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Abstract

The goal of this work is to develop a general framework for transparently managing the interactions and dependen-
cies among input files, development tools, and output files. By unobtrusively monitoring the execution of unmodified
programs, we are able to trackprocess lineage—each process's parent, children, input files, and output files, andfile
dependency—for each file, the sequence of operations and the set of input files used to create the file. We use this
information to implement Transparent Result Caching (TREC) and describe how TREC is used to build a number of
useful user utilities.Unmakeallows users to query TREC for file lineage information, including the full sequence of
programs executed to create a particular output file.Transparent Makeuses TREC to automatically generate depen-
dency information by observing program execution, freeing end users from the need to explicitly specify dependency
information (i.e., Makefiles can be replaced by shell scripts).Dynamic Web Object Cachingallows for the caching of
certain dynamically generated web pages, improving server performance and client latency.

1 Introduction

The goal of this work is to develop a general framework for transparently managing the interactions and dependencies
among input files, development tools, and output files. By unobtrusively monitoring the execution of unmodified
programs, we are able to trackprocess lineage—each process's parent, children, input files, and output files, andfile
dependency—for each file, the sequence of operations and the set of input files used to create the file. This information
can be used to determine the exact sequence of operations used to create any system file or to keep the contents of
output files synchronized as dependent input files are modified.

As a motivating example, several years ago, it was discovered that some published satellite data had been incor-
rectly normalized; however, because of the lack of software support, it has been difficult to identify exactly which
experimental results were tainted by the error. It is believed that several journal articles have since been published still
based on the incorrect data [Dozier 1993]. As another example, one error common to program developers is introduc-
ing a new header file without manually updating dependency information. This can result in an executable with object
files based on different versions of the same header file, often resulting in subtle bugs where different modules reading
and writing the same fields of a data structure in fact access different regions of memory.

The combination of transparently obtaining process lineage and file dependency information provides a powerful
substrate for developing applications in a wide range of application domains.

� Unmake: Unmake allows users to query TREC for file lineage information, including the full sequence of
processes executed to create a particular output file. For example, users running simulations that neglect to
document the parameters to generate output files can query Unmake for the program used to create the output,
the specific command line parameters, and the environment variables in effect when the command was executed.

� Accountability and Access Control:Related to the Unmake application, TREC can be used to perform logging
of programs run asroot . System administrators are often forced to giveroot privileges to multiple users.
Unfortunately, this means that accountability is sacrificed, making it difficult to ascertain the identity of indi-
viduals responsible for particular actions (e.g., removing an important file). Since Unmake can provide process



lineage information, it can trace file accesses back to the shell (and hence the user id) of the process that origi-
nally executedsu . Such a tool can also be extended to monitor system calls, disallowing certain accesses based
on the “effective”uid of the calling process [Goldberg et al. 1996]. For example, Bob acting as root may be
disallowed write access to all files in/dev and/etc .

� Transparent Make:This version of themake utility allows users to specify the sequence of operations for
constructing output files as simple shell scripts. The first time the shell script is run, TREC determines the set
of files that affect output files through empirical observation. During subsequent executions of the shell script,
TREC can re-run only those commands that have been invalidated by changes to input files. This approach has
two principal advantages. First, it frees users from manually specifying dependency information in a language
than can be restrictive [Levin & McJones 1993]. Next, transparent make does not require users to manually
update dependency information. Thus, when a new header file is added to a source tree, TREC transparently adds
the new dependency to its lineage information by observing the inputs to subsequent compilations. Similarly,
if a tool's command line parameters must continuously be updated to produce output files, TREC automatically
matches each output file to the parameters used to generate it.

� Dynamic Web Object Caching:Today many web pages are constructed dynamically as a result of user input.
One example in the web today is using CGI-bin programs to produce HTML pages. For instance, to download
the latest version of Navigator, users answer a number of questions about their platform before being presented
with a page enumerating URLs for the correct binary. The disadvantage of using CGI-bin programs is that a
web server must generallyfork , thenexec a program to produce the HTML content. Given some locality in
user input, it would be cheaper to cache the results of CGI-bin program execution with popular input patterns
(e.g., users wishing to download the latest English version of Navigator for Windows95/NT), reducing both
server load and client latency. TREC allows for such caching with invalidations to handle the case where input
to a CGI program changes (e.g., a new version of navigator becomes available). This application is more active
than the previous two examples: TREC dependency information is used to generate specific actions whenever a
pre-specified operation takes place (an output file is invalidated when its input files are modified).

In this paper, we demonstrate how our prototype framework forTransparent Result Caching(TREC) is used to imple-
ment three of the above applications: unmake, transparent make, and dynamic web object caching.

Currently,make and related software configuration management tools are used for specifying and maintaining
dependency information. Such tools suffer from a number of deficiencies. For example, to manage file and program
dependencies, users must manually specify dependency information. Programmers must specify the dependencies
between source files, object files, and executables. If any changes occur, such as introducing a new header file, users
must remember to manually update the dependency information. With TREC, maintaining dependency information is
both simpler and less error-prone because dependencies are deduced transparently by observing program execution.

Another shortcoming ofmake and related tools is the inability to track file lineage. Makefiles only implicitly
contain lineage information; if the Makefile changes, the lineage information about existing output files can also be
destroyed. As described above, lineage information is helpful in a number of contexts. If an output file does not
contain expected results, debugging is easiest by working backwards to see whether the problem is with the file inputs,
the data analysis tool, or the command line parameters. Similarly, if an input file is discovered to have a flaw, it is
helpful to know all the output files derived from the input.

Finally, make is largely targeted toward software development; it can be too static to be useful for other commu-
nities. For instance, scientists often spend their time exploring different sequences of tools, different parameters, and
different parts of an image. For example, one tool might extract the pixel values for a latitude and longitude region
from a set of files containing satellite images. However, the images can overlap, and the requested region may span
multiple image files. The input files actually read to create an output file can vary depending on the command line
parameters passed to the tool. Expressing such dynamic dependencies can be difficult with Makefiles. TREC, on the
other hand, is well-suited for managing dynamic dependencies because of its ability to discern file lineage simply by
observing program execution.

Our approach to transparently capture file dependency information is to intercept a small number of system calls
using native kernel tracing mechanisms. Using the information from these calls, TREC maintains the following
information for each process: command line arguments, environment variables, process parent, process children,
files read (input files), and files written (output files). TREC then organizes this information hierarchically, allowing
users to query the system for file lineage, for example, to determine all processes involved in creating an output file.
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Figure 1: This figure describes the TREC architecture.

With transparent make for example, we are able to automatically determine the set of include files associated with
any compilation by observing the I/O behavior of the compiler. Thus, when an include file is modified, transparent
make automatically determines that re-compilation is necessary from process lineage information. Relative to existing
techniques for automatically determining dependencies, our approach has the added benefit of not requiring a separate
parser for each different programming language syntax.

Our initial implementation of TREC uses theproc file system facilities of Solaris to intercept the necessary set of
system calls. Our implementation of TREC, its baseline performance, and limitations of TREC profiling are described
in detail in Section 2. In Section 3, we describe how TREC is used to implement our three sample applications,
unmake, transparent make, and dynamic web object caching. Section 4 describes related work and Section 5 presents
our conclusions.

2 Implementation

2.1 Architecture

TREC is implemented using the Solarisproc file system (most major UNIX variants provide a substantially sim-
ilar interface) to intercept the set of system calls necessary to build dependency information. For our target UNIX
architecture this set includes the following system calls:open , fork , fork1 , creat , unlink , exec , execve ,
andexit . By catching these system calls, TREC is able to determine full process lineage information. Command
line parameters and environment variables are available from theexec system calls. TREC determines the set of
input files and output files by examining the options to theopen system call (targets ofcreat are assumed to be
output files). This design choice potentially over-constrains the set of input and output files because, for example, a
file opened for writing that is not actually written to with awrite system call is considered an output file. We made
this design decision because of the added overhead of intercepting allread andwrite system calls in addition to
the set of calls already being monitored. For some programs, we observed thatread andwrite operations were
executed four times as often as all traced system calls combined.

The overall TREC system architecture is summarized in Figure 1. TREC runs as a multi-threaded process that
attaches to a target process using theproc file system interface. A trace thread is responsible for building lineage
information. Other threads use this lineage information to implement the higher-level services described in Section 3.
Given a list of target system calls,proc forces a context switch to the TREC tracing thread whenever a relevant call
is executed by the attached process or any of its children. The tracing module exports a callback-based interface to
application modules. Currently, callbacks are exported for file read and write events. Modules, such as transparent
make, use the callbacks to determine when output files are invalidated. Thus, when a callback is received that a file is
modified, a module can take action on dependent output files—invalidating the output or re-generating it for example.

TREC uses the system call information to build a lineage tree of the target process and all of its children. Each node
of the lineage tree represents an executed process and contains the following information: execution time, command
line arguments, environment variables, files read, and files written. An example of this lineage information is presented
in Section 3.1.



Operation Baseline Traced Syscall Rate Added Overhead
open syscall 12.4 s 19.3 s 403 calls/s 54.8%
Compile 128.4 s 146.2 s 160 calls/s 13.9%
Latex 35.1 s 36.3 s 16 calls/s 3.5%

Table 1: This table describes the overhead introduced by adding TREC profiling.

2.2 Performance

Since the context switches imposed by theproc file system required to perform our tracing can impose significant
overhead, we took a number of measurements to quantify the slowdown. Table 1 quantifies the TREC overhead
for three simple benchmarks. All benchmarks were conducted on a Sun Ultra/1 workstation running Solaris 2.5.1.
The first, open, callsopen andclose on the same file in a tight loop 5000 times (note that only the open call is
actually traced). While the 54.8% overhead imposed by TREC is significant, the next two benchmarks demonstrate the
slowdown of individual system calls do not adversely affect the performance of real applications. The next benchmark
is a compilation of the Apache HTTP server, version 1.2.4 [Apa 1995]. The source tree consists of 38,000 lines of C
code and was compiled over NFS. While the 13.9% slowdown is noticeable, we believe it to be tolerable. The final
benchmark, Latex, involved runninglatex four times,bibtex , and finallydvips to produce postscript for a 17
page document. For this benchmark, only a 3.5% overhead is introduced. As indicated by the “Syscall Rate” column
in Table 1, the measured slowdown directly corresponds to the rate at which processes execute traced system calls.
Since the Latex benchmark executes only 16 traced system calls per second, it suffers the smallest slowdown.

To address the overhead imposed by theproc and related tracing facilities, we could implement TREC function-
ality in the kernel. Various tools such as Watchdogs [Bershad & Pinkerton 1988], and Interposition Agents [Jones
1993], or SLIC [Ghormley et al. 1996] can be used to trace system call activity with little or no overhead. However,
such tools often require root access to install, can be difficult to use without kernel source, and can also be difficult
to distribute since kernel copyright restrictions may prevent distribution of source code. We opted for the user-level
approach for portability, ease of distribution and installation. If performance becomes an issue, we believe switching
to a kernel implementation will be straight-forward.

2.3 Limitations

As motivated earlier, a number of applications are able to benefit from TREC functionality. However, TREC can pro-
duce incorrect results for applications that base their results on non-deterministic or difficult-to-trace input. Following
are some example behaviors likely to interact poorly with TREC applications:

� Programs must be deterministic and repeatable. Each of the programs that contribute to the creation of a file
must behave the same way each time it is run, assuming that its own inputs have not changed. A compiler
invoked with a given set of options will generally produce the same object file, as long as the source code has
not changed. An example of a program that violates this restriction is UNIXdate , whose output is never the
same twice. Any file that relies on the output ofdate cannot be guaranteed to be up-to-date, nor can it be
reliably re-created.

� Programs cannot rely on user input. Related to the requirement for determinism, programs that rely on user input
or GUI operations are not automatically re-creatable. For example, if an output file incorporates user-input to a
text editor, TREC cannot accurately model program dependencies.

� File contents must be static, as long as the modification time has not changed. While seemingly a trivial con-
straint, certain special files do not follow this convention. Virtually all of the files in/dev violate this restriction.
For example, each time the tape drive/dev/rmt0 is read, it appears to have different data, for example, be-
cause an operator has exchanged one tape for another.

� File contents must be changed locally. For example, an NFS mounted file might be modified at any of a number
machines, not all of which may be traced by TREC. Applications requiring callbacks on file modification rely
on TREC's ability to intercept all file updates.



gcc -c test.c
gcc test.o -o test

sh compilesh compile

gcc test.o -o testgcc test.o -o testgcc -c test.cgcc -c test.c

cppcpp cc1cc1 asas ldld

/var/tmp.i/var/tmp.i testtesttest.otest.o/var/tmp.s/var/tmp.stest.ctest.ctest.htest.h

(a) Compile Script
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Figure 2: The top portion of the figure shows a simple shell script used to compile a program,test . The bottom
portion of the figure graphically depicts the process lineage tree produced by TREC-profiling of the shell script.

� In general, TREC cannot cache programs that rely on network communication to produce their output. For
example, an application that communicates with a remote server may receive different results for each run of
the program.

Despite the limitations outlined above, we will demonstrate that TREC remains a useful tool in a number of differ-
ent contexts. Our current approach to handling output files produced by programs that fall into the above categories is
to allow users to specify a set of program names whose output cannot be cached or re-created. TREC uses a configu-
ration file containing a list of programs whose output is potentially uncacheable. If any of these programs are involved
in producing an output file, TREC caching is disabled (i.e., by transparent make or dynamic object caching). In the
future, it should be possible to partially automate the process of determining the list of programs displaying “dan-
gerous” behavior. For example, Solaris programs opening/dev/tcp can be assumed to be carrying out network
communication.

Note that while TREC may be unable to transparently cache the results of certain programs, applications such as
unmake can still provide valuable information to users about the origins of even uncacheable files. For example, if an
image file is created using an interactive visual analysis tool, the output cannot be transparently re-created since user
input was used to drive the result. However, unmake can still be used to identify the command executed to start the
analysis tool, to determine the time the command was executed, or to enumerate all input files used during the creation
of the image file.

3 Applications

In this section, we describe three utilities built on top of the TREC tracing module: unmake, transparent make, and
dynamic web object caching.

3.1 Unmake

The TREC tracing module builds a process lineage tree as described in the previous section. To demonstrate the
use and utility of this information, we describe a simple TREC service, unmake, that allows for a number of simple
queries. For example, users might request information about all processes, and their parents, that read a particular file.

As a concrete example, consider the shell script used to compile a simple program in Figure 2(a). When this script
is run in a shell traced by TREC, the tracing module automatically builds lineage information for the processes exe-
cuted by the script. The complete process lineage tree for producing thetest executable is presented in Figure 2(b).
Arrows between rectangles indicate process parent information. For the leaf processes, we indicate the files (indicated
as ovals) read and written by each process. Notice that while the compilation script makes no reference to a header



Query: read test.c

Parent ID: 28426 Program ID: 28428
Argv: /usr/local/lib/gcc-lib/sparc-sun-solaris2.5/2.7.2.f.1/cpp

-lang-c -undef -D__GNUC__=2 -D__GNUC_MINOR__=7 -Dsun -Dsparc
-Dunix -D__svr4__ -D__SVR4 -D__GCC_NEW_VARARGS__ -D__sun__
-D__sparc__ -D__unix__ -D__svr4__ -D__SVR4 -D__GCC_NEW_VARARGS__
-D__sun -D__sparc -D__unix -Asystem(unix) -Asystem(svr4)
-Acpu(sparc) -Amachine(sparc) test.c /var/tmp/cca006u2.i

Envp: COLLECT_GCC=gcc HOME=/homes/rivers/vahdat HOST=tolt HOSTNAME=tolt
HOSTTYPE=sun4 LOGNAME=vahdat MACHTYPE=sparc OSTYPE=solaris

Children: (none)
Input: test.c test.h /usr/include/sys/feature_tests.h /usr/lib/libc.so.1

/usr/local/lib/gcc-lib/sparc-sun-solaris2.5/2.7.2.f.1/include/stdio.h
/usr/lib/libdl.so.1 /usr/platform/SUNW,Ultra-1/lib/libc_psr.so.1

Output: /var/tmp/cca006u2.i
========
Parent ID: 28424 Program ID: 28426
Argv: gcc -c test.c
Envp: HOME=/homes/rivers/vahdat HOST=tolt HOSTNAME=tolt HOSTTYPE=sun4

LOGNAME=vahdat MACHTYPE=sparc OSTYPE=solaris
Children: 28428 28430 28432
Input: /usr/lib/libc.so.1 /usr/lib/libdl.so.1

/usr/local/lib/gcc-lib/sparc-sun-solaris2.5/2.7.2.f.1/specs
/usr/platform/SUNW,Ultra-1/lib/libc_psr.so.1

Output: (none)

Figure 3: This figure describes the results of a sample query, tracing back the lineage of the process that read the file
test.c .

file (test.h ), the assembler, or loader, TREC is able to build full lineage information by observing the execution of
all processes and sub-processes spawned by the compilation. Notice that while the shell script from Figure 2(a) makes
no reference to the filetest.h , TREC is able to transparently deduce this dependency by observing the fact that cpp
readtest.h for input.

The unmake module can be interactively queried for process lineage. Figure 3 shows partial output of a run for
a query requesting lineage information for processes readingtest.c . Unmake searches the lineage information for
records where the set of input files containstest.c , in this case returning execution of the C pre-processor,cpp .
Unmake returns the following information about the execution environment of all traced processes. All command line
arguments, in addition to the environment variables, are listed (note that for brevity, the list of environment variables
is truncated). All of the program's input and output files are listed along with a unique program ID (currently the
UNIX pid) and the ID of the process's parent. The children field specifies all spawned processes (no processes were
forked in the case ofcpp ). The query also recursively provides information on the process's parent,gcc in this case.
While omitted from Figure 3, information on/bin/sh , the process which executed the compilation shell script, and
/bin/tcsh , the root process of the TREC trace, is also returned.

While not currently implemented, unmake combined with a source control system or, more generally, a file system
capable of transparently producing older file versions [Heydon et al. 1997] can be used to rollback to earlier versions of
output files. For example, users debugging a program executable may use an interactive process lineage visualization
tool, similar to the display in Figure 2(b), to identify input files that may have potentially introduced bugs. The user
could then roll back to an earlier version of the suspect input file (using an appropriate file system or a source control
system), instructing unmake to rebuild the output file with the new set of input files.

3.2 Transparent Make

The process and file lineage information produced by TREC can be used to build a more dynamic version of the tradi-
tionalmake utility, called transparent make (tmake). With traditionalmake, users are forced to learn a new language
for specifying dependencies between input, intermediate, and output files, a process that can become cumbersome and
error-prone for a large development efforts. In contrast, tmake allows users to describe the process for creating output
files more naturally; shell scripts (Figure 2(a) provides a simple example) describe the sequence of steps used to create
an output file.



Thus, rather than forcing users to manually specify dependencies through Makefiles, TREC is able to dynamically
determine dependencies by observing the execution of shell scripts. This approach has the following advantages: (i)
eliminating user errors that may occur in specifying dependency information, (ii) dynamically updating dependency
information as it changes, and (iii) eliminating the need to learn the Makefile specification language, which can be
sometimes be complicated, restrictive, and/or error-prone.

We currently have two different versions of tmake: a passive version that brings output up to date in response to
a user command, and an active version that automatically updates output files whenever changes to an input file is
detected. Both versions can be useful in different contexts. For example, active tmake may be appropriate when a
summary graph is produced based on a set of input files. All commands used to create the graph could be re-executed
each time a data set changes while a visualization tool detects the changes to the graph and re-displays the current
version. In this way, users could interactively manipulate data sets while visualizing the effects on a resulting graph.
Passive tmake is likely more appropriate in compilation environments where users change multiple source files and
wish to manually instruct tmake to re-synchronize output files.

The passive version of tmake provides an interface similar to traditionalmake. A shell script is used to carry out
tasks such as compilation and TREC builds process lineage information. However, passive tmake does not register
callbacks on file write events. Rather, the user explicitly requests re-synchronization of the target of the shell script
by re-executing the shell script. For each command in the shell script, tmake looks up the set of input files for the
command and checks the last modified time of each input files. If any of the files have been modified since the last
execution time of the command, the process is re-executed. Otherwise, the command is skipped. Also consider the
case where the compile shell script is modified—for example, to add a new-O parameter to the compiler. In this
case, tmake will re-execute any programs with modified command line parameters even if file dependencies have not
changed since it will be unable to match the new process and command line parameters with any entries in its process
lineage hierarchy. Thus, passive tmake functions similarly tomake, while maintaining the advantages of implicitly
determining dependency information and dynamically updating dependencies as they change (without requiring user
intervention).

With active tmake, the tmake module registers a callback with the TREC tracing module when any file is opened
for writing. When the callback is invoked, tmake checks if the file acted as input to any of the traced processes. If so,
tmake notifies the user of this update and prompts for re-synchronization of the output files. On a user synchronize
command, tmake re-executes the program that took the modified file as input with the same command line parameters
and environment variables as the program's initial execution. Once the program completes, tmake recursively checks
for further dependencies: if the output files of the just executed program acted as input for any of the program's parents
in the lineage tree, the ancestor is in turn re-executed. This process is repeated until an output file is produced that did
not act as input to any ancestor in the lineage tree.

To demonstrate the workings of active tmake, consider the process lineage example from Figure 2(b). When the
file test.h is modified (e.g., through an editor), TREC invokes a callback to the tmake module informing it of the
change. Tmake then searches for all processes that usedtest.h as input, finding the cpp process. After asking for
confirmation from the user, tmake re-executes cpp, noting that it produced an output file,/var/tmp.i . The process
is repeated recursively, where tmake notices that the modified file was read by the cc1 process. Processes are executed
in this way until ld produces a current version of thetest executable. Recursion ends at this point since no process
took test as its input.

Instead of prompting the user for permission to re-synchronize output files, tmake can be configured to skip
the prompt and to automatically re-creat output files when any input file is modified. However, such automatic re-
synchronization can produce undefined behavior in the general case (e.g., users saving intermediate versions of pro-
gram source files that will not compile). Of course, earlier work in optimistic make [Bubenik & Zwaenepoel 1989]
has demonstrated the value of creating output files in anticipation of user requests. Thus, optimistic versions of output
files could be created in temporary directories; once the user requests an update, a new version of the output file can
be moved in place of the old one instead of waiting for the file to be re-created.

3.3 Dynamic Web Caching

In this subsection, we describe a third TREC example, dynamic web caching. This service is quite different in mo-
tivation and implementation from both the previous services, unmake and tmake. We begin by motivating the need
for dynamic web caching and go on to describe how we modified an HTTP server to interact with TREC in order to
provide this service.



3.3.1 Motivation

In response to the exponential growth of packets across the Internet, several researchers have proposed a number
of caching schemes both to reduce the load on Internet backbones and to improve user response times [Gwertzman
& Seltzer 1996, Chankhunthod et al. 1996, Zhang et al. 1997]. One early study [Danzig et al. 1993] found that
strategically-placed caches could reduce FTP file traffic by as much as 50%. Similar studies of WWW traffic yielded
similar results [Braun & Claffy 1994, Duska et al. 1997, Gribble & Brewer 1997].

We observe that any caching scheme will be limited by the large fraction of web pages that are dynamically
generated, and hence classified as uncacheable. For example, a CGI-bin program might be run to produce HTML
in response to a user query (e.g., what are the show times at a movie theater) or to embed a different advertisement
in the same logical page based on the identity of the requester. In general, the contents of such pages cannot be
cached because the result of the program can change from execution to execution. Caching dynamic objects can
be even more important for overall performance for two reasons: (i) An increasing percentage of web objects are
being dynamically generated, and (ii) web servers typically have to performfork andexec operations for dynamic
operations, increasing server load and request overhead.

Our approach to reducing the overhead of busy web servers is to cache dynamically generated pages, using TREC
to manage invalidations. Limitations to the type of dynamic objects that can be cached—for example, those that
access a database—are described in Section 3.3.4. In this scheme, cache objects are stored in the file system under
the name of the program used to generate them concatenated with any arguments to the program. Thus, a request
for the objecthttp://www/cgi-bin/query?argument might be cached locally in, for example, a file/usr/
local/apache/cache/cgi-bin/query?argument . Subsequent accesses to the same CGI program with
the same argument list can be returned from the disk cache, eliminating the need tofork andexec operations, and
saving any computation time associated with the requested program. For example, consider user queries to a web site
providing movie show times. Caching is attractive in this context because locality is likely present in the access pattern
(popular movie at popular theater) and because the query results remain valid for an extended period of time (e.g., one
week).

Of course, one problem with caching dynamic objects is maintaining cache consistency. The dynamically gener-
ated web objects often depend on a set of input files. For example, a consumer web site might provide an interface
for users to interactively query for the latest pricing and availability information. Dynamic object caching can reduce
server load by caching the replies to frequently made requests. However, all cached copies must be invalidated when
pricing or availability information changes. As another example, a news site may dynamically generate a “front page”
containing headlines and synopsis of news stories. Caching is also useful in this context since the same object will be
delivered to all users for a certain time period. Once again, however, cached copies must be invalidated when the list
of available stories is updated.

To address this need for invalidation, we use TREC to profile the execution of programs creating dynamic web
objects. When TREC detects that an input file contributing to the creation of a cached object has been modified, one
of two courses of action can be followed: (i) the file containing the cached copy of the web object is removed, forcing
the web server to re-create it on the next user access, or (ii) the program which originally created the cached object
can be re-executed to bring the cache up to date. Determining which approach is taken depends on the popularity of
the object in question, the current load of the web server, and the cost of recomputing the object.

3.3.2 Implementation

To investigate the utility of dynamic web caching as described above, we modified Apache's HTTP server (version
1.2.4) in the following way. When a CGI object1 is requested, the server first checks for a file whose name matches
the CGI object name concatenated with any arguments. If the file exists, its contents are returned without spawning a
new process to carry out the request. If not present, a process is spawned to produce the desired results. The program's
output is written to a file in parallel with the response to the requester. Thus, subsequent requests are able to use a
cached copy of the CGI object. File locking is used to ensure that partially generated results are not returned to users.
We were able to make these changes by modifying approximately 50 lines of C code from the Apache distribution.

To allow for invalidations, the execution of CGI programs is profiled by TREC. Similar to transparent make, the
dynamic web caching module registers callbacks for all files that act as input for CGI programs, requesting notification

1While our implementation focuses on caching CGI program results, our technique is equally applicable to other dynamically generated web
content such as dynamic HTML.
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Figure 4: This figure describes the relative performance improvement introduced by CGI object caching.

when any of the target set of files are modified. When such a callback is received, all CGI objects (cached output
files) which depended on the modified file are removed, forcing the server to regenerate the result on the next user
access. Since this level of dependency checking cannot guarantee consistency for all CGI objects (further discussed in
Section 3.3.4), we allow the server administrator to specify a set of CGI programs that cannot be cached through an
Apache configuration file.

3.3.3 Performance

To quantify the baseline performance benefits of caching CGI-bin program results, we measured the performance of
retrieving CGI results for both our modified Apache server and the original, unmodified version. The measurements
were taken as follows. Eight Sun Ultra/1 workstations running Solaris 2.5.1 connected by a 10 Mb/s Ethernet switch
were used for the experiments. One of the machines acted as the HTTP server running Apache 1.2.4. Between one
and seven of the other machines acted as clients, continuously requesting the results of executing a small CGI script,
printenv, which simply prints out the environment variables of the running CGI script. Each client machine forked 40
copies of the same script requesting 200 copies of the same script in a loop. Given the small size of the requests and
the replies, network bandwidth was not the bottleneck.

Figure 4 describes the relative performance of the baseline vs. the modified Apache server under the above condi-
tions. As a point of reference, the printenv script takes .05 seconds to run locally. One client requesting the CGI-script
in a loop from unmodified Apache averages .18 seconds per request. Using the caching version of Apache, the CGI-
script is retrieved in an average of .11 seconds, a 39% improvement over the baseline. From Figure 4, it is interesting to
note that the relative performance of the caching CGI server improves with increased load. This improvement results
from the high overhead of managing and context switching between address spaces as many CGI scripts are forked off
by the baseline HTTP server under load.

We expect the above performance disparity to become even more pronounced as the CGI scripts become longer
lived (recall that printenv exits after .05 seconds). To test this hypothesis, we re-ran our experiments with the baseline
(uncaching) HTTP server returning the contents of a synthetic CGI program which takes 2.5 seconds to execute. Forty
clients on one machine averaged 153 seconds to retrieve the object, while forty clients on each of two machines
averaged 167 seconds to retrieve the object. Clearly, the savings from caching become more pronounced as the
computation cost of the CGI object becomes more expensive.



3.3.4 Applicability

Our approach to dynamic web object caching faces a number of limitations. First, many dynamic objects are generated
as a result of queries full-fledged databases. In essence, many web servers act as simple front ends to a sophisticated
DBMS. For example, a user query for a price quote or item availability often translates into a database query. Since
access to database tables cannot in general be modeled by simple file accesses (many databases are implemented on
top of raw disks as opposed to the file system for example) , TREC cannot catch database table updates, and hence
cannot properly invalidate web objects based on out-of-date table values.

While the above limitation is inherent, we believe the performance improvements available from dynamic object
caching argues for further research into active databases. For example, research efforts intomaterialized views[Gupta
et al. 1993, Gupta & Mumick 1995, Colby et al. 1996, Kawaguchi et al. 1996] in active databases [McCarthy & Dayal
1989, Stonebraker et al. 1990, Widom & Finkelstein 1990] has resulted in support for such views in many commercial
database systems. Materialized views allow the results of a query to be updated as the tables (and individual cells) used
to create the view are updated. Techniques similar to those employed by TREC are used to track view dependencies
on individual cells and tables, and to set “triggers” to be fired when a table is modified so that any derived views can
be updated as well. An interesting avenue of future research is to evaluate whether materialized database views can be
used to cache the portion of dynamic web objects that generate database queries to obtain their results.

A second limitation faced by dynamic object caching is that, as described, TREC profiling and invalidation only
allows for caching on the server-side. If such caching could be extended to Web proxies, performance could be further
improved by caching dynamic objects closer to clients, potentially reducing both consumed wide area bandwidth
and user-perceived latency. One approach to addressing this limitation is to use a wide-area file system such as
AFS [Howard et al. 1988] or WebNFS [Sun Microsystems 1996] to store and to cache dynamic web objects as normal
files. Thus, the wide area file system can act as a shared file cache for both the HTTP server and interested proxies,
with TREC invalidations maintaining relatively strong consistency semantics. Another approach is to allow proxy
caches to cache dynamic objects with a TTL-based invalidation scheme [Chankhunthod et al. 1996, Gwertzman &
Seltzer 1996, Squ 1996]. While this approach provides weaker consistency semantics, it is easier to deploy given the
current Web infrastructure.

4 Related Work

Several systems have attempted to extend the automatic control of derived objects beyond the simple (but powerful)
model used bymake. DSEE [Leblang & Chase 1984, Leblang & McLean 1985], Odin [Clemm & Osterweil 1990]
and Vesta [Levin & McJones 1993, Heydon et al. 1997] provide tools for modeling the behavior of programs, enabling
the concise specification of derivation rules, and distributing changes to developers. Their declarative style suits large-
scale programming environments, which are highly structured and employ a well-defined set of tools (compilers,
linkers, etc.). Neither tool provide any assurance of correctness; as withmake, the user is responsible for describing
the complete set of dependencies relationships to the configuration manager. In contrast to unmake, users of these
systems must tell the system how tools use files, whereas unmake simply observes and gathers the information in the
background.

Odin relies heavily on the use of naming conventions: the name of a file fully specifies how it was derived.
This restriction would not work well for the ad-hoc, highly parameterizable methodology used in less-structured
environments. Like tmake, Odin implements transparent re-creation of files. A sentinel in Odin is a data object that
is automatically regenerated (if necessary) at the time a user requests it, based on rules that were specified in advance
for objects of its type.

VOV [RTDA ], a configuration management toolkit, is similar to TREC, in that it observes program invocations
to generate a trace of lineage information. However, VOV is limited to a specialized application domain (Electronic
CAD), and it requires assistance from tool programmers. Each tool explicitly reports the files it will read and write.
By contrast, unmake observes file-system activity at a low enough level that modifying tools to work with TREC is
unnecessary.

Recently, a large body of research is being conducted in web caching. Harvest [Chankhunthod et al. 1996] and
Squid [Squ 1996] are efforts into hierarchical web proxy caching. We believe that such caching efforts would benefit
from our work in dynamic object caching. Gwertzman and Seltzer [Gwertzman & Seltzer 1996] recently proposed
using the Alex protocol [Cate 1992] for maintaining cache consistency across the wide area. While this protocol



provides much weaker consistency guarantees than a wide area file system, it would be simpler to deploy and could
be used in our model for caching dynamic web objects at proxy caches.

5 Conclusions

The task of managing interactions between input and output files can be difficult. Further, the task of manually speci-
fying such dependencies can be tedious and error-prone. We address this problem by introducing Transparent Result
Caching (TREC), which automatically and transparently constructs dependency information by observing program
behavior. To demonstrate its utility, we have described, built, and evaluated three sample TREC applications. Unmake
allows users to query for process lineage information, returning the full chain of processes, command line parameters,
and environment variables used to create a file. Transparent Make uses the process lineage information from Unmake
to provide functionality similar to UNIXmake, with the added advantage of freeing users from manually specify-
ing file dependencies. Finally, Dynamic Web Object Caching allows web servers to coherently cache the results of
dynamic web content such as CGI programs, with the potential of reducing server load and client latency.
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