition. (The syntax of C is used in this and other examples.) The problem is conceptually
contained within the if_stmt from the previous version of the program structure. The isolation algorithm discovers this
fact and ‘reverts’ this statement to its previous structural form. The erroneous insertion is left as an unincorporated textual
modification, and presented to the user as an error by visually distinguishing the problematic character.

Isolation is not limited to purely ‘local’ problems. Figure 8.4 contains an example that would result in an extensive
secondary repair in a conventional batch recovery. In our approach, the accidental deletion that merges the two function
definitions is ‘recovered’ by the isolation process. The use of the previous structure allows the right side of the first function’s
structure and the left side of the second function’s subtree to be restored. (The actual node chosen for isolation in this case
will be the lowest common ancestor in the (balanced) sequence containing these function definitions. The performance
implications of sequence representation for error recovery are discussed in Section 8.3.4.)

The paths to unincorporated modifications defined by nested_error attributes are terminated immediately below
the root of the isolated subtree, preventing subsequent analyses from re-inspecting isolated errors unnecessarily.

8.2.3 Computing Isolation Regions

Figure 8.5 contains the top-level routines to initiate recovery and apply isolation. Recovery begins by removing any default
reductions from the parse stack using right_breakdown; the associated nodes are ignored in the subsequent search
for an isolation node (Figure 8.7). This search proceeds by comparing the current and previous versions of the program’s
structure in the region of the error. Note that it is always possible to isolate some subtree, since the UltraRoot persists
across all versions. Having found a suitable candidate, the parse stack can be cut back to the beginning of the isolated
subtree, the isolated subtree’s root node can be shifted, the lookahead pointer can be advanced to the following subtree in
the previous version, and incremental lexing/parsing can be restarted in the resulting configuration. Figure 8.2 a simple
isoation example—the former parent (expr) of the node immediately preceding the detection point can be used to contain
the error site, and parsing can successfully resume to the right of its current yield (following “b”).

The search for an isolation candidate proceeds in two dimensions: each entry on the (current) parse stack that is not a
new node is considered, and for each of these nodes its ancestors in the previous version are considered.5 Each candidate
is tested with valid_iso_subtree, to determine whether isolating it would cover the damaged area and be acceptable
to both the lexer and parser.

The choice of an isolation region must simultaneously maintain all analysis invariants. The primary lexical restriction
is that the isolated region contain the same text (range of offsets) in both the previous and current versions—otherwise char-
acters would appear multiple times or be lost. (In Figure 8.2, the expr node can be isolated because its yield is unchanged
from V1 to V2.) Additional lexical invariants may need to be imposed, depending on the expressive power of the lexical
description language. (Section 8.5.3 describes the impact of several lexical description features on the isolation conditions.)

The syntactic test for a successful isolation requires that the subtree from the previous version of the program ‘align’
with the current parse stack—the left edge of the isolated subtree must correspond to the left edge of some subtree on the
parse stack. This restriction allows the isolated subtree to replace partial analysis results by popping one or more entries off
the stack and pushing the root node from the isolated subtree. Such a push must make sense with respect to the parse table:
shifting the symbol ( left-hand side) of the production labeling the root node of the isolated subtree must be a legal move in
that configuration.

Passing the alignment and shift tests does not guarantee that the parser will be able to continue parsing successfully
when the recovery is complete; the right context of the isolated subtree may not be legal. Although it would be possible

5Different search strategies could be employed; for instance, nodes deeper in the stack may sometimes be preferable to ancestors high in the previous
tree.
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setof bool paths_to_ignore;

recover () {
paths_to_ignore = ;;
Find a node that exists in the previous version of the parse tree that covers the
damaged region.
right_breakdown();
int sp = 0;
Consider each node on the stack, until we reach bos.
for (NODE *node = stack.node(); node != bos; {

sp++;
if (node!is_new()) continue;
int offset = stack.offset(stack.length - 1);
if (valid_iso_subtree(node, offset, stack.state()))

return isolate(node, sp, 1);
If the root of this subtree is new, keep looking down the parse stack.
Otherwise, try searching his ancestors.
int cut_point;
for (NODE *ancestor = node!parent(previous_version);

ancestor != UltraRoot && stack.get_cut(ancestor, cut_point);
ancestor = ancestor!parent(previous_version);

if (ancestor62paths_to_ignore &&
valid_iso_subtree(ancestor, stack.offset(cut_point),

stack.state(cut_point), cut_point))
return isolate(ancestor, sp, cut_point);

else {add ancestor to paths_to_ignore; node = ancestor;}
state = stack.state(); stack.pop(); node = stack.top();

}
return UltraRoot; Isolate the entire tree.

}

Compute offset of leftmost character not to the left of the index th entry.
int Stack::offset (int index) {
for (int i = 0, offset = 0; ; i++)

if (i == index) return offset;
Each node contains an incrementally synthesized attribute corresponding to the length,
in characters, of its textual yield. The array entry holds the nodes on the stack.
else offset = offset + entry[i].node!text_length(current_version);

}

Compute stack entry corresponding to leading edge of node’s subtree in the previous version.
Returns false if no entry is so aligned.
bool Stack::get_cut (NODE *node, int &cut_point) {

The value ofold_offset can be computed by traversing the previous structure and
examining the textual yields in that version.
int old_offset = starting_offset_of_node_in_version(node, previous);
int offset;
for (cut_point = offset = 0; cut_point < length; cut_point++)

if (offset > old_offset) return false;
else if (current_offset == old_offset) return true;
else offset = offset + entry[cut_point].node!text_length(current_version);

return false;
}

Figure 8.5: Top-level error recovery. The recover routine begins the process by searching for an isolation candidate; the
valid_iso_subtree test is shown in Figure 8.6. right_breakdown is shown in Figure 6.2; each node removed by
that routine is added to paths_to_ignore.
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bool valid_iso_subtree (NODE *node, int left_offset,
int state, int cut_point) {

if (node2isolation_rejects) return false;
add node to isolation_rejects;
The starting offset of the subtree must be the same in both the previous and
current versions. The ending offset must meet or exceed the detection point.
int left_offset = new_offset;
if (left_offset != last_edited!offset(node))

return false;
Cannot be to the right of the point where the error was detected by the parser.
if (left_offset > detection_offset) return false;
if (left_offset + node!text_length(previous_version) <

detection_offset)
return false;

Lexical tests—see Section 8.5.3
Now see if the parser is willing to accept this isolation, as determined by the
shiftability of its root symbol in the current stack configuration.
stack.pop(cut_point);
action = next_action(node, state);
stack.unpop(cut_point);
return action == SHIFT;

}

Figure 8.6: Procedure to test whether a given subtree is a valid isolation candidate. The tests include textual alignment with
respect to the previous version of the subtree, lexical consistency checks, and an LR(0) (shift) test for the symbol labeling
the root node of the subtree.

Perform the isolation; resets configuration so parsing can continue.
isolate (NODE *node, int sp, int cut_point) {

stack.unpop(sp - 1);
refine(node);
parse_state = stack.state(sp - 1 + cut_point);
stack.pop(sp - 1 + cut_point);
shift(node);
la = pop_lookahead(node);

}

Figure 8.7: Isolating syntax errors. Once an isolation region has been chosen by the search routine in Figure 8.5, the isolation
itself is performed. This routine updates the stack configuration so that the parsing can continue immediately to the right of
the isolated subtree. Figure 8.11 contains the refinement algorithm.
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Discard changes and record errors in the subtree rooted at node;
discard_changes_and_mark_errors (NODE *node) {

node!discard(); See Figure 3.2
if (node!has_changes(reference_version, local)
if (!node!local_errors) {
node!local_errors = true;
node!compute_presentation(reference_version);

}
if (9child of node s.t.

(child!local_errors || child!nested_errors)))
node!nested_errors = true;

else node!nested_errors = false;
}

Figure 8.8: Discarding partial analysis results and marking unincorporated modifications (‘errors’) local to a single node.
The structure and content of the subtree rooted atnode are reverted to their state in the previous version of the program. Any
user modifications (textual or structural) within this subtree are marked as unincorporated errors, and nested error attributes
are set to record the path between node and the location of each such error. The presentation of errors is discussed in
Section 8.4.

to check this property as part of the isolation conditions, a simpler technique is to allow the parser to detect the problem
and re-invoke recovery: a larger isolation region will then be selected, since all previously isolated nodes are rejected as
candidates.

Once chosen, any partial results applied within an isolation region can be discovered through the usual change reporting
mechanisms and removed by the algorithm in Figure 8.8; this will revert each modified subtree to its state in the previous
version of the program (where the structure is known to be correct). Any user changes since the reference version are marked
as unincorporated errors. By construction, modifications (valid or invalid) outside the isolated region are unaffected. (In
Section 8.3 we develop methods to incorporate legal modifications within the isolated region.)

The general search for an isolation subtree considers only interior nodes. Since errors are sometimes contained within the
textual modification(s) applied to a single token, the recovery can also consider token-level isolation prior to the algorithm
described above. Reasonable choices of tokens to examine include the top-of-stack and lookahead symbols, as well as
tokens close to them in the previous version. If a token-level isolation succeeds, the algorithm in Figure 8.8 is applied to it,
the configuration is reset based on the location of the token relative to the error, and analysis is re-started.

8.2.4 Handling Lexical Errors

Although the previous sections have focused on recovery from syntactic errors, the mechanisms are also applicable to lex-
ical problems. Errors at the lexical level can be discovered by including explicit rules in the lexical description to match
invalid sequences; when one of these patterns is recognized, a special error token is created. A simpler mechanism, which
can be used either alone or in concert with explicit error patterns, is implicit detection: instead of modifying the descrip-
tion, problems are discovered when characters cannot be legally recognized as belonging to any pattern; each contiguous
sequence of unmatched characters produces an instance of a special unmatched token class. The parser will be unable to
shift an unmatched-text token, since it is neither a legal whitespace token nor a terminal symbol in the grammar. The re-
sulting error will be detected during parsing, and will trigger a recovery that handles the erroneous textual changes using
the mechanisms already discussed. (The unmatched token is transient; it will be discarded during the recovery process.)

Explicit error tokens can either induce this same behavior or persist as whitespace tokens—the latter behavior is occa-
sionally useful when the error is so common or idiosyncratic that recognizing a superset of the actual language is preferable
to a normal error presentation.6 Regardless of the policy chosen, no special effort is required to recognize, recover from, or
present lexical problems. (However, recovery must respect lexical invariants as well as syntactic restrictions; Section 8.5.3
describes the impact of various features of the lexical description language on the recovery process.)

8.3 Incorporating Modifications Within Isolated Regions

If every isolated region contained only errors and no legal modifications, then applying the algorithm in Figure 8.8 to the
modified portions of each isolated subtree would constitute a sufficient recovery. However, a large isolated region may
contain several legal modifications (as can happen with errors involving bracketing constructs or sequences). In this section

6For example, some C compilers will ignore stray backslashes in the program source, except to warn the programmer of their presence.
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Figure 8.9: Retaining partial analysis results. The mistaken change of the keyword if to the identifier i causes the begin-
ning of the statement to be re-interpreted as a function call. When the return keyword is reached, the parser detects the
problem. The test expression (shaded) represents a subtree shared by both versions: no inspection of this subtree is required
if it contains no edits. More interestingly, if it is changed to any other legal expression, the recovery will retain the analyzed
result—the nearby error does not preclude the incorporation of correct changes to the test expression.

we consider refinement techniques that can integrate some, and in many cases all, of the correct modifications within an
isolated subtree.

8.3.1 Retaining Partial Analysis Results

Refinement employs two different techniques, depending on the location of the modifications relative to the detection point
that triggered the recovery. The first technique attempts to retain modified subtrees that have already been analyzed. When
the recovery routine is invoked, the incremental lexer and parser have already seen any material to the left of the detection
point. In general, several legal modifications will already have been incorporated into this material (represented by new
or modified subtrees on the parse stack). Subject to certain restrictions, these subtrees can be retained instead of discarded.
(Figure 8.9 illustrates a simple example.) Refinement allows nested isolation regions to persist in those subtrees, and avoids
the redundant work of re-marking errors within them.

The two-pass retention algorithm is shown in Figure 8.10.7 In the first pass, the previous structure of the portion of the
isolated region to the left of the detection point is examined; modified subtrees that meet alignment8 and lexical invariant
restrictions can be retained in their new form instead of being discarded. The second pass is used to actually carry out this
transformation, discarding results that cannot be retained and marking the unincorporated modifications using the algorithm
of Figure 8.8. In general this process creates a ‘canopy’ of structure from the previous version with arbitrarily large subtrees
from the current analysis embedded within it. Unmodified subtrees from the previous version that occur in the new structure
are not inspected further by either pass, guaranteeing that the recovery process maintains incremental performance.

8.3.2 Out-of-Context Analysis

Retaining pre-parsed subtrees permits the incorporation of legal modifications within an isolated region to the left of the
detection point. Modifications may also exist to the right of the detection point, in which case the lexer and parser will
not have processed the affected subtrees. In Figure 8.9, suppose that, in addition to the error in the keyword if, the user
replaces the return statement with a different statement. Without the techniques described below, such a modification would
go unincorporated.

7A two-pass algorithm is necessary to avoid corrupting the new version until all the decisions about retaining portions of it have been made.
8Note that permitting the incorporation of valid modifications within the isolated region implies that the mapping between lexemes and characters may

change, even though the character yield of the isolated region as a whole is unchanged from the previous version to the current one.
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Given the root of a subtree from the previous version of the tree, itemize
the retainable subtrees within it.
find_retainable_subtrees (NODE *node) {

if (node!exists(current_version) &&
(!node!has_changes(reference_version, nested) ||
same_text_pos(node))) {

add node to retainable;
return;

}
foreach child of node in previous_version do
find_retainable_subtrees(node);

}

Retain retainable subtrees and discard remaining structure rooted at the
argument node.
retain_or_discard_subtrees (NODE *node, NODE *parent) {

if (node2retainable) {
node!set_parent(parent);
remove node from retainable;
return;

}
discard_changes_and_mark_errors(node);
foreach child of node do retain_or_discard_subtrees(node);

}

Figure 8.10: Computing partial analysis retention. The top function is the first pass, which computes the set of retainable
subtrees. The bottom function is the second pass, which discards the effects of analysis on any regions that cannot be retained
due to error recovery. same_text_pos determines whether a subtree’s yield occupies the same character offset range as
in the previous version of the program.

Even though no analysis has been performed on modified subtrees to the right of the detection point, it is not correct
to simply restart analysis within the isolated region: error recovery guarantees that a legal analysis configuration has been
restored only at its conclusion. Instead, we perform an out-of-context analysis, which attempts to analyze each (maximal)
subtree containing user modifications independent of its surrounding context.

As with partial analysis retention, we place sufficient conditions on out-of-context analysis to ensure that any incorpo-
rated changes do not interfere with the isolation itself or with the handling of adjacent subtrees. Unlike retention, however,
the sufficiency tests for out-of-context analysis are distributed: prior to analysis we verify that the target subtree contains
at least one modification, has a non-null yield, and is not followed by a terminal requiring analysis. During the subtree’s
analysis we check whether the lexer was able to synchronize with the previous contents before reaching the subtree’s right
boundary—otherwise the lexical analysis might ‘bleed’ into the following material. Finally, at the conclusion of the sub-
tree’s analysis we must ensure that the symbol of the production labeling its (possibly changed) root is the same as in the
previous version of the program.9 When all of these conditions are met, the out-of-context analysis succeeds, and the ana-
lyzed results are integrated into the current version of the program.

The algorithms for incremental lexing and parsing during out-of-context analysis are the same as for normal analysis.
To simplify the handling of out-of-context analysis, we can build a temporary set of sentinel nodes that allow the subtree to
appear as the entire program (see Figure 8.12). Out-of-context parsing also requires augmenting the parse table to allowany
symbol to serve as the start symbol [76]. A pair of distinguished terminals must be introduced for each original grammar
symbol to avoid parse table conflicts: the temporary bos token represents the ‘starting terminal’, and shifting it places
the parser in the correct state to process the subtree under consideration; the temporary eos token represents the unique
termination state, and shifting it represents end of sentence for the out-of-context analysis.

The error recovery routines themselves are available during an out-of-context analysis: errors detected while the subtree
is being analyzed are processed by re-entering the recovery routine. Such reentrancy permits nested isolation and refinement
to occur in modified subtrees to the right of the (outer) detection point, just as they can exist in retained analysis results to
the left. The failure of any sufficiency checks applied during or immediately after the out-of-context analysis of a subtree
results in a nested recovery that isolates the subtree being processed. (In general, partial analysis results will be valid and
will be retained within the subtree, even though the out-of-context analysis as a whole did not succeed.)

9Unlike Degano [21], we apply this restriction only as a mechanism for improving error recovery; this restriction does not apply to the user’s editing
model.
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Isolate the argument and recursively recover the subtree that it roots.
refine (NODE *node) {

int offset = last_edited!offset(node);
pass1(node, offset);
node!discard();
node!local_errors = node!nested_errors = false;
pass2(node, offset);

}

pass1 (NODE *node, int offset) {
foreach child of node in the previous version do {
if (offset + child!text_length(current_version) <= detection_offset)
find_retainable_subtrees(child);

else pass1(child, offset);
offset += child!text_length(current_version);

}
}

pass2 (NODE *node, int offset) {
foreach child of node in the current version do {
if (offset > detection_offset)

attempt_out_of_context_analysis(child);
else if (offset + child!text_length(current_version) <= detection_offset)

retain_or_discard_subtrees(child, node);
else {

discard_changes_and_mark_errors(node);
pass2(node, offset);

}
offset += child!text_length(current_version);

}
}

Figure 8.11: Refining an isolated region. The refine routine performs two passes over the isolated subtree. The first pass
is read-only and computes the set of retainable subtrees. The second pass reverts any unretainable material to the left of the
detection point, invokes out-of-context analysis on any candidate subtrees to the right of the detection point, and discards
changes on material that spans the detection point.

8.3.3 Refinement Algorithm

Figure 8.11 contains the top-level routine to refine the recovery of an isolated region. The isolated region is partitioned
into three sections: subtrees to the left of, spanning, and to the right of the detection point. Any analysis results affecting
spanning nodes are discarded (using the algorithm in Figure 8.8) during the partitioning process.

The correctness of these refinement techniques can be established easily through a left-to-right inductive proof on the
subtrees within the isolation region; unmodified subtrees remain unchanged, discarded changes revert to previously cor-
rect structure, and any subtrees chosen for analysis retention or out-of-context analysis possess (by construction) sufficient
conditions to ensure that their handling is independent of the surrounding material.

There are several implicit trade-offs in the computation of candidate nodes for isolation, retention, and out-of-context
analysis. For isolation, increased time spent searching for a tighter isolation region may provide little practical benefit even
if it succeeds, especially since the refinement techniques are so powerful. For the refinement tests, the independence con-
straints we impose can result in the failure to incorporate some legal changes. These restrictions could be relaxed—for
instance, allowing several subtrees to be jointly retained or analyzed out of context, where considered singly they would
fail. However, in addition to a more complicated correctness proof, looser constraints imply the need for more complex
verification checks, limited backtracking, or both; any potential benefits must thus be weighed against the increased com-
putation required and the fact that refinement as presented is already extremely effective.

8.3.4 Asymptotic Analysis

Optimal methods for incremental lexing and sentential-form parsing require time O(t + s lg N) for t new terminal symbols
and s modification sites in a tree with N nodes. This result assumes that lengthy sequences are identified in the grammar
and represented as balanced trees in the resulting program structure (Chapter 3 and Section 6.6). The presence of history-
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sensitive error recovery does not affect the running time of either algorithm, since no additional work is required until a
recovery is actually invoked.

Under the same assumptions regarding the representation of lengthy sequences, the error recovery routines presented
here require a worst-case running time of O(t + s(lg N)2). The additional lg N factor is inherent in the approach: intuitively, it
represents the need to compare the current and previous structure of the tree during isolation and retention. (Typical running
time is likely to be closer to logarithmic, reflecting the similarity between the two versions and the fact that many common
errors are local in nature. In trials with Ensemble using several languages, error recovery represented a negligible fraction
of analysis time when measured on non-trivial programs.)

8.4 Presenting Errors

The previous sections have concentrated on detecting, isolating, and refining the program representation in the presence of
errors. While an effective treatment of errors is important to the analysis algorithms and other tools in the ISDE, ultimately
it is the comprehensible presentation of errors to the user that determines the effectiveness of a recovery.

Batch error recovery based on a correcting strategy typically uses information about the repair to construct an error
message to explain the correction (and hopefully the error itself ) to the user. A history-based approach provides a simpler
and more effective method for communicating with the user: included among the unincorporated edits is the cause of the
problem; in practice the isolation and refinement strategies are often effective in producing a set of unincorporated errors
that includes all and only the actual errors.

In a history-based error recovery, the obvious way to present the recovery result to the user is to indicate visually the
changes that were not successfully incorporated.10 Since this interface has the user’s own changes as its vocabulary and
naturally correlates actual changes with the displayed indication of the problem, it subsumes and improves upon the con-
ventional technique of generating explanatory messages.

Figures 8.1 and 8.2 suggest one way in which invalid textual insertions and deletions can be presented, using the differ-
ence between the current and the previous (correct) contents of the tokens in the affected region.11 More elaborate presen-
tations of the accrued changes, involving color, side-by-side comparisons, etc. can be provided using available information
about the unincorporated material. The presentation attributes are computed when unsuccessful analysis results are dis-
carded from a node; in Figure 8.8, the call

node!compute_presentation(reference_version)

indicates the computation of presentation attributes for any user changes local to node. The specific textual or structural
changes tonode can be extracted from its local history log. (In Figure 8.2, the arrow from V2 to V0 suggests the comparison
used to determine the deleted text “+” from the affected node.)

8.5 Extensions

In this section we summarize a number of extensions to the basic history-sensitive error recovery technique.

8.5.1 Structural Editing

If the user is permitted to perform arbitrary structural editing, then the program structure is no longer guaranteed to be valid,
even after an analysis is performed: consistency restoration will not be able to repair an invalid structural modification, and
will be forced to leave it unincorporated. However, unincorporated structural edits represent all and only the points where
the structure is invalid—the document will be ‘piecewise’ well-formed. Isolation, refinement, and error marking can all
be extended to handle persistent invalid structure represented in this manner. (Presenting structural errors to the user is
simplified by the use of a parallel structural view alongside the textual presentation of the program.)

To accommodate correct strategies for large text insertions, structural error nodes must also be permitted to possess a
variable number of children, without restrictions on their types. (This is in constrast to the standard model of fixed arity,
strongly-typed tree structure, but is appropriate in error situations; specially-typed sequences can be used to simulate the
effect of variable arity. The number of children of a structural error node is still assumed to be effectively bounded.) The
various analysis/transformation stages must be implemented in a fashion that respects the limited information content of

10In our experience, users do not benefit from a visual presentation of the isolation regions.
11The user may not correct the error by the next analysis, and may update the location containing the error without correcting the problem. Thus in

composing the presentation, the recovery should combine new modifications with the existing display until the error is finally corrected (or the region is
removed from the program).
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such regions. Error nodes remain strongly-typed; both missing information and malformed (variable arity) structural errors
can be handled as completing productions for the appropriate grammar symbol.

8.5.2 Whitespace

Explicit whitespace material12 can be integrated into the persistent program structure of an ISDE through grammatical trans-
formations or extensions to the incremental parser, both of which are discussed in Appendix C. Either approach can be
used with the recovery techniques described here, which, with one exception, require only minor modifications to enable
the ‘parsing’ of whitespace material during recovery.

In the representation described in Appendix C, any non-grammatical tokens are represented by connecting them to the
preceding token that represents a terminal symbol in the (original) grammar. Whitespace or other non-grammatical tokens
that precede the first terminal symbol are handled by treating the bos sentinel as if it were a part of the grammar. During an
out-of-context parse, newly discovered leading whitespace will be connected to the temporary bos sentinel that precedes
the subtree being analyzed. When that analysis completes, the temporary bos token will be destroyed, and any leading
whitespace must be reconnected to the surrounding program structure. If the preceding terminal symbol has an existing
whitespace sequence connected to it, the additional leading whitespace from the out-of-context analysis must be appended.
Figure 8.12 illustrates the sequence of events.

8.5.3 Generalized Incremental Lexing

The approach to incremental lexing described in Chapter 5 includes powerful features in the lexical description language that
can complicate error recovery: arbitrary lookahead, multiple start states, and atomic sequences. These features introduce
the possibility of additional dependencies between tokens, imposing additional restrictions on the choice of isolation and
refinement candidates. (However, inter-token dependencies are usually trivial; dependencies that arise in practice do not
interfere with the power or performance of the recovery.) Here we discuss one such feature, atomic sequences,13 to illustrate
the effect on isolation and refinement. Support for other lexical features is similar.

In choosing both isolation candidates and subtrees for analysis retention, the leftmost and rightmost tokens must be in
singular sequences (i.e., not part of any non-trivial atomic token sequence). This condition must hold in both the current
version and previous version of the program. In testing a subtree for out-of-context analysis, this condition is checked in
the previous structure only; during the out-of-context analysis an attempt by the incremental lexer to construct an atomic
sequence spanning the right edge of the subtree will trigger a recursive recovery.

8.5.4 Severity Levels

The isolation and refinement methods described earlier treat all unincorporated modifications identically. However, in some
cases the recovery can distinguish between modifications known to be errors and modifications which it cannot prove correct
or incorrect. When a change remains unincorporated because the sufficient conditions for partial analysis retention or out-
of-context analysis were not met, any unincorporated changes in the affected subtree may be valid, but analysis limitations
will cause them to be treated as errors. The recovery process can expose this additional information by assigning an integer
severity level to each unincorporated change. The interpretation of these levels will be heuristic, but an appropriate choice
in their translation to presentation characteristics can assist the user in distinguishing actual problems from incomplete or
insufficient analysis results.

The additional restrictions imposed by powerful lexical analysis specifications on refinement (Section 8.5.3) provide
a typical application for severity levels: when lexical lookahead extends to the right of the subtree, it is unlikely that the
lookahead has changed (or, if it has, that the change would affect the shape of the current subtree). In such situations, the re-
covery must remain conservative, but the visual display of an edit unincorporated for this reason should probably be visually
distinguished from others that are almost certainly errors.

8.5.5 Recovery for Large Insertions

Insertions of large text strings mimic batch parsing, since no previous history for such material exists. Error recovery within
such a region is limited to batch techniques.14 Either correcting or non-correcting methods may be applied. (In the case

12We use the term generically to include any non-grammatical program material, including text-based comments.
13As described in Chapter 5, an atomic sequence is a contiguous range of tokens produced by a ‘black box’ procedure supplied by the language designer.

The nature of its production renders it indivisible with respect to incrementality.
14Although analysis near the right edge of the region may be more powerful than in a conventional recovery, given that non-trivial subtrees are available

in the input stream.
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Figure 8.12: Handling new leading whitespace created during an out-of-contextanalysis. In a top-level parse, leading white-
space is connected to bos. In an out-of-context parse, leading whitespace is connected to the temporary bos token until
the subtree’s analysis is complete. At that point, the whitespace is re-attached to the preceding terminal symbol in the sur-
rounding tree. If a whitespace sequence is already connected to that terminal symbol (as shown here), the new sequence is
merged with the existing sequence.
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of a correcting strategy, persistent ‘error’ nodes must be introduced into the representation to model deviations from valid
syntax; see Section 8.5.1 above.) Recovery methods applied to large insertions must operate only within the boundaries
of the inserted material; in particular, ‘stack cutting’ and right context acquisition must treat material outside the inserted
region as read-only. (Creation of a new program ‘from scratch’ is a special case of large-scale text insertion, in which the
surrounding context is trivial and represented by the sentinel nodes.)

8.6 Conclusion

This chapter presents a non-correcting approach to the detection and presentation of syntactic errors that is suitable for use
in an interactive and incremental software development environment. Unlike previous techniques, it uses the contents of
the development log to correlate the modifications actually made by the user to errors in the program. Unlike batch non-
correcting strategies, it precisely identifies the location of errors, including errors involving bracketing syntax. History-
sensitive error recovery can be incorporated easily into existing algorithms for incremental lexing and parsing. The approach
is itself incremental, requires no language-dependent information or user interaction, and provides a more accurate and
informative report than any previous approach to error recovery.



Chapter 9

Conclusion

This dissertation makes a number of independent contributions, summarized in the conclusions of individual chapters. In
addition to optimal algorithms for lexical analysis, deterministic parsing, and node reuse, we present the first known meth-
ods for incremental GLR parsing and incremental, history-sensitive error recovery. We correct prior theoretical work on
persistent linked data structures, and augment this result with novel techniques for space compression to create the self-
versioning document model.

Taken as a whole, our work demonstrates that incremental, language-based environments can be constructed and made
to operate in a practical form on real languages. This is the first work to support derivation of incremental analyzers from
formal descriptions for languages of commercial interest, which we regard as our central result.

A uniform document model, embracing both programs and natural language documents, can be applied profitably in
an incremental environment such as Ensemble. Our work on self-versioning documents allows both intrinsic and imposed
structure to be persistently maintained in a history log that is distributed over the document’s own structure. This repre-
sentation allows a novel reformulation of incremental analysis and transformation algorithms, and makes their actions—no
matter how complex a restructuring is involved—fully and transparently reversible.

Finally, we hope our work will encourage commercial interest in incremental environments. By providing algorithms
that use memory and computational resources efficiently and that scale to large files, modules, or classes effectively, we
have shown that incremental software environments can indeed be made practical.
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Appendix A

Versioning-Related Algorithms

The two algorithms in this Appendix are part of the implementation of self-versioning documents described in Chapter 3.
The algorithms are computationally similar, though they differ in some crucial details.

A.1 Version Alteration Algorithm for Objects with
Differential Storage

The following algorithm is used to alter the current (cached) version of a differential versioned object. Conceptually, it forms
the path in the global version tree between the current version and the target version, then projects this path onto its local
equivalent. The elements of the local path are exactly the differential log entries that must be applied (in the proper order) to
transform the current version of the object to its value in the target version. Neither path is constructed explicitly; the actual
computation is traversal-based. Note that some unnecessary projections have been optimized out by directly updating the
global version identifier.

The right (‘redo’) side of the path is computed recursively, starting from the target version. The actual update takes
place as the recursion unwinds.

void diff_vobject::alter_version (const VG *vg, VData *vd, int target_gvid) {

Vlstring *vls = (Vlstring*)vd;
int from = vg!currentI;
int to = target_gvid;

if (from == to) return;

Updated current pointer in the data object before we begin.
vls!current = project(vg, target_gvid);

GD *from_gd = vg!log!maps[from];
GD *to_gd = vg!log!maps[to ];

This is both the returned value from project() and the
limit setting for the subsequent project() call.
int lvid = -1;

if (from_gd == to_gd) {
Common (and easy!) case: source and target in same linear run.
if (from > to) {

for (lvid = project(vg, from); gvids[lvid] > to; --lvid)
vls!apply(values[lvid], false);

} else if (to > from) {
for (lvid = project(vg, from + 1);

lvid < num && gvids[lvid] > from && gvids[lvid] <= to;
lvid++)

vls!apply(values[lvid], true);
}
return;

}
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else {
Uncommon (and hard) case: perform a general search.
const GD *gd = from_gd;
if (vg!log!ancestor(gd, to_gd) && from + 1 < vg!log!num_maps) {

Handle suffix in starting gd.
for (lvid = project(vg, from + 1);

lvid < num && gvids[lvid] > from &&
gvids[lvid] < gd!start + gd!num;

lvid++)
vls!apply(values[lvid], true);

} else {
Handle prefix in starting gd.
for (lvid = project(vg, from);

gvids[lvid] >= from_gd!start &&
gvids[lvid] < from_gd!start + from_gd!num;

--lvid)
vls!apply(values[lvid], false);

bool need_proj = true;
gd = from_gd!parent;
while (!vg!log!ancestor(gd, to_gd)) {
if (need_proj) lvid = project(vg, gd!start + gd!num - 1, lvid);
for (;

gvids[lvid] >= gd!start && gvids[lvid] < gd!start + gd!num;
--lvid)

vls!apply(values[lvid], false);
need_proj = gd!parent!kids[0] != gd;
gd = gd!parent;

}
}

const GD *lca = gd;

Now we process the redo side.
This is not handled the same way, since the path must be traversed top-to-bottom, and we
cannot discover it that way. Use recursion to wind up the path and then traverse the path
during the unwind. The LCA has already been computed.

gd = to_gd;
if (vg!log!ancestor(gd, from_gd)) {

Handle suffix in ending gd.
for (lvid = project(vg, gd!start + gd!num - 1);

gvids[lvid] > to;
--lvid)

vls!apply(values[lvid], false);
}

else {
int lvid = project(vg, to_gd!start);
int lvid_copy = lvid;
find_path_and_unwind_doing_alter_version(vg, vls, gd, lca, lvid);
Handle prefix in ending gd.
for (lvid = lvid_copy;

lvid < num && gvids[lvid] >= to_gd!start && gvids[lvid] <= to;
lvid++)

vls!apply(values[lvid], true);
}

}
}
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void find_path_and_unwind_doing_alter_version (Vlstring *vls,
const GD *gd,
const GD *lca,
int &lvid) {

const GD *parent = gd!parent;
if (parent == lca) return;
lvid = project(vg, parent!start, lvid);
int local_lvid = lvid;
find_path_and_unwind_doing_alter_version(vg, vls, parent, lca, lvid);
for (;

lvid < num && gvids[lvid] >= parent!start &&
gvids[lvid] < parent!start + parent!num;

lvid++)
vls!apply(values[lvid], true);

}
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A.2 Computation of Nested Changes

The determination of nested change values during a specific interval is computationally similar to the previous algorithm,
although recursion is unnecessary in this case due to the state-based representation of boolean values. The treatment of the
lowest common ancestor (LCA) in the global version tree and the handling of boundary conditions is also slightly different,
due to the fact that this algorithm deals with a disjunction of transition values during a time period, not values per se. (In
this respect nested changes are unlike other versioned booleans, although they are represented in the same manner.)

bool nested_change_bit::true_during (const GVID from_gvid,
const GVID to_gvid) const {

int from = from_gvid.cell;
int to = to_gvid.cell;
assert(from >= 0 && from < vg!log!num_maps);
assert(to >= 0 && to < vg!log!num_maps);

if (from == to) return false;

GD *from_gd = vg!log!maps[from];
GD *to_gd = vg!log!maps[to ];

if (IS_TMP) {
if (value != TMP!value) return false;
if (vg!log!ancestor(to, from)) return exists(vg, from_gvid);
else if (vg!log!ancestor(from, to)) return exists(vg, to_gvid);
else return exists(vg, to_gvid) || exists(vg, from_gvid);

} else {
This is both the returned value from project() and the limit setting for the
subsequent project() call.
int lvid = -1;

if (from_gd == to_gd) {
Common (and easy!) case: source and target in same linear run.
if (from > to) {

for (lvid = LOG!project(vg, from); LOG!gvids[lvid] > to; lvid--)
if ((LOG!states[lvid] == NORMAL || LOG!states[lvid] == TEMPORARY) &&

GET_BV(lvid) == value) return true;
The following handles the LCA problem.
lvid = LOG!project(vg, to + 1);
if ((LOG!states[lvid] == NORMAL || LOG!states[lvid] == TEMPORARY) &&

GET_BV(lvid) == value) return true;
} else if (to > from) {

for (lvid = LOG!project(vg, from + 1);
lvid < LOG!num &&
LOG!gvids[lvid] > from && LOG!gvids[lvid] <= to;

++lvid)
if ((LOG!states[lvid] == NORMAL || LOG!states[lvid] == TEMPORARY) &&

GET_BV(lvid) == value) return true;
The following handles the LCA problem.
lvid = LOG!project(vg, from + 1);
if ((LOG!states[lvid] == NORMAL || LOG!states[lvid] == TEMPORARY) &&

GET_BV(lvid) == value) return true;
}

}
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else {
Uncommon (and hard) case: perform a general search.
const GD *gd = from_gd;
if (vg!log!ancestor(gd, to_gd) && from + 1 < vg!log!num_maps) {

Handle suffix in starting gd.
for (lvid = LOG!project(vg, from + 1);

lvid < LOG!num && LOG!gvids[lvid] > from &&
LOG!gvids[lvid] < gd!start + gd!num;

++lvid)
if ((LOG!states[lvid] == NORMAL || LOG!states[lvid] == TEMPORARY) &&

GET_BV(lvid) == value) return true;
The LCA problem: either the penultimate gvid is inside ‘gd’, in which case we processed it in the above loop, or
it’s the starting gvid in the child that’s going to be the penultimate gd on the redo path, which we take care
of below.

} else {
Handle prefix in starting gd.
for (lvid = LOG!project(vg, from);

LOG!gvids[lvid] >= from_gd!start &&
LOG!gvids[lvid] < from_gd!start + from_gd!num;

lvid--)
if ((LOG!states[lvid] == NORMAL || LOG!states[lvid] == TEMPORARY) &&

GET_BV(lvid) == value) return true;
bool need_proj = true;
const GD *last_gd = gd;
gd = from_gd!parent;
while (!vg!log!ancestor(gd, to_gd)) {
if (need_proj) lvid = LOG!project(vg, gd!start + gd!num - 1, lvid);
for (;

LOG!gvids[lvid] >= gd!start &&
LOG!gvids[lvid] < gd!start + gd!num;

lvid--)
if ((LOG!states[lvid] == NORMAL ||

LOG!states[lvid] == TEMPORARY) &&
GET_BV(lvid) == value) return true;

need_proj = gd!parent!kids[0] != gd;
last_gd = gd;
gd = gd!parent;

}

The penultimate gvid on the undo side, if it’s not inside a GD, must be the starting gvid of the penultimate GD on this
path. So project that explicitly.
lvid = LOG!project(vg, last_gd!start);
if ((LOG!states[lvid] == NORMAL || LOG!states[lvid] == TEMPORARY) &&

GET_BV(lvid) == value) return true;
}

const GD *lca = gd;

Now we process the redo side in a symmetric fashion. The only difference is that we don’t need to do ancestor
computations, since we already know what the LCA is.
gd = to_gd;
if (vg!log!ancestor(gd, from_gd) && to + 1 < vg!log!num_maps) {

Handle suffix in ending gd.
for (lvid = LOG!project(vg, to + 1);

lvid < LOG!num && LOG!gvids[lvid] < gd!start + gd!num &&
LOG!gvids[lvid] > to;

++lvid)
if ((LOG!states[lvid] == NORMAL || LOG!states[lvid] == TEMPORARY) &&

GET_BV(lvid) == value) return true;
The LCA problem: either the penultimate gvid is inside ‘gd’, in which case we processed it in the above loop, or
it’s the starting gvid in the child that’s going from be the penultimate gd on the redo path, which we take care
of below.

}
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else {
Handle prefix in ending gd.
for (lvid = LOG!project(vg, to);

LOG!gvids[lvid] >= to_gd!start &&
LOG!gvids[lvid] < to_gd!start + to_gd!num;

lvid--)
if ((LOG!states[lvid] == NORMAL || LOG!states[lvid] == TEMPORARY) &&

GET_BV(lvid) == value) return true;
bool need_proj = true;
const GD *last_gd = gd;
gd = to_gd!parent;
while (gd != lca) {
if (need_proj) lvid = LOG!project(vg, gd!start + gd!num - 1, lvid);
for (;

LOG!gvids[lvid] >= gd!start &&
LOG!gvids[lvid] < gd!start + gd!num;

lvid--)
if ((LOG!states[lvid] == NORMAL ||

LOG!states[lvid] == TEMPORARY) &&
GET_BV(lvid) == value) return true;

need_proj = gd!parent!kids[0] != gd;
last_gd = gd;
gd = gd!parent;

}

The penultimate gvid on the redo side, if it’s not inside a GD, must be the starting gvid of the penultimate GD on this
path. So project that explicitly.
lvid = LOG!project(vg, last_gd!start);
if ((LOG!states[lvid] == NORMAL || LOG!states[lvid] == TEMPORARY) &&

GET_BV(lvid) == value) return true;
}

}
}

No matching value found.
return false;

}
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IGLR Parsing Algorithm

The non-deterministic component of the IGLR parser is based on Rekers’ batch parser [79]. The routines
left_breakdown and pop_lookahead are described in Chapter 6.

class NODE Normal parse dag node
int type; production or symbol #
int state; deterministic parse state or noState
setof NODE kids; rhs of a production; interpretations of a symbol
NODE (int type, int state, setof NODE kids) {. . .}

subclass SYMBOL of NODE Symbol (choice) node
SYMBOL (NODE node) {
type = symbol(node!type); rule’s left-hand side
state = noState; multistate by definition
kids = {node}; first interpretation

}
add_choice (NODE node) {kids = kids [ node;}

class GSS_NODE Node in the GSS
int state; state of constructing parser
setof LINK links; links to earlier nodes
GSS_NODE (int state, LINK link) {. . .}
add_link (LINK link) {links = links [ link;}

class LINK Edge in the GSS
GSS_NODE head; preceding node in the GSS
NODE node; parse dag node labeling this edge
LINK (GSS_NODE head, NODE node) {. . .}

bool multipleStates; Global variables
NODE shiftLa; lookahead symbol (subtree)
NODE redLa; lookahead for reducing
GSS_NODE acceptingParser;
setof GSS_NODE activeParsers, forActor, forShifter;
setof NODE nodes; production node merge table
setof SYMBOL symbolnodes; symbol node merge table

121
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inc_parse (NODE root) { Main routine
process_modifications_to_parse_dag(root);
redLa = shiftLa = pop_lookahead(root!bos);
GSS_NODE gss = new GSS_NODE(0, ;);
activeParsers = {gss};
acceptingParser = ;;
multipleStates = false;
while (acceptingParser == ;) parse_next_symbol();
if (shiftLa 6= eos) recover();
root!kids[1] = first(acceptParser!links)!node;
unshare_epsilon_structure(root);
delete gss;

}

parse_next_symbol () { reduce�shift sequence
forActor = activeParsers;
forShifter = nodes = symbolnodes = ;;
while (forActor 6= ;) do {
remove a parser p from forActor;
actor(p); Process all reductions,

}
shifter(); then shift.
redLa = shiftLa = pop_lookahead(shiftLa);

}

actor (GSS_NODE p) { Transition one parser
while (redLa is an invalid table index)
redLa = left_breakdown(redLa);

if (jparse_table[p!state, redLa]j > 1) multipleStates = true;
8action 2 parse_table[p!state, redLa] do
switch (action) {

case ACCEPT: if (redLa == eos) acceptingParser = p;
else recover();
break;

case REDUCE r: do_reductions(p, r); break;
case SHIFT s: forShifter = forShifter [ <p,s>;

break;
case ERROR: if (activeParsers == ;)

recover(); Recover from a parse error.
}

}

shifter () { Shift all parsers
if (is_terminal(shiftLa) && shiftLa!has_changes(lastParsedVersion))
relex(shiftLa); Invoke lexer and reset lookaheads

activeParsers = ;;
multipleStates = jfor_shifterj > 1;
while (!is_term(shiftLa) && (multipleStates ||

forShifter!state 6= shiftLa!state))
shiftLa = left_breakdown(shiftLa);

Consider all the state/link head pairs in forShifter.
8<state,gss> 2 forShifter do
if (9p 2 activeParsers with p!state == state)
p!add_link(new LINK(gss, shiftLa));

else activeParsers = activeParser [ new GSS_NODE(state, new LINK(gss, shiftLa))
}
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do_reductions (GSS_NODE p, int rule) { Find all paths
GSS_NODE q;
8q such that a path of length arity(rule) from p to q exists do {
kids = the tree nodes of the links forming the path from q to p;
reducer(q, GOTO(q!state, symbol(rule)), rule, kids);

}
}

Path-restricted version of above function
do_limited_reductions (GSS_NODE p, int rule, LINK link) {
8q such that a path of length arity(rule) from p to q through link exists do {
kids = the tree nodes of the links forming the path from q to p;
reducer(q, GOTO(q!state, symbol(rule)), rule, kids);

}
}

reducer (GSS_NODE q, int state, Perform a
int rule, setof NODE kids) { single reduction

NODE node = get_node(rule, kids, q!state);
if (9p 2 activeParsers with p!state == state)
if there already exists a direct link from p to q

add_choice(link!head, node);
else {

NODE n = get_symbolnode(node);
p!add_link(new LINK(q, n));
8m in activeParsers\forActor do
8(reduce rule) 2 parse_table[m!state, redLa] do
do_limited_reductions(m, rule, link);

}
else {
GSS_NODE p = new GSS_NODE(state, new LINK(q, get_symbolnode(node)));
activeParsers = activeParsers [ p;
forActor = forActor [ p;

}
}

<int,int> cover (setof NODE kids) { Get offset range
if (kids == ;) return <offset(shiftLa),offset(shiftLa)>;
else return <offset(first(kids)),offset(last(kids))>;

}

NODE get_node (int rule, setof NODE kids, Create or reuse
int precedingState) { a ‘production’ node

if (9n 2 nodes with n!type == rule && n!kids == kids)
return n;

if (multipleStates) NODE n = new NODE(rule, noState, kids);
else NODE n = new NODE(rule, precedingState, kids);
nodes = nodes [ n;
return n;

}

add_choice (NODE symnode?, NODE node) { Instantiate
if (symnode? is a symbol node) symnode!add_choice(node); symbol nodes lazily
else if (symnode? != node) {
replace symnode? with sym 2 symbolnodes such that
first(sym!kids) == symnode?;

sym!add_choice(node);
}

}
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NODE get_symbolnode (NODE node) { Use normal nodes
if (9sym 2 symbolnodes with whenever possible

sym!symbol == symbol(node!type) &&
cover(first(s!kids)!kids) == cover(node!kids))

sym!add_choice(node);
else SYMBOL sym = new SYMBOL(node);
symbolnodes = symbolnodes [ sym;
if (jsym!kidsj == 1) return node; proxy case
else return sym; real case

}

The function process_modifications_to_parse_dag (called by inc_parse) is used to invalidate reductions containing a
modified terminal in their yield or implicit (built-in) lookahead. (Structural modifications can also be accommodated.)

Let T denote the set of modified terminals (textual edit sites). Add to T any terminal having lexical lookahead in some t 2 T. Mark
as changed any nonterminal N for which yield(N) [ the terminal following yield(N) contains any t 2 T.

Note that this approach is conservative—it invalidates more structure than the optimistic sentential-form parser of Chapter 6, even
when the parse table, program, and modification history are identical.



Appendix C

Modeling User-Provided Whitespace and
Comments

The handling of whitespace in batch environments is well understood for a variety of programming languages and white-
space models. However, incremental environments have not provided a satisfactory solution to this problem, due to the
fact that this material must be included (and incrementally maintained) in the persistent representation, rather than sim-
ply discarded. We describe a combination of representation and analysis techniques that together provide generic support
for explicit whitespace and similar ‘extra-grammatical’ material in an ISDE. Our methods are independent of the lexical
model, handling whitespace-insensitive languages (such as Fortran77), whitespace-sensitive languages (such as C++), and
mixed-sensitivity languages (such as Haskell). The representation is uniformly structural: whitespace is integrated with
the persistent program structure without introducing special cases. The representation is also efficient, imposing minimal
overhead and guaranteeing logarithmic access times to all nodes. Two simple strategies for incrementally maintaining the
proposed structure are described, one based on grammar transformation and the other on modifying the incremental parser.

C.1 Introduction

Whitespace plays several roles in programming languages: it separates other tokens, provides the programmer with a de-
gree of control over the visual presentation of the source code, and in some languages even serves as a syntactic construct.
Batch compilers and environments handle whitespace in a simple manner, discarding it as the lexical analyzer scans each
region of the text.1 Incremental environments, however, have typically failed to provide an adequate solution for handling
whitespace [6, 8, 81]. When these environments are also multilingual, the need to simultaneously support multiple white-
space models exacerbates the problem. The lack of incremental, language-independent support for whitespace has limited
both the scope and functionality of these environments.

One reason for this limitation is that the program representation in an incremental environment is both persistent and
structural, requiring a different handling of whitespace than the simple approach taken in batch environments. Also, many
interactive environments support high-quality program presentation services, where layout can be derived rather than forc-
ing the programmer to express it solely through whitespace characters embedded in the program content. However, even in
this setting, the programmer must be permitted to override the standard layout in order to express semantically significant
layout decisions in a persistent fashion, requiring implicit and explicit whitespace to coexist.

In addition to the use of whitespace to influence the visual appearance of the program, the program representation
must typically support many other elements that stand in a similar relation to the normal program structure: text-based
comments,2 constructs from embedded languages, transient representations of edited text (such as inserted text not yet in-
corporated by incremental analysis), and ‘errors’ in the form of material that was not successfully incorporated into the
program structure during some previous incremental analysis. Supporting any of these elements requires the environment
to address the same representation and reconstruction issues as with explicit whitespace.

In this appendix we describe a simple integration of whitespace material with the persistent structural representation of
the program. Our representation is independent of the whitespace model, and therefore of the language itself. The unifor-
mity of the integration provides significant leverage: existing tools can easily view or ignore whitespace without introducing
special cases, both structural and textual views of the program are supported, and all editing, change reporting, versioning,

1Languages in which whitespace can play a syntactic role naturally require additional communication between the lexer and parser in some cases.
2The need for environments to support existing programs and to interact with external tools will require them to support text-based comments in addition

to structural annotations for the foreseeable future.
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and analysis/transformation services treat whitespace material in the same manner as other program components. Our rep-
resentation is also efficient, imposing minimal space overhead and guaranteeing logarithmic access times to all whitespace
tokens by representing each contiguous sequence as a balanced binary tree.

By specifying only the structure of the program’s representation, this method is independent of the lexical specification
and analysis mechanisms that describe and create whitespace tokens. It is also compatible with a wide variety of presenta-
tion services and approaches: layout can be based solely on whitespace material embedded in the source text, completely
independent of it, or use some combination of the two methods [94].

Unlike batch systems, which rely primarily on the lexer to handle whitespace (where it is discarded once recognized),
incremental systems use the incremental parser to integrate this material into the persistent program structure. We de-
scribe two methods for constructing our representation. Both support declarative language definition, an unrestricted editing
model, and highly efficient incremental reconstruction of the program representation to incorporate the user’s modifications.

The first method is based on grammar transformation. The conversion of the original grammar to a canonical form
(Section 6.6) can make assumptions about the existence of whitespace explicit: the transformed grammar will include a
(possibly empty) sequence of whitespace tokens between terminals in the source grammar. Common classes of grammars
used for deterministic parsing (LALR(1), LL(1)) are closed under this transformation. By permitting whitespace to be men-
tioned in the original grammar, this approach can also be used with languages like Haskell, which allow whitespace to play
a syntactic role in certain contexts.

The second approach encodes the additional instructions needed to build the whitespace representation directly into the
incremental parsing algorithm. Existing incremental parsing algorithms based on either state-matching or sentential-form
parsing can be extended easily to construct this representation without compromising incremental performance.

C.2 Integrating Whitespace with the Program Structure

We describe enhancements to the program representation developed in Part I to allow whitespace, comments appearing
in the program text, and similar material to be present. Hereafter, the term ‘whitespace’ is used to describe any material
logically present in the token stream but not regarded as terminal symbols in the grammar. (The treatment of mixed-model
languages, such as Haskell, is deferred until Section C.3.)

A persistent representation of whitespace elements in an ISDE must fulfill a number of requirements:

Ordering: Whitespace must appear correctly ordered with respect to other program elements.

Uniformity: Clients and services such as editing, change reporting, and incremental analysis should have a single method
for viewing the structure and content of programs.

Efficiency: There should be no limit on the number of contiguous whitespace tokens, and clients should be able to access
each token in time logarithmic in the length of the sequence.

Abstraction: Clients should be able to view the program (or any subset of it) with or without whitespace, and both views
should be equally efficient to produce.

Flexibility: The representation should be independent of the language, the whitespace model, the number and types of
whitespace categories, and the mechanisms by which they are specified and discovered during lexical anal-
ysis.

The implementation is straightforward: each contiguous sequence of whitespace tokens is represented as a balanced
binary tree. (Often this ‘tree’ will consist of a single whitespace token.) The sequence is logically associated with the pre-
ceding token that represents an instance of a terminal symbol in the grammar. An additional connector node is introduced
to serve as the parent of the both the preceding terminal and the root of the whitespace sequence. Figure C.1 illustrates
the arrangement. Whitespace at the beginning of the program follows the bos sentinel token (Figure 3.2), maintaining
uniformity in the representation.3

This approach meets all the criteria described above. Ordering is obviously maintained; the original program text can
be reconstituted simply by walking the tree, inspecting the content of each lexeme encountered. Clients can navigate white-
space sequences with the same structural operations used elsewhere in the program, and whitespace tokens are implemented
in the same fashion as other nodes.

3The use of out-of-context parsing for error recovery requires the ability to re-attach and merge whitespace sequences, which is supported effectively
by the representation described here. Section 8.5.2 discusses the interaction between out-of-context analysis and the presence of extra-grammatical tokens
in more detail.



C.2. INTEGRATING WHITESPACE WITH THE PROGRAM STRUCTURE 127

pair

conn

CMT

ID

WS

Figure C.1: Structural representation of whitespace material. A contiguous sequence of extra-grammatical tokens, which
can include whitespace, text-based comments, unincorporated text, errors, and similar elements, are grouped and connected
to the preceding token that represents a terminal symbol in the grammar.

/* This is comment line 1 */
/* This is comment line 2 */

.

.

.
/* This is comment line n */

)

CMT

conn

CMTID

Figure C.2: The representation of contiguous whitespace tokens. To prevent long sequences from degrading performance,
a balanced binary tree is used to guarantee logarithmic access time to each token. (Curly arrows represent newlines.)

As with other potentially unbounded sequences, a contiguous sequence of whitespace tokens must provide efficient nav-
igation and traversal regardless of its length. Since these sequences are associative by definition, a balanced representation
can be employed (Chapter 3, Section 6.6). Although the average number of whitespace tokens following a given terminal
symbol is usually small, whitespace sequences can become quite lengthy, as Figure C.2 illustrates.4

In our environment, most tools view the structural representation through an abstraction that tailors the tree view for
their particular needs. Analysis tools, including the incremental lexer and parser, use abstraction in order to access versions
of the program other than the current one. Other tools, such as presentation, use abstraction to customize their view of the
program content. Abstractions are implemented in a stateless ‘navigational’ style.

The visibility of whitespace material is also handled by the abstraction mechanism. Since all nodes—including white-
space nodes—are typed, an abstraction can easily filter out unwanted material based on the node type. In the particular case
of whitespace, tools that want to eliminate whitespace can do so by using an abstraction that treats each connector node as
a proxy for its first child. Figures C.3 through C.5 illustrate both textual and structural views of a sample program under
different abstractions.

The presence of whitespace does not affect the editing model. Text inserted between existing tokens can be represented
as an extension to one of the tokens or as a new ‘unincorporated insertion’ token placed between them and represented in
the same fashion as whitespace tokens.5

When multiple categories of whitespace tokens exist, clients may require an efficient access path to the subset of tokens
from a particular category within a heterogeneous whitespace sequence. To make this filtering process efficient, we can
annotate each node in the binary tree representing the whitespace sequence with information that summarizes the union
of the categories of the tokens in its yield. (Equivalently, the namespace of node types can be extended to convey this
information, with the appropriate type selected whenever a structural editing operation occurs.) As with other summary
information about the descendants of a node, category information can be incrementally maintained as the program structure
is modified during editing, incremental parsing, or other transformations.

4Since the token is the unit of granularity for both re-analysis and representation, the language description writer must take care to ensure that lexemes
are short in practice. For instance, if whitespace or textual comments in a particular language typically span many lines, each line may be described as a
separate token in order to increase the effectiveness of balancing.

5One complication in a completely whitespace-insensitive language is that whitespace elements can occur within an otherwise-atomic lexeme. This
problem is most easily handled by providing two distinct views for each token’s lexeme: a verbatim view appropriate for re-creating the exact textual
content of the program and a filtered view that represents the lexeme as seen by most clients, with any whitespace characters removed.
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assign ! id = exp ;
expr ! expr && expr

j expr —— expr
j id
j . . .

. . .

x = a&&b||
    c&&d;

x=a&&b||c&&d;

Figure C.3: Running example. From left to right: grammar, program text including whitespace, program text without white-
space. (Curly arrows represent newlines, horizontal arrows denote tabs.) Figures C.4 and C.5 illustrate structural views of
this example.

ws wsid ws ws id id && id

and and

or

assign

expr

id ;
a b c dx

&&= ||

Figure C.4: The structural representation of the program text (concrete syntax) in Figure C.3.

;id = id && idid

assign

expr

or

and and

a b c dx
id&& ||

Figure C.5: View of the concrete syntax with whitespace removed. Additional elements of the concrete syntax, such as
punctuation, could be removed by further abstracting the structure.
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root ! bos assign eos Add sentinel root.
assign ! id = expr ; (Original start symbol)

expr ! expr && expr
j expr —— expr
j id

. . .
ws-pair ! WS WS Pair productions are shared

j WS ws-pair by all whitespace sequences.
j ws-pair WS
j ws-pair ws-pair

id ! ID For each terminal symbol,
j id-conn allow a whitespace connector

id-conn ! ID WS in its place.
j ID ws-pair

and ! AND
. . .

Figure C.6: Whitespace support through grammar transformation. The grammar of Figure C.3 is transformed to allow each
terminal symbol to be followed by an optional sequence of whitespace tokens. WS andID represent whitespace and identifier
tokens, respectively. The transformation applied to identifiers would be repeated for each terminal symbol (equals, and,
etc.) and bos.

C.3 Construction Method I: Grammar Transformation

The representation described in the previous section can be constructed in various ways. In this section we describe a method
based on grammar transformation, where the presence of whitespace is (usually) implicit in the source grammar supplied by
the language description writer, but is made explicit in the transformed grammar used to generate the incremental analysis
tools. In the following section, an alternate method is presented that instead modifies the incremental parsing algorithm and
leaves the grammar unchanged.

The meta-language used to write grammars for language descriptions provided to the ISDE is typically an extended
BNF; often regular expressions are permitted on the right-hand side of productions. In order to generate incremental anal-
ysis and transformation tools, the environment will translate the extended grammar to a canonical form. As part of this or
a subsequent transformation, we can convert the implicit presence of whitespace to an explicit representation in the trans-
formed grammar.6 Figure C.6 provides a template for this expansion, illustrating how one terminal symbol from our running
example is re-written to permit a sequence of whitespace tokens to follow it.

Each terminal symbol must be transformed in a similar fashion, introducing an accompanying connector production.
In addition, bos must be similarly transformed and a production added to represent the root sentinel. (Since whitespace
is attached to the preceding terminal symbol, eos does not require this transformation.) The four productions used to de-
fine ws-pair are included only once. These productions are written in a form that expresses the inherent associativity
in the sequence, allowing a balancing algorithm to be employed. This notation will generate conflicts when the grammar
is compiled by a deterministic parser generator such as bison. The default conflict resolution schemes (‘prefer-shift’,
‘prefer-earlier-rule’) can be safely used to produce a correct parser. (The same approach should be used when constructing
parse tables for a GLR or other non-deterministic parser, to prevent the parser from constructing alternative interpretations
of each whitespace sequence.)

Classes of grammars typically used for deterministic parsing (LR(k), LALR(k), and LL(k) for k � 1) are closed under
this transformation, since the set of whitespace tokens is mutually exclusive with the grammar’s original set of terminal
symbols, and an entire whitespace sequence can be constructed using a single item of lookahead.

The grammar transformation approach is preferable when the compilation of language descriptions is easily extended.
The environment per se, including the incremental parser, is unchanged. This approach is also preferable when it is nec-
essary to describe languages in which whitespace can play a syntactic role, such as Haskell’s ‘off-side’ rule [46]. In such
languages, whitespace tokens will appear explicitly in the grammar; names for explicitly mentioned whitespace tokens must
be integrated with names introduced by the transformation process.7

6This transformation is similar to that proposed by Visser [96], although no attempt is made there to produce an incremental evaluator from the result.
The idea is also similar to the ‘expected’ comments in the Eiffel grammar [67].

7Even with the ability to name whitespace explicitly in the grammar, Haskell is non-trivial to describe in a manner suitable for incremental analysis. The
lexical description must discover indentation changes and encode them in the set of whitespace tokens, and the language specification must accommodate
the possibility of both explicit and implicit (whitespace-based) scope delimiters. The latter violates the assumption that the original set of terminal symbols



130 APPENDIX C. MODELING USER-PROVIDED WHITESPACE AND COMMENTS

ACTION IncrementalParser::next_action (NODE *lookahead, int parseState) {
Lookahead is either bos or a CN node that wraps bos. Shift into the parser’s initial state.
if (stack.is_empty()) return SHIFT 0;

The top two nodes on the stack and the lookahead symbol are sufficient to ‘parse’ whitespace.
NODE *tos = stack.element(0), *prev;
int tosType = tos!type, prevType = BadType, laType = lookahead!type;
if (stack.depth() > 1) {prev = stack.element(1); prevType = prev!type;}

Previous/current item are one of <WS WS>, <WS PR>, <PR WS>, <PR PR>. Reduce them to a PR node.
if ((tosType == WS || tosType == PR) && (prevType == WS || prevType == PR))
return REDUCE PR_RULE;

Create a wrapper when the whitespace sequence is complete.
if (tosType == PR && laType != PR && laType != CN && laType != WS)
return REDUCE CN_RULE;

Treat an unmodified connector appearing as lookahead as its first child.
if (laType == CN)
return next_action(lookahead!first_child(), parseState);

Backtrack from reductions to expose a terminal symbol when necessary to connect new adjacent whitespace tokens.
if (is_nonterminal(tos) && tosType != PR && (laType == PR || laType == WS))
right_breakdown();

Now it’s safe to shift PR and whitespace tokens; note that the parse state remains unchanged.
if (laType == PR || laType == WS) return SHIFT parseState;

The ‘grammatical’ case: look in the parse table to decide on the action.
return parseTable!next_action(parseState, lookahead);

}

Figure C.7: Extensions to the incremental parser’s next_action method. Existing whitespace subtrees are shifted onto
the parse stack without changing the parse state. New whitespace material is ‘parsed’ to create a left-recursive chain that
will be (re)balanced when parsing is complete. When a connector node appears as the parser’s lookahead symbol, its first
child is used to determine the next parse action. Connecting whitespace to the preceding terminal symbol may require
that terminal symbol to be exposed by removing the right-hand edge of the enclosing subtree; this is accomplished by the
right_breakdown routine, shown in Figure 6.2. ‘WS’ is used as a shorthand to represent all whitespace token types,
which are treated as an equivalence class by this algorithm. ‘CN’ and ‘PR’ denote connector and pair nodes, respectively
(Figure C.1).

C.4 Construction Method II: Parser Modification

The grammar transformation described in the previous section is a simple mechanism for building the whitespace represen-
tation. In some circumstances, however, existing parse tables may need to be retained, or it may be appropriate to avoid
additional transformations. Thus we present a second method for building the whitespace representation, based on directly
modifying an incremental shift/reduce parser.

Rather than modify the grammar (and therefore the parse tables), we can simulate the additional shift and reduce actions
by directly modifying the parsing algorithm instead—the next_action method is extended to handle the necessary op-
erations as special cases. If no special rules apply, then this method will simply interrogate the parse table for the next action
to take. The top two nodes on the parse stack and the lookahead symbol are sufficient to determine the next action in all
cases; we do not change the parse state when shifting whitespace-related nodes. Note that this method, like the previous
one, will shift a subtree that represents a whitespace sequence in constant time when it appears in the parser’s input stream.
Figure C.7 summarizes the necessary changes to the incremental parser’s next_action routine.

The parser-based approach can be implemented directly in both sentential-form and state-matching incremental parsers.
A similar technique can be used to extend an incremental GLR parser (Chapter 7) by encoding a synthetic ‘whitespace state’
in the nodes of its graph-structured stack.

is mutually exclusive with the set of whitespace tokens. Incremental GLR parsing (Chapter 7) can be used to overcome any conflicts induced by relaxing
this restriction, using non-deterministic parsing to try several possibilities simultaneously.



C.4. CONSTRUCTION METHOD II: PARSER MODIFICATION 131

When parsing is complete (the parse table indicates an accept action), the parse stack will contain two elements. The
first is either the bos token itself or a connector node whose left child is bos. The second parse stack entry will be a node
corresponding to the start symbol of the grammar. At this point the lookahead symbol, eos, can be pushed onto the stack
and the three stack elements ‘reduced’ to create the sentinel root node of the program representation (Figure 3.2).

Error detection is essentially unchanged by the presence of whitespace; any whitespace tokens immediately preceding
the point of detection will typically be gathered into their sequence representation before the error is discovered. The impact
of whitespace material on error recovery is discussed in Chapter 8.

The representation constructed by modifying the incremental parser is structurally equivalent to that produced by gram-
mar transformation up to the balancing of sequences; the only difference is that a single connector type can be used in this
approach, since there is no need to ensure closure properties required by the transformation-based scheme.





Colophon

This document was prepared on a UnixTM system with the LATEX formatting system using the book style. Indentation fol-
lowing chapter and section headings has been suppressed.

The bottom margin is ragged, producing a better vertical layout in general. TEX’s line-breaking was set to sloppy and
complaints of less than 5000 badness were ignored. PostScriptTM images are included using the epsf packages. Bibliogra-
phy management was done using John Boyland’s makebib utility to merge bibliography databases, followed by BIBTEX.

The main text is set in Times font, with margins adjusted to match the conventional binding style used for UCB tech-
nical reports. Program text is set in courier; algorithms in figures are typeset using John Boyland’s program style. Most
symbols were produced using TEX’s math symbol facilities; however, ‘̃ ’ and ‘C++’ required explicit construction to achieve
a pleasing visual style.

Tables were set directly in LATEX. Graphics were produced using xfig, with the exception of Figure 7.4, which was
produced by SuperMongoTM directly from the dataset. dvi-to-PostScript conversion was done with dvipsk 5.58 from
Radical Eye Software.TM The online version was created using latex2html on the technical report version of this docu-
ment.

133




