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Abstract

Air Traffic Management (ATM) of the future allows for the possibility of free flight, in

which aircraft choose their own optimal routes, altitudes, and velocities. The safe resolution

of trajectory conflicts between aircraft is necessary to the success of such a distributed control

system. In this paper, we present a method to synthesize provably safe conflict resolution

maneuvers. The method models the aircraft and the maneuver as a hybrid control system, and

calculates the maximal set of safe initial conditions for each aircraft, so that sepairation is assured

in the presence of uncertainties in the actions of the other aircraft. Examples of maneuvers using

both speed and heading changes are worked out in detail.

Index terms: hybrid systems, air traffic management, conflict resolution, verification.

1 Introduction

Air transportation systems are faeed with soaring demands for air travel. The annual air traffic

rate in the U.S. is expected to grow by 3 to 5 percent annually for at least the next 15 years [1].

The current National Airspace System (NAS) architecture and management will not be able to

efficiently handle this increase because of several limiting factors including:
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• Inefficient airspace utilization: Currently, the airspace is very rigidly structured and

aircraft are forced to travel along predetermined jetways. This is clearly not optimal and

disallows aircraft to fly directly to the destination and take advantage of favorable winds.

This problem is particularly evident in transoceanic routes which are experiencing the greatest

demand growth (for example, nearly 15% [1] annually across the Pacific Ocean).

• Increased Air Traffic Control (ATC) workload: Separation among aircraft as well

as vectoring aircraft in order to avoid weather hazards is performed centrally by ATC. In

congested areas, such the regions close to urban airports referred to as TRACONs, controllers

frequently simplify their heavy workload by keeping aircraft in holding patterns outside the

TRACON.

• Obsolete technology: The computer technology used in most ATC centers is nearly 30

years old [2]. Communication is restricted to congested voice communication between the

aircraft and ATC. Navigation is performed by flying over fixed VHP Omni-Directional Range

(VOR) points.

In view of the above problems, the aviation community is working towards an innovative concept

called Free Flight [3]. Free Flight allows pilots to choose their own routes, altitude and speed.

User preference would be restricted only in congested airspace, or to prevent unauthorized entry

of special use airspace (such as military airspace). Free Flight is potentially feasible because of

enabling technologies such as Global Positioning Systems (GPS), datalink communications like

Automatic Dependence Surveillance-Broadcast (ADS-B) [4, 5], Traffic Alert and Collision Avoid

ance Systems (TCAS) [6] and powerful on-board computation. In addition, tools such as NASA's

Center-TRACON Automation System (CTAS) [7] and MlTRE's URET [8] will serve as decision

support tools for ground controllers in an eflPort to reduce ATC.workload and optimize capacity.

The above technological advances will also enable the current ATC system to accommodate fu

ture air traffic growth: sophisticated on-board equipment will allow aircraft to share some of the

workload, such as navigation, weather prediction and aircraft separation, with ground controllers.

In order to improve the current standards of safety in an unstructured. Free Flight environment,

conflict detection and resolution algorithms are vital. Such algorithms would be used either on

the ground by Air Traffic Control or in the air by the Flight Management System (FMS) of each

aircraft.

In the proposed Free Flight airspace, each aircraft is surrounded by two virtual cylinders [4], the

protected zone and the alert zone, shown in Figure 1. A conflict or loss of separation between

two aircraft occurs whenever the protected zones of the aircraft overlap. The raxiius and the

height of the en-route protected zone over U.S. airspace is currently 2.5 nautical miles and 2,000 ft
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Figure 1: Aircraft Zones

(1,000 ft below 29,000 ft, 4,000 ft over oceanic airspace) respectively. The size of the alert zone,

currently under debate, depends on various factors including airspeed, altitude, accuracy of sensing

equipment, traffic situation, aircraft performance and average human and system response times.

When an aircraft enters the alert zone of another aircraft, the aircraft exchange sensor and intent

information in order to predict and resolve the conflict.

Current research endeavors in conflict prediction and resolution include [9, 10, 11, 12, 13]. Conflict

prediction could be spatial, temporal or probabilistic. Spatial and temporal approaches, such as

[11, 13], calculate the four dimensional coordinates of a possible conflict. Probabilistic approaches,

such as [9, 10], assume stochastic uncertainty in the measured information and determine the

probability of collision. The work of [11, 12] formulates conflict resolution as an optimal control

problem whereas [13] treats the problem as a convex optimization problem. The user interface

of CTAS allows controllers to manually alter aircraft trajectories to resolve conflicts in en route

airspace [14]. TCAS [6] provides resolution advisories (flight level changes) to pilots involved in two-

aircraft conflicts, however these advisories are not formally verified. Conflict prediction, resolution,

and verification are the most important modules that are in need of augmentation in the current

implementations of CTAS and TCAS.

In [15] a possible future architecture for Air Traffic Management (ATM) is presented. In our

paradigm, aircraft are allowed to self-optimize in the spirit of Free Flight, communicate state and

intent data to each other using an ADS-B datalink for conflict prediction, and coordinate with

each other to resolve potential conflicts. State and intent data could be uncertain. Coordination

among the aircraft is in the form of maneuvers which are finite sequences of flight modes such as

heading, altitude and speed changes for each aircraft. These types of maneuvers are routinely used

in current Air Traffic Control practice since they are easily understandable by pilots as well as easily



implementable by on-board autopilots which regulate the aircraft to heading and speed setpoints.

The main thrust of our conflict resolution algorithms is to verify that a maneuver successfully

resolves the conflict by computing the set of initial conditions for which the maneuver is safe,

where safety means that separation is maintained. In the presence of bounded uncertainty in the

state or intent data, we take a worst-case approach and verify that the worst-case system trajectory

is safe.

The flight mode switching occurring in each maneuver is modeled by a finite state automaton with

the relative aircraft configuration dynamics residing within each flight mode. A conflict resolution

maneuver is therefore modeled by a finite state automaton interacting with a set of control systems,

resulting in a hybrid control system. The interaction and information exchangeof all of the aircraft

involved in the maneuver results in a multi-agent hybrid control system.

There are several approaches to hybrid system modeling, verification, and controller design (see,

for example, [16, 17, 18, 19]). The computer science approach is to extend models of finite state

automata to timed automata [20], linear hybrid automata [21], and hybrid input/output automata

[22]. Linear hybrid automata model or abstract the continuous dynamics by differential inclusions

of the form Ax < b and verify properties of the resulting abstracted system [23, 24, 25]. Spec

ifications are verified for these models using either model checking, which exhaustively check all

system trajectories, or deductive theorem proving techniques [26], which prove the specification by

induction on all system trajectories. In this framework, controller design has also been developed

[27, 28]. Automated computational tools have been developed for both model checking [29, 30], and

theorem proving [31]. Control theoretic approaches to modeling, analysis, and controller design for

hybrid systems have extended the theory of dynamical systems to include discrete modes of opera

tion. Modeling approaches include those of [32, 33, 34, 35, 36, 37]. Analysis and design techniques

extend existing control techniques, such as stability theory [33], optimal control [33, 36, 37], and

control of discrete event systems [38, 39], to hybrid systems.

Our conflict resolution algorithms are in the spirit of model checking, but we use control theoretic

(deductive) techniques to calculate the reachable region for hybrid systems with general nonlinear

dynamics. Our method calculates the largest controlled invariant subset of the complement of each

aircraft's protected zone, taking into account the uncertainty of the actions of the other aircraft. In

order to compute this safe set of initial states, we first develop a method to compute the controlled

invariant subsets for continuous systems in the presence of disturbances. A natural framework for

this type of problem is zero-sum noncooperative dynamic game theory [40, 41]. In this framework,

uncertain information about neighboring aircraft is treated as a disturbance. For a two-aircraft

example, assuming a saddle solution to the game exists, each aircraft chooses an optimal policy

assuming the worst possible disturbance. This is motivated by the work of [42], in which game



theoretic methods are used to prove safety of a set of maneuvers in Intelligent Vehicle Highway

Systems.

Along with the safe set of initial states, we calculate the corresponding safe set of control inputs as

a function of the state. Within its safe region of operation, the aircraft may design its trajectory

to optimize over other criteria, such as fuel efficiency or minimal deviation from route. At the

boundary of its safe region, the aircraft must apply the particular control which keeps it out of

its unsafe region. Thus, we are naturally led to a switching control based protocol which is least

restrictive. A more detailed description of this multiobjective methodology may be found in [43].

The resultant hybrid system is safe by design, as we illustrate with two versions of an interesting

example of two aircraft conflict resolution in the horizontal plane.

The organization of this paper is as follows: In Section 2 our modeling formalism and design

methodology for hybrid systems is described. Section 3 presents the game theoretic approach to

computing the safe set of initial conditions and control inputs for continuous systems. Section 4

describes safety verification of coordinated maneuvers using the results of Section 3. Section 5

presents a brief summary and some issues for further research.

2 Hybrid Model and Design Methodology

In this section, we present a hybrid system model for conflict resolution maneuvers, and a method

to verify the safety of, and synthesize control schemes for these maneuvers. The discrete states of

the hybrid system model the different flight modes that each aircraft steps through while executing

the maneuver. For example, consider the two-aircraft examples of Figure 2. In the first, the aircraft

avoid each other by transitioning through a sequence of heading changes: "left", "straight", "right",

and then back to the original "cruise" mode; in the second the conflict is avoided by both aircraft

transitioning to a "circle" mode from a "cruise" mode.

Each mode has associated with it the relative aircraft configuration dynamics. The verification

of the safety of each maneuver, with possible variations in the control inputs of each aircraft

and changes in the switching times between modes, is complicated and in general not possible to

compute manually. The hybrid model presented in this section provides an organized, formal way

to model and prove the safety of the maneuver.

The hybrid model described below is inspired by that of [23] for linear hybrid automata, with the

difference that we allow for a nonlinear continuous dynamic model within each discrete state and

a general discrete transition relation.
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Figure 2: Two different conflict resolution maneuvers, with associated modes.

Hybrid System Model

A hybrid system H is defined to be the tuple H = {Q x M, U x Z), S, /, Inv, E, /), in which:

• Q X M is the state space, with Q = {91,92» •• 9m} a finite set of discrete states, and M an

n-manifold; a state of the system is a pair (qiyx) £Q x M;

• U XD C IS the product of the input set and disturbance set; the space of cicceptable

control and disturbance trajectories are denoted by U = {u(-) € PC^\u{t) € t/ Vr € K},

V = {d{-) € PC^\d{T) eD^re R);

• E is a finite set of transition labels;

• I C Q X M IS the set of initial conditions; . .

• Inv : Q 2^ IS the invariant associated with each discrete state, meaning that the state

{q, x) may flow within q only if x € Inv(q);

• EcQxMxHxQxM IS the set of discrete jumps with (9,x, a, q'y x') € E meaning that

if the current state is (g,x), the system may instantaneously take a discrete transition a to

state (9', x');

• fiQxMxUxD-^ TM is a map which associates with each discrete state q £Q b. control

system f{q^ x, u, d). For notational convenience we use /g(x, u, d) to denote f{q^ x, u, d).

Hybrid systems evolve in so-called "dense time" by either continuous flows or discrete transitions.

Trajectories of the hybrid system H starting at a state (9,x) evolve according to /,(•) as long as the



continuous state remains within Inv(q). If the invariance condition is not satisfied then a discrete

transition is forced and the continuous state may be reinitialized. If (q,Xy(7,q\x') G E then the

discrete state may jump from q to q' and the continuous state x is reinitialized to x' and then flows

cLCCording to/g'(-).

Relative Aircraft Configuration Models

We now describe the continuous dynamics within each discrete state q. Because conflicts between

aircraft depend on the relative position and velocity of the agents, the continuous models we use

are relative models, describing the motion of each aircraft in the system with respect to the other

aircraft. For example, to study pairwise conflict between the trajectories of two aircraft, aircraft 1

and aircraft 2, a relative model with its origin centered on aircraft 1 is used. The configuration of

an individual aircraft is described by an element of the Lie group G of rigid motions in or R^,

called 5£^(2) or SE{Z) respectively. In planar situations, in which aircraft are flying at the same

altitude, SE{2) will be used.

Following the example described above, let gi £ G denote the configuration of aircraft 1, and let

g2 ^ G denote the configuration of aircraft 2. The trajectories of both aircraft are kinematically

modeled as left invariant vector fields on G. Therefore

51 = 51^1 (1)

52 = 92^2 (2)

where X\,X2 € Qi the Lie algebra associated with the Lie group G. A coordinate change is

performed to place the identity element of the Lie group G on aircraft 1. Thus, let gr ^ G denote

the relative configuration of aircraft 2 with respect to aircraft 1. Then

52 = 5i5r 5r = gT^92 (3)

Differentiation yields the dynamics of the relative configuration,

gr = grX2 - Xigr (4)

Note that the vector field which describes the evolution of gr is neither left nor right invariant.

Consider the Lie group SE{2) and its associated Lie algebra se(2). A coordinate chart for 5£'(2) is

given by a;, j/, </) representing the planar position and orientation of a rigid body. In this coordinate,

chart, the relative configuration gr is given in homogeneous coordinates by

5r =

cos (f^r sin (f^r ^r

sin <t>r cos (f>r J/r

0 0 1

(5)



Aircraft 2

Protected Zone

• X.

Aircraft 1

7= {x:l(x)^0}

Figure 3: The relative configuration, showing the protected zone and outward pointing normal.

where Xr^Vr represent the relative position of aircraft 2 with respect to aircraft 1 and <i>r is the

relative orientation. In local coordinates, the coordinate transformation (3) is expressed as

Xr X2 - Xi
—

y2-yi _

<t>r — <i>2- 4>l

cos(—0i) —sin(—^i)

sin(-^i) cos(—^i)

X2 - X\

yi - Vi
(6)

(7)

with Xi,yi,<l>i parameterizing the absolute position and orientation of aircraft i. The Lie algebra

elements Xi, A'2 € se{2) are represented as matrices in of the form

0 -Ufi Vl 0 —UJ2 V2

Xi = (jji 0 0 X2 = tjJ2 0 0 (8)

0 0 0 0 0 0

where Ui,a;, represent the linear and angular velocities. Inserting equations (5) and (8) in equation

(4) results in the SE{2) relative configuration dynamics in local coordinates

Xr = -Ui +t;2C0S<^r + WlJ/r

i/r = V2 sin <j>r —U\Xr

<^r = '^2-

(9)

Similar results for SE{3) may be found in [44]. Thus for each discrete state q, the dynamics

X= fq(x,u,d) is described by (9), with x = {xr,yr,<l>r)^- The linear (or angular) velocity of
aircraft 1 is the control input u, and the uncertain linear (or angular) velocity of aircraft 2 is

considered to be the disturbance d.



Design and Verification Methodology

In the remainder of this paper we derive a method to generate the unsafe region of the state space

Q XM, which is the subset of initial states 7 for which, regardless of the control input, there exists.

a trajectory of H from this subset to an illegal region of the state space.

Given a subset K C Q x M, we define the predecessor of K under continuous flows as

Pret{K) = {(9,x) e Q XM \3(g',x') € K such that q' = q and

3d(-) € € U, and x(r) € Inv(q)^^T € [t,0], satisfying

a;(i) = x, a;(0) = x\ and i(r) = /,(a;(r),u(r),d(r))} (10)

Similarly, the predecessor of K under discrete transitions (t 6 S is defined to be

Prea(K) = {(g,x) ^Qx M \ 3(g', a:') GK and (q,x,a,q\x') € E} (11)

The predecessor under continuous flows or discrete transitions is defined as

Pre(A-) =(UFre^(A-)) UPre.^(K) (12)
\(t€E /

The unsafe region of the state space will be computed by recursively applying this Pre{K) operator:

Pre^{K) = Pre{Pre(K))

(13)
Pre'^(K) = Pre{Pr€^ ^( '̂̂ ))

A fixed point of this iteration, if it exists, is denoted Pre*{K), ie. Pre*{K) = Pre{Pre*{K)).

For two aircraft conflicts, we define the illegal region to be the relative protected zone, or the 5-mile

radius cylinder around aircraft 1, denoted T with boundary dT, illustrated in Figure 3. In Section

3, a methodology is developed to compute Pref(r), using level sets of an appropriate Hamilton-

Jacobi-lsaacs partial differential equation. This computation is subsequently used in Section 4 to

verify the conflict resolution maneuver.

3 The Hamilton-Jacobi-Isaacs Approach for Continuous Systems

Consider the dynamics of the aircraft in one discrete state q £.Q (for notational simplicity we drop

the subscript q in this section):

x = f{x^u^d) a:(t) = a: (14)



where rc € K" describes the relative configuration of aircraft 2 with respect to aircraft 1, u € C R"

is the control input which models theactions ofaircraft 1, and d GD CR'' is the disturbance input
which models the actions of aircraft 2. We assume that the system starts at state x at initial time

t. Both U and D are known sets, but whereas the control input u may be chosen by the designer,

the disturbance d is unknown, and models the uncertainty of the actions of aircraft 2.

The goal is to maintain safe operation of the system (14), meaning that the system trajectories do
not enter T, the "Target set". We assume that there exists a differentiable function /(a:) so that

T = {x € R" Il{x) < 0} and = {x € R" | l{x) = 0}.

3.1 The Value Function and the Hamilton-Jacobi-Isaacs Equation

This section describes the computation of the unsafe subset of the state space, denoted Prei(T) C

M, which is the subset of initial states of (14) from which there exists a disturbance action d(-)

such that the resulting trajectory of (14) enters T in at most t seconds. Due to the uncertainty

in the actions of aircraft 2, the safest possible strategy of aircraft 1 is to fly a trajectory which

guarantees that the minimum allowable separation with aircraft 2 is maintained, regardless of the

actions of aircraft 2. We formulate this problem as a two-person, zero-sum dynamical game, and

calculate the "losing" states for aircraft 1.

Consider the system (14) over the time interval [t, 0], where t <0. The value function of the game

is defined by:

J(x,u(-),d(-),0 :R"xWxX>xR_->R (15)

such that J(x, u(-),d(*),<) = /(x(0)). This value function may be interpreted as the cost of a

trajectory x(-) which starts at x at time t < 0, evolves according to (14) with input (u(-),d(-)), and

ends at the final state x(0). Note that the value function depends only on the final state: there is

no running cost, or Lagrangian. This encodes the fact that we are only interested in whether or

not the system trajectory ends in T and are not concerned with intermediate states. The game is

won by aircraft 1 if the terminal state x(0) is either outside T or on dT (i.e. J(x,0) > 0), and is

won by aircraft 2 otherwise.

Given J(x, u(-),d{'),t),yje first characterize the unsafe portion ofdT, defined as thosestates x e dT
for which there exists some disturbance d^ D such that for all inputs u ^ U the vector field points

into T\ the safe portion of dT consists of the states x E dT for which there is some input u £ U

such that for all disturbances d £ D, the vector field points outward from T. Define the outward

pointing normal to T as u = Dl{x), then

Safe portion of dT {x £ dT : i/^/(x,u, d) > 0}
_ (16)

Unsafe portion of dT {x £ dT : Vu3d f{x,u,d) < 0}

10



Thus, the optimal control u* and the worst disturbance d* are given by:

u" = argmaxmin J(x,u('),d(-),t) (17)
u€W

d* = argmin max J(a:, u(-),d(-),f) (18)
dev ueu ^ ^^

The game is said to have a saxidle solution {u*,d*) if the resulting optimal cost does not depend

on the order in which the maximization and minimization is performed:

J*(x,t) = maxmin J(a:,u(-),d(-),t) = min maxJ(a:, u(-), d(-),i) (19)
u^U d^V d^V u&A

The concept of a saxddle solution is key to our computation of the safe regions of operation of the

aircraft, since a solution of (14) with u = u* and d —d* represents an optimal trajectory for each

player under the assumption that the other player plays its optimal strategy.

Aircraft 1 maintains safety at time t by operating outside of Pret(T):

Pret(T) = {xe/nu(g)|3d(-)€P,J(a:,u(.),d(-),T)<0,Vu(-)€W,Vr€[i,0]} (20)

= {leMiadlOeC.Jii.it'i-),<<(•),r)<0,Vre[t,0]}f|/n«(9) (21)

Let dPret{T) denote the boundary of Pret{T). To calculate the unsafe set of states for all t €

(-00,0], we construct the Hamilton-Jacobi-Isaacs partial differential equation for this system and

attempt to calculate its steady state solution. Define the Hamiltonian if(x,p, u,d) = f{x,u^d)

where p € is the costate. The optimal Hamiltonian is given by:

H''{x,p) = maxmin i/(a:,p, u, d) = H{x,p,u*,d*) (22)
u^U d£D

and satisfies Hamilton's equations (provided H*(x^p) is smooth in x and p):

=fir'.
with the boundary conditions p(0) = D/(a:(0)) and a:(<) = x. If J*{x^t) is a smooth function of x

and t, then J*{x^t) satisfies the Hamilton-Jacobi-Isaacs equation:

(24)

with boundary condition J*(a;, 0) = I{x). It is difficult to guarantee that the PDE (24) has smooth

solutions for all i < 0, due to the occurrence of "shocks", ie. discontinuities in J as a function of

X. If there are no shocks in the solution of (24), we characterize the set

Pre_oo(T) = {a: € Inv{q) \ J*(x,t) < 0,Vt € (-oo,0]} (25)

by solving the modified Hamilton-Jacobi-Isaacs equation:

dJ (a:,i) _ • zj*(~
= minjO,H (a:, ———)) (26)

11



with boundary condition J'(a;,0) = l{x). The "min" is added to the right hand side of equation

(26) to ensure that states which are once unsafe cannot become safe. In practical applications,

since one is concerned only with aircraft in the alert zone, the calculation of equation (25) may be

approximated by computing Pret(r), for sufficiently large t, such as i = 20 minutes.

The set Fre_oo(T) defines the least restrictive control scheme for safety. If aircraft 2 is outside

Pre^oaiT), any control input may be safely applied by aircraft 1, whereas on the boundary, the only

input which may be safely applied to ensure safety is u*. The safe set of control inputs associated

with each state at time t is

Us(x,t) = {u€W| J(a:,w(-),dT).0>0} (27)

Additional system requirements, such as optimal fuel trajectories and passenger comfort, can now

be incorporated by optimizing secondary and tertiary criteria within the constraints of set (27),

following the multiobjective design methodology of [43].

We now apply this general framework to the planar SE{2) relative model (9) in local coordinates

{xr,yr^(f>r)y with the control actions either the angular or linear velocities.

3.2 Angular Velocities as Control Actions

Consider the case in which the linear velocities of both aircraft are fixed, ui, U2 € E, and the control

inputs of the aircraft are the angular velocities, u = uJi and d = U2:

Xr = —Ui + U2 COS <f)r + Uyr

= V2 sin (f>r —UXr (28)

(f)j. = d —u

with state variables Xr, yr GE, </>r € [-tt, tt), and control and disturbance inputs u = [uii .oJi] C

E, d 6 P = [^,^^2] C E. Without loss of generality (we scale the coefficients of u and d if this is

not met), assume that a;, ——1 and cJ, = 1, for i = 1,2.

The target set T is the protected zone in the relative frame:

T = {{xr, yr) € E^ <(>r € [-TT, 7r) | ajJ + < 5^} (29)

which is a 5-mile-radius cylindrical block in the {xr,yry(f>r) space. Thus the function l{x) may be

defined as

l{x) = x^y^ - 5^ (30)

The optimal Hamiltonian is

H*{x,p) = maxmin[-piui +pit;2Cos<^r +P2V2Sin<l>r + (piPr - - P3)u psd] (31)
uEU d&D

12



Defining the switching functions si{t) and ^

Si{t) =Pl(t)yr(t) - P2{t)Xrit) - P3{t) ^^2)
52(0 =P3(0

the saddle solution u*,d* exists when si ^ 0 and S2 ^ 0 and are calculated as

"* (33)
d* = -5571(52)

The equations for p are obtained through (23) and are

Pi = n*p2

P2 = -u*pi (34)

P3 = P1V2 sin (l>r - P2 V2 cos <f>r

with jt7(0) = (a^riT/rjO)^ = u, the outward pointing normal to dT at any point (xr^yr^<i>r) on dT.

Thesafe and unsafe portions ofdT are calculated using equations (16) with u = (a;r,2/r»0)^. Thus,
those {Xr,yr-,<f>r) on dT for which

- + U2(XrCOS<^r +yrSin<^r) < 0 (35)

constitute the unsafe portion, and those {xrjyr^4>r) on dT for which

- -I- V2(Xr COS <pr + sin (f>r) = 0 (36)

are the final state conditions for the boundary of the unsafe set Pret{T). To solve for p{t) and

x-(i) along this boundary for f < 0, we must first determine w*(0) and d*(0). Equations (33) are

not defined at t = 0, since 5i = S2 = 0 on dT, giving rise to "abnormal extremals" (meaning that

the optimal Hamiltonian loses dependence on u and d at these points. Analogously to [41] (p.

442-443), we use an indirect method to calculate u*(0) and d*(0): at any point (xr,yri<^r) on dT,

the derivatives of the switching functions Si and 52 are

Si = yrVi (37)

$2 = XrV2 sin <f)r —yrV2 COS (f>r (38)

For points (a;r,2/r»<^r) € dT such that <pr € (0,7r) it is straightforward to show that 5i > 0 and

52 > 0, meaning that for values of t slightly less than 0, 5i < 0 and 52 < 0. Thus for this range of

points along dT, u*(0) = -1 and d*(0) = 1. These values for u* and d* remain valid for << 0 as

long as si{t) < 0 and 52(0 < 0. When si{t) = 0 and S2(0 = 0, the saddle solution switches and the

computation of the boundary continues with the new values of u* and d*, thus introducing "kinks"

into the boundary. These points correspond to loss of smoothness in the Hamilton-Jacobi-Isaacs

13



-5 0 5 10 IS 20 25 30

Figure 4: The Target set T = {{xr,yr),<i>r € (0,7r) | a:? + y? < 5^} (cylinder) and the boundary of
the set Pr€i{T) (enclosed by the boundary) for i < 0 until the first switch in either si(£) or S2{t).

The second picture is a top view of the first.

equation discussed above. Figure 4 displays the resulting boundary of the unsafe set Pret{T), for

£ < 0 until the first time that either Si(£) or 52(0 switches.

The automaton illustrating the least restrictive control scheme for safety is shown in Figure 5. The

computation of the boundary of Pre_oo(?') is in general difficult. For certain ranges of U and

the surfaces shown in Figure 4 intersect, and at the intersection, it is not clear that u* is the unique

safe input.

3.3 Linear Velocities as Control Actions

Now consider the case in which the angular velocities of the two aircraft are zero, and the control

inputs are the linear velocities of the aircraft: u = ui, d = U2, and model (9) reduces to:

Xr = —U-\-dcOS(f>r

yr = dsin<^r (39)

k = 0

The input and disturbance lie in closed subsets of the positive real line u G W = C

deV = C 1K+.

The Target set T and function l{x) are defined as in the previous example. In this example, it is

straightforward to calculate the saddle solution (u",d") directly, by integrating equations (39) for



u unrestricted

Boundary of Pre^(T)

s,{t)<0
S2(t)< 0

(d*=W2) i S2{t)<0 1

^ -^1 (t) <0, S2(t) >

^Inside Fret(T>

No guaranteed
, safe u j

Figure 5: Switching law governing the two aircraft system with angular velocity control inputs. The

law is least restrictive in that the control u is not restricted when the state is outside Pret{T). The

diagonal transitions in the automaton for the boundary of Prei{T) are not labeled for legibility. In

practice, t should be chosen large enough to take into account aircraft in the alert zone.
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piecewise constant u and d, and substituting the solutions into the cost function (15). To do this
we first define the switching functions si and S2 as

S2 (0 = XrCOS <f>r + t/r sin 4>r

Proposition 1 [Saddle Solution for Linear Velocity Controls] The global saddle solution {u^^d")

to the game described by system (39) for the cost J(x,u(-),d(-),t) given by equation (15) is

u =
Hi ifsgn(si)>0
ui if sgn(si) < 0

^ I & ifsgn(s2)>0 ^^2)
\ ^2 if sgn(s2) <0

Proof: In Appendix. •

As can be seen from equation (41), u* depends on the position of aircraft 2 relative to aircraft 1.

If aircraft 2 is ahead of aircraft 1 in the relative axis frame, then u* is at its lower limit, if aircraft

2 is behind aircraft 1 in the relative axis frame then u* is at its upper limit. If aircraft 2 is heading

towards aircraft 1, then d* is at its upper limit, if aircraft 2 is heading away from aircraft 1, d* is

at its lower limit. The bang-bang nature of the saddle solution allows us to abstract the system

behavior by the hybrid automaton shown in Figure 6, which describes the least restrictive control

scheme for safety. The unsafe sets of states are illustrated in Figure 7 for various values of <^r, and

speed ranges as illustrated.

4. Verification of Conflict Resolution Maneuvers

In this section we apply the Pret{T) calculation of Section 3 to calculate the unsafe set of initial

conditions for a conflict resolution maneuver. We illustrate the methodology on a maneuver whose

form is chosen to be a finite sequence of heading changes resulting in a trapezoidal deviation from

the desired path. Consider the conflict scenario and resolution maneuver shown in Figure 2 (a).

The protocol may be linguistically expressed as follows:

1. Cruise until aircraft are ori miles apart;

2. Makea heading change of A<j) and fly until a lateral displacementof at least d miles is achieved

for both aircraft;

3. Make a heading change to original heading and fly until the aircraft are 0^2 miles apart;

16



u unrestricted

Boundary of Pret (T)

s,(t)<0

/ u* = V1

S2(t)>0 i (d*= Vj)

S2(t)<0

Inside Pret CD

No guaranteed
safe u j

)s, (t)< 0

Figure 6: Switching law governing the two aircraft system with linear velocity control inputs.
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phLr = pi/2
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Figure 7: Pret(T) shown in the (a;r,yr)-plane for [ui,i;i] = [2,4], [u2>^2] = [1,5] and
<f>r = 7r/2, 0, -7r/4, -7r/2.
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4. Make a heaxding change of -A^ and fly until a lateral displacement of d miles is achieved for

both aircraft;

5. Make a heading change to original heading and cruise.

The maneuver is modeled as the hybrid automaton H shown in Figure 8. The state space of H is

Q X X5^ where Q = {CRUISE, LEFT, STRAIGHT, RIGHT] and models the different flight

modes in the maneuver, and (arr, yr, 0r) 6 X5^ are the continuous variables which evolve within

each discrete location according to the relative configuration dynamics (9). The initial condition

of the automaton is

/ = CRUISE X{(i^,yr) € I5^ < I? + y? < rj} (43)

where Va is the radius of the alert zone. Thus the aircraft are assumed to be initially cruising and

their protected zones do not intersect. The safety specification for H is that the state does not

enter T, defined as

T = {CRUISE, LEFT, STRAIGHT, RIGHT] x [x^ + y^< 5^} (44)

Due to uncertainties in the velocity of the other aircraft, the worst case scenario is assumed for V2

and therefore the dynamics evolve according to the saddle solution (42). This introduces additional

switching surfaces within each discrete state.

The automaton of Figure 8 starts in the CRUISE mode and flows in that state until the inter-

aircraft distance is less than ai miles, at which point both aircraft make a heading change of

A0. Discrete heading changes have the effect of resetting the state by a rotation matrix since the

coordinate frame depends on the orientation of the aircraft (6,7). In mode LEFT, both aircraft

make a nominal lateral displacement of at least d. This is achieved using a timer variable t as

shown. Both aircraft then return to their original heading and cruise until their relative distance is

greater than a2 miles. Once this is achieved, the reverse maneuver is performed in order return to

the original cruise path and heading. The heading changes of both aircraft are assumed to occur

simultaneously.

For this example, the velocities of the aircraft are chosen to be the same as in the second example

of Section 3: € [2,4], V2 = [1,5] and <l>r = 7r/2. The radius of the relative protected zone is 5

miles while the alert zone has a raxdius of 25 miles^. Instead of fixing values for the parameters d,'

ai, a2» and A<^, we initially leave the first three unrestricted, and let A(f> € {—45®,45®}. Their

values will be determined in order to minimize the unsafe set of initial states of the maneuver.

'The velocities and sizes of the zones are scaled in order to produce visucdizable figures
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CRUISE

Dynamics

Xp=-Vi+ V2COS(<J>2- <l>i)
yr= V2 sin(02- 0i)
t = 0

Invanant

x?+ yr»a,

= R(-A0)

(j)|=: (j) 1+ A(]>
<j)2= 02+ ^0
t'=0

R GHT

Dynamics

Xr=-vi+ V2cos (92

yr= v| sin (02- 0i)
i = -1

Invanant

t>0

x2+y2<a,

= R(-A0)

(]>l= (() 1+ A0
({>2=02+^0
t'=0

t> max{

,= <j)|-A0
02=02-A0

x5+ y?> 0.2

Dynamics
Xr=-Vi+ V2COs(<l>2- ^t'l)
yr= V2 sinS>2- <^1)
^ ' Invariant

r d d li
t< max! :—TT' :—rrj/

= R(A<|>)

j/|SinA0 0j=<{) J-A0
02=02-A0
t'=t

STRA GHT

Dynamics
Xr=-V|+ V2cos(02- 0i)
yr= V2 sin0*2- 0i)
t = 0

Invanant

*7+ ^2

Figure 8: Modeling conflict resolution maneuver as a hybrid automaton
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Figure 9: Computation of Pre_co(T) for each discrete state in

{CRUISE, LEFT, STRAIGHT, RIGHT}.

Alert Zone

Add^ to Safe Region by
turn with A(|> = 45

Added to SafeKegion by
turn with A(j> =\45

TAddedto Safe Region by
tuBls of either Ad) = -45

^^Ad) - 45

Figure 10: Partitioning the Alert Zone into safe and unsafe regions



y

y
Figure 11: Conflict Resolution for three aircraft: the Roundabout maneuver

Figure 9 displays the union of each Pre-oo(T) calculated within the alert zone for each discrete

state {CRUISE, LEFT, STRAIGHT, RIGHT), in the absence of invariants for each discrete

state since the parameters d, ai, and ot2 are unconstrained. The set labeled CRUISE (respec

tively LEFT, STRAIGHT, RIGHT) displays the set of states which could flow into T under the

CRUISE mode (respectively LEFT, STRAIGHT, RIGHT modes). Pre-oo{T) in the LEFT and

RIGHT modes are rotations of this set in the CRUISE mode by —A<f>, corresponding to aircraft

1 at the origin of the relative frame rotating by A<^. The intersection of the sets Pre_oo(T) in this

figure represents those states which are unsafe under all modes, since outside of this intersection

the aircraft may always switch modes to enter a safe region, by choosing appropriate values for the

parameters d, ai, 0-2. Figure 10 displays the minimal unsafe set as a subset of the Pre_oo(T) in the

CRUISE maneuver (shown as the shaded set). For values of d, ai, 02, chosen so that the switches

between modes occurs on the boundary of this minimal set, the iterative computation (13) reaches

a fixed point Pre*{^) after three iterations.

The type of maneuver that may be verified with this technique can be much more general than

that described here: in [45] we construct various parameter-dependent maneuvers for two, three,

and four aircraft by using artificial potential field methods from robotic path planning to produce

the maneuvers. For three aircraft coming into conflict this approach produces the Roundabout

maneuver, shown in Figure 11.

5 Conclusions

In this paper, we have presented a methodology for generating provably safe conflict resolution

maneuvers for two aircraft. The method is based on calculating reachable sets for hybrid systems
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with nonlinear dynamics within each discrete state. The approach allows for uncertainty in the

intent of one of the aircraft, and calculates the least restrictive control scheme for the other aircraft,

based on the worst case uncertainty. This calculation is then used to determine, for a given

maneuver with possible variation in its parameters, the minimal unsafe operating region for each

aircraft.

Important research issues that we are currently axidressing are the computation of numerical so

lutions to the Hamilton-Jacobi-Isaacs partial differential equation and the efficient representation

and manipulation of Pre*{T). The computation of the solution to the Hamilton-Jacobi-Isaacs PDE

when J'{x,t) is not a smooth function ofx and t is possible, a survey paper [46] presents efficient
computation schemes. In addition, we are extending the verification methodology to include lift
and drag aerodynamic forces in the dynamics of the aircraft. Some preliminary results in this con
text have been presented in [25], [43]. Finally, we are investigating probabilistic verification, which
calculates the probability of a system trajectory entering an unsafe region.

6 Appendix

Proof of Proposition 1: Starting at time t (free) and integrating to the final time 0, the solution
to equations (39) has </>r(0 = <^r(0) and

x,.(0) = a;r(0- /f w(r)dr-l-cos0r It d(T)dT
Vr (0) = Vr (0 + sin <i>r d(r)dr

Substituting equations (45) into the cost index (15), (30), and ignoring the constant 5^ results in

J(a:,O,d(0,0 = 0:2(0)+

= xl{t)+yf{t)-Xr{t) j u{T)dT - Xr{0) u{T)dT
/o rO

d{T)dT[Xr(t) COS(f>r +t/r(0 Siu (pr] +J d(T)dT[Xr(0) COS<^r +!/r(0) sin 4>r]

Define the switching functions sj (t), S2{t) as in equations (40). Consider the case in which, Vt < 0,

S9n(si{t)) > 0, spn(52(0) > 0

We will show that in this case the saddle solution is u* = Uj and d* — v^. Note that we assume

that in the interval [t,0], both si{t) and S2(t) do not change sign. If t is such that the switching
functions do change sign on this interval, then the interval must be broken into two intervals, and
the saddle solution calculated separately for each interval.

Let d = d* and vary u, ie. let u = Vi + Svi, where > 0. Then

J(x,u{-),d'(-),t) = a;2(f) + y2(t)-i,(t)«,(0-t)-i,(0)a(0-«)
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5ui(r)(/r - Xr(0) 6vi(T)dT

+3i2(0 - 0[3^r(0 COS <i>r + t/r(0 sin (f>r] + £2(0 - 0[®r(0) COS <f>r + t/r(0) Sill <f>r]

< (t) + (0 - Xr(0^1 (0 - 0 - (0)^1 (0 - t)

+22(0- 0[^r(0 COS <l>r + yr(t)SlU <l>r] + iy2(0 - 0[®r(0) COS<^r + yr(0) sin(f>r]

= (46)

Similarly, let u = u* and vary d, ie. let d = 22+ 6v2^ where 6v2 > 0. Then

J(x,u*{-),d(-),t) = a:2(<) + y?(<)-a^r(02ii(0-0-a;r(0)yi(0-0

+JZ2(0 - COS(f>r + yr(t) sin <l)r] +^2(6- 0[®r(0) COS(t>r + yr(0) sln <^r]
fO

+ / 5v2{T)dT[Xr(t) COS <f>r + yr(t) sin(i>r]
rO

+J (5u2(T)dr[a:r(0)cosd>r+ yr(O)sin0r]
> xj (0 + y? (0 - (Olil (0 - 0 - (0) Ui (0 - t)

+12(0 - i)[^r(0 COS^r + yr(0 sin <f>r] + t;2(0 ~ 0[^r(0) COS<^r + yr(0) sin 4>r]

= (47)

Summarizing, we have shown above that in this case,

J(x,u(.),dT),0 < J(x,u-(.),dT),0 < J(x,u-(.),d(.),0 (48)

Therefore, u* = v^y d* = £2 is a saddle solution in this case. The three other cases can be shown

in a similar manner. •
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