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4.2  Mechanisms for Incremental Deployment

The system described in the previous section is an ideal end-
point we would like to reach. In practice, it may be difficult
to immediately modify all of the end clients to send perfor-
mance reports. To quickly capture performance from a large
number of end clients, a packet capture host can be
deployed that uses a packet capture tool such astcpdump to
measure the network performance from end clients and send
performance reports to the performance server. This allows
a large number of performance reports to be collected while
end clients are slowly upgraded.

5. Conclusions and Future Work

There are many classes of Internet applications that need the
ability to predict in advance the network performance
between a pair of internet hosts. Previous work providing
this information has depended on isolated, active measure-
ments from a single host. This does not scale to many users
and does not provide the most accurate and timely informa-
tion possible. In this paper, we have proposed a system
called SPAND (Shared Passive Network Performance Dis-
covery) that uses passive measurements from a collection of
hosts to determine wide-area network characteristics. We
have justified the design decisions behind SPAND and pre-
sented a detailed design of SPAND and mechanisms for
incremental deployment.

We are currently in the process of implementing the system
and have completed the implementation of toolkits that
implement the Performance Reports. We are also working
on the implementation of the packet capture host and modi-
fications to BIND to enable it to handle NP Resource
Records. We expect measurements of an operational
SPAND prototype to be available soon.

To demonstrate the effectiveness of SPAND, we plan to
write two applications using this framework. The first appli-
cation is one that allows a system administrator to quickly
browse the performance from the local domain to all foreign
domains. The second is a small client-side WWW proxy
that consults the performance server and places user-visible
“performance hints” next to hyperlinks, as an estimate to the
user of the expected performance to the site named in the
hyperlink.
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other applications such as RealAudio in TCP mode use TCP
connections for different reasons. The transport level net-
work performance reported from these connections may
vary widely depending on the way the transport connection
is used, and we want to separate these applications into dis-
tinct classes.

An performance serverreceives performance reports from
all clients in a local area and must incorporate them appro-
priately into its performance estimates. The performance
server must maintain different estimates for different classes
of applications as well as different classes of connectivity in
a domain. In addition, the performance server can also iden-
tify reports that have possibly inaccurate information and
discard them. Later, clients can query this information by
contacting the performance server for the local area. A cli-

ent query provides an performance request consisting of an
(Address, Application Class) pair and the response returns a
performance response for that pair, if one exists. The format
of the performance request and response is shown in
Figure 5 and Figure 6, and includes the performance
server’s estimates of available bandwidth and packet loss
probability from the local domain to the specified foreign
host.

4.1  Scalability through Local Communication

An important feature of our system is that all communica-
tion is localized to a local domain. Clients make reports
about the connectivity to distant Internet hosts to a local per-
formance server, and clients contact the local network per-
formance server for answers to performance queries. This
eliminates communication between domains and increases
the scalability of the system.

Client
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Gateway to
Local Domain
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= NP Query
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Figure 3. Design of SPAND

0 3115 16

Version Type  Prot.

Source IP Address

Source Port Dest Port

App.Class

NTP Timestamp, most sig word

NTP Timestamp, least sig word

Length of Sample in octets

Duration of Sample in ms

Total Packets Received

Total Packets Lost

Packet Size in octets

Figure 4. Format of a Performance Report

Dest IP Address

Figure 5. Format of a Performance Request

0 3115 16
App. ClassVersion Type Protocol

Request IP Address

Figure 6. Format of a Performance Response

0 3115 16
App. Class

Expected Available Bandwidth (kbits/sec)

Std Dev of Available Bandwidth (kbits/sec)

Expected Packet Loss Probability

Std Dev of Expected Loss Probability

Version Type Protocol

Response IP Address



4

problem when considering the scenario of mirror sites that
replicate the same content. In an active probing system, a
client must first contact each of the mirror sites to determine
which mirror is the “best”. This slows down servers with
probe-only traffic and limits the scalability of such a sys-
tem.

The following example shows why. Consider a web server
with a variable number of mirror sites. Assume that each
mirror site is connected to the internet via a 45 Mbit/second
T3 link and assume that the mean transfer size is 100 kbytes
and the mean probe size is 6 kbytes. From a network per-
spective, an estimate of the number of requests per second
that the collection of mirrors can support is the aggregate
bandwidth of the mirrors’ internet links divided by the sum
of the average web transfer size and any associated probe
traffic for the transfer. Figure 2 shows the number of
requests per second that such a system can support as a
function of the number of mirror sites for two systems: one
without probe traffic, and one with probe traffic. We see
that the system without probe traffic scales perfectly with
the number of mirrors. For the system with probe traffic,
however, for each web request that is handled by a single
mirror, a network probe must be sent to all of the other mir-
rors. On the server side, this means that for each web
request a particular mirror site handles, it must also handle a
probe request from clients being serviced at every other mir-
ror location. As the number of mirrors increases, the number
of requests served per second becomes limited by the addi-
tional probe traffic.

However, using passive rather than active measurements is
difficult for several reasons:

• Passive measurements are uncontrolled experiments,
and it can be difficult to separate network events from
those occurring at the endpoints, such as a rate-limited
transmission, a slow or unreachable server, etc.

• Passive measurements are only collected when a host
contacts a remote site. In order to have timely measure-

ments, hosts in a local domain must visit distant hosts
often enough to obtain timely information. If this is not
true, the client may obtain either out of date or no infor-
mation.

For our purposes, there is no need to distinguish between
network events and endpoint events. If a remote site is
unreachable or has poor connectivity because it is down or
overloaded, that information is just as useful. In addition,
we can distinguish between rate-controlled and bulk transfer
transmissions by using TCP and UDP port numbers and the
application classes described in Section 4.

To identify if passive measurements can provide timely
information, we must analyze typical Internet usage patterns
and determine how often passive techniques lead to out-of-
date information. We can use the same results shown in
Figure 1 to see this. We can model the arrival pattern of cli-
ents as a sequence of times (t1...tn) just as before. In the pas-
sive case, when ti+1-ti>∆, instead of saying that an active
probe is necessary, we say that the passively collected infor-
mation has become out of date. So the fraction of time that
an active probe is necessary is exactly the same as the frac-
tion of time that passive measurements become out of date.
As mentioned earlier, the appropriate value for∆ is on the
order of 10’s of minutes. We see that even a relatively small
collection of hosts can obtain timely network information
when sharing information between them. If we assume that
network conditions change approximately every 15 min-
utes, then the passive measurements collected from this rel-
atively small collection of 600 hosts will be accurate
approximately 78% of the time. For larger collections of
hosts (such as domain-wide passive measurements), the
accuracy will be even greater.

4. Design of our System

In this section, we describe the design for SPAND, includ-
ing steps for incremental deployment in existing networks.

Figure 3 shows a diagram of the components of SPAND.
SPAND is comprised ofclients, performance servers, and
packet capture hosts. Clients have modified network stacks
that transmitperformance reports to performance servers
that indicate the performance of the network path between
the client and distant hosts. The format of a performance
report is shown in Figure 4, and includes variables such as
connection bandwidth and packet loss statistics. The trans-
port protocol field indicates the type of transport connection
(UDP or TCP) used by the initiator of the connection. The
optional Application Class field is a hint as to the way in
which the application that is using the transport connection.
If an application class is not provided, the performance
server can use the port number and transport protocol fields
to determine an application class. The application class field
is desirable because not all applications use transport con-
nections in the same way. Some applications (such as Web
browsers and FTP) use TCP connections for bulk transfers
and depend on the reliability, flow control, and congestion
control abstractions that TCP connections provide. Other
applications such as telnet primarily use TCP connections
for reliability and not for flow or congestion control and
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determined how often a client would need to probe the net-
work to determine the network performance to a particular
WWW server when shared information was and was not
available.

More formally, for a single web server, we can represent the
list of arrival times from a single client (or a shared collec-
tion of clients) as a sequence (t1, t2,..., tn). If the difference
between ti+1 and ti is extremely small (less than ten sec-
onds), we merge the events together into a single web
browsing “session”. Clearly, the first arrival always requires
a probe of the network. In addition, if we assume that the
time between significant network changes is a fixed value
∆, then if ti+1-ti>∆, then the client must make a probe to
determine the new network characteristics. If ti+1-ti<∆, then
no probe is necessary. Previous studies [2][15] have shown
that a appropriate value for∆ is on the order of tens of min-
utes.

Figure 1 shows the results of this analysis for a particular
client-side trace consisting of 404780 connections from
approximately 600 users over an 80 hour time period [17].
The x axis represents the time∆ between network changes,
and the y axis represents the number of network probes that
are necessary. There are two curves in the figure. The upper
curve represents the number of probes that are necessary if
no sharing between clients is performed, and the lower
curve represents the number of probes that are necessary if
clients share information between them. The upper curve
begins at∆=10 seconds because of the “sessionizing” of
individual connections described above. We see that the
number of probes that are necessary when clients share net-
work information is dramatically reduced. This is evidence
that a collection of hosts can eliminate many redundant net-
work probes by sharing information.

The use of cooperative measurements has challenges that
must be overcome, however. Measurements from arbitrary

hosts in a region cannot be combined. For example, it is
necessary to separate modem users within a local domain
from LAN users in a local domain, because the two sets of
users may not share the same bottleneck link. The challenge
is that it is often difficult to determine who the set of “simi-
larly connected” hosts within an local domain are. We can
use the topology of the local domain along with post-pro-
cessing on past measurements to determine which network
subnets exhibit significantly different performance. The
system can then avoid aggregation of measurements from
dissimilar hosts.

3.2  Benefits and Challenges of Passive Measurements

The use of passive measurements makes the job of measur-
ing available bandwidth more difficult, but avoids the intro-
duction of useless traffic into the network. Probe traffic is a

System
What Measured/Used
for Server Selections

Additional Traffic
Introduced Notes

Bprobes, Cprobes Available Bandwidth Significant
Cprobes have no flow
or congestion control

Packet Pair Available Bandwidth Little
Assumes per-flow fair

queuing

Pathchar
Hop-by-hop link

bandwidth, latency Significant

IPV6 Anycast Not Specified Not Specified

Harvest Latency Significant

HOPS Routing Metric Little

SPAND
Available Bandwidth,

Packet Loss Probability Little
All traffic confined to

local domain
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we describe related work in more detail. In Section 3, we
point out the advantages and challenges of using passive
shared measurements over isolated active measurements. In
Section 4, we present a detailed design of SPAND, includ-
ing mechanisms for incremental deployment. In Section 5,
we conclude and discuss the current status of the system and
future work.

2. Related Work

In this section, we describe in more detail previous work in
network probing algorithms and server selection systems.

2.1  Probing Algorithms

A common technique to estimate expected performance is
to quickly probe the network with packets. The objective of
these probes is to measure the round trip latency, peak band-
width or available “fair-share” bandwidth.

Probes to measure round-trip latency and peak bandwidth
are typically done by sending groups of back-to-back pack-
ets to a server which echoes them back to the sender. These
probes are referred to as NetDyn probes in [3], packet pair
in [11], and bprobes in [5]. As pointed out in earlier work on
TCP dynamics [10], the spacing between these packets at
the bottleneck link is preserved on higher-bandwidth links
and can be measured at the sender.

If the routers in the network do not implement fair queuing,
the minimum of many such measurements is likely to be
close to the raw link bandwidth, as assumed in [3][5][14].
Pathchar [14] combines this technique withtraceroute [16]
to measure the link bandwidth and latency of each hop
along the path from one Internet host to another.

If routers in the network implement fair queuing, then the
bandwidth indicated by the back-to-back packet probes is an
accurate estimate of the “fair share” of the bottleneck link’s
bandwidth [11]. Cprobes [5] send a short sequence of echo
packets from one host to another as a simulated connection
(without any flow or congestion control). By assuming that
“almost-fair” queuing occurs over the short sequence of
packets, cprobe provides an estimate for the available band-
width along the path from one host to another. Combined
with information from bprobes, cprobes can estimate the
competing traffic along the bottleneck link.

The problem with these tools is that they introduce signifi-
cant amounts of traffic that is not “useful” to any applica-
tion. For example, pathchar sends (at least) tens of kilobytes
of probe traffic per hop, and cprobes send 6 kilobytes per
cprobe. This amount of probe traffic is a significant fraction
(approximately 20%) of the mean transfer size for many
WWW connections ([1], [2]) as well as a significant frac-
tion of the mean transfer size for many WWW sessions.

2.2  Server Selection Systems

The primary application of the of network probing algo-
rithms described in the previous section has been in
dynamic wide-area server selection. [4] uses cprobes and
bprobes to select the best of a number of candidate mirror

sites. Harvest [6] uses round-trip latency to select the best
peer cache. Requests are initiated to each peer cache, and
the first to begin responding with a positive answer is
selected and the other connections are closed. [8] relies on
geographic location for push-caching of WWW documents.

There are also preliminary designs for network-based ser-
vices to aid in server selection. IPV6’s anycast [9][13] ser-
vice provides a mechanism that directs a client’s packets to
one of a number of hosts that represent the same IP
addresses. The Host Proximity Service (HOPS) [7] uses
routing metrics such as hop counts to select the closest one
of a number of candidate mirror sites.

The problem with many of these approaches is that one-way
latency and hop count are poor estimates of actual comple-
tion time. [4][12] show that hop count is poorly correlated
with available bandwidth, and one-way latency does not
take available bandwidth into account at all. In addition,
current systems that provide better performance metrics [4]
rely on each end host independently measuring network per-
formance.

Table 1 summarizes the previous work in this area. The sig-
nificant shortcomings of existing network performance dis-
covery and server selection systems are:

• Introduction of new traffic into the network that can
quickly become significant when compared to “useful”
traffic.

• Reliance on measurements from a single host, which are
more often redundant and inaccurate than measurements
from a collection of hosts.

• Use of imprecise metrics such as hop count, latency, and
geographic location as estimates of available bandwidth.

We discuss these shortcoming further in the next section.

3. Passive and Cooperative Measurements

The goal of our work is to provide a single unified reposi-
tory of real end-to-end performance information for services
to consult when they wish to determine the network perfor-
mance to distant Internet hosts. Our approach addresses the
shortcomings of previous work by relying solely on passive
rather than active measurements of the network and sharing
measurement information for all hosts in an area.

3.1  Benefits and Challenges of Cooperative
Measurements

Using cooperative rather than isolated measurements allows
us to eliminate redundant network probes. If two hosts are
nearby each other in terms of network topology, it is likely
that they share the same bottleneck link to a remote site. As
a result, the available bandwidth they measure to this site is
likely to be identical [2]. Therefore, it is unnecessary and
undesirable for each these hosts to independently probe to
find this information.

To quantify how often information can be shared between
nearby hosts, we examined Internet usage patterns by ana-
lyzing client-side WWW traces. From these traces, we
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Abstract

In the Internet today, users and applications must often make deci-
sions based on the performance they expect to observe. For exam-
ple, many Web pages are available in low-bandwidth and high-
bandwidth versions, while other pages present users with long lists
of mirror sites to chose from. Current techniques to perform these
decisions are often ad-hoc and/or poorly designed. The most com-
mon solution used today is to require the user to manually decide
based on experience and information provided by the application.
Previous efforts to automate this process have focused onisolated,
active network probes from a host. Unfortunately, this method of
making measurements has several problems. Active probing intro-
duces unnecessary network traffic that can quickly become a sig-
nificant part of the total traffic handled by busy web servers.
Probing from a single host results in less accurate information and
additional redundant network probes than a system that shares
information with nearby hosts. In this paper, we propose a system
called SPAND (Shared Passive Network Performance Discovery)
that determines network characteristics by makingshared, passive
measurements from a collection of hosts. In this paper, we show
why passive measurements from a collection of hosts has advan-
tages over active measurements from a single host. We also show
that sharing measurements can dramatically increase the accuracy
and timeliness of predictions. In addition, we present a initial pro-
totype design of SPAND, a plan for incremental deployment, and
the current implementation status of our system.

1. Introduction

In today’s Internet, it is currently impossible to determine in
advance what the network performance (e.g. available
bandwidth and packet loss probability) between a pair of
internet hosts will be. This is a feature that is severely lack-
ing in today’s suite of internet services, and there are many
applications that could benefit from such a service:

• Applications that are presented with a choice of hosts
that replicate the same service. Specific examples of this
are FTP and Web mirror sites and Harvest caches that
must contact the “closest” peer cache. Today, these
applications rely on statistics such as hop count/routing

metrics [7], round-trip latency [6], or geographic loca-
tion [8], or active network probing [4]. However, each of
these techniques has significant weaknesses.

• Web servers that have a choice of contentfidelity to
present to a web client, for example, a full graphics rep-
resentation for high-bandwidth links or a text-only rep-
resentation for low-bandwidth links. Today, the user
must manually select the fidelity of the content that they
wish to view.

• Applications that provide feedback to the user that indi-
cates the expected performance to a distant site. For
example, Web browsers could insert an informative icon
next to a hyperlink indicating the expected available
bandwidth to the remote site referred to by the hyper-
link.

These applications require the creation of a system that pre-
dicts the expected network performance between a pair of
internet hosts. Previous work in this area has relied oniso-
lated, active probing from a single host. There are two
major problems with this approach:

• Active probing requires the introduction of unnecessary
traffic into the network. We show later that this unneces-
sary traffic can quickly grow to become a non-negligible
part of the traffic reaching a busy Web server.

• Probing from a single host prevents a client from using
the past information of nearby clients to predict future
performance. Recent studies [2][15] have shown that
performance from a client to a server is stable for many
minutes and is identical to the performance observed by
other nearby clients. In this paper, we show examples
where using shared rather than isolated information
increases the likelihood that previously collected net-
work characteristics are valid.

We are developing a system called SPAND (Shared Passive
Network Performance Discovery) that avoids the problems
of probing by collecting network performance information
passively from a collection of hosts,caching it for some
time andsharing this information between them. This
allows a group of hosts to obtain timely and accurate net-
work performance information in a manner that does not
introduce unnecessary network traffic.

The rest of this paper is organized as follows. In Section 2,


