Incremental Static Semantic Analysis

William Harry Maddox ITT

Report No. UCB//CSD-97-948

/l May 1997

[

| Computer Science Division (EECS)

\
\
\
\ University of California
\
\
\

Berkeley, California 94720

[

Incremental Static Semantic Analysis

William Harry Maddox 11T

May 1997

Copyright (©)1997 by William Harry Maddox T1T.

This material is based in part upon work supported by the Advanced Research Projects Agency,
Contract No. MDA972-92-J-1028. The content of the information does not necessarily reflect the
position or the policy of the Government.

Abstract

Language-based programming environments provide some or all of the functionality of a compiler, an
interactive debugger, a browser, and a configuration manager behind a unified user interface based
on an editing paradigm. As the user edits a program, the changes are processed incrementally,
allowing for low-latency updates to derived information. This information can be made available to
interactive environment services, such as browsing, navigation, and “real time” error-reporting.

In this dissertation, we address an important subproblem in the construction of such environ-
ments, the generation of static semantic analyzers that operate in an incremental mode. Our work is
embodied in the Colander II system, which introduces both a new metalanguage for the declarative
specification of static semantic analyses and new techniques for generating an incremental analyzer
from these specifications automatically.

Our specification metalanguage melds the advantages of traditional attribute grammars, in-
cluding amenability to extensive generation-time analysis, with the expressiveness and client-
independence characteristic of Ballance’s Logical Constraint Grammars. In comparison to tradi-
tional attribute grammars, our metalanguage allows much more of the incrementality inherent in a
particular analysis task to be exposed within the formalism itself, where it can be exploited auto-
matically by our implementation.

Our incremental analysis algorithms exploit the attributed objects and function-valued attributes
provided by our metalanguage, mapping these expressive notations onto a fine-grained incremental
implementation. We are thus able to automatically generate incremental analyzers that handle long-
distance dependencies and aggregate attributes efficiently. Our methods allow unusual freedom to
control the granularity of incremental evaluation, allowing performance tradeoffs to be chosen as
demanded by the needs of the application rather than as dictated by the a priori requirements of
the algorithms.

We have also developed a static analysis and transformation on attribute grammars that accom-
modates a useful class of circular attribute dependencies, automating the “backpatching” method
used in hand-coded compilers. The transformation is employed in Colander II, but is applicable to
attribute grammars in general.

We have used the Colander II system to create a static semantic analyzer for the programming
language Modula-2, which has revealed both strengths and weakness in our specification paradigm.
Interestingly, the most significant difficulty that we encountered applies equally to traditional at-
tribute grammars, but has not been widely appreciated in the attribute grammar literature.

Our work was performed in the context of the Ensemble project at UC Berkeley, which is con-
structing a prototype integrated multilingual language-based software development environment
based on the editing of structured multimedia documents.

Contents

Introduction

1.1 Programming Toolkits
1.2 Language-Based Programming Environments
1.3 Incremental Static-semantic Analysis 0000
1.4 Requirements
1.5 Our Solution
1.6 Summary of our Results
1.7 Outline of the Dissertation

Formalisms for Incremental Attribution

2.1 Ad hoc Methods
2.2 Attribute Grammars L
2.3 Enriching the AG Formalism
2.4 Our Solution: Objects, Functions, and Relations
A Metalanguage for Incremental Attribution

3.1 High-level Structure
3.2 DataTypes e e
3.3 Expressions and Patterns
3.4 Functions, Relations, and Collections
3.5 Attribution and the AST
3.6 Object Types
3.7 DISCussion

Using ADL — An Example

4.1 Global Organization e
4.2 Representing Named Entities oo oo o
4.3 Representing Types L
4.4 Representing Binding Environments 0oL o000
4.5 Attributing the AST o
4.6 EXPressions e
4.7 Variables
4.8 Type Specifications
4.9 Declarations
4.10 Statements L
4.11 The Top-level Program
412 DISCUSSION . . . o . v v e e

Oy O e 0N = =

—_
N — Co Cco @

—_

15
15
16
18
21
23
25

Incremental Visit-Sequence Evaluators 50

5.1 Visit-Sequence Evaluators 50
5.2 Incremental Evaluation 52
5.3 Multiple Subtree Replacements L. 53
5.4 Our Incremental Evaluator 54
5.5 Balancing the Abstract Syntax Tree L L. 55

5.5.1 Balanced Sequences and |[AFFECTED| 55

5.5.2 Representing Balanced Sequences 0. 57

5.5.3 A Notation for Attributing Balanced Sequences 59
5.6 Selective Visit Caching L 60
5.7 Summary and Related Worko 60
Objects and References 62
6.1 Objects and Non-local Dependencies 62
6.2 Static Allocation of Objects 63
6.3 Maintaining Dynamic Dependency Traces 64
6.4 Static Component Selections L 65
6.5 Dynamic Component Selections 0L 68
6.6 Related Work 70
Functional Attributes 75
7.1 Representation of Aggregate Attributes 0L 75
7.2 Embedding of Functions in the AST 76
7.3 Caching Function Calls 77
7.4 TImplementing Maintained Functions 79
7.5 Calling a Maintained Function L 0 80
7.6 Updating the Caches e 84
7.7 Loose Ends and Housekeepingo 87
7.8 Related Work 87
Relational Attributes and Collections 91
8.1 Representation of Sets using Relations 91
8.2 TImplementing Relations as Generators 92
8.3 Maintained Relations 93
8.4 Collections e 96
8.5 TImplementing Collections L 96
8.6 Related Work 98
Incremental Evaluation in Review 99
9.1 A Unified View of Incremental Evaluation 99

9.1.1 Caching 99

9.1.2 Dynamic Refinement of Static Dependencies 100
9.2 Using Caching Effectively o 101
9.3 TImproving the Treatment of Relations 101
9.4 Performance Measurements L 103

vi

10 Fibering

11

12

13

10.1
10.2
10.3

10.4
10.5

The
11.1

11.2
11.3

The Problem
Overview of Fibering
The Fibering Algorithm
10.3.1 Locating Potential Cycles
10.3.2 Dataflow Analysis
10.3.3 Fiber Reachability Analysis

10.3.4 Breaking Cycles and Inserting Control Attributes

Refinements

Related Work

Implementation of Colander II
The Colander IT Compiler
11.1.1 The Virtual Target Machine

11.1.2 Compiler Architecture and Implementation

Runtime Support
Retrospective Observations

Gaining Experience: Analyzing Modula-2

121
12.2

Static Semantics for Modula-2
Implementing Analysis of Modula-2
12.2.1 Compilation Units
12.2.2 Scoping and Name Resolution
12.2.3 Types and Typechecking
12.2.4 Declarations and Named Constants .

12.3 Lessons from the Implementation of Modula-2

12.3.1 Dynamic Scheduling
12.3.2 Fibering
12.3.3 Objects and Non-local Dependencies
12.3.4 Data Types and Operators

Evaluation and Future Directions

131
13.2
13.3

The
Al
A2
A3
A4
Ab
A6
AT
A8
A9
A10

Summary of our Research Contributions . .
Open Issues in Colander IT
Directions for the Future

Syntax of ADL

Program Units
Declarations and Definitions
Attributes oL
Constraints
Naming and Reference
Types
Goals
Expressions
Patternso
Pragmas

vil

109
109
110
112
112
118
122
124
131
132

134
134
134
135
136
137

138
138
139
139
139
142
145
146
146
147
147
147

B An ADL Description for “Example”
B.1 The Schema
B.2 The Body e

C The Modula-2 Language Description

vill

Chapter 1

Introduction

As the processing speed and memory capacity of modern computer hardware have rapidly increased,
so has the demand for greater functionality in software. Despite the advances that have been made
in programming languages and software development tools, programmer productivity remains a
bottleneck in the software development process.

1.1 Programming Toolkits

Two decades ago, programmers typically relied on nothing more than a collection of independent
programming tools, e.g., text editors, compilers, linkers, debuggers, profilers, and various utility pro-
grams. These tools were invoked explicitly by the programmer, and communicated via the filesystem
using a variety of file formats and ad-hoc conventions. The first programming environments were
based on a “toolkit” approach, in which mechanisms were provided to combine an extensible col-
lection of such tools in rich and unforeseen ways to automate specific programming tasks. The
most influential such environment was that provided by the Unix™™ operating system, whose pro-
grammable command interpreter, easy redirection of input and output, and dependency-directed
compilation manager (the “make” utility) defined the state of the art for a decade.

A consistent failing of existing toolkit-based environments is that tools must expend much effort
rederiving information that is already known to another tool, or that has not changed since the tool
was last invoked. Many tools make do with an incomplete or shallow analysis in order to avoid the
high cost of frequently recomputing a more extensive analysis. For example, the “tags” navigation
facility in Emacs relies on the user to periodically invoke a command to update its database, which
must rescan all source files that have been modified in any way. Between updates, the database
may become inaccurate as the program is modified. Likewise, the language-sensitive editing modes
of Emacs and other text editors rely on heuristic parsing strategies that can sometimes fail in
unexpected ways, and provide no support for identifying syntax and static semantic errors, other
than by invoking the compiler on the entire source file. The make utility records dependencies at
the level of entire source files, using file timestamps maintained by the file system to detect changes,
as editors neither maintain fine-grained change information, nor is the compiler able to exploit it by
recompiling only the changed regions.

Ideally, we would like to have a persistent repository that is shared by all tools. In this way,
the derived information created by any tool is available to any other that can make use of it. Code
analysis and browsing tools such as the C Information Abstractor of Chen et al. [11] build a global
program database that can then be queried by a programmer attempting to understand the structure

of a software system. Every source file is processed once by the compiler to produce an object file,
and again by the browsing tool to update its database. The information needed for the browser
database is present in the symbol table of the compiler during compilation, but is not available
to the the browser, thus it must reimplement a sizeable portion of the compiler’s functionality.
Support for browsing and analysis tools is becoming a crucial issue as the current emphasis on
code re-use and re-engineering shifts the focus of the programming task away from production of
new code toward the understanding, modification, and extension of existing complex systems. The
information flow between the compiler and other tools need not be one-way. The global procedure
call graph maintained in the browser’s database could be used by the compiler for code optimization
purposes as well. Ideally, both the the compiler and the browser would operate from the same
persistent shared repository.

1.2 Language-Based Programming Environments

An essential limitation of loosely-coupled toolsets is that most tools know little, if anything, about
the structure and semantics of the languages in which the program is expressed. Generally, only
the compiler has a complete language-aware view of the program, and most of this information is
discarded after each compilation is completed. True integration requires that all tools have uniform
and efficient access to a semantically-rich representation of the software system. Once this infras-
tructure is in place, a variety of language-aware environment services can be provided in a consistent
and efficient manner, without the duplication of effort that would render many of these services im-
practical. For example, static “compile-time” errors can be reported during editing, and incremental
compilation and re-linking can be performed based on fine-grained dependencies between individual
declarations, statements, and expressions, rather than between entire source files. Browsing facili-
ties for program comprehension can consistently reflect the current status of a program even as it is
undergoing modification, and editor commands for navigation and program modification can respect
the structure imposed by the programming language, such as permitting consistent renaming of a
variable taking the scoping of declarations into account.

Language-based programming environments provide some or all of the functionality of a compiler,
interactive debugger, browser, and a configuration manager behind a unified user interface based
on an editing paradigm. Changes to the program are usually processed incrementally, resulting in
incremental updates to compile-time analyses and the generated code. These updates can usually be
performed at speeds that, for interaction purposes, are essentially instantaneous. The results of the
program analysis are available to support additional environment services, such as class browsing,
definition /use cross-referencing, and call graph display. More extensive analyses may take longer to
compute, but an integrated interactive environment can invoke such analyses speculatively during
idle time (e.g., when the user is thinking) to improve the probability that a request may be satisfied
without delay. A further benefit of incremental analysis is that changes can be tracked at very
fine granularity, and in semantically relevant terms. For example, Wagner and Graham [77] track
code revisions at the granularity of individual AST nodes, their parent-child relationships, and the
annotations provided by analysis tools. Such fine-grained versioning is not provided in traditional
environments, which track changes in terms of entire lines of text.

A number of language-based programming environments have been constructed as research pro-
totypes, including Gandalf [52], Centaur [8], the Synthesizer Generator [67], Pan [3], PSG [2], and
Integral-C [68]. Commercial systems include the SMARTsystem from PROCASE Corporation [60],
Energize from Lucid, Inc. [51], the Rational Ada Environment [23], and a commercial version of the

Synthesizer Generator [30].!

Our work was performed in the context of the Ensemble project [29], which is constructing a
prototype integrated multilingual language-based software development environment based on an
editor for structured multimedia documents. Programs, formal specifications, and other machine-
interpretable documents are represented in the the same framework as natural language documents
such as user documentation, informal design notes, and management reports, with provisions for
document embedding and hyperlinks. When a concrete parsing grammar is provided, e.g., for a
programming language, document structure can be captured from its textual presentation. In this
case, unrestricted textual editing is supported using an incremental parser. Structure-based editing
i1s permitted in all cases. Ensemble is a successor to Pan, which pioneered the seamless treatment
of programs as both flat text and as structured abstract syntax trees.

In Ensemble, a software system is represented as an abstract object. User services operate by
providing graphical or textual views of that object and editing operations to modify it. Documents
are represented as a tree of primitive elements and larger aggregate nodes reflecting its logical
organization. In the case of a program, or other document expressed in a formal language, the
structured representation takes the form of an annotated abstract syntax tree, as it is also usually
represented in the other language-based environments we have cited. The abstract syntax tree is
thus the shared program representation used by the services (tools) provided by these systems.

1.3 Incremental Static-semantic Analysis

In this dissertation, we address the problem of static semantic analysis in language-based program-
ming environments, i.e., deriving properties of formal documents that can be deduced from a static
examination of their context-free syntactic structure. Editing operations may modify the structure
of the AST, as well as selected annotations such as user-supplied commentary. Most annotations
represent the results of automatic analysis, however, and are not under direct user control. The
values of these annotations are determined by the definition of the programming language and the
semantics of client environment services.

Most changes that arise in editing affect a relatively small portion of the analysis. In order to
preserve the information that has not changed, the analysis 1s updated incrementally as changes are
made to the tree. Examples of analysis tasks are verification of context conditions, style checking,
and the automatic generation of (formal) documentation.?

I There are few commercial systems, and fewer still that have been successful in the marketplace. The problem
stems at least partly from the fact that most language-based environments have a closed worldview, and do not
interoperate well with existing tools. This is not a technology issue per se, but the fact is that any single vendor
cannot produce the “final word” in every tool category, so any closed architecture will leave users locked out from
using tools they would like to have. In practice, a widely accepted open architecture allowing third-party “plug-ins”
will be essential in order to move language-based environments into the mainstream.

2We are concerned principally with rather shallow analyses of the same character as those typically employed in
the checking of context conditions, e.g., name-resolution and type-checking, as well as other essentially clerical tasks
such as cross-referencing. We do not address most instances of deriving partial or approximate information about a
program’s execution-time properties, e.g., via dataflow analysis. Our techniques may possibly be generalized in this
direction, but we suspect that another formalism may be more appropriate, and, in any case, our implementation
methods would have to be extended. In particular, we provide only very limited support for cyclic sets of constraints,
and cannot conveniently or efficiently support iterative solution methods.

1.4 Requirements

Our principal goal is to make the information conventionally derived by a compiler and related
language-based tools available to other environment services, including interactive views, in a uni-
form and efficient manner. We must maintain this information dynamically as the program is
modified, minimizing latency so that the supported environment services can provide crisp interac-
tive response to editing operations. Several additional secondary requirements emerge from practical
considerations.

Firstly, the set of language-based services will not be static, as new ones will be introduced
over the lifetime of an environment. Many annotations are of general interest to both the user and
environment services, including those that derive immediately from the language definition, e.g., the
types of expressions and the declaration associated with each identifier use. It should be possible
to add new clients without modifying existing analyses that provide the required annotations. This
implies that the analysis specification must be representable without reference to its eventual clients.

Secondly, it is essential that a language-based programming environment support multiple lan-
guages, and provide for the economical addition of additional languages to its repertoire. Despite the
predominance of a handful of general-purpose programming languages, large-scale software projects
invariably involve a variety of languages, such as specification languages for program generators,
database query languages, document markup languages, interface definition languages, and scripting
languages. Mixed-language systems are becoming the rule in the commercial domain as distributed
client-server designs replace the monolithic program architectures of the past. An environment that
supports only a single programming language, or that cannot be easily adapted to support new
languages and language variants, is unlikely to be accepted in the marketplace.

Finally, the support provided by the environment must be non-intrusive. A sequence of editing
operations perceived by the user as a single modification may move the program through a sequence
of intermediate inconsistent states. Since users are fully aware of the inconsistency, it is unnecessary
and intrusive to notify them of the transient constraint violations that appear. We wish to support
the policy, advocated by Van De Vanter [74] and adopted in Pan, of updating the analysis only
when the user explicitly requests a service that depends on it, such as notification of constraint
violations. Furthermore, while early language-based environments provided a structure-oriented
editing interface permitting only a single subtree replacement at a time, experienced programmers
demand the ability to edit the concrete textual representation of the program directly. Indeed,
many modifications of an existing program that are easily performed with a conventional text editor
become extremely awkward in an explicit subtree-replacement model, as noted by Waters [79].
For this reason, many language-based editors, including Ensemble, allow textual editing operations
applied to a textual view of the underlying AST, and map them automatically to tree modifications
with an incremental parser. The insertion or deletion of a single lexical token can cause extensive
tree rearrangement, with only the final state being relevant to the semantic analyzer.

1.5 Owur Solution

In this dissertation, we detail an approach that addresses all of the requirements we have identified:

e Support for multiple languages. We generate analyzers from high-level, declarative specifi-
cations. Qur descriptions are easier to create, understand, and maintain than equivalent
analyzers specified in the conventional procedural fashion. Compiled language descriptions
are dynamically-loaded into the editing environment as needed. Multiple descriptions may be
simultaneously active, supporting one or more documents.

e Uniform, client-independent access. We provide a clearly defined client interface for each
analysis, textually separated from its implementation. Analysis descriptions are independent
of any client.

e Low-latency analysis. Our evaluators execute incrementally. They are generated in the form
of directly executable code, requiring minimal runtime support. Pragmatic annotations pro-
vided in the language description allow fine-grained control over space/time tradeoffs without
compromising the declarative character of the description. Since some changes, even very
small ones, may have wide-ranging effects, incrementality is not an adequate substitute for
basic efficiency of execution. We generate hard-coded analyzers to avoid unnecessary runtime
overhead.

e Unrestricted editing model. Our evaluators place no constraints whatsoever on either the
permissible restructurings of the AST or the interleaving of tree modifications and analysis
requests. In conjunction with an incremental parser, this permits any number of textual or
structural changes to be made at any place in the document before requesting re-analysis.
The nodes of the tree affected by a change need not be contiguous. Program transformations,
whether performed automatically or by explicit user request, are easily accommodated within
our framework.

Attribute grammars have been used by other researchers as a basis for incremental static se-
mantic analysis. Unfortunately, incremental evaluators for traditional attribute grammars do not
exhibit robustly scalable performance when applied to programming language analysis, leading other
researchers to introduce ad hoc extensions that are either excessively specialized toward the descrip-
tion of particular programming language features, or that compromise the declarative nature of
the formalism. The difficulties arise principally due to long-distance dependencies and aggregate
attributes, as we shall see in the following chapter.

Our work is yet another extended attribute grammar formalism, but, unlike those proposed
earlier, our extensions are not merely compromises made to facilitate incremental evaluation. Indeed,
they could be justified in a non-incremental system on the grounds of their expressiveness alone.
Our extensions are of broad applicability, yet they in no way compromise our ability to exploit
static dependency analysis to generate efficient evaluators and to provide the strong generation-time
well-formedness guarantees characteristic of systems based on traditional attribute grammars.

In many ways, our work is a carefully engineered synthesis of ideas that have been proposed or
implemented before, yet there is a synergy between them that makes our system more than just the
sum of these parts. We have achieved results comparable to those achieved by others, but we have
done so while enhancing the elegance of our specification language and while retaining full faithfulness
to the most desirable properties of the attribute grammar paradigm, without compromise. Perhaps
just as importantly, we have done so without resorting to exceedingly clever algorithms or data
structures, or by placing restrictions on other parts of the programming environment. Our approach
is thus general, efficient, elegant, practical, and automated.

1.6 Summary of our Results

Our results are embodied in a system called Colander II, the analysis component of Ensemble.
Colander IT consists of both a new language for the formal declarative specification of analyses and
new techniques for generating an incremental analyzer from these specifications.

For the analysis of languages that are a good match to our specification metalanguage, we ob-
serve significant reductions in both the number of AST node visits and in the number of attribute

evaluations required to analyze a typical change during interactive editing, relative to the initial
analysis when the program is first loaded. While overhead effects are less clear, as we lacked a
non-incremental implementation with which to make comparisons, our methods scale well with total
program size, in contrast to conventional non-incremental analysis techniques. We have used our
system to create a static semantic analyzer for the programming language Modula-2, which has
revealed both strengths and weakness in our specification paradigm. For the most part, our spec-
ification language was up to the task. Most of the defects we discovered could be corrected easily.
Unfortunately, we discovered a more serious problem that prevented us from implementing the full
semantics of Modula-2. Interestingly, the difficulty we encountered applies equally to traditional at-
tribute grammars, but has not been widely appreciated, perhaps because an acceptable workaround
is less irksome in a non-incremental setting. Most significantly, we have come to appreciate the
difficulty of attempting to inherit incremental behavior in our analyzers from an incremental imple-
mentation of the semantics of the underlying metalanguage. Our generated evaluators include much
redundant and unnecessary bookkeeping that would be easily avoided if coded by hand. We suggest
both possible improvements to our system to close this gap, as well as an alternative approach that
embodies our incremental evaluation methods in an open, lightweight framework decoupled from
the monolithic “black box” specification language that forms the basis of the present work.

At present, we address programming in the small, but we eventually envision our work integrating
with a persistent shared repository, extending the facilities we provide to programming in the large.

1.7 Outline of the Dissertation

Most existing language-based environments have adopted an attributed abstract syntax tree as
their primary program representation, and ours is no exception. In Chapter 2, we survey existing
incremental attribution systems and examine their strengths and weaknesses. This will suggest the
overall character of our improved methods. We emphasize the importance of static analysis for both
efficiency and reliability.

Chapter 3 presents the Analysis Definition Language (ADL), the metalanguage in which our
language descriptions are expressed. This language embodies the environment builder’s view of the
system, and permits the specification of both language-generic and client-specific analyses. The test
of our language design as a specification tool is the ease and naturalness with which analysis tasks
can be expressed. In Chapter 4, we show how ADL can be used to implement typical kinds of
analysis tasks, by means of an extended example.

An elegant and expressive specification language is useless for our purposes, however, unless
it admits an acceptably efficient implementation. We thus describe in detail the implementation
of ADL, emphasizing the novel aspects. We elaborate on the design space, defend our specific
choices, and compare our approach with relevant prior work. A consistent theme is the manner in
which ADL language constructs allow and encourage the environment builder to express possibilities
for incremental evaluation that are concealed by other approaches, but detected and exploited by
our own. In Chapter 5, we introduce classical incremental attribution techniques, and develop
the particular variant we use. It is notable for its simplicity relative to previous work satisfying
similar requirements. In Chapter 6, we show how our implementation of ADL objects allows the
straightforward expression of long-distance attribute dependencies, and in Chapter 7 and Chapter 8
we show how function and relation-valued attributes allow fine-grained incremental evaluation in the
presence of aggregate attributes. Our treatment of the incremental evaluation algorithm concludes
with a unifying high-level summary and a discussion of performance issues in Chapter 9.

Classical attribute dependency analysis will reject as ill-defined any description that would create

a circular data structure. This prevents a natural description of recursive data types, requiring awk-
ward circumlocutions. Similarly, name resolution in languages that do not require declaration before
use requires an awkward simulation of a multi-pass compiler structure, such as would be employed
in a compiler implemented in a traditional imperative programming language. Such circumlocutions
destroy the declarative elegance of the language descriptions, and create superfluous attribute values
that must be maintained at additional cost. Fibering analysis, described in Chapter 10, is a static
generation-time analysis that allows the noncircularity condition to be relaxed to handle these and
similar situations without compromising the usual generation-time guarantee that all attributes are
effectively evaluable at runtime.

Up to this point, we have spoken of our implementation in general terms, presenting general
ideas and abstract algorithms. In Chapter 11 we discuss the implemented Colander II system as
a concrete artifact, reporting on its implementation status and engineering details. In order to
evaluate our analysis specification formalism in a realistic setting, we implemented a static semantic
analyzer for the programming language Modula-2. In Chapter 12, we present an overview of the
language description, which is presented in its entirety as an appendix, and report on our experience
with Colander IT during its construction.

Finally, in Chapter 13, we summarize our contribution and extract from our experience some
conclusions and directions for future work.

Chapter 2

Formalisms for Incremental
Attribution

Language-based environments conventionally represent programs as attributed abstract syntax trees.
Attributes are automatically generated annotations derived from the structure of an AST. As the
structure of the tree changes, the values of its attributes must be updated. It is seldom necessary
to re-evaluate every attribute when an AST is modified. Methods that seek to limit the extent of
re-attribution in the presence tree restructuring are called incremental attribution methods. In this
chapter, we survey the traditional approaches to incremental attribution, then present an overview
of our own.

2.1 Ad hoc Methods

One of the earliest syntax-directed editors, the Cornell Program Synthesizer [72], made no attempt
to perform incremental analysis at all. Since it was intended for use only on small instructional
programs, it was practical to perform a complete re-attribution after each editing operation. Clearly,
such methods do not scale up to large modules.

In the ALOE editor [52], action routines are associated with each AST node type. Editing
operations such as node insertion, deletion, and alteration of a child or parent pointer invoke the
appropriate action routine for the node or nodes involved. The coding of such action routines is
difficult and error-prone, even under the simplifying assumption of structure-oriented editing based
on single subtree replacements.

While ad hoc attribution remains popular in batch compilers, where semantic analyzer generation
tools are rarely used, nearly all later work in language-based editors abandoned ad hoc methods in
favor of automatically generating analyzers from some sort of formal description. There is a good
reason for this. Writing a correct ad hoc incremental analyzer is much more difficult than writing a
non-incremental one. An incremental evaluation strategy must adapt to an essentially unbounded set
of possible tree modifications, severely complicating the reasoning required to determine correctness.

2.2 Attribute Grammars

We can define the values of the attributes of an AST as the solution to a set of attribution equations
of the form xg = f(x1,22,...,2n). Attribute grammars (AGs) provide a syntax-directed mechanism

for generating such a set of equations for any program, in terms of a set of equation schemata provided
for each type of AST node. The functional dependencies between the attribute instances, i.e., the
variables in the equations, induce an attribute dependency graph, which we generally require to be
acyclic. Given computable definitions of the functions f, we can then solve the system of equations
by variable elimination. If we identify each node in the syntax tree with its associated set of attribute
instances, the attribute dependency graph can be embedded in the parse tree. This is a consequence
of the manner in which the system of equations is constructed by a simple tiling of instances of
equation schemas provided for each node type (production rule). Attributes can thus be evaluated
by walking up and down the tree, without ever explicitly constructing a dependency graph.

Attribute grammars are declarative specifications; the consistency of an attribution is defined in-
dependently of the algorithmic means by which it is achieved. For that reason, AGs are an appealing
formalism for incremental analysis, in which the attribution is updated in response to unpredictable
changes. AGs permit extensive generation-time dependency analysis, which facilitates the genera-
tion of efficient evaluators, and the detection of potentially circular attribute dependencies. If the
semantic functions are total, the noncircularity condition guarantees that a consistent attribution
must exist, and that the evaluator will be able to compute it. The user writes local attribute equa-
tions and semantic functions associated with grammar rules. The global consequences of locally
apparent data dependencies are automatically determined, and the global plan of evaluation, e.g.,
the “pass structure” of the analyzer, can be determined automatically.

Attribute grammars embody a purely local notion of information flow, as information must be
propagated node-by-node along the edges of the syntax tree. This locality is both a strength and
a weakness. As a specification formalism, the compositionality of attribute grammars facilitates
inductive reasoning about their meaning, which can be viewed in a completely declarative way.
As a basis for language processing programs, this locality can be exploited by efficient evaluation
algorithms.

Incremental attribute evaluators exploit locality in two ways. First, since the dependency infor-
mation is implicit in the tree itself, it can be rederived as necessary, without maintaining the full
dependency graph as a separate data structure.! Second, change propagation can be performed lo-
cally, propagating changes outward from the initially inconsistent attributes until no further changes
are made. Incremental attribute evaluators have been designed that work in asymptotically optimal
time, i.e., in O(JAFFECTED]) time, where |AFFECTED] is the number of attribute instances whose
values must actually change.

Unfortunately, much information flow in language processing is non-syntactic, and is most nat-
urally conceived as adding additional dependency edges, linking, for example, declarations of iden-
tifiers and their corresponding uses. These are typically “long distance” dependencies in terms of
the tree path length from the declaration to the use. Once the association has been made between
the declaration and its corresponding uses, it is grossly inefficient to recompute this association (by
copying the binding environment attribute node-by-node) every time some attribute of the declared
entity changes. Within the attribute grammar paradigm, we must accommodate such dependencies
by aggregating together the information appearing at the head of such edges, distributing the aggre-
gate to all potential use sites, and extracting the appropriate information from the aggregate at each
actual use site. As the number of attributes possessed by any given node is fixed by the the text of
the AG description, but the number of declared names in the program to be analyzed is unbounded,
such aggregation is inevitable. Given the need for compositionality in the description, it not clear
that there is any better way in general to define long-distance dependencies at the specification level,
though abbreviative mechanisms may be provided as notational conveniences. For example, the up-

'Known optimal update algorithms, however, either require some explicit dependency information or restrictions
on the class of acceptable attribute grammars.

ward remote attribute references introduced in the GAG system [46] permit a semantic function to
refer directly to the instance of a named attribute occurring in the nearest ancestor node in which
an occurrence appears. Generation-time analysis assures that such an instance will always exist,
and generates inherited attributes to link the remote reference with the appropriate instance.

Long-distance dependencies lead to copy rules, i.e., equations of the form zy = 21, which perform
no computation but serve simply to allow a local tiling process to express the global dependency
structure. Long chains of such copy rules can create substantial overhead in an incremental evaluator,
as the set of affected attributes after the change will include all of the essentially useless intermediate
attributes in the chains. When such attributes are used pervasively, e.g., for representing a binding
environment that is passed to every subtree, we might have to visit every node in the program
to update such an attribute. Practical evaluators must avoid this inefficiency, either by extending
the attribute grammar framework, e.g., Hedin’s Door Attribute Grammars [32, 33], or by using
a mechanism to recognize and bypass copy rules automatically, such as those of Hoover [34] and
Pennings [59].

With the elimination of copy rules, an incremental attribute evaluator can achieve fully incre-
mental behavior to the extent that the attribute dependencies fully expose the dependency structure
of the computation. For simple (e.g., scalar) attribute values, this condition obtains. However, at-
tribute dependencies can only express dependencies directly induced by the structure of the tree.
The non-syntactic dependencies are hidden away within aggregate attribute values, and are not
exposed to the evaluator so as to permit incremental evaluation. The evaluator 1s forced to make
the worst-case assumption that every reference to an aggregate depends on every component.

How significant is this in practice? Programming language analyses typically involve large,
structured attribute values. The most common example is a binding environment, or “symbol
table.” A change to a single binding in an environment will affect only a few bindings in other
environments derived from it, as well as a subset of the use sites within its scope. In a classical
attribute grammar, however, if any part of such an aggregate value changes, any dependent values
must be recomputed in their entirety. Thus a change to the declaration of a global variable would
require that a new binding environment be propagated to every use of any variable at which the
changed declaration was in scope, and force every name resolution to be performed again. This
excessive overhead is experienced in every case, even when only a few use sites are actually affected
by the altered declaration.

We thus see that attribute grammars, at least when implemented naively, are an inadequate
specification formalism for the incremental static semantic analysis of programming languages. The
value of [AFFECTED| is more an artifact of the particular form of the specification than of the degree
of incrementality inherent in the analysis task, and can be artificially inflated by the constraints
of the AG formalism to the point that the behavior of the “optimal-time” algorithm is entirely
unacceptable. Two defects of classical attribute grammars, a crude notion of dependency and the
requirement that information be propagated node-wise between adjacent nodes, conspire to conceal
the underlying dependency structure of the analysis task as it might be described independently of
the AG formalism. The result is evaluators that are unnecessarily slow because too many attributes
must be updated in response to inessential dependencies.

The main difficulty lies in the fact that the attribute values and semantic functions in classical
AGs are “black boxes,” the internals of which are opaque to the evaluator generator. The compu-
tation performed by a semantic function is an atomic action, and the evaluator generator concerns
itself only with the sequencing of calls to these functions and the transmission of their results to
points elsewhere where they are needed. To avoid this problem, the attribution formalism must
be enriched in some way that permits the AG specification to expose the possibilities for partial
recomputation of aggregate attributes, and for the establishment of long-distance dependencies that

10

can be exploited without lengthy path traversal.

The need for direct support of long-distance attribute dependencies and aggregate attributes was
recognized early, and a number of rather limited or ad hoc methods were proposed. Beshers and
Campbell [6] provide a means to integrate handwritten subsystems, e.g., a symbol table package,
with an attribute grammar. The mechanism is error prone, as it relies on the user to account for the
dependencies carried by the handwritten code. Hoover developed a method to automatically bypass
chains of copy rules, thus automatically implementing a class of long-distance dependencies [34].
Hoover’s finite functions [35] and key trees [36] are built-in associative table data types supporting
efficient incremental update of their components. The semantics of these tables are “understood” by
the attribute evaluator, allowing it to directly associate definitions, i.e., extensions of the mapping
for a given domain value, with uses, 1.e. applications of the mapping to that domain value. As an
aggregation mechanism, finite functions are quite powerful, subsuming arrays, records, and keyed
tables. While they appear adequate for many purposes, including name resolution in Algol-like
languages, their generality is limited. Furthermore, efficient propagation of changes to the entire
aggregate value relies on the ability to capture the relations between aggregate values directly in
the finite function update primitive. Vorthmann and LeBlanc [76] abandon generality altogether,
providing instead a specialized high-level notation for specifying name resolution rules. A similar
task-specific approach is taken in PSG [2].

2.3 Enriching the AG Formalism

Colander [4], the incremental analyzer for Pan, eschewed AG technology altogether, taking an al-
ternate approach based on incremental logic programming. Colander introduced a new attribution
paradigm called Logical Constraint Grammars in which the AST induces not a set of equational
constraints, but a set of Prolog-like goals. Goals may instantiate abstract entities and assert their
properties and the relationships among them. The analysis is regarded as consistent when as many
goals as possible have been satisfied. Goals that remain unsatisfied are generally the result of errors
in the analyzed program, thus Colander provides a means to associate error messages with such
failures. Assertions are collected in datapools, which are repositories of simple facts that serve as
contexts for queries. Prolog-like rules allow additional facts to be deduced from those explicitly
represented.

Logical Constraint Grammars rely heavily on explicit assertions, which in Prolog are an extra-
logical feature that destroys fidelity to a purely declarative semantics. In Colander, however, an
automatic consistency-maintenance procedure tracks the dependency of queries upon the asserted
tuples examined when computing their result. When tuples are asserted or retracted (due to the
subsequent failure of a goal that previously made the assertion), goals containing the affected queries
are automatically retried.?

The tracking of dependencies among individual asserted relation tuples permits a fine-grained
treatment of aggregates when modeled by relations. Unfortunately, Colander makes very little use of
static analysis, and its constraint-satisfaction procedure is not sufficiently goal directed. Constraint
satisfaction can block or fail to terminate due to circular dependencies, and performance suffers from

2The declarative semantics of Colander are rather unclean, because the constraint satisfaction process is allowed
to complete with unsatisfied constraints remaining. Indeed, it is unclear exactly what the declarative semantics
should be taken to be, other than the fixpoint of an idiosyncratically-defined inferencing step applied to the entire
program database. The claim to declarativeness seems to derive primarily from fact that the result of an analysis
must necessarily depend on the state of the current AST, independently of the sequence of editing operations that
created it. In fact, even this is not precisely true due to the existence of a few operations that are exempted from the
consistency-maintenance discipline.

11

the excessive use of dynamic dependency traces.

Horwitz [39] and Horwitz and Teitelbaum [38] augmented a traditional attribute grammar with
global relations into which the nodes of the AST could induce one or more tuples, possibly condition-
ally. They use incremental view-maintenance techniques, akin to those developed in the relational
database community, e.g., by Gupta et al. [31], in order to maintain additional derived relations.
Their approach exploits static analysis to direct incremental re-evaluation, unlike Colander, and uses
an efficient forward-inferencing procedure for updating derived relations. The relational extensions,
however, are not well integrated with the traditional AG aspect, indeed they sit alongside each other,
communicating but conceptually distinct. In contrast, Logical Constraint Grammars and our own
attribution formalism tightly integrate extended attribute domains and their associated forms of
constraint with the traditional attribution paradigm.

2.4 Our Solution: Objects, Functions, and Relations

Our attribution language provides an elegant enhancement to the modeling power of conventional
AGs that avoids their failings as observed previously without giving up their distinct advantages.
Component-level incrementality is exposed as a side-effect of the idiomatic use of these mechanisms,
which are just as easily justified on the grounds of specification clarity as by implementation concerns.
We extend the classical AG framework by introducing objects, object references, and functional and
relational attributes.

An object is a named collection of attributes embedded within an AST node, and accessible
remotely via an object reference value. A reference to an object is a pointer, and may be transmitted
independently of the components of the object. A component may be updated in place without
altering any of the reference-valued attributes that refer to the object. For the purposes of static
attribute dependency analysis, an object reference is taken to depend on all of the components of
the object; thus the evaluator will not schedule an access to a component before that component
has been evaluated. If a component is later updated, however, the new value is visible immediately
at all points in the tree where the component is accessed via an attribute reference.? At runtime,
dependency links are maintained between an object component and the sites at which it is used,
enabling the evaluator to propagate object component changes directly to the relevant locations,
bypassing all of the intermediate attributes through which the object reference was transmitted.
Object references establish short-cut paths for the transmission of their components, thus exposing
long-distance attribute dependencies to the evaluator.

Many aggregate data structures can be encoded in the form of functions. A binding environment,
for example, can be represented as a mapping from a name to its referent entity. Such representations
are idiomatic in formal descriptions written in the denotational style, though the first-order basis
of most implementations usually precludes them in attribute grammars. We permit attributes to
represent functions as well as scalar values and first-order data structures such as sets or lists.
Functions are not true first-class values, however, since they may not be stored as components
of such data structures or passed as arguments to other functions. Functional attributes encode
demand-driven tree traversals, in the sense that the evaluation of a functional attribute may depend
on the functional attributes of its neighbors. Functional attributes are most commonly used as object
components (“methods”). Many computations that must traverse a linked data structure can be
implemented as functional attributes of the objects of which the structure is composed. This style
of specification is preferable to one in which the structure to be traversed 1s passed explicitly to the

3While the value of a component may be queried remotely, the constraints that define its value always appear
within the object instantiation. We do not permit remote constraints, in contrast to Boyland’s formalism [10].

12

functions, due to the way that our implementation treats the incremental evaluation of functional
attributes.

Conceptually, a function represents a possibly infinite set of argument/result tuples. Any given
call, however, observes only a single tuple of the function called directly and a subset of the ar-
gument /result tuples defined by functions called indirectly. Thus, while the value of a functional
attribute is conceptually its entire argument /result mapping, only a part of this mapping is relevant
at any given call site. We cache the argument/result associations that are the observable values of
each functional attribute. By maintaining dynamic dependency links at runtime to determine when
cache entries might have become invalid, the processing of function calls whose values are known to
be unaffected can be replaced by a simple retrieval of the cached value.

Logically, functions are a special case of relations, which generalize functions by allowing one-
to-many and many-to-many associations. Relations also permit an economical representation of
sets, exposing their elements for specialized incremental evaluation methods similar to those for the
cached argument /result tuples of functions.*

From the perspective of a programmer writing a language description, our formalism has more
in common with the Logical Constraint Grammars of Colander than with classical attribute gram-
mars. Functions and relations are written using concise notations borrowed from equational logic
programming. Internally, however, our implementation is strongly grounded in attribute grammar
techniques, including generation-time dependency analysis. We can thus make the strong generation-
time guarantees characteristic of AGs. Indeed, since our system encourages the use of small semantic
functions and the avoidance of explicit recursion, and thereby exposes more of the computation to
analysis, the diagnostic value of the circularity test is strengthened.

4The present treatment of relations is not this clever.

13

Chapter 3

A Metalanguage for Incremental
Attribution

A key component of our solution is the metalanguage in which the static analyses are expressed.
Indeed, our approach is composed in its entirety of the metalanguage itself and the methods we
employ in its implementation. We call the metalanguage of the Colander I system ADL, which
stands for Analysis Definition Language. Like all analysis formalisms based on attribute grammars,
ADL can be considered as the combination of two components:

1.

An underlying programming language that provides the data domains in terms of which the
analysis results are represented, and the operators by which they are computed.

An attribution framework by which computations expressed in this language are associated
with an abstract syntax tree.

The underlying programming language of ADL is a declarative multi-paradigm language incor-
porating the first-order functional, relational, and object-oriented styles of programming.

e Functions are defined as sets of prioritized rewrite rules of a somewhat restricted form, similar

to those used in Standard ML, Haskell, and other functional programming languages favoring
the “equational” style of function definition. Functions allow convenient expression of most
deterministic computations.

Relations are defined in the clausal style of Prolog. Relations allow the convenient expression
of nondeterministic or set-oriented computations, and avoid the often unnatural asymmetry of
functions in data modeling.

Objects introduce the notions of identity and subtyping into the language, and play a crucial
role in data modeling and in the pragmatics of incremental evaluation. Less essentially, objects
provide composite data objects with named components, in contrast to the term structures
characteristic of the functional and relational styles.

The functional and relational sublanguages are seamlessly integrated. They share exactly the
same universe of data types, and can each easily invoke computations expressed in the other. A
rewrite rule in the functional sublanguage can be guarded by a predicate in the relational sublan-
guage, which can both determine its applicability and bind some of its variables. A clause in the

14

relational sublanguage can invoke a functional computation via a reducibility predicate, which suc-
ceeds, possibly binding variables, if the given expression evaluates to match a specified pattern. The
object-oriented sublanguage is more restricted in scope, and consists of the addition of class types
to the shared type universe.

Besides constructs of the declarative programming language, ADL analysis descriptions include
a specification of the abstract syntax. Phyla, or abstract nonterminals, are declared along with
a set of attributes possessed by their instances. AST operators, or abstract production rules, are
provided with a set of constraints on the values of their attribute occurrences. The operation of
the incremental evaluator consists mainly in assuring that the values of the attributes satisfy the
applicable constraints.

In the remainder of this chapter, we present a concise and informal overview of the ADL language,
highlighting its salient features and providing enough detail to allow the reader to understand the
code examples in the following and subsequent chapters. Many of the finer points are omitted here,
and will be introduced later as needed. A formal grammar for ADL is included as Appendix A. We
conclude with a preliminary discussion of the design, illuminating our rationale behind the more
controversial choices, and pointing out its connections to earlier work.

3.1 High-level Structure

An analysis description in ADL consists of two textually distinct components, the schema, or inter-
face specification, and the body, or implementation. The schema defines the view of the analysis that
is to be made accessible to its clients. Typically, the schema will provide signatures for one or more
relations containing the analysis results, for example, associating error message strings with their
applicable tree nodes or name usages with their corresponding declarations. Signatures for support-
ing functions, types, classes, and objects may also be included if needed. The body reiterates the
content of the schema, providing full definitions for every exported entity, as well as elaborating
the complete abstract syntax. The body may also introduce additional entities that are not visible
to clients, either by including additional top-level declarations or by including additional attributes
and components in its own declaration of entities that also appear in the schema.

In the remainder of this chapter, we discuss the contents of the description body. The schema
i1s best understood as an abstraction of the body in which portions that are to be concealed from
the clients are omitted. The grammar of Appendix A specifies the precise form of the declarations
permitted within the schema.

3.2 Data Types

ADL is a strongly typed language in which every expression is associated with a statically determined
type. The built-in primitive types include Boolean, Integer, and String. Values of type Node are
references to AST nodes, 1.e., the instances of AST operators. A node reference denotes a fragment
of program structure or the location in the source text to which it corresponds. Node references are
opaque, 1.e., they do not permit access to the attributes of the node. Additional type names may
be introduced as synonyms for types previously defined, for example:

type Count = Integer;

ADL supports composite types for tuples, lists, and algebraic terms. The syntax of tuple and
list types mirrors that of their corresponding value constructors. For example, the tuple type rep-
resenting pairs of integers and strings is denoted (Integer, String), and has (1, "foo") as a

15

typical value. Likewise, the list type representing a sequence of integers is denoted [Integer] and
has [1, 2, 3, 4, 5] as a typical value. A list may also be constructed by prepending a sequence
of components to an existing list using the “|” notation. For example, if the variable Rest has been
previously bound to the list [3, 4, 5], then [1, 2 | Rest]l = [1, 2, 3, 4, 5]. The symbol “|”
1s part of the syntax of the list constructor, and may not be used in other contexts. Term types are
similar in function to the variant records or type unions found in many other languages. An ADL
term type provides a set of named constructors that can be called as functions to create values of the
type. A value of a term type can be queried via pattern-matching to determine the identity of the
constructor and the values of the constructor arguments that were used to create it. The following
term type declaration could be used to represent the structure of a type in a simple programming
language:

datatype TypeShape is TsUNKNOWN
| TsINTEGER
| TsPOINTER(TypeShape)
| TsARRAY(Integer, TypeShape)

’

We could then represent the type of a ten-element array of pointers to integers as follows:

TsARRAY (10, TsPOINTER(TsINTEGER));

Term types may consist solely of nullary constructors, in which case they serve the purpose of enu-
meration types in other languages. By convention, the name of a term constructor is written in all
capital letters with a short mixed-case prefix abbreviating the name of the term type to which it be-
longs. This convention helps avoid name conflicts between constructors belonging to different types,
as well as distinguishing constructors from ordinary functions, which are conventionally written in
mixed-case.

ADL supports one additional kind of type not yet introduced, the object types. Since the seman-
tics of object types are closely bound to the attribution mechanism, we will defer discussion of them
until we have discussed attribution.

3.3 Expressions and Patterns

Literal denotations are provided for the builtin types Boolean, Integer, and String:

TRUE 34845 "This is a string literal"

Names appearing in expressions may be simple identifiers, or they may be qualified identifiers with
multiple components:

MaxInt x Y Tyl Val2 Ent.Type VarRef.Ctx

An identifier appearing as an expression or subexpression must be bound to an expressible value.
The names of functions and relations do not denote values, and may appear in an expression only
within a call as the function or predicate to be invoked. ADL is thus essentially a first-order language,
though closures may be modeled using objects, allowing some higher-order effects to be achieved.
A conventional set of operators are provided, as summarized in Figure 3.1. Equality for values
of type Node is interpreted as node identity, while other comparisons refer to the ordering of the

16

| Type | Operators |
Boolean and, or, not
=, /= (inequality)
Integer +, -, %,/ rem
- (sign inversion)
= /=
<, =<, > >=
String “ (concatenation)
= /=
<, =<, > >=
Node =, /=
<, =<, > >=
Tuples =, /=
Lists ~ (append)
Term Types =, /=

Figure 3.1: ADL Operators.

nodes in a preorder traversal of the AST.! Equality for values of composite types is interpreted as
structural isomorphism, recursively comparing all components.

A pattern is syntactically identical to an expression, but may contain unbound occurrences of
simple (unqualified) identifiers. Such pattern variables must occur only as an argument to a con-
structor, and must not appear nested within an argument to an operator or function call. Whether a
given form is to be interpreted as an expression or a pattern will always be apparent from its context.
A pattern is said to match an expression if there exists a set of bindings for the pattern variables
that would make the pattern, when evaluated, equal to that of the expression. Operationally, the
successful matching of a pattern with an expression establishes bindings for the pattern variables,
which may then be used subsequently as bound variables in expressions. For example, suppose that
the variables Size and E1tType are unbound in the current context. Then the expression

TsARRAY (10, TsPOINTER(TsINTEGER))

matches the pattern

TsARRAY (Size, EltType)

resulting in the following bindings for the previously-unbound variables:

Size = 10
EltType = TsPOINTER(TsINTEGER)

The character “_” in a pattern serves as a wildcard, which matches any value but establishes no
bindings.

I'While defined as part of the language for the sake of completeness, and supported by the ADL compiler itself,
there is currently no runtime support for these comparisons.

17

Matching is a restricted form of unification in which only one operand, the pattern, is allowed to
contain variables. Other than this restriction, which is statically enforced by the type system, the
semantics of matching is identical to that of unification in Prolog.

3.4 Functions, Relations, and Collections

A function definition consists of a sequence of rewrite rules that provide an algorithmic specification
of a mapping. The value of a function call is determined by the first rule for which the patterns of
the rule head match the corresponding arguments. The bindings visible within the result expression
include those established by the matching patterns.? For example, the factorial function might be
defined as follows, where X is a pattern variable:

function Factorial (Integer) -> Integer;
Factorial(0) => 1;
Factorial (X) => X % Factorial(X - 1);

Evaluation (reduction) in ADL is performed in applicative order, i.e., ADL is a “call by value”
language in which function arguments are fully evaluated prior to the call. If no rule is applicable
during a function call, a runtime error is reported.

Conceptually, a relation 1s a set of tuples. In ADL, relations are modeled as predicates that are
true of the argument values that mirror the tuples of the conceptual relation.® The contents of a

relation are defined by a sequence of clauses:

relation StdFun(Integer, String);
StdFun(1, "Sin");
StdFun(2, "Cos");
StdFun(3, "Tan");

A clause may be conditionally asserted by providing it with a guard. The guard may be read as
a conjunction of logical predicates over a set of variables, denoting the sets of bindings of those
variables for which the predicates are satisfied. The tuples contributed to the relation by each clause
are those of the clause arguments evaluated within the context of each set of bindings denoted
by the guard. The components of the guard, called its literals, may be calls to other relations or
Boolean-valued expressions. The literals are separated by the “&” symbol, which is read “and.” The
predicate defined below might be used in a language description to determine names that have been
given more than one definition in a scope. Let the relation Bound associate string names with their
corresponding bound entities. Then the predicate MultiplyDeclaredis true of those identifiers that
are bound to at least two distinct entities:

relation MultiplyDeclared(String);
MultiplyDeclared(Ident) :-
Bound(Ident, Ent) &
Bound (Ident, Other) &
Other /= Ent;

Unary relations such as MultiplyDeclared are a convenient way to model sets; 1i.e.,
MultiplyDeclared may be interpreted as the set of multiply-defined identifiers.

?Pattern variable bindings cannot shadow pre-existing bindings, as pattern variables are, by definition, unbound
in the context in which the pattern appears.

3We use the term “tuple” in its mathematical sense here. The tuples that compose a relation may be implicitly
generated, but are not values of an ADL tuple type.

18

Literals may be negated by a prefix “~” operator, and grouped using braces:

relation UniquelyDeclared(String);
UniquelyDeclared(Ident) :-
Bound(Ident, Ent) &
~{ Bound(Ident, Other) & Other /= Ent };

This predicate is true of the identifiers that are associated with exactly one entity by the relation
Bound. Negation in ADL implements the familiar “negation as failure” rule from Prolog. Nega-
tion thus presupposes the so-called “closed-world assumption” [63] in which relations that are not
specifically asserted to hold are assumed otherwise. The reducibility predicate, denoted by the infix
operator =>, 1s satisfied when the expression on its left-hand side evaluates to a value matching the
pattern on its right:

Error(Var, "Dereferenced variable must be a pointer'") :-
~Var.Type => TsUNKNOWN &
~Var.Type => TsPOINTER(_);

This clause asserts an error at AST node Var, a variable reference, if the type of the variable is
neither a pointer type nor the special null value TsUNKNOWN. The use of such null values to represent
lack of information is a standard idiom in ADL, and serves to suppress spurious error messages, e.g.,
when an error elsewhere makes it impossible to determine a meaningful value for the attribute.

While it suffices when reading an ADL description to interpret guards solely in terms of their
satisfying sets of bindings, it is necessary when writing ADL descriptions to understand their op-
erational behavior, which motivates an important well-formedness condition. A predicate call is a
generator that enumerates sets of bindings for its pattern variables. Evaluation of a guard proceeds
from left to right in the same manner as the evaluation of a Prolog goal. Since ADL implements
one-sided matching, however, and not full Prolog unification, evaluation of a literal necessarily re-
sults in bindings for all of its pattern variables. Each literal is thus evaluated in the context of
the binding most recently established for each of the variables appearing in the literals to its left.
Boolean expressions appearing in a guard cannot establish new bindings, but merely succeed or fail
based on their truth value in the context of the bindings already established. This is similar to the
treatment of the numeric comparison predicates in Prolog, except that the requirement that the
arguments be instantiated is statically enforced in ADL.

The arguments to relation calls and the right-hand side of the reducibility operator are patterns,
and may thus contain unbound pattern variables. All other arguments are expressions, in which all
names must be bound, either in the scope surrounding the entire clause, or in a pattern appearing
in a literal to the left. Guards that do not obey this restriction cannot be evaluated, and will be
rejected during compilation of the analysis specification. Furthermore, bindings established within
a negated literal are confined to that literal, and are not visible to subsequent literals. Thus a
negated literal may test the bindings established by other literals to its left, but it cannot generate
any new bindings of its own. This restriction 1s required to assure the soundness of the declarative
reading of a clause as the logical conjunction of a set of predicates. It serves the same purpose as
the allowedness condition [13] in the theory of Prolog-style logic programming.

The list inclusion predicate, denoted by the infix operator in, succeeds if the value of its left
argument is included in that of its right, which must be a list. If the left argument is a pattern
variable, i.e., a variable that has not previously been bound, the in operator enumerates the elements
of the list as the successive bindings of the variable. More generally, the left argument may be an
arbitrary pattern. In the following code fragment, the function ArgumentMismatches returns a

19

list of pairs associating AST nodes with error messages. The relation Error represents the same
associations implicitly as a relation, rather than as an explicit list:

Error(Locn, ErrMsg) :-
% binding of ArgNodes, ArgTypes, and ArgSpecs elided

ArgumentMismatches (ArgNodes, ArgTypes, ArgSpecs) => Mismatches &
(Locn, ErrMsg) in Mismatches;

It is occasionally convenient to represent a relation as an explicit set of tuples, as relations are not
first-class values in ADL. The in operator allows “impedance matching” in code fragments mixing
native ADL relations and relations modeled as explicit sets of tuples.

Function rules permit an optional guard. When a guard is present, the rule is applicable not only
when the argument patterns match, but the guard must be satisfied as well. The guard is evaluated
within the context of the argument bindings, and may establish further bindings for the result
expression. If the guard produces more than one set of bindings, a single set 1s chosen arbitrarily,
thus preserving the deterministic semantics of function calls. This behavior is similar to the cut in
Prolog, and may be exploited to similar effect.

function LocalBinding(String) -> Entity;
LocalBinding(Ident) => Ent
:- Binds (Ident, Ent);
LocalBinding (Ident) => Unknown;

This function returns the entity bound to a given identifier as recorded in the relation Binds, choosing
one arbitrarily if there 1s more than one applicable binding.

The clauses of a relation must appear within the same context as the declaration of the relation.
ADL provides an alternate syntactic form of relation called a collection, which permits tuples to be
asserted wherever the collection is accessible. A collection declared at top-level within the analysis
specification is globally visible, and may have tuples asserted from within any of the AST operators.
This results in considerable notational economy, as numerous intermediate relation-valued attributes
threaded throughout the tree are then not required. Collections are often used to represent the global
relations exported to the analysis clients. We could represent a relation associating AST nodes with
error messages as follows:

collection Error(Node, String);

An AST operator might then assert an error like this:

Error (Addition, "Integer expression required") :-
~EquivTypes (Left.Type, TsINTEGER);

There are a number of restrictions on collections as compared to ordinary relations, motivated by
their streamlined implementation and special implications for static dependency analysis. Collec-
tions may be defined only at top-level, and may be queried only by an external client. Collections
are maintained in a highly efficient manner during incremental analysis, which makes their usage
extremely desirable when possible.

4The performance issues will become clear when we discuss the implementation of relations and collections in
Chapter 8.

20

3.5 Attribution and the AST

The abstract syntax tree is composed of nodes, which are the instances of constructors called opera-
tors. Each operator belongs to a type called its phylum, which we also attribute to the instances of
the operator. In grammatical terms, operators are the production rules of the abstract grammar and
phyla are the nonterminal symbols. To avoid confusion, we will always qualify the term “operator”
in this context, referring to “AST operators,” reserving “operator” alone to serve in its generic sense,
e.g., arithmetic operators.

A phylum declaration associates a phylum with a set of attribute signatures indicating a set of
attributes possessed by every AST operator belonging to the phylum. In a simple programming
language, expressions might be represented as instances of the following phylum:

phylum Expression

with
context Ctx : Environment;
attribute Type : TypeShape;
where

Type = TsUNKNOWN;
end Expression;

Every node belonging to the phylum Expression will have an attribute Ctx indicating the binding
environment in which it appears, and an attribute Type indicating its type.

As in all attribute grammar formalisms, attributes are assigned a direction, either synthesized or
inherited. The value of a synthesized attribute is defined in a child node and passed upward to its
parent, while the value of an inherited attribute is defined in a parent node and passed downward to
its children. In ADL, a simple synthesized attribute representing an expressible value is introduced
using the keyword attribute. In a departure from conventional attribute grammars, attributes
may also be functions and relations, declared by a function or relation signature of the form we
have already seen, introduced by the keyword function or relation. Such attributes are always
synthesized. Inherited attributes, which are restricted in ADL to represent expressible values only,
are declared in the same manner as simple synthesized attributes, except the introductory keyword
context is used in place of attribute.

From a purely declarative viewpoint, the inherited/synthesized distinction is not essential, as
the equational constraints have no inherent directionality. Operationally, however, the distinction
malkes possible a practical and efficient constraint solving procedure. Equally as important, attribute
directionality facilitates reasoning about the constraints, including the circularity test and related
analysis performed during ADL compilation.

The equation following the keyword where provides a default constraint to be used if a subtree
belonging to the phylum is unavailable. During template-based structure editing, for example, the
AST may be only partially elaborated, or a textual change may have resulted in a parsing error
that left some part of the program uninterpretable. A default constraint must be provided for each
synthesized attribute.

An AST operator declaration indicates the phylum to which it belongs, the names and phyla of
its children, and the constraints that apply to its attribute occurrences.

operator Addition : Expression is
Left:Expression "+'" Right:Expression
where
Left.Ctx = Addition.Ctx;

21

Right.Ctx = Addition.Ctx;

Error(Addition, "Integer expression required") :-
~EquivTypes (Left.Type, TsINTEGER);

Error(Addition, "Integer expression required") :-
~EquivTypes (Right.Type, TsINTEGER);

Addition.Type = TsINTEGER;
end Addition;

Terminal symbols enclosed in quotation marks, such as “+” above, may be included as “noise words”
in order to make the declaration more readable. The parser generator used in conjunction with our
system accepts the abstract grammar in similar form, requiring that the grammar so annotated
actually generate the same language as the concrete grammar, though it may not be suitable for
parsing. We check that the “noise words” in the ADL specification agree with those used in the
grammar specification. Otherwise, they are ignored completely.

A phylum declaration may specify functions and relations as attributes. In this case, the rules
or clauses take the place of attribute equations, and the syntax of function and relation names in
both definitions and invocations is extended to permit qualified attribute names. The following are
two trivial copy constraints, the first for a relation and the second for a function:

Decls.Binds (Ident, Ent) :- d.Binds(Ident, Ent);

FieldListSeq.CyclicFields(Trail) => FieldList.CyclicFields(Trail);

The first copies the tuples of a relational attribute Binds of a child node named d to the Binds
attribute of the AST operator containing the clause, which is named Decls. The second copies
the mapping defined by the functional attribute CyclicFields of a child named FieldList to the
corresponding attribute of the surrounding AST operator, named FieldListSeq. (Although we
speak of copying tuples and mappings upward, in implementation terms, each has the effect of
propagating generator or function calls downward.)

While functional and relational attributes are always synthesized, we shall soon see that the
effect of inherited functions and relations is easily obtained through the use of objects.

Instances of non-keyword lexemes such as identifiers and numeric literals must be explicitly
represented in the AST, and can be the children of AST operators. They are thus treated similarly
to AST operators, and have a syntactic type analogous to a phylum.

lexeme Identifier;

Each instance of a non-keyword lexeme has a single predefined synthesized attribute Text, which is
its textual yield represented as a string.

In addition to the attributes specified in the phylum declaration, an AST operator may have local
attributes that are declared within the body of the operator itself. Such local attributes play a role
similar to local variables and local functions in conventional programming languages. Attributes may
also be defined at top-level within an analysis description, outside of any AST operator. These global
attributes are evaluated at the time the analysis database is initialized, and are visible everywhere
within the body of the language description. Symbolic constants and utility functions are normally
defined as global attributes. An abbreviated syntactic form is provided for defining a simple local
or global attribute defined by a single unguarded equation:

attribute MaxInt : Integer = 2147483647;

22

3.6 Object Types

We now return to object types, which were deferred in our earlier discussion of types. Unlike
the other composite types of ADL, values of object types represent distinct objects possessing an
identity of their own, thus allowing structurally isomorphic but separately-instantiated objects to
be distinguished. The components of objects are also accessed by name instead of by positional
pattern-matching.

Every object 1s an instance of a class, or object type, which defines a family of objects containing
components with given names and signatures:

class VarEntity
requiring
attribute Type : TypeShape;
attribute DeclNode : Node;
end VarEntity;

An object is created by an object instantiation, which provides constraints defining the required
components:

object VarObject : VarEntity
where

Type = TsINTEGER;

DeclNode = ThisOperator;
end VarObject;

An object instantiation is a constraint that asserts the existence of an object in much the same
way that equations assert relationships among attribute values. The lifetime of the object 1s strictly
tied to that of the AST node containing the object instantiation. Each textually-distinct object
instantiation appearing in an AST operator declaration induces exactly one object instance, distinct
from all others, for each instance of that operator in the AST. The component values of the object are
defined by equations, rules, and clauses within the object instantiation. Within their surrounding
AST operator, object components are treated as local attributes, distinguished from other local
attributes only by the fact that references from outside the object instantiation must be qualified
with the object name. The components of an object can be any type of attribute permitted as a
local attribute, i.e., simple attributes, functions, and relations. In particular, the keyword context
is not applicable to components, as it specifies inherited attributes.®

When used in an expression or pattern, the name of an object instantiation denotes a reference
to the object. Likewise, when used as the type of an attribute or argument, the name of a class
denotes the type of all references to objects of the class. Two references are equal when they refer
to the same object. The components of an object may be accessed remotely by qualifying an object
reference with the name of a component. Continuing the previous example:

attribute VRef : VarEntity = VarObject;

Error(0Op, "Integer required") :- ~VRef.Type => TsINTEGER;

A class declaration may specify additional derived components that are computed from other
components rather than specified in the object instantiation. The constraints defining these compo-
nents appear within the class definition:

5From the standpoint of a remote component selection, in which the object reference plays a role somewhat
reminiscent of a child node of an AST operator, components resemble synthesized attributes. Properly speaking,
however, the inherited /synthesized distinction does not apply to components.

23

class Contour
with
function LocalBinding(String) -> BindingStatus;
function VisibleBinding(String) -> BindingStatus;
where
LocalBinding (Ident) => Undeclared;
VisibleBinding(Ident) => Undeclared;
end Contour;

A class may be declared as a subclass of another class, allowing inheritance of components. The
subclass may provide additional required and derived components in addition to those inherited. A
subclass may override the definition of a derived component inherited from a superclass by providing
one or more new constraints. The inherited constraints are replaced, not augmented.

class NormalContour isa Contour
requiring

attribute Parent : Contour;

relation Binds(String, Entity);
where

LocalBinding(Ident) => Ent

:- Binds (Ident, Ent);
LocalBinding (Ident) => Unknown;

VisibleBinding(Ident) => Ent
:— LocalBinding(Ident) => Ent & Ent /= Unknown;
VisibleBinding(Ident) => Ent
:— Parent.VisibleBinding(Ident) => Ent;
end NormalContour;

Every class is a subtype of its superclass, allowing references to objects of the class to be used in any
context where a reference to an object of the superclass would be permitted. An attribute or variable
may thus contain a reference to an object of a class more specific than its statically-determined type
would suggest. ADL provides a special predicate, the isa operator, which allows a runtime test
for a more specific class. As a special case, if the expression to be tested is a simple variable or an
unqualified attribute name (i.e., it is syntactically an unqualified identifier), it will also be re-typed
over the remainder of its scope, allowing type-safe downward coercions in the class hierarchy.

SimpleVar.Type = Ent.Type :-
Ent isa VarEntity;
SimpleVar.Type = TsUNKNOWN;

The example above illustrates the use of guarded equations, in which multiple definitions are
provided for an attribute, of which all but the last must be provided with a guard. The value of
the attribute is determined by the first equation for which the guard is satisfied. Let SimpleVar be
an AST operator whose instances represent simple variable references, and let Ent be the entity to
which the name of the referenced variable is bound. The equations above define the Type attribute
of SimpleVar as that of the entity, provided that it denotes a variable. Otherwise, a null value
TsUNKNOWN is used. The selection Ent.Type is permitted by the ADL type-checker only because it
is known that Ent is bound to a variable entity, which is declared to have the component Type,
whenever the selection is performed.

24

3.7 Discussion

ADL is intended as a conservative design, guided by Hoare’s dictum that the task of the programming
language designer is “consolidation, not innovation.” Our metalanguage is distinguished more by
its smooth integration of familiar notions than by the presence of radically new features. The real
innovation in our work lies in the manner in which ADL is implemented in order to exploit the
potential for incremental execution. In an incremental evaluator, we seck to re-use work that was
done 1n a previous analysis in order to perform the current analysis more rapidly. Unfortunately,
it 18 not an abstract analysis that we re-use, but concrete steps in a particular computation out an
infinity of possible realizations of the analysis. As we shall see in later chapters, the algorithmic form
in which the analysis is specified is crucial to efficient incremental execution. What we have sought,
then, is a language in which it is natural to express an analysis in a form suitable for incremental
execution, so that efficient specifications are readable and transparent.

In our early investigations, we were greatly influenced by research in semantic data models and
database programming languages. Semantic data models seek to capture the ontology of a domain
as directly as possible, rather than relying on indirect “simulations” within, say, the flat tables of
the traditional relational model. For example, object identity is invariably a first class notion, with
“unique identifier” key values relegated to the hidden internals of an implementation. (Peckham and
and Maryanski [56] provide a thorough and accessible survey of semantic data models.) Database
programming languages (DBPLs) seek to eliminate the “impedance mismatch” between ordinary
programming languages and embedded database query languages, and have been the subject of
much research. See, for example, the volume edited by Bancilhon and Buneman [5].

As we investigated the implementation issues, however, we retreated somewhat from the ideal of
a DBPL to a formalism that had a straightforward operational semantics, thus having no need for
query optimization or similar technology. Our modeling facilities are closer to those provided by a
typical object-oriented programming language than a DBPL based on an advanced semantic model.
Nonetheless, the notion that we are modeling the static semantics, rather than just writing code, is
an appealing one, and our objective is to approach this ideal as best we can within the pragmatic
constraints.

Our language resembles some of the proposals that have been made to integrate predicate
(clausal) logic and equational logic in logic programming, e.g., in the volume edited by Lindstrom and
DeGroot[16]. We have gone much further than most of these, however, in compromising faithfulness
to logical purity in favor of implementation efficiency. In particular, we enforce static restrictions
on variable instantiation that preclude the familiar delayed binding of “logical variables,” as well as
burdening the programmer with the usual termination issues of functional programming and Prolog-
style logic programming. Our evaluation engine is based on a traditional call-by-value evaluation
model, extended to allow for backtracking during relational computations. Qur relational computa-
tions are required to be statically moded at determinate modes, in the terminology of Reddy [62].
Indeed, all arguments of a relation are of output mode only in our present implementation. Ex-
cept for collections, which support indexed access, relations blindly generate their complete set of
tuples, without taking advantage of the query context at all. This often forces the use of functions
or collections for performance reasons where a more general relation might seem appropriate. We
nonetheless expect that our language will be quite easy to use, and that our descriptions can be
read as declarative specifications even if operational concerns intrude into the writing of language
descriptions. Our pragmatic approach gives us much of the practical benefit of functional logic
programming while allowing the use of an efficient and well-understood evaluation model.

Some of our language design decisions are less defensible, and are simply the result of imple-
mentation expediency. We judged that single inheritance would be sufficient in our treatment of

25

objects, even though modeling expressiveness would favor support for multiple inheritance. Indeed,
for lack of multiple inheritance, the class hierarchy in our full-scale Modula-2 description is dis-
torted slightly with respect to the one we considered most natural. The restriction of functional
and relational attributes to the synthesized direction only was motivated entirely by implementa-
tion concerns, namely our direct mapping of such attributes during compilation onto methods of
the target-language classes representing the AST nodes. In our limited experience, however, this
restriction has been entirely without consequence.

Our criterion of “naturalness” is admittedly subjective, and it is difficult to imagine how 1t could
be otherwise. In the next chapter, however, we will lead the reader through the implementation of
a small example, and we ask him to judge for himself.

26

Chapter 4

Using ADL — An Example

In this chapter, we show how the constructs of ADL are used to express static semantic analyses
of programs by developing an analyzer for a toy language. This language, which we call Example,
captures the essentials of a mainstream Algol-family language, including block structure, strong
typing, and declaration of named variables and types. Example will be used as a running example in
this dissertation, illustrating both the use of the ADL language and the details of its implementation.

A program in Example consists of a sequence of statements. Each statement can be an as-
signment statement or a block that establishes one or more name bindings visible within its scope.
Bindings are established by declarations, of which there are two types. Variable declarations intro-
duce new typed storage locations. Type declarations introduce new named types. Types include
integers, single-dimensional arrays, and pointers. Subscripting and dereferencing operators are pro-
vided for accessing components of structured variables. The declarations within each block may
appear in any order, without any requirement that the declaration of a name textually precede uses
of the name within sibling declarations.

In order to keep the volume of code to a minimum, Example is somewhat contrived, and
admittedly would not be useful for writing real programs. In particular, there are no conditional or
looping constructs, nor have we made any attempt to provide a complete family of operators. The
only arithmetic operator is addition, and, while it 1s possible to dereference a pointer, we provide
no way to properly initialize one.

The grammar of Example is shown in Figure 4.1. This grammar is intended to mirror the form
of the abstract syntax used in the ADL language description, thus we have not attempted to remove
all syntactic ambiguity. Specifically, the associativity of the operator “+” is not apparent, though
left-associativity is intended. The grammar uses an extended BNF notation, in which the notation
“L FOO ; }+” means “one or more FOOs separated by semicolons.”

4.1 Global Organization

At the outset, we must determine what information is to be derived by the analysis, and in what
form it will be presented to its clients. These choices are captured in the analysis schema, shown
in Figure 4.2. In a language-based environment, two important services are error reporting and
content-sensitive navigation. In support of these services, we will provide two externally-visible
relations for query by the environment. The relation Error associates nodes in the AST with
the error messages that apply to them. Representing this information as a relation makes it easy
to support multiple error messages for a single node. The relation UseOf associates the defining

27

program

statement

statements

declaration

declarations

type_spec

expression

variable

int_const

iud

Ll

statement

variable := expression
declare declarations begin statements end

{ statement ; }+

var id : type_spec
type id = type_spec

{ declaration ; }+
iud

array [int_const] of type_spec
pointer to type_spec

variable

int_const

expression + expression
id

variable [expression]
variable =

{0-9 }+

(a-zA-Z){ a-zA-Z0-9 }x

Figure 4.1: Grammar for Example.

28

language Example is
relation Error(Node, String);
relation UseOf (Node, Node);

end Example;

Figure 4.2: Analysis schema for Example.

language body Example : Example is
from StringOps : StringOps import all;
collection Error(Node, String);

collection UseOf (Node, Node);

end Example;

Figure 4.3: Analysis body for Example (skeleton only).

occurrences of names with their uses. The programming environment may use this information to
navigate from a declaration to its uses, or from a use to its corresponding declaration, or to perform
a consistent renaming in a manner that respects the scoping discipline. Use0f (X, Y) holds whenever
Y is the defining occurrence corresponding to the use X.

The body, shown in Figure 4.3, provides an implementation for each entity exported by the
schema. We implement the Error and UseOf relations as collections. By special dispensation, a
collection is allowed to implement a relation, as both exhibit the same semantics when queried. The
import declaration makes available a standard library of functions on strings. The remainder of the
implementation is elided here, consisting of the attribute, phylum, and AST operator definitions to
be presented in the sequel.

4.2 Representing Named Entities

We will need some way to represent the two kinds of named entities provided in Example, simple
variables and named types. Our solution is shown in Figure 4.4. Because named entities have an
identity that is distinct from the properties they may possess (such as the spelling of their name), it is
most appropriate to represent them as objects. The class Entity captures the common properties of
both kinds of entities. In particular, every entity has a Dec1Node attribute, containing the identifier
node representing the defining occurrence of the name to which the entity is bound. This attribute
will be examined at the use sites of the entity in order to assert tuples into the Use0f collection. The

29

class BindingStatus
requiring

% nothing
end BindingStatus;

object Unknown : BindingStatus;
object Undeclared : BindingStatus;

class Entity isa BindingStatus
requiring

attribute DeclNode : Node;
end Entity;

class VarEntity isa Entity
requiring
attribute Type : TypeShape
delayed AllVarTypes;
end VarEntity;

class TypeEntity isa Entity
requiring
attribute Type : TypeShape
delayed AllTypes;
end TypeEntity;

Figure 4.4: Representation of named entities.

class VarEntity adds a Type attribute, representing the type of the variable. The class TypeEntity
also adds a Type attribute, representing the definition of the named type. It is mere coincidence
that these two attributes have the same type and are appropriately given the same name. Good
modeling practice precludes simply adding a Type attribute to the Entity class. It would then be
necessary to distinguish variables from type names in some other way, when this i1s precisely the
information that is most essentially embodied in the class.

During analysis, a name resolution query may fail, either because no binding is available, or
because multiple declarations of the name within the same scope render the intended referent am-
biguous. Name resolution queries thus return values of class BindingStatus, which include two
special objects, Unknown and Undeclared, representing an ambiguous referent and the absence of
a binding, respectively. By deriving Entity as a subclass of BindingStatus, a query can sim-
ply return the referent entity in the normal, successful case. Alternately, we could have defined
BindingStatus as a term type, but this would have required an additional pattern-matching step
to extract the entity in some cases. With the representation chosen, we can combine the tests for
successful name resolution and for the kind of entity found. The empty requiring clause in the
declaration of class BindingStatus is necessary, even though the class has no attributes of its own.
Without 1t, BindingStatus would be treated as a so-called abstract class, from which other classes
may be derived, but which cannot itself be instantiated.

The keyword delayed is a pragma, i.e., a hint to the compiler. Pragmas do not affect the
essential meaning of the description, but allow the programmer to control performance tradeoffs in

30

datatype TypeShape is TsUNKNOWN
| TsINTEGER
| TsPOINTER(TypeShape)
| TsARRAY(Integer, TypeShape)
| TsTYPENAME (TypeEntity)

’

Figure 4.5: Representation of types.

its implementation or to give hints to the generation-time analysis. The function of the delayed
pragma will be described in Section 4.8.

4.3 Representing Types

The type-matching rules of Example specify that a named type declaration introduces a new type
distinct from any other. Otherwise, any two structurally-isomorphic types are considered equivalent.
We represent the structure of a type in Example with an ADL value of the term type TypeShape,
shown in Figure 4.5.

A type may belong to the builtin integer type, or it may be a pointer or an array type. A pointer
type must specify the type of its referent, while an array must specify both its length and the type of
its elements. A type may also be a named type, in which case the type shape includes the type name
entity itself. As a final possibility, the type of a variable or expression may not be known because
of an error somewhere in the program. In these cases, we use a reserved “null” type, represented by
TsUNKNOWN. This type is treated as equivalent to any type, thus preventing confusing error messages
when tested against some expected type. The use of such null values is a standard ADL idiom,
adopted from conventional compiler practice.

Because type declarations may refer to other type declarations, including ones textually following,
it is possible to construct cyclic named types that “contain” instances of themselves. Such recursive
types may arise due to a direct reference to a type name within its own declaration, or due to
a complex pattern of mutual recursion involving multiple type declarations. When mediated by
pointer types, such recursive types are not problematical; in fact they are highly useful. When a
type includes an instance of itself directly, however, it becomes impossible to assign a static memory
allocation size to variables of the type, at least using straightforward methods without implicit
pointer manipulations. For this reason, languages of the Algol-family generally forbid such recursive
types, often precluding them by enforcing a declaration-before-use rule which is then relaxed slightly
when a pointer type is declared. In the analysis description developed here, we test explicitly for
illegal recursive types when a named type is declared. The function CyclicType, shown in Figure 4.6,
determines if the named type given as its argument can be allocated statically.

CyclicType walks through the definition of the type, recursively expanding any type names,
while keeping a trail of type names encountered. If a named type is found whose definition is still
being expanded, then a cycle has been discovered. Since the walk does not explore pointer types,
only cycles that are not mediated by pointer types are detected.

In a conventional compiler, one might implement a graph traversal of this sort by using a mark bit
in each node instead of a trail. In ADL, however, no side effects such as assignments are permitted
by the language. It is worth noting that all traversals of potentially cyclic structures must be

31

type TrailType = [Entity];

function TrailMember (Entity, TrailType) -> Boolean;
TrailMember (Ent, []) => FALSE;
TrailMember (Ent, [Ent|_]) => TRUE;
TrailMember (Ent, [_|Rest]) => TrailMember (Ent, Rest);

function CyclicType (TypeEntity) -> Boolean;
CyclicType(Ent) => CyclicTypeAux (Ent.Type, [Ent]);

function CyclicTypeAux (TypeShape, TrailType) -> Boolean;
CyclicTypeAux (TsARRAY(_, ETy), Trail)
=> CyclicTypeAux (ETy, Trail);
CyclicTypeAux (TsTYPENAME (Ent), Trail)
=> TRUE
:— TrailMember (Ent, Trail);
CyclicTypeAux (TsTYPENAME (Ent), Trail)
=> CyclicTypeAux (Ent.Type, [Ent|Traill);
CyclicTypeAux(_, _)
=> FALSE;

Figure 4.6: Testing for ill-formed cyclic types.

careful not to fall into an unbounded recursion. Both the BaseType function, which dereferences a
chain of named type indirections to reveal the underlying type, and the type equivalence predicate
EquivTypes, maintain a trail for this purpose. These functions are shown in Figure 4.7. The type
equivalence rule of Example compares two types for structural isomorphism, with the exception
that two pointer types are considered equivalent only if their referent types are denoted by the same
type name. In order to prevent spurious error messages, the null type TsUNKNOWN is considered
equivalent to any type.

4.4 Representing Binding Environments

The namespace of Example, like all Algol-family languages, can be thought of as a set of nested
binding contours. A declaration introduces a new binding into the contour in which it appears.
Every usage of a name then refers either to a binding within the immediately containing contour,
or, if no such binding exists, within the innermost surrounding contour in which a binding has been
declared.

In our example, we represent binding contours as objects, as shown in Figure 4.8. Every contour
implements three operations, implemented as functional attributes (methods) of the contour object.
The abstract class Contour defines this interface. The method LocalBinding looks up a name in the
contour, and returns the relevant binding status. It looks only in the local contour, i.e., the one to
which the method belongs. The method VisibleBinding also examines the surrounding contours,
and returns the innermost binding, provided one exists. The method Duplicate is used only within
a declaration. It is given an entity as well as a name, and returns true if any entity other than the
given one is bound to the name within the local contour.

32

function BaseType (TypeShape) -> TypeShape;
BaseType (Ty) => BaseTypeAux(Ty, [1);

function BaseTypeAux (TypeShape, TrailType) -> TypeShape;
BaseTypeAux (TsTYPENAME (Ent) , Trail) => TsUNKNOWN
:— TrailMember (Ent, Trail);
BaseTypeAux (TsTYPENAME (Ent) , Trail) => BaseTypeAux(Ent.Type, [Ent|Traill);
BaseTypeAux(Ty, Trail) => Ty;

function EquivTypes (TypeShape, TypeShape) -> Boolean;
EquivTypes (Tyl, Ty2) => EquivTypesAux(Ty1l, [1, Ty2, [1);

function EquivTypesAux (TypeShape, TrailType,
TypeShape, TrailType) -> Boolean;

EquivTypesAux (TsINTEGER, Traill, TsINTEGER, Trail2) => TRUE;
EquivTypesAux (TsTYPENAME (Ent), Traill, Ty, Trail2) => TRUE
:— TrailMember (Ent, Trailil);
EquivTypesAux(Ty, Traill, TsTYPENAME (Ent), Trail2) => TRUE
:— TrailMember (Ent, Trail?2);
EquivTypesAux (TsTYPENAME (Ent), Traill, Ty, Trail2)
=> EquivTypesAux (Ent.Type, [Ent|Traill], Ty, Trail2);
EquivTypesAux(Ty, Traill, TsTYPENAME(Ent), Trail2)
=> EquivTypesAux(Ty, Traill, Ent.Type, [Ent|Trail2]);
EquivTypesAux (TsPOINTER (TsTYPENAME (Ent)), Traill,
TsPOINTER (TsTYPENAME(Ent)), Trail2) => TRUE;
EquivTypesAux (TsARRAY(Sz1, ETyl), Traill,
TsARRAY (Sz2, ETy2), Trail2) => TRUE
:— Szl = 85z2 &
EquivTypesAux (ETyl, Traill, ETy2, Trail2);
EquivTypesAux (TsUNKNOWN, Traill, Ty, Trail2) => TRUE;
EquivTypesAux(Ty, Traill, TsUNKNOWN, Trail2) => TRUE;
EquivTypesAux (TsPOINTER (TsUNKNOWN) , Traill, TsPOINTER(_), Trail2) => TRUE;
EquivTypesAux(TsPOINTER(_), Traill, TsPOINTER (TsUNKNOWN), Trail2) => TRUE;
EquivTypesAux(_, _, _, _) => FALSE;

Figure 4.7: Testing type equivalence.

33

A contour normally has a parent contour and a set of bindings. The class NormalContour thus
declares a Parent attribute, a reference to the object representing the surrounding contour, and a
Binds relation, representing the bindings present locally in the contour. Both of these attributes are
provided in the instantiation of the NormalContour object. Method overrides for the methods in-
herited from Contour implement the name lookup semantics. The search for the innermost binding
performed by VisibleBinding is handled elegantly via delegation to the parent when needed. The
outermost contour obviously cannot have a NormalContour as its parent, however, as all such con-
tours must themselves have a parent. The class NullContour represents a trivial contour containing
no bindings and having no parent. Its single instance, NullEnv, is used as the value of the parent
attribute when instantiating the outermost contour. The synonym Environment is used to refer to
a binding contour in its capacity as the representation of all bindings visible in a scope, including
those bound in surrounding contours.

The pragmamaintained associated with the relation Binds indicates that its set of tuples should
be explicitly enumerated and stored, updating as needed, rather than being generated upon demand
each time the relation is queried. Likewise, the pragma maintained associated with the function
VisibleBinding indicates that the argument/result mappings of the function should be cached.
Mappings are removed from the cache automatically when they are no longer valid, or when the
function calls they represent are no longer needed to determine the current value of any attribute.
Since the maintenance of caches for functions and relations involves significant overhead in both space
and time, their use must be restricted to those cases that enhance the performance of incremental
execution. Caching decisions must be made on the basis of an understanding of the implementation
strategies employed by the ADL compiler, ideally with feedback from profiling of the language
description in use.

The outermost contour contains the global environment, represented as shown in Figure 4.9,
providing bindings for all predeclared names. There is only one predeclared entity in Example, the
builtin type Integer.

4.5 Attributing the AST

The phyla of the abstract syntax of Example and their attributes are shown in Figure 4.10 and
Figure 4.11.

The phylum Program is that of the root node of the AST, which is not permitted to have
attributes. There are two non-keyword lexemes, Id (identifiers) and IntConst (integer literals). Such
lexemes are treated as AST operators with a single implicitly defined attribute Text, representing
their textual yield.

Statements, represented by the operators of phylum Statement, require an inherited attribute
Ctx, representing the binding contour in which the names appearing within are to be resolved.
Sequences of statements, represented by phylum Statements, are treated likewise. No synthesized
attributes are needed.

Declarations, represented by the operators of phylum Declaration, require both an inherited
attribute representing the binding contour in which names appearing within the declaration are to
be resolved, and a synthesized attribute representing the binding that the declaration introduces.
The latter is represented as a relation, Binds, though it will only contain one tuple. Sequences of
declarations are attributed similarly, though the Binds relation will now contain a tuple for each
declaration in the sequence. A default value must be provided for every synthesized attribute,
which will be used in the event that a subtree belonging to the phylum is missing. An appropriate
default value for Binds is the empty relation. In order to allow detection of attributes that are left

34

class Contour

with
function LocalBinding(String) -> BindingStatus;
function VisibleBinding(String) -> BindingStatus;
function Duplicate(String, Entity) -> Boolean;

end Contour;

class NullContour isa Contour
requiring
% nothing
where
LocalBinding (Ident) => Undeclared;
VisibleBinding(Ident) => Undeclared;
Duplicate(Ident, Ent) => FALSE;
end NullContour;

object NullEnv : NullContour ;

class NormalContour isa Contour
requiring

attribute Parent : Contour;

relation Binds(String, Entity);
where

implement Binds as maintained;

implement VisibleBinding as maintained;

Duplicate(Ident, Ent) => TRUE
:- Binds(Ident, Other) & Other /= Ent;
Duplicate(Ident, Ent) => FALSE;

LocalBinding(Ident) => Ent
:- Binds(Ident, Ent) & ~Duplicate(Ident, Ent);
LocalBinding (Ident) => Unknown;

VisibleBinding(Ident) => Ent

:— LocalBinding(Ident) => Ent & Ent /= Unknown;
VisibleBinding(Ident) => Ent

:— Parent.VisibleBinding(Ident) => Ent;

end NormalContour;

type Environment = Contour;

Figure 4.8: Representation of binding environments.

35

object IntType : TypeEntity
where
Type = TsINTEGER;
DeclNode = None;
end IntType;

object GlobalEnv : NormalContour
where

Parent = NullEnv;

Binds ("INTEGER", IntType);
end GlobalEnv;

Figure 4.9: Predeclared entities.

undefined unintentionally, the ADL compiler requires that at least one constraint be provided for
every attribute. In the case of the Binds relation, we must provide a clause whose guard always
fails. The keyword never is a predefined synonym for FALSE that reads nicely in cases such as this.

Operators of phylum TypeSpec represent types. Names appearing within the type specification
are resolved in the binding contour Ctx. The attribute Type represents the type denoted by the type
specification. Operators of phyla Expression and Variable are attributed similarly, with Type
representing the type of the expression or variable, respectively. The default value TsUNKNOWN is
used here, in keeping with our earlier remarks regarding error recovery.

4.6 Expressions

The simplest form of expression is an integer literal, which is always of type Integer regardless
of context. Variable references are also handled trivially, as all the real work is done in the child
subtree. These are shown in Figure 4.12.

The addition operator (Figure 4.13) determines the type of its operands within the binding
context in which the addition appears. Errors are asserted if the operands are not both integers.
The result is always of type Integer.

4.7 Variables

Simple variable references are handled as shown in Figure 4.14. The current binding context is
queried for the binding of the identifier Name. An error is asserted if no binding exists, as represented
by the binding status Undeclared. The type of the variable reference is that of the variable entity
to which the identifier is bound, provided that such a binding can be determined unambiguously. If
it is bound to another kind of entity, is bound (erroneously) to multiple entities, or not bound at
all, we use the null value TsUNKNOWN to suppress further error messages. The keyword otherwise
is a synonym for TRUE. When an attribute 1s defined by multiple guarded equations, our preferred
style includes both a final catch-all rule and the use of an explicit guard. We assert a name usage
in the UseOf relation if any binding is found, regardless of whether it is a variable or an erroneous
reference to a named type. We do not record a use if the binding is ambiguous due to erroneous
multiple declarations. It could be argued that recording the variable reference as a use of all such

36

phylum Program;

lexeme Id;
lexeme IntConst;

phylum Statement
with

context Ctx : Environment;
end Statement;

phylum Statements
with

context Ctx : Environment;
end Statements;

phylum Declaration
with
context Ctx : Environment;
relation Binds(String, Entity);
where
Binds (Var, Ent) :- never;
end Declaration;

phylum Declarations

with
context Ctx : Environment;
relation Binds(String, Entity);
where
Binds (Var, Ent) :- never;

end Declarations;

Figure 4.10: Phylum declarations for Example.

37

phylum TypeSpec

with
context Ctx : Environment;
attribute Type : TypeShape;
where

Type = TsUNKNOWN;
end TypeSpec;

phylum Expression

with
context Ctx : Environment;
attribute Type : TypeShape;
where

Type = TsUNKNOWN;
end Expression;

phylum Variable

with
context Ctx : Environment;
attribute Type : TypeShape;
where

Type = TsUNKNOWN;
end Variable;

Figure 4.11: Phylum declarations for Example (continued).

operator ConstRef : Expression is
Val:IntConst

where
ConstRef.Type = TsINTEGER;

end CongtRef;

operator VarRef : Expression is
Var:Variable

where
Var.Ctx = VarRef.Ctx;
VarRef .Type = Var.Type;

end VarRef;

Figure 4.12: Simple expressions.

38

operator Addition : Expression is
Left:Expression "+'" Right:Expression
where
Left.Ctx = Addition.Ctx;
Right.Ctx = Addition.Ctx;

Error(Left, "Integer expression required") :-
~EquivTypes (Left.Type, TsINTEGER);

Error(Right, "Integer expression required") :-
~EquivTypes (Right.Type, TsINTEGER);

Addition.Type = TsINTEGER;
end Addition;

Figure 4.13: Addition operators.

declarations would be more helpful to the user, however, this would complicate the interface to the
Contour class and add to the length of this intentionally abbreviated example.

An array variable may be subscripted by a single integer expression, as shown in Figure 4.15.
Dereferencing of pointer variables is handled similarly, as shown in Figure 4.16. In both cases, the
reducibility predicate (=>) is used to decompose the TypeShape terms representing the array and
pointer types.

4.8 Type Specifications

A reference to a named type is handled almost exactly like a simple variable reference, differing only
in that a new result type is created using the TsTYPENAME constructor, as shown in Figure 4.17.

It seems plausible at first sight to simply retrieve the Type component of the TypeEntity object
and return it unadorned. This would permit, however, degenerate cyclic type definitions in which
the definition of a named type referred directly to itself. (See Figure 4.21.) Fortunately, the ADL
compiler will reject any analysis description that could exhibit this pathological behavior, as such a
description would necessarily involve a circular attribute dependency. Indeed, any description that
creates a circular data structure is also circular, so the reader may be wondering how we can create
circular representations for recursively-defined types at all.

The ADL compiler implements a mechanism called fibering, which allows certain circularities
involving objects to be accommodated, including the creation of cyclic data structures. Fibering
relies on the observation that it is safe to schedule the evaluation of a component after the creation of
a reference to its containing object, provided that every component instance is eventually evaluated
prior to any attempt to access its value. When a dependency cycle is discovered in the language
description, the ADL compiler attempts to eliminate it by removing the dependency of any objects
within the cycle upon components for which it has been licensed to do so by a delayed pragma.
The compiler then introduces additional scheduling constraints (dependencies) that require every
instance of a component to be evaluated before any attribute instance that may access the component
during its evaluation.

In Figure 4.4, the Type component of the TypeEntity class is declared as delayed. At evalu-
ation time, objects of this class are initially created with the Type component undefined, allowing

39

operator SimpleVar : Variable is
Name:Id
where
attribute Ent : BindingStatus =
SimpleVar.Ctx.VisibleBinding (Name.Text) ;

Error (Name, "Undeclared variable') :- Ent = Undeclared;
Error (Name, "Variable required") :- ~{ Ent isa VarEntity };
UseOf (Name, Ent.DeclNode) :- Ent isa Entity;
SimpleVar.Type = Ent.Type :-

Ent isa VarEntity;
SimpleVar.Type = TsUNKNOWN :-

otherwise;
end SimpleVar;

Figure 4.14: Simple variable references.

operator SubscriptedVar : Variable is
Var:Variable "[" Idx:Expression "]"

where
Var.Ctx = SubscriptedVar.Ctx;
Idx.Ctx = SubscriptedVar.Ctx;

attribute VarTy : TypeShape = BaseType(Var.Type);

Error(Var, "Subscripted variable must be an array") :-
~VarTy => TsUNKNOWN &
~VarTy => TsARRAY(_, _);

attribute IdxTy : TypeShape = BaseType(Idx.Type);

Error(Idx, "Index must be an integer expression") :-—
~IdxTy => TsUNKNOWN &
~IdxTy => TsINTEGER;

SubscriptedVar.Type = E1tTy :-
VarTy => TsARRAY(_, EltTy);
SubscriptedVar.Type = TsUNKNOWN :-
otherwise;
end SubscriptedVar;

Figure 4.15: Subscripted variables.

40

operator DereferencedVar : Variable is
Var:Variable """

where
Var.Ctx = DereferencedVar.Ctx;

attribute VarTy : TypeShape = BaseType(Var.Type);

Error(Var, "Dereferenced variable must be a pointer") :-
~VarTy => TsUNKNOWN &
~VarTy => TsPOINTER(_);

DereferencedVar.Type = RefTy :-
VarTy => TsPOINTER(RefTy);
DereferencedVar.Type = TsUNKNOWN :-
otherwise;
end DereferencedVar;

Figure 4.16: Dereferenced variables.

operator NamedTypeSpec : TypeSpec is
TypeName:Id
where
attribute Ent : BindingStatus =
NamedTypeSpec.Ctx.VisibleBinding (TypeName.Text) ;

Error (TypeName, "Undeclared type name") :- Ent = Undeclared;
UseOf (TypeName, Ent.DecllNode) :- Ent isa Entity;
NamedTypeSpec.Type = TsTYPENAME(Ent) :-

Ent isa TypeEntity;
NamedTypeSpec.Type = TsUNKNOWN :-

otherwise;
end NamedTypeSpec;

Figure 4.17: Named type references.

41

operator ArrayTypeSpec : TypeSpec is

"array'" "[" Size:IntConst "]'" "of" E1ltTy:TypeSpec
where

E1tTy.Ctx = ArrayTypeSpec.Ctx;

ArrayTypeSpec.Type = TsARRAY (StrTolInt (Size.Text), E1tTy.Type);
end ArrayTypeSpec;

operator PointerTypeSpec : TypeSpec is
"pointer'" "to'" RefTy:TypeSpec

where
RefTy.Ctx = PointerTypeSpec.Ctx;

PointerTypeSpec.Type = TsPOINTER (RefTy.Type);
end PointerTypeSpec;

Figure 4.18: Type constructors.

all named type definitions within a single declaration sequence to be entered into the binding en-
vironment in one pass. A second pass through the declaration sequence then completes the type
definitions by computing and storing the Type component values omitted in the first pass. The Type
component of the VarDecl class is treated similarly, as variable declarations are entered into the
binding environment at the same time as the named type definitions, possibly before the definition
of the declared type of the variable has been itself encountered. The effect of the fibering mechanism
at evaluation time is thus similar to the use of multiple passes and “backpatching” to handle forward
references in a conventional compiler.

Appropriate usage of the delay pragma is guided by the diagnostic dependency reports produced
by the compiler, and need not be intuited a priori. Fibering is not always possible, as the value
of a component may in fact depend on an access to the component itself. Furthermore, the static
analysis upon which fibering is based is only approximate, and may sometimes fail to find a feasible
evaluation schedule even when one exists. The capabilities and limitations of our fibering technique
will be clarified in Chapter 10, where the fibering algorithm is presented in detail.

The constructors for array types and pointer types are straightforward, and are shown in Fig-
ure 4.18. In the case of an array type, we must obtain the length of the array as an integer. The
function StrToInt converts a character string representing an integer into an ADL Integer value.
This function and the auxiliary function StrToIntAux are defined in Figure 4.19. Two functions
from the StringOps library are used: StrLen and StrChar. The function StrLen(S) returns the
length of S. StrChar(S, I) returns the integer character code associated with the character at
position I in S, indexing from zero.

4.9 Declarations
Variable declarations are treated as shown in Figure 4.20. An entity is instantiated to represent the
variable, and a single tuple representing its binding to its name is asserted into the Binds relation.

Named type declarations, shown in Figure 4.21, are handled in a similar fashion. A check is also
made that the type is not pathologically cyclic.

42

attribute CharZero : Integer = StrChar ("0", 0);

function StrToInt(String) -> Integer;
StrToInt (Str) => StrTolntAux(Str, StrLen(Str)-1);

function StrToIntAux(String, Integer) -> Integer;
StrToIntAux(Str, Idx) => StrChar(Str, 0) - CharZero
:— Idx = 0;
StrToIntAux(Str, Idx) => RestVal * 10 + StrChar(Str, Idx) - CharZero
:— StrToIntAux(Str, Idx-1) => RestVal;

Figure 4.19: Converting a string to an integer.

operator VarDecl : Declaration is
"var" Var:Id ":" Ty:TypeSpec
where
Ty.Ctx = VarDecl.Ctx;

object VarObj : VarEntity
where

Type = Ty.Type;
DeclNode = Var;
end VarObj;
VarDecl.Binds(Var.Text, Var0Obj);
Error (Var, "Multiply-declared identifier") :-

VarDecl.Ctx.Duplicate(Var.Text, VarQObj);
end VarDecl;

Figure 4.20: Variable declarations.

43

operator TypeDecl : Declaration is
"type" Name:Id "=" Ty:TypeSpec
where
Ty.Ctx = TypeDecl.Ctx;

object TypeObj : TypeEntity
where

Type = Ty.Type;

DeclNode = Name;
end TypeObj;

TypeDecl.Binds (Name.Text, TypeObj);

Error (Name, "Cyclic type definition") :-
CyclicType (TypeObj) ;

Error (Name, "Multiply-declared identifier") :-
TypeDecl.Ctx.Duplicate(Name.Text, TypeObj);
end TypeDecl;

Figure 4.21: Named type declarations.

In a sequence of declarations, the inherited binding environment must be distributed to each
member of the sequence, and the new bindings created by the members collected into a single
binding set. In AST operator DeclList, shown in Figure 4.22, we introduce a new ADL language
construct that we have not discussed previously. The analyze construct allows a sequence to be
attributed as if it were built up inductively from empty sequences and singletons by concatenation of
subsequences. The attribute signatures following the keyword with define the attributes belonging to
any subsequence, including empty sequences and singletons. In the present example, the attributes
are the same as for the phylum Declarations to which the AST operator possessing the sequence
child belongs. The three following when-clauses define an analysis by cases. The first case represents
an empty sequence, providing no bindings. The second case represents a subsequence consisting of a
single declaration named d, providing the bindings introduced by d. The phylum of d is Declaration,
i.e., that of an element of the sequence. The final case represents a non-deterministic split of the
sequence into two smaller subsequences, d1 and d2, both attributed according to the with-clause.
The bindings provided by this case are the union of those provided by each component subsequence.

This treatment of sequence attribution in ADL allows for flexibility in the implementation of
sequences, which are represented internally as clusters of fixed-arity tree nodes. Alternate repre-
sentations more commonly used, particularly when sequences are not provided as primitives in the
syntactic metalanguage, commit to either a left-recursive or a right-recursive decomposition. An
attribution based on such an asymmetric decomposition cannot be translated straightforwardly into
a form suitable for use with an underlying node structure of another form. While the analyze
construct could be used to attribute a sequence represented in a linear-recursive fashion, it is more
naturally adapted to a symmetric representation that mirrors the threefold case analysis on which
the abstract view of the sequence i1s based. In the next chapter, we explain how a symmetric
representation is better suited to incremental evaluation than an asymmetric one.

Each case within analyze is effectively an AST operator definition, and may contain any of

44

operator DeclList : Declarations is
{ Decls:Declaration " ;" }*

where
Decls.Ctx = DeclList.Ctx;

analyze Decls

with
context Ctx : Environment;
relation Binds(String, Entity);
when [] =>
% empty sequence
Decls.Binds(Ident, Ent) :- never;

when [d] =>

% singleton sequence

anchor;

d.Ctx = Decls.Ctx;

Decls.Binds(Ident, Ent) :- d.Binds(Ident, Ent);
when [d1 =~ 42] =>

% nondeterministic sequence split

anchor;
d1.Ctx = Decls.Ctx;
d2.Ctx = Decls.Ctx;

Decls.Binds(Ident, Ent) :- d1.Binds(Ident, Ent);
Decls.Binds(Ident, Ent) :- d2.Binds(Ident, Ent);
end;

DeclList.Binds (Ident, Ent) :- Decls.Binds(Ident, Ent);
end DeclList;

Figure 4.22: Declaration sequences.

45

operator Assignment : Statement is
Var:Variable ":=" Val:Expression
where
Var.Ctx = Assignment.Ctx;
Val.Ctx = Assignment.Ctx;

Error (Assignment, "Incompatible types in assignment") :-—
~EquivTypes (Var.Type, Val.Type);
end Assignment;

Figure 4.23: Assignment statements.

the pragmas permitted within an operator. The anchor pragma indicates that the visit functions
generated for an AST operator should be memoized, allowing a visit to be skipped during subsequent
incremental re-analysis if it would necessarily result in an identical attribution. This optimization,
called wisit caching, allows unnecessary visits to be skipped but incurs a cost in both time and
space. We thus place the resulting tradeoff under programmer control. The placement of the
anchor pragmas controls the granularity of the incremental re-analysis.! We specify that declaration
sequences should be re-analyzed at the granularity of a single declaration, visiting a declaration
subsequence only when it contains one more more individual declarations requiring re-analysis.

4.10 Statements

The assignment statement, shown in Figure 4.23, is straightforward. The expression yielding the
value to be assigned is checked for type compatibility with the variable receiving the value.

The block statement, shown in Figure 4.24, instantiates a NormalContour object to represent
the binding contour introduced by the block. The surrounding binding context is the parent for the
new block, and the bindings provided by the declaration list Decls are the bindings for the new
contour. The body of the block receives the new contour object as its context.

A statement sequence, shown in Figure 4.25, distributes its binding environment to all of its
constituent statements. The anchor pragmas indicate that the re-analysis of statements should take
place at the granularity of an individual statement.

4.11 The Top-level Program

The root AST operator Prog, shown in Figure 4.26, establishes the global binding environment
as the context for the statement sequence which comprises the top-level structure of a program in
Example.

The analysis description for Example is now complete. For the convenience of the reader, it is
reproduced without interspersed commentary in Appendix B.

1Unlike the other pragmas, which apply to attributes or attribute occurrences, anchor applies to an entire AST
operator or child. We could have extended the pragma maintained to apply to simple attributes as well as functions
and relations, but, since a visit cannot ever be skipped unless all of its inherited attributes are known to be unchanged
(and would therefore have to be maintained between visits), the approach we have taken is less prone to user error.

46

operator Block : Statement is

"declare"
{ Decls:Declarations }
"begin"
{ Stmts:Statements }
"end"
where
Decls.Ctx = BodyCtx;
object BodyCtx : NormalContour
where
Parent = Block.Ctx;

Binds (Ident, Ent)
end BodyCtx;

Stmts.Ctx =
end Block;

BodyCtx;

:— Decls.Binds(Ident, Ent);

Figure 4.24: Block statements.

operator StmtList : Statements is

{ Stmts:Statement " ;" }*
where
Stmts.Ctx = StmtList.Ctx;

analyze Stmts
with

context
when [] =>

% empty sequence
when [s] =>

% singleton sequence

anchor;

g.Ctx = Stmts.Ctx;
when [s1 ~ 82] =>

% nondeterministic sequence split

Ctx : Environment;

anchor;

g1.Ctx = Stmts.Ctx;

82.Ctx = Stmte.Ctx;
end;

end StmtList;

Figure 4.25

: Statement sequences.

47

operator Prog : Program is
{ Body:Statements }
where
Body.Ctx = GlobalEnv;
end Prog;

Figure 4.26: Example program top-level.

4.12 Discussion

Existing attribute grammar systems combine functional programming with attribution. The modern
style of functional programming as embodied in Standard ML [54] and Haskell [40] makes exten-
sive use of typed terms and pattern matching, and recent attribute grammar systems such as the
Synthesizer Generator and FNC-2 [42] have followed suit. ADL is thus quite conventional in this
respect, although we have borrowed a few notations from the logic programming tradition. Re-
cently, Boyland [10] has designed and implemented an elaborate attribute grammar extension aimed
at constructing complete language descriptions from the composition of smaller components. The
underlying attribution paradigm is highly unconventional, and, while interesting on its own terms,
poses new implementation challenges that we chose to avoid in our own work. ADL is thus thor-
oughly conventional in the monolithic structure of its descriptions. Tellingly, Boyland did not address
either the generation of efficient (e.g., statically-scheduled) evaluators or incremental evaluation.

The inclusion of attributed object types with identity is a distinctive feature of ADL that pro-
vides an expressive mechanism for modeling language notions such as declared entities and binding
contours. Attributed objects have appeared previously in Door Attribute Grammars [32, 33], but
in a manner that exposed the imperative nature of their implementation. Our system is unique in
providing objects in such a way that the user cannot compromise the integrity of the declarative
semantics, understood as maintenance of constraint consistency. The need for object identity is clear
in the case of declared entities. Analysis descriptions in existing attribution formalisms must either
create explicit “unique identifiers” (UTDs) or press references to AST nodes into service toward
the same end. Both of these solutions are inelegant. Creation of unique identifiers is difficult in a
language without side-effects, and generally requires that a “next available UID” value be threaded
throughout the tree. The use of node references as UIDs is a representational trick that conflates
the essential properties of a language notion and an artifact of the syntax used to denote it. Within
the implementation, of course, object addresses do serve as UIDs, but this is of no relevance to the
user.

Relation-valued attributes are also a distinctive feature of ADIL, and are useful in modeling
many-to-many relationships where functions are not appropriate. In the example presented in this
chapter, it was easy to accommodate the possibility that a given name might be multiply-declared
within its contour. Without relations, we would have had to maintain an explicit list of bindings.
Because the use of relations does not commit to the data structure used to represent them, the
implementation is given more freedom to choose an appropriate one. Our treatment of relations as
full-fledged attributes was anticipated by Sataluri and Fleck [69]. Horwitz [39] defines a notion of
relational attribution that is akin to our collections. Her relations are global, however, and do not
decorate the AST itself.

Throughout the discussion so far, we have hinted at the synergy between the ADL language
design and the requirements of incremental execution. We devote the next four chapters to the

48

methods employed in the analysis and translation of ADL.

49

Chapter 5

Incremental Visit-Sequence
Evaluators

In the previous chapter, we showed how our extended attribution formalism, ADL, can be used to
express the static semantic analysis of programming languages. We turn now to implementation
issues, presenting the strategies we employ in the incremental execution of these specifications.

At the core of our implementation is an incremental evaluator for classical attribute grammars.
Simple attributes in ADL, i.e., those introduced by the keywords attribute and context, are
nothing more than those of classical attribute grammars. Furthermore, the implementations of the
non-standard attributes, such as functions and relations, are most easily described as extensions to
a traditional incremental evaluator. In this chapter, we present an incremental evaluation algorithm
for classical attribute grammars that serves as the basis for the remainder of our work. This eval-
uator is in many ways unremarkable, being an adaptation of methods well known in the literature.
Our evaluator is distinguished principally by its simplicity and straightforward design. Our design
is based in part, however, upon the recognition and mitigation of a serious flaw in the usual rep-
resentation of the abstract syntax tree in language-based environments, which has not, we believe,
been given the attention that it deserves in the literature.

5.1 Visit-Sequence Evaluators

Attribute grammar systems intended for practical programming language analysis generally restrict
the class of allowable attribute grammars in order to permit the use of efficient evaluation strategies.
Our method is applicable to the f-ordered [20] class of attribute grammars. These are defined as
the attribute grammars for which there exists a family of total orders over the attributes of each
phylum such that the attribute instances of each node in every AST can be evaluated in a sequence
that respects the ordering for its phylum. As a consequence, the evaluation steps to be performed at
each instance of a given AST operator can be fixed in advance, regardless of its context in the tree.
In general, the remainder of the tree induces constraints on the evaluation order which cannot be
determined by local examination of the node’s attribute equations. In an f-ordered AG, however, a
conservative approximation to these constraints is always immediately apparent from the attribute
ordering for the phylum to which the node belongs.

The f-ordered class is more than adequate for practical purposes, as it contains all AGs evaluable
in a fixed number of sweeps or passes as a proper subclass. Unfortunately, testing membership in

50

the f-ordered class been shown to be NP-complete by Engelfriet and File [20], and is regarded as
impractical for AGs of realistic size. The difficulty arises in the computation of the required family
of total orders on the attributes of each phylum. It is a relatively straightforward polynomial-time
computation to determine a family of partial orders with the required property. It is an even simpler
linear-time computation to test a given family of total orders for feasibility, and, if admissible,
to generate the visit procedures. Unfortunately, however, there will in general be much freedom
in converting the partial orders to the required total orders. Our implementation is thus based
on the smaller, but polynomially-decidable class of ordered attribute grammars (OAGs), defined by
Kastens [47].! The OAG class is defined by a greedy strategy for computing the total orders, placing
each attribute as early as possible in the total order for its phylum, subject to the requirement that
it follow all of the attributes that precede it in the corresponding partial order. (If more than one
attribute could be chosen for a given position in the total order, then their relative order is arbitrary,
and, as it turns out, without consequence to the outcome of the membership test.) The AG is then
a member of the OAG class only in the case that the resulting family of total orders is feasible.

It is always possible to convert an f-ordered AG to an OAG by adding additional attribute
dependencies. In practice, only a few such dependencies, if any, are required. Thus the OAG class
represents a pragmatic approximation to the f-ordered class for the purpose of evaluator generation.

For any f-ordered AG, it is possible to partition the attributes of each phylum X into a sequence
of pairs of sets of inherited attributes and synthesized attributes

<Ila Sl>a <12a 52>a) <INa SN>a

such that all of the sets are non-empty except possibly for 1 and Sy, and, in any tree, the instances
of S; depend only on those of I; U I; U S;,+ < j and the instances of I; depend only on those of
I; U S;, ¢ < 7. In the case of OAGs, there exists a standard and efficient method to compute these
sequences, due to Kastens [47]. The sequence of pairs, or partition, defines a sequence of visits to be
made to each instance of phylum X during the traversal and attribution of the AST. Upon entry to
visit j, the instances of the I; will be available, as well as all instances computed in previous visits,
thus the attributes S; can be computed.

Given a partition for the phylum of an operator and those of its children, we can then construct
a visit sequence, or evaluation plan for each operator. Following Reps and Teitelbaum [67], an
evaluation plan is a sequence of instructions of one of the following kinds:

EVAL(i, a): Evaluate instance i.a, that is, the attribute a of child i. The attribute ¢ must be a
synthesized attribute if ¢ = 0, that is, the attribute belongs to the AST operator itself (the
LHS of the production), and it must be an inherited attribute if ¢ > 0, that is, it belongs to a
child (on the RHS of the production).

VISIT(i,r): Transfer control to the subtree at child i (¢ > 0) for visit number 7.
SUSPEND(r): Return control to the parent node at the conclusion of visit r.

The last member of a visit sequence is always a SUSPEND instruction.

The evaluation plan for each operator forms a straight-line program. In the classical treatment,
these programs are conceptually executed as coroutines, in which adjacent nodes receive and relin-
quish control via the VISIT and SUSPEND instructions. A naive realization based on a general

IThere is some confusion in the terminology surrounding the f-ordered AG and OAG classes. According to
Engelfriet and Filé [20], Kastens originally used the term “ordered attribute grammar” in a 1978 technical report
to refer to what we call the {-ordered AGs, then later redefined the class in his 1980 paper [47] in order to give it a
polynomial-time membership test. Engelfriet and Filé introduced the term Z-ordered, and we follow their lead. Their
terminology was also adopted in the comprehensive survey of attribute grammars by Deransart et al. [17].

51

implementation of coroutines would be rather inefficient, however, as a separate program counter
would be required for each node. In practice, the implementation is simplified by the fact that every
VISIT and SUSPEND instruction contains a visit number. Instead of storing a separate program
counter with each node, its value can be determined from the visit number upon each transfer of
control, using an auxiliary table. A tree-walking evaluator of this kind requires no per-node over-
head beyond the storage of the attribute values themselves, as the remainder of its state can be
maintained in a few global variables.

In our evaluator, we use an alternative implementation strategy in which visits are mapped onto
ordinary subroutine calls in the target language of our implementation [18, 49]. An evaluation plan
can be decomposed into a series of segments, each terminated by a SUSPEND instruction, and
representing the actions to be performed upon the i-th visit. We construct a set of wvisit procedures
for each AST operator, one for each segment of the evaluation plan. For visit ¢, the visit procedure
accepts the tree node and the attributes /; as arguments, and returns the attributes S; as results,
invoking the visit procedures of the node’s children as needed.

In general, the attribute values must be stored into the tree as they are computed, as subsequent
visits may require access to those computed on previous visits. In practice, however, most attributes
are temporary, meaning that an instance 1s used only within the dynamic extent of the visit procedure
call that defines its value, and is not used within subsequent visits to the same node. Experience with
implemented attribute grammar systems has shown that more than 90 percent of the attributes in a
typical attribute grammar are temporary, according to Julié and Parigot [44], who report a series of
experiments with the FNC-2 system in which only 7.5 percent of the attributes (weighted by their
number of occurrences) required storage in the tree. The instances of temporary attributes can be
allocated space on an auxiliary stack during the tree traversal, greatly reducing the size of the AST
and the overall storage requirement. In our evaluator, the runtime stack maintained by our target
language serves as the temporary stack, giving us this optimization almost without effort.

5.2 Incremental Evaluation

When the AST is modified, we wish to restore attribute consistency as quickly as possible, ex-
ploiting the fact that many attribute instances may retain their old values. In the simplest case,
a tree modification consists of the replacement of a single subtree with another. Because a special
“placeholder” node always appears wherever a subtree is missing, the subtree replacement operation
subsumes both elaboration of a previously unexpanded subtree and subtree deletion. An attribute
zg defined by the equation zq = f(x1,29,...,2n) is said to be inconsistent if its current value is
not that of the function f applied to the current values of xq,2s,...,2x. A subtree replacement
potentially introduces one or more inconsistent attribute instances at the interface between the new
subtree and its parent node. In a classical incremental evaluator, changes are propagated outward in
the attribute dependency graph from the initial point of inconsistency. Re-evaluating an attribute
may cause one or more of its immediate successors to become inconsistent as well. Propagation
stops when no more inconsistent attributes remain.

Under the assumption of a single-subtree replacement, is possible to guarantee that the num-
ber of attribute re-evaluations, as well as the associated bookkeeping overhead, is bounded by
O(|AFFECTED]|), where AFFECTED is the set of attribute instances whose values differ before
and after re-evaluation. This performance criterion is nearly universally cited as the goal to which
an incremental attribute evaluator should aspire, and is termed (asymptotic) optimal-time by Reps,
Teitelbaum, and Demers [66]. Algorithms that achieve this complexity generally do so by assuring
that an attribute is evaluated only after its predecessors have achieved their correct final values,

52

i.e., change propagation respects a topological ordering with respect to the attribute dependency
graph. Failure to observe this requirement may lead to unnecessary and redundant re-evaluation
of the attribute instances corresponding to large regions of the dependency graph. In fact, Reps et
al. show that naive change propagation can exhibit exponential-time behavior for some attribute
grammars.

In the same paper, Reps et al. describe an incremental evaluator that works for any noncircular
AG, and runs in asymptotically optimal time. Scheduling is performed entirely at runtime, without
any prior analysis of the attribute dependencies, thus resulting in poor performance. The use of
explicit attribute dependency graphs at runtime results in high space consumption as well. In later
work [67], Reps and Teitelbaum develop another algorithm, applicable only to ordered attribute
grammars, as a variant of the classical non-incremental tree-walking (coroutining) evaluator. The
essential idea 1s that a visit to a node may be skipped if it is known that the node contains no
inconsistent attributes. Since a visit to a node always re-evaluates all attributes scheduled at evalu-
ator generation time for that visit, the new algorithm may evaluate more attributes than the older
one. Nonetheless, both the number of attribute re-evaluations and the bookkeeping overhead remain
O(JAFFECTED]). The topological ordering required to assure optimal-time evaluation is implicit
in the statically-computed evaluation schedule. Since dependency graphs need not be maintained
at runtime, overhead is greatly reduced.

Vogt, Swierstra, and Kuiper [75] have investigated incremental attribution of OAGs in a func-
tional setting. In this case, an AST cannot be modified, but new trees may be created that share
most of their structure with an existing one. The role of incrementality is then to attribute the
new tree efficiently by reusing the attribution of others with which it shares structure. Since a
tree itself may not be modified, attributes must be stored externally in an associative store. These
considerations lead naturally to the idea of caching or “memoizing” the visit functions. Subsequent
visits to a given subtree with the same inherited attribute values as on the previous visit simply
return the previously computed synthesized attributes. Non-temporary attributes are awkward to
handle in a functional context, requiring that they be collected in a temporary tree structure called a
binding which is then passed as an argument to subsequent visits as if it were an additional inherited
attribute. (See Vogt et al. [75] for details.) Performing a subtree replacement requires that all nodes
on the path from the edit site to the root be created afresh, precluding optimal-time performance.

5.3 Multiple Subtree Replacements

In practice, the restriction to a single subtree replacement is inadequate. Language-based environ-
ments incorporating incremental parsing (as opposed to direct editing of tree structure) may generate
many subtree replacements from a single textual change. Furthermore, a set of related changes may
be viewed as a unit by the user, who may wish to delay re-analysis until that unit is complete. The
asymptotically optimal methods previously discussed, when applied after multiple subtree replace-
ments have taken place, will propagate changes from each replacement site independently. Should
the affected regions of the tree intersect, the topological ordering constraint may be violated, and
the affected regions may have to be re-evaluated. Reps et al. [66] show that naive change propaga-
tion can be exponential in |AFFECTED)| for a depth-first traversal of the dependency graph, and
quadratic if a breadth-first traversal is used. Good performance in the general case requires that
change propagation originating from multiple initial sites of attribute inconsistency be coordinated
in order to avoid this behavior.

Several authors have addressed this issue, most notably Peckham [57, 58], who developed an algo-
rithm that maintains a favorable amortized complexity of O(klogn+|AFFECTED]) in the presence

53

of multiple subtree replacements, where k is the number of subtree replacements and n is the total
size of the tree. Actually, Peckham only proves an amortized complexity of O(logn - |[AFFECTED]),
and the bound cited previously is given only as a plausibly-argued conjecture. Unfortunately, the
method incurs a large amount of administrative overhead in the form of auxiliary data structures
in comparison to a comparable evaluator for the restricted editing model. Furthermore, Peckham’s
method is applicable only to a subclass of the ordered attribute grammars whose size and character
has not been adequately assessed.

An alternative approach, suggested by Reps [65], merges the separate regions of attribute in-
consistency into a single connected one. Before beginning re-evaluation, all previously computed
attributes along paths connecting the edit sites are invalidated, resetting them to their original
uninitialized state. In practice, a single bit within each node represents the validity status of its
attributes. While it suffices to invalidate the attributes on a path from each edit site to their
mutual least common ancestor, it is often more convenient simply to clear a path all the way to
the root. Using this method of coordination, the complexity of the incremental evaluator becomes
O(JAFFECTED| + |EDIT_ANCESTORS|), where |EDIT_ANCESTORS| is the number of nodes
on all paths from edit sites to the root of the tree.? Peckham notes that the coordination over-
head in this approach is bounded only by the size of the tree, as abstract syntax trees (ASTs) in
language-based environments typically are unbalanced ([58], page 2).

The functional evaluator of Vogt et al. is inherently coordinated, as it implicitly embodies Reps’
simple coordination strategy. The allocation of fresh tree nodes along the spine above each subtree
replacement is analogous to attribute invalidation. It 1s therefore not surprising that the method

achieves the same time complexity, O(|JAFFECTED| 4+ |[EDIT_ANCESTORS]) [75].

5.4 Our Incremental Evaluator

Our evaluator is based on visit procedures. To make the evaluator incremental, we cache (“memoize”)
the calls to the visit procedures in a manner reminiscent of the functional evaluator of Vogt et al.
In a purely functional setting, the result of a function depends only on the values of its arguments,
so 1f a function has been called with the same arguments as before, it can simply return the same
result with no further effort. The caching of visit procedures is complicated, however, by imperative
modifications to the tree argument due to editing and storage of attribute values. The overhead of
a structural equality test on trees would be prohibitive, so we must provide an alternate means to
account for the dependency of the visit procedure results on the tree argument. We provide each
tree node with a subtree-modified bit, which, at the beginning of the analysis, is set in every node
such that the subtree issuing from that node has been modified. Whenever the editor modifies the
value of a child pointer in the tree, it sets the subtree-modified bit in the node containing that
pointer and in all of its ancestors. If the traversal reaches a node with the subtree-modified bit set,
the visit must be performed regardless of the inherited attribute values. If the subtree-modified bit
is not set, however, the incoming inherited attribute values are compared with those saved from
the previous update, and, if equal, the synthesized attributes computed previously are returned. If
the arguments are not equal, then the visit takes place. Since visits may refer back to attributes
computed in previous visits and stored in the tree, once a visit has been made to a node (reflecting
a possible change to an attribute value stored in the node), the subtree-modified bit is set to force
all subsequent visits. The bit is cleared upon exit from the last visit to each node.

A code template for incremental visit procedures is shown in Figure 5.1. The procedure used
for marking changes to edited nodes is shown in Figure 5.2. These examples, and further examples

2Vogt et al. use the misleading term PATHS_TO_ROOT.

54

of the generated target code appearing in this dissertation, are rendered in an Algol-like syntax
that is intended to be self-explanatory. The language is simply a rendering of Lisp with a more
conventional syntax and a simplified object system, and is dynamically-typed. Functions introduced
with the keyword method are associated with a class of objects, and execute with the pseudovariable
self bound to the instance of the class relative to which the method was called. The class to which
a method belongs should be clear from the explanatory text, and is often an AST operator.

The time complexity of our evaluator is O(|]AFFECTED| + |EDIT_ANCESTORS|). However,
our evaluator is able to handle multiple edit sites without additional cost, while all of the published
optimal algorithms assume a single subtree replacement. Modifying any of the optimal methods to
use the simple coordination method suggested by Reps yields the same complexity as our algorithm.

The algorithm as it stands does not exhibit robustly scalable incremental performance, as
|[EDIT_ANCESTORS]| is bounded only by the size of the AST. In practice, deeply-nested struc-
tures arise in ASTs as an artifact of the recursive representation of sequences, usually as linear lists.
For other constructs, which appear to the user in nested form, there is a practical bound on the
depth of nesting, imposed by cognitive and stylistic concerns. By representing sequences as balanced
binary trees, we keep the AST approximately balanced, such that |[EDIT_ANCESTORS] is bounded
by O(klog N), where N is the total size of the tree and k is the number of edit sites. This yields a
practical time complexity of O(klog N + |AFFECTED]).

5.5 Balancing the Abstract Syntax Tree

While any recursively-defined phylum may generate a tree of unbounded size in theory, the depth
of recursive structures is bounded in practice by the user’s ability to keep track of the nesting of
language constructs. The exceptions to this principle are constructs that are conceived of by the
user as repetitive in structure, i.e., as sequences, even though their internal representation may be
recursive.® It is conventional to represent unbounded sequences in an AST as linearly recursive lists.
As a consequence, the AST can be arbitrarily unbalanced. We propose an alternative representation
of sequences as balanced binary trees, in which the leaves of the tree represent the elements of the
sequence. Under the practical assumptions of the previous paragraph, this is sufficient to guarantee
that the depth of the tree is bounded by O(logn), in which case the simple spine-breaking method
of coordination achieves the same asymptotic complexity as Peckham’s complex algorithm.

5.5.1 Balanced Sequences and [AFFECTED|

Indeed, balancing the AST mitigates a more general problem with the attribution of sequences that
reveals a serious limitation of the O(|AF F ECTE DJ) optimality criterion. Peckham’s bound, when
applied to the attribution of an unbalanced sequence, may conceal in its O(JAFFECTED|) term
a comparable performance penalty to that incurred by our algorithm on the same tree. Making
the reasonable assumption that at least one synthesized attribute of the sequence depends on an
attribute of each of its children, any attribute grammar performing this attribution on a right- (left-)
recursive linear list will necessarily include in every internal node of the sequence an attribute whose
value is dependent on an attribute of the last (first) element of the sequence. Thus the value of
[AFFECTED] is O(n) for such an attribution. Now suppose that the attribution in question merely

8Language constructs such as if-then—else are sometimes used in a deeply-nested but idiomatic manner reminis-
cent of sequences, e.g., in Pascal to simulate a case statement for a non-scalar type. We overlooked this because our
work focused on Modula-2, which permits an elsif clause. In languages where these idioms exist, the parser must
recognize them and convert them to a form that makes their role as sequences apparent, using special AST operators
provided for this purpose. We thank Mark Wegman for this observation.

55

% A typical visit procedure, for each wvisit but the last.

function SomeOperator VISIT_i(a1, az, ..., an)
if not self.SUBTREE_MODIFIED
and self.];, == a;

and self./, == a,
then % Visit cache hit.
% Return synthesized attributes computed previously.
return (self.S;, self.S>, ..., self.S,,)
else % Visit cache miss.
% Force subsequent visits, even if inherited attributes are the same.
self. SUBTREE_MODIFIED = true
% Store inherited attributes.
self.h = ag

self. I, = an
% Compute and store synthesized attributes.
self. S = ...

self.S,, = ...
% Return synthesized attributes just computed.
return (self.S;, self.S>, ..., self.S,,)

% The last visit is handled similarly, except for SUBTREE_MODIFIED.

function SomeOperator VISIT_N(ai, az, ..., an)
if not self.SUBTREE_MODIFIED

and self.];, == a;

and self./, == a,
then

return (self.S;, self.S>, ..., self.S,,)
else

self.h = ag

self.], = an

self. S, =

self.S,, = ...

% All attributes in this node are now up-to-date.
self. SUBTREE_MODIFIED = false
return (self.S;, self.S>, ..., self.S,,)

Figure 5.1: Incremental visit procedures.

56

function Notify_Change (node)
unless node = nil then
node.SUBTREE_MODIFIED = true
Notify_Change(node.parent)

Figure 5.2: Marking a node and its ancestors when modified.

constructed a list of the child attribute values. Then the same attribution could be computed on
a balanced tree such that [AFFECTED| is O(logn), using list concatenation (append) instead of
addition of a single element (cons). The difference is entirely an artifact of the particular attribute
grammar used to express the computation, not any inherent property of the problem to be solved,
and is forced upon us solely by an inappropriate choice of representation for sequences.

We must be careful in making this sort of argument, as merely counting attribute evaluations may
be misleading when the attribute domains include values of unbounded size. If we were to represent
the list attribute value as a linear list, we would simply move execution time from attribute evaluation
overhead into the concatenation operations. To realize a genuine improvement, we may use a list
representation in which the link cells represent the append operation, rather than cons, yielding a
constant-time implementation of append. In general, a reduction in the size of AFFECTED due to
balancing will be observed whenever synthesized attributes of sequence children are collected and
combined via an associative combining operator, but an actual improvement in runtime may depend
on appropriate data structure and algorithm choices.

5.5.2 Representing Balanced Sequences

Each occurrence of a sequence must belong to a sequence phylum, which represents a sequence of
subtrees of identical phylum that are to be attributed in a particular way. For each sequence phylum,
we construct three operators that are used to represent its instances:

e The null operator represents an empty sequence, and has no children. It serves also as the
completing operator for the sequence phylum, used as a placeholder when a parsing error
prevents constructing an AST for the sequence.

e The singleton operator represents a sequence containing a single element. It has one child,
which belongs to the element phylum of the sequence.

e The pair operator represents the concatenation of two non-empty subsequences. It has two
children, either or both of which may be singleton or pair nodes. The null operator may not
appear as a child of the pair operator.

The attribute grammar formalism forces us to choose a structurally-recursive representation for
the abstract notion of a sequence, as attribution is defined to take place on trees consisting of
nodes of fixed arity. This choice of representation will largely determine the attribute equations
required in order to perform a given computation, in particular, the manner in which information
is routed through the tree. It can be shown that any attribution applicable to a linearly-recursive
list can be rendered in our doubly-recursive representation as well. In the linear list representation,
attributes may be directly transmitted only between adjacent siblings in the sequence, though this

57

communication is realized via parent-child attribute flow. In our doubly-recursive representation,
by threading each such attribute through the tree via copy rules in the manner of a right-to-left or
left-to-right traversal, attributes may be passed between conceptually adjacent siblings regardless of
the actual shape of the tree. It is clear, however, that using this method to mechanically translate
attributions designed with a linear-list representation in mind will gain nothing in performance, as
spurious sibling-sibling dependencies in the original formulation will simply be rendered as similar
dependencies in the translated version. In fact, we will pay an extra price for the copy rules.

It is advisable, then, to consider the problem of sequence attribution in a manner uncommitted
to a particular representation, and then to ask how efficiently various patterns of information flow
can be rendered using the sequence representations under consideration. Nord and Pfenning [55]

identify four important patterns of attribute flow in sequences:*

1. Construction of a list containing the value of a given synthesized attribute at each child.
2. Distribution of an inherited attribute of the sequence to all children.

3. Chains of inherited/synthesized attributes threaded through identically-named instances left-
to right.

4. Chains of inherited /synthesized attributes threaded through identically-named instances right-
to-left.

The first pattern of attribution always benefits from the balanced representation in terms of the
size of AFFECTED. In this case, the number of attributes that must be re-evaluated in order to
propagate an attribute value change at a sequence element to the root of the sequence is O(logn), as
compared to O(n) for a linear list, where n is the length of the sequence. This property is due entirely
to the associativity of the list concatenation operator, and extends to reduction of the sequence of
element attribute values by other associative operators such as union, intersection, addition, and
multiplication.

For the second pattern of attribution, it is impossible to do better than O(n), as the new value
must be transmitted to each of the n sequence elements. In our representation, there is a constant-
factor increase in the number of copy attributes due to the use of an explicit singleton node for each
sequence element. It would be possible to eliminate the singleton nodes, folding them into their
parent pair nodes, but this would require distinguishing four distinct varieties of pair nodes in order
to properly allocate space therein for the attributes of the elided singleton nodes.

The third and fourth patterns of attribution involve sibling-sibling communication not arising as
an artifact of the tree representation. Again, our representation suffers a constant factor penalty, and
yields the same asymptotic behavior. It is worth noting that sibling-sibling communication patterns
necessarily result in [AFFECTED| being O(n), and thus should be avoided whenever possible in an
incremental application.

Since any attribution of a linear list will require sibling-sibling communication, hence left-to-right
or right-to-left threading, our approach is at worst equivalent from an asymptotic point of view, and
results in a drastic improvement for one important case. There is a constant-factor penalty due the
the presence of singleton nodes, but even this may be eliminated at the cost of a small increase in
implementation complexity.

4These are taken from a set of six such patterns identified by Jullig and DeRemer [45] in connection with a notation
for attributing regular right-part grammars. The two patterns not shown here reflect constraints as well as attribute
propagation, as Jullig and DeRemer were working in the framework of Extended Attribute Grammars [81], a restricted
variant of two-level grammars.

58

constraint —
analyze child_name

with
{ attribute_definition }+
when [] =>

{ constraint }+

when [singleton_name 1 =>
{ constraint }+

when [left_subseq_name
{ constraint }+

end ;

right_subseq_name] =>

Figure 5.3: The analyze construct.

We use AVL trees for balancing. While it is possible to implement AVL trees using a three-state
flag to record balance information, we maintain the actual depth of each subtree. This facilitates an
efficient O(logn) algorithm for sequence concatenation, which is required by the parser.” We also
keep track of the number of leaves below each node, which allows O(logn) access to any child given
its index in the sequence. This operation is not used during attribution, but is required by user-level
tree navigation commands.

5.5.3 A Notation for Attributing Balanced Sequences

We have designed a specific notation that encourages a somewhat more abstract view of sequences,
but in fact maps directly onto our concrete sequence representation. In our language, sequence
phyla are declared implicitly. Any child of an operator may be marked as a sequence, in which case
a sequence phylum and its operators are created. The analyze construct, introduced in the previous
chapter, occurs syntactically in the role of an attribute equation, and defines a “local” attribution
of the anonymous sequence phylum and its operators. Its precise syntax is given in Figure 5.3.

Within the analyze construct, the child_name refers to the sequence as a whole, and has at-
tributes as defined by the attribute_definition sequence. There are three branches, representing a
case analysis. If the sequence is empty, the first set of constraints applies. If the sequence is a
singleton, then the element is known by the name singleton_name, and the second set of constraints
applies. Otherwise, the sequence consists of two or more elements, and can be viewed as the con-
catenation of two non-empty sequences. The third case then represents a non-deterministic split of
the sequence into two subsequences bound to the names left_subseq_name and right_subseq_name.
Figure 4.22, in the previous chapter, illustrates the usage of the analyze construct. There, the con-
text reaching a sequence of declarations is passed downward to each of its constituent declarations,
and the bindings are passed upward and accumulated.

5During modification of the existing incremental parser, we noted that it could exhibit degenerate linear-time
behavior (in the total size of a sequence, hence the entire program) while parsing a change to a sequence element.
This problem is inherent in most incremental parsing algorithms when linear lists are used for sequences. These
parsers “unzip” the tree along the spine from each edit site, and then attempt to reassemble the fragments. For a
highly-unbalanced tree, the number of fragments may be on the order of the length of the program, even for a small
edit. Adopting the balanced tree representation corrected this problem, which arose in precisely the same way as the
problem with attribution.

59

Our notation favors the use of parent-child rather than sibling-sibling patterns of communication
by allowing a more compact form of expression in the former case. This is in contrast to the linear
list representation, which makes all patterns of attribution equally convenient (or inconvenient, as
the case may be). Furthermore, the semantics of the nondeterministic split forces the use of an
associative combining operator. Of course, it 1s possible to evade the spirit of the analyze construct
with sufficiently complex attributes and semantic functions, but additional effort will be required to
do so.

5.6 Selective Visit Caching

Most published incremental evaluation algorithms have implicitly assumed that all attribute in-
stances are stored in the tree, and have fixed a fine level of granularity for attribute re-evaluation.
Storing all of the attributes is costly in terms of space, and limiting space consumption by the at-
tributed AST has been a widely recognized but unsatisfactorily addressed engineering concern in
existing programming environments based on attribute grammars. In contrast, hand-coded incre-
mental language-based environments have favored re-analysis at the level of entire source-language
procedures. Feiler [24] and Ross [68] describe systems of this kind.

In a non-incremental attribute evaluator, many attributes are of use only transiently during
attribute evaluation, and need not be present in the final attributed tree. It is usually possible to
allocate these attributes in one or more auxiliary stacks or global variables used only while evaluation
is in progress. Farrow and Yellin [21] compare several methods for storage optimizations of this kind,
and Julié and Parigot [44] present more recent results as employed in the FNC-2 system. In some
cases, such as for the one-sweep [19] and f-attributed classes of attribute grammars, all attributes
may be allocated in this way, provided that we are interested only in the values of one or more
synthesized attributes of the root. An incremental evaluator must retain some attribute values
between re-evaluations in order to permit the reuse of previous analysis. It does not follow, however,
that all attributes should be maintained. While it clearly makes sense to maintain the results of
expensive calculations, many attributes are cheaply recomputed.

In our evaluator, otherwise temporary attributes are retained by the visit-caching mechanism.
Visit caching comes at a cost in both time and space, and will not always pay off in improved
performance. The granularity with which re-evaluation occurs, i.e., the extent to which extraneous
attributes are allowed to be re-evaluated before quiescence is detected, determines an important
time-space tradeoff which should be under the control of the author of the analysis description. The
time and space overheads of avoiding re-evaluation may outweigh the cost of doing the evaluation
for simple computations over subtrees of (practically) bounded size. For example, we might set
the granularity at the level of an entire expression (i.e., the subtree below the point at which
the expression adjoins a larger non-expression construct), and forgo the possibility of re-evaluating
attributes for only a part of the expression. Our implementation allows visit caching to be enabled
selectively for each operator or for particular child positions within an operator. In the latter case,
the cache test is performed at the call site rather than upon entry to the visit procedure of the child.
In this way, the granularity of re-analysis can be contextually determined.

5.7 Summary and Related Work

Incremental attribution for static analysis of programming languages 1s an established research
paradigm. Our work exploits many ideas that have appeared in one form or another in the previous

60

research literature. In comparison, however, our approach is in each case either simpler or more
general.

In their seminal paper, Reps et al. [66] defined the O(JAFFECTED]|) optimality criterion and the
strategy of change propagation in topological order that achieves it. Their algorithm, employed in
the Synthesizer Generator [67], works for arbitrary noncircular attribute grammars, but the overhead
in space and time is prohibitive. In later work, a simpler asymptotically-optimal evaluator for OAGs
was developed, and its use recommended. Our evaluator was obtained by adapting to an imperative
setting an alternative scheme for OAGs based on visit caching developed by Vogt et al. [75]. The
resulting algorithm 1s quite similar in effect to the OAG evaluator used in the Synthesizer Generator,
but the visit caching viewpoint leads to a more straightforward implementation.

The coordinated evaluators described by Reps, Marceau, and Teitelbaum [64], and Peckham [57]
use additional static analysis, AG class restrictions, and complex auxiliary runtime data structures
to account for dependencies linking disconnected inconsistent regions of the AST| thus assuring that
evaluation always proceeds in topological order. We adopt the much simpler solution of merging the
inconsistent regions at O(|EDIT_ANCESTORS]|) cost, a natural consequence of the visit-caching
approach.

Under practical assumptions about the depth of ASTs, using a balanced representation for se-
quences, the asymptotic complexity is as least as good as any other published algorithm. The idea of
keeping an AST approximately balanced using a balanced sequence representation was suggested by
Pugh [61] in connection with a function-caching incremental AG evaluator similar to that of Vogt,
et al. Gafter [28] independently proposed the same technique in connection with parallel execution
of a compiler, in which balanced sequences lead to a better decomposition of the program into sub-
problems. Gafter explicitly addressed incremental parsing with balanced sequences. Surprisingly,
no one seems to have previously observed the implications of this technique for efficient coordinated
evaluation, despite the fact that both Reps et al. [64] and Peckham [57] use other balanced data
structures.

User-supplied pragmatic annotations to control re-evaluation granularity were previously imple-
mented in OPTRAN [50], which used an incremental evaluation strategy similar to our own.

Although we have presented our algorithm as an evaluator for the f-ordered class of attribute
grammars, it is in fact applicable to any class of AGs for which the required visit procedures can
be constructed, including the strongly-noncircular (SNC) attribute grammars. This class is of great
importance because it appears to include all noncircular attribute grammars that arise in practice,
and admits a polynomial-time membership test (as do OAGs). For an SNC AG, the order in which
the attributes of a node must be evaluated depends in general on its superior context in the AST, thus
multiple visit sequences must be generated for each AST operator, unlike the case of an f-ordered
AG in which a single visit sequence suffices. Jourdan and Parigot [43] outline a practical method
for constructing visit procedures from an SNC attribute grammar, as employed in the implemented
FNC-2 system.

In the next chapter, we extend our classical attribute evaluator to propagate non-local attribute
dependencies efficiently.

61

Chapter 6

Objects and References

Objects are used to model programming language notions such as declared entities and scopes,
where it is meaningful to distinguish different occurrences of entities that are otherwise functionally
equivalent. Objects are accessed via object references, a special kind of value that refers indirectly
to an object. Properties of the entities represented by an object are modeled by its components, a
set of named attributes that are accessible via selection wherever a reference to the object is known.
Every object belongs to a class, which defines the name and type of each of its components. Classes
are arranged in a hierarchy modeling a taxonomical classification of the entities that the objects of
the class represent.

In this chapter, we will treat objects as simple records without functional and relational compo-
nents — 1.e., without “methods,” which will be treated in the following two chapters.

6.1 Objects and Non-local Dependencies

The values of the components of an object may change while preserving the identity of the object
to which they belong. Our implementation exploits this semantics in order to propagate changes to
object components efficiently. Object references, transmitted as ordinary attribute values, establish
a link between the site at which the object i1s created and the sites at which the components of
the object are selected and examined. Selections establish additional hidden bookkeeping links in
the reverse direction, pointing from the selected components to the sites at which the selections
occur. Changes to component values are immediately available at the selection sites, which are then
“notified” via the hidden links, forcing the re-evaluation of any attributes dependent upon the result
of the selections. Selections involving a component that is not changed need not be notified. If
the identity of the object from which a selection takes place, i.e., the value of the object reference,
changes, the selection is also re-evaluated, as the selection depends on the object reference in the
conventional way.

In a conventional attribute grammar, the direct successors of a given attribute instance must
be within the same AST node or within an adjacent node. In contrast, a component selection
may be located at an arbitrary distance within the AST from the object instantiation in which the
selected component is defined. The dependency of a selection upon its selected component may thus
span an arbitrary distance within the tree. The non-local attribute dependencies maintained in the
implementation of object instantiation and component selection thus provide an efficient realization
of long-distance attribute dependencies, such as those that arise between the declaration of a named

62

entity and its uses within the program. In the analyzer for Example developed in Chapter 4,
variable declarations (Figure 4.20) result in the instantiation of an object:

object VarObj : VarEntity
where

Type = Ty.Type;
end VarObj;

In a variable usage (Figure 4.14), a reference to the object representing the variable is extracted
from the binding environment:

attribute Ent : BindingStatus =
SimpleVar.Ctx.VisibleBinding (Name.Text) ;

The type of the variable is then obtained from the reference by selection:

SimpleVar.Type = Ent.Type :-
Ent isa VarEntity;

A change to the type of the variable as it appears within the variable declaration will be propagated
directly to the variable references at which the variable is accessed. The binding contour will not be
affected, as the identity of the variable remains unchanged.

Objects also provide a way to bypass some copy rules, allowing the node-by-node propagation of
a single object reference to stand in for the similar propagation of each component individually. The
representation of binding contours in Example used objects in this way, allowing the single inherited
attribute Ctx to stand in for the separate propagation of the LocalBinding, VisibleBinding, and
Duplicate attributes to each place where a name might need to be declared or resolved. In fact,
since inherited functional attributes are not permitted, the use of a contour object would be forced
upon us even if 1t were a circumlocution.

6.2 Static Allocation of Objects

An object is created by an object instantiation, a special kind of attribute constraint that binds a
name to a reference to a new object of the given class. Since there is no other way to create an
object, objects cannot be created dynamically, e.g., during the evaluation of another attribute. Each
object instantiation appearing in the constraints of an AST operator induces exactly one instance of
the object in each node in the tree labeled by that operator. This enables us to allocate storage for
objects statically within the containing tree node. From the viewpoint of a remote component access
via a reference to the object, the object is a self-sufficient entity that can be interpreted knowing
only its class. From the point of view of the node that contains i1t, components of the object are just
ordinary local attributes.

Objects in which all components are simple attributes, i.e.; are neither functions nor relations,
can be used to model tuples. It might appear that tuples are redundant, then, and could be
eliminated. In fact, the essential semantics of objects and tuples are quite different, as is their
pragmatic treatment in our implementation. Two tuples are considered equal when their respective
components are equal, whereas objects each have an identity distinct from any other structurally-
isomorphic value. Conceptually, tuples follow “value semantics,” i.e., the value of a tuple depends on

63

those of all of its components, in contrast to object references, which follow “reference semantics,”
1.e., the value of the reference depends only on the identity of the object to which it refers. In
principle, it would be possible to implement tuples in such a way that changes to a component of
a tuple were propagated directly to the places where that component is actually observed, but in
practice, the generality of the tuple constructor, which may appear in any expression, makes this
very difficult. In contrast, the static allocation of objects allows us to implement a relatively simple
strategy for maintaining the connection between an object component and the selection sites that
access precisely that component. Restricting the fine-grained tracking of component dependencies
to object types has not been a problem for us in practice, and agrees in an aesthetically pleasing
way with the differences in the conceptual nature of the component dependencies.

6.3 Maintaining Dynamic Dependency Traces

Since the object reference from which a given component is selected may be the outcome of an
arbitrary computation, we cannot predict in general which selection sites will depend on which
components. These dependencies must be represented at runtime by dynamically maintained data
structures. The dynamic dependencies will always be covered, however, by a simple approximation
in which the object reference bound by an object instantiation is assumed to depend on the value
of every component. We use this worst-case static approximation in order to permit a generation-
time circularity test, and to schedule visits to the nodes containing the object instantiations and
component selections in such a way that the worst-case dependencies that might arise at runtime
are respected.

Each component of an object has an associated non-local dependency list (NLDL), whose members
refer to the selection sites that currently access the component. When a component value changes,
the nodes containing selections that access that attribute are notified. A notified node is marked
for future visits, including the marking of 1ts ancestors, in exactly the same manner as if a child
of the node had been replaced. For this reason, it would be necessary that our basic incremental
evaluation method support multiple initial sites of attribute inconsistency even if our editing model
did not include multiple subtree replacements. Because the visit procedures are generated based on
the static dependencies, we are assured that the evaluation traversal has not yet reached the remote
component selection, even though it may already be under way at the time the node containing the
selection is notified. Either the node is being re-evaluated already (at least one visit has entered it),
or the subtree-modified bit will have been set before the traversal arrives at the node for the first
time.

Re-evaluation may result in the removal of old dependencies as well as the addition of new
ones. Node deletion may also require that notifications or updates to the contents of one or more
NLDLs be made. Our strategy for performing the necessary bookkeeping distinguishes two kinds of
selections, based on their syntactic form: selections from an attribute name, and selection from a
bound variable. Since each attribute takes on a single value, each textual occurrence of a component
selection from such an attribute must necessarily refer to a single component instance. For these
static selections, we can determine the number of dynamic dependency links that will be needed by
a trivial examination of the analysis description source. In contrast, a single textual occurrence of
a variable may take on multiple values during a single node visit, e.g., an argument to a recursive
function. A component selection from such a variable may thus give rise to an arbitrary number
of dynamic dependency links as the variable takes on successive reference values. These selections
are referred to as dynamic, and are handled in a different manner. Often, a variable can be shown
to take on a single value, in which case a selection from the variable may be profitably treated as

64

static. The current classification based on a trivial syntactic property is admittedly crude.

6.4 Static Component Selections

Each textual occurrence of a static selection is assigned a numeric index, relative to the containing
AST operator, at evaluator-generation time. A non-local dependency list (NLDL) is allocated for
each object component within the AST node that contains the object. The elements of the NLDL
indicate each dependent selection site as a (node, index) pair. The NLDL is doubly-linked, so that
any element can be removed in constant time. The insertion and deletion operations are simplified
by linking the list in a ring, using a dummy header element which is allocated at the time the AST
node is created. FEach AST node that contains selections has a selection registration vector, with
one entry for each selection. Each entry is a pointer back to the NLDL element that refers to the
selection. These data structures are illustrated in Figure 6.1.

In addition to the NLDL, each component has an associated registration method, implicitly
declared in the class and instantiated in each object by overriding a dummy method inherited from
the class. The registration method takes a node and a selection index as an argument, and adds
an entry to the NLDL of the component. Upon the evaluation of a reference-valued attribute, all
selections using that attribute as the base are registered by calling the registration method associated
with the selected component. The node that is currently being visited, i.e., the one in which the
selection takes place, is passed as an argument, along with a statically-assigned selection index.
Figure 6.2 shows how the selection of the Type component is performed within SimpleVar.

When invoked, the registration method allocates a new element in the NLDL of the selected
component, pointing to the current selection, and updates the selection registration vector entry to
point to the new element. It then uses the backpointer stored in the selection registration vector
to find the NLDL element that currently points to the selection and remove it from its (unknown)
NLDL. Figure 6.3 shows the definition of the registration method for the Var0Obj.Type component.

The protocol is robust in the face of node creation and deletion, and does not leave dangling links.
When a node is deleted, which occurs prior to the beginning of the traversal, the NLDL elements
that point to it are removed via the selection registration vector. Likewise, any nodes that contain
references to an object in a deleted node will be visited during evaluation, as the referent object must
necessarily have changed, and the normal registration process will then update the backpointers in
the selection registration vectors. (Tt is possible that a deleted node will be notified. This does
no harm, as the link to the parent of the deleted node will have been reset to nil, preventing the
erroneous invalidation of any ancestors still in the tree.) Figure 6.4 shows how the node destructor
for SimpleVar nodes handles its embedded NLDL.

As we shall see in the sequel, it is sometimes useful to know at the site of a selection from an
attribute whether the component value actually changed, even though our general strategy is to
retry all computations at the granularity of an entire visit. To avoid having to maintain a copy of
the selected value in the node that performs the selection, we arrange for the registration method
to return a boolean value that indicates whether the component has changed since the previous
time the registration was performed. This can be done without the allocation of additional storage
by shifting the responsibility for deleting the old NLDL entry onto the notification procedure, and
storing a null value in the selection registration vector during notification in order to identify the
particular selection that has been invalidated by the change. We say that such a selection has been
notified. Notification of a selection always implies notification of the node in which it is contained.
By verifying that the base object reference is unchanged and that the selection has not been notified,
we can be assured that the value of a selection remains unchanged.

65

-@® SimpleVar.Type

VarObj
VarDecl
Non-local Dependency Links
(dummy)
; i s I e
| r 0 ° i
| (first) : (last)
SimpleVvar \ SELECTIONS
o N
Ent

Figure 6.1: A variable declaration node and a simple variable reference in an Example program,
showing the non-local dependency link from the Type component of the variable object to the variable
reference node where it is accessed as a static selection.

66

method SimpleVar.VISIT_1(Ctx)

% FEvaluate a reference-valued attribute.

Ent = ...

% Register all selections from the attribute.

% Call registration method with current node

% and the selection indexr for the selection.

% Here, we register selection of the 'Type’ component.
Ent .Add_NLD_Type (self, 0);

% Once registered, the component may be accessed freely.
return Ent.Type

Figure 6.2: Registering a static selection.

method VarObj.Add_NLD_Type (node, idx)
% Create and initialize a new NLDL entry.
nld = Create_NLD()
nld.CONTEXT = node
nld.SELECTION = idx
% Insert new entry into NLDI, for the 'Type’ component.
% The pseudovariable op denotes the AST node (operator) in which
% the component and NLDI are located, which is captured in the closure
% of this method.
NLDL_Insert (nld, op.NLDL_Type)
% Remove old entry from the NLDI that contains it.
NLDL_Remove (node.SELECTIONS[idx])
% Record current NLD link for this selection.
node.SELECTIONS[idx] = nld

Figure 6.3: Registration method for VarEntity.Type.

67

method SimpleVar.DESTROY ()

% Notify all nodes containing selections from
% a component in the deleted node.
NLDL_Notify (self.NLDL_Type)

function NLDL_Notify(nldl)
foreach elt in nldl do
Notify_Change(elt.CONTEXT)

Figure 6.4: Handling NLDLs during node deletion.

Figure 6.5 shows the modifications required to implement this scheme. In the registration method,
we create a new non-local dependency (NLD) link even if we know that the target of the old one has
not been notified, because the selection base may have changed. The registration method correctly
returns “notified” status on the initial evaluation, as the entries of the selection registration vector
are initialized to nil when the AST node is created.

Objects can be allocated globally as well as within an AST node. Even though the components of
global objects cannot change, constants of object type are often useful. Non-local dependency lists
are not allocated for the components of global objects. Since it is not decidable in general whether
a selection appearing in the attribute equations of an AST operator will access a global or a local
object, the registration protocol must be uniform. We thus allocate a dummy registration method
that does nothing, and returns false to indicate that the component has not changed.

6.5 Dynamic Component Selections

Dynamic selections pose additional difficulties because we do not necessarily know in advance how
many distinct component instances may be selected by a single textual occurrence of such a selection.
If the selection appears within a relation or a recursive function, an arbitrary number of instances
may be examined over the course of its execution. We thus cannot allocate a selection registration
vector as we did for static selections. Furthermore, dynamic selections may be performed within
code that is textually remote from the constraint definitions for the node to which the dynamic
dependency will be linked. For example, they may be embedded within globally-defined functions
or relations, or within the methods of a class. We thus cannot statically associate these selections
with the AST node visit functions in which they are invoked.

In the analyzer for Example developed in Chapter 4, declarations of named types (Figure 4.21)
test for pathologically circular types by calling the function CyclicType:

Error (Name, "Cyclic type definition") :-
CyclicType (TypeObj) ;

CyclicType in turn calls CyclicTypeAux, which contains the following rule:

68

method VarObj.Add_NLD_Type (node, idx)

% Create and initialize a new NLDL entry.

nld = Create_NLD()

nld.CONTEXT = node

nld.SELECTION = idx

% Insert new entry into NLDI, for the 'Type’ component.

NLDL_Insert (nld, op.NLDL_Type)

if node.SELECTIONS[idx] == nil then
node.SELECTIONS[idx] = nld
% Selection has been previously notified.
return true

else
% Remove old entry from the NLDI that contains it.
NLDL_Remove (node.SELECTIONS[idx])
% Record current NLD link for this selection.
node.SELECTIONS[idx] = nld
% Selection has not been previously notified.
return false

method SimpleVar.VISIT_1(Ctx)

Ent = ...

if Ent.Add_NLD_Type(self, 0) then
% ’Type’ component has changed.

else
% "Type’ component is unchanged, unless the value
% of attribute 'Ent’ itself has changed.

return Ent.Type

function NLDL_Notify(nldl)
foreach elt in nldl do
node = elt.CONTEXT
idx = elt.SELECTION
unless idx == nil then
NLDL_Remove(elt)
node.SELECTIONS[idx] = nil
Notify_Change(node)

Figure 6.5: Revisions for registration method status return.

69

CyclicTypeAux (TsTYPENAME (Ent), Trail)
=> CyclicTypeAux (Ent.Type, [Ent|Traill);

The dynamic dependency link created for the selection Ent.Type should be arranged such that the
visit which originally called CyclicType will be retried if the value of the selected Type component
changes.

We therefore maintain a dynamic dependency context (DDC), consisting of two global variables
representing the node in which a visit function is currently executing, and the visit number for the
visit in progress. When a child visit is performed, the old DDC is temporarily saved, and the DDC
for the child visit is installed. Upon exit from the child visit, the saved DDC is restored. All dynamic
selections occurring within the temporal scope of a DDC are “charged” to its associated AST node,
which will result in notification of the node if the selected component subsequently changes value.
A vector of supports lists is included in each node, one for each visit, which contain backlinks to the
NLD links for all of the selections that support the node/visit pair, i.e., which were performed by
the corresponding visit function. These data structures are illustrated in Figure 6.6.

When visiting a node, the evaluator will first retract any NLD links that were established the last
time the visit was performed. The body of the visit function, including all subsidiary computations,
will then be performed anew, and new NLD links will be established and added to the appropriate
supports list. Such computations may be quite expensive, in which case a cache should be maintained
for one or more of the functions or relations involved. Caching the results of function calls and the
extension of relations is intimately connected with the full DDC protocol, which is described in the
following chapter. In Figures 6.7 and 6.8, we extend the selection registration protocol to encompass
dynamic as well as static selections. The same registration method is used in both cases, with a
selection index of nil signifying a dynamic selection. Since the current node is now available from
the DDC, it need no longer be provided as an argument, even in the case of a static selection.

In comparison to static selections, our algorithm provides less precise change notification for
dynamic selections, as it does not attempt to account for which selections within a node are actually
affected. In most cases, however, the evaluator is not prepared to exploit the missing information,
as it re-evaluates attributes at the granularity of entire AST nodes. The special treatment of static
selections does play an important role, as will soon become apparent. In the following chapter, we
will extend the DDC and supports lists mechanism to accommodate the maintenance of caches for
functions and relations.

6.6 Related Work

Christiansen [12] proposed that side-effects be used to simultaneously update the value of object
(record) components at multiple remote attribute occurrences. He describes a static analysis that
exploits structure-sharing to generate a more efficient static evaluator. He mentions the possibility of
refining the static dependencies with dynamic traces, but does not, pursue the idea further. Hedin [33]
originated the description of long-distance dependencies by explicit linkage of objects embedded in
the AST, as well as the use of functionally-attributed objects to model aggregates. In her approach,
classes of objects are defined external to the AG formalism in hand-written code and are responsi-
ble for tracking the dynamic dependencies in which they participate. Given programmer-supplied
declarations, the instances of the classes can be incorporated into an AG in a semi-automatic way,
similar to the approach of Beshers and Campbell [6].

Boyland [10] permits remote access to the attributes of a node via a node reference, as if the
entire node were 1tself an object in our sense. For example, rather than using an object to represent
a declared entity, Boyland uses the entire attributed AST node for the declaration. We believe that

70

SUPPORTS[1] @-f-——-|----- -

Type TypeDecl (where selected component defined)

Non-local Dependency Links

(dummy)
NLDL_Type @ T T
P e P
® NIL ° i
(first) ‘ (last)
SupportsList (Visit 1) P
SUPPORTS[1] ® o *~— - — e NIL
USREREREY L ! (first) (last)
TypeObj
Type
‘ ! TypeDecl (where cycle check invoked)
NLDL_Type @-t------f--------- -

Figure 6.6: Two type declaration nodes in an Example program, showing the non-local dependency
link from the Type component of a named type object to a node where it is accessed by the function
IsCyclic as a dynamic selection.

71

% These global variable hold the current dynamic dependency context.

% Node currently being visited.

global *ddc-context*
% Visit number of current visit.

global *ddc-visit*

method TypeDecl.VISIT_4(Ctx)
Retract_Supports (self. SUPPORTS[4])
% Dynamically-bind DDC wvariables to node and wvisit
% during evaluation of attributes.

let *ddc-context* = self and *ddc-visit* = 4 in

% Call out-of-line boolean-valued function.
. CyclicType(self.TypeObj) ...

function CyclicType(Ty)

CyclicTypeAux(Ty, nil)

function CyclicTypeAux(Ty, Trail)
% Register dynamic selection of "Type’.
Ent.Add_NLD_Type (nil)

% Access component 'Type’.
.. Ent.Type ...

Figure 6.7: Handling NLDLs with both static and dynamic selections.

72

method VarEntity.Add_NLD_Type (idx)
node = *ddc-contextx*
nld = Create_NLD()
nld.CONTEXT = node
nld.SELECTION = idx
NLDL_Insert (nld, op.NLDL_Type)
if idx == nil then % Registering dynamic selection.
vigit = *ddc-visitx*
% Add NLD link to supports list for this node/visit.
node.SUPPORTS[visit] = cons(nld, node.SUPPORTS[visit])
% Result is ignored for dynamic registrations.
return false
else % Registering static selection.
if node.SELECTIONS[idx] == nil then
node.SELECTIONS[idx] = nld
return true
else
NLDL_Remove (node.SELECTIONS[idx])
node.SELECTIONS[idx] = nld
return false

function Retract_Supports (supps)
foreach backlink in supps do
NLDL_Remove (backlink)

function NLDL_Notify(nldl)
foreach elt in nldl do
node = elt.CONTEXT
idx = elt.SELECTION
unless idx == nil then
% Static selection.
NLDL_Remove(elt)
node.SELECTIONS[idx] = nil
Notify_Change(node)

Figure 6.8: Handling NLDLs with both static and dynamic selections (continued).

73

our separation of concerns between node references and objects is cleaner than Boyland’s approach,
particularly with respect to typing issues. In particular, we allow multiple object instantiations
occurring within different AST operators to produce objects of the same type. Our work is also
distinguished from that of Boyland in that we construct a statically-scheduled incremental evaluator,
whereas his evaluator is dynamically-scheduled and must always perform a full re-evaluation.

74

Chapter 7

Functional Attributes

Functions in ADL may be declared with global scope or they may appear within the definition of
a class or an AST operator, in which case their visibility is restricted to that context. Functions
may also appear as attributes of AST nodes and objects. Functional attributes are a novel feature
of ADL.

Mathematically, a function is a potentially infinite set of ordered pairs associating an argument
value (typically itself a tuple) with a result value. Operationally, the concrete representations of
computable functions provide a procedure for generating the members of the set on demand, yielding
the associated result value when presented with a tuple of argument values. Functional attributes
can thus compactly code a mapping that would take a large (or even unbounded) amount of space
to represent as a first-order attribute value, perhaps as a list of tuples. A functional representation
is particularly efficient when the value of the functional attribute is only sparsely observed, i.e.,
when a relatively small number of associations are actually demanded from each instance of the
attribute. Every invocation of a function observes a single argument /result mapping of that function
and some finite number of such mappings from functions invoked within subsidiary function calls.
Dependencies involving function calls may be tracked at a fine level of granularity by tracking
precisely which mappings were actually observed in computing the dependent results.

7.1 Representation of Aggregate Attributes

Functional attributes may be used to model aggregates. The ability to generate portions of an
attribute value on demand, and to maintain precise dependencies based upon those parts actually
observed, gives us a way to perform partial updates of aggregate attributes efficiently.

In the analyzer for Example, the binding environment is propagated to nearly every AST node
in the program, and contains a binding for every declared name. Clearly, it would be very costly
to update every instance of the binding environment when a single declaration is modified. By
caching the results of calls to functional attributes, however, we can obtain an efficient solution in
which individual bindings can be updated independently of other unchanged bindings. The binding
environment 1s conveniently represented as a tree of binding contours providing lookup methods that
can be queried as needed. Calls to these methods are cached, and dynamic dependencies maintained
between the cache entries, which represent the argument/result mappings observed by the calls. We
recall a few key points here; refer to Chapter 4 for the details.

The bindings introduced in a single group of declarations are collected in a binding contour,
represented as an object of the Contour class. In Example, all contour objects except for the

5

outermost are generated by the object instantiation BodyCtx in AST operator Block. Each contour
except for the outermost contains a reference to another contour which represents its enclosing scope.
This parent chain represents the hierarchical nesting of contours within the scoping discipline. A
binding environment is represented as a reference to the innermost contour providing bindings to that
environment. The Contour class provides a method VisibleBinding, which returns the innermost
binding for the given identifier:

function LocalBinding(String) -> BindingStatus;

The result is a reference to an object of the Entity class if a binding exists, or the special value
Undeclared if one does not. The VisibleBinding method looks first for a binding locally within
the contour, and if none is found, it delegates to the surrounding contour.

VisibleBinding(Ident) => Ent

:— LocalBinding(Ident) => Ent & Ent /= Unknown;
VisibleBinding(Ident) => Ent

:— Parent.VisibleBinding(Ident) => Ent;

The search for the local binding succeeds if a unique binding is found in the local binding relation
Binds.

LocalBinding(Ident) => Ent
:- Binds(Ident, Ent) & ~Duplicate(Ident, Ent);
LocalBinding (Ident) => Unknown;

The tuples of Binds are collected as the value of a relational attribute, propagated to the instantiation
of the contour object from the declarations. A name is resolved within a binding environment by
invoking the VisibleBinding method, such as within a reference to a variable:

attribute Ent : BindingStatus =
SimpleVar.Ctx.VisibleBinding (Name.Text) ;

The name resolution above depends only on the identity of the contour representing the binding
environment and value of VisibleBinding (as a set of ordered pairs) at a single domain value.
This result depends in turn on the value of LocalBinding at a single domain value, and pos-
sibly the VisibleBinding value at the parent contour. We specify that caches be provided for
VisibleBinding and its auxiliary functions LocalBinding and Duplicate. Changes are propa-
gated only to mappings that actually depend on them, and propagation stops as soon as possible.
Leaf calls to VisibleBinding, i.e., at the nodes where identifier uses occur, are notified only if the
binding to which they refer has changed.

7.2 Embedding of Functions in the AST

The body of a function definition may reference names other than the arguments. In ADL, such
names must necessarily be those of other attributes, as the definition of a function is not permitted
syntactically within the scope of a variable. The collection of attributes referenced within the body
of a function is called its closure, by analogy with the use of that term in the context of conventional
functional programming languages. Since functional attributes are not first-class values, however,
explicit closure objects need not be constructed at runtime. Any attributes referenced within the

76

body of a functional attribute are simply stored in the surrounding tree node, which is available to
the function during execution as an implicit argument.

When a functional attribute of an adjacent AST node is invoked, the calling site knows only
the phylum to which the node belongs. The actual function body that is executed depends on the
AST operator of which the node is an instance. Since our AGs are in normal form, every functional
attribute occurrence (except for local attributes) may be either defined or invoked, but not both.
The synthesized functional attributes of an AST node and the inherited functional occurrences of its
children must be provided with function bodies which can then be invoked from the complementary
attributes of adjacent nodes.

Synthesized functional attributes are handled easily when the target language is object-oriented.
We simply declare each functional attribute as a virtual method of a class associated with each
phylum and inherited by the class associated with each AST operator. In the operator class, we
override the virtual method with the function body appropriate for nodes labeled with the operator.
Inherited functional attributes are more complicated, as the correct function body depends not
only upon the calling node’s parent, but also upon which of the parent’s children it happens to be.
Techniques for solving this problem, which arises in the construction of demand-driven evaluators
for conventional AGs, are well known, and are described in Engelfriet [18] and Jourdan [41]. These
methods are awkward when rendered in a strongly typed object-oriented target language, however.
For this reason, we restrict functional attributes to be synthesized only. It is possible to achieve
the effect of inherited functional attributes using objects, suggesting that the technique could be
automated in order to relax this restriction.

Definition of recursive functions as functional attributes gives rise to circular attribute depen-
dencies. Since every function definition, however, is technically an attribute definition, this would
seem to prohibit recursive functions entirely! By special dispensation, we permit mutually-recursive
definition of one or more local attributes appearing within the same AST operator or at the top-
level of the language description. Cliques of such mutually-recursive definitions are treated as a unit
during attribute dependency analysis; i.e., every attribute in the clique is taken to depend on the
predecessors of all of the others, except for those that are themselves members of the clique.

Functional attributes occur most often as components of objects, usually inherited from the class
definition. Such attributes function in every way as local attributes of the surrounding AST node
as well as being remotely-accessible via references to the object. All of the functional attributes
appearing as examples in this chapter are components of Contour objects. We will sketch the
handling of functional attributes accessible from adjacent nodes, but the details will be presented in
the following chapter in the context of relational attributes.

7.3 Caching Function Calls

Incremental evaluation relies on the retention and reuse of the results of computations performed
previously. A functional attribute implicitly defines an argument/result mapping, a potentially
unbounded set of argument-tuple/result pairs. While the value of a function at a given argument
tuple can always be recomputed on demand, the fine-grained dependency tracking discussed earlier
requires that the mapping be explicitly represented. Usually, only a portion of the mapping will
actually be observed via any given function call, or even the totality of function calls within the
execution of the analysis. We construct a partial representation of the mapping by caching the
results of function calls as they occur. Each entry in the cache will be called a mapping, not to be
confused with the abstract mapping that the function represents. Entries must be removed from the
cache when they are no longer valid. Our algorithm keeps track of mappings that may have changed,

77

and retries them to determine if they are still valid. A function for which a cache is provided is
called a maintained function.*

The value returned by a function call depends not only on the arguments, but also upon at-
tributes referenced within the body of the function (i.e., the closure) and by the values returned
by subordinate function calls. For a given tuple of arguments, the value returned by a call to a

functional attribute may change when any of the following change:
e The value returned by a subordinate function call.
e The value returned by a subordinate component selection.

e The value of a scalar or relational attribute referenced by the function or by a function that it
calls transitively.

e The value of a child pointer by which a functional attribute is accessed during the call.

Thus, whenever we cache the result of a function call, we must arrange for the call to be retried
when any of these conditions obtains. This will result in the propagation of further changes should
the cached mapping be found invalid.

We reduce storage costs by recording dependencies statically wherever possible. We associate
an implicit boolean status attribute with each functional attribute. The status attribute is treated
similarly to an ordinary scalar attribute, and takes on a true value at any occurrence where the
underlying functional attribute must be considered changed. The status attributes, computed during
the statically scheduled visit procedures, allow us to reconcile our eager, statically-scheduled change
propagation strategy with the demand-driven behavior of function calls and caching. The status
attribute for a functional attribute is true, indicating change, if:

e The value of a scalar attribute (including object references) referenced in the function body
has changed.

e A selection of an object component via a reference-valued attribute has been notified, indicating
that the value of the component has changed.

e The status attribute of a functional (or relational) attribute called within the function body
has the value true indicating that the call may possibly no longer return the same result.

e The identity of the node from which the status value for another functional (or relational)
attribute was received has changed due to a modification to the structure of the tree.

In the absence of caching, the status value reflects whether the closure of the function, including
its transitive dependencies, has changed. This is a necessary (though not sufficient) condition for
the value of the function at a given set of arguments to change. We must conservatively assume
that any call to a function whose status i1s true must be retried; thus any visit procedure receiving
a true status attribute as an argument must be executed. All scalar attributes that depend on the
function will be re-evaluated, retrying the calls to the functional attribute in the process. Unlike
ordinary scalar attributes, the status value is not compared against a previously saved value. Its
value during the traversal indicates change status directly.

The scheme described so far 1s unrealistically pessimistic in that it will re-evaluate every call to a
functional attribute that is transitively dependent upon a changed scalar attribute. By caching the

I This term is used by Hoover [37] in exactly the same sense as we use it here. We chose it in analogy to the
“maintained properties” of Ballance’s Colander system [4], which inspired many aspects of the present work.

78

argument /result pairs observed at each function attribute, it can be determined when the observed
mapping has actually changed, and thereby the status value for the attribute can be refined. First the
“incoming” status is computed as before. Then, if it indicates that the function may have changed,
the saved argument/result pairs are retried. The “outgoing” status indicates a change only if one
or more argument tuples was mapped to a different result. It 1s not necessary to provide a cache
for every function. The scheme remains correct if caching is omitted for some of the attributes, but
more function calls may be re-evaluated (and more nodes visited) than would otherwise be required.

As developed so far, our caching scheme can stop change propagation when it discovers that a
function is completely unchanged — i.e., implements the same argument/result mapping — but must
still examine every successor should any changes be noted. We still need one further refinement in
order to get the fine-grained dependency tracking that we seek. This caching scheme fails to take
account of the fact that a call with a specific argument tuple will observe the value of other functional
attributes only at certain argument values. If the subsidiary call has been cached, the current call
should depend only on the cached argument /result pairs that were observed. Our refined algorithm
thus records dynamic dependency links, similar to those used to link selections and object compo-
nents, between each cached mapping and the mappings that were examined during the subsidiary
calls. By recording such fine-grained dependencies, effectively “splitting” an attribute dynamically
into as many dependency traces as observed argument tuples, aggregates can be represented effi-
ciently using functional attributes. Dynamic component selections occurring within a function call
are not part of the closure, and will not be accounted for by the status attribute. These selections,
however, will create dynamic dependency links in the same way as subsidiary function calls.

Since not all functions have caches, a call to a subsidiary maintained function or a dynamic
component selection may be charged to a function other than the one that performed it, namely, the
innermost maintained function on the dynamic call chain. If no such function exists, the dependencies
are charged to the AST node visit which contains the outermost call.

In this chapter, we will be dealing with functional attributes that are methods of an object,
and are thus local attributes. Much of the handling of the status attributes described above is
only applicable to attributes that may be invoked from adjacent nodes. In the remainder of this
chapter, we will not discuss these issues in detail. Analogous issues arise in the handling of relational
attributes, and will be covered in the following chapter.

7.4 Implementing Maintained Functions

The cache for a function is represented in the compiled analysis description as an object in the target
language.? The slots of the object include:

e A pointer back to the AST node containing the cache.
e A retry list containing mappings that have been marked potentially invalid.
e A hash table containing mappings, indexed by the argument tuple.

Each mapping in the hash table contains:

e A pointer back to the cache to which the mapping belongs.

2 Actually, we use a Common Lisp defstruct with a few functional components for the methods. This is an
inessential implementation detail that will be ignored here.

79

o A successor list, containing a doubly-linked list of dynamic successor link (DSL) records, anal-
ogous to the NLD links of the previous chapter. Each DSL record has a pointer back to
the mapping to which 1t belongs, and a pointer to an AST node or another mapping that
constitutes a dependency successor for the current mapping.

e A list of backlinks pointing to DSL records that refer to this mapping as their successors.

This structure is illustrated in Figure 7.1, which shows two function caches, each with a “typical”
mapping record. In the figure, the mapping shown in the upper cache is a dependency successor
to that shown in the lower one. The longer dashed lines linking the two caches represent the DSL
successor pointer and its corresponding backlink.

Calls to a maintained function are handled by the EVAL method of the cache. The uncached
semantics of the function are implemented by the FILL method. The EVAL method examines the
cache to see if it contains a mapping for the arguments provided in the call. If so, the cached result
is returned, else the FILL method is called to compute the result, and a new mapping is installed in
the cache by the EVAL method before it returns. The EVAL method for BodyCtx.VisibleBinding is
shown in Figure 7.2.

A mapping must be updated or removed from the cache if the cached result no longer agrees
with that which would be yielded by the FILL method when applied to the argument values saved
with the cache entry. Cache entries whose validity have been called into question due to a change in
the value of a dependency predecessor are retried and updated as necessary. Cache entries that are
no longer observed, i.e., that no longer contribute to the value of any attribute, are removed from
the cache entirely.

Because caching may be selectively enabled, the protocol for calling a function must remain the
same whether a cache 1s provided or not. In actuality, another wrapper function is used, which
i1s not a method of the function cache object, and which calls the EVAL method. In the case of a
functional attribute without a cache, the wrapper function simply implements the basic semantics
of the function as the FILL method would. This detail is glossed in the pseudocode presented in this
chapter.

7.5 Calling a Maintained Function

Every functional attribute call takes place within a dynamic dependency context (DDC) as described
in the previous chapter. Previously, the DDC was always an AST node/visit number pair. We now
extend the definition of a DDC to consist of either a node/visit pair or a mapping (function cache
entry). Dynamic dependencies are created not only for selections; but also for calls to maintained
functions. When each dynamic dependency is created, its dependency successor will be available in
the DDC, as either a node/visit or a cached function call.

When a maintained function is called, a dynamic successor link (DSL) pointing to the current
DDC is added to the argument/result mapping accessed, and a backpointer is added to the DDC.
If a new cache entry had to be allocated to record the mapping, its argument slots are filled in and
then the body of the maintained function is performed using the new mapping as the DDC.

Upon entry to a visit, all dynamic dependencies supporting the visit are retracted. All of the
attribute evaluations scheduled for the visit are then performed again, re-establishing the correct
supports for the node and visit. It is possible, however, that a mapping that previously supported
the current node/visit is no longer needed. If the mapping no longer supports any context, it should
be reclaimed. A scan is thus performed over the original supports list upon exit from the visit, and
mappings with no successors are deleted. Figure 7.3 illustrates the handling of a call to a maintained
function from within an AST node visit.

80

ASTNODE

RETRIES ¢ 1 e | & - 4» NIL

HASHTABLE @

[

P
CACHE (durmmy)
SUCCESSORS @ T T
BACKLINKS @
RESULT fJ
ARG[1]
O
O
O
ASTNODE
RETRIES .
HASHTABLE e
*—— \ |
CACHE (durmmy) ' |
SUCCESSORS ® T T Lo
1
I
BACKLINKS @ | !
1
1
RESULT = fJ ! !
,
1
ARG[1] $ ¢ .. -—e $ /! !
PE TN - !
1
? | pled
N . R 1 !
N \ \ !
. N " /!
e R e
. -
I e KAT

Figure 7.1: The cache data structure for maintained functions. Two caches are shown, in which the
upper cache contains a mapping that supports another mapping in the lower cache.

81

method BodyCtx.VisibleBinding.EVAL (Ident)
table = self.HASHTABLE
entry = Hash_Lookup(table, [Ident])
if entry /= nil then % Cache hit.
% Make current DDC depend on the mapping, so that it
% will be notified if the cached mapping is invalidated.
Add_Dynamic_Predecessor_Mapping(entry)
% Return the cached result.
return entry.RESULT
else % Cache miss.
mapping = Create_Mapping()
% Point back to cache containing mapping.
mapping.CACHE = self
% Store arguments.
mapping.ARGS = [Ident]
% Make current DDC depend on the mapping, so that it
% will be notified if the cached mapping is invalidated.
Add_Dynamic_Predecessor_Mapping(mapping)
% Compute the result, using the new mapping as DDC.
let *ddc-context* = mapping in
% The ’FILL’ method actually computes the result.
result = self .FILL(Ident)
mapping.RESULT = result
% FEnter the new mapping in the cache.
Hash_Enter (table, [Ident], mapping)
return result

function Add_Dynamic_Predecessor_Mapping (mapping)
context = *ddc-context*
% Create new dynamic successor link.
dsl = Create_DSL()
ds1.SUCCESSOR = context
ds1.MAPPING = mapping
% Insert new DSIL into successor list of mapping.
DSLL_Insert(dsl, mapping.SUCCESSORS)
% Register backlink, depending on kind of DDC in effect.
typecase context of
operator:
visit = *ddc-visit#*
context.SUPPORTS [visit] = cons (mapping, context.SUPPORTS[visit])
mapping:
context .BACKLINKS = cons (mapping, context.BACKLINKS)

Figure 7.2: Evaluation of a maintained function using a wrapper method.

82

global *saved-supports* % Temporary stack using during AST traversal.

method SimpleVar.VISIT_1(Ctx)

% Remove all dependencies supporting this visit.
Stack_Push(self.SUPPORTS[1], *saved-supports#)
Retract_Support (self.SUPPORTS[1])
self.SUPPORTS[1] = nil

% Dynamically-bind DDC wvariables to node and wvisit

% during evaluation of attributes.

let *ddc-context* = self and *ddc-visit* = 1 in
% FEvaluate attributes here.

% Invoke maintained function (method of remote object).
Ctx.VisibleBinding.EVAL(TextOf (self.Name)) ...

% Clean up ’stale’ dependencies.
Commit_Retractions(Stack_Pop(*saved-supports*))
return ...

function Retract_Support(backlinks)
% Remove all dynamic dependencies that support
% the context to which 'backlinks’ belong.
foreach 1link in backlinks do
typecase 1link of
’nld’: NLDL_Remove (link)
’dsl’: DSLL_Remove (1link)

function Commit_Retractions (backlinks)

% Delete ’stale’ mappings, i.e., those that do not

% currently support any DDC.

foreach 1link in backlinks do

when link istype ’dsl’ then
mapping = link.MAPPING
when Empty_DSLL (mapping.SUCCESSORS) then
Delete_Mapping (mapping)

Figure 7.3: Calling a maintained function during a node visit.

83

7.6 Updating the Caches

Static dependencies involving functional attributes are approximated statically in the same manner
as any other kind of attribute. Thus each functional attribute is scheduled for evaluation during
some visit to the node to which it belongs. Furthermore, it is guaranteed that any other attribute
upon which the functional attribute might depend has been scheduled earlier in the AST traversal.

When the visit-sequence evaluator reaches a point in its traversal where the evaluation of a
functional attribute is scheduled, the cached function calls that have potentially changed are retried,
and the saved argument/result associations updated if necessary. If the incoming status is true,
every mapping in the cache must be retried. Otherwise, only those mappings that have been placed
on its retry list by an earlier change notification are retried. If any cached association is found
to have changed, its dynamic successors are then notified. The outgoing status for a maintained
function is always false as more precise change information is propagated to its successors via the
dynamic notification mechanism.

During retry, the supports for the mapping are retracted. They will be restored if still in effect
during the retry. After the retry i1s complete, the original supports are examined again, and any
mappings that are no longer needed are removed. This process is entirely analogous to the handling
of the supports list during a node visit, reflecting the fact that node visits and mappings represent
the two possibilities for the DDC.

Figure 7.4 illustrates the code generated for the evaluation (cache update) of the
BodyCtx.VisibleBinding function during a visit to a Block node. Most of this code reflects the
computation of the status attribute. The actual cache update 1s performed by the runtime support
routines in Figure 7.5.

If a successor DDC to be notified is itself another cache entry, it is placed on the retry list of
the function cache to which it belongs, and the containing node is marked for visits. Otherwise, the
DDC is an AST node, which is simply marked for visits. In either case, every call that observed
the changed association will eventually be retried at its normal place in the evaluation schedule as
determined by the static dependency analysis and encoded in the visit procedures. Figure 7.6 shows
the notification procedure.

Caching of function calls carries a cost in both space and time, and thus should be used only
where significant savings due to incremental evaluation are observed. The use of caching is optional,
and 1is enabled by the author of the language description where appropriate. The caching scheme
described here allows maintained and non-maintained functions to be mixed freely. Any dynamic
dependencies that cannot be charged to the immediately enclosing function call because it was not
cached are simply charged to maintained functions higher on the call chain, or to the node/visit
that initiated the outermost call. There is one special case that requires care. In Figure 7.4, we
could omit propagating the status value for a functional component to the remote call sites using the
NLDL mechanism, because the outgoing status value for a maintained function is always false. In
the case of a non-maintained function, the outgoing status value is significant, and must be handled
in the normal manner. Figure 7.7 shows the code that we would have generated had no cache
been provided for BodyCtx.VisibleBinding. Because a remote call site does not know whether
a functional component has been provided with a cache or not, it will always attempt to register
a non-local dependency. In the case of a non-maintained functional component, where we do not
create an NLDL, the registration method is a dummy which does nothing but return false.

84

method Block.VISIT_1(Ctx)

Stack_Push(self.SUPPORTS[1], *saved-supports#)
Retract_Support (self.SUPPORTS[1])
self.SUPPORTS[1] = nil

% Dynamically-bind DDC wvariables to node and wvisit
% during evaluation of attributes.
let *ddc-context* = self and *ddc-visit* = 1 in

LocalBinding_STATUS = ...

% Attribute 'Parent’ is in the closure for ’BodyCtz.VisibleBinding’
% and must therefore be saved within the AST.
parent = Ctx
self.BodyCtx_VisibleBinding_CHANGED = false
when parent.Add_NLD_VisibleBinding(0) then
% Status changed for ’Parent.VisibleBinding’, upon which
% ’BodyCtx. VisibleBinding’ depends.
self.BodyCtx_VisibleBinding_ CHANGED = true
unless parent == self.BodyCtx.Parent then
% 1If the new parent does not match the one currently saved as a
% component of 'BodyCtzr’, update it.
self.BodyCtx.Parent = parent
% Since ’'BodyCtz. Visible Binding’ references 'BodyCtx. Parent’,
% we must now mark its closure as changed.
self.BodyCtx_VisibleBinding_ CHANGED = true
% Notify any context that examines 'BodyCtz.Parent’ remotely.
NLDL_Notify(self.NLDL_Parent)
VisibleBinding_STATUS =
% The status of 'BodyCtz.Visible Binding’ depends on that
% of any functions or relations that it references, as well as
% any ordinary (scalar) attributes.
LocalBinding_STATUS and self.BodyCtx_VisibleBinding_ CHANGED
Update the cache, using the status to optimize.
It is not necessary to notify 'NLDIL_VisibleBinding’, as any remote
call sites accessing a changed mapping will be notified during
update.
Retry_Cached_Mappings (self.VisibleBinding, VisibleBinding_STATUS)

%
%
%
%

Commit_Retractions(Stack_Pop(*saved-supports*))
return ...

Figure 7.4: Evaluating (updating) a maintained functional attribute.

85

global *cache-changed#

function Retry_Cached_Mappings(cache, status)
cache-changed = false
if status == false then % Closure has not changed.
% Retry notified mappings only.
retries = cache.RETRIES
unless retries == nil then
foreach mapping in retries do
Retry_Mapping(cache, mapping)
cache.RETRIES = nil
return *cache-changedx*
else % Closure has changed.
% All mappings are potentially invalid. Retry all.
foreach mapping in cache.HASHTABLE do
Retry_Mapping(cache, mapping)
cache.RETRIES = nil
return *cache-changedx*

function Retry_Mapping(cache, mapping)
% The retried computations support the mapping being
% retried, therefore the retried mapping is the DDC.
let *ddc-context* = mapping in
% Remove all successor pointers to this node from our predecessors.
backlinks = mapping.BACKLINKS
mapping.BACKLINKS = nil
Retract_Support (backlinks)
% Retry function call.
result = cache.FILL(mapping.ARGS)
unless result == mapping.RESULT then % Result changed.
% Update cached mapping and notify successors.
mapping.RESULT = result
cache-changed = true
Notify_Mapping_Successors (mapping)
Commit_Retractions (backlinks)

Figure 7.5: Retrying the mappings for a maintained function.

86

function Notify_Mapping_Successors (mapping)
% Force retry of dependent DDC.
foreach succ in mapping.SUCCESSORS do
typecase succ of
operator:
% Force wvisit to node.
Notify_Change (succ)
mapping:
cache = succ.CACHE
% Put mapping on retry list for cache.
cache.RETRIES = cons(succ, cache.RETRIES)
% Force visit to node so cache will be updated.
Notify_Change (cache.ASTNODE)

Figure 7.6: Notifying the DDC when a mapping changes.

7.7 Loose Ends and Housekeeping

Allowing the DDC to consist of a mapping record requires a small change to the code for tracking
component selection dependencies (NLDs), as the DDC for the selection may be a mapping instead
of a node/visit. Dynamic selections (changes to which are not reflected in the status attributes) from
within both functional attributes and ordinary semantic functions generate dynamic dependencies,
and are treated similarly to calls of maintained functional attributes. When called with a null index
value, selection registration methods add a DSL to the non-local dependency list for the selected
component, pointing to the current DDC. Notification and retry proceed as for calls to functional
attributes. The revised versions of the selection registration method and the notification procedure
are shown in Figure 7.8.

When a mapping is deleted from its cache, all of 1ts successors must be notified. When a node
containing the cache for a function is destroyed, all of the successors of the mappings it contains
must be notified, though we can simply abandon the entire cache and need not actually remove its
mappings from the hash table. When a node is destroyed, there may still be cache entries within
the AST supported by its mappings. This will be corrected during the AST traversal, but may
result in the attempted redundant deletion of those mappings. A reserved value, denoted here as
"DELETED", is stored in the backlinks slot to mark deleted mappings and thus suppress duplicate
deletions. Figure 7.9 shows the code for handling the deletion of mappings, including destruction of
the cache when its containing node is removed from the AST.

While we call them “attributes” in ADL, entities declared at top-level in an analysis description,
and which are not a part of an AST node, are not true attributes in the formal sense of attribute
grammars. Since they are evaluated only once at initialization time, we cannot apply the cache
maintenance protocol described here. Caches are thus never provided for global functions.

7.8 Related Work

Vogt, Swierstra, and Kuiper [75] have applied caching to the visit functions for evaluating OAGs in
order to build an incremental evaluator for classical AGs in a functional setting. They extend their

87

method Block.VISIT_1(Ctx)

Stack_Push(self.SUPPORTS[1], *saved-supports#)
Retract_Support (self.SUPPORTS[1])
self.SUPPORTS[1] = nil

let *ddc-context* = self and *ddc-visit* = 1 in
LocalBinding_STATUS = ...

parent = Ctx
self.BodyCtx_VisibleBinding_CHANGED = false
when parent.Add_NLD_VisibleBinding(0) then
self.BodyCtx_VisibleBinding_ CHANGED = true
unless parent == self.BodyCtx.Parent then
self.BodyCtx.Parent = parent
self.BodyCtx_VisibleBinding_ CHANGED = true
% Notify any context that examines 'BodyCtz.Parent’ remotely.
NLDL_Notify(self.NLDL_Parent)
VisibleBinding_STATUS =
LocalBinding_STATUS and self.BodyCtx_VisibleBinding_ CHANGED
% As there is no cache for 'Ctx.VisibleBinding’, we cannot determine
% if any mappings changed, nor can we notify nonlocal successors on
% the basis of mappings actually observed. We thus conservatively
% force a full invalidation of our immediate successors.
when VisibleBinding_STATUS then
NLDL_Notify(self.NLDL_VisibleBinding)

Commit_Retractions(StackPop (*saved-supports*))
return ...

Figure 7.7: Evaluating a non-maintained functional attribute.

88

method VarEntity.Add_NLD_Type (idx)
context = *ddc-contextx*
nld = create_NLD()
nld.CONTEXT = context
nld.SELECTION = idx
NLDL_Insert (nld, op.NLDL_Type)
if idx == nil then % Registering dynamic selection.
typecase context of
operator:
vigit = *ddc-visit*
% Add NLD link to supports list for this node/visit.
context.SUPPORTS[visit] = cons(nld, context.SUPPORTS[visit])

mapping:
context .BACKLINKS = cons(nld, context.BACKLINKS)
% Result is ignored for dynamic registrations.

return false
else % Registering static selection. Context must be AST node.

if context.SELECTIONS[idx] == nil then
context.SELECTIONS[idx] = nld
return true

else
NLDL_Remove (context.SELECTIONS [idx])

context.SELECTIONS[idx] = nld
return false

function NLDL_Notify(nldl)
foreach elt in nldl do
context = elt.CONTEXT
idx = elt.SELECTION
typecase context of
operator:
unless idx == nil then
% Static selection.
NLDL_Remove (elt)
context.SELECTIONS[idx] = nil
Notify_Change (context)
mapping:
cache = context.CACHE
cache.RETRIES = cons(context, cache.RETRIES)
Notify_Change (cache.ASTNODE)

Figure 7.8: Revised handling of selection dependencies.

89

function Delete_Mapping (mapping)
backlinks = mapping.BACKLINKS
unless backlinks == "DELETED" then
unless Empty_List (mapping.SUCCESSORS) then
Notify_Mapping_Successors (mapping)
Hash_Remove (mapping.CACHE.HASHTABLE, mapping.ARGS)
mapping.BACKLINKS = "DELETED"

function Destroy_Function_Cache (cache)
foreach mapping in cache do
Retract_Support (mapping.BACKLINKS)
mapping.BACKLINKS = "DELETED"
Notify_Mapping_Successors (mapping)

Figure 7.9: Deletion of cached mappings.

method to include a variant of attribute grammars they call higher-order attribute grammars (HAGs),
in which AST-valued attributes may themselves be recursively attributed. Higher-order attributes
may be used to model functions, allowing the dynamic call tree to be reified as an explicit data
structure, which, in conjunction with caching, permits re-use of computation in a manner similar to
our use of maintained functional attributes. Swierstra and Vogt have explored this technique [71],
including an application to incremental name resolution.

Pugh [61] explores function caching as a general technique for incremental computation. Al-
though he discusses the application of function caching to classical incremental attribute evaluation,
he is concerned principally with general recursive programs apart from attribute grammars. In
common with Swierstra and Vogt, cache housekeeping is not adequately addressed, permitting the
cache to contain stale entries, or entries that were flushed prematurely and must be unnecessarily
regenerated.

Hoover’s Alphonse program transformation system [37] pioneered the combination of topological-
order change propagation and function caching. In response to user-supplied annotations, calls to
functions and methods in an imperative object-oriented language can be cached to permit efficient
incremental execution. Because Alphonse supports unrestricted imperative programming, all depen-
dencies, including those between scalars, must be recorded dynamically in general, though Hoover
suggests the use of flow analysis to exploit static dependencies opportunistically. The shape of the
dependency graph is completely under program control and changes as the program executes, thus
the highly-effective static dependency analysis methods applicable to attribute grammars cannot be
used. Alphonse is forced to use a complex dynamic node-priority labeling algorithm in order to per-
form change propagation in topological order. Our approach to change propagation for maintained
functional attributes 1s essentially the same as Hoover’s, but exploits the extensive static analysis
permitted by AGs. All dynamic dependencies in our system merely refine coarser dependencies used
in generating the visit-procedures. We then can enumerate the function caches in topological order
during the tree walk, skipping visits and cache updates when the absence of a recorded dynamic
dependency warrants it.

90

Chapter 8

Relational Attributes and
Collections

Conceptually, relations generalize functions by removing the a prior: distinction between arguments
and results. Relations may also be used to model functions in which an argument is mapped into
multiple results. Operationally, however, our treatment of relations is weaker and less efficient than
that of functions, making the use of functions preferable where possible. Both global relations and
relational attributes are supported. Collections are an alternative realization of relations which are
more convenient to use in many cases, and which trade off some generality for a highly-efficient
implementation.

8.1 Representation of Sets using Relations

Relations in ADL are most appropriately used for modeling sets, as their operational semantics
result in the complete enumeration of the set of tuples that constitute the relation, in contrast to
the generation of tuples “on demand” in the case of functions. Effectively, the operational semantics
assumes that all of the elements in the tuples of a relation are results, not arguments, even though
element values that are known at the relation query site will probably be viewed conceptually as
arguments by the description writer.

In the analyzer for Example, the bindings created locally within each scope are collected in the
synthesized relational attribute Binds of declarations and declaration sequences:

relation Binds (String, Entity);

Initially, each declaration provides a single tuple to its Binds relation, representing the binding
created by that declaration:

VarDecl.Binds(Var.Text, Var0Obj);

Here, the single rule for the relation VarDecl.Binds is an unguarded unit clause representing the
binding of the string name of the variable to the VarObj entity that represents it. The analyze
construct for the sequence of declarations decomposes the sequence recursively into smaller subse-
quences until only singleton declarations remain (Figure 4.22). The binding sets for the subsequences
are then combined:

91

Decls.Binds(Ident, Ent) :- d1.Binds(Ident, Ent);
Decls.Binds(Ident, Ent) :- d2.Binds(Ident, Ent);

The resulting set of bindings is then installed in the Contour object of the surrounding Block
statement:

object BodyCtx : NormalContour
where

Binds (Ident, Ent) :- Decls.Binds(Ident, Ent);
end BodyCtx;

Relational attributes are implemented as generators, i.e., as procedures that repeatedly invoke a
procedural argument with successive values of the tuples of the relation, arranged in an arbitrary
order. We thus specify that the Binds component of the object be explicitly materialized, as it is
more efficient to enumerate the tuples from such a representation than to generate them afresh upon
each access.

8.2 Implementing Relations as Generators

Relational attributes are rendered in the target language as procedures, that is, a method with a
null or unspecified result. These procedures are embedded within the AST in exactly the same
manner as functional attributes. The procedure representing each relational attribute, called its
generator, takes a single argument, called a continuation, which is itself a procedure with one
argument for each column (i.e., argument) of the relation. A relation is queried by invoking its
generator with a continuation that is prepared to perform the processing desired on each tuple
yielded by the generator. The generator for VarDecl.Binds simply invokes its continuation on the
pair of arguments consisting of the textual name of the child Var (an identifier lexeme) and the
object VarObj:

method VarDecl.Binds (CONT)
CONT (TextO0f (self.Var), self.Var0bj)

The arguments are simply passed on through the internal sequence nodes belonging to the analyze
construct within AST operator Declarations. The interesting case is the pairing operator:

method DeclList_Decls_PAIR.Binds (CONT)
self.LEFT.Binds (lambda(x, y){ CONT(x, y) })
self.RIGHT.Binds (lambda(x, y){ CONT(x, y) })

The resulting relation is then passed on to the DeclList operator itself with a simple copy rule:!

method DeclList.Binds (CONT)
self.Decls.Binds (lambda(x, y){ CONT(x, y) })

Like functional attributes, relational attributes must be synthesized. Inherited relational attributes
are not permitted. This restriction arises from the same implementation concerns as in the functional
case.

1The expression lambda(x, y){ CONT(x, y) } can be simplified to CONT using the familiar rule of n-reduction.
Our implementation does not do this, however.

92

8.3 Maintained Relations

Generating a relation afresh upon each occasion where it is queried may be very expensive. Further-
more, the evaluator cannot easily determine if a relation value has changed, thus every immediate
successor to a relation must be re-evaluated upon every incremental re-analysis. To avoid these
costs, relations may be cached. We call such relations maintained relations. The implementation
of maintained relations is similar to that of maintained functions, but i1s simplified somewhat by
the fact that the entire relation is cached as a unit. Since tuple-level dependencies among relations
are not recorded, partial update is not possible. The entire relation cache then functions in a role
similar to the mapping records used in the functional case, as if there were a single such record to
represent the totality of the relation.

A relation cache is represented in the compiled description as an object in the target language.
The slots of the object include:

e A pointer back to the AST node containing the cache.

e A wvalid flag indicating whether the cache has been notified.

e A hash table containing the tuples of the relation.

o A list of backlinks pointing to DSL records that refer to this relation as their successor.

By using a hash table to store the tuples, we make sure that each tuple is represented only once.
It is possible for a relation generator to yield the same tuple multiple times. While this cannot
affect the semantics, 1t can have an adverse affect on efficiency. Maintained relations thus serve the
subsidiary purpose of duplicate suppression.

Queries to a maintained relation are handled by the GEN method of the cache, which simply
enumerates the contents of the hash table. When the cache is invalidated, it is reloaded using the
FILL method, which implements the uncached semantics of the relation. As in the case of functional
attributes, the GEN method is called indirectly via a wrapper function, which, in the case of a
non-maintained relation, implements the uncached semantics directly.

A relation cache must be invalidated if its contents no longer agree with those that would be
generated by its FILL method. In general, we can determine the results of the FILL method only by
invoking it, but we only do so when a conservative approximation indicates that a change is possible.
In exactly the same manner as for functional attributes, we propagate a status attribute for each
relation (maintained or non-maintained) which is true, indicating a potential change if:

e The value of a scalar attribute (including object references) referenced in the relation body
has changed.

e A selection of an object component via a reference-valued attribute has been notified, indicating
that the value of the component has changed.

e The status attribute of a functional or relational attribute called within the relation body has
the value true indicating that the relation may possibly no longer yield the same result.

e The identity of the node from which the status value for another functional or relational
attribute was received has changed due to a modification to the structure of the tree.

93

method Block.VISIT_1(Ctx)

% Invoke child visit to declaration list.
% Result is status of attribute ’Decls. Binds’.
Binds_STATUS = self.Decls.VISIT_10)
% 1If the child pointer has changed, the status value from the
% child visit is not reliable.
Binds_STATUS = Binds_STATUS or self.CHILD_MODIFIED[1]
% Retry maintained relation if needed, determining exact change status.
Binds_STATUS = Retry_Cached_Tuples (self.BodyCtx.Binds, Binds_STATUS)
when Binds_STATUS then
% Notify dynamic successors.
NLDL_Notify(self.NLDL_Binds)

% Since this is the last visit to 'Block’, clear the
% 'CHILD_MODIFIED’ flags.
CHILD_MODIFIED[1] = false

return

Figure 8.1: Evaluating (updating) a maintained relational attribute.

Changes to the tree structure are recorded in a vector of child-modified bits in each node, one
for each child. The incremental parser sets a bit whenever it changes the value of the corresponding
child pointer. These bits are cleared upon exit from the last visit to each node.?

In the case of a non-maintained relation, we simply accept this approximation as the authoritative
change information. In the maintained case, the incoming status value is used to determine if the
cache should be refilled. If a refill is required, the evaluator compares the new contents with the
old, and indicates a true outgoing status only in the case that the contents of the relation have
actually changed. Figure 8.1 shows the evaluation of the relational attribute BodyCtx.Binds in the
Block statement. The actual cache update is performed by a runtime support procedure shown in
Figure 8.2. Each tuple contains a flag bit MARK, which simplifies determination of whether the cache
contents have changed following update.

When a relation cache is filled, dynamic dependencies may be created that are not covered by
the incoming status value. These must be charged to the relation cache itself, so that notification
via these dependencies will result in update of the cache. We thus extend the DDC once again, so
that it may now be a relation cache, a mapping record, or a node/visit pair. Whenever a dynamic
dependency link is created that indicates a relation cache as its successor, the link (whether an NT.D
or a DSL) must be added to the backlinks list belonging to the relation cache. Notification of a
relation cache clears the VALID flag associated with the cache, and marks the node containing the
cache for visits during the AST traversal. The cache will thus be considered for update if either it
has been notified, or if it receives an incoming true status value. In the former case, the update
is performed only if the VALID flag is false, as the node visit may have been scheduled on behalf of

2 A single child-modified bit per node can be used by setting the bit in the new child rather than the old parent.
This is not done in our present implementation for obscure technical and historical reasons specific to the incremental
parser and AST representation that we use.

94

function Retry_Cached_Tuples(cache, status)
if status == false and cache.VALID then
% Cache cannot have changed. Relation is up-to-date.
return false
else
% Cache may have changed. Regenerate cache contents.
table = cache.HASHTABLE
backlinks = cache.BACKLINKS
cache.VALID = true
cache.BACKLINKS = nil
changed = false
Retract_Support (backlinks)
% The relation cache is the DDC for the generation of the relation.
let *ddc-context* = cache in
cache.FILL (lambda(a;, a2, ..., an)
{
tuple = Hash_Lookup(table, [ai, a2, ..., anl)
if tuple == nil then
% New tuple.
changed = true
tuple.MARK = true

tuple.ARGS = [ai, az, ..., an]
Hash_Enter(table, [ai, a2, ..., anl)
else

% Old tuple.
tuple.MARK = true
1)
Commit_Retractions (backlinks)
foreach tuple in table do
if tuple.MARK then
% Clear "MARK’ in preparation for next update.
tuple.MARK = false

else
% This pre-existing tuple is no longer a member of the relation.

changed = true
Hash_Remove (table, tuple.ARGS)
return changed

Figure 8.2: Updating a maintained relation.

95

some other attribute. Figure 8.3 shows the changes required to the handling of DSLs, i.e., dynamic
dependencies generated by cached function calls. Similar changes are needed for NLDs;, i.e., dynamic
dependencies generated by component selections.

8.4 Collections

Relational attributes must be propagated locally from node to node like any other attribute. ADL
language descriptions typically provide their interface to clients via a number of global relations
declared at top-level within the language description. Ordinary relational attributes require that
the clauses that define them be included within the same scope as the declaration of the attribute.
It is thus not possible to define the contents of an ordinary global relation using clauses appearing
with the AST operators. This raises the question of how information computed during attribution
of the AST can be transmitted to the exported global relations.

A collection is a special kind of relation that can be declared only at top-level, and whose
defining clauses may appear anywhere within the language description. Collections are restricted
in that they may not be queried within the language description, but only by external clients. As
a result, collections cannot introduce any dependencies between attributes. The execution of the
clauses of a collection may be interleaved in arbitrary order with other attribute evaluations. This
obviates the primary reason for restricting conventional attributes to node-by-node propagation,
namely, the need to provide a local description of the attribute dependencies from which a feasible
global evaluation schedule may be derived.

In the analyzer for Example, a collection is used to associate error messages for the user with
the AST nodes to which they apply:

collection Error(Node, String);

Within the AST operators, error messages are conditionally asserted into the collection by rules such
as this one:

Error (Name, "Multiply-declared identifier") :-
TypeDecl.Ctx.Duplicate(Name.Text, TypeObj);

The contents of the collection are the complete set of tuples for which the condition is satisfied.
Rules asserting tuples unconditionally, or which assert multiple tuples are also permitted, just as in
the case of an ordinary relational attribute.

8.5 Implementing Collections

Collections admit a particularly simple and efficient method of incremental evaluation. The
SUPPORTS lists for each node contain backpointers to the collection tuples asserted on the corre-
sponding visit. Upon entry to a visit procedure during an incremental update, the tuples asserted
in the previous visit are removed, and are regenerated during the current one. Collection tuples
are stored 1n a hash table to eliminate duplicates, since it is possible that the same tuple may be
asserted more than once.? Each tuple thus contains a multiplicity count that indicates how many
assertions are outstanding. Deletion of a tuple merely decrements its multiplicity, and the tuple is

3 Uollection tuples may actually be stored in multiple hash tables, as many as one per column of the relation,
permitting efficient indexed query. This feature has not been fully implemented at the ADL source-language level,
however. By default, every collection is indexed on its first column.

96

function Add_Dynamic_Predecessor_Mapping (mapping)
context = *ddc-context*
dsl = Create_DSL()
ds1.SUCCESSOR = context
ds1.MAPPING = mapping
DSLL_Insert(dsl, mapping.SUCCESSORS)
% Register backlink, depending on kind of DDC in effect.
typecase context of
operator:
visit = *ddc-visit#*
context.SUPPORTS [visit] = cons (mapping, context.SUPPORTS[visit])
mapping:
context .BACKLINKS = cons (mapping, context.BACKLINKS)
relcache:
% DDC is a relation cache.
context .BACKLINKS = cons (mapping, context.BACKLINKS)

function Notify_Mapping_Successors (mapping)
foreach succ in mapping.SUCCESSORS do
typecase succ of

operator:
Notify_Change (succ)

mapping:
cache = succ.CACHE
cache.RETRIES = cons(succ, cache.RETRIES)
Notify_Change (cache.ASTNODE)

relcache:
% DDC is a relation cache.
% Mark cache invalid and force a wvisit to its AST node.
succ.VALID = false
Notify_Change (succ.ASTNODE)

Figure 8.3: Revisions for DSL handling in the presence of maintained relations.

97

actually removed from the hash table only when its multiplicity drops to zero. To avoid extraneous
removal and re-creation of tuples, we refine this scheme further, pushing tuples whose multiplicity
has dropped to zero onto a temporary stack, which is then scanned at the end of the update. If the
tuple has been re-asserted, raising its multiplicity to a non-zero value, the tuple is retained. Tuples
whose multiplicity remains zero are removed. With this refinement, the algorithm can provide notifi-
cation to external clients of exactly which tuples were added to and removed from a collection during
an incremental update. We provide a means for clients to register interest in these notifications via
callback procedures.

8.6 Related Work

Abramson’s Definite Clause Translation Grammars [1] are essentially attribute grammars in which
all attributes are synthesized relational attributes. His implementation is embedded in Prolog,
whose “call by unification” parameter passing scheme allows data to flow in both directions, thus
obtaining the effect of inherited as well as synthesized (non-relational) attributes. He does not
discuss incremental evaluation.

Sataluri and Fleck [69] defines a variant of attribute grammars in which both inherited and
synthesized relational attributes are permitted. They are concerned principally with extending the
expressiveness of attribute grammars as a specification formalism, and do not discuss implementa-
tion other than to note that the logic program induced by a particular AST may be evaluated by
conventional means as an ordinary logic program.

Our notion of collections is borrowed from Horwitz [39] and Horwitz and Teitelbaum [38], who
carry the idea further by allowing the definition of incrementally-maintained derived relations. Al-
though they call their technique “relational attribution,” the relations are all defined at top-level,
and do not decorate the tree. Only the assertions actually appear within the AST operators.

Colander [4] provided collections as first-class objects that could be transmitted as data values
within the language description. We eschew this generality in the interest of efficiency. Our relational
attributes are much more amenable to static analysis than Colander’s first-class collections.

Hedin’s objects [32] may possess a special kind of component called a “collection,” distinct from
our usage of the term, which may be constrained to contain certain members remotely at sites
where a reference to the object i1s available. We considered generalizing our collections to permit
collections local to an AST operator, including use as an object component, and to permit other
attributes to depend on their contents. Because information flows into a collection in the reverse
direction from the nominal direction of attribute flow, however, the usual static analysis would fail.
Unlike Hedin, we were not willing to rely on unchecked manual analysis. For this reason, we rejected
the extension. It came to our attention recently, however, that the fibering mechanism developed in
the next chapter provides a simple solution to this difficulty, suggesting that our collections might be
extended to encompass Hedin’s without compromising the integrity of the automated dependency
analysis.

98

Chapter 9

Incremental Evaluation in Review

In the last three chapters, we have introduced a great deal of complicated machinery to support
objects, functional attributes, and relational attributes. Underlying these mechanisms, however, are
a small number of simple ideas. In this chapter, we attempt a unifying overview, and then discuss
performance issues and potential improvements.

9.1 A Unified View of Incremental Evaluation

We begin by observing that the need for all this machinery arises solely due to our concern with
incremental evaluation. In a batch evaluator, the implementation of objects, functional attributes,
and relational attributes is a straightforward exercise. Our approach to incrementality has two
essential facets that, in combination, account for the proliferation of mechanism we have seen.
The first facet is the pervasive use of caching, which appears in several guises. Though different
mechanisms are used to cache visits, functions, and relations, the essential effect is the same in each
case. The cached computation may be avoided if we know that it must return the same value as
it did on a previous evaluation when the cached result was determined. The second facet is the
refinement of coarse static dependencies with precise dynamic dependencies. Maintaining precise
dynamic dependency information at runtime is essential to exploit the potential for incremental
evaluation in the presence of aggregate attributes. By assuring that all such dependencies are
covered by those assumed statically at evaluator generation time, however, we avoid the need to
perform scheduling at runtime. Dynamic dependencies are used only for cache invalidation, which
simplifies their management considerably.

9.1.1 Caching

Maintaining caches for functions and relations may have some value even in a batch-mode evaluator.
Caching function calls may significantly improve the efficiency of some functions that are repeatedly
called at the same argument values. For example, the doubly-recursive rendering of the Fibonacci
function requires exponential time when naively implemented, but only linear time when memoized.
Caching of relations in a generator-based implementation such as ours may save time when the
same relation 1s queried many times. Nonetheless, the essential role of caching in our system is to
permit incremental evaluation, toward which all of the particulars of our design are directed. Other
functions that may be served by caching are incidental to our design goals and to this discussion.
Caching, including that of visits by retention of attributes at anchor points in the tree, is the

99

enabling mechanism for incremental evaluation. Only by retaining the result of a computation in an
earlier analysis is 1t possible to avoid performing that computation again in a subsequent analysis.
Once a mechanism for retaining and reusing results is in place, however, it is necessary to avoid
re-using cached results that are no longer valid, lest correctness be compromised.

We use two distinct strategies to avoid using cached results that are no longer valid. When the
predecessors of the cached computation are immediately available and cheaply compared, e.g., the
inherited scalar attributes of a cached visit, we can simply compare the current values with the values
saved from the previous evaluation, on the basis of which the cached result was computed. This
treatment 1s not appropriate for long-distance attribute dependencies, however. In that case, it most
appropriate to test for a change at the time that an attribute is updated, and then invalidate the
affected caches remotely via notification. Although the mechanics of notification for visits, function
caches, and relation caches all differ in detail, the effect is always to cause the re-evaluation of
(at least) the innermost cached successors of the changed attribute. All uncached successors will
necessarily be re-evaluated up to and including the innermost cached successors, as it is only a cache
“hit” that can cut short a full batch-mode re-evaluation. The dynamic dependency context (DDC)
represents the innermost cached successor of all function calls and selections performed while it 1s
in force, thus allowing the successor to be identified correctly by the dynamic dependency links. For
functions and relations, change detection itself is intimately tied up with caching, as it is only within
a function or relation cache that the extension of a function or a relation is explicitly represented and
thus subject to examination and comparison. To allow for the possibility that a function or relation
might not be provided with a cache, we may conservatively approximate the change status of the
function or relation by assuming that it must have changed if any of its predecessors have changed.
The effect is to fall back temporarily to batch-mode operation when caches are not available, as their
lack precludes both the possibility of cache hits and the availability of precise change information.

The notification of a selection when an object component has changed is actually a form of cache
invalidation. When the target of the notification is a tree node, the visits that are forced due to
marking of the spine of the AST include all of those that might compute a synthesized attribute
value invalidated by the change. TIf the target is a function cache (i.e., a cached mapping) or a
relation cache, the spine is also marked, but with the different purpose of merely assuring that the
evaluation traversal reaches the affected cache, which 1s itself marked invalid.

9.1.2 Dynamic Refinement of Static Dependencies

In the classical dependency model, aggregation of values into composite data structures precludes
the ability to account for their dependencies separately. The dependency of another attribute upon a
component of a composite data structure is carried by the dependency on the structured value itself,
which is then in turn dependent upon its components. The result is that the dependencies involving
the components are coalesced, yielding a coarse approximation to the true dependencies. In some
cases, it would be possible to rewrite the AG so that the components were separate attributes, or to
use techniques such as fibering (presented in the following chapter) to avoid this loss of precision. In
general, however, e.g., when the number of components is determined at runtime, or is potentially
unbounded, we cannot expect to obtain precise information statically at evaluator generation time.

Our strategy, then, is to perform an initial static analysis based on the classical imprecise (ag-
gregated) dependencies, and to schedule the attribute evaluations and construct the visit sequences
based on that analysis. Whether a scheduled evaluation will actually be performed at runtime de-
pends on where caching takes place and whether cache retrievals hit or miss. Since we maintain
a separate dynamic dependency link at runtime for each object component, the invalidations per-
formed when a component is changed affect only the cached visits (or other successors) that depend

100

on that component via selection. For the case of function caching, we similarly “split” the original
coarse dependencies on the entire function value into separate dependency traces for the value of
the function at each distinct tuple of arguments. The more precise dynamic dependency links result
in accurate cache invalidation, without requiring dynamic scheduling.

9.2 Using Caching Effectively

The maintenance of caches and dynamic dependency links represents a substantial cost in space
and time. In general, it is a good idea to cache as little as possible consistent with maintaining a
sufficiently small granularity of incremental re-evaluation. For example, a reasonable policy might be
to re-analyze at the granularity of individual top-level forms, as is common in hand-coded incremental
analyzers. In our description for Example in Chapter 4, we re-analyze at the level of individual
declarations and statements.

To a first approximation, the granularity of re-evaluation is controlled by the use of the anchor
pragma, which relates to the granularity in a fairly intuitive way. Failure to provide caches for func-
tions and relations at appropriate points, however, may result in spurious notifications that thwart
the description writer’s intent as expressed in these pragmas. In the case of functional and relational
attributes whose values may be accessed non-locally, i.e., which appear as object components, the ef-
fect of spurious notifications due to imprecise change information may be widespread. Caches should
thus almost always be maintained for such attributes. Caching assures that the outgoing change
status computed for the function or relation is absolutely precise. In other cases, where the attribute
is accessed only locally, the benefits of caching are more limited, while nonetheless incurring the full
cost. The cost of caching includes not only the time involved in manipulating the cache entries,
but the space overhead for the dynamic dependency links. Retrying a large relation cache, however,
may be expensive, and if caching a local predecessor can reduce the number of retries, it may be
worthwhile. There are no general rules, and careful consideration of the details of the particular
language description is in order. Since the caching pragmas can affect neither the correctness nor
the well-formedness of the description with respect to circularity, the caching strategy can be tuned
based on experimental feedback.

9.3 Improving the Treatment of Relations

Our present treatment of relational attributes does not provide the same degree of fine-grained
incrementality that we provide for functions. It may thus be advisable in some cases to avoid their
use where they would otherwise be highly appropriate. In this section, we discuss avenues for possible
improvements in future work.

Our implementation of relations does not exploit the potential for a dependency successor of a
relation to depend only upon the presence or absence of a specific tuple or subset of tuples. Given
our operational semantics, however, in which the instantiated arguments of a query are not used
to restrict the set of tuples enumerated by the generator function for the queried relation, tracking
dependencies in this way doesn’t make sense. Every query must necessarily depend on any change
to the relation, since the query gives the relation no information about which tuples it actually cares
about.

In Prolog, a relation can be defined with no prior commitment to the information that must be
supplied by its queries. The implementation of Prolog relies, however, on the use of logical variables
and unification, which we have avoided by design in ADL. In ADL, every relation argument is
an output argument, thus the queried relation receives no information from the query context.

101

Input arguments, however, could be handled as well, without the introduction of logical variables,
if the relation could be compiled with the knowledge that every query would provide values for
those arguments. The input arguments would simply become arguments to the generator function
implementing the relation, rather than to the continuation that the generator invokes. We thus
propose that relations be declared with directional annotations on their arguments, specifying which
are required to be expressions, and thus evaluable (input arguments), and which may be pattern
variables, and thus bound by the query itself (output arguments). For example, the Binds relation
in the example of Chapter 4 could be declared as follows, where the “~” symbol indicates an input
argument and the “+” symbol indicates an output argument:

relation Binds(-String, +Entity);

Collectively, the annotations define the mode of the relation, in the same manner as the optional
mode declarations supported by many Prolog compilers. Relations may then be indexed on their
input arguments, allowing faster queries, as well as enabling fined-grained tuple dependencies.

While we suspect that usage at a single mode will be sufficient for most relations, mode restric-
tions do imply a loss of expressive power. A relation in which all arguments are of output mode is
the most general in the sense that it can be queried at any mode, though sometimes rather ineffi-
ciently. Relations that restrict some arguments to be instantiated, however, are essentially set-valued
functions. Because a mode restriction is essentially a pragmatic issue, we would like to treat mode
annotations as pragmas, to be concealed in the body of the analysis description. Unfortunately,
mode annotations would have to be included in the schema as well, as they would be a necessary
part of the interface to an exported relation as seen by its clients.

Statically moded relations restricted to require instantiated input arguments may be implemented
in a manner that extends the existing treatment of maintained functions in a relatively straightfor-
ward way. Queries may record dependencies using a list of dynamic successor links for each relation
tuple. Relation queries differ from function calls, however, in that the query may “return” more
than once, yielding multiple result tuples, and may also fail entirely, yielding no tuples at all. In
the event that the query fails, a dependency on this fact must be recorded, as the subsequent ad-
dition of a new tuple may allow it to succeed. Ballance’s Colander system uses a tuple placeholder
called a hole, which is a partially-instantiated tuple (containing variables in general) that matches
only those ground tuples that satisfy the query that created it. When a new tuple is added, any
holes that match it are deleted, and their dependency successors are notified of the change. In a
statically-moded context such as ours, we can index a relation on all of its input arguments in the
same way that we index a function cache on the arguments of the function. A check for matching
holes, then, becomes as efficient as an ordinary tuple lookup.

The method we suggest here further extends the “notify and retry” paradigm that is pervasive
in our approach to incrementality. Horwitz [39] implemented a scheme that adheres more closely
to the traditional “change propagation” model, in which sets of tuples added and deleted from a
relation are propagated to its successors in an apparently eager, data-driven manner. In reality,
the implementation of her method uses generator functions much like ours. Although Horwitz’s
relations do not decorate the tree as attributes, her generators could most likely be adapted to
support such attribution in the same manner as ours. One advantage of her method is that it
can handle queries at any mode, and, like ours, need not maintain every relation in materialized
form. On the downside, however, it is considerably more complex. Additionally, separate provision
must be made for non-local dependencies, while the method we propose handles both fined-grained
dependencies and non-local dependencies with a common mechanism. A hybrid approach might be
workable, and would be worth investigating.

102

9.4 Performance Measurements

We have implemented the incremental evaluation method described here as an extension to the Pan
language-based environment. The particulars of the implementation are presented in Chapter 11.
In this section, we report on the performance of the method as embodied in this prototype imple-
mentation. We have instrumented the implementation to measure the actual execution time during
semantic analysis, as well as to maintain counts of interesting evaluation-time events, including node
visits, cache hits and misses, and notifications. Both the generated code and the runtime support
routines are written in Common Lisp, and favor clarity and implementation expediency over execu-
tion speed, with little attempt at optimization. For this reason, the absolute timings should not be
taken as indicative of the performance to be expected of a production-quality implementation. On
the other hand, the execution times for incremental updates relative to that for the initial analysis
provides a measure of the performance increase due to incrementality. The event counts provide
insight into the operation of the algorithm, as well as some evidence for where the costs lie.

For our experiments, we used the language description presented in Chapter 4 for the language
Example. We performed the measurements using the program in Figure 9.1. For compactness, we
have elided three repeating groups of statements, as indicated in the figure. The actual program
is 613 lines long. Selected lines are labeled with a letter of the alphabet, and will be referred to
by that label in subsequent discussion. Where a labeled line appears within a repeating group of
statements, the label applies to the earliest occurrence.

In the first set of experiments, each edit consisted of adding or removing a single line, re-analyzing
after each change. The table in Figure 9.2 shows the results. The first line of the table gives the
results for the initial full analysis of the program before any changes were made. The program
was loaded, analyzed, then loaded and analyzed again so that the timings for the initial analysis
would not be penalized for the initial page-in of the analyzer code. A sequence of changes were then
made, indicated using the notation [+ for a line insertion and /- for a line deletion, where [is the
alphabetic label of the affected line. In each case, we report the number of errors discovered by the
analysis, the number of node visits actually performed by the evaluator, the number of visits that
were pruned by visit cache hits, and execution times for two separate runs. Execution times are
reported in milliseconds, as reported by the Common Lisp function get-internal-runtime. While
this function returns the time in units of milliseconds, the elapsed times appear to be quantized
to multiples of approximately 1/60th of a second, or 16.67 milliseconds, and should be interpreted
accordingly. In a couple of cases, we repeated a measurement that had obviously been affected by
garbage collection or unusual system activity.

We find that the algorithm is quite effective in pruning node visits, although the effect is notice-
ably more pronounced, as we might expect, for statements as well as for declarations of names that
are not widely used. As currently coded, our language description requires that every declaration
in a contour be visited whenever any of its sibling declarations is inserted or deleted, due to the
way that we test for multiply-declared identifiers.! When interpreting the visit counts, the reader
should remember that a visit cache hit prunes the traversal of an entire subtree, which may contain
an arbitrary number of nodes. A better measure of the work saved by visit caching is the difference
between the number of visits performed during the incremental analysis and the number performed
in the initial analysis.

Figure 9.3 shows detailed event counts for the same sequence of edits. They show the cost of
our current naive treatment of relations. Every time a declaration is added or removed, the Binds

LA more efficient approach would delegate duplicate detection entirely to the binding contour object. Declarations
would then have to include a node reference for the declared name in the Binds relation, so that errors could be
asserted at the proper location.

103

declare

var r : integer; (A)
type aryptr = pointer to ary; (B)
type ary = array [5 1 of integer; (C)
var v : ary; (D)
var w : aryptr; (E)
var x : array [10] of aryptr; (F)
var y : integer; (G)
var z : array [50] of integer (H)
begin
declare Repeat this block 25 times
type pl = pointer to p2; (1)
type p2 = pointer to ary; (7)
var s : pl; (K)
var t : p2; (L)
var u : integer; (M)
var v : array [5] of integer (N)
begin
y = 1;
t [yl := u;
y :=u + z[5]; (0)
w [1] := u;
u := v[ul;
declare
var v : integer (P)
begin
vi=v+au (Q)
end;
v :=t7;
u o= u+ou;
t :=3s"
end;
y = 1; Repeat next 5 statements 5 times
z[5] :=y;
y =y + zlyl; (R)
w 1] :=y;
v =Wy
r:=r + 1; (S)
y = 1; Repeat next 5 statements 5 times
z[5] :=y;
y =y + z[yl;
w 1] :=y;
v =Wy
y:i=y+1
end

Figure 9.1: Example program for measurements of incremental parser performance.

104

Change | Errors Timings Avg. Time | Visits | VC Hits
IN 0 | 2100 | 2033 | 2067 2067 | 4651 0
A- 4 33 50 50 44 88 9
A+ 0 50 50 50 50 99 9
B- 2| 250 | 233 | 216 233 709 174
B+ 0 250 | 283 | 250 261 716 174
C- 27 | 666 | 634 | 683 661 | 1730 273
C+ 0| 716 | 717 | 700 711 | 1640 248
D- 20 | 100 83 | 100 94 171 30
D+ 0 67 | 117 | 100 94 181 29
E- 90 | 267 | 300 | 284 284 705 174
E+ 0 316 300 | 300 305 716 174
F- 0 33 33 33 33 74 5
F+ 0 34 50 50 45 87 5
G- 274 | 583 | 583 | 600 589 | 1282 138
G+ 0] 600 | 633 | 567 600 | 1293 138
H- 91 | 384 | 334 | 316 345 797 172
H+ 0] 350 | 350 | 350 350 801 172
I- 1 50 33 50 44 78 14
I+ 0 33 34 17 28 88 14
J- 2 50 50 50 50 98 14
J+ 0 50 34 50 45 107 16
K- 2 33 50 50 44 77 14
K+ 0 50 50 50 50 88 14
L- 6 50 50 34 45 96 16
L+ 0 50 50 50 50 107 16
M- 18 67 83 | 100 83 133 17
M+ 0 83 | 100 83 89 144 17
N- 0 33 50 50 44 85 15
N+ 0 50 33 50 44 98 15
0- 0 0 17 34 17 30 14
O+ 0 17 17 17 17 41 14
P- 2 16 34 17 22 41 16
P+ 2 0 16 16 11 46 16
Q- 0 17 0 16 11 31 19
Q+ 0 17 0 17 11 38 19
R- 0 17 17 16 17 24 11
R+ 0 16 0 0 5 35 10
S- 0 0 0 17 6 22 13
S+ 0 16 0 0 5 29 12

Figure 9.2: Timings and visit statistics for line insertion and deletion.

105

relation for its contour must be reconstructed, even though all but one tuple was previously contained
in the relation. Because relations do not track the successors of individual tuples dynamically, it 1s
then necessary to regenerate the cache for VisibleBinding as well, since Binds is in its closure.

We observe that a large number of non-local dependency links are constructed for dynamic
selections. This isn’t surprising, since every call to BaseType or EquivTypes registers at least one
non-local dependency, and one or both of these functions is called at least once in every statement.
Nonetheless, the fact that the number of such registrations is a significant fraction of the total
number of attributes evaluated is a cause for concern.

In a second set of experiments, we made single-token changes within a number of declarations.
The results are shown in Figure 9.4.

106

EV FH FM MN FV FR FB MV MC RV RB TN TO ND NS NT
IN 6691 664 358 0 0 0 51 0 0 0 51 183 0 1759 183 0
A- 91 9 0 2 0 0 1 7 1 0 1 0 7 6 7 11
A+ 99 10 0 2 0 0 1 7 1 0 1 1 7 10 8 7
B- 1244 97 0 2 25 0 1 7 1 25 1 0 7 192 7 99
B+ 1252 98 0 2 25 0 1 7 1 25 1 1 7 286 8 52
C- 2868 322 0 52 0 25 1 7 26 25 1 0 7 728 32 320
C+ 2852 323 0 52 0 25 1 7 26 25 1 1 7 861 33 188
D- 254 27 0 10 0 0 1 7 1 0 1 0 7 45 7 27
D+ 262 28 0 10 0 0 1 7 1 0 1 1 7 76 8 7
E- 1244 122 0 70 0 25 1 7 26 25 1 0 7 105 7 97
E+ 1252 123 0 70 0 25 1 7 26 25 1 1 7 286 8 7
F- 62 7 0 0 0 0 1 8 0 0 1 0 7 5 7 7
F+ 72 8 0 0 0 0 1 8 0 0 1 1 7 6 8 7
G- 2444 299 0 162 0 25 1 7 26 25 1 0 7 336 7 281
G+ 2452 300 0 162 0 25 1 7 26 25 1 1 7 610 8 7
H- 1440 167 0 70 0 25 1 7 26 25 1 0 7 186 7 97
H+ 1447 168 0 70 0 25 1 7 26 25 1 1 7 276 8 7
I- 83 12 1 1 1 0 1 10 1 1 1 0 5 8 5 8
I+ 92 13 0 1 1 0 1 10 1 1 1 1 5 13 6 6
J- 123 16 1 2 1 0 1 9 1 1 1 0 5 17 5 16
J+ 131 17 1 2 1 0 1 9 1 1 1 1 5 27 6 10
K- 84 12 1 1 1 0 1 9 1 1 1 0 5 8 5 7
K+ 92 12 1 1 1 0 1 9 1 1 1 1 5 13 6 5
L- 123 17 1 3 1 0 1 10 1 1 1 0 5 15 5 11
L+ 131 18 0 3 1 0 1 10 1 1 1 1 5 27 6 5
M- 199 28 1 10 1 1 1 10 2 2 1 0 5 26 5 23
M+ 207 29 0 10 1 1 1 10 2 2 1 1 5 44 6 5
N- 104 16 0 2 1 0 1 10 1 1 1 0 5 20 5 9
N+ 114 16 0 2 1 0 1 10 1 1 1 1 5 18 6 5
Oo- 48 2 0 0 2 0 0 0 0 2 0 0 0 6 0 0
o+ 72 5 1 0 2 0 0 0 0 2 0 0 0 12 0 0
P- 56 5 0 2 2 0 1 1 1 2 1 0 0 6 0 4
P+ 62 5 1 2 2 0 1 1 1 2 1 1 0 6 1 0
Q- 40 0 0 0 3 0 0 0 0 3 0 0 0 0 0 0
Q+ 56 2 2 0 3 0 0 0 0 3 0 0 0 6 0 0
R- 42 2 0 0 1 0 0 0 0 1 0 0 0 6 0 0
R+ 67 6 0 0 1 0 0 0 0 1 0 0 0 14 0 0
S— 34 1 0 0 1 0 0 0 0 1 0 0 0 2 0 0
S+ 47 2 1 0 1 0 0 0 0 1 0 0 0 6 0 0

Scalar attribute evaluations

Function cache hits

Function cache misses

Mappings requiring notification of successors

Function caches visited and found valid (no retries needed)
Function caches requiring mapping retries

Function caches requiring full reconstruction

Function mappings found to be valid upon retry or reconstruction
Function mappings that changed upon retry or reconstruction
Relation caches visited and found valid

Relation caches found to be invalid and reconstructed

New tuples added during relation cache reconstruction

Old tuples still valid after relation cache reconstruction

NLD links created for dynamic selections

NLD links created for static selections

NLDL successor notifications performed

Figure 9.3: Detailed event counts for line insertions and deletions.

107

Line | Change Errors Timings Avg. Time | Visits | VC Hits
C 5 — 10 25 | 467 | 483 | 467 472 | 1132 230
C (restore) 0 | 500 | 500 | 466 489 | 1132 230
F 10 — 20 0 0 0 0 0 30 13
F (restore) 0| 17| 17| 33 22 30 13
H 50 — 100 0 | 267 | 267 | 267 267 748 181
H (restore) 0 | 266 | 250 | 267 261 748 181
B ary — integer 45 | 217 | 250 | 233 233 659 182
B (restore) 0| 233 | 250 | 250 244 659 182
C integer — ary 61 | 466 | 517 | 517 500 | 1132 230
C (restore) 0 | 483 | 483 | 483 483 | 1132 230
F aryptr — integer 0 0 171 17 11 30 13
F (restore) 0| 33 0 0 11 30 13
J ary — integer 2 17| 17| 17 17 62 18
J (restore) 0| 33| 34| 34 34 62 18

Figure 9.4: Timings and visit statistics for intra-line changes.

108

Chapter 10
Fibering

One of the strengths of attribute grammar technology is the use of static analysis to prove strong
properties of the language description independent of any particular program to be analyzed. In
particular, the circularity test rejects descriptions that may give rise to ill-founded attribute defi-
nitions. Unfortunately, some common language features are most naturally defined in a form that
produces a circular AG, requiring tedious circumlocutions to render the description in a noncircular
form. In this chapter, we present a technique that allows certain circularities to be admitted without
compromising static verifiability or statically scheduled evaluation.

10.1 The Problem

Many programming languages permit the definition of new composite data types in terms of existing
ones, e.g., arrays and records. Such types may be given names and subsequently referenced in the
same manner as the built-in primitive types. Data types may be recursive, containing (pointers
to) one or more instances of the type itself as subcomponents. Within a static semantic analyzer,
composite types are most conveniently represented as linked data structures in which the nodes
model the type constructors and the links model the component containment relationships. Recursive
types thus give rise to cyclic (re-entrant) type descriptors at analysis time. Unfortunately, cyclic
data structures cannot be created within a conventional attribute grammar, due to the use of an
applicative-order (“call by value”) evaluation mechanism in the underlying functional programming
language.

It is possible to model a cyclic graph, such as the descriptor for a recursive type, without actually
building a cyclic data structure. We might, for example, represent the edges of the graph in a
separately maintained relation, allowing all of the type descriptor records, i.e., the nodes of the
graph, to be created prior to asserting anything about their relationships. Since the edges of the
graph are directed in this case, a functional mapping suffices. A clever trick, used by Watt in a
published attribute grammar [80] for Pascal, exploits the fact that any cycle in a type descriptor
must contain at least one reference to a named type. In Pascal, every such cycle is completed by a
named type reference occurring in the definition of a pointer type. Watt’s grammar simply leaves
such references in symbolic form, and performs an 1dentifier lookup each time the referent is required
during subsequent usage of the descriptor. To avoid unintended interference from other declarations
using the same name within different scopes, a unique new name is invented for use within the type
descriptor, replacing the one supplied by the user. Although an adequate solution in some cases,
neither of these methods 1s as convenient or as efficient as a directly linked re-entrant representation.

109

Another related problem arises in languages that do not restrict the textual order in which
declarations are written, 1.e., that do not enforce the requirement that declarations of names precede
their usage within other declarations. Consider the language Example and the analyzer that we
defined for it in Chapter 4. In that language, both named types and variables may be declared. A
variable may be declared of a type defined in a subsequent declaration. Named types may be defined
in terms of other types, but the use of a variable name within a type declaration is an error. While
we may deduce from an examination of the attribute grammar that the descriptor for a named type
will never contain a reference to that of a variable, this fact will not be apparent to the classical
circularity test, since both kinds of descriptors are aggregated within the binding environment. Thus
the classical dependency analysis will determine, incorrectly, that the descriptor for a variable, which
depends on the binding environment (to resolve type names appearing within its declared type) may
depend on the variable itself, which is also bound in the environment.

In a language requiring declaration before use, the binding environment may be threaded through
a sequence of declarations such that each declaration is analyzed in the context of the bindings
established by the preceding declarations only. This strategy makes it immediately apparent to
the dependency analysis that mutually dependent or self-dependent declarations are precluded.
Threading of an attribute through a sequence, however, is undesirable in an incremental context,
as discussed in Chapter 5. A better strategy is to process declaration sequences initially as if
there were no restriction on declaration order. An additional test is then applied to the relative
textual locations of each identifier usage and its corresponding declaration. In addition to improved
incremental efficiency, this approach provides more meaningful error diagnostics, as illegal forward
references are identified as such rather than reported as undefined names.

Languages without restrictions on declaration order, such as Example, can be accommodated in
a classical attribute grammar by threading the environment through each declaration sequence twice.
On the first pass through, only the bindings for type names are entered into the environment. On
the second pass, type names are resolved in the environment constructed in the previous pass, while
building a new and complete environment containing both the type-name bindings established in the
previous pass and new bindings for the variable names. At runtime, the generated attribute evaluator
processes the declarations in a pair of sequential passes mirroring the threading of the environment.
Thus, by coding the analysis description in this fashion, the user is essentially performing the
evaluation scheduling by hand. It would be preferable to improve the generation-time analysis
so that it could produce a comparable evaluation schedule from a more straightforward attribute
grammar.

10.2 Overview of Fibering

In a static semantic analyzer written by hand in a conventional imperative language, circular type
descriptors pose no problem. Within the declaration sequence constituting a single binding contour,
the analyzer need not actually traverse any of the links within any type descriptor in order to build
the descriptors or to resolve references to named types. After the type descriptors for the entire
binding contour are complete, the type descriptors may be used in subsequent processing without
restriction. The usual strategy, then, is to leave the slots containing pointers to the referents of
forward-referenced names temporarily undefined until all of the declarations have been processed.
At that time, all of the names will have been associated with (possibly incomplete) descriptors,
and the analyzer may then backpatch the slots previously left undefined. The technique is correct
provided that no undefined slots are accessed. This is usually easy to ensure by requiring that all of
the slots are initialized before any of them are accessed.

110

In the underlying implementation, our attribute grammars are actually rendered in an imperative
language, and attribute values are computed and stored sequentially, subject to the constraint that an
attribute not be accessed before it is defined. The components of our objects are simply attributes
themselves. A reference to an object can be created and transmitted elsewhere in the abstract
syntax tree without first initializing the object’s component attributes. It is simply necessary to
ensure that each component is evaluated in every case before it is accessed, including remote access
via an object reference. In the classical analysis method, this condition is assured by a conservative
approximation that assumes that the object reference depends on all of the components. In the
underlying imperative execution model, however, there is no essential requirement (as there is in the
functional model) that the components be evaluated first.

In this chapter, we develop a mostly automatic and mechanically verified method for relaxing
the conservative but restrictive approximation made by the classical analysis, more closely capturing
the actual dependencies obtaining between selection instances and the specific components that they
access. In doing so, not only do we permit the construction of cyclic data structures, but we also solve
the second problem of the previous section, the conflation of dependencies involving distinct object
types when the objects are transmitted via a common attribute. We call the technique fibering, as
it has similar goals and some conceptual similarity to a method of the same name described in an
unpublished paper by Farrow [22]. Fibering is a compile-time transformation that does not impact
our runtime machinery in any way. The fibering algorithm will be described in detail in the following
section. In summary, it proceeds as follows:

1. Determine the sets of attribute occurrences whose instances may be involved in a common
dependency cycle, based on an initial approximation of the attribute dependencies in which
each object is assumed to depend on all of its components.

2. For each attribute occurrence appearing within a cycle, determine which component occur-
rences of objects within the same cycle, if any, may have instances at runtime that could be
accessed during the evaluation of the attribute occurrence. Such attribute occurrences are
called selection sites for the component accessed. This analysis is a straightforward dataflow
problem.

3. For any object included in a cycle, remove the dependency of the object on any of its compo-
nents that are also members of the cycle. It is this step that actually breaks the cycles detected
by the classical dependency analysis.! Each component from which dependencies are removed
by the fibering algorithm is said to have been fibered.

4. Add control attributes and dependencies linking the fibered components within a cycle as
predecessors to any of their corresponding selection sites that appear within the same cycle.
These dependencies guarantee the soundness of access to the fibered components during the
evaluation of the attribute occurrences within the cycles to which the components belong.
Additionally, add control attributes and dependencies linking all fibered components of a cycle
as predecessors to any attribute occurrence that depends on an attribute within the cycle, but
does not share any common cycle with the component. These dependencies guarantee the
soundness of access to the fibered components during the evaluation of attribute occurrences
outside of the cycles to which the components belong.

5. Test the resulting attribute grammar for circularity. Fibering succeeds if the fibered AG is
noncircular.

L As noted earlier in Chapter 4, only components declared as delayed are considered here. In this chapter, we will
initially ignore this refinement, re-introducing it in Section 10.4.

111

Control attributes are attributes that have no value and for which no storage is allocated, but
simply serve to express ordering constraints between imperative computations associated with their
“evaluation.” By appropriate usage of control attributes, operations with side-effects may be in-
cluded in the attribute grammar with the assurance that they will be performed prior to operations
that might observe them.?

10.3 The Fibering Algorithm

We implement fibering as an extension of our static evaluator generator for ordered attribute gram-
mars (OAGs). Consequently, the resulting fibered AG must not only be noncircular, but must also
belong the the OAG class. Furthermore, we use a conservative approximation to the true noncircu-
larity condition when determining whether fibering is required. The approximate test can report a
spurious circularity only in the case that the description is not in the OAG class, which in any event
precludes the construction of an evaluator for the unfibered AG.

We will illustrate the operation of the fibering algorithm using the language description in Fig-
ures 10.1 and 10.2. This highly contrived example is intended to highlight the interesting aspects
of the operation of the algorithm while remaining readable.® “Programs” in this language consist
of strings of the form “foo barl baz,” “foo bar2 barl baz,” “foo bar2 bar2 ... barl baz” and so
on. The relevant features of the analysis from the standpoint of fibering are that (1) a cyclic object
of class Cycle is created, linked via its Ref component, and (2) the component Int2 of the object
depends on the value of an instance of the component Int1 that is accessed indirectly via an object
reference.

10.3.1 Locating Potential Cycles

The first step of the OAG evaluator construction algorithm computes an approximation to the
dependencies among the attributes of each phylum, represented as a directed graph called a summary
dependency graph. (Reps and Teitelbaum [67] use the term TDS graph, for “transitive dependencies
of a symbol.”) This approximation is conservative in that it covers the dependencies that exist at
every instance of the phylum in every possible AST. Figure 10.3 shows the dependencies discovered
among the attributes of the phylum Bar. The dependencies shown with a dotted line are implied by
the others, as the summary dependency graphs are always closed under transitivity.

The local dependency graphs for each AST operator are then composed with the summary
dependency graphs applicable at the parent and child interfaces of the operator. The summary
dependency graphs serve to characterize the transitive dependencies induced by all possible contexts
in which the operator may occur within an AST. If the resulting augmented dependency graph for
each AST operator is noncircular, then the AG belongs to the doubly noncircular (DNC) [17] class
of attribute grammars, and the construction proceeds to the next step. If a cycle is found, however,
the classical OAG construction fails, as the OAGs are a subclass of the DNC AGs.

Our fibered attribute evaluator generator proceeds in the conventional way should the DNC
test succeed, and attempts to construct a classical OAG evaluator. Should the test fail, however,
it applies the fibering transformation and then attempts the classical OAG construction again on

2The notion of “dummy” attributes arises frequently in the literature, however the LIGA system [48, 78] is notable
for its systematic use of such attributes to integrate imperative programming into attribute grammars in a reasonably
clean manner.

8 As it turns out, the Example language is a degenerate case for fibering, and is thus not suitable for this purpose.
The description for Modula-2 presented in Chapter 12, on the other hand, is so large and makes such extensive use
of fibering that it is completely intractable as a pedagogical example.

112

language body Fibers : Fibers is

class Cycle
requiring
attribute Ref : Cycle
delayed;
attribute Intl : Integer;
attribute Int2 : Integer
delayed;
end Cycle;

object NullCycle : Cycle

where
Ref = NullCycle;
Intl = 0;
Int2 = 0;

end NullCycle;
phylum Foo;

phylum Bar
with
context CompIn : Cycle;
attribute ObjOut : Cycle;
context IntIn : Integer;
where
0bjOut = NullCycle;
end Bar;

phylum Baz
with

context 0ObjIn : Cycle;
end Baz;

... AST operators in Part 2 go here ...

end Fibers;

Figure 10.1: A simple language description illustrating fibering (Part 1).

113

operator OpFoo : Foo is
"foo" Cl:Bar C2:Baz

where
C1.CompIn = C1.0bj0ut;
Cl.IntIn = 0;
C2.0bjIn = C1.0bj0ut;
end OpFoo;

operator OpBarl : Bar is

"bari"
where
object Obj : Cycle
where
Ref = OpBarl.Compln;
Intl = 1;
Int2 = OpBarl.IntIn;
end 0bj;
OpBar1.0bjOut = 0bj;
end OpBari;

operator OpBar2 : Bar is
"bar2" C1:Bar
where
C1.CompIn = OpBar2.CompIn;
Cl.IntIn = OpBar2.CompIn.Ref.Intl + OpBar2.IntIn;
OpBar2.0bjOut = C1.0bj0ut;
end OpBar2;

operator OpBaz : Baz is

l|bazl|
where

attribute Local : Cycle = OpBaz.0bjIn.Ref;
end OpBaz;

Figure 10.2: A simple language description illustrating fibering (Part 2).

114

Figure 10.3: The summary dependency graph for phylum Bar, showing the induced dependencies
among its attributes.

the resulting AG. The augmented dependency graphs computed during the initial DNC test are
used to locate potential cycles that must be broken by the fibering transformation. The algorithm
computes the strongly connected components (SCCs) of the augmented dependency graph for each
AST operator, where each SCC may contain multiple overlapping cycles.

Since the dependencies among the attributes of Bar are themselves cyclic, clearly they will induce
cycles when composed with those of any AST operator. In general, however, a cycle may occur in an
augmented dependency graph even when the summary dependency graphs are all acyclic. Figure 10.4
shows the operators from the example of Figure 10.1 and Figure 10.2 in which potential cycles are
discovered, and illustrates the dependencies graphically. The dependencies induced by composition
with the summary dependency graphs are shown with dashed lines. Only those induced dependencies
needed to complete all cycles are indicated, in order to reduce visual clutter in the diagrams. In
each case, a single SCC is identified, whose nodes are as shown in the figure. In the sequel, we
will continue to identify an SCC with the set of attribute occurrences it contains, i.e., its node set,
with the understanding that the edges can be easily recovered from the augmented dependency
graph if needed. The attribute occurrences are named using the compact notation employed by the
compiler’s diagnostic reports in which the child with which an occurrence is associated is identified
by a numeric index, and the AST operator is left implicit. A child index of zero signifies that the
occurrence belongs to the AST operator itself (i.e., the left-hand side of the production, in traditional
grammatical terms), instead of one of its children.

Figure 10.5 illustrates the ASTs of the example language schematically, in which cycles are
readily apparent. Because of the approximation introduced by the use of the summary dependency
graphs, potential cycles may be identified that cannot occur in any AST. For example, the attribute
0.IntIn in OpBar2 would seem to participate in a cycle involving the dependency of 0.IntIn on
0.0bj0Out induced by the summary dependency graph for Bar. It is apparent from Figure 10.5,
however, that this potential dependency cannot be realized in any AST.

Conventional attribute dependency analysis identifies cycles involving the attribute occurrences
of each AST operator individually, examining the augmented dependency graph for each operator
in isolation from the others. This is adequate if the goal is merely to determine if dependency cycles
are present. To enable fibering, however, it is necessary to determine which attribute occurrences
have instances that may appear on a common dependency cycle, even if the occurrences belong to
distinct AST operators.

A node X is said to adjoin a node Y at child ¢ in an AST if X is the ¢-th child of Y. In general,

115

OpFoo m
‘ ObjOut Compln | Intln ‘ Objin

TR T 3

{ 1.0bjOut, 1.CompIn, 1.IntIn }

Ob] Out Compl n | Intin

//\

Ref ‘ ‘ Intl ‘ ‘ Int2 ‘ Obj
] |

|
OpBarl U J U

{ 0.0bjOut, 0.CompIn, 0.IntIn, Obj, Obj.Ref, Obj.Int2 }

‘omom

Compin | Intln

OpBar2

‘ Objout Intin

T

Compln

{ 0.0bjOut, 0.CompIn, 0.IntIn, 1.0bjOut, 1.CompIn, 1.IntIn }

Figure 10.4: Potential dependency cycles (SCCs) in the example prior to fibering.

116

OpFoo m

ObjOut CompIn | Intln ObjIn
Loca
OpBar2 OpBaz
Y ! | | 3
° | Do
° | !
1 ¥ o

ObjOut Compin | Intin

Ref Intl Int2 Obj

|
OpBarl U " U

Figure 10.5: An AST with actual cyclic dependencies.

117

some instance of an AST operator A may adjoin some instance of an AST operator B at child
whenever the phylum of A and the phylum of the i-th child of B are identical. Let the relation z Ry
hold between two attribute instances # and y whenever = depends (transitively) on y and vice-versa,
i.e., z and y belong to a common dependency cycle. Clearly, R is an equivalence relation. Let a and
b be attribute instances of a node X, and let b and ¢ be attribute instances of an adjoining node
Y, where the instance b occurs at the interface of the two nodes and is thus shared between them.
Then aRc if aRb and bRe. In general, if two dependency cycles within the attribute instances of
distinct nodes of an AST share a common attribute instance, then all attribute instances in both
cycles share a common cycle as well.

To permit a static analysis, we instead use a relation R’ on attribute occurrences that conser-
vatively approximates the dependencies obtaining among the underlying attribute instances. For
occurrences r and y belonging to an AST operator A, xR'y when r and y appear in a common
cycle within the augmented dependency graph for A. Thus for each strongly connected component
of the augmented dependency graph, xR’y for every pair of occurrences x and y included therein.
Furthermore, if aR'b and bR'c, where a belongs to an AST operator A and ¢ belongs to an AST
operator B where an instance of A potentially adjoins B with an instance of b in common at the
interface, we will assume that aR’'c. Again, R’ is an equivalence relation. The attribute occurrences
whose instances may share a common dependency cycle are thus conservatively approximated by
the (maximal) equivalence classes of attribute occurrences under R’.

Recall that the dependency analysis algorithm has previous computed for each AST operator
the strongly connected components (SCCs) of its augmented dependency graph. We say that an
SCC potentially adjoins another SCC if each contains an attribute occurrence that might give rise
to a common instance in some AST. We define the relation potentially connected as the transitive
closure of “potentially adjoins,” and note that it is an equivalence relation. The equivalence classes of
attribute occurrences that are potentially cyclically dependent may thus be conveniently represented
as the equivalence classes of potentially connected SCCs. We denote the set of such equivalence
classes for the analysis description under consideration by the symbol C.

Each SCC is represented by a record that contains the set of SCCs that may adjoin it from
above (as a parent) and below (as a child), as well as the AST operator and equivalence class to
which it belongs. Each adjoining SCC is labeled with the child index at which it adjoins, and is
thus represented as a pair. This additional structure is exploited in subsequent processing. In the
example, the fibering algorithm finds three SCCs, one in each of the AST operators Foo, Barl, and
Bar2, as shown in Figure 10.6. All of the SCCs are potentially connected, thus they are all assigned
to the same equivalence class. Hence C = { CLASS 1 }, where CLASS 1= { SCC 1, SCC 2, SCC 3 }.

10.3.2 Dataflow Analysis

Once potential cycles have been identified, the fibering algorithm determines which attribute occur-
rences may access an object component via an object reference during the evaluation of its definition.
Each such selection site is annotated with the set of component occurrences that might potentially
be accessed. This determination is a relatively straightforward flow analysis problem, but the possi-
bility that selections may occur within function calls, including calls to functions that are themselves
object components, means that the flowgraph must be dynamically expanded during the analysis,
as explained subsequently.

To simplify the flow analysis, we use a condensed flowgraph in which operations of the ADL
language that are not relevant to objects and selections are elided. We thus do not consider the
effect of any operation other than object instantiation or component selection beyond whether it
may transmit an object received as a constituent of an argument as a constituent of its result value.

118

CLASS 1:
SCC 1:

Operator: OpFoo

Class: 1

Above: {}

Below: { < scc 2, child €1 >, < SCC 3, child C1 > }
ScC 2:

Operator: OpBarl

Class: 1
Above: { < scc 1, child €1 >, < SCC 3, child C1 > }
Below: {}

SCC 3:

Operator: OpBar2

Class: 1
Above: { < scc 1, child €1 >, < SCC 3, child C1 > }
Below: { < scc 2, child €1 >, < SCC 3, child C1 > }

Figure 10.6: The equivalence class C of potentially connected SCCs for the example, showing the
potentially adjoining SCCs for each member.

119

2.0bjIn

1.0bjOut
Local Ref @ 0.0bjIn v
Lintin
OpBaz

1.Complin

1.0bjOut

A
| Lintin O.Intln

0.0bjOut

1.Compln 0.Compln
OpBar2
fﬁ 0.0bjOut
Obj
Ref Intl Int2 0.IntIn
|]
¥—/ 0.Compin
OpBarl

Figure 10.7: Flowgraph for the running example.
120

In particular, the components of aggregate data structures other than objects, including tuples and
lists, are coalesced by the analysis.

Figure 10.7 shows the flowgraph for our example. The nodes of the flowgraph represent attribute
occurrences (including components) and object instantiations, as well as intermediate expression
results including variables, function calls, and component selections. A method invocation is treated
as both a function call and the selection of a function-valued component. Figure 10.7, intermediate
expression results are represented by circles and attribute occurrences by rectangles. There are
three kinds of edges: (1) unlabeled edges, (2) labeled edges, which are annotated with the name
of a component, and (3) blocking edges, which are labeled with a “I” character. Unlabeled edges
may transmit any value. Labeled edges represent dataflow out from a selection, and transmit only
the values which reach a like-labeled component of an incoming object. Blocking edges represent
dataflow paths that cannot transmit an object reference, and in fact could be safely omitted from
the flowgraph altogether. An example is the incoming arguments to an arithmetic operator. The
blocking edges are included to make the correspondence between the flowgraph and the attribute
definitions more apparent, as well as to reflect the fact that our implementation actually includes
them, though for incidental implementation reasons.

Initially, a separate flowgraph is computed for each AST operator. Then, unlabeled copy edges
are inserted to distribute values reaching each attribute occurrence (other than local attributes)
to every corresponding occurrence of a potentially adjacent AST operator. This yields a complete
flowgraph for the entire attribute grammar covering all possible runtime dataflow. These edges
always occur in complementary pairs, and are thus represented in Figure 10.7 as heavy double-
headed arrows. For clarity, we omit many edges that our algorithm would include but which are
redundant due to transitivity.

Dataflow analysis proceeds iteratively using a worklist of flowgraph nodes. Each node is anno-
tated with the objects that may reach it. When the outgoing edge is a labeled edge, the reaching
objects are transmitted no further, but if any incoming objects have a component matching the
label, objects reaching the component are propagated through the labeled edge.

Since function calls may perform selections, 1t 1s necessary to “look inside” the definition of the
function when analyzing a function call. The function may itself call other functions. Rather than
trying to compute a covering approximation of the dataflow within a function, the analysis simply
expands the flowgraph at the point of a function call as if the function call had been expanded
in-line at the source-code level. Clearly, this process leads to an exponential blow-up, and will fail
to terminate in the presence of recursive functions, thus the expansion must be cut short using
some further approximation. After experimenting with several more precise policies, we settled on
expanding each function at most once within the portion of the flowgraph induced by each right-
hand side of an attribute definition. All call sites invoking the same function are represented by the
same node in the flowgraph, effectively merging their separate dataflow dependencies. This seems
precise enough for our purposes, as borne out by our experience. The current flow analysis procedure
is adequately fast, accounting for approximately twenty percent of the total analysis time for the
full-scale language description for Modula-2 presented in Chapter 12.

Initially, the flow analyzer expands only those calls to functions that are called directly, i.e., not
invoked via an object reference. Whenever a new object is found to reach a method invocation, the
appropriate method definition is expanded. The dependencies induced by alternate methods reaching
the method invocation are thus superimposed. If it were not for functional object components, flow
analysis could be performed only for those attributes participating in a cycle. All we really need to
know is which selections access components that are in the same cycle as the one whose definition
contains the selection. Because we cannot tell which functions are actually called at a method
invocation without knowing which objects reach it (even if it is not on any cycle), the flow analysis

121

must be performed globally for all attribute occurrences in the language description. In practice,
this has not been a problem. Figure 10.8 shows the objects that reach each node in the flowgraph
of Figure 10.7.

Each flowgraph node contains a backpointer to the attribute occurrence whose definition induced
the node, that is, the attribute occurrence whose evaluation would result in the execution of the
computation for which the node represents the result. When every flowgraph node has been anno-
tated with its reaching objects, it 1s a simple matter to examine each selection occurrence, including
method invocations, and add the referenced components to the set of those selected within the
evaluation of the appropriate attribute occurrence. In the example, all selections take place during
the evaluation of attribute Local of AST operator OpBaz and attribute 1.IntIn of AST operator
OpBar2. The sets of potentially accessed components are {NullCycle.Ref, OpBar1.0bj.Ref} and
{NullCycle.Int1, OpBar1.0bj.Int1, NullCycle.Ref, OpBarl.0bj.Ref}, respectively.

10.3.3 Fiber Reachability Analysis

At this point, the fibering algorithm has determined which object components are potentially ac-
cessed during the evaluation of the instances of each attribute occurrence. In order to assure that
every instance of a fibered component is defined before it is accessed, the algorithm will introduce
control attributes, their occurrences, and associated dependencies so as to link each such instance as
a predecessor to the attribute instances that access the component remotely during their evaluation.
In general, our strategy will be to collect the instances of a fibered component occurring within a
cycle via synthesized attributes, and then, upon reaching a node that dominates all of the selection
instances of the component, distribute them downward via inherited attributes to all occurrences of
their selection sites. Tn preparation for the creation of the control attributes (to be discussed in the
following section), the algorithm now annotates each AST operator that is potentially involved in a
cycle with information that will permit the correct routing of the fiber dependencies. For each AST
operator X, we compute the following values:

e DEFINED_BELOW The set of <child, component> pairs such that a subtree issuing from the
indicated child of an instance of X may contain an object instantiation in which an instance
of the component is defined.

e SELECTED_BELOW The set of <child, component> pairs such that a subtree issuing from the
indicated child of an instance of X may contain an attribute instance whose evaluation may
access an instance of the component.

e DEFINED_ABOVE The set of component occurrences such that a node ancestral to an instance
of X may contain an object instantiation in which an instance of the component is defined.

e REACHES_ABOVE The set of component occurrences such that a node ancestral to an instance
of X may have a descendent not in the subtree rooted at the instance of X in which the
component 1s accessed remotely by a selection.

Recall that each SCC is labeled with the operator to which it belongs, an equivalence class of
potentially connected SCCs, and the sets of SCCs potentially adjoining from above and below. Using
the results of the flow analysis performed in the previous step, the fibering algorithm annotates each
SCC with the set of component occurrences within the SCC accessed by any selection site within an
SCC in the same class. Component occurrences are omitted that do not belong to an SCC of the
same equivalence class as at least one of their selection sites. The fibering algorithm also annotates

122

OPERATOR OpFoo:

1.IntIn {1}

1.0bj0ut { NullCycle, OpBar1.0bj }
1.CompIn { NullCycle, OpBar1.0bj }
2.0bjIn { NullCycle, OpBar1.0bj }

OPERATOR OpBarl:

Obj { OpBar1.0bj }

0.CompIn { NullCycle, OpBar1.0bj }
0.0bj0ut { NullCycle, OpBar1.0bj }
0.IntIn {1}

Obj.Ref { NullCycle, OpBar1.0bj }
O0bj.Int1 {1

0bj.Int2 {1

OPERATOR OpBar2:

0.CompIn { NullCycle, OpBar1.0bj }
0.0bj0ut { NullCycle, OpBar1.0bj }
0.IntIn {1}

1.IntIn {1}

2 i}

%3 {1}

%2 { NullCycle, OpBar1.0bj }
%1 { NullCycle, OpBar1.0bj }
1.0bj0ut { NullCycle, OpBar1.0bj }
1.CompIn { NullCycle, OpBar1.0bj }

OPERATOR OpBaz:

0.0bjIn { NullCycle, OpBar1.0bj }
Local { NullCycle, OpBar1.0bj }
%1 { NullCycle, OpBar1.0bj }

Figure 10.8: Objects reaching each node of the flowgraph (Figure 10.7) for the example.

123

each SCC with the set of object components that occur within it, as determined by a trivial scan of
its constituent attribute occurrences.

The sets DEFINED_BELOW, SELECTED_BELOW, DEFINED_ABOVE, and REACHES_ABOVE are now com-
puted for each AST operator. Since no component occurrence can occur within two distinct equiva-
lence classes, and we are only concerned with selection sites that occur within the same equivalence
class as their associated component occurrence, it suffices to compute the contribution of each equiv-
alence class to these sets separately. Furthermore, since every SCC is labeled with the AST operator
to which it belongs, the algorithm can use the SCCs as proxies for the underlying AST nodes, at-
taching the annotations to the SCCs rather than to the AST operators themselves. The annotations
are computed by the algorithm shown in Figure 10.9 and Figure 10.10. The resulting annotated
SCCs for the running example are shown in Figure 10.11.

10.3.4 Breaking Cycles and Inserting Control Attributes

For each object instantiation occurring in an SCC of an equivalence class in C, the fibering algorithm
now removes the dependency of the object on any of its component occurrences that appear on a
cycle. (Because object components in ADL are full-fledged local attributes, it is possible for a
component to appear in a cycle in which the containing object does not participate.) Recall that
each component occurrence treated in this way is said to have been “fibered.”

Having removed these dependencies, which previously assured that the component occurrences
were defined before they were accessed, the fibering transformation must now add new dependencies
that achieve the same purpose. These dependencies and their supporting control attribute occur-
rences, called fibers, link each fibered component occurrence as a predecessor to every selection site
where 1t might be accessed.

The algorithm first considers the cases in which a selection site and a fibered component occur-
rence that it may access are contained in a common cycle, i.e., each belongs to an SCC of a common
equivalence class. The reachability information computed in the previous step is used by the algo-
rithm in Figure 10.12 and Figure 10.13 to generate fibers for these selection sites and component
occurrences. The function Create_Inh_Control_Attr (Create_Syn_Control_Attr) creates an in-
herited (synthesized) control attribute occurrence belonging to the AST operator or child indicated
by its first argument. The name of the attribute is of the form UP_component for a synthesized at-
tribute and DN_component for an inherited one. If an attribute occurrence so named already exists,
a new one is not created. Otherwise, a like-named attribute is added to the phylum to which the
operator or child belongs, and an occurrence of the attribute is added to each AST operator and
child position belonging to the phylum.

It 1s possible, indeed likely, that some attributes will lack predecessors or successors. This is a
consequence of the fact that a node may actually need to transmit fiber dependencies only when it
appears in certain tree contexts. In order to handle those contexts, the AST operator must provide
the fiber dependencies, but in another context, the incoming or outgoing end of the dependency
thread may be left unattached.

In order to minimize the proliferation of control attributes, when a selection site and a fibered
occurrence that it may access cannot appear in a common cycle, a fiber is not generated. Instead,
a single special fiber is created for each equivalence class that depends on every fibered component
occurrence within the SCCs of the class. Every attribute occurrence outside of the class that depends
on an attribute occurrence within the class is then made to depend as well on this special fiber, the
completion fiber for the class. The routing of the completion fiber to those attribute occurrences,
the “successors” of the class, can be performed by a simple variant of the fiber reachability analysis

124

% Compute DEFINED_BELOW, SELECTED_BELOW,
% DEFINED_ABOVE, and REACHES_ABOVE.

foreach class in C do
Compute_Fiber_Reachability(class)

global *worklist*

function Compute_Fiber_Reachability(class)
worklist = nil
foreach scc in class do
Initialize_Fiber_Reachability(scc)
until *worklist* == nil do
scc = Worklist_Remove()
Propagate_Fiber_Reachability(scc)

function Initialize_Fiber_Reachability(scc)
foreach (child, above) in scc.ABOVE do
foreach component in scc.COMPONENTS do
unless (child, component) € above.DEFINED_BELOW then
above.DEFINED_BELOW =
above.DEFINED_BELOW U { (child, component) }
Worklist_Add(above)
foreach selection in scc.SELECTIONS do
unless (child, selection) € above.SELECTED_BELOW then
above.SELECTED_BELOW =
above.SELECTED_BELOW U { (child, component) }
Worklist_Add(above)
foreach (_, below) in scc.BELOW do
foreach component in scc.COMPONENTS do
unless component € below.DEFINED_ABOVE then
below.DEFINED_ABOVE =
below.DEFINED_ABOVE U { component }
Worklist_Add(below)
foreach selection in scc.SELECTIONS do
unless selection € below.REACHES_ABOVE then
below.REACHES _ABOVE =
below.REACHES_ABOVE U { selection }
Worklist_Add(below)

Figure 10.9: Locating paths for control attributes: Fiber reachability analysis (Part 1).

125

function Propagate_Fiber_Reachability(scc)
% Propagate DEFINED_BELOW and SELECTED_BELOW upward.
foreach (child, above) in scc.ABOVE do
foreach (_, component) in scc.DEFINED_BELOW do
unless (child, component) € above.DEFINED_BELOW then
above.DEFINED_BELOW =
above.DEFINED_BELOW U { (child, component) }
Worklist_Add(above)
foreach (_, selection) in scc.SELECTED_BELOW do
unless selection € above.SELECTED_BELOW then
above.SELECTED_BELOW =
above.SELECTED_BELOW U { (child, selection) }
Worklist_Add(above)
% In any child selects a component, then every sibling must propagate
% definitions of that component upward to at least the current node.
foreach (childl, selection) in scc.SELECTED_BELOW do
foreach (child2, sibling) in scc.BELOW do
unless childl == child2 then
unless selection € sibling.REACHES_ABOVE then
sibling.REACHES_ABOVE =
sibling.REACHES_ABOVE U { selection }
Worklist_Add(sibling)
% Propagate DEFINED_ABOVE and REACHES_ABOVE downward.
foreach (_, below) in scc.BELOW do
foreach component in scc.DEFINED_ABOVE do
unless component € below.DEFINED_ABOVE then
below.DEFINED_ABOVE =
below.DEFINED_ABOVE U { component }
Worklist_Add(below)
foreach component in scc.REACHES_ABOVE do
unless component € below.REACHES_ABOVE then
below.REACHES _ABOVE =
below.REACHES_ABOVE U { component }
Worklist_Add(below)

Figure 10.10: Locating paths for control attributes: Fiber reachability analysis (Part 2).

126

SCC 1:

Operator: OpFoo
Class: 1
Above: {}
Below: { < scc 2, child €1 >, < SCC 3, child C1 > }
Components: {}
Selections: {}
DefinedBelow: { <child C1, OpBarl.0bj.Ref>,
<child C1, OpBar1.0bj.Int2> }
DefinedAbove: { }
SelectedBelow: { <child C1, OpBarl.0bj.Ref> }
ReachesAbove: { }
SCC 2:
Operator: OpBar1l
Class: 1
Above: { < scc 1, child €1 >, < SCC 3, child C1 > }
Below: {}
Components: { OpBar1.0bj.Int2, OpBarl.0bj.Ref }
Selections: {}
DefinedBelow: { }
DefinedAbove: { }
SelectedBelow: { }
ReachesAbove: { OpBarl.0bj.Ref }
SCC 3:
Operator: OpBar?2
Class: 1
Above: { < scc 1, child €1 >, < SCC 3, child C1 > }
Below: { < scc 2, child €1 >, < SCC 3, child C1 > }
Components: {}
Selections: { OpBarl.0bj.Ref }
DefinedBelow: { <child C1, OpBarl.0bj.Ref>,
<child C1, OpBar1.0bj.Int2> }
DefinedAbove: { }
SelectedBelow: { <child C1, OpBarl.0bj.Ref> }
ReachesAbove: { OpBarl.0bj.Ref }

Figure 10.11: Results of fiber reachability analysis for the running example.

127

Create fibers for components and selection sites within a common class.

foreach class in C do
foreach scc in class do
Create_Fibers(scc)

function Create_Fibers (scc)
operator = scc.0PERATOR
foreach component in scc.COMPONENTS do
if component € scc.REACHES_ABOVE then
% Propagate component dependency above if needed.
succ = Create_Syn_Control_Attr(operator, scc, component)
Create_Fiber_Dependency (component, succ)
% FElse we may need to propagate component below. If already
% available above, we will use the existing inherited attribute.
else
foreach (child, selection) € scc.SELECTED_BELOW do
when selection == component then
succ = Create_Inh_Control_Attr(child, scc, component)
Create_Fiber_Dependency(component, succ)
foreach occurrence in scc.MEMBERS do
‘occurrence. EVALS_SELFECTION’ are the components that are potentially
accessed during the evaluation of ’occurrence’.
foreach selection in occurrence.EVALS_SELECTION do
when selection € scc.SELECTIONS then
if selection € scc.REACHES_ABOVE then
% Use inherited attribute.
pred = Create_Inh_Control_Attr(operator, scc, selection)
Create_Fiber_Dependency(pred, occurrence)
% No inherited attribute. Look locally and below.
else

% Local definitions.
foreach component in scc.COMPONENTS do

when component == selection then
Create_Fiber_Dependency(component, occurrence)

% Definitions from below.
foreach (child, component) € scc.DEFINED_BELOW do

when component == selection then
pred = Create_Syn_Control_Attr(child, scc, selection)

Create_Fiber_Dependency (pred, occurrence)

Function CreateFibers’ continued in Figure 10.13 ...

Figure 10.12: Creating control attributes (Part 1).

128

... Function ’CreateFibers’ continued from Figure 10.12

foreach (child1l, component1) in scc.DEFINED_BELOW do
if componentl € scc.REACHES_ABOVE then
% Propagate above if needed.
pred = Create_Syn_Control_Attr(childl, scc, componentl)
succ = Create_Syn_Control_Attr(operator, scc, componentl)
Create_Fiber_Dependency (pred, succ)
else

% Not used above, so propagate downward from here.
foreach (child2, component?2) in scc.SELECTED_BELOW do
when componentl == component2 then
pred = Create_Syn_Control_Attr(childl, scc, component2)
succ = Create_Inh_Control_Attr(child2, scc, component2)
Create_Fiber_Dependency(pred, succ)
foreach (child, component) in scc.SELECTED_BELOW do
% Propagate downward from parent if needed.
when component € scc.REACHES_ABOVE U scc.DEFINED_ABOVE do
succ = Create_Inh_Control_Attr(child, scc, component)
pred Create_Inh_Control_Attr(operator, scc, component)
Create_Fiber_Dependency (pred, succ)

Figure 10.13: Creating control attributes (Part 2)

129

OPERATOR OpFoo : Foo

1.CompIn <- 1.0bj0ut
1.DN_OpBar1.0bj.Ref <- 1.UP_OpBarl.0bj.Ref
2.0bjIn <- 1.0bjOut 1.UP_1

OPERATOR OpBarl : Bar

0bj <- 0Obj.Intl
0.0bj0ut <- 0bj

Obj.Ref <- 0.CompIn
0.UP_OpBar1.0bj.Ref <- 0Obj.Ref

0bj.Int2 <= 0.IntIn

0.UP_1 <- 0Obj.Ref Obj.Int2

OPERATOR OpBar2 : Bar

0.0bj0ut <- 1.0bj0ut
1.CompIn <- 0.CompIn
0.UP_OpBarl.0bj.Ref <- 1.UP_OpBarl.0bj.Ref
1.DN_OpBar1.0bj.Ref <- 0.DN_OpBarl.0bj.Ref
1.IntIn <= 0.IntIn 0.CompIn O0.DN_OpBar1l.0bj.Ref
0.UP_1 <- 1.UP_1
OPERATOR OpBaz : Baz
Local <- 0.0bjIn

Figure 10.14: Final attribute dependencies for the running example after fibering.

described previously in detail.* Figure 10.14 shows the attribute dependencies after the fibering
transformation.

After adding the control attributes and their dependencies, the full OAG construction is at-
tempted on the revised AG. If it succeeds, then an analyzer is produced, otherwise, the description
is rejected. In the case of our example, the revised AG is in fact a member of the OAG class.
Figure 10.15 exhibits an example AST and the dependencies among its attribute instances, show-
ing how the fibering transformation has eliminated the cycles that appeared prior to fibering (i.e.,

Figure 10.5).

4For historical reasons, our implementation falls back in this case on a less clever routing procedure implemented
before the full fibering mechanism, including the reachability analysis, had been worked out. It can in some circum-
stances create control attribute occurrences whose instances are always left “dangling” without any successors in every
possible AST. It also introduces an unnecessary local control attribute occurrence for each equivalence class. These
attributes, with names of the form CMP_n, may be seen in the compiler’s diagnostic output. For clarity, these artifacts
have been suppressed in the exposition and examples presented in this chapter.

130

‘ UP_OpBar1.0bj.Ref DN _OpBarl.0bj.Ref ObjOut Compln Intin UP 1 Obj

— Local
OpBar2 W

‘ UP_OpBar1.0bj.Ref DN _OpBarl.0bj.Ref ObjOut Compln UP_1

\ﬁ?ﬁﬁé/

Ref Intl Int2

Intin

Obj

OpBarl U

Figure 10.15: An example AST for the running example after fibering.

10.4 Refinements

As described above, the fibering algorithm fibers every component involved in any cycle. If an
SCC contains more than one component, however, it will often be possible to break the cycles
by fibering only a subset of the components. The fibering transformation imposes the restriction
that all instances of a fibered component within a cycle must be evaluated before any of them
can be accessed. This is in some ways a more restrictive condition than the original unfibered
dependency of the object instantiation upon only a single component instance. For this reason,
fibering a component unnecessarily may create new, spurious dependencies that were not present
in the unfibered case, and which render the fibered description circular. To mitigate this problem,
the algorithm only considers components for fibering that have been annotated with the pragma
delayed. The keyword delayed is meant to suggest that the component may be evaluated at a later
time than would normally be expected, 1.e., after the remainder of the object instantiation in which
it occurs. Tt is generally apparent to the description writer which component(s) should be fibered
after examining and understanding the diagnostic reports from the attribute dependency analysis
phase of the ADL compiler. The description writer proceeds iteratively, eliminating cycles by adding
additional delayed pragmas.

Sometimes, a number of similar components play essentially the same role in the dependency
analysis, and can thus be merged into an equivalence class that is scheduled as a unit. That is,
all members of the class can be evaluated before all selections that access any of them. A class of
such components may share a single fiber. An optional argument to the delayed pragma allows
such equivalence classes to be specified. The pragma takes an identifier as an argument, which both
identifies the class to which the attribute belongs and provides the shared fiber name that will be

131

used 1n the diagnostic reports. Fiber sharing reduces the number of control attributes and their
dependencies, resulting in shorter, more readable diagnostics and faster execution of the analyzer
generator. Fiber sharing is used extensively in the language description for Modula-2 presented in
Chapter 12.

Aside from the additional expressive power provided by fibering, our analysis algorithm collects
additional information that may be helpful in diagnostics. The equivalence classes of potentially
connected SCCs indicate more clearly the extent of a circular dependency than the SCCs in isolation.
In the absence of spurious cycles introduced by the approximate nature of the summary dependency
graphs, it would be straightforward to generate an actual example AST that exhibited a circular
dependency. We have not investigated this topic further, however.

10.5 Related Work

Surprisingly, the problem that fibering is intended to address has been for the most part overlooked
in the large literature on attribute grammars. This very likely is related to the fact that attribute
grammars have been extensively studied in the academic literature, but are seldom employed in
constructing real compilers, as noted by Waite [78]. Toy languages used in expository papers invari-
ably assume declaration before use, and several well-known published attribute grammars for the
“full-strength” semantic analysis of real programming languages implement languages with strong
declaration before use requirements, e.g., Pascal in Kastens [46] and Ada in Uhl, et al. [73].

The problem and a proposed solution are presented by Farrow in a lamentably unpublished
draft [22] describing an experimental extension to the Linguist [15] attribute grammar system.
Farrow’s approach is fundamentally different from ours, which we originally proposed in ignorance
of his work. Farrow’s treatment initially intrigued us, as it appears to be more general, permitting,
for example, the fibering of tuples that are created dynamically within functions. Farrow claims, in
fact, that his method of fibering attribute grammars is simply an application of a general method
for statically converting a large class of functional programs requiring lazy evaluation to equivalent
programs terminating under eager evaluation.

The essence of Farrow’s method is to split the dependency upon an object into a separate
dependency trace for each of its components (called a fiber) and for the reference to the object
itself (the base fiber). Each selection depends on both the base fiber for the object and the fiber
for the particular component selected. In naming his fibers, Farrow appeals to the metaphor of a
dependency thread composed of still smaller fibers contained within. Fiber dependencies always
follow alongside the original dependencies that they refine, unlike the dependencies that connect our
control attributes, which are propagated along a path chosen in complete disregard for that taken
by the original unfibered dependencies.

Since a component may represent an object reference, a component fiber for one object may
itself function as a base fiber for some other object, and thus be further subdivided into fibers for its
components. In general, each fiber has an associated selection path reflecting this recursive structure.
The selection path is a sequence of component names denoting a sequence of selections by which
the component occurrences upon which the fiber depends may be reached from the object reference
associated with the (outermost) base fiber. The set of fibers derived from an original, unfibered
attribute is in fact determined by the set of all such selection paths. This works as long as chains of
references are of bounded length (and that this fact is apparent to the necessarily approximate static
analysis), thus bounding the length of the possible selection paths. Tn the presence of potentially
re-entrant data structures, however, we reach an infinite regress. It is thus necessary to approximate
the true fiber dependencies by collapsing “similar” fibers into equivalence classes.

132

Farrow defines an abstract notion of fiber approximation, in which one fiber stands for a possibly
infinite number of other fibers, and whose dependencies cover those of the fibers they approximate.
Farrow only describes one concrete realization of such an approximation, the one used in Linguist.
The idea is to let a concrete fiber in the approximation stand for every true fiber of which it is a
prefix, identifying fibers with their selection paths. During the fibering process, in which fibers are
subdivided further, subdivision stops when the name of a fiber would be extended with a component
name that it already contains. This bounds the length of a fiber name, hence the number of concrete
fibers.

Unfortunately, the draft is unclear on a number of crucial details, forcing us to attempt to
reconstruct them. We were unable to come up with a satisfactory reconstruction. After several
aborted attempts, brief discussions with Farrow, and extended discussions with John Boyland, we
abandoned the approach and implemented a variant of our original proposal, as described here.

Indeed, while Farrow’s underlying theory is appealing, the particular fiber approximation he pro-
poses appears inadequate for our purposes. Our most plausible reconstruction of Farrow’s method
was unable to handle a description for a toy language similar to Example, but which employed a
small refinement also used in our description for Modula-2. The language provides a type abbre-
viation mechanism, as in Example, that allows the programmer to introduce a new named type
that is fully synonymous with its definition. It 1s thus possible, albeit an error, to create a pair of
mutually supporting type definitions of the following form:

type foo = bar;
type bar = foo;

Upon encountering a named type when type-checking those definitions, the type-equivalence
predicate attempted to follow the chain of renamings until a basic type or a type constructor was
encountered. Clearly, the example above would lead to nontermination. Hence, in addition to
the referent type, Type, the representation of a named type, TypeEntity, contained an additional
component, IsCyclic. This component was initialized using the function CyclicType of Figure 4.6,
and was later examined by the type-equivalence predicate.

It is easy to see why a prefix-based fiber approximation would fail on this example. It is essential
that the dependency analysis note that a call to CyclicType does not access the IsCyclic component
of any TypeEntity object. Since such an object may be reached after an arbitrary number of
traversals of the Type component, however, no finite prefix approximation can distinguish the case
in which, say, the final component selected is IsCyclic from the one in which it is Type.

Indeed, Boyland [9] claims that the prefix-based approximation as described by Farrow is flawed,
and fails to account for all dependencies, according to the best understanding he could derive from
the draft. He has also suggested a more powerful class of fiber approximations that could handle
our example above, but has not, to our knowledge, worked out the details.

133

Chapter 11

The Implementation of

Colander 11

In the previous chapters, we have discussed the analysis definition language ADL and presented the
key algorithms used in its implementation in a rather abstract way. In this chapter, we discuss the
Colander IT system as a concrete artifact.

Colander IT consists of two components, namely, a stand-alone compiler for ADL and a runtime
support package that 1s integrated with the host programming environment. Analysis descriptions
are compiled into executable code to avoid the overhead associated with interpretive or table-driven
approaches.

The compiled descriptions are dynamically linked and loaded into the host environment on de-
mand as needed. The compiler supports multiple back ends, allowing a single program to process
language descriptions descriptions for all supported environments. Currently, Colander IT supports
two host environments: Pan [3] and Ensemble [29]. Support for Pan is the most complete, and was
implemented by the author. A port to Ensemble was performed by Nicholas Weaver. Unless other-
wise noted, all references in this dissertation to the features and runtime performance of Colander
IT refer to the Pan version.

11.1 The Colander IT Compiler

Rather than generate machine code directly, the Colander IT compiler (C2C) generates code in the
implementation language of the intended host environment, Common Lisp in the case of Pan, and
C++ in the case of Ensemble. The resulting Lisp or C++ source code is then compiled to machine
code by the appropriate compiler.

11.1.1 The Virtual Target Machine

To facilitate support for multiple targets, most parts of C2C deal exclusively with an abstract virtual
machine called the Virtual Target Machine (VTM). Code for the VTM is highly reminiscent of a
subset of Lisp, but contains a number of simplifying syntactic variations as well as many special-
purpose operators related to AST traversal and change notification. VITM incorporates a simple
object model that maps cleanly onto the facilities provided by most statically typed object-oriented
languages, as well as the more dynamic ones such as the Common Lisp Object System (CLOS) [70].

134

In the VIM model, all functions are methods of an object. The program database object for a
program document being edited is an instance of the analysis description class for the appropriate
language. Global functions are methods of this object.

The translation of VI'M to Common Lisp is in most cases a trivial transformation into equivalent
Common Lisp forms or into calls to runtime support routines. The translation to C++ is somewhat
more complicated but nonetheless straightforward, compiling to C++ code similar to that generated
by other compilers for Lisp and Lisp-like languages that use C as an intermediate language, such as
Kyoto Common Lisp [83].

The VTM has proven a very useful abstraction. The VIM to Common Lisp translation fits
comfortably in a single source file, isolating the remainder of the compiler from any dependency
on the target language. By providing an option to write out the VI'M code in textual form, it
was possible for another programmer working independently to produce the C++ port using a stand-
alone VTM to C++ translator without requiring any changes whatsoever to C2C itself. An important
benefit of VTM during debugging of the higher-level code generation algorithms is that the VI'M
code is much more concise and thus easier to read than the final Common Lisp or C++ code.

Although no such translators have been written, a direct VI'M to machine-code translator would
be no more difficult than for a very small subset of Lisp. Indeed, the absence of first-class closures
would be a considerable simplification.! Since VIM code is only produced for type-correct ADL
source programs, runtime tagging is needed only for storage-management purposes. In this way,
VTM is closer to the intermediate representations used in compiling Standard ML than to Lisp.

11.1.2 Compiler Architecture and Implementation

The Colander Il Compiler is written in Common Lisp, and runs as a stand-alone program. Parsing
of the source code is performed by an LALR(1) parser, written in C and generated using flex [26]
and bison [25]. The parser runs as a subprocess of C2C, and emits a sequence of abstract syntax
trees, roughly one for each declaration or equation in the source file. These are internalized by the
Common Lisp reader, which is connected to the subprocess via a Unix”™ pipe, and assembled into
the complete AST.

The entire AST is maintained in memory during compilation, as the compiler proceeds in several
passes over the internal form. A hash-link is maintained from the AST for each declaration to
the symbol table object representing the declared entity. It was convenient to generate code for
attribute equations, rules, and clauses while they were being type-checked. Unfortunately, the
code for attribute references cannot be generated until scheduling has been completed (since some
attributes will be temporary), which requires the attribute dependency information collected at the
same time. We solved this and related phase ordering problems by introducing a number of special
macro-like pseudo-VTM forms, such as symbolic attribute references, that are expanded during final
VTM code generation. When the target-specific VI'M code generator encounters one of these forms,
it invokes a callback that performs the expansion. When VITM is output in textual form, a post-pass
performs the expansion.

The compiler makes extensive use of the Common Lisp Object System, but is not written in
a primarily object-oriented style. Inheritance is used mainly in the representation of the declared
entities, in which entities of different kinds share much common structure. The AST remains in
S-expression form and is traversed using a pattern-matching conditional construct similar to the
Standard ML case construct, implemented as a Lisp macro.

!Funargs generated by lambda-expressions in VTM are only passed downward, and thus may always be stack-
allocated.

135

We developed the compiler using the Allegro Common Lisp [27] implementation from Franz, Inc.
The compiler is written almost entirely in portable Common Lisp, relying on implementation-specific
extensions only for access to operating system facilities such as spawning processes and retrieving
command-line arguments. It would not be difficult to port the compiler to another Common Lisp
implementation with comparable facilities or an interface to foreign code written in a language such
as C.

The compiler consists of approximately 14250 lines of Common Lisp code, not including the
separate parser (in C), broken down as follows:

Parsing and Semantic Analysis 45%
Attribute Dependency Analysis 17%
VTM Code Generation 16%
VTM to Common Lisp Translation | 9%
Internal Diagnostics 7%
Miscellaneous and Utilities 6%

Compiler performance is quite acceptable. The language description for Modula-2 described in
the following chapter compiles to Common Lisp in approximately 6.5 minutes on a 64MB SPARC-
station 10.2 Originally, we produced a single Common Lisp file containing the translated code for
an entire language description. For large language descriptions, the size of this file proved too much
for the Common Lisp compiler to handle. We modified C2C to split the output among several
smaller files that could be compiled separately. This approach actually results in a significant per-
formance benefit because the files are small enough to process without invoking a costly global
garbage collection.® It is much cheaper to start up a new Lisp image to compile the next file than to
clean up after the old one. The C2C compiler generates a shellscript that is used to invoke the Lisp
compiler on the series of output files, so the user need not be inconvenienced by the multiplicity of
files. Compiling the Common Lisp code takes just over 8 minutes on a 32MB SPARCstation 2. For
this reason, we usually load the Common Lisp code directly and run interpretively during debugging.

11.2 Runtime Support

In contrast to the single stand-alone compiler, the runtime support package must be implemented
separately for each host environment. It consists of implementations for some of the more com-
plicated ADL operators, such as term comparison, automatic storage management, and support
routines for the maintenance of dynamic dependencies. In the Pan environment, storage manage-
ment is inherited from the underlying Lisp runtime system. In Ensemble, a reference counting
storage reclamation scheme is employed. Interestingly, ADL is amenable to reference counting even
though circular data structures are permitted. From the standpoint of the storage manager, the
components of an object need not be considered accessible via the references to the object, as every
component is necessarily a local attribute of either an AST operator or the top-level of the descrip-
tion, and is thus already a root. Since every cycle within a data structure must include an object
component, the heap is thus always acyclic from the standpoint of the storage manager.

2Tn contrast, compilation takes in excess of 15 minutes on a 32MB SPARCstation 2. In addition to the slower
CPU speed, memory consumption is an issue. The compiler process grows to approximately 30MB while compiling
the Modula-2 description with global garbage-collection suppressed.

8Our Common Lisp compiler employs a generational garbage collection scheme, in which most collections are small
and non-disruptive. In contrast, a global collection may take 30 seconds or more, during which no useful computation
is performed.

136

11.3 Retrospective Observations

Keeping the entire AST in core greatly simplified the construction of the compiler, facilitating our use
of a multi-pass structure. An earlier version of the compiler used a single-pass structure, however, in
which only the symbol table entries and fragments of VI'M corresponding to the bodies of equations,
rules, and clauses were retained. While adopting a multi-pass structure allowed us to relax certain
constraints on the source language, the resulting compiler was much more complicated to write and
debug. In retrospect, we question whether the added flexibility was worth the effort. Fortunately,
we found that the extra storage consumption was not a problem on our hardware.

As observed earlier, compilation of the output of C2C to machine code using the target language
compiler 1s a significant bottleneck during development of language descriptions. In the case of Pan,
we can simply load the Lisp code directly and run it interpretively for testing purposes. This option
is not available, however, when developing under Ensemble. The recent popularity of the Java”?
language, and the availability of a freely redistributable “just in time” compiler for the Java byte code
instruction set [82], raises the intriguing possibility of generating Java byte codes directly from VTM
source. The strongly typed, object-oriented, garbage-collected nature of the Java virtual machine is
a good match for the semantics of VT M. Language descriptions compiled into such byte codes could
be executed interpretively, compiled “on the fly” just before execution, or compiled off-line using
tools developed or under development elsewhere, thus avoiding the cost of implementing equivalent
functionality from scratch.

137

Chapter 12

Gaining Experience: Analyzing

Modula-2

In Chapter 4, we presented an analysis description for an artificial toy language in detail. Real-world
programming languages, designed to solve real problems rather than to clarify an academic argument,
often pose severe challenges for compiler-generation tools based on idealized “textbook” principles.
In this chapter, we report the results of an experiment undertaken to discover the strengths and
limitations of our approach in a realistic setting.

12.1 Static Semantics for Modula-2

We have implemented a static semantic analyzer for the programming language Modula-2. We chose
to implement Modula-2 for several reasons:

e Modula-2 has a rich and complex scoping discipline.

e A grammar was available for Modula-2 which accommodated limitations in the incremental
parser we rely on, which cannot handle situations requiring feedback from semantic analysis
to the parser, e.g., the use of type names defined via typedef in C.

e Modula-2 was used as a full-scale example for the old Colander system described by Bal-
lance [4], allowing us to build a similar description for Colander 1.

Our coverage of the language is similar to the description developed for Colander by Ballance,
omitting the contents of the SYSTEM module, as well as the new types LONGINT and LONGREAL intro-
duced in later editions of the Modula-2 report. We were also forced to introduce some unfortunate
restrictions on the use of constant expressions due to limitationsin ADL and its statically scheduled
evaluation model, which will be discussed subsequently.

We generalize the language in one important way, placing no restrictions on the order in which
declarations appear within each scope. According to the report, a name may not be used within an-
other declaration before the name has been declared unless the use is embedded within a statement.
Thus, for example, a procedure call, appearing as a statement within a procedure definition, may
reference a procedure not yet defined, but a type, appearing within a type declaration, may not.
The principal effect of this restriction is to prohibit the definition of ill-founded circular types and

138

constants, for which we provide a separate check. We lifted the declaration before use requirement
because such restrictions are considered by many authors to be an artifact of conventional sequential
batch-mode compilation, and an inappropriate restriction in an interactive language-based editing
environment. Hedin [32], for example, claims that even when the language definition requires def-
inition before use, the restriction should be relaxed by the editor, and conformance restored when
exporting source text by topologically sorting the declarations. Furthermore, a direct encoding of
the usual method of testing for declaration before use, i.e., introducing declarations into the envi-
ronment one at a time as they are processed, leads to threading the binding environment attribute
through the declarations. To permit efficient incremental evaluation, the recommended strategy is to
manage the binding environment as if there were no restrictions, and then to perform a separate test
for declarations that are out of order. This approach also leads to clearer diagnostics. Unfortunately,
we discovered that such common language features as named symbolic constants and unrestricted
declaration order are problematic in any attribute grammar that is to be evaluated by a statically
scheduled visit-sequence evaluator, quite independently of incrementality concerns.

The Modula-2 report is unclear on many points, and is not an exemplary defining document. We
relied on Blaschek and Pomberger [7] and Cornelius [14] for clarification on a number of points. We
will note where our implementation deviates from our best assessment of the intent of the report or
common practice as reflected in those other authorities.

12.2 Implementing Analysis of Modula-2

Our analyzer for Modula-2 exports a single relation, Error, associating AST nodes with the error
messages that apply to them. In its essential style and structure, the Modula-2 description resembles
the one for Example developed earlier. The text of the description exceeds 5000 lines in length,
precluding a detailed walk-through such as that we presented for Example. We will thus only high-
light important design decisions, along with specific difficulties and their resolution. The complete
text of the Modula-2 description is included as Appendix C.

12.2.1 Compilation Units

In the general case, a Modula-2 program is composed of multiple compilation units. Conventionally,
the source code for each such unit is stored in a separate file. Since Colander II currently creates
a distinct analysis database for each source file opened for editing, with no provision for commu-
nication, the analyzer would be unable to verify inter-unit consistency if each unit were stored in
a separate file. Our analysis is thus defined to process a single source file, in which all of the
compilation units of the program are included in an arbitrary order.

In Colander, each compilation unit is contained in a separate file, but the required communication
is provided simply by allowing all source files using a common language description to share the
global context of the description. There is no notion of a “system” of related files composing a
single program. A more satisfactory solution is provided by the Segmentable Attribute Grammars
of Micallef and Kaiser [53], which allow separately stored and editable subtrees to be dynamically
“grafted” onto another tree for attribution.

12.2.2 Scoping and Name Resolution

Modula-2 defines a complex scoping discipline in which many language constructs establish binding
environments, each with idiosyncratic name-resolution rules. Definition modules declare a set of
named entities, which are then provided with implementations in an implementation module. Any

139

class ImportedName isa Entity
with
attribute RefersTo : BindingStatus
delayed AllImportsResolved;
requiring
attribute Imported : BindingStatus
delayed AllImportsDeclared;
where
RefersTo = StripImportProxies (Imported);
end ImportedName;

Figure 12.1: Proxy for imported names.

module may import the declarations provided by a definition module by reference to the module
name. An implementation module implicitly imports its corresponding definition module. Program
modules are similar to implementation modules, but do not have a corresponding definition module,
and contain the main program. In addition to these module types, which are all separate compilation
units at the top-level of the program, local modules may be nested within any scope. Local mod-
ules control visibility using somewhat different rules than other kinds of modules. Procedures and
functions also introduce new scopes, following the familiar Algol nesting model. The components of
a record variable may be “opened” for access within the scope of a with statement, as if they had
been declared as individual variables.

Explicit lists of imports pose a problem, due to the fact that local modules may be mutually
recursive. In the context in which they appear, the imports function as declarations. The imported
entity, however, defined in another module, may depend on the entity being defined. This potential
circularity renders the definition circular, prior to fibering. For fibering to work, however, every
cycle must be mediated by at least one object. Because a trivial ill-founded cyclic definition 1s
possible (and must be checked for later), we cannot rely on the object representing the imported
entity to fulfill this role. We thus introduce a special entity type to represent the imported name,
which serves as a proxy for the imported entity, and contains an indirection to it. In effect this
is no different than the objects we we must introduce to represent named types, but, in that case,
the explicit representation of a named type as distinct from its referent seems semantically well-
motivated, and not merely a device to make fibering work. The class definition for the proxy entities
is shown in Figure 12.1. To avoid the overhead of repeatedly dereferencing chains of such proxies,
each proxy contains a pointer to its ultimate referent which is initialized as early as possible, subject
to the constraints of our static scheduling algorithm. Explicit exports appearing in local modules
are handled similarly, as if the surrounding context had performed an import.

The binding environments for all constructs introducing scopes are represented as subclasses
of the class Context, declared as shown in Figure 12.2, and follow a common protocol for name
resolution. The Context class is very similar to the Contour class that we developed for Example.
The currently visible binding for a name is returned by the VisibleBinding method. Two versions
of the local bindings are maintained. The first, LocalBinding1, is used during the processing of
declarations, and may contain import proxies. When the ultimate referents of the proxies have
been determined, LocalBinding?2 is constructed as a copy of LocalBindingl in which all import
proxies have been replaced with their referents. In this way, it is not necessary for subsequent name
resolutions to chase proxy indirection chains, thus reducing the number of dynamic selections that

140

class Context
with
function VisibleBinding(String) -> BindingStatus
maintained,
delayed VisibleBinding;
function LocalBindingl(String) -> BindingStatus
maintained,
delayed LocalBindingl;
function LocalBinding2(String) -> BindingStatus
maintained,
delayed LocalBinding?2;
function Declarable(String, Entity) -> Boolean;
function Redeclares(String) -> BindingStatus;
attribute IsInLoop : Boolean;
attribute InProcedure : Context
delayed InProcedure;
requiring
% nothing
where

end Context;

class TopContext isa Context
with
function LiteralBinding(String) -> BindingStatus
delayed LiteralBindings;
requiring
relation Binds(String, Entity)
maintained;
where

end TopContext;

Figure 12.2: The class Context.

141

must be registered at runtime. The method Declarable determines if a declaration constitutes an
illegal duplicate declaration. The method Redeclares is applicable only within an implementation
module, and determines which declaration inherited from the corresponding definition module is
to be superseded, if any. Context objects are also used to record nesting within procedures and
functions, and within loops, to assist in the analysis of the return and exit statements.

Enumeration literals, defined in the declaration of an enumeration type, are treated like any other
named constant, and bound in the context in which the type definition appears. When the name of
an enumeration type is imported, however, Modula-2 requires that the literals be implicitly imported
as well. In ADL, we cannot treat such implicit imports as declarations, as we cannot instantiate any
objects (e.g., import proxies) to represent the literals. This follows as a consequence of the static
instantiation strategy for objects. We thus maintain another set of local bindings, represented by
the method LiteralBinding, which is derived by examining the referent of each name imported into
the context and collecting enumeration literals. During name resolution, VisibleBinding checks
both LocalBinding2 and LiteralBinding. A consequence of this strategy is that declarations
appearing locally may silently shadow imported enumeration literals. While this may be arguably
useful behavior, it appears that the conventional interpretation of the implicit import rule is that it
should have the force of a declaration, producing an error message in such cases.

12.2.3 Types and Typechecking

In most cases, an expression represents a value. In some contexts, however, phrases that are gram-
matically expressions play a different role. Specifically, the arguments to a procedure are syntac-
tically expressions, but may denote a storage location in the case of a reference (var) parameter,
or even a type name in the case of the standard procedure VAL. Each expression is thus given an
attribute Mode which distinguishes these roles. The type of the Mode attribute is the following:

datatype ExprMode is EmVAR % storage location
| EmVAL % value known at runtime
| EmTYPE % type name
| EmCONST % constant value known at compile-time
I

EmUNKNOWN % unknown due to error

In the event that the expression denotes a compile-time constant, another attribute, Value, provides
additional information. Its type 1s:

datatype ConstValue

is CvUNKNOWN % no further information
| CvILLFOUNDED % defined by cyclic named constant
CvNILPTR % the standard constant NIL
CvPROCVALUE % a procedure value

CvSTRING (String) % a string literal with given value
CvINTEGRAL (Integer) % integer or ordinal with value

Our description maintains only the information that is relevant to performing required semantic
checks, unlike a full compiler which would need more complete information for code generation.
It does not maintain any information concerning the value of REAL constants. Since no required
compile-time checks involve real values directly, this choice appears to be acceptable. If the standard
function TRUNC is permitted as a static compile-time function, however, it is possible that, say, the
bounds of an array might be derived from the value of a real-valued constant expression. (Tt is not

142

class TypeObj isa OperandMatchResult
requiring

attribute Shape : TypeShape;
end TypeObj;

datatype TypeShape is TsUNKNOWN % unknown due to error
| TsINTEGER
| TsCARDINAL
| TsCHAR
| TsREAL
% object containing bounds information
| TsSUBRANGE (Subrange0bj)
% list of enumeration literals
| TSsENUMERATION ([Constant])
% index type, element type
| TsARRAY(TypeObj, TypeObj)
% element type
| TsOPENARRAY (TypeObj)
% contour containing field/name bindings
| TsRECORD(RecordContext)
% base type
| TsSET(TypeObj)
% argument list
| TsPROCEDURE (ArgSpecList)
% argument list, result type
| TsFUNCTION (ArgSpecList, TypeObj)
% referent type

| TsPOINTER(TypeObj)
| TsOPAQUE

% symbol table entity for referenced type
| TsABBREV(NamedType) % named type

Figure 12.3: The representation of types.

clear from the language definition precisely which operations are intended to be evaluable at compile
time, however.)

Every expression has an associated type, represented by the Type attribute. The type-equivalence
rule in Modula-2 is fundamentally equivalence-by-name, though with many exceptions and special
cases. In order to distinguish distinct types possessing isomorphic structure, we represent types
using objects. These objects, of class TypeObj, contain a single component, Shape, a term type
encoding the structure of the type. These definitions appear in Figure 12.3.

For most types, the representation of the type structure is straightforward. Subrange types
pose a problem, however, as the bounds of the subrange are constant expressions, whose type
may potentially (though erroneously) depend on the subrange type being defined. Resolving this
circularity requires that the bounds of the subrange be represented as object components so that
fibering may apply. We thus use an auxiliary object, of class Subrange0bj, as follows:

143

class SubrangeObj
requiring
attribute Type : TypeObj;
attribute Min : ConstValue
delayed SubrangeBounds;
attribute Max : ConstValue
delayed SubrangeBounds;
end SubrangeObj;

There 1s a further complication with subrange bounds which reveals one of the more serious
limitations of static analysis in our system. In general, the type of an expression may depend on the
type of a variable, and the type of a variable may be a subrange. Thus a cyclic attribute dependency
is inevitable if a general expression is permitted as a subrange bound, even if that expression is
restricted to have a constant value. Fibering does not help in this case, as it is necessary to actually
evaluate the expression, not just transmit an object reference unexamined. We are thus forced
to create two essentially identical versions of the expression subgrammar, one for use in contexts
where a constant expression is required (CExpr), and another for the general case (Expr). The
constant expression subgrammar need not access the Type component of variable entities, as the
mere presence of a variable name within the expression 1s sufficient to indicate an error. The type
of a constant expression will not depend on the types of variables, thus once the Type component
has been fibered, the circularity will be eliminated. As it turns out, we replicate only a small part of
the expression subgrammar for constant expressions, resulting in a severe language restriction, due
to a more fundamental problem with the processing of named constants under a static scheduling
discipline and without declaration order restrictions. This 1ssue will be discussed shortly.

Similarly, we cannot simply use the definition of a named type in place of the name, as the
named type may itself potentially depend on the current type, requiring the use of an indirection
to avoid an unfiberable trivial cycle. In this case, however, the entity representing the named type
serves this role. It is, in any case, advisable to retain information on the use of named types, as this
information may be helpful in error diagnostics. Named types are represented by instances of the
NamedType class:

class NamedType isa Entity
requiring
attribute Type : TypeObj
delayed AllNamedTypesResolved;
attribute IsCyclic : Boolean
delayed Al1TypeCycleChecks;
relation HasLiteral (String, Constant)
delayed NamedTypeEnumLiterals;
end NamedType;

The component IsCyclic is initialized after the definitions of all named types (within a given
contour) have been completed. During type-checking, several functions must traverse potentially
cyclic type descriptor structures without falling into infinite regress should an ill-founded type be
encountered. Since the full check for circularity is expensive, we perform it once for each named type
and cache the result. Cycle-checking is performed using a trail in a manner analogous to our analyzer
for Example, except for the handling of record fields, which requires some way to step through the
record field definitions. The RecordContext class, which holds the bindings of field names to their
associated field entities, is given an additional functional attribute CyclicFields that takes a trail
argument and carries out the cycle-check for the fields of the record. The cycle-check then delegates

144

responsibility to this method when a record type is encountered. For the name of an enumeration
type, the relation HasLiteral enumerates the names and constant entities for its literals. These
are used in the definition of the LiteralBinding attribute described in the previous section, which
handles the implicit import of the literals when the name of an enumeration type i1s imported.

Assignable storage locations such as variables, parameters, and record fields, are represented
as instances of subclasses of the class Location. Their shared, variable-like behavior is captured
in the common superclass, while allowing, for example, parameters to have a transmission mode
annotation. Objects of class Location are instantiated directly to represent the result of operations
such as subscripting, which denote unnamed assignable locations.

12.2.4 Declarations and Named Constants

Beyond the issues previously discussed, the processing of most declarations is entirely analogous to
their treatment in Example. The declaration of named constants, however, poses a problem which
is intractable within our current statically scheduled evaluation framework. Without restrictions
on declaration order, the definition of any named constant may depend on a reference to any other
constant declared in the same scope. We could, in principle, create an isomorphic copy (as an ADL
data structure) of the expression defining each constant, then traverse the copy within an out-of-line
function to perform the evaluation. References to other named constants could be resolved into
direct links to the referent definition in the same manner as for type descriptors. This would yield a
potentially cyclic expression graph, requiring the use of a trail to detect and report cycles as errors.
This approach is completely antithetical to the spirit of attribute grammars, however, in which
semantic functions should be small and limited in the amount of processing they perform. Any
computation over a tree can be computed in a single pass by building a copy of the tree and doing
all the processing in a semantic function at the root, but this approach clearly defeats whatever
leverage the AG formalism might provide, as well as rendering incremental evaluation methods
totally ineffective.

The difficulty is that the required evaluation order for a set of constant definitions depends in a
crucial way on the specific usage of constant names within the definitions of other constants. While
cyclic ill-founded constant definitions are illegal, the possibility of their construction cannot be ruled
out from the structure of the statically analyzable attribute dependencies.

We need a mechanism combining two ideas: First, the attributes of constructs such as constant
definitions must be evaluated in a demand-driven way, adapting the evaluation order to the specific
pattern of references between the definitions. Second, the mechanism must detect the actual presence
of a cycle dynamically, and handle a cycle as an exceptional event, e.g., by computing a reserved
error value as the value of an affected attribute. By relying on a builtin mechanism to detect and
recover from cyclic dependencies, it would then be possible to ignore cycles at static analysis time,
confident that they could not result in inconsistency at runtime. We propose a special conditional
construct which would request the value of an attribute while providing an error value to return if a
dynamically detected cyclic dependency precluded the evaluation. An instance of this construct, or
a delayed object component, would then be required within each potential cycle identified by static
analysis. This mechanism would thus provide a second method of resolving circularities in addition
to fibering.

We made a partial attempt at prototyping a solution along these lines by using existing ADL
mechanisms to simulate demand-driven evaluation within the constant expression subgrammar. The
Type and Value attributes for AST operators within this subgrammar are functional attributes that
compute the appropriate type and value when called. Each takes a trail parameter, analogous to that
used in the detection of cyclic types, which allows the functions to return a reserved “ill-founded”

145

value when needed. The attributes of the named constant entities are defined similarly:

class Constant isa Entity
requiring
function Type(TrailType) -> TypeObj
delayed ConstantTypes;
function Value(TrailType) -> ConstValue
delayed ConstantValues;
end Constant;

Every cycle in a constant definition must include a named constant. Completing each cycle via an
object method invoked remotely circumvents the circularity test, which does not attempt to restrict
mutually recursive method calls.

We implemented this approach for a subset of the expression sublanguage. It is very awkward
to access the values of the attributes within a constant expression, e.g., for checking the types of
operands to an arithmetic operator, as the functional attributes must be called afresh at each point
that we wish to examine the value. In order to prevent an exponential blowup in the number of
function calls, the functions must be cached, and the existing caching mechanism will not perform
well with large trail values as arguments. We simply restricted constant expressions to the simple
case of a literal or a reference to another constant, and did not implement any operations on constant
expressions other than sign inversion (unary minus).

12.3 Lessons from the Implementation of Modula-2

In general, we found the facilities of ADL a pleasure to use. Our experience might be summarized
by saying that most of writing a language description was very easy, but that the few difficult parts
were nearly impossible.” In this section, we review the problems that we encountered.

12.3.1 Dynamic Scheduling

The difficulty with named constants came as a complete surprise to us, as we found no mention of
such a problem within an extensive literature on attribute grammars. Yet 1t appears endemic to any
attempt to implement two rather common language features, named constants and unrestricted dec-
laration order, within a statically scheduled framework. Indeed, regardless of the scheduling method,
the resulting AG would be circular according to the classical and generally accepted definition. This
problem was the major one, and the only showstopper.

We have suggested a solution, and hand-crafted a “mock-up” to make an initial assessment of its
feasibility. The result, however, brings heavyweight mechanisms (function caching, trailing) to bear,
with unacceptable runtime cost. What is really needed is a way to schedule the actual node visits
dynamically, so that processing that normally takes place within a visit function, such as storage of
attribute values in the tree (if needed) and performing assertions into collections, could be done at
the same time. In the case of constant expressions, for example, a single visit to each named constant
and each expression and subexpression of its definition suffices to compute all relevant attributes,
or to detect any cycles present. Our incremental evaluation methods, however, depend on static
scheduling, and would have to be replaced in these cases with other methods of an unspecified
nature.

I This is not an uncommon situation with tools that rigidly adhere to powerful high-leverage principles at the
expense of pragmatic flexibility. We will have more to say about this in the following chapter.

146

12.3.2 Fibering

Fibering did not work as well as we had hoped, forcing us to treat the elimination of dependency
cycles as an iterative, intuitively guided, trial-and-error process similar to removing LALR(1) con-
flicts from a grammar to be processed by a parser generation tool such as bison. The multitude of
control attributes introduced by fibering complicated the process of removing the so-called “Type 3”
circularities [47] detected in the final step of the OAG evaluator construction. These “circularities”
are artifacts of the greedy algorithm used by the OAG evaluator construction to determine a total
ordering on the attributes given the partial order implied by the dependencies in the AG. As in
all evaluator generators based on OAGs, the user must coax the algorithm into making a feasible
choice by further constraining it with additional and otherwise useless attribute dependencies. This
process requires building some intuition about the attribute dependencies in the program, generally
with the help of the dependency analysis diagnostics. The large number of control attributes and
their dependencies introduced during fibering make the diagnostic dumps very difficult to interpret,
however, especially when the attribute causing the problem is itself a control attribute.

Another failing of the fibering algorithm is that it was necessary to fiber many more components
than would require backpatching in a hand coded compiler. The problem is that each equivalence
class of adjoining cycles (representing an SCC in the dependency graph) is viewed as a unit, when in
fact it may contain a number of logically disjoint cyclic paths that cannot be distinguished due to the
approximate nature of the initial (unfibered) dependency analysis. Every cycle arising in Modula-2
involves a reference to a name, assuring that every cycle contains the binding environment. Thus
fibering identifies only a single SCC in the entire description, resulting in the assumption that every
component involved in an SCC depends on every other such component within the binding contour
in which it appears.

We conjecture that it would be possible to get much better dependency information if fibering
were done one component at a time. Fibering a component to remove one cycle may reveal that other
cycles discovered during the initial analysis are spurious. Thus the analysis should be repeated, and
another component fibered, and so on until no more are left. The resulting fibering order, however,
would in fact be an ordering on the relative dependencies between the components, and it is not
clear how 1t would be determined, other than by user intervention.

12.3.3 Objects and Non-local Dependencies

We found 1t necessary to use objects in some cases in order to exploit their possession of a unique
identity, but where the maintenance of non-local dependency links was not appropriate. That is, we
would prefer that they be treated like ordinary tuples for analysis and evaluation purposes. It would
be helpful if the maintenance of nonlocal dependencies could be selected by a pragma, perhaps for
each component individually.

12.3.4 Data Types and Operators

In order to handle compile-time real arithmetic, we need support for fractional numbers. Since
floating-point “reals” are in fact just rational numbers, we suggest that rational numbers, e.g., as
supported by Common Lisp, be included. This would avoid making assumptions about target-
environment floating point formats in ADL.

147

Chapter 13

Evaluation and Future Directions

13.1 Summary of our Research Contributions

This dissertation makes three major contributions. Though they contribute synergistically to the
complete Colander II system, each stands alone as an independent contribution applicable in a more
general context as well.

We have developed a new formalism for expressing executable specifications of static semantics.
Our metalanguage melds the advantages of traditional attribute grammars, including amenability
to extensive generation-time analysis, with the expressiveness and client-independence characteristic
of Ballance’s Logical Constraint Grammars. Our formalism allows much more of the incrementality
inherent in a particular analysis problem to be exposed within the formalism itself, where it can be
exploited automatically by our implementation. In contrast, traditional attribute grammars conceal
much of the interesting computation within “black box” semantic functions.

We have developed incremental analysis algorithms tailored to our formalism that exploit its
distinctive features. These features include object-valued and function-valued attributes, which
allow us to automatically generate incremental analyzers that handle long-distance dependencies
and aggregate attributes efficiently. Our methods allow unusual freedom to control the granularity
of incremental evaluation, allowing performance tradeoffs to be chosen as demanded by the needs
of the application rather than the a priori requirements of the algorithms. Our methods are also
distinguished by the simplicity of the required runtime machinery and their minimal reliance on out-
of-line library support, making i1t practical to compile the evaluators to low-level executable code.
While developed to address the needs of our specification formalism, our incremental evaluation
algorithms do not make essential use of attribute grammar concepts, and are applicable to other
evaluation methods based on traversal and annotation of an abstract syntax tree.

We have developed a static analysis and transformation on attribute grammars that accommo-
dates a useful class of circular attribute dependencies. The method automates the “backpatching”
method often used in hand-coded compilers. The transformation is applicable to attribute gram-
mars in general, and has no special dependence on incremental evaluation or the particulars of our
specification metalanguage.

148

13.2 Open Issues in Colander II

Unfortunately, the Colander IT system as a whole has only partially met its design objectives. In
this section, we summarize those areas in which further exploratory research or engineering effort is
needed.

While suitable for expressing a wide range of programming language concepts, realistic pro-
gramming languages demand additional facilities beyond those supported by our specification met-
alanguage. One obvious omission, support for floating-point and/or rational arithmetic, would be
a straightforward programming exercise. Other necessary extensions, however, constitute genuine
research problems. Most notably, there appears to be an unavoidable requirement for a mechanism
to schedule some attribute evaluations dynamically, detecting dependency cycles at runtime. This
need arises, for example, in the named constant declarations of Modula-2. Since the possibility of a
cycle is known in advance, and its detection at runtime is to be handled as an error in the analyzed
program (not in the language description) such a mechanism is compatible in principle with strong
generation-time checking. In Chapter 12, we suggested an approach that is workable from the stand-
point of the specification formalism. It is much less clear whether efficient incremental evaluation
can still be provided automatically.

At present, our analysis algorithms handle relations in a simplistic and superficial way. We
have suggested several possible improvements, some of which are principally a matter of additional
engineering effort and introduce no new conceptual issues. Lurking below the surface, however, is
the fact that for relations, much more so than for objects or functions, there is great variability
in the kind of implementation that is appropriate in a given context. Indeed, our current, rather
naive, implementation of relations 1s most likely the best one for relations expected to contain only
a handful of tuples. A generally satisfactory solution will probably require the provision of many
implementation variants, with additional pragmas to allow selection of an appropriate one.

The evaluators generated by Colander II suffer from the naivete of our compiler. Much improve-
ment could be realized from traditional compiler optimizations. Common subexpression elimination,
for example, would avoid the overhead of creating unneeded dynamic dependency links during the
redundant computations. Other improvements, such as sharing non-local dependency lists among
multiple object components, would require new generation-time analyses of the attribute grammar,
or yet further guidance from the user in the form of additional pragmas.

In general, our implementation suffers from its attempt to implement the underlying semantics
of the specification metalanguage in an incremental fashion, rather than exploiting higher-level
understanding of the intended semantics of the analysis. This information is undecidable in general
and known only to the user. The problem would be mitigated somewhat if higher-level “chunks” of
functionality, such as symbol table management, could be encapsulated in widely re-usable modules
or class definitions. A library of hand-optimized implementations could then be provided if needed.

Separate-compilation in the context of attribute grammars remains problematical, as attribute
dependency analysis is inherently global. Some allowances for separate compilation were made at
the early stages of the Colander IT design, but the idea was eventually abandoned completely. Tt
would be useful to introduce some kind of module facility, even if based on simple textual inclusion.

Fibering, while effective, has proven awkward to use in our implementation. A straightforward
implementation leads to a proliferation of additional attributes whose significance is not immediately
clear, but which clutter the diagnostic reports produced by the dependency analyzer. Localizing
the true source of a circularity from the voluminous diagnostics is then difficult. A browser allowing
exploration of a graphical display of the attribute dependencies would be of great assistance.

Attribute grammars encourage the user to write the analysis description without thinking through
the issue of potential circularities, relying on the the dependency analyzer to discover them. Ulti-

149

mately, however, the user must develop an understanding of the source of the circularities in order to
place the delayed pragmas intelligently. Once located, the removal of a circularity may occasionally
require significant reformulation of the language description to put it in fiberable form, which would
not have been required had the circularity been anticipated. It appears that the generation-time
analysis performed by fibering functions primarily as a guarantor of correctness, and not necessarily
as a labor-saving device. This 1s particularly true when extensive use 1s made of fibering, as in our
analysis description for Modula-2. We speculate that encouraging the user to explicitly declare the
expected “pass structure” at the outset, and providing some notation for doing so, might be prefer-
able from the standpoint of reasoning about the dependencies during construction of the analysis
description.

Finally, limitations of our fibering algorithm may force more components to be fibered than
are actually necessary. The algorithm identifies strongly connected components of the dependency
graph, not individual cycles, and thus fibers all components contained therein in order to assure
that all cyclic dependency paths are severed. Restricting fibering to those components declared as
delayed is not sufficient in general to limit fibering to a minimal set of components. A more clever
algorithm would attempt to identify such a minimal set itself, or might ask for user assistance when
confronted with a non-obvious choice.

13.3 Directions for the Future

The most obvious direction for future work would be to directly address these open issues, resulting
in a second generation system of the same general character as Colander II. Some issues, such as
support for dynamic scheduling and improved fibering, are genuine research topics. Others are
just a matter of straightforward engineering or the application of well-known compiler optimization
techniques.

We are not convinced, however, that this would be necessarily the best way in which to proceed,
particularly if the ultimate aim of the research is to experiment with advanced environments as
completed artifacts rather than to further perfect the art of constructing them. Colander 1T is already
a sizeable system reflecting substantial implementation effort, and further development would only
make it larger. Furthermore, the attempt to embrace the entire task of incremental analysis in a
tidy unified framework necessarily brings with it a degree of brittleness, i.e. the tendency to “hit the
wall” when the demands of the task push beyond the natural limits of the tool. In the construction of
conventional compilers, interoperating suites of relatively lightweight tools, each focused on a narrow
subtask, have been much more widely accepted than monolithic, all-encompassing frameworks. Such
tools adapt more easily to awkward real-world requirements, and can usually accommodate ad hoc
workarounds for situations that do not mesh precisely with the theory upon which the tools are
based. The applicability of our incremental evaluation methods would be broadened if they could
be decoupled from their present embodiment in a monolithic analyzer generator. Toward this end,
we note that the essence of our approach to incrementality is a caching strategy tuned for a certain
class of imperative tree-based computations that happens to be appropriate for the programming of
static semantic analyzers. In principle, this strategy could be applied to a hand-written analyzer,
particularly if caching was used very selectively, as we recommend. It may also be possible to
construct a lightweight tool, for example, a preprocessor, that provided automatic assistance in the
process.

Just as our approach to incremental analysis 1s not essentially dependent on attribute gram-
mars, neither are our improvements to attribute grammars in any way dependent on incremental
evaluation. Fibering would be a valuable addition to almost any attribute grammar implementation.

150

The design of Colander 11, like its predecessor, is resolutely based on the traditional “textbook”
compiler architecture in which parsing is performed prior to semantic analysis and completely in-
dependently of it. Many widely used programming languages of practical importance cannot be
accommodated in this framework, requiring feedback from semantic analysis to the parser in order
to implement a context-sensitive parse. In this case, the usual approach is to interleave the exe-
cution of the parser and the semantic analyzer. Subject to restrictions on the acceptable attribute
dependencies, it is possible to evaluate an attribute grammar while the AST is being constructed.
Colander IT could be profitably extended to employ such methods.

As computer hardware continues to improve, the importance of incremental analysis within a
single module or source file is greatly diminished, at least from the standpoint of analysis latency.
Rising user expectations are resulting in ever-increasing program sizes, however, presenting us with
new problems of program scale even as faster hardware sweeps away some of the old ones. In
practice, larger programs do not contain larger compilation units, rather they contain more of them.
We suggest that the greatest payoff from incremental analysis methods will be realized when they
work effectively at the level of an entire system, including those with very large numbers of modules.
The persistent state in this case will most likely have to reside on external storage, and be shared by
multiple users, that is, it will be a true database in the sense that that term is commonly understood.
Developing suitable methods for fine-grained incremental analysis within this context remains an
open challenge which has scarcely been addressed.

151

Bibliography

[1]

[2]

[11]

[12]

Harvey Abramson. Definite clause translation grammars. In International Symposium on Logic
Programming, pages 233-240. IEEE Press, 1984.

Rolf Bahlke and Gregor Snelting. The PSG system: From formal language definitions to
interactive programming environments. ACM Transactions on Programming Languages and

Systems, 8(4):547-576, October 1986.

R. A. Ballance, S. L. Graham, and M. .. Van De Vanter. The Pan language-based editing
system. ACM Transactions on Software Engineering and Methodology, 1(1):95-127, 1992.

Robert Alan Ballance. Syntactic and semantic checking in language-based editing systems. Tech-
nical Report UCB/CSD 89/548, Computer Science Division, University of California, Berkeley,
1989. Ph.D. dissertation.

Francois Bancilhon and Peter Buneman, editors. Advances in Database Programming Lan-
guages. ACM Press, 1990.

George McArthur Beshers and Roy Harold Campbell. Maintained and constructor attributes.
In ACM SIGPLAN ’85 Symposium on Language Issues in Programming Environments, pages
34-42, 1985.

Gunther Blaschek and Gustave Pomberger. Introduction to Programming with Modula-2.
Springer-Verlag, 1990.

P Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual. CEN-
TAUR: The system. In Peter Henderson, editor, ACM SIGSOFT ’88: Third Symposium on
Software Development Environments, pages 14-24, 1988.

John Boyland. Personal communication.

John Tang Boyland. Descriptional composition of compiler components. Technical Report
UCB/CSD-96-916, Computer Science Division, University of California, Berkeley, September
1996. Ph.D. dissertation.

Yih-Farn Chen, Michael Y. Nishimoto, and C. V. Ramamoorthy. The C information abstraction
system. IEFE Transactions on Software Engineering, 16(3):325-334, March 1990.

Henning Christiansen. Structure sharing in attribute grammars. In J. Maluszyniski, editor, Pro-
gramming Language Implementation and Logic Programming: International Workshop PLILP
’88, volume 348 of Lecture Notes in Computer Science, pages 180-200. Springer-Verlag, 1988.

152

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack Minker, editors, Logic and Data
Bases, pages 293-322. Plenum Press, 1978.

B. J. Cornelius. Problems with the language Modula-2. Software — Practice and Ezxperience,
18(6):529-543, June 1988.

Declarative Systems, Inc., Palo Alto, CA. Linguist User’s Manual, Version 6.3, March 1990.

DeGroot and Lindstrom, editors. Logic Programming: Functions, Equations, and Relations.
Prentice-Hall, 1986.

Pierre Deransart, Martin Jourdan, and Bernard Lorho. Attribute Grammars: Definitions,
Systems and Bibliography. Springer-Verlag, 1988.

J. Engelfriet. Attribute grammars: Attribute evaluation methods. In B. Lorho, editor, Methods
and Tools for Compiler Construction, pages 103-138. Cambridge University Press, 1984.

J. Engelfriet and G. Filé. Passes, sweeps, and visits. In S. Even and O. Kariv, editors, Pro-
ceedings of the Eighth International Conference on Automata, Languages, and Programming,
volume 115 of Lecture Notes in Computer Science, pages 193-207. Springer-Verlag, 1981.

Joost Engelfriet and Gilberto Filé. Simple multi-visit attribute grammars. Journal of Computer
and System Sciences, 24:283-314, 1982.

R. Farrow and D. M. Yellin. A comparison of storage optimizations in automatically-generated
attribute grammars. Acta Informatica, 23(4):393-427, 1986.

Rodney Farrow. Fibered evaluation in Linguist. unpublished draft, Declarative Systems, Inc.,

Palo Alto, CA.

P. Feiler, S. Dart, and G. Downey. Evaluation of the Rational environment. Technical Report
CMU/SEI-88-TR-15, Software Engineering Institute, Carnegie-Mellon University, 1988.

Peter H. Feiler. A language-oriented interactive programming environment based on compilation
technology. Technical Report CMU-CS-82-117, Department of Computer Science, Carnegie-
Mellon University, 1982. Ph.D. dissertation.

Free Software Foundation, Inc. Bison Manual. 59 Temple Place — Suite 330, Boston, MA,
02111-1307. December 1993 Edition for Version 1.23.

Free Software Foundation, Inc. Flex Manual. 59 Temple Place — Suite 330, Boston, MA,
02111-1307. Edition 1.03 for Version 2.3.7.

Franz, Inc. Allegro CL User Guide, March 1992. version 4.1.

Neal M. Gafter. Parallel incremental compilation. Technical Report 349, Department of Com-
puter Science, University of Rochester, June 1990. Ph.D. dissertation.

Susan L. Graham. Language and document support in software development environments. In
Proceedings of the Darpa’92 Software Technology Conference, Los Angeles, April 1992.

GrammaTech, Inc. The Synthesizer Generator’ ™ : Language-Sensitive Editing for CASE. One
Hopkins Place, Ithaca, New York 14850. Undated product overview received in 1993.

153

[31]

[40]

[41]

Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views incremen-
tally. SIGMOD Record, 22(2):157-166, June 1993. Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data.

Gorel Hedin. Incremental Semantic Analysis. Ph.D. dissertation, Department of Computer
Science, Lund University, March 1992.

Gorel Hedin. An overview of door attribute grammars. In Peter A. Fritzson, editor, Proceedings
of the CC °94 International Conference on Compiler Construction, volume 786 of Lecture Notes
mn Computer Science, pages 31-51. Springer-Verlag, 1994.

Roger Hoover. Dynamically bypassing copy rule chains in attribute grammars. In Proceedings of
the Thirteenth Annual ACM Symposium on Principles of Programming Languges, pages 14-25,
January 1986.

Roger Hoover. Efficient incremental evaluation of aggregate values in attribute grammars. In
Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, pages 39-50, June
1986.

Roger Hoover. Incremental Graph FEvaluation. Ph.D. dissertation, Department of Computer
Science, Cornell University, 1987.

Roger Hoover. Alphonse: Incremental computation as a programming abstraction. In Proceed-
wngs of the ACM SIGPLAN °92 Conference on Programming Language Design and Implemen-
tation, pages 261-272, 1992.

Susan Horwitz and Tim Teitelbaum. Generating editing environments based on relations and
attributes. ACM Transactions on Programming Languages and Systems, 8(4):577-608, October
1986.

Susan B. Horwitz. Generating language-based editors: A relationally-attributed approach.
Technical Report TR, 85-696, Department of Computer Science, Cornell University, 1985. Ph.D.
dissertation.

Paul Hudak et al. Report on the programming language Haskell: A non-strict, purely functional
language. ACM SIGPLAN Notices, 27(5), May 1992.

Martin Jourdan. An optimal-time recursive evaluator for attribute grammars. In M. Paul
and B. Robinet, editors, International Symposium on Programming: Proceedings of the 6th
Colloguium, volume 167 of Lecture Notes in Computer Science, pages 167-178. Springer-Verlag,
April 1984.

Martin Jourdan, Carole Le Bellec, and Didier Parigot. The OLGA attribute grammar de-
scription lanugage: Design, implementation, and evaluation. In P. Deransart and M. Jourdan,
editors, Attribute Grammars and their Applications, volume 461 of Lecture Notes in Computer
Science, pages 222-237. Springer-Verlag, 1990.

Martin Jourdan and Didier Parigot. Internals and externals of the FNC-2 attribute grammar
system. In H. Alblas and B. Melichar, editors, Attribute Grammars, Applications and Systems,
volume 545 of Lecture Notes in Computer Science, pages 485-504. Springer-Verlag, 1991.

154

[44]

[45]

[46]

[47]
[48]

Catherine Julié and Didier Parigot. Space optimization in the FNC-2 attribute grammar system.
In P. Deransart and M. Jourdan, editors, Attribute Grammars and their Applications, volume
461 of Lecture Notes in Computer Science, pages 29-45. Springer-Verlag, 1990.

Richard K. Jullig and Frank DeRemer. Regular right-part attribute grammars. In Proceedings
of the ACM SIGPLAN 84 Symposium on Compiler Construction, pages 171-178, 1984.

U. Kastens, B. Hutt, and E. Zimmermann. GAG: A Practical Compiler Generator, volume 141
of Lecture Notes in Computer Science. Springer-Verlag, 1982.

Uwe Kastens. Ordered attribute grammars. Acta Informatica, 13:229-256, 1980.

Uwe Kastens. Attribute grammars as a specification method. In H. Alblas and B. Melichar, edi-
tors, Attribute Grammars, Applications and Systems, volume 545 of Lecture Notes in Computer
Science, pages 16-47. Springer-Verlag, 1991.

Uwe Kastens. Implementation of visit-oriented attribute evaluators. In H. Alblas and
B. Melichar, editors, Attribute Grammars, Applications and Systems, volume 545 of Lecture
Notes in Computer Science, pages 114-139. Springer-Verlag, 1991.

Peter Lipps, Ulrich Méncke, Matthias Olk, and Reinhard Wilhelm. Attribute (re)evaluation in
OPTRAN. Acta Informatica, 26, 1988.

Lucid, Inc. Sales literature.

Raul Medina-Mora. Syntax directed editing: Towards integrated programming environments.
Technical Report CMU-CS-81-113, Department of Computer Science, Carnegie-Mellon Univer-
sity, March 1982. Ph.D. dissertation.

Josephine Micallef and Gail E. Kaiser. Extending attribute grammars to support programming-
in-the-large. ACM Transactions on Programming Languages and Systems, 16(5):1572-1612,
September 1994.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
1990.

Robert L. Nord and Frank Pfenning. The Ergo attribute system. In Proceedings of the Third
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop-
ment FEnvironments, pages 110-120, 1988.

Joan Peckham and Fred Maryanski. Semantic data models. Computing Surveys, 20(3):153-189,
September 1988.

Stephen B. Peckham. Globally partitionable attribute grammars. In P. Deransart and M. Jour-
dan, editors, Attribute Grammars and their Applications, volume 461 of Lecture Notes in Com-
puter Science, pages 327-342. Springer-Verlag, 1990.

Stephen B. Peckham. Incremental attribute evaluation and multiple subtree replacements.
Technical Report 90-1093, Department of Computer Science, Cornell University, Februrary
1990. Ph.D. dissertation.

Maarten Pennings. Generating Incremental Attribute Evaluators. Ph.D. dissertation, Utrecht
University, 1994.

155

[60]

[61]

[65]

[66]

PROCASE Corporation, 2694 Orchard Parkway, San Jose, California 95134. SMARTsystem™ ™
Reference Guide, release 2.0 edition, March 1993.

William Pugh and Tim Teitelbaum. Incremental computation via function caching. In Confer-
ence Record of the Sizteenth Annual ACM Symposium on Principles of Programming Languages,
pages 315-328. ACM Press, January 1989.

Uday S. Reddy. On the relationship between logic and functional languages. In DeGroot
and Lindstrom, editors, Logic Programming: Functions, Fquations, and Relations, pages 3-36.
Prentice-Hall, 1986.

Raymond Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker, editors,
Logic and Data Bases, pages 55-76. Plenum Press, 1978.

T. Reps, C. Marceau, and T. Teitelbaum. Remote attribute updating for language-based edi-
tors. In Proceedings of the Thirteenth Annual ACM Symposium on Principles of Programmaing
Languges, pages 1-13, January 1986.

Thomas Reps. Generating language-based environments. Technical Report TR 82-514, Depart-
ment of Computer Science, Cornell University, 1982. Ph.D. dissertation.

Thomas Reps, Tim Teitelbaum, and Alan Demers. Incremental context-dependent analysis for
language-based editors. ACM Transactions on Programming Languages and Systems, 5(3):449—-
477, July 1983.

Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator: A System for Constructing
Language-Based Editors. Springer-Verlag, 1989.

Graham Ross. Integral C — A practical environment for C programming. In Proceedings of
the Second ACM SIGSOFT/SIGPLAN Symposium on Practical Software Development Envi-
ronments, pages 4248, 1986.

Srinivas R. Sataluri and Arthur C. Fleck. Semantic specifications using logic programs. In
Ewing L. Lusk and Ross A. Overbeek, editors, Logic Programmaing, Proceedings of the North
American Conference 1989, pages 7T72-791. MIT Press, 1989.

Guy L. Steele. Common Lisp: The Language. Digital Press, 1990.

Doaitse Swierstra and Harald Vogt. Higher order attribute grammars. In H. Alblas and
B. Melichar, editors, Attribute Grammars, Applications and Systems, volume 545 of Lecture
Notes in Computer Science, pages 256-296. Springer-Verlag, 1991.

T. Teitelbaum and T. Reps. The Cornell Program Synthesizer: A syntax-directed programming
environment. Communications of the ACM, 24(9):563-573, September 1981.

J. Uhl, S. Drossopoulos, G. Persch, et al. An Attributed Grammar for the Semantic Analysis
of Ada, volume 139 of Lecture Notes in Computer Science. Springer-Verlag, 1982.

Michael Lee Van De Vanter. User interaction in language-based editing systems. Technical Re-
port UCB/CSD 93/726, Computer Science Division (EECS), University of California, Berkeley,
December 1992. Ph.D. dissertation.

156

[75]

Harald Vogt, Doaitse Swierstra, and Mattijs Kuiper. Efficient incremental evaluation of higher-
order attribute grammars. In J. Maluszynski and M. Wirsing, editors, Proceedings of PLILP
’91, volume 528 of Lecture Notes in Computer Science, pages 231-242. Springer-Verlag, 1991.

Scott Vorthmann and Richard J. LeBlanc. A naming specification language for syntax-directed
editors. In Proceedings of the IEEE 1988 International Conference on Computer Languages,
pages 250257, 1988.

Tim A. Wagner and Susan L. Graham. Integrating incremental analysis with version man-
agement. In Wilhelm Schafer and Pere Botella, editors, Software Engineering — ESEC °95,
number 989 in Lecture Notes in Computer Science. Springer-Verlag, 1995. Proceedings of the
5th European Software Engineering Conference.

W. M. Waite. Use of attribute grammars in compiler construction. In P. Deransart and
M. Jourdan, editors, Attribute Grammars and their Applications, volume 461 of Lecture Notes
m Computer Science, pages 255-265. Springer-Verlag, 1990.

R. C. Waters. Program editors should not abandon text oriented commands. SIGPLAN Notices,
17(7):39-46, 1982.

David A. Watt. An extended attribute grammar for Pascal. SIGPLAN Notices, 14(2):60-74,
1979.

David A. Watt and Ole Lehrmann Madsen. Extended attribute grammars. The Computer
Journal, 26(2):142-153, 1983.

Tim Wailkinson. Kaffe: A free virtual machine to run Javal™

http://www.tjwassoc.demon.co.uk/kaffe/kaffe.htm.

code. Web page.

Taiichi Yuasa and Masami Hagiya. Kyoto Common Lisp Report. Research Institute for Math-
ematical Sciences, Kyoto University, undated, circa 1984. Distributed with the KCL im-
plementation, available at ftp://ftp.cli.com/pub/kcl/. See also GNU Common Lisp, at
ftp://ftp.cli.com/pub/gecl/.

157

Appendix A

The Syntax of ADL

A.1 Program Units

program_unit — schema
program_unit — body

schema —
language identifier is
{ declaration }*
end identifier ;

body —
language body identifier : schema_name
is
{ definition }x
end identifier ;

schema_name — identifier

A.2 Declarations and Definitions

declaration — from schema_name import import_list ;
declaration — lexeme phylum_name ;
declaration —
phylum phylum_name
[with
{ attribute_declaration }+ |

end phylum_name ;

declaration — phylum phylum_name ;

158

declaration —
operator operator_name : phylum_name is
{ syntaz_form }x
end operator_name ;

declaration — operator operator_name : phylum_name ;
declaration — attribute_declaration

declaration — type identifier ;

declaration — type identifier = type ;

declaration — datatype identifier is { data_constructor | }+ ;

declaration —
class identifier [isa class_name]
[requiring
{ attribute_declaration }x |
[with
{ attribute_declaration }+ |
end identifier ;

declaration — class identifier [isa classname] ;
definition — from body_name : schema_name import import_list ;
definition — lexeme phylum_name ;

definition —
phylum phylum_name
[with
{ attribute_declaration }+ |
[where
{ constraint }+ |
end phylum_name ;

definition — phylum phylum_name ;
definition —
operator operator_name : phylum_name is
{ syntaz_form }x
[where
{ constraint }+ |
end operator_name ;
definition — operator operator_name : phylum_name ;

definition — attribute_definition

definition — collection attribute_name formal_arguments [pragmas] ;

159

definition — type identifier = type ;
definition — datatype identifier is { data_constructor | }+ ;
definition —
class identifier [isa class_name]
[requiring
{ attribute_declaration }x |
[with
{ attribute_definition }+]
[where
{ constraint }+]
end identifier ;
definition — class identifier [isa class_name] ;
definition — constraint
import_list — all
import_list — { import_item , }+
import_item — identifier
phylum_name — identifier
operator_name — identifier
syntaz_form — identifier : phylum_name
syntaz_form — { identifier : phylum_name }
syntaz_form — stringliteral
syntaz_form — { identifier : phylum_name } *
syntaz_form — { identifier : phylum_name } +
syntaz_form — { identifier : phylum_name } ++
syntaz_form — { identifier : phylum_name stringliteral } *
syntaz_form — { identifier : phylum_name stringliteral ¥ +
syntaz_form — { identifier : phylum_name stringliteral } ++
data_constructor — identifier

data_constructor — identifier ({ elemeni_type , }+)

element_type — type

160

A.3 Attributes

attribute_declaration — attribute attribute_name : type ;

attribute_declaration — relation attribute_name formal_arguments ;
attribute_declaration — function attributename formal_arguments => type ;
attribute_definition — attribute attribute_name : type [= expression] [pragmas] ;
attribute_definition — context atiribute_name : type [pragmas] ;

attribute_definition — relation attributename formal_arguments [pragmas] ;
attribute_definition — function attribute_name formal_arguments -=> type [pragmas] ;

formal_arguments — ({ type , }+)

A.4 Constraints

constraint — attribute_definition;

constraint — attribute_reference = expression [:= goal] ;

constraint — attribute_reference ({ pattern , }+) [:= goal] ;
constraint — attribute_reference ({ pattern , }+) => expr [:= goal] ;

constraint —
object identifier : class_name
[where
{ constraint }+ |
end identifier ;

constraint — object identifier : class_name ;

constraint —

analyze operator_child

[with
{ attribute_definition }+]

[when [1 =>
{ constraint }+ |

[when [singletonname 1 =>
{ constraint }+ |

161

[when [left_subseq_name ~ right_subseqname 1 =>
{ constraint }+ |
end ;
left_subseq_name — identifier
right_subseq_name — identifier

constraint — anchor ;

constraint — implement attribute_reference as pragmas ;

A.5 Naming and Reference

variable — identifier

type_name — identifier

class_name — type_name

constructor_name — identifier

node_reference — identifier

attribute_reference — attribute_name
attribute_reference — node_reference . attribute_name
attribute_reference — object_name . attribute_name
component_selection — expression . attribute_name
module_name — identifier

component_name — identifier

attribute_name — identifier

object_-name — identifier

A.6 Types

type — type_name

type — type_constructor

162

type_constructor — [element_type]

type_constructor — ({ elemeni_type , }++)

A.7T Goals

goal — { literal & }+

literal — predicate_name ({ pattern , }+)

literal — expression

literal — expression => pattern

literal — ~ literal

literal — { goal }

literal — expression isa class_name
predicate_name — attribute_reference

predicate_name — component_selection

A.8 Expressions

expression
expression
expression
expression
expression
expression
expression
expression
expression

expression

numeric_literal
string_literal
TRUE
otherwise
always

FALSE

never

variable
node_reference

attribute_reference

163

expression — component_selection

expression — (expression)

expression — attribute_reference ({ expression , }+)
expression — component_selection ({ expression , }+)
expression — []

expression — [{ expression , }+ 1]

expression — [{ expression , }+ | expression]
expression — ({ expression , }++)

expression — constructor_name

expression — constructorname ({ expression , }+)
expression — not expression

expression — expression and expression

eTPression — erpression or erpression

expression — + expression

eTPression — — expression

expression — expression + expression

eTPression — erpression — expression

eTPression — erpression * expression

expression — expression / expression

eTPression — erpression rem erpression

eTPression — erpression = erpression

expression — expression /= expression

expression — expression < expression

expression — expression =< expression

eTPression — erpression > expression

exTpression — exrpression >= erpression

164

expression — expression " expression
expression — format (string.literal)

expression — format (string.literal , { expression , }+)

A.9 Patterns

pattern —
pattern — variable

pattern — expression

pattern — []

pattern — [{ pattern , }+]

pattern — [{ pattern , }+ | pattern]
pattern — ({ pattern , }++)

pattern — constructor_name

pattern — constructor_name ({ pattern , }+)

A.10 Pragmas

pragmas — { pragma , }+
pragma — maintained
pragma — ephemeral

pragma — delayed [identifier]

165

Appendix B

An ADL Description for

“Example”

B.1 The Schema

language Example is
relation Error(Node, String);
relation UseOf (Node, Node);

end Example;

B.2 The Body

language body Example : Example is
from StringOps : StringOps import all;
collection Error(Node, String);

collection UseOf (Node, Node);

166

%% String to Integer conversion.
attribute CharZero : Integer = StrChar ("0", 0);

function StrToInt(String) -> Integer;
StrToInt (Str) => StrTolntAux(Str, StrLen(Str)-1);

function StrToIntAux(String, Integer) -> Integer;
StrToIntAux(Str, Idx) => StrChar(Str, 0) - CharZero
:— Idx = 0;
StrToIntAux(Str, Idx) => RestVal * 10 + StrChar(Str, Idx) - CharZero
:— StrToIntAux(Str, Idx-1) => RestVal;

%% Representation of declared entities.

class BindingStatus
requiring

% nothing
end BindingStatus;

object Unknown : BindingStatus;
object Undeclared : BindingStatus;

class Entity isa BindingStatus
requiring

attribute DeclNode : Node;
end Entity;

class VarEntity isa Entity
requiring
attribute Type : TypeShape
delayed;
end VarEntity;

class TypeEntity isa Entity
requiring
attribute Type : TypeShape
delayed;
end TypeEntity;

%% Representation of types.

datatype TypeShape is TsUNKNOWN
| TsINTEGER
| TsPOINTER(TypeShape)
| TsARRAY(Integer, TypeShape)
| TsTYPENAME (TypeEntity)

’

167

function EquivTypes (TypeShape, TypeShape) -> Boolean;

EquivTypes (TsINTEGER, TsINTEGER) => TRUE;

EquivTypes (TsTYPENAME (Ent), TsTYPENAME (Ent)) => TRUE;

EquivTypes (TsPOINTER(RTy1), TsPOINTER(RTy2)) => TRUE
:— EquivTypes (RTy1l, RTy2);

EquivTypes (TsARRAY (Sz1, ETy1), TsARRAY(Sz2, ETy2)) => TRUE
:— Szl = 85z2 &

EquivTypes (ETyl, ETy2);

EquivTypes (TsUNKNOWN, Ty) => TRUE;

EquivTypes (Ty, TsUNKNOWN) => TRUE;

EquivTypes(_, _) => FALSE;

type TrailType = [Entity];

function TrailMember (Entity, TrailType) -> Boolean;
TrailMember (Ent, []) => FALSE;
TrailMember (Ent, [Ent|_]) => TRUE;
TrailMember (Ent, [_|Rest]) => TrailMember (Ent, Rest);

function CyclicType (TypeEntity) -> Boolean;
CyclicType(Ent) => CyclicTypeAux (Ent.Type, [Ent]);

function CyclicTypeAux (TypeShape, TrailType) -> Boolean;
CyclicTypeAux (TsARRAY(_, ETy), Trail)
=> CyclicTypeAux (ETy, Trail);
CyclicTypeAux (TsTYPENAME (Ent), Trail)
=> TRUE
:— TrailMember (Ent, Trail);
CyclicTypeAux (TsTYPENAME (Ent), Trail)
=> CyclicTypeAux (Ent.Type, [Ent|Traill);
CyclicTypehux(_, _)
=> FALSE;

%% Binding environments (symbol table).

class Contour

with
function LocalBinding(String) -> BindingStatus;
function VisibleBinding(String) -> BindingStatus;
function Duplicate(String, Entity) -> Boolean;

end Contour;

168

class NullContour isa Contour
requiring
% nothing
where
LocalBinding (Ident) => Undeclared;
VisibleBinding(Ident) => Undeclared;
Duplicate(Ident, Ent) => FALSE;
end NullContour;

object NullEnv : NullContour ;

class NormalContour isa Contour
requiring
attribute Parent : Contour;
relation Binds(String, Entity);
where
implement Binds as maintained;
implement Duplicate as maintained;
implement VisibleBinding as maintained;

Duplicate(Ident, Ent) => TRUE
:- Binds(Ident, Other) & Other /= Ent;
Duplicate(Ident, Ent) => FALSE;

LocalBinding(Ident) => Ent
:- Binds(Ident, Ent) & ~Duplicate(Ident, Ent);
LocalBinding (Ident) => Unknown;

VisibleBinding(Ident) => Ent
:— LocalBinding(Ident) => Ent & Ent /= Unknown;
VisibleBinding(Ident) => Ent
:— Parent.VisibleBinding(Ident) => Ent;
end NormalContour;

type Environment = Contour;
%% Global/predefined environment.

object IntType : TypeEntity
where

Type = TsINTEGER;
end IntType;

object GlobalEnv : NormalContour
where

Parent = NullEnv;

Binds ("INTEGER", IntType);
end GlobalEnv;

169

%% Phyla.
phylum Program;

lexeme Id;
lexeme IntConst;

phylum Statement
with

context Ctx : Environment;
end Statement;

phylum Statements
with

context Ctx : Environment;
end Statements;

phylum Declaration

with
context Ctx : Environment;
relation Binds(String, Entity);
where
Binds (Var, Ent) :- never;

end Declaration;

phylum Declarations

with
context Ctx : Environment;
relation Binds(String, Entity);
where
Binds (Var, Ent) :- never;

end Declarations;

phylum TypeSpec
with
context Ctx : Environment;
attribute Type : TypeShape;
where
Type = TsUNKNOWN;
end TypeSpec;

phylum Expression
with
context Ctx : Environment;
attribute Type : TypeShape;
where
Type = TsUNKNOWN;
end Expression;

170

phylum Variable
with
context Ctx : Environment;
attribute Type : TypeShape;
where
Type = TsUNKNOWN;
end Variable;

%% Expressions.

operator ConstRef : Expression is
Val:IntConst

where
ConstRef.Type = TsINTEGER;

end CongtRef;

operator VarRef : Expression is
Var:Variable

where
Var.Ctx = VarRef.Ctx;
VarRef .Type = Var.Type;

end VarRef;

operator Annotate : Expression is
"(" Expr:Expression '")"

where
Expr.Ctx = Annotate.Ctx;
Annotate.Type = Expr.Type;

end Annotate;

operator Addition : Expression is
Left:Expression "+'" Right:Expression
where
Left.Ctx = Addition.Ctx;
Right.Ctx = Addition.Ctx;

Error(Addition, "Integer expression required") :-
~EquivTypes (Left.Type, TsINTEGER);

Error(Addition, "Integer expression required") :-
~EquivTypes (Right.Type, TsINTEGER);

Addition.Type = TsINTEGER;
end Addition;

171

%% Variables

operator SimpleVar : Variable is
Name:Id
where
attribute Ent : BindingStatus =
SimpleVar.Ctx.VisibleBinding (Name.Text) ;

Error (Name, "Undeclared variable') :- Ent = Undeclared;
UseOf (Name, Ent.DeclNode) :- Ent isa Entity;

SimpleVar.Type = Ent.Type :-
Ent isa VarEntity;
SimpleVar.Type = TsUNKNOWN :-
otherwise;
end SimpleVar;

operator SubscriptedVar : Variable is
Var:Variable "[" Idx:Expression "]"
where
Var.Ctx = SubscriptedVar.Ctx;
Idx.Ctx = SubscriptedVar.Ctx;

Error(Var, "Subscripted variable must be an array") :-
~Var.Type => TsUNKNOWN &
~Var.Type => TsARRAY(_, _);

Error(Idx, "Index must be an integer expression") :-—
~Idx.Type => TsUNKNOWN &
~Idx.Type => TsINTEGER;

SubscriptedVar.Type = E1tTy :-
Var.Type => TsARRAY(_, E1tTy);
SubscriptedVar.Type = TsUNKNOWN :-
otherwise;
end SubscriptedVar;

172

operator DereferencedVar : Variable is
Var:Variable """

where
Var.Ctx = DereferencedVar.Ctx;

Error(Var, "Dereferenced variable must be a pointer") :-
~Var.Type => TsUNKNOWN &
~Var.Type => TsPOINTER(_);

DereferencedVar.Type = RefTy :-
Var.Type => TsPOINTER (RefTy);
DereferencedVar.Type = TsUNKNOWN :-
otherwise;
end DereferencedVar;

%% Type specifiers.

operator NamedTypeSpec : TypeSpec is
TypeName:Id
where
attribute Ent : BindingStatus =
NamedTypeSpec.Ctx.VisibleBinding (TypeName.Text) ;

Error (TypeName, "Undeclared type name") :- Ent = Undeclared;
UseOf (TypeName, Ent.DecllNode) :- Ent isa Entity;

NamedTypeSpec.Type = TsTYPENAME(Ent) :-
Ent isa TypeEntity;
NamedTypeSpec.Type = TsUNKNOWN :-
otherwise;
end NamedTypeSpec;

operator ArrayTypeSpec : TypeSpec is

"array'" "[" Size:IntConst "]'" "of" E1ltTy:TypeSpec
where

E1tTy.Ctx = ArrayTypeSpec.Ctx;

ArrayTypeSpec.Type = TsARRAY (StrTolInt (Size.Text), E1tTy.Type);
end ArrayTypeSpec;

operator PointerTypeSpec : TypeSpec is
"pointer'" "to'" RefTy:TypeSpec

where
RefTy.Ctx = PointerTypeSpec.Ctx;

PointerTypeSpec.Type = TsPOINTER (RefTy.Type);
end PointerTypeSpec;

173

%% Declarations.

operator TypeDecl : Declaration is
"type" Name:Id "=" Ty:TypeSpec
where
Ty.Ctx = TypeDecl.Ctx;

object TypeObj : TypeEntity
where

Type = Ty.Type;

DeclNode = Name;
end TypeObj;

TypeDecl.Binds (Name.Text, TypeObj);

Error (Name, "Cyclic type definition") :-
CyclicType (TypeObj) ;

Error (Name, "Multiply-declared identifier") :-
TypeDecl.Ctx.Duplicate(Name.Text, TypeObj);
end TypeDecl;

operator VarDecl : Declaration is
"var" Var:Id ":" Ty:TypeSpec
where
Ty.Ctx = VarDecl.Ctx;

object VarObj : VarEntity
where

Type = Ty.Type;
DeclNode = Var;
end VarObj;

VarDecl.Binds(Var.Text, Var0Obj);
Error (Var, "Multiply-declared identifier") :-

VarDecl.Ctx.Duplicate(Var.Text, VarQObj);
end VarDecl;

174

%% Declaration sequences.

operator DeclList : Declarations is
{ Decls:Declaration " ;" }*

where
Decls.Ctx = DeclList.Ctx;

analyze Decls

with
context Ctx : Environment;
relation Binds(String, Entity);
when [] =>
% empty sequence
Decls.Binds(Ident, Ent) :- never;

when [d] =>

% singleton sequence

anchor;

d.Ctx = Decls.Ctx;

Decls.Binds(Ident, Ent) :- d.Binds(Ident, Ent);
when [d1 =~ 42] =>

% nondeterministic sequence split

anchor;

d1.Ctx = Decls.Ctx;

d2.Ctx = Decls.Ctx;

Decls.Binds(Ident, Ent) :- d1.Binds(Ident, Ent);

Decls.Binds(Ident, Ent) :- d2.Binds(Ident, Ent);
end;

DeclList.Binds (Ident, Ent) :- Decls.Binds(Ident, Ent);
end DeclList;

%% Statements.

operator Assignment : Statement is
Var:Variable ":=" Val:Expression
where
Var.Ctx = Assignment.Ctx;
Val.Ctx = Assignment.Ctx;

Error (Assignment, "Incompatible types in assignment")
~EquivTypes (Var.Type, Val.Type);
end Assignment;

175

operator Block : Statement is
"declare"
{ Decls:Declarations }
"begin"
{ Stmts:Statements }
"end"
where
Decls.Ctx = BodyCtx;

object BodyCtx : NormalContour
where

Parent = Block.Ctx;

Binds (Ident, Ent) :- Decls.Binds(Ident, Ent);
end BodyCtx;

Stmts.Ctx = BodyCtx;
end Block;

%% Statement sequences.

operator StmtList : Statements is
{ Stmts:Statement " ;" }*

where
Stmts.Ctx = StmtList.Ctx;

analyze Stmts
with
context Ctx : Environment;
when [] =>
% empty sequence
when [s] =>
% singleton sequence
anchor;
g.Ctx = Stmts.Ctx;
when [s1 =~ s2] =>
% nondeterministic sequence split
anchor;
g1.Ctx = Stmts.Ctx;
82.Ctx = Stmte.Ctx;
end;
end StmtList;

176

%% Program.

operator Prog : Program is
{ Body:Statements }
where
Body.Ctx = GlobalEnv;
end Prog;

end Example;

177

Appendix C

The Modula-2 Language
Description

The Modula-2 language description has been omitted from this technical report due to space con-
siderations. It may be obtained electronically from http://sunsite.berkeley.edu/NCSTRL.

178

