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Abstract

In the present paper nonholonomic systems with drift terms are stud-
ied. The discussion is focused on a class of Lagrangian systems with a
cyclic coordinate. We present an approach to open-loop path planning
in which the system evolution is studied on manifolds of dimension
equal to the number of control inputs. A control algorithm is derived
and it is applied to the examples of a hopping robot and a planar
diver. A similar algorithm is derived for the study of what states can
be reached within a given time. An exponentially stabilizing feedback
controller is derived for tracking of the planned trajectories. The results
are illustrated with simulations.
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1 Introduction

Driftless nonholonomic systems have the property that they can be stopped
by setting the inputs to zero, and thus they are open-loop stable. This is
often not the case when drift terms are present. If the drift vector field is in
the span of the input vector fields, then an input transformation can be used
to transform the system to a driftless form. The interesting cases which will
be investigated here, are those systems where such a transformation does
not exist. An equilibrium point for the system is given by those states where
the drift term is zero, or where the drift term can be cancelled by the inputs.
In the discussion below the focus will be on nonholonomic systems without
a equilibrium, i.e. with non-vanishing drift.

Driftless nonholonomic control systems have been studied in recent years by
Walsh and Sastry (1991), Teel et al. (1992), Murray and Sastry (1993), Bloch
et al. (1993), Kolmanovsky and McClamroch (1995), and others. Several
important results have been derived based on the structure of Lie algebras
generated by the control vector fields. A dual point of view using exterior
differential systems was developed by Murray (1994), Tilbury et al. (1995),
and Tilbury and Sastry (1995). The discussion of nonholonomic systems
with drift in the literature has been concentrated on the so-called dynamic
extension of drift free systems by e.g. Hauser (1989), Kapitanovsky et al.
(1993), and M’Closkey and Murray (1994). A dynamic extension is an
addition of integrators to the velocity inputs. Walsh et al. (1993) have also
considered steering on the group of rotations for left-variant systems with
drift terms.

An approach to motion planning for nonlinear systems which has received
increasing attention in the last few years is the concept of differential flatness
(Rouchon et al.,, 1993). Flatness is locally equivalent to feedback lineariz-
ability, and may be used to simplify the design of trajectories. A sufficient
condition for flatness is given in (Martin, 1993) for systems where the di-
mension of the control vector is one less than the dimension of the state
vector. Lagrangian systems of this class where the flat outputs depend on
the configuration variables are called configuration flat (Rathinam and Mur-
ray, 1996). Controllability properties of Lagrangian systems have also been
studied by Lewis and Murray (1995), and dissipative systems by Kelly and
Murray (1996).

Classification of nonholonomic systems has also been explored in the liter-
ature. A powerful motivation for finding simple standardized forms is to



generate reusable control schemes that can be applied to classes of nonlin-
ear control systems. The search for canonical forms by (Murray and Sas-
try, 1993) defined the chained form, which has since gained much popularity.
This form is equivalent to the power form (Pomet and Samson, 1993). Sinu-
soids have been used in motion planning for these systems because of their
smoothness and periodic properties. Systems that can be put in chained
form are in a subset of the larger class of nilpotentizable (Di Giamberardino
et al., 1996) systems. A system is nilpotent when the Lie algebra is finite
dimensional and all Lie brackets of order higher than a finite integer are zero
(Kawski, 1988). When the Lie algebra is nilpotent, it is possible to write
the solution for the state as a composition of a finite number of solutions
to possibly less complicated differential equations. If a system is nilpotent,
or nilpotentizable by a diffeomorphic transformation, then Kawski (1993)
gives a simple algorithm for transformation to a canonical nonlinear repre-
sentation of the system. Nilpotent approximations are useful for local sta-
bilization (Hermes et al., 1984). An extension of the derivation of canonical
forms to systems with drift terms is a case for further study.

A class of Lagrangian systems with a cyclic coordinate is investigated in this
report as a step toward extending the understanding of control of systems
with drift terms. The eventual goal is an increased repertoire of canon-
ical forms. From Noether’s Theorem (Arnold, 1989) it follows that if a
Lagrangian system admits a one parameter group of diffeomorphisms, i.e.
there is some kind of symmetry in the system such that the Lagrangian is
invariant under some mapping, then a conservation law and a first integral
exist. A cyclic coordinate means that the Lagrangian is invariant under, for
example, a translation of the same coordinate. The first integral will be a
conserved generalized momentum conjugate (Goldstein, 1980). These sys-
tems exhibit a subtriangular structure, as the Jacobian of the vector fields
with respect to the state is subtriangular. This structure will be utilized
in the design below. If the constant value of this first integral is nonzero,
then there is drift in the system. The two examples considered here are the
hopping robot with drift and the planar diver. In these examples the cyclic
coordinate is the body angle, and the generalized momentum is the total
angular momentum of the body.

The main focus of the present report is on path planning, the problem of
finding inputs that steer the system from an initial state to a desired state.
The proposed approach is to consider piecewise constant inputs. In physical
systems there is usually an upper bound on how large inputs can be. Fur-
ther, it is well known that minimum-time control of systems with constrained



inputs often results in bang-bang control, in which the control values are at
the boundary of the allowed set of inputs. An algorithm to find a path that
connects a given initial state with a given desired state is presented. The al-
gorithm uses bang-bang controls to generate trajectories, and includes both
a computation of the maximum and minimum of a scalar function, and a
one dimensional search for a solution. The solution is often not unique. A
necessary condition for convergence of the algorithm is controllability. An
algorithm to find a subset of the reachable set is given, which is a slight
modification of the path planning algorithm. Obstacle avoidance is a tradi-
tional difficulty that must be considered in motion planning when moving in
a cluttered environment. In that case the initial and desired configurations
must lie in the same connected component of the free configuration space
for the motion planning problem to be solvable (Murray and Sastry, 1993).
Obstacle is however not discussed further in this report.

Open-loop paths are very sensitive to initial condition errors. A feedback
control law, which closes the loop around the planned trajectory is derived
in order to render the control scheme more robust. The feedback control law
provides exponential convergence to the planned trajectories under certain
assumptions on the nominal trajectory. The combination of an open-loop
path planner and an underlying feedback control law for continuous tracking
can be seen as the lower modules in a hybrid hierarchical controller scheme
for control of nonholonomic mechanical systems as in (Varaiya, 1993), for
example.

2 Controllability
Consider an affine nonlinear control system

& =f(z)+)_ gi(z)w (1)

i=1
with « € Y and € M, under the assumption

Assumption 2.1 (Sussmann (1987))

The state space M C R" is assumed to be a smooth manifold of dimension
n, the control input space U C R™ is assumed compact and convex, the
vector fields in the set ¥ = {f,g1,...,9m} are assumed to be real and
analytic, and the input vector fields g;, © € {1,...,m}, are assumed to be
linearly independent of each other.



Definition 2.1 (Nijmeijer and van der Schaft (1990))
The nonlinear system (1) is called controllable if for any two points (z°, z*)
in M there exists a finite final time T and an admissible control function
u : [0,T] — U, such that the solution is (T, 0, z°, u) = z*.

2.1 Accessibility

The accessibility algebra C (Nijmeijer and van der Schaft, 1990) is the
smallest subalgebra of the Lie algebra of vector fields on M that contains F.
The accessibility distribution C is the distribution generated by (spanned
by) C. The strong accessibility algebra Cy is the smallest subalgebra of
the Lie algebra of vector fields on M which contains G = {g;,...,9m} and
satisfies [f, X] € Cp for all X € Cp. The strong accessibility distribution
Cy is the distribution generated by Co.

Definition 2.2 (Nijmeijer and van der Schaft (1990))
The Lie algebra rank condition (LARC) at z is given by (Sussmann,
1987)

dimC(z) =dimM =n (2)

and the distribution C spans the whole tangent space T, M. A system is
locally accessible at « if dimC(x) = n, and accessible if dimC(z) = n
for all x € M. It is strongly accessible if dim Cy(z) = n for all € € M.

For driftless systems, controllability follows from LARC (Nijmeijer and van der
Schaft, 1990). Controllability is, however, different from accessibility for sys-
tems with drift. Consider the example

521 =u

T =Uy

) 1

T3 =§.’B% (3)

taken from (Nijmeijer and van der Schaft, 1990), where

C(z) = Co(z) = span{g1, g2, [If , g1}, ¢1]} = R®

However, z3 is nondecreasing and all states &, where z3 < z3(0), are not
reachable. It can be concluded that even though this system is strongly
accessible for all € R3, it is not controllable.
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2.2 Small time local controllability

Definition 2.3 (Sussmann (1987))

A system (1) is small time locally controllable (STLC) (Sussmann,
1987) from z° € M, if «° is an interior point of the reachable set Ry (")
consisting of all points  that can be reached from 20 in time T, defined by

Rr(z®) = | R(@°7) (4)
0<7<T

R(z% 1) = {z|3u:[0,7]— U so that (0) = z° and z(r) = «}

Proposition 2.1 (Sussmann (1987))
A system cannot be STLC from x unless it satisfies the LARC (2) at x.

Proposition 2.2
Let = be an interior point in M and an equilibrium with f(z) = 0,
U = {|lu] £ 1,i = 1,...,m}, and the vectors (ad £)*(gi)(x), for all
i € {1,...,m}, k € {0,1,...} together with the vectors [g;, g;](z), for all
pairs i,j € {1,...,m}, span Ty M. Then the system (1) is STLC from =
(Sussmann, 1987).

Remark 2.1
From Proposition 2.2 it follows that the example (3) does not satisfy the
condition for STLC.

3 A class of nonholonomic systems with drift terms

In this section a motivating class of systems for the discussion later in the
report is presented. Particular attention is given to the effect of the drift
term. For certain systems and certain path planning problems the driftterm
can be useful in the design of the control law, whereas for for other systems
the opposite may be the case. Sufficient properties for controllability of this
class is derived.

Consider a conservative mechanical system with Lagrangian
L=L(z,2) = K(z,2) - U(z) (5)

where ¢ € R™ are the generalized coordinates, K = 7, aij(z)&it; is
the kinetic energy and U is the potential energy. Assume that there is one



cyclic coordinate (Goldstein, 1980) not contained in the Lagrangian. This
coordinate may without loss of generality be chosen to be z,, and

oL
el 0 (6)

If no generalized forces act in the direction of z, (Qn = 0), then the Euler-
Lagrange differential equations (Goldstein, 1980) yield

i (32,) =0 @

This is a special result of Noether’s Theorem (Arnold, 1989). A first integral
 of the motion of the mechanical system is given by

n
p= 371; = ; ain(Z)%; (8)
where for all i € {1,...,n}

aig;(ni) =0 9)

Collect the first (n — 1) coordinates in a vector defined by

T
Te=| (10)
Tn-1

Assume that an,(x;) # 0 in a set D C M. Consider systems where &; = u;,
i € {1,...,n —1}. Then a control system

T, = u
n-1
ann(Za) i=1 nn(%a)

is associated to the first integral (8). Define the vector fields f, g; : M — R",
i€ {l,...,n—1} by

Ty =

07 1] F 0T
: 0 0
f= ' y NN = . y ++ry Gn-1= . (12)
0 0 1
| [ ] | 91 [ 9n-1



where 1 is the #’th entry of g;, and with

N
. - in(Za)
gt(za) - ann(xa) (14)

A review of definitions for controllability and accessibility is given in Ap-
pendix 2. The following lemma contributed by the authors is a generalization
of Proposition 2.2 in Appendix 2 for systems with nonvanishing drift.

Lemma 3.1

Assume that the drift term is bounded, but nonzero by f(z) # 0, where
z is an interior point in M, and the vectors (ad f)*(g;)(x), for all i €
{1,...,m}, k € {0,1,...} together with the vectors [g;, g;](z), for all pairs
i,j € {1,...,m} span T, M. Then the system (1) still is STLC from z if the
controls are sufficiently large, i.e. with controls Au, and u € U = {|u;| <
1,2=1,...,m} for some large scalar A > 0.

Proof:
This is the same as Proposition 2.2 in Appendix 2 but with nonvanishing
drift (f # 0), that is

2 =@ 1Y ailehu (15)

i=1
Scaling the time with 7 = At gives

2 @)+ el (16)

i=1
Increasing the size of the control inputs is seen to be analogous to reducing
the impact of the drift f. From this it can be concluded that if all directions
are spanned by these brackets, then large controls will be able to compen-
sate for the bounded drift term, and the system is STLC. The vector fields
to consider with large controls are f, Ag;, A(ad £)*(g:), and A\?[g;, g;], and it
is seen that the magnitude of all these except f increase with increasing A. O

Proposition 3.1
System (11) is accessible by Definition 2.2 and STLC by Definition 2.3 in
Appendix 2 for ¢ € D if the controls are sufficiently large, and either from
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(13)-(14), gfi # 0 for some i € {1,...,n -1}, or-g—if—gﬁ-;',- # 0 for a pair
i,j €{1,...,n—1} forallz € D.

Proof:
The Lie brackets are given by
0 : 0
a dg; dg;
% - g

using the fact that the partial of f and g; (12) with respect to z, is zero.
If one of these Lie brackets (17) is nonzero, then together with all g;,
i € {1,...,n — 1}, it spans all R" and system (1) is accessible by Definition
2.2 in Appendix 2. Lemma 3.1 ensures STLC provided that the controls are
sufficiently large. ’ O

4 Path planning

In this section an algorithm for open-loop path planning is derived for the
class of systems presented in the previous section. The idea is to utilize the
structure and to apply simple bang-bang controls in the planning.

Problem 4.1 (Path Planning Problem)
Given an initial state (0) = 2° and a desired final state =*, find trajectories
z(t) € M and inputs u(t) € U, such that forward integration of

, = u

n—1
En = f(xa)+ z 9i(@a)ui (18)

i=1
over the time interval t € (0,T), gives (T) = z*.

The final time T may be free or given. Initial time is set to zero without
loss of generality, since no vector field depends explicitly on time.

Consider piecewise bang-bang control u(t) with unitary bound

ueU={ueR“‘1:uie{—l,o,l}ﬂ'E{l’--""'l}} (19)
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It is well known that time optimal control laws often are of the type bang-
bang, when the control inputs are bounded and the control system is affine.
The amount of control available is a concern in the planning for this system
due to the drift term. The class of bang-bang controls is often a sufficiently
rich class of controls for analysis of nonlinear systems subject to the following
remark.

Remark 4.1 (Nijmeijer and van der Schaft (1990))

From continuity of solutions it follows that an approximation of a more
general control with a piecewise constant control gives a solution that ap-
proximates the solution with more general controls. In this sense many prop-
erties can be established by only considering the piecewise constant inputs.
And as piecewise constant controls can approximate continuous controls, it
can be stated that bang-bang controls can approximate bounded continuous
controls.

The following theorem by Sussmann (1983) will be helpful in the proof of
convergence of the path planning Algorithm 4.1. The theorem below has
been modified to fit m-input systems from the original version with m = 1.

Theorem 4.1 (Sussmann (1983))

Consider a real analytic system (1) with inputs constrained by |u;| < 1. Sup-
pose that for all z € M and for all integers k > 0, there is a neighborhood
N C M of =, where for all € € N and for all i € {1,...,m}, the term
[9i, (ad £)*(g:))(z) is a linear combination written 3515 aj(ad )’ (g:)(2)
with real analytic coefficients aj and |axy1| < 1. Then the real analytic
system (1) has the property that whenever there exists a trajectory which
connects two arbitrary points * € N in time T, then there exists a trajec-
tory between the two same points in time T, which can be generated by a
bang-bang control with a finite number of switches.

Lemma 4.1

The class of systems (18) considered here meet the sufficient conditions of
Theorem 4.1 if there exist real analytic coefficients oy and o such that for
all (4, 5)

o%f

Oz;T;

=apf + 01% (20)

The following remark by Sussmann (1987) is also useful for the verification
of Algorithm 4.1.



Remark 4.2

The STLC property in Proposition 2.2 does not change if the discussion
is restricted to piecewise constant controls, or even to bang-bang controls,
under Assumption 2.1.

Hence it can be concluded that it is possible to steer the state to & with
bang-bang controls if the conditions of Lemma (4.1) are satisfied, since the
system (18) is STLC at = by Proposition 3.1.

Remark 4.3
The more general case where u; € [—imax, %i,max] for some u; max > 0, is
covered by the diffeomorphic input and state transformations

u' =D'u, z.=Dg, (21)

where D = diag(ui max;- - - » Yn—1,max), SO that the new inputs u} € [-1,1].
New scalars to consider are f'{z,) = f(D=.), and
9i(x) = vimaxgi(D ;).

The path planning scheme illustrated below is inspired by the well-known
technique of variable structure control (Utkin, 1977). In such systems the
controller design problem is twofold: the definition of a manifold and the
selection of a switching control. The manifold is designed so that a desired
behaviour of the closed-loop system is achieved when the state is restricted
to move on it. The switching control is designed to steer the initial state to
a point on the manifold and then to maintain the motion on the manifold.

The time for steering the initial state <9 to the desired state * is partitioned
into two parts as shown in Figure 1. The control law in the first part will
be termed as reaching control, since here the state is steered from the initial
state to an (n — 1) dimensional manifold Sy. The desired behaviour of the
system is to reach the desired state *. Hence, the manifold Sy is designed
so that z* belongs to it and all the trajectories contained in it converge
to *. The control of the system on the manifold will be called manifold
control.

10



u(t)

Reaching control Manifold control

vl
SR Vo

1 2 3 r 2 n-1
> i - - - ——i-
Al A2 Ar A1 An—l

Figure 1: Timing diagram of the sequence of control actions: reaching control
for t € [t1,t1) and manifold control for t € [t1,T). The figure shows an
ezample Tow of a pair of control matrices (V, V).

4.1 Reaching control

Let the reaching control be defined by a sequence of 7 > 1 piecewise constant
signals as follows

uk(t) = 'l—)k,i, te [{i)t_i-i-l): 1€ {1, soe )T} (22)

for all k € {1,...,n — 1}, where %; € {-1,0,1}, r > 1 is the number of
control switches in the reaching control segment, {; = 0 is the starting time,
tr4+1 is the time where the reaching control ends and the manifold control
starts. Let

Ai':ii-f-l_t.izo’ A-=[Ala"-35r]T (23)

Define the (n — 1) X r reaching control matriz V by

1,1 cee U1y
V=|: L (24)
Up-1,1 .. Un-1r
so that the control u during the time interval t € [ti, fi41] is given by the
column V* of V.

11



Forward integration of the system (18) with initial state &0 gives z(t;) = !
at time ¢; = 4,41 = Y1; Ay,
g = 20+ VA (25)
LENY.¥ .- gy
2l = 2+ /0 f(20+ V214 + Vir)dr
=1
r n-1 A; _ . _ _.
+3°3 w5 /0 9i(zd + VZ 1A + Vinydr
i=1 j=1

where Z! is the r X r matrix whose first ¢ columns are the first i columns of
the r x r identity matrix while the others are zero columns.

4.2 Manifold control

Let the manifold controls be given by the (n — 1) piecewise constant signals
‘ll,k(t) = Vk,i» te [ti,ti-i-l)a S {17 ceey— 1} (26)

for all k € {1,...,n — 1}, where v;; € {-1,0,1}, and ¢, = T is the time
available. Let

A;=ti1—1t;20, A=][Ay,..., An_llT (27)

Define the (n — 1) x (n — 1) manifold control matriz V by

Y11 cee Ulp-1
V=1_: ER (28)
VUn-1,1 -+ VUn-ln-1

so that the control u during the time interval ¢ € [tiyti+1) is given by the
column V*of V.

Imposing (T') = z*, forward integration of the system (18) with intial state
z!, at final time T = t; + X7 A;, gives

T = 4+ VA (29)
n=1l LA . ,
T = zi+ Z/o f(zl + Z71A + Vir)dr
i=1
n—-1ln—-1

A . .
+ Z Z 'vj,,-/ gj(a:g +VZi-lA+ VzT)dT
0

i=1 j=1

12



Note that the component z} is a vector living in the cone (Brﬂndsted, 1983)
with vertex &} and negatively spanned by the columns V* of V.

Define an (n — 1) dimensional manifold Sy by
Sy = {z € M|ov(z) =0} (30)

where

n-l LA . .
ov(z) = zp—z,+ Z/ f(zga+ VZ' A + Vir)dr
i=1 0

n—-1n-1

A . .
+3° 3 vy /0 0i(@a+ VZ A+ Virydr (1)

i=1 j=1
Note that oy (z) only is defined for those & where all entries 4; in
A= V—l(z: - @) (32)
are nonnegative.

V can always be selected so that A; > 0 in (32) and det(V') # 0. This
is obtained by e.g. V = diag (sgn(z} — 71),...,sgn(z}_; — Zn-1)), So that
A;j=|z} -zl 20forie{1,...,n—1}.

With the definition (30) of Sy, the following is given by design.

Proposition 4.1
Any state ¢ € Sy can be steered to the desired state * by a sequence of
switching controls (26), so that z(t;) = «! € Sy = z(T) = z*.

Remark 4.4

The motion on Sy can be described as a motion on manifolds of decreasing
dimension, where the dimension decreases at each switching time. Even if
this motion is not optimal in general, it is similar to the one found in the
regular synthesis in (Boltyanskii, 1966) for optimal control problems.

13



By inserting (25) into (31) and setting oy = 0, the result is

LYY g .
-0 = 3 /o F(a0 + VZ 1A + Vir)dr
=1

r n-1 A; . _ .
+Z Z 'l_Jj,i/o g,-(zg +VZ-lA+ Vir)dr
=1 j=1

n-l LA _ . .
+3 / f(@d+ VA+ VZi'A+ Virydr
i=1 0
n—-1n-1 A; _ . )
+3° 3 v / i@ + VA + VZ A+ Virydr
i=1 j=1 0

= Ty p(4,23) (33)
where A is given by
A=V Yz -2l - VA) (34)

The equation (33) can be solved with respect to a A with nonnegative
entries for a given pair (2% z*) by Newton’s method (Luenberger, 1984).
Thereafter, A is found from (34).

From this it can be concluded that the control (24) will steer the state x

from the initial z° to the manifold Sy if z}, € [z + ¥, 2l + UP2% ).

These bounds can be obtained by solving the optimization problems

gmin _ { minimize EV,V(A_,:BQ)
v.v subject toall A; >0
(35)
max { maximize Uy y(4,z)
V.,V 7 ] subjecttoall A;>0

Methods for solving (35) can be found in (Luenberger, 1984). Note that the
result of the optimization might be infinite.

The result of this analysis can be summarized as follows:

Proposition 4.2
Any z,, in the interval

I = [z + U5, 2p + U5%] (36)

14



can be reached with the reaching control V (24) and the manifold control
V (28). Further it can be concluded by Proposition (4.1) that if time is
unconstrained and the system is STLC by Definition (2.3) everywhere, then
the union of I for all pairs (V, V') is the whole R.

4.3 Path planning algorithm

An algorithm is derived from the discussion above which provides solutions
for the path planning problem for the pair of an initial state z° and a desired
final state z*.

Algorithm 4.1
e Initialization.

Initialize r=1. .

Enumerate all possible momsingular (n —1) x (n— 1) matrices...
V of type (28) by Vi, 1 <k £ kmax, where the number...
of possibilities is bounded by kmax < 317,

In the same way enumerate all possible (n — 1) x r matrices...
V of type (24) by Vi, where 1 <! < lmax < gin=1)r

Initialize k=1l=1.

e Step 1.

Dothe min/max optimization (35) and establish... _
the following reachable set with controls given by V; and V;:
T8 = [of + Uy, 0% + TRy

e Step 2.

If z, € 7%, then...
solve (33) with respect to A vith nonnegative entries Ai,...
compute A from (34),...
and stop, the algorithm is successful.
else if ! < lnax, then
l=1+1,
and go to step 1.
else if k < kmax, then
=1, k=k+1,
and go to step 1.
else
r=r+1,
reenumerate all possible (n —1) x r matrices...
V of type (24) by Vi, where 1 <! < lmax <377,
l=k=1,
and go to step 1.

15



From the discussion above the following can be concluded.

Proposition 4.3

Algorithm 4.1 solves Problem 4.1 and converges if the controls are sufficiently
large, the system is STLC from any * € M by Definition 2.3, and satisfies
the condition of Lemma 4.1.

Remark 4.5

A more flexible procedure regarding the order of investigation of the different
pairs ( Vi, V) would improve the efficiency of Algorithm 4.1. The next pair
( Vi, V) should be selected in view of the results of the algorithm so far.

4.4 Reachability analysis

A slight modification of Algorithm 4.1 allows a computation of a subset of
the reachable set Ry (z°) defined by (4). This set is restricted when time T
available is restricted by e.g. some physical constraint.

The boundary of the reachable set Rr(z%) are reached by minimum-time
trajectories. This follows from the fact that if a nonminimum-time trajec-
tory can reach a point, then there exists another trajectory which can reach
the same point in less time, and hence has time left to reach other states.
For affine control systems with bounded inputs, minimum-time trajecto-
ries often correspond to bang-bang controls. In the solution of minimum-
time problems, it is well known that infinite switching may appear with
so-called singular trajectories. This problem is avoided by Theorem 4.1,
however. A maximum integer Tmqz for the length of the sequence of reach-
ing control is introduced in order to ensure convergence of the algorithm,
ie.Tr€{l,...,Tmaz}

For a given pair of matrices (V, V), the projection of the set of points
reachable from z° within time T to the (n — 1) dimensional subspace where
x, lives, is given by the convex polygon

Pr(z®) = {z. e R}z =20+ VA + val (37)
with A; > 0,A; > 0,and 37, A + n-lA; < T. The set Pr(z?) is a

subset of an (n — 1) dimensional box with side lengths 2T" and with center
0
z,.
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The control laws (22) and (26) will in a time interval of length T < T steer
the initial state =0 to a final state  expressed by

T, € PT(‘co)) In = x?: + ‘I,V,V(A—7 %) (38)

where Uy (4, z,) is defined as in (33), and A has nonnegative entries A;,
forie€{1,...,7}, and

1Vza—2d - VAL + 1AL £ T (39)

where the 1-norm || - ||; is given by the sum of absolute values of the entries
of the vector.

The reachable set for z,, for a given x, € Pr(z®), can be obtained by solving
the following optimization problems:

minimize- \IIV,V(A, z,)
?',nv(Ta z,) ={ subjectto A; >0 fori=1,...,7
1V (2~ 20~ VA + 4] < T

maximize ¥y y(4,z,) (40)
TP (T, 20) = { subjectto A; 20  fori=1,...,r
V-2 -2 - VA + 1AL £ T

Remark 4.6

With r = 1 no min/max optimization is necessary in order to find the
reachable set. This follows from the fact that the boundary of the reachable
set is defined by

1V 2 -2 - VAL + 1Al =T (41)

This equality condition reduces the number of free variables by one, and for
r = 1 this means that there are no free variables for optimization.

The following algorithm returns a subset R3(z°) of the reachable set Rr(z?).

The projection P§(z?) of R%(x°) into the (n — 1) dimensional subspace
where &, lives, is computed.
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Algorithm 4.2
o Initialization.

Initialize r=1.

Enumerate all possible nomsingular (n—1)x (n—1) ...
matrices V of type (28) by Vi, 1<k <kmax = 3("‘1)2.

In the same way enumerate all possible (n—1) xr ...
matrices V of type (24) by Vi, where 1 <[ < lpax =3"7Vr,

Initialize k=1I1=1 and Ry(z%) = {z°}, Py(z°) = {=0}.

e Step 1.

Compute ‘P;."(zo) with Vi, ¥; as in (37).
P3(z°) = PH(a") UPE (2.
Discretize Pi'(z°) as a grid with...
space § > 0 between each point.
Enumerate all points (i € Pei(z®) CR™?, ie {1,...,(2T/6+1)*'},...
extracted from the grid.
For all (;
Solve the min/max optimization (40) with (Vi, Vi).
RE(2%) = {z = [T, 2alT : 2% + PO, (T,¢:) < 2w < 20 + T, (T,6)}
end
Ry(z°) = Ry(z°) URT' (2°)

e Step 2.

If ! <lmax, then
l=1+1
and go to step 1.
else if k < kmax, then
l=1, k=k+1
and go to step 1.
else if 7 < Tmax, then
l=k=1, r=7r+1,
reenumerate all possible (n —1) X r matrices
V of type (24) by Vi, where 1 <! < lmax,
and go to step 1.
else stop.

Remark 4.7

The approximation of the reachable set will get better and better with an
improved density of the grid (smaller §), and it will converge towards the
theoretical reachable set as § — 0 and rmax — 0.
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5 Path planning examples

5.1 Hopping robot in flight with drift

A hopping robot (Murray et al., 1994) consists of a body with an actuated
leg that can rotate and extend. The configuration g = [¢,1, 6] consists of
the leg angle 1, the leg extension ! € [0,lmax], and the body angle §. The
nonholonomic constraint is given by

16+ m(l+ d)2(0 +9) = u | (42)

where the constants represent the following: I is the robots moment of
inertia, m is the mass of the robot, d is the length of the leg, and p is
the constant angular momentum, which here will be assumed positive. If
g = 0, then the system is drift free, and can be converted into chained form
(Murray and Sastry, 1993). The associated control system has two inputs
and three states. Let 99 = v; and | = v, so that

Y=

I =v, (43)
b= @ __m{+ d)? v
“T+m(+d)? IT+m{+d)2 "

State and input transformations

The following diffeomorphic coordinate transformation is applied:

Iy
z=8(q)= | rrmfrray ~ ! (44)
16
and the nonsingular input transformation gives
u =B(q)v
I 0
A
and
Ty =u)
To = Uy (46)

z3 = p(zg + 1) + zouy
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which has ¢ = [0,—1,0] as the only equilibrium point, whenever p # 0,
which is the physically unreachable state g = [0,00,0]7. This means that
the hopping robot with drift cannot be stabilized to a point, which was to
be expected.

Path planning for hopping robot

The conditions (4.1) for bang-bang with bounds on the number of switchings
property, holds for the hopping robot, since 2L,

oz;x;

The approach here is to find the length of three time intervals so that the
desired state z* is reached from the initial state 20. Let u = 1 for simplicity.

A suitable selection of V for motion on a manifold Sy is:

V= [ sgn(z} — z1) (47)

0
0 sgn(z3 — z2) ]

with the nice property V~! = V. This V gives the following A obtained
from (32)

A= [ IIL';—.’BlI ] (48)

|z3 — ol

Integration of (46) as in (31) defines a manifold Sy (30) with
ov(z) =23 — 73 + |z} — 21| + |23 — T2| + (sgn(z] — 71) + 1)z2|z] — 2]
* 1 * *
+a3|z3 — 22| + Ssgn(z} — 2)(23 — 22)? (49)

Motion from the initial state towards Sy can be obtained with the following
reaching control

V= [ "i ] (50)
With this control the result is

ol =2 - A

i =2+ A (51)

:v;li =:z:g +A
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Let £ = z! from (51) in (49), and let oy vary with the scalar nonnegative
parameter A. The mapping oy : R® — R can then be seen as a scalar
mapping oy : RT — R

ov(B) =28 + & -z} + (1 + 2§ + B)(|ai - of + Bl + |} — 2§ — B)
A * — 1 & o
+ (29 + B)(|z} —m‘f+A|+§|x2—$g._A;) (52)
Each A > 0 defines a manifold Sy with oy = 0. Some of these are shown
in Figure 2.

The equation oy = 0 is solved numerically with respect to A with nonnega-
tive entries. Thereafter x; is found from (51), and A and V are computed
by inserting £ = ! into (48) and (47).

A plot of the state = is shown in Figure 3.

T
e

o]

62 [rad] oo 6, [rad]

Figure 2: The manifold Sy for the hopping robot example with A €
{0,0.1,0.2,0.3}, where the top manifold corresponds to A = 0. Any state
between these surfaces can be steered to another state on or between these
surfaces.

5.2 The planar diver

A planar diver (Crawford and Sastry, 1995) has the structure of a three
dimensional Lagrangian system with a cyclic coordinate (11), where the
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[ 3] 02 03 04 o5 o8 [k 4 oe
Tiens

Figure 3: The path from initial state =° = [0,—%, 3|7 to desired state

z* =[0,-3%,3]7. Time T was computed to be T = 3A = 0.717.

functions a;3, ¢ = 1,2,3, are highly nonlinear (trigonometric). The drift
is caused by the constant angular momentum g # 0. A typical dive is a
1% somersault pike. The steering problem is to lead the diver through the
somersaults driven by the actuating arms and legs, and to enter the water
in a fully extended vertical configuration. The time T available to complete
the dive is predetermined by gravity g, the initial vertical velocity vp, and
the distance h the diver’s center of mass must fall to reach the water:

vo + 1/v} + 2gh
T=—0 VO (53)

9

The configuration of the planar diver can be described by means of 8 =
[61,62,83)T, where 6; is the angle between the legs and the trunk of the diver,
0, is the angle between the arms and the trunk, and 63 is the orientation
of the trunk with respect to the vertical axis. Details can be found in
(Crawford and Sastry, 1995). The motion planning problem for a dive is
then to find a trajectory from a given initial state 6° to the desired final
state @* = [0, 7, (2k+1)7]T, where k € Z defines the number of somersaults
in the dive.

In this system the drift term g > 0 is good if the diver makes forward
somersaults (k > 0). If however the diver with the same initial spin p > 0
would want to make backward somersaults (k < 0), then the drift must
be counteracted for using heavy backward arm rotations in the opposite
direction. In a real dive this is not possible due to physical constraints on
the inputs. This is a good example of how the STLC property for driftless
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systems holds also with drift when the controls are sufficiently large by
Lemma 3.1. However, if the constrained inputs are not sufficiently large for
the diver, the system is not STLC at 2% Backward dives characterized by
those &* where 83 < 69, cannot be carried out. This means that the initial
point is not an interior point of the reachable set. The scheme discussed
in this report will work, however, since only forward dives are considered
below. Time available is of course a concern that must be considered.

A symmetric diver is considered in order to simplify the presentation. In
the general case the same procedure can be carried out with a little more
tedious computation. More advanced dives can be approached in a similar
manner.

The dynamic equations for a symmetric diver modified from (Crawford and
Sastry, 1995) are

b1

. = vl
022 - 0,,6 0,,0: (54)
where
a13(61,02) = [a+ Bcos(f1) + ¢ cos(fy — 61)]
a23(61,02) = [o+ Bcos(82) + ¢ cos(fy — 61)]
a33(61,02) = a3+ 20[cos(6r) + cos(f2)] + 2¢ cos(f2 — 6,) (55)
Let D be a scaling matrix given by
V1,max 0
D= y 56
[ 0 V2,max ] ( )

where v) max > 0 is the maximum angular velocity of the legs, and vz max > 0
is the maximum angular velocity of the arms. For simplicity let v; max =
'U2’max = A.

The state and input transformations

1] @ -
a:a=Dl[0; , z3=03 wu=D7ly (57)
give
I = u
Ty = up (58)
. _ a13(Az1,Az2 _ a23(Az;,ATs
I3 = a33(Az; ,Azzi a33(Az1,Azs Aul a33z(Azy,Az2 AU2
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and the system is of the form (18), with scalars

S —
a33(Azy, Azs)
a13(Azy, Azy)
= g2\, £%2)
9 a33(Azy, Azs)
= a23(Az1, Azs)
a33(Azy, Azs)

Using algorithm 4.1, a V' can be found in the same way as for the hopping
robot in (47), which gives the expression (48) for A. With this V, 6, is
controlled first, and 6, second. Integration of (54) as in (31) gives

ov(z) = A(zs-35-}ai-o) - (e} - a))

+ (o) + mibter )

+ (Fotaas) (AT} — $(A2)) = fu(azy) (A1 — $(Az2)))

* b(Ax3
+ (a(4s)) + 7sggaiser)

- (Fotasy) (473 — $(A])) — fuazy) (A2 — $(Az})))

where

fe(z) = arctan (c tan(%)) + wk(z) withc e R (59)

and k : R — Z is a piecewise constant mapping, such that f.(-) is continuous
over R and f.(0) = 0. The functions a(s), b(s), c(s), ¢(s) are given by

¢(s) = arctan 2(¢ sin(s), B + ¢ cos(s))

P(s) = V(% + 8% + 2([ cos(s)

_ az+2f cos(s)—-2a
a(s) = V(a3 +28 cos(s))2—4y(s)?

_ 2u
b(s) = V/(a3+2B cos(s))2—4(s)?

__ +/(a3+2B cos(s))? —4v(s)?
c(s) = a3+20 cos(s)+2(s)
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with parameters A = 10,p = 70,3 = 11.234,6 = 2.299,a = 3.732, and
¢ = —0.207.

A plot of the manifold Sy is shown in Figure 4.

-2 -2

B2 [rad] 6, [rad]

Figure 4: The manifold Sy for the diver ezample.

The effect of different reaching controls will now be studied with r = 1.

First the effect of the drift on the system can be seen by letting V' be given
by

V= [ 8 ] (60)
From (54) and with zero controls it is obtained
& =
Ty = o) (61)
a:é = :J:g =+ ¢ A

Aagg(A.’L‘g, A:Eg)

With this initial zero control interval, all initial states z° in a set QY C R?
given by
Iu" J—

0 = <A<A
2y = LR e Ml Rt e g ) B SR AW(}ez)

for some given Apay, can be steered so that z(T) = z*.
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The set Q? with 0 < A < 1 is shown in Figure 5. All states between the
top surface Sy and the bottom surface (A = 1) can reach the desired state
with the control matrices (47) and (60).

=1
02 [rad] e 6, [rad]
Figure 5: The set Q? for the diver ezample with 0 < A < 1. The top surface
is the original manifold Sy, which corresponds to A = 0.

The effect of applying another reaching control can be seen by selecting the

following V

V= [ 0] (63)
-1
which results in
2 = f
Ty = T9—A (64)

AA b(Az?
SB‘]} = mg+T+(a(Am?)— (;1))

- (fc(Az?) (Amg - AA - ¢(A$?)) = fe(as?) (Afg - f.‘b(AI?)))

With this initial reaching control applied in a time interval [0, A], all initial
states z in a set Q} C R? given by

Q! = {z € Mloy(z') =0,0 <A < Apax} (65)
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with ! = [z!, 2}, z]T as in (64), and for some Ay, can be steered so that
2(T) = =*.

The set O} with 0 < A < 1 is shown in Figure 6. All states between the
top surface Sy and the bottom surface (A = 1) can reach the desired state
with the control given above.

02 [rad] w ¢, [rad]

Figure 6: The set Q} for the diver ezample with 0 s_Z < 1. The top surface
is the original manifold Sy, which corresponds to A = 0.

A realistic initial condition to use for the diver model for a 1% somersault

dive is @ = [0, 7,0]7 and a desired final state 8* = [0,7,3])7. In order to
generate a motion similar to the one of a real diver, this control sequence is

applied:
= 010 -1 0
V_[—IGO}’ V_1: 01] {66}

The predetermined time 7 available to complete the dive puts an additional
constraint on the choice of control intervals:

3 2
S Ai+) A=T (67)
1=1 i=1

This time constraint defines a subset of the manifold Sy-. The number of free
variables decreases by one due to this constraint, and hence it is necessary
to have r > 2. Free variables are A; > 0 with ¢ € {1,...,7}.
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Figure 7: Controls which steer the diver from the initial to the desired con-

figuration. u; is shown with e solid line and uy with o dash dotied line.

Using the equations presented above, an appropriate choice of control inter-
vals was found to steer the diver from the initial to the final configuration
in 1.7 seconds. The controls and the corresponding trajectories are shown

in Figures 7, 8, 9, and 10.
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States
*

3 § -
2 \ 4
12 1.4 1.6 1

Figure 8: Corresponding trajectories for 6, (starts and ends at zero), 6
(starts and ends at 7), and 03 (increases monotonously from 0 to 3).

0 0 1

5 -2

8> [rad] 6, [rad]

Figure 9: Ewvolution of the diver state. Initially the state follows the line
shown with reaching control until it hits the manifold Sy. After that the
trajectory stays on Sy until the desired state is reached.
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Figure 10: Frames from an animation of the simulation results with a sym-
metric model of a planar diver and bang-bang controls.
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6 Tracking for a class of nonholonomic systems

The control problem for the class of systems (18) is divided into parts. The
first and perhaps most difficult part has been solved above with the path
planning algorithm 4.1. This algorithm provides nominal trajectories and
inputs. The second part is a feedback tracking control law, which closes
the loop and forces the actual state to follow the nominal trajectory under
the influence of small disturbances. It is well-known that open-loop planners
sometimes are very sensitive to initial errors (Murray and Sastry, 1993), and
this motivates the design of feedback control laws.

In this section a new control law for stabilization of a class of nonholonomic
systems to trajectories is derived. Nonholonomic systems in general cannot
be stabilized to a point using static state feedback, since they violate Brock-
ett’s necessary condition for stabilizability (Brockett, 1983). The control
law presented here stabilizes systems (18) to a set of time-varying trajecto-
ries. It is assumed that a motion planner has generated a nominal trajectory
which satisfies the nonholonomic constraints. A feedback control law is de-
rived for tracking of this trajectory. A previous solution to this problem was
given in (Walsh et al., 1994). That solution was based on a linearization
of the system around a nominal trajectory, and hence gave local results. It
provided exponential convergence whenever a time varying matrix was pos-
itive and bounded. The area of attraction for the resulting controller was
not discussed. In the present section nonlinear techniques are applied, and
exponential stability is achieved under two assumptions.

6.1 Modeling

Consider nonholonomic systems of the form (18). Assume that the path
planning algorithm 4.1 supplied a time varying nominal trajectory y(t) and
a nominal input v(t), which satisfy

Yo = v (68)
n-1
gn = f(va)+ D gi(ya)vs (69)
i=1
The state deviation vector e and the feedback control 7 are defined by
e = z-y (70)
= T+4+v (71)
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The control u hence consists of a nominal part v(t) and a feedback part
7(e,t) which will be derived below. Time differentiation of e gives

éa = T
n-1

n-1
én = f(za)+ Y gi(ma)ui — Fwa) — D 9i(¥a)vi (72)

i=l i=1

Assume that the vector fields f,bfg1,...,bfgn—1 are C2. The mean value
theorem for multivariable scalar functions (Kreyszig, 1988) gives

f(xa) — f(ya) = Vaf(s0)ea (73)
9i(%a) — 9i(¥a) = Vagi(si)ea (74)

for all ¢ € {1,...,n — 1}, where

o)

V4=w

(75)

and sg, 81,...,8,—1 are vectors from the origin to some points on the line
between x, and y,. Then (72) can be written

éa = T
én = Ple+g'T (76)
where
n-1
P =Vaf(s0) + Y Vagi(s;)vi (77)
i=1 .
g=lg1,-.,9n1]" (78)

Proposition 6.1
The system obtained by linearization of (76) is controllable whenever p # 0.
A necessary condition for smooth stabilizability of system (76) is that p # 0.

Proof:
The controllability matrix (Kailath, 1980) for system (76) is given by
I 0
= 79
Qc [ oT pT ] (79)

and the controllability rank condition is given by det(Q.QT) = ||p||? # 0.
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If p = 0, then the vector field on the right side of (76) is not onto any open
neighborhoods around the origin, since points of the type (0,...,0,I) (any
small {) are not in any neighborhoods around the origin (Brockett, 1983). O

Assumption 6.1
It is assumed that p is bounded by 0 < M; < ||p|| £ M3 < oo.

Assumption 6.2

It is assumed that the time derivative of the vector p is upper bounded by
|l2|| £ L for some L > 0. For bang-bang controls, this might be a problem,
but the problem is solved by making smooth approximations of the derived
trajectories by splines (Bartels et al., 1987).

A way to compute an alternative p for control design is given in Appendix
A.

6.2 Feedback control law

Theorem 6.1
Exponential tracking around the nonholonomic trajectory y is achieved un-
der Assumptions 6.1 and 6.2 by the control law

T=— (I + apgT)-l (/\ (ea + apes) + ozppTea) (80)

where A > 0 is sufficiently large and 0 < a < 1/ max;>o(|Ip| - llgll)-

Proof:
The state transformation (e,,e,) — (2, e,), where

z = e, + ape, (81)

and the control law (80) gives

z = —-)z+ape, (82)
. —a||p|®en + (p — Ag)” 2
én 1+ apTg (83)

Consider the Lyapunov function candidate
1r, 1,2
V(e,p) = §z z+ §ﬂen (84)
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where 8 > 0. V is decrescent when ||p|| is upper bounded, and radially
unbounded when ||p|| is lower bounded.

Time differentiation along the system trajectories gives

1+apTyg

L e,,][ 22 —aﬁ-ﬂéﬁ%][z]

. o -
Vie,p) = zT(-f\z+ai’en)+ﬂe,.( ellpl®en + (P — Ag) z)

. T S -\ 27’ 2ap 2
—ap” - f l‘:l-apg g liapp’ g
< 0, Vz#£0 (85)

since A > 0, and the determinant

4, 2 . - g |?
ﬂllpTII _ ”ap +8-2=29_
1+apTg | l1+ap'g
Daflpl?  ap.i2 .2 P — Mgl
> —— — —_——
22 (1 TapTg ~ C 1P = P oty

2Aaﬁ 2 aL2 T
>_20F -
21 aoTs (npn o (1+ep’9)
2af (2 B e — gl
1+apTyg al+apTyg
>0

for small B > 0 and large A > 0, since ||p|| is assumed to have a lower bound.
And since V > 0 and V < 0, it follows by Lyapunov arguments that both
V — 0 and e — O exponentially. Note that 3 is not a design parameter,
but only a parameter used in the proof. O
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6.3 Tracking of a surface vessel with kinematic model and
sea current disturbance

Consider the kinematic model of a surface vessel under the influence of a
sea current disturbance with constant velocity.

£ = wjcosé
y = wvsinf +d (86)
6 = v

The state vector is ¢ = [z,7,0]T € M = SE(2) = R? x SO(2), where (z,y)
is the position of the surface vessel in an inertial coordinate system. This
inertial system is chosen so that the constant current with known velocity d
goes along the y-axis. The rotation of the body of the surface vessel relative
to the inertial system is given by §. The forward velocity (surge) v; of
the surface vessel is considered as an input (speed controlled by the main
propeller), and the angular velocity vs of the surface vessel is considered as
a second input (controlled by the rudder). The drift of this system is not
caused by a first integral as discussed earlier in this report. The drift here
is caused by an environmental disturbance. The structure is the same as
for the Lagrangian systems discussed. The example of a kinematic surface
vessel influenced by sea current was selected because of its simple structure.
The simplicity of the the structure makes it simple to find smooth nominal
trajectories which satisfy the nonholonomic constraint. This model is a
simplification where sway velocity and dynamics are ignored.

The state transformation ¢ = $(q) given by

I
Z a

z=| 2o | =®¥(q)= | tanb (87)
r3 %

along with the input transformation u = B(q)v given by

cosfd 0
u=B(gv=| & _1 |v (88)
cosZ @
give
T u)
T=|I2 | = U (89)
I3 1+ zuy
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which is called the chained form with unitary drift, with f = 1, g1 = 2, and
g2 =0.

The following nominal path represented by (y, v) satisfies the nonholonomic
contraints (89):

[ 2a sin(fg)

y=| —bcos(z) (90)

0= §5(a) ] (91)

so that §; = v1,92 = v2,9¥3 = 1 + Y291 as desired.

Remark 6.1

The nominal trajectory (90) and the corresponding nominal input (91) define
a time-periodic figure eight motion. The only equlibrium for this system is
when the surface vessel is heading into the current, but the desired configura-
tion is the one where the current is coming from the side. Point stabilization
to this configuration is not possible. Stabilization around a periodic small
amplitude trajectory around the origin is a solution which approximates
point stabilization, and may be a good solution when the control objective
is to make the surface vessel stay as close to the origin as possible with sea
current acting in the y-direction. The amplitude of the nominal trajectory
is limited by the achievable control inputs. This can be seen by letting the
parameters a and b be small in (90). The result will be large inputs (91).

The deviation vector e (70) and the stabilizing control = (71) are defined
by

[ ) - 2asin(§‘5)
e=| zo+bcos(%) (92)

| z3+ 922 Sin(-a—z

[ w1 = 2cos(L
™= up - Lsin() (93)

The vector p used in the control law is given by

0 0
p= [ 7 ] = [ % cos(4) ] (94)
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with norm ||p| = I%cos(;%) , which equals ‘%I > 0 in average. This p does
not satisfy the lower bound Assumption 6.1. However, a p which has a
lower bounded average, has shown to be sufficient for stabilization in the
simulations run.

15 T T T T T

0S5k ~_.:

States

.......

-0.5F

T2 ; s 8 10 12 14 6 8 2
Time [s)
Figure 11: The control deviation e for a simulation of tracking for the
chained form with drift with nominal trejectory (90) with parameters a =
b =1 after an initial error e(0) = [-1,-1/v/3,1)7. The control parameters

were A =2 and a = 0.2.

Remark 6.2
Trajectories such as y = [0,0,t)7 with nominal input v = [0,0]” cannot be
tracked with the algorithm above, since then p = 0 and Assumption 6.1
does not hold. The result is T = —\e,, e, — 0 exponentially, but e, is not
accounted for.

A How to compute p

In some cases it is difficult to find the correct p. Each s; in (73)-(74) can be
found by searching along a line 8;(t) = ¥, + ;€. in the equations (73)-(74),
where v; € [0,1]. This is however a cumbersome method and not necessary.
Only the projection of p onto e, is interesting, and this can be computed
from the known quantities f(x,), f(¥e), 9(2a), 9(¥.), and e,.
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Figure 12: The trajectories in the z1-z3 plane for the planned (y=thick line)
and the real (x=thin line) trajectories. This figure eight motion corresponds
to the £ — y position of a nonholonomic surface vessel with a simplified
kinematic model under the influence of a constant sea current (d = 1) in the
y-direction.

A p that can be used in the control design, is given by

_ €,
=Ce—+ k 95
P=ce (95)

where c. be a scalar given by

o = £(®a) — f(ya) + (97 (%) — 97 (4))¥

96
‘ leal %6)
and k = [¢1,¢,0,... ,O]T. The scalar ¢, is bounded above by
|C l _ If(ma) — f(ya) + (gT(wa) - gT(ya))vl _ |pTeal < "p“
el = - -
lleall "ea” (97)

so that ce"i?e':", which is well defined for all e, # 0, is the projection of p
onto e,.

If the first two elements of e, are zeros, i.e. e; = e3 = 0, then ¢; and ¢; in
k are selected to be

cg=c = M

1=C2 72
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and otherwise

Me; —Me;
G = ———, C=—F— (99)
\/e%+e§’ Vel + el
The vector k is perpendicular to e, by
kTe, =cie1 +ce3 =0 (100)
and the norm of p is lower bounded by
_ €1 €2
plIP=c2+c2+ck+2¢ (cl— + 62——)
P =ce it eat e crpe ¥ e,
=c2+ct+¢
=c? + M}
>M? . (101)

It can hence be concluded that p satisfies Assumption 6.1.
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