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Abstract

Progressively Reliable Packet Delivery
For Interactive Wireless Multimedia

by
Richard Yeh-Whei Han

Doctor of Philosophy in Engineering — Electrical Engineering
and Computer Sciences

University of California at Berkeley

Professor David G. Messerschmitt, Chair

In this dissertation, we propose a progressively reliable end-to-end network proto-
col for delivery of delay-sensitive visual multimedia over a wireless channel with a time-
varying bit error rate and limited bandwidth. Interactive applications like Web-based
image browsing which operate over a wireless access link to the Internet require immedi-
ate delivery of image data to the receiver in order to support genuine interactivity. Wired
Internet connections incur roundtrip delays approaching the interactive latency bound.
Reliable protocols that retransmit lost or corrupt packets over an Internet connection that
also includes a noisy wireless link will be unable to deliver an image by the interactive
latency bound. We derive a lower bound on the latency incurred by an ideal retransmis-
sion-based ARQ protocol in a noisy bit error rate (BER) wireless channel, and show that
full reliability will cause the transport latency to far exceed the interactive latency bound at
1% BER. We also show that, even by adding powerful Reed-Solomon forward error cor-

rection (FEC) codes with redundancy rates that double or triple the bandwidth, the latency



penalty due to ARQ retransmissions is too high to achieve the interactive latency bound at
3% BER. -

Applications that accept unreliable packet delivery, e.g. packet loss and paclét corrup-
tion, have a more reasonable chance of achieving the interactive latency bound over a
noisy channel. Practical complexity and delay constraints on FEC and compression cause
the traditional approach of aggressive compression and aggressive FEC to be unable to
deliver images quickly enough at severe BER’s. Under these conditions, we show that the
joint source/channel coding approach of error-resilient image coding)decoding combined

- with forwarding of corrupt packet data can continue to support interactive image display.
We demoﬁstrate that error-tolerant image coding can reconstruct images at 3% BER and
simultaneously compress images down to 0.75 bits/pixel via lossy quantization only.

We propose a progressively reliable end-to-end protocol designed for rapid yet asymp-
totically reliable delivery of delay-sensitive imagery. A possibly noisy initial version of a
packet is forwarded to the receiver quickly to allow the end user to interact immediately |
with an initially noisy image. For bursty multimedia applications like Web-based image
browsing, the noisy still-image needs to be cleaned of any persistent artifacts. Therefore,
the protocol follows its initial delivery with multiple increasingly reliable deliveries of
each packet, leveraging off of the retransmission mechanism of the protocol. We call this
progressively reliable protocol “Leaky ARQ”. We identify through X server simulation
three additional performance-enhancing functions for Leaky ARQ: delaying retransmis-
sions by many seconds; cancelling out-of-date retransmissions; and fine-grained schedul-
ing of application data through the use of flows. Finally, we show how Type-II Hybrid
ARQ protocols, also called packet combining or memory ARQ protocols can be modified

to implement ARQ.
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Introduction

“...Yet all experience is an arch wherethrough gleams that
untravell’d world whose margin fades forever and forever as I move.”

— Ulysses, by Lord Tennyson

In this dissertation, we consider the design of an end-to-end network protocol for
delay-sensitive visual multimedia delivered over an Internet connection that includes a
wireless access channel with a time-varying bit error rate and relatively limited bandwidth.
Interactive applications like Web-based image browsing which operate over a wireless
access link to the Internet require immediate delivery of image data to the receiver in order
to support genuine interactivity. Such delay-sensitive imaging applications can be
designed to tolerate channel distortion in the form of packet loss and packet corruption. By
tolerating some channel distortion in a reconstructed packetized image, delay-sensitive
applications can reduce the perceptual latency seen by the end user. Error protection
schemes like forward error correction (FEC) and/or reliable retransmission-based proto-
cols (also known as ARQ protocols) are designed to mitigate distortion caused by channel

noise, but will introduce additional transport latency either through retransmissions or
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bandwidth expansion. By accepting less than fully reliable packet delivery, delay-sensitive

applications don’t have to suffer the latency penalty associated with fully reliable packet
delivery over a noisy wireless channel. This dissertation develops a progressively reliable
end-to-end protocol that delivers an initial possibly noisy version of a packet to the
receiver quickly, followed by multiple increasingly reliable versions of that packet. Pro-
gressively reliable packet delivery allows the end user to trade off subjective priorities
related to the two dimensions of quality/distortion and delay by initially supporting low-
latency high-distortion delivery of a packetized image, while ultimately supporting low-

distortion high-latency reconstruction of a packetized image.

1.1 Wireless access to interactive visual multimedia

The expanding demand for Internet connectivity, the growth of multimedia computing,
and the rising expectation of portable access to information are symptoms of the trend
towards wireless access to multimedia information “anytime, anywhere”. As part of this
increasing integration of computing, communications, and portability, personal computer
laptops can now access the Internet via wireless modems, gaining access to a vast array of
visual multimedia services such as Web-based images, text/graphics, and video. Similarly,
portable “network computers” (Berkeley’s InfoPad [90], Xerox PARC’s MPad [68], Digi#
tal’s Web-aware PDA [7]) have been prototyped recently and offer an alternative paradigm
for wireless access to networked visual multimedia. Both the laptop and portable network
computer models attest to the great appeal of combining portability, connectivity, and mul-
timedia into a single computing and communications device. Previously, personal comput-
ers (multimedia), workstations (networked multimedia), laptops (portable multimedia),

and personal digital assistants (portable with limited multimedia) supported one or two of
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Figure 1.1 General system supporting wireless access to visual multimedia. Packetized
visual multimedia flows from the source coder through the end-to-end net-
work protucol that implements end-to-end error protection, over an Internet
backbone and concatenated wireless access link, to the portable multimedia
receiver for decoding and display.

these individual elements, but failed to realize the potential of combining all three charac-
teristics into a single computing and communications paradigm.

In a system which integrates portability, connectivity, and multimedia, the end user
expects rapid response time and sufficiently reliable communication. These expectations
conflict with the reality of delivering high bandwidth image-based data across a connec-
tion that includes a wireless link with a relatively low bandwidth and relatively high noise
level. The overall sotir¢e-network-receiver system that supports wireless access to distrib-
uted visual multimedia is pictured in Figure 1.1. The multimedia application or source
coder generates images which are compressed, possibly in an error-resilient manner, and
sends the coded image data to the underlying network, e.g. transport protocol, for end-to-
end packet delivery. The transport protocol is responsible for ensuring that the packetized

data arrives at the receiver with sufficient reliability and sufficient speed. The transport
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protocol has the option of applying end-to-end error protection, either in the form of FEC
and/or retransmission-based ARQ protocols. The wireless channel represents the weakest
link in the overall connection both in terms of limited bandwidth and relatively severe bit
error rates (BER’s). The design of an end-to-end network protocol must recognize the
impairments posed by this weakest link, both in terms of its limited bandwidth and its
heavy channel noise.

The scope of this dissertation is confined to designing an end-to-end protocol for
packet delivery of bursty high-bandwidth delay-sensitive multimedia across connections
containing a bandlimited wireless link with a time-varying and at times severe BER. Our
primary application of interest is interactive Web-based image browsing across a wireless
access link, though we mention later how other applications based on video and audio can
also utilize our proposed protocol. In the remaining paragraphs of this section, we outline
the limiting assumptions that are made with regard to the type of source application con-
sidered, the end user’s quantitative expectations in terms of delay and distortion, and the
quantitative assumptions regarding the wireless link’s bandwidth and BER.

Our end-to-end protocol is primarily designed for the class of interactive multimedia
applications which require remote delivery of still images. This protocol is not designed to
deliver unrendered text or command-based graphics, though it could be used to deliver
images with pre-rendered text/graphics. In this class of distributed imaging applications,
we include interactive Web-based image browsing, remotely rendered applications like
Framemaker, and portable network computers which download bitmapped frame buffer
updates across the network like the InfoPad. In each of these examples, images are period-
ically rendered at the source and downloaded to the receiver, thereby exhibiting bursty
traffic behavior. While our primary objective is supporting rapid delivery of delay-sensi-
tive bursty multimedia, we shall mention in Chapter 5 how the proposed protocol can be

parameterized to deliver continuous media audio and video.
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In the image browsing application described above, the end user has subjective expec-
tations that are stringent in terms of delivery latency but are more relaxed in terms of the
permissible distortion introduced by channel noise. For real-time video/audio conferenc-
ing applications, the maximum acceptable roundtrip delay cannot exceed about 200 ms
[41][132], though some would argue for a tighter roundtrip bound. For point-and-click
bursty-media applications like interactive image browsing, genuine responsiveness will
impose a similar though likely tighter requirement of about 100 ms roundtrip delay. This
constraint on delay plays a key role in the design of our progressively reliable protocol. On
the other hand, the subjective tolerance for channel distortion can actually be quite high
for natural images. We demonstrate in Chapter 4 that channel BER’s of about 3% are still
subjectively tolerable for natural images which have been compressed over 10:1 from 8
bits/pixel down to 0.75 bits/pixel. Together, the stringent delay requirement and the toler-
ance for channel distortion help motivate the decision to forward corrupt information as a
means of lowering the perceptual latency within our protocol design.

Wireless channels range from indoor picocellular wireless access links to outdoor
microcellular channels with mobile access from automobiles. The key digital performance
parameters of a wireless channel are its bandwidth and its BER. In addition, the variation
of the BER with time can also affect protocol design. Bit errors arise from analog impair-
ments in the wireless channel. A single user transmitting its data over a wireless link can
suffer from three roughly independent analog noise phenomena: shadowing, path loss, and
multipath fading [125]. Shadowing occurs when the line-of-sight signal is blocked by an
object such as a mountain or building or even a person. Path loss occurs because the power
of the signal falls off exponentially with distance. Multipath fading occurs when multiple
reflections of a transmitted signal arrive at the receiver and add destructively due to phase
shifts. In addition to these single user phenomena, in cellular systems there are multiple

users whose transmissions generate intercell and intracell interference for other users. Fre-



quency reuse in TDMA cellular systems introduces co-channel interference from other
cells. Also, imperfect isolation of users introduces adjacent-channel interference both
within and outside of the user’s cell. Direct sequence CDMA spread spectrum systems are
also well known to be interference-limited, in the sense that increased transmission power
dedicated to one user will add interference noise to all other users. Finally, for indoor pic-
ocellular systems, an individual user may also have to deal with prolonged shadowing due
to slow-moving/static objects (e.g. people, cubicle walls, etc.) interfering with line-of-
sight transmission. Indoor channels do not have to deal with Doppler effects characteristic
of outdoor mobile cellular systems. All of these phenomena create time-varying bursts of
errors.

An end-to-end protocol should be designed to handle this heterogeneity in behavior
over a variety of wireless access channels. However, our work makes some limiting
assumptions with regard to the channel bit rate, and the channel BER. Our discussion is
confined to wireless channels whose bit rates range from about 100 kbit/s to 1-2 Mbit/s.
This range of bit rates offers a reasonably sized image some chance of achieving the 100-
200 ms interactive latency bound. In addition, this range of bandwidth is likely to repre-
sent the typical wireless access link of future cellular networks. Currently, second-genera-
tion digital cellular standards like IS-54 digital TDMA, IS-95 CDMA, and Europe’s GSM
system support voice and data services at bit rates up to 13 kbit/s, though the raw channel
rates can be more than double these values due to error correction overhead [94]. Current
digital cordless standards, which support mobility in a more limited manner than cellular
systems, can sustain even higher bit rates. For example, Europe’s CT-2 system delivers
voice and data over a 32 kbit/s cordless link [29]. Japan’s Personal Handiphone System
(PHS) supports voice at 32 kbit/s and data services up to 64 kbit/s. The European DECT
standard transmits voice at 32 kbit/s, and data up to 384 kbit/s over one connection [121].

Several vendors have begun offering wireless LAN products whose radios operate at hun-
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dreds of kbit/s to one Mbit/s per user [29]. In the future, widely deployed global wireless
access systems will likely offer a similar range of bit rates. For example, plans are under-
way in Europe for a third-generation Universal Mobile Telecommunications System
(UMTS) that supports cellular, cordless and LAN access through a ubiquitous wireless
access network operating at rates of at least 2B+D ISDN (144 kbit/s), and possibly higher
(up to 2 Mbit/s).

Our second assumption is that wireless channels average at least 102 BER within a
fade. Designers of digital cellular systems have often cited 102 BER as a typical design
point for wireless audio [31][149]. In addition, the packet loss rate has been measured.at
1-2% under realistic fully loaded conditions in the IS-95 DS-CDMA digital cellular sys-
tem after rate- % convolutional FEC coding [69]. Our design philosophy is to support con-
tinuous interactivity with possibly noisy packetized image data at BER’s up to and slightly

exceeding 1072,

1.2 Joint source/channel coding for delay-sensitive wireless
data

Given the system assumed in Figure 1.1, the traditional approach is to separate the
design of compression/decompression algorithms, also called source coding and decod-
ing, from the design of FEC/ARQ error protection, also called channel coding and decod-
ing. For example, the still image coding JPEG standard is designed independently from
the underlying network. JPEG does not care whether the underlying error protection is a
linear Reed-Solomon block code, a convolutional code, or a retransmission-based ARQ
protocol with error detection. Conversely, an ARQ protocol like the Internet’s TCP has
been designed independently of any source compression standard. This independent

source and channel coding design philosophy is illustrated as the top picture in Figure 1.2.
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Figure 1.2 Joint source/channel coding (JSCC) (bottom figure (b)) compared to inde-
pendent/separated source and channel coding (top figure (a)). In JSCC,
compression and decompression algorithms “see” the channel’s charac-
teristics, e.g. its typical BER, and are designed to be robust. Channel FEC/
ARQ coders and decoders “see” the source’s statistics, and apply unequal
error protection to the data. In independent source and channel coding,
source coding/decoding only sees the input data, not the channel. FEC/
ARQ is designed with only the channel in mind, and is oblivious to the
source’s statistics.

The channel coding and decoding modules are designed with only the characteristics of
the network or channel in mind, i.e. they “see” only the channel impairments, and don’t
“see” anything about the source’s statistics, thereby simplifying the task of the network
protocol designer. Conversely, the source coding and decoding modules only “see” the
data they are compressing, and are designed without regard to whether the compressed
data is being sent over a wireless channel, thereby simplifying the task of the compression

algorithm designer.
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The traditional design philosophy of independent source and channel coding is justi-
fied theoretically by Shannon’s separation theorem [27]. The theorem states that transmis-
sion of a source (e.g. image) through a noisy channel (e.g. wireless link) can be made
arbitrarily close to reliable (arbitrarily close to zero probability of transmission error) as
long as the source’s information rate/entropy is less than the information-theoretic channel
capacity. Consequently, the source’s only duty is to aggressively compress the data below
the channel capacity, without regard to any other properties of the channel. Assuming a
suitably compressed source, the channel coder can design its FEC/ARQ error protection
independent of any knowledge of the source. The separation theorem implies that no loss
in performance, as measured by the reliability of the reconstructed data at the receiver, is
suffered by a separated source and channel coding approach.

In Chapter 2, we quantify the latency performance of a traditional ARQ protocol that
has been designed independently of source statistics. Two lower bounds on the delay that
would be suffered by data requiring fully reliable packet delivery over a wireless channel
are derived. At 102 BER, we show that even an ideally efficient retransmission-based pro-
tocol, called ideal SRP, cannot deliver its data within the interactive latency bound of 200
ms.

In Chapter 3, we quantify the minimum redundancy required by a traditional FEC lin-
ear block code, again designed independently of the image source, in order to adequately
protect a sequence of data blocks corresponding to an image. We quantify how much more
redundancy is required by binary BCH codes than optimal binary linear codes. For non-
binary Reed-Solomon (RS) codes, we show that at 3x1072 BER, the minimum redundancy
required will double the bandwidth of the source.

Further, we analyze Type-I Hybrid ARQ protocols which combine FEC and ARQ
together as a form of hybrid error protection. Assuming that RS codes perform the FEC

function, and assuming that ideal SRP performs the ARQ function, then we show that no



sufficiently powerful RS codes of length N<1024 output symbols could be found which
are capable of reliably delivering a full image by the interactive latency bound of 100 ms
at 3% BER for a Type-1 Hybrid ARQ protocol.

The analytical results from Chapters 2 and 3 help motivate our search for alternatives
to conventional FEC and ARQ channel coding schemes. In Chapter 4, we examine an
alternative method for delivering delay-sensitive data over a wireless channel called joint
source/channel coding (JSCC). First, we observe that the separation theorem was derived

under the following three assumptions:

* stationary memoryless channels

* unconstrained complexity of compression/decompression algorithms and FEC/ARQ

error protection techniques

* unconstrained delay in the operation of source and channel coders and decoders

Since our application of interest is interactive image browsing over time-varying wire-
less access links with practical limitations on compression efficiency and FEC error cor-
rection power, then each one of these assumptions of the separation theorem is violated.
Portable access to distributed visual multimedia, which has the potential of evolving into a
fairly common paradigm, calls into question the traditional philosophy of separating the
design of compression algorithms from the design of network FEC/protocols.

In addition, the appropriate quality criterion in our case is a subjective dual function of
delay and distortion. For example, progressive image transmission is a technique which
exploits the human user’s subjective tolerance for significant distortion in an initial version
of an image provided that the end user knows that the image will improve eventually in
quality over time. Progressively reliable packet delivery discussed in Chapter 5 represents
another example of progressivity. The human user’s changing tolerance for distortion over

time is difficult to measure in quantitative terms. The separation theorem makes no com-
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ment on such qualitative evaluation metrics, relying instead only on quantitative measures
of performance such as the loss probability which fail to capture the subjective complexity
motivating our theme of progressivity.

When one or more of the theorem’s assumptions are not satisfied, an approach called
joint source/channel coding can be shown to outperform separately designed source and
channel coders. The overall JSCC system is illustrated in the bottom portion of Figure 1.2.
The JSCC channel coder and decoder are designed with knowledge of the source as well
as the channel, i.e. they “see” the source’s statistics and the variation in error sensitivity of
different source bits and incorporate this knowledge into the design of an unequal error
protection (UEP) codec. Similarly, the JSCC source coder and decoder are designed with
knowledge of the channel as well as the source, i.e. they “see” the channel’s error statistics
and incorporate that knowledge into the design of an error-tolerant compression/decom-
pression scheme.

The literature has shown that when compression algorithms are constrained in com-
plexity and required to perform their operations quickly, then residual redundancy is left in
an imperfectly compressed image. Imperfect compression leaves certain bits more sensi-
tive to errors than others. Errors in sensitive bits will have a disproportionate effect on the
distortion in a reconstructed image. Given imperfect compression, Section 4.3.2 and Sec-
tion 4.3.3 cite references which show that JSCC channel coders and decoders that have
knowledge of the source’s statistics, e.g. UEP channel coders and source-cognizant chan-
nel decoders, produce images with lower end-to-end distortion than independent channel
coders and decoders which have no knowledge of the source’s statistics.

The literature has also shown that when the channel FEC coder and decoder are lim-
ited in error correction power due to constraints on complexity and the requirement that
they perform their task quickly, then there is some benefit to backing off on aggressive

compression and intentionally leaving some residual redundancy in an image. Section
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4.3.4 cites the work by Xu, Hagenauer, and Hollman [155] which shows that error-tolerant
image coding is more beneficial than a separated system of aggressive compression and
aggressive FEC in terms of lowering the end-to-end image distortion when the channel is
very noisy and the error correction power is constrained.

Given error-tolerant image compression, then we claim that packets with corrupt bits
should not be thrown away. Current networks discard packets which have failed an error
detection check, either at the data-link layer of a wireless link, or at the receiver endpoint
of a connection. Discarding corrupt packets is done on the presumption that the payload
data has been aggressively compressed and is therefore not useful at the receiver. How-
ever, we have just shown that there is some benefit to error-tolerant image compression in
constrained-complexity constrained-delay systems. Given error-resilierit image coding,
then most of the payload is still useful at the receiver despite heavy channel noise. For
example, a 1% BER applied to an 8bits/pixel grayscale image would invalidate only about
8% of the bits in any packet payload, leaving over 90% of the pixels as still usable.

We implemented a Discrete Cosine Transform (DCT) compression scheme which
demonstrates the usefulness of error-tolerant compression and error-tolerant decoding of
corrupt image data at high BER’s. The DCT compression scheme was able to compress the
data from 8 bits/pixel (bpp) grayscale down to 0.75 bpp, a compression ratio of about
10:1. We were able to demonstrate that this error-tolerant encoding scheme could tolerate
BER’s of 102 without error concealment, and 3x102 with error concealment. Our conclu-
sion was that lossy quantization can achieve a reasonable compression ratio and still be
error-resilient. Lossless statistical compression increases the error sensitivity and requires
corresponding increases in FEC channel coding, thereby increasing the complexity of the
system. Moreover, the limited strength of FEC in practical systems causes the aggressive
compression/aggressive FEC approach to fail at heavy BER’s, while the error-resilient

image coding is still able to communicate information by the interactive latency bound.
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The end result of these observations is that payloads bearing error-resilient informa-
tion are still useful at the receiver for decoding despite severe BER’s. In addition, in a
JSCC system, UEP on packet payloads will leave some bits lightly error protected, result-
ing in possibly many packets being in error after UEP decoding. Therefore, in a JSCC sys-
tem, it is essential that corrupt information be forwarded to the endpoint application for
decoding. Given error-resilient data, the end-to-end distortion can actually be reduced by
accepting corrupt packet data in comparison to throwing this corrupt data away.

Forwarding and processing of corrupt packet data can also be motivated from the per-
spective of delay, not just end-to-end distortion. An end user willing to tolerate noisy
reconstructed images can receive and display corrupt information far faster than an end
user who will only accept fully reliable delivery of images and therefore must wait for an
error-free version due to retransmissions. The end user in a JSCC system will be able to
interact as soon as possible with a noisy representation of an image over a wide range of
BER’s.

The overall conclusion of Chapter 4 is that error-tolerant image coding, UEP, forward-
ing of corrupt error-resilient information, and application-level decoding of corrupt packet
data together constitute an approach which is more likely to provide continuous interactiv-
ity to the end user over a wide range of BER’s than a system which practices aggressive
compression, aggressive FEC, discards corrupt packets, and insists that an application pro-

cess only error-free data.

1.3  Progressively reliable packet delivery

Our end-to-end protocol is tightly integrated into the JSCC design philosophy in order
to realize the advantages of JSCC in terms of reducing the distortion and perceived latency

of delay-sensitive image data encoded by constrained-complexity systems and delivered
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Figure 1.3 Progressively reliable packet transport delivers an initial possibly noisy ver-
sion of a packet quickly to the receiver. Later, the protocol employs retrans-
missions to progressively improve the reliability of the delivered packet. An
image-based multimedia application can use a progressively reliable protocol
to display a noisy initial image (left) for immediate interactivity. Later, any per-
sistent artifacts on the screen can be removed by displaying progressively
cleaner image data provided by the protocol (right). The 8 bits/pixel color-
mapped image is corrupted at BER 102,

over very noisy wireless channels. Initially, our protocol forwards a possibly noisy first
version of a packet to the receiver. For bursty multimedia, artifacts due to reconstruction of
noisy data may persist on the screen for a very long time, until further user activity over-
writes or redraws that portion of the screen. To remove long-term artifacts, our protocol
delivers successively refined versions of a packet to the application by sending retransmis-
sion redundancy at some later time. Thus, each packet of image data is delivered to the
application in a progressively reliable fashion.

A multimedia application like Web-based image browsing would employ a progres-
sively reliable transport protocol to deliver a noisy initial version of an image for quick
interactivity. The assumption is that the application will code its image data in an error-tol-
erant manner in order to make use of corrupt forwarded data at the receiver. Eventually,
progressively reliable packet delivery will deliver a sufficiently clean version of an image

to remove any persistent artifacts. The overall effect perceived by the end user is shown in
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Figure 1.3. Essentially, the protocol is trading off the user’s subjective priorities of delay
and distortion. Low-latency high-distortion packet delivery is followed eventually by
high-latency low-distortion delivery. The protocol permits the application to satisfy the
end user’s demand for continuous interaction with a possibly noisy initial image over a
wide range of BER’s. In addition, the protocol allows the application to asymptotically sat-
isfy the end user’s desire for distortionless packet delivery.

In Chapter 5, we identify the following four essential properties of progressively reli-

able packet delivery:

* Corrupt packets are forwarded to the application
* Multiple versions of each packet are delivered

* The reliability of these multiple versions improves over time (statistically fewer errors

with each successive version)

* Different packets are delivered out of order

Each of these properties has an impact on the design of the socket interface between
the multimedia application and the protocol. Applications must frame their data into appli-
cation data units (ADU’s). In addition, the error detection applied on the ADU header
must be distinct from the error detection applied to the ADU payload. In this way, the pro-
tocol can distinguish between packet corruption, i.e. useful ADU’s with noisy payloads
and error-free headers, and packet loss, i.e. useless ADU’s with errors in the header. Fur-
thermore, the property of increasing reliability requires that the receiver have memory so
that it can recall the level of noise in previous versions of ADU’s before delivering a newer
version with fewer errors.

Also in Chapter 5, we discuss three key additional features of progressive reliability
which improve its end-to-end delay performance. The transport latency of the first possi-

bly noisy version of an ADU can be reduced by:
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¢ delaying ADU retransmissions to minimize conflict with time-critical delivery of the

initial version of an ADU
¢ cancelling retransmissions associated with out-of-date ADU’s

* flow-based QOS scheduling of the sender’s traffic by delay and reliability constraints

The first possibly corrupt version of an ADU is classified as delay-sensitive, while the
later retransmissions employed to refine the first version are classified as delay-tolerant.
By choosing when to send retransmission redundancy, it is possible to translate retrans-
missions to a time when there is little or no delay-sensitive traffic. Delay-tolerant retrans-
missions can afford to be shifted around in time with little or no subjective impact.
Therefore, the progressively reliable protocol biases its delivery toward delay-sensitive
initial delivery of ADU’s, and transmits the retransmission redundancy so as not to con-
flict with initial delivery.

Furthermore, bursty multimedia has the property that new images often overwrite old
images. Because our progressively reliable protocol retains data in order to delay ADU
retransmissions, some ADU’s may contain out-of-date image data. Our progressively reli-
able protocol allows the user to apply correlation labels to ADU’s, so that the protocol can
identify when a packet has become stale. This allows the protocol to cancel any further
retransmissions of stale data, freeing up the connection to deliver other packet data.

Finally, flow-based scheduling permits the application to define more than just a single
stream of data. Instead, a multimedia application can generate a hierarchically coded
image, and send different parts of this image progressively along multiple substreams.
Each substream has its own quality-of-service (QOS) requirement in terms of delay and
reliability. The progressively reliable protocol incorporates a scheduler which can distin-
guish between the delay requirements of different substreams, as well as the separate

delay requirements of the initial and final versions of data within the same substream.
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An X windows server was modified to test the validity of these ideas. The X windows
server was modified to implement a progressively reliable encoder/decoder and a random
bit error channel model. The effect seen on the screen was similar to Figure 1.3, in which
any portion of the screen was drawn in an initially noisy fashion, followed eventually by
cleanup of artifacts. The X windows server provided a real-time platform to test our ideas
concerning the viability of progressive reliability as a concept. We found that we could tol-
erate the presence of channel distortion in the initial version and still conduct interactive
image browsing. Through experimentation, we discovered that the responsiveness of the
system could be improved by delaying retransmissions and cancelling stale retransmission
data. We constructed a dynamic software tool called a “performance manager” which
allowed the user to dynamically adjust the various bit rates, BER, and delay parameters
within the modified X server during run-time.

As part of our work on the X windows server, we also implemented a progressive col-
ormap source coding algorithm. This permitted some experimentation with the relation-
ship between progressive source coding and progressively reliable packet delivery, i.e.
progressive channel coding. The initial version was allowed to suffer not only channel dis-
tortion due to bit errors, but was also encoded in a way that introduced source coding dis-
tortion. For example, a typical sequence of events would be that the initial version would
not only be noisy, but would also be drawn as a black and white version of a color image.
The followup redundancy would overwrite the noisy b/w version with a clean color image.
We found that the overall effect was tolerable for natural images as long as the luminance
magnitude, i.e. the brightness level of the image, was preserved between the original and
final versions. More sophisticated versions of progressive source coding were not

attempted in this thesis. .
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We also experimented with video within our modified X server. The cancellation func-
tion proved especially useful and demonstrated how continuous media could exploit a pro-
gressively reliable protocol.

In Chapter 6, we discuss end-to-end implementation issues regarding a progressively
reliable transport protocol. Because such a protocol initially forwards corrupt information,
and later cleans these errors up, we call our proposed progressively transport protocol
“Leaky ARQ”. We observe that Leaky ARQ can be implemented as a form of memory
ARQ, also called packet combining, of which Type-II Hybrid ARQ is the most well-known
example. While implementing Leaky ARQ as a true transport protocol will optimize the
protocol’s performance, migrating a new layer 4 protocol in the Internet faces some practi-
cal challenges. As an alternative, we describe how Leaky ARQ could be implemented
within the context of the Internet on top of UDP, though certain modifications to UDP
would be required. Finally, we consider the impact of fragmentation, non-sliding win-

dows, and acknowledgments on the design of Leaky ARQ.
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2

Latency Bounds For Reliable
Network Protocols

In this chapter, we investigate the latency performance of end-to-end network proto-
cols which reliably deliver visual multimedia over connections that include a wireless
access link. Multimedia applications, such as Web-based image browsing, often require
rapid delivery of individual images in order to convey a genuine sense of interactivity to
the application’s user. Our goal is to quantify the time necessary to reliably deliver a finite
burst of packets corresponding to a single image over a noisy connection. In general, net-
work connections consist of a sequence of concatenated communication links, each char-
acterized by its own distinctive behavior. We consider the special case in which one of
these links is a wireless access link.

Network protocols that provide end-to-end reliability, i.e. reliability over a multi-hop
connection, are also known as Automatic-Repeat-Request (ARQ) protocols. ARQ proto-
cols implement a closed-loop retransmission scheme that guarantees reliable delivery of
packets (within error-detection limits).

In this chapter, we quantify the cost in latency associated with fully reliable packet
delivery. First, we consider the latency cost for reliable delivery of a single packet. Later,
we investigate the latency cost for reliable delivery of a burst of packets corresponding to a
packetized image. Two estimates of the image transfer latency are derived: a “loose” lower
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Figure 2.1 End-to-end fully reliable delivery over multiple concatenated net-
work links (some wired, some wireless) via closed-loop retrans-
mission-based ARQ protocols.

bound and a “tight” lower bound. Both bounds are based on the idealized Selective-Repeat
(SRP) retransmission protocol, the most efficient ARQ protocol. These lower bounds on
delay show that the minimum time to reliably deliver an image over a high bit error rate
channel can be so large that real-time delivery is largely precluded. The ARQ analysis of
this chapter serves as the basis for analyzing the hybrid FEC/ARQ protocol of a later

chapter.

2.1 Introduction to ARQ protocols

Retransmission-based ARQ protocols ensure fully reliable delivery of individual
images over connections which include a noisy wireless channel. Each of these closed-
loop techniques sends and resends packets until they have been correctly acknowledged by
the receiver. Figure 2.1 illustrates a sender transmitting packets and their repetitions in the
forward direction across a multi-hop connection that includes a wireless link. In the
reverse direction, the receiver sends the acknowledgments that correspond to the transmit-
ter’s packets. Some well-known examples of ARQ protocols include Stop-and-Wait (SW),
Go-Back-N (GBN), Selective Repeat (SRP) [129], and the Internet’s reliable Transmis-
sion Control Protocol (TCP) [25], each of which will be discussed later in this chapter.

20

1



In ARQ, after a packet is transmitted to the receiver, the sender waits for an acknowl-
edgment for that packet from the receiver. If the receiver sends back a positive acknowl-
edgment that the packet has been correctly received, then the protocol proceeds onwards
to send a new packet waiting in the sender’s queue. If the receiver sends back a negative
acknowledgment (NACK) that the packet was corrupted, or if the sender times out waiting
for any acknowledgment, then the sender retransmits the original packet. This describes a
simple Stop-and-Wait (SW) protocol.

Windowed protocols like GBN and SRP improve upon the SW protocol by permitting
multiple packets (i.e. the sender’s window size W 2 1) to propagate toward the receiver.
Rather than wait the full roundtrip time until a single packet is acknowledged before send-
ing the next packet, SRP tries to keep the transmission pipe full by continuously transmit-
ting multiple distinct packets.

SRP’s response to the loss of a packet is to retransmit only the lost packet. For other
windowed protocols like GBN and TCP, loss of a given packet can trigger retransmissions
of packets besides the lost packet. For example, in GBN, a packet loss causes the protocol
to go back in the packet sequence to the lost packet, and start retransmitting sequentially
from the position of the lost packet. Some packets may wind up being retransmitted multi-
ple times even though they have already been correctly delivered to the receiver. These
unnecessary retransmissions lead to inefficient management of the connection’s band-
width. In contrast, the number of unnecessary retransmissions in SRP is zero, just as for
SW. Unlike SW, SRP permits a window size W 2 1. The combination of windowed per-
formance and zero unnecessary retransmissions make SRP the most efficient ARQ proto-
col possible. Moreover, the number of retransmissions in SRP for a given packet is
independent of the behavior of all other packets. This leads to a simplified analysis of the

expected or average number of retransmissions per packet.
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A special form of SRP called /deal SRP assumes transmitter buffers and receiver buff-
ers have infinite length. Ideal SRP also assumes that the sender’s window size is larger
than a single packet’s roundtrip time (more precisely, its equivalent measured in number of
fixed-length packets). This assumption allows the downstream pipe to be continuously
filled or saturated with multiple distinct packets.

How do we quantify the latency cost of a particular retransmission protocol over a
multi-hop connection that includes a noisy wireless link? Our approach is to view the
wireless link as the limiting factor in the connection both in terms of noise and bandwidth.
Hence, we confine our protocol analysis to this single link. This formulation of the prob-
lem permits two interpretations. First, our analysis could be interpreted to apply to a link-
layer ARQ protocol operating over a single wireless link. Alternatively, our analysis could
be interpreted as a lower bound on performance of an end-to-end protocol, in which only
the impact of the wireless link is studied, while the contributions to latency caused by the
other wired links have been abstracted out of the problem.

Our strategy is to develop a lower bound on the image transfer latency that applies
over all protocols, rather than investigate each protocol individually. From our previous
discussion, we observed that SRP is the most efficient protocol among all possible repeti-
tion-based non-hybrid ARQ protocols like GBN and SW [78]. Optimal efficiency trans-
lates into minimal delivery time. Therefore, by basing our latency analysis of reliable
protocols on ideal SRP, we will have determined a lower bound on latency over all proto-
cols. Any other protocol will incur a higher cost in delivery time. Ideal SRP has the addi-
tional property that it is mathematically tractable. We will apply this bounding strategy to
both our single-packet and multi-packet analyses of ARQ protocols.
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Figure 2.2 A typical retransmission protocol Is shown. Each (re)transmission of a
packet takes time PTT+RTT, where PTT=packet transmission time due to
the packet’s length, and RT7=roundtrip time that the sender has to wait
after sending the packet before an acknowledgment could arrive. In gen-
eral, multiple packets may propagate simultaneously toward the receiver.

2.2 Quantifying the single-packet latency of ideal SRP

In this section, we quantify the average latency experienced by a single packet reliably
delivered by an ideal SRP ARQ protocol over a noisy channel. A typical retransmission-
based ARQ protocol is shown in Figure 2.2. Let a packet consist of a block of K bits.
Assuming independent Bernoulli trials and a fixed Bit Error Rate (BER), the probability of
a K-bit error-free packet is P, = (1- BER)" . If we define a random variable Ny, = #
trials until the first good block is delivered, then Npacke: has a geometric distribution, i.e.
PIN pocrer= i1 = (1-P,)~1-P, , for i positive integers. The expectation of a geometric
Npacker is well known, so that the average # of trials until the first good packet is received
is given by

o1
P, = (1-BER)X

E [N packet] = (2—1)

For ideal SRP, the number of retransmissions for each packet can be considered to be
independent of all other packets. A conservative estimate of the average delay experienced
23



by a single fixed-length packet is simply the product of the average number of transmis-
sions E[Npgcie,] and the time required per packet. This conservative estimate ignores con-
tention at the sender among different packets, which will delay each packet beyond our
conservative estimate. However, as we shall see in the next section, this contention among
different packets is automatically taken into account during our analysis of the delay of a
group of packets corresponding to an image.

We can now obtain the average delay per packet. Define PTT as the fixed packet trans-
mission time due to the packet’s size. Let RTT be the additional roundtrip time that the
sender has to wait after each packet is sent until its acknowledgment returns to the sender
(stating whether or not the packet has been correctly received). In general, RTT is a sto-
chastic quantity consisting of at least the forward and reverse direction network queueing
delays along the multi-hop connection, the protocol processing and operating system
delays at the connection endpoints [22], and the reverse and forward direction propagation
delays. Also, even though a sender may be ready to retransmit a packet, congestion at the
sender due to a large number of packets awaiting transmission will add stochastic queuing
delay to RTT. It can be easily verified that the typical range of RTT across a multi-hop
Internet connection varies from tens of milliseconds to many hundreds of milliseconds.
Let us assume that RTT is fixed, so we can focus our analysis on the retransmission policy.
PTT and RTT are pictured in Figure 2.2.

Define T),4.4,, as the time between the commencement of packet transmissions and the
reception of the packet’s positive acknowledgment from the receiver. Our conservative

estimate of the average delay per packet is given by

E [Tpacker] = E[N packer] "(PTT +RTT) (2-2)

In order to gain some intuition about the effects of bandwidth, probability of bit error,

and header overhead on the single-packet latency E[Tpgcke), we temporarily make some
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simplifying assumptions. First, let us for the time being assume RTT=0. This means that
our estimate of the single-packet latency (PTT) will be a lower bound, since it will not
incorporate many sources of delay arising from RTT. We will return to the impact of RTT
on latency in Section 2.4, where we evaluate a tight lower bound on the latency of a pack-
etized image for several real-world values of RTT.

Also, let us choose the bandwidth and probability of bit error BER to represent the
weakest links in the connection, with the wireless link being the most likely limiting factor
in both instances. If we define BW = wireless bit rate, H = # header overhead bits/packet,
and P = # payload bits in the packet, then we can approximate the average delay until

delivery of the first error-free packet as

1 P+H

E[Tpackel] ZE[Npacket] PIT = (l _BER)(P+H) BW

(2-3)

Equation (2-3) summarizes the impact of bandwidth, bit error rate, and header over-
head on the single-packet latency of ideal SRP. It also represents a lower bound on the
expected delay.

Table 1. Minimum average delay estimates (RT7=0, ideal SRP) from
Egua’t’ion (2-3) for a single packet as a function of packet payload
size

Payload size(bits) 10 100 500 1000
—_— e —————————

lower bound estimate of 0.665 ms 2.99 ms 0.499 sec 139 sec
E [Tpacket]

In Table 1, we illustrate a sampling of the mean delays E[Tpacke] given by Equation
(2-3) as a function of payload size P, assuming a raw BER of 102 (a typical design point
of digital cellular systems [28][149]), header size H = 100 bits (TCP has at least 20 bytes
of header when uncompressed, UDP has 8 bytes of header), and wireless BW = 500 kbit/s
(on the high end of current wireless bit rates [94]). The results indicate that large packets

that are longer than several hundred bits experience prohibitively large non-real-time
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delay. Since the BER is 102, then on average large packets on the order of several hundred
bits will contain multiple bit errors, forcing many retransmissions and thereby increasing
the delivery time. Also, the single-packet delay rises exponentially as a function of the
payload size P. This exponential behavior suggests that a large image, on the order of
many tens of thousands of bits, should be packetized into many small packets instead of a
few large packets over a noisy wireless link. In the next section, we will examine in more
detail how this exponential behavior influences multi-packet image delivery.

While our protocol analysis has focused on latency performance, previous work on
ideal SRP has focused on characterizing SRP’s throughput performance (also called effi-
ciency or utilization). The throughput 1 is defined as the percentage of time spent trans-
mitting new packets [78](145]. High throughput implies that less time is spent on
retransmissions (E[Np,,] is small) and/or waiting for an acknowledgment or time-out,
and proportionately more time is spent on transmitting packets correctly the first time.
Conversely, if the expected number of transmissions per packet ElNpgacked) is large, then

the throughput will be low. Clearly, , where the precise relation depends

nes E—Um
on the protocol. Therefore, the single packet delay is closely related to the throughput
through E[N 4 1,,]. In fact, our estimate of the delay has leveraged off of previous through-
put derivations in order to obtain E[Np,4,,]. We will have more to say in the next section
about the relationship between throughput and our loose estimate of multi-packet image
latency.

Finally, single packet latency analyses of SW and GBN have been performed in
[116][134]. Single packet latency analyses of SRP have been performed in [78][145].
Other authors have undertaken a queueing analysis of the average wait time for a single
packet in SRP [72][117]. Our derivation of Equation (2-3) has been designed to emphasize
the intuitive dependence of latency upon BER, BW and overhead H, which will aid in

understanding the multi-packet SRP analyses of the next two sections.
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2.3 Aloose lower bound on the image transfer latency of ideal
SRP

In this section, we extend our single-packet latency analysis of ideal SRP to consider a
long image block that may need to be fragmented into multiple smaller packets for deliv-
ery by the network protocol. We develop a “loose” lower bound that estimates the image
transfer latency. The loose bound provides insight into the contributions to delay from the
bandwidth, BER, and header overhead factors. We show how our loose bound is related to
the throughput. The loose bound is also used to determine a closed-form solution that
specifies the optimal way to fragment an image so that delay is minimized.

For an image fragmented into multiple packets, the average delivery time for the
image is not simply the sum of the individual packet delivery times, due to overlapping
packet deliveries. Suppose T; is defined as the interval between the start of packet P;’s
transmissions and final reception of an acknowledgment of error-free delivery for that
packet. Ideal SRP fills any given packet’s RTT interval with the transmissions and repeti-
tions of other packets, in an effort to keep the downstream pipe completely filled. There-
fore, an estimate for the expected delay of a multi-packet burst which sums E[T;] over the
individual packets will overestimate the delay, since many overlapping times would be
counted multiple times. This overlapping is illustrated in Figure 2.3, in which packet P;’s
retransmissions overlap with packet P,’s repetitions.

Figure 2.3 suggests several ways to estimate the delivery time for a packet burst that
avoids overlapping summations. A fairly conservative estimate would simply sum the total
number of packet transmission times PTT. By counting the number of PTT slots occupied
during the transmission of a group of packets corresponding to an image, we obtain a
loose lower bound estimate of the average image transfer delay. Note that such an estimate

automatically incorporates the delay due to contention for bandwidth among different
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Figure 2.3 Retransmissions of different packets overiap In time. Define 7; as the time
between first transmission and final acimowledgment of packet P, The
expected delay E[packet burst] of packets P, through P, Is not the sum of
each packets’ E[ T}, since such an estimate would recount the same Intervals
due to overlapping T, PTT = (fixed-length) packet transmission time. RTT =

(fixed-length) roundtrip time after packet Is sent until its acknowledgment
retumns.

packets at the sender. Since packets are interleaved, and ideal SRP tries to keep the trans-
mission pipe filled with new transmissions and retransmissions, then the PTT time slots by
which a given packet is delayed due to contention are occupied by transmission of other
packets. The contention-based delay for each packet is automatically included by counting
the number of occupied PTT slots for the entire image burst.

Our loose lower bound estimate ignores the interstitial space (e.g. between the second
transmission of P, and the third transmission of P, in the figure) caused by the protocol’s
inability to keep the transmission pipe filled when the amount of data left to transmit is
less than RTT. In the next section, we will pursue analysis of a tighter delay estimate that
accounts for the interstitial space or idle time.

Continuing with our loose estimate of the average image delay, we define Timage 8s the

time to transmit a packetized image burst, including fragment-based retransmissions. Let
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F be the number of fragments that an image is divided into. Define E[Nfragment] as the
expected number of retransmissions for each fixed-length fragment.

The loose lower bound on delay is obtained by counting the amount of “air time”
when packets are actually transmitting over the channel. This is equivalent to counting the
number of packet transmissions PTT that occur, i.e. the time occupied by the shaded pack-
ets in Figure 2.3. Each fragment will be repeated on average E[Ngragmeny) times. Therefore,

E[N fragmen] - PTT is a conservative and non-overlapping estimate of the reliable per-
packet delivery time. The non-overlapping characteristic means that the per-packet deliv-
ery times can be summed across the F packets. In contrast, the overlapping estimate of
per-packet delay E[N,,. ., ] ' (PTT + RTT) from Equation (2-2) would have precluded
summation of the individual delays. Since all F packet fragments are assumed to be the
same length, then E[Np;omen ] is the same across all packets, then the loose estimate of the
average image delay is given by the product of the number of fragments per image, the
average number of retransmissions per fragment, and P77, i.e. F-E[N fragment] " PTT .

If we fragment the original image size / by a factor F, where H = number of header bits
then each packetized fragment will be size (//F + H) bits. Then Equation (2-1) is revised
into

1

E [N fragment] = (2-4)
S+H
(1 -BER)(F )
The loose estimate of the average reliable image delay is therefore given by
E [Timage] 2F-E[N fragmenl] ‘PTT fragment (2-5)
_ F FrE 1 I+F-H
1 BW 1 BW
(1- BER)("' ) (1- BER)( )
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Equation (2-5) neatly summarizes the various contributions to delay. It can be parti-
tioned into a BER factor (1 - BER)-G’ +4) and a BW factor %’ to emphasize the
independent contributions to delay from the channel noise and the limited channel band-
width respectively. The header overhead is shown to affect both factors.

This loose estimate is a lower bound on latency in two ways. First, it ignores the inter-
stitial spaces shown in Figure 2.3 caused by the inability of a finite image burst to keep the
protocol’s transmission pipe completely filled. The interstitial spaces appear near the tail
end of the image burst, causing partially empty transmission pipes. Second, it is a lower

bound over all protocols, because we have assumed ideal SRP, which minimizes the num-

ber of unnecessary retransmissions, and hence minimizes average transmission time of a

packet.
Table 2. Minimum average delay estimates for fragmented ideal SRP delivep[
of a 20 kbit image as a function of the image fragmentation factor F.
Fragmentation
factor F 10 20 50 100 1000 10000
non-header pay-
load size of packet 2000 1000 400 200 20 2
(bits)
“BER factor” 1E9 6EA4 152 204 334 2.79
“BW factor” 0.042 0.04 0.05 0.06 0.24 2.04
lower bound esti- 2.78E3
mate of ElT gge] 6E7 sec sec 7.61sec | 1.22sec | 0.802sec | 5.69 sec

In Table 2, we calculate a sampling of Equation (2-5) ’s lower bound on E[Tmagel fora
fragmented image as a function of the fragmentation factor F. The parameters BER, H, and
BW have the same values as before, and we assume an image size J = 20000 bits (say a
200x200 pixel small color image compressed to 0.5 bits/pixel).

Table 2 shows that the delay decreases exponentially as F increases, reaching a mini-

mum-delay value F,,, for the fragmentation factor (on the order of F=1000), before rising
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Figure 2.4 Log-log plot of average delay of the Image E[Timagel vs. Image fragmenta-
tion factor F using Equation (2-5) . Image size = 20 kbits, BER = 102, BW
= 500 kbit/s, and header H = 100 bits. A minimum delay of about half a
second emerges around a fragmentation factor of ~300.

again for large F. We plot Equation (2-5) as a function of the image fragmentation factor F
in Figure 2.4. The behavior of Figure 2.4 is governed by the two dominant factors due to
BW and BER. The BER factor declines exponentially as a function of F, while the BW fac-
tor increases only linearly with F. Hence, for very small F (large packets), delay is astro-
nomical due to the BER factor (many retransmissions). However, as F increases (smaller
packets), the retransmission delay due to the BER recedes exponentially, so that smaller
packets help to decrease image transfer latency. As F becomes very large (in the extreme,
1 bit payloads!), the BW factor causes the latency to rise again, due to the overhead caused
by the header H in comparison to the ultra-small payloads.

For the sake of completeness, we next derive a closed-form solution for the minimum-
delay fragmentation value. First, we take the derivative of Equation (2-5) with respect to
F. This results in a quadratic in F which can then be set equal to
zero, ;F(Equationu -5)) = 0. Our optimal F is given by
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Fop = g'm(l_BER).(—I-JI_H‘M(f-BER)) (2-6)

where we have eliminated the second root. F,,,, is shown to be a function of the image
size I, BER, and header overhead H.
Substituting default values, we obtain F,,, = 324. This value can be verified by con-

sulting Figure 2.4, which yields a graphical minimum near F=300. At this value Fopp our
optimal packet size (payload + header) is about 162 bits. The minimal-delay payload is
somewhat surprisingly smaller than the header overhead. This is because the protocol
needs to generate very small packets in order to avoid the exponential delay contributed by
the channel noise, even at the cost of suffering significant header overhead.

The minimum delay at F,, is ~0.53 seconds. If we estimate our real-time delivery
bound to be about 500 msec, then we are just barely meeting our objective. If we assume a
more realistic bound of 100 msec is needed to support “instantaneous” interactivity, then
ideal SRP will fail to meet the interactive delay objective by almost half a second even
under the most optimistic assumptions.

Previous work that derived the optimal packet length has been based on taking the
derivative of a throughput equation with respect to packet length in order to maximize
throughput (for SW [129] and GBN [116]). The maximal-throughput packet length is
found to be primarily a function of BER and header overhead H, though this depends on
the protocol. This is confirmed by our SRP analysis, in which the optimum payload size
1%,,, is found to be only a function of BER and H. Another time-based derivation of opti-
mal packet length minimizes the expected “wasted time” but does not consider header
overhead [89].

Finally, we relate Equation (2-5) to previous work on ideal SRP that has focused on

characterizing the protocol’s throughput performance Nisgp  defined as

_PTT
Nsrp = BT ]

j [78][145). Throughput analyses observe that any given packet’s
packet
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roundtrip time R7T is filled with the transmissions and repetitions of other packets. There-
fore, E[Tpycxe] should only count the actual “air time” necessary to transmit and retrans-

mit a given packet, ie. E[T pscter] = E[N]-PTT. Hence, Ngpp is given by

Moo = PTT
SRP = E[N]-PTT

Nsgp - BW . A simple estimate for the delay of an image / obtained from the throughput

would be —L _ =L.. L op LIFE G ie essentially Equation (2-5)

minus the overhead. Thus, we see that our time-based derivation is closely related to

=P,. The effective channel bit rate available to the sender is

throughput expressions. Our delay-based approach explicitly shows the dependence of
latency on BW, BER, and H. In addition, our time-based reasoning reveals that Equation
(2-5) (and the equivalent throughput-derived delay) underestimates the delay, foreshadow-
ing our analysis of the next section. Reliance on previous throughput-based derivations

would have missed the effect of a partially empty pipe for finite image bursts.

2.4 A tight lower bound on the image transfer latency of ideal
SRP

We develop in this section a more complete estimate of a protocol’s delivery time for a
finite image burst that also incorporates a measure of the idle time caused by a partially
empty transmission pipe. In Figure 2.5, we depict how a large burst of packets correspond-
ing to an image can initially keep the pipe full, under certain assumptions. However, the
tail end of the burst eventually causes interstitial spaces to appear in the delivery stream.
This tail effect occurs regardless of the burst size, and is a function of the roundtrip time
RTT. Our goal is to quantify the contribution of this tail effect to the overall latency.

Define RTT as the roundtrip time after a packet transmission until its acknowledgment
returns, and PTT as the fixed-length packet transmission time. We assume R7T is a con-

stant value in the upcoming derivation. Define the total roundtrip time TRTT as
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Figure 2.5 A finite burst of packets cannot keep the protocol’s transmission pipe com-
pletely full. Assume that the window size W (# packets allowed In the pipe)
and Image burst of length / packets are large enough to Initially keep the
protocol’s plpe full, Le. W2PTT +RTT and I>PTT +RTT , where PTT
and RTT are measured In packet units. Eventually, the final PTT+RTT pack-
ets will be delivered through a partially empty pipe. In the figure, 4, W3,
PTT=1, and RTT=2 equivalent packet lengths. All packets except Py are
delivered correctly the first time. The significance of tpartition @nd ty Is
explained later in this section.

TRTT = PTT +RTT . Define the sender’s window size W as the number of packets that
are allowed to be simultaneously propagating toward the receiver in the transmission pipe.
We optimistically assume that the fixed window size is large enough so that the protocol
can completely fill any roundtrip time with multiple packets. Hence, W needs to exceed

the number of packets that could fit into TRTT, i.e. W > l%_’ .

Furthermore, we assume that only one version of each packet is in the pipe in any
given total roundtrip interval. For example, two retransmissions of a given packet are not
allowed simultaneously in the pipe. Certain ARQ protocols do indeed fill the pipe with
multiple copies of a given packet [13][62][133]. We do not consider such protocols, and
instead note that ideal SRP satisfies our restriction that only one version of each packet

may be allowed in the transmission pipe.
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Each of these packets is formed by fragmenting an image into F packets, where each
packet is of length }’-, +H , counting header overhead H. Given ideal SRP with sufficiently
large windows, then two scenarios are possible. Either the image size / is large enough to
allow ideal SRP to initially fill the transmission pipe, or the image is too small to ever fill
the pipe. In the first scenario, there are enough distinct packets from the fragmented image

to fill the transmission pipe during the first TRTT. This condition can be written as

PTT +RTT

FPTT <1 . Let us define o as the ratio of the total

F-PTT 2TRTT , or equivalently
roundtrip time to image burst size:

_ PTT +RTT

= =F.PTT 2-7)

2.4.1 Image burst is large enough to initially fill the transmis-
sion pipe

We begin by analyzing the case in which o < 1, namely the image is large enough to
initially fill the pipe during one complete roundtrip time 7RTT. For example, Figure 2.5
portrays a situation in which a < 1. The packetized image burst (4 packets long) is larger
than TRTT (equivalent to 3 packets). The packetized image is able to initially fill the pipe,
but only until one of the four packets is correctly received. At that point, the final TRTT (3)
packets would be unable to keep the pipe filled.

As the example suggests, one approach to obtaining a tighter latency bound would be
to try to partition our analysis into two non-overlapping estimates: calculate the delay
accumulated while there is enough image data to keep the pipe full/saturated; then esti-
mate the delivery time of the final “tail” packets through a non-saturated pipe. Without
loss of generality, we can set the window size to W = l_%@l J , which is the mini-
mal window size that still permits a full pipe, provided there is a sufficient amount of

source data.
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24.1.1  Delay due to the first ~W packets that keep the pipe full

We observe that the final W packets will be unable to keep the pipe full. Since the
image is fragmented into F packets, then F-W packets are transmitted under saturated pipe
conditions. These F-W packets are also the first to be correctly delivered. Each of the first
F-W correctly received packets will be retransmitted on average E[N] times, where E[N] is
given by Equation (2-4) . Since the pipe is full, then the expected time per packet is
E[N]-PTT, and the total delay for the F-W packets is given by (F - W)-E[N]-PTT .
This expression matches the conservative PTT-only estimate of the previous section (see

Equation (2-5) ) for the first F-W packets.

24.1.2 Delay due to the last W packets over a partially empty pipe

As the packetized image flows through the pipe, eventually the first moment in time
will arrive when precisely W packets are remaining in the sender’s queue and only one of
these packets still awaits its first transmission. We shall label this time f. We contend
that there exists a critical instant !pansition Telated to fiy that can serve as the partitioning
point which cleanly separates analyses of saturated and non-saturated pipes. First, we
observe that some of the W packets remaining in the tail may already have a history of sev-
eral transmissions by . For example, in Figure 2.5, # represents the first time that pre-
cisely W=3 packets are left in the sender’s queue and one packet (Pg) has yet to start
transmitting. At this instant, packet P; has already been transmitted twice, and Pj3 has been
transmitted once. This history of unsuccessful transmissions could complicate the analysis
if there was memory (in the probabilistic sense) in the ARQ process, so that the probabil-
ity of successful transmission varied depending upon a packet’s repetition history. Fortu-
nately, for any of the W packets, the number of attempts N; (i=1..W) until the first

successful transmission is governed by a geometric distribution, which is known to be

memoryless [154], i.e. Prob[(N;= (M +J)IN;2J)] = Prob[N;= M]. Therefore, a packet
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P;‘s history of J prior unsuccessful transmissions does not affect its future number M of
unsuccessful retransmissions until the first successful attempt. Moreover, the memoryless
property identifies this future distribution as still being geometric.

Based on the memoryless argument, our approach to analyzing the packet tail is to
ignore previous unsuccessful attempts and start our analysis as if W packets had just
arrived in the sender’s queue at time 7,,,;,;,,,. We still need to relate Ypartition 1O ty Figure
2.5 shows that if we backtrack in time from # by one roundtrip time R77, then ;he final
group of W packets can be viewed as initiating their transmissions at
tpartition = tw— RTT. The memoryless property permits us to ignore any unsuccessful
attempts prior t0 .40, SO that the final W packets appear from a probabilistic perspec-
tive as if they’re starting transmissions for the first time.

In the final group of W delivered packets, there will always be one “last” packet which
is the final one to be correctly delivered. Let N, be defined as the number of transmis-
sions experienced by this last packet. First, we would like to determine its distribution
Prob[N,,,= M]. From the distribution, we can find the average number of transmissions
E[N 45, which is useful for deriving the delivery time of the entire burst of W packets.

If N; (i=1..W) represent the number of repetitions for each of the independent and iden-
tically distributed W packets, then N, ., = max(N,, N,, ..., N;;). Most basic probability
texts show how to obtain the distribution of N, from the distributions of N;. We mention
the salient steps here. The generic geometric random variable N is used to represent the

ii.d. geometric N;. First, we find the cumulative distribution function for Niygse:
Prob[N,,,,SM] = Prob[N,<M, ..., Ny, <M] = {Prob[N s M]}¥ (2-8)

Next, we obtain the probability distribution of Ny, from the c.d f.:
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Prob[N,,,= M] = Prob[N,,,,<M] - Prob[N,,,, <M -1]

(2-9)
= [Prob[N <M1 - [Prob[N <M - 1]}

Let P, represent the probability of an error-free (I/F + H)-bit packet, defined by

P, = (1-BER)""*¥ . The c.df. of Nis given by
M .
Prob[N <M] = E (1-P,)~ ! ‘P, (2-10)

im]

Finally, the expected value of Ny, can be found from Equation (2-9) and Equation (2-
10) :

E[N;p5] = Z M - Prob[N,,,, = M) (2-11)
M=l
The expected time required to transmit the last packet is simply the product of the
expected number of repetitions and the total roundtrip delay TRTT per repetition, i.e.
E[N,.5]) - (PTT + RTT). This expression also represents the delivery time for the entire
set of W packets, because the last packet by definition is delayed the longest and therefore
spans the delivery periods of each of the other W-1 packets.

Note that by using the concept of a “last” packet to focus our analysis, we have
avoided the possibly complex task of having to quantify the interstitial spaces that arise in
a partially empty pipe. In addition, we have assumed that the protocol does not try to fill
the interstitial spaces with multiple copies of a packet, as stutter ARQ is designed to do
[13][62][128][133]. To support multi-copy retransmission, ideal SRP would have to be
modified to recognize when a pipe is about to become idle, and would then have to initiate
a specific stuttering strategy. This would likely increase E[N,,,], but would also manage to

reduce the latency, because the additional repetitions actually improve the speed of deliv-
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ery over a partially empty pipe in a single-user environment. We do not pursue this possi-

bility further.

2.4.1.3 Overall tight bound estimate on image transfer delay

Adding the two contributions to delay from the saturated pipe and the non-saturated
pipe from the precéding two subsections, we obtain the following estimate of the delivery

latency for large images:
E[T o] 2 (F - W) - E[N] - PTT + E[N,,,,) - (PTT + RTT) (as1)  (2-12)

The right hand side of Equation (2-12) is a lower bound on the image delay for several
reasons. First, we have neglected any retransmissions prior to ¢ partition 85SOCiated with the
final W packets, which will contribute to the delay. Second, we assumed that the window
size was large enough to permit a full pipe, which may not happen in practice. Third, we
failed to include in Equation (2-12) how long the “last” packet has to wait in the sender’s
queue after 1,,,..,;,, before it starts its retransmission cycle. Since the “last” packet could
turn out to be the last in the sequence of W packets to begin transmitting after L oaritions
then this packet will have to wait up to (W - 1) PTT seconds (almost one full TRIT)
before its retransmission cycle can start. The term E[N,,,] - (PTT + RTT) only measures
the delay due to the retransmission cycle, and fails to capture this waiting time.

Equation (2-12) is a tighter bound on the image transfer latency than Equation (2-5)
because the effect on delay due to a partially empty pipe is included. Also, the assumption
of ideal SRP makes Equation (2-12) a lower bound over all protocols.

We should note that Equation (2-12) measures the delay between the start of image
transmission and the final return to the sender of the last packet’s acknowledgment. The

perceived delivery time measured from sender to receiver will differ because the final

return trip (actually, there may be several attempts to return the last packet’s acknowledg-
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ment on the reverse channel) of the last acknowledgment is not included in the sender-to-
receiver delivery time. We do not pursue this alternative definition of image transfer

latency.

2.4.2 Image burst is too smalli to ever fill the transmission pipe

When a> 1, then the image size is too small to initially fill the pipe during the first
TRTT. The partially empty pipe suggests again that we apply a “last-packet” latency anal-
ysis. First, let W = lﬂ% J , S0 that the window size W is large enough to permit a
full pipe, even though there is not enough image data. There exists a “last” packet among
the F image fragments which is the final one reliably delivered. Define the number of
transmissions of this last packet as Nig(a»1) = max(Ny,N,, ..., N). Following the same
reasoning as before, the distribution of the number of transmissions N, for o> 1 is given

by
Prob[N a5 1= M] = [Prob[N < M11" - [Prob[N <M -1]] (a>1) (2-13)

Prob[N <M] can be obtained from Equation (2-10) . E[N,,,q> 1] can be obtained
from Equation (2-13) . Thus, the delay for a small image satisfies the following:

E[T inogel 2E[N g0 > 1)) - (PTT + RTT) (a>1) (2-14)

The right hand side of Equation (2-14) is a lower bound for many of the same reasons
that Equation (2-12) was a lower bound. However, Equation (2-14) differs from Equation
(2-12) in two ways: the full-pipe term (F - W) - E[N] - PTT has been eliminated; and the
distribution of N, differs from N, 1y thereby subtly affecting the second term
E[Ny45]) - (PTT + RTT). Together, Equation (2-12) and Equation (2-14) constitute the

“tight” bound on the image transfer latency.
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2.5 A comparison of the tight and loose lower bounds on
latency

How much more accurate is the “tight” bound of Section 2.4 than the “loose” bound of
Equation (2-5) ? To answer this question, we first fix the parameters to their default values:
=20 kbits, wireless BW=500 kb/s, H=100 bits, and BER = 102, For the loose bound, fix-
ing these quantities means that the estimated delay is only a function of the image frag-
mentation factor F, which was graphed in Figure 2.4. In contrast, the delay of the tight
bound is still a two-dimensional function of RTT and F. Our approach is to choose a few
representative values of RTT, and then plot the delay given by the tight bound as a function
of F for each fixed RTT. Such an approach permits the loose bound shown in Figure 2.4 to
be directly compared with the tight bound on the same graph.

2.5.1 Average image transfer latency

Figure 2.6 shows three log-log curves that plot average image transfer latency as a
function of fragmentation F. The latency curve L evaluates the loose bound described by
Equation (2-5) at the default parameters, and is almost identical to Figure 2.4, except that
only values F 250 are displayed.l Two graphs of the tight bound, T; and T, are also
shown corresponding to different values of RTT. T} is obtained by evaluating Equation (2-
12) and Equation (2-14) at RTT=100 ms, while T, corresponds to R77=10 ms. We also
evaluated the tight bound at RTT=1 ms, though these results are not pictured because they
follow the loose bound so closely as to be visually indistinguishable. We chose these val-
ues of RTT to roughly correspond to real-world network conditions. A value of 100 ms for

RTT approximates the end-to-end roundtrip delay experienced by packets across a multi-

1. Small values of F<50 caused numerical convergence problems in the evaluation of the tight bound’s
E[N},4] (see Equation (2-11) ). For comparison purposes, both loose and tight bounds were evaluated
over the same range of F>=50.
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Figure 2.6 Log-log plot of the loose lower bound delay estimate (curve L) and two
tighter bound delay estimates (curves T, (RTT=100ms) and T,
(RTT=10ms)) as functions of the Image fragmentation factor £ The
loose curve L Is obtalned from Equation (2-5) and reproduces Flgure
2.4, but over a slightly smaller range of F. The more accurate delay esti-
mates shown in T, and 7, are obtained from Equation (2-12) and Equa-
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