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Abstract

Visual servoing, i.e. the use of the vision sensor in feedback control, has been of increasing
interest. Work has been done by applications in autonomous driving, manipulation, mobile
robot navigation and surveillance. However, the theoretical aspects of the problem have not
received much attention. Furthermore, the problem of estimation from the vision measurements
has been considered separately from the design of the control strategies. Instead of addressing
the estimation and control problems separately, we attempt to characterize the types of control
tasks which can be achieved using only the quantities directly measurable in the image, bypassing
the estimation phase. We consider the navigation task for a nonholonomic ground mobile base
tracking an arbitrarily shaped continuous ground curve. This tracking problem is formulated
as one of controlling the shape of the curve in the image plane. We study the controllability
of the system characterizing the dynamics of the image curve, and show that the shape of the
image curve is controllable only up to its “linear” curvature parameters. We present stabilizing
control laws for tracking piecewise analytic curves, and propose to track arbitrary curves by
approximating them by piecewise “linear” curvature curves. Simulation results are given for
these control schemes. The observability of the curve dynamics by using direct measurements
from vision sensors as the outputs is studied and an Extended Kalman Filter is proposed to
dynamically estimate the image quantities needed for the feedback controls from the actual

noisy images.

1  Introduction

Sensing of the environment and subsequent control are pertinent for the navigation of an au-
tonomous mobile agent. In spite of the fact that there has been an increased interest in the use
of visual servoing in the control loop, the sensing and control problems have usually been studied
separately. The literature in computer vision has mainly concentrated on the process of estimating
the necessary information about the state of the agent in the environment and the structure of
the environment, e.g:, [7] [9] [20]) [24]. The control issues are often not relevant or are addressed

*This work was supported by ARO under the MURI grant DAAH04-96-1-0341. We would like to thank Dr.
Stefano Soatto for the formulation of this problem given in the Al/Robotics/Vision seminar at UC Berkeley, October
1996.



separately. On the other hand, control approaches typically assume the full specification of the
environment and the task as well as the availability of the state estimate of the agent.

The dynamic vision approach proposed by Dickmanns, Mysliwetz and Graefe [2] [3] [4] makes the
connection between the estimation and control tighter by setting up a dynamic model of the evolu-
tion of the curvature of the road in a driving application. However the curvature estimates are used
only for the estimation of the state of the vehicle with respect to the road frame where the control
objective is formulated. Control for steering along a curved road directly using the measurement
of the projection of the road tangent and it’s optical flow has been previously considered by Raviv
and Herman [17]. Stability and robustness issues have not been addressed, and no statements have
been made as to what extent these cues are sufficient for general road scenarios. A visual servoing
framework proposed in [5) [18] by Espiau ef al addresses the control issues directly in the image
plane and outlines the dynamics of certain simple geometric primitives. Further extensions of this
approach for nonholonomic mobile platforms has been made by Pissard-Gibollet and Rives [16].
Generalization of the curve tracking and estimation problem outlined in Dickmanns for arbitrarily
shaped curves addressing both the estimation of the shape parameters as well as control has been
explored in [6] by Frezza and Picci. They used an approximation of an arbitrary curve by a spline,
and proposed a scheme for recursive estimation of shape parameters of the curve, and designed
control laws for tracking the curve.

For a theoretical treatment of the problem, the understanding of the dynamics of the image of an
arbitrary ground curve is crucial. In a computer vision seminar given at Berkeley in October 1996,
Soatto [21] formulated the problem of tracking as that of controlling the shape of the ground curve
in the image plane. In spite of the fact that the system characterizing the image curve seems to be
infinite-dimensional, we show that for linear curvature curves the system is finite dimensional. Since
the control problem is formulated as one of controlling the image curve dynamics, we prove that
the controllabilty distribution has dimension 3 and show that the system characterizing the image
curve dynamics is fully controllable only up to the linear curvature term regardless of the kinematics
of the mobile robot base. The controllability results indicate that the parameters characterizing
the images of linear curvature curves (to be defined in Section 2.2.3) can be controlled using the
driving and steering inputs. We show that the dynamics of the images of linear curvature curves
can be transformed to a canonical chained-form, which already has existing point-to-point steering
control scheme in Murray and Sastry [14] [15].

We formulate the task of tracking ground curves as a problem of controlling the image curves in
the image plane. We design stabilizing feedback control laws for tracking general piecewise analytic
curves (for general treatments of stabilizing trajectory tracking control of nonlinear systems, one
could refer to, e.g., [8] [25]). We also propose to approximate general curves by piecewise linear
curvature curves. We present how to compute the image parameters for such approximating virtual
curves so as to obtain the appropriate controls to track them. Simulation results are given for these
control schemes.

We also study the observability of the curve dynamics from the direct measurements of the vision
sensor. Based on the sensor models, an extended Kalman filter is proposed to dynamically estimate
the image quantities needed for the feedback control. We thus obtain a complete closed-loop vision-
guided navigation system for non-holonomic mobile robots.

Paper Outline. Section 2 introduces the dynamics of image curves, i.e. how the shape of the
image of a ground curve evolves in the image plane. Section 3 studies controllability issues for the
dynamic systems obtained in Section 2. Section 4 shows how to formulate specific control tasks for



the mobile robot in the image plane. Corresponding control designs and their simulation results
are also presented in the same section. Section 5 develops an extended Kalman filter to estimate
on-line the image quantities needed for the feedback control. Observability issues of the sensor
model are also presented. Some simulations and animations for the entire closed-loop vision-guided
navigation system are presented in Section 6. Section 7 concludes the report with some discussion

and directions of future work.

2 Curve Dynamics

We derive equations of motion for the image curve under motions of a ground-based mobile robot.
We begin with a unicycle model for the mobile robot and consider the general cases later.

2.1 Mobile Robot Kinematics

Consider the case where g/, (t) € SE(3) is a one parameter curve (parameterized by time) repre-
senting a trajectory of a unicycle: more specifically, the rigid body motion of the mobile frame F;,
attached to the unicycle, relative to a fixed spatial frame Fy, as shown in the Figure 1.
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Figure 1: Model of the unicycle mobile robot.

Let psm(t) € R3 be the position vector of the origin of frame F;, from the origin of frame Fy. The
homogeneous coordinates! of a point g attached to the unicycle frame F;, in spatial frame F; are
given by

0/(t) = gym(Bam(t) = ( Bmlt) prm®) ) m (1) ()

where g¢7,gm € R* are the homogeneous coordinates of the point g relative to frames Fy and F;,
respectively, and

cosf(t) O siné(t)
Rym(t) = 0 1 0 (2)
—sinf(t) 0 cosf(t)

! An introduction to the use of homogeneous coordinates to describe rigid body motion is given in [14].



represents the rotation of the mobile frame Fy, with respect to Fy and the rotation angle 6 is
defined in the counter-clockwise sense about the ys-axis, as shown in Figure 1. For the unicycle
kinematics, 6(t) and psm(t) satisfy:

vsin @
i’!m = 0

vcosf (3)
§ = w

where the steering input w controls the angular velocity, 6; the driving input v controls the linear
velocity along the direction of the wheel. From (1) (2) and (3), we thus have

—wsind 0 wcos® wvsinf

. Rpm(t) pym(®) \ _ 0o 0 o0 0
gfm—( 0 0 “ | —-wcosf@ 0 —wsind vcosf |’ (4)
0 0 0 0

We then express the velocity of the point ¢ in the (instantaneous) mobile frame Fi,:

0

gm = gj_,:.gfm‘Im = — 4m- (5)

0

o000 o
cooc o &t
oc o0

Now, suppose a monocular camera mounted on the mobile robot which is facing downward with
a tilt angle ¢ > 0 and the camera is elevated above the ground plane by distance d, as shown in
Figure 2. The camera coordinate frame F, chosen for the camera is such that the z-axis of F; is
the optical axis of the camera, the z-axis of F. and z,,-axis of F,, coincide, and the optical center
of the camera coincides with the origins of both Fy, and F..?

Image Plane

z=1

.
.
;
(\!) Tt

Figure 2: The side-view of the unicycle mobile robot with a camera facing downward with a tilt
angle ¢ > 0.

Then, through the adjoint transformation which transforms the twists from the mobile frame F,
to the camera frame F,, the velocity of a point ¢ attached to the camera frame F; is given in the

2Without loss of genex.-ality, we assume the camera is in such a position that such a choice of coordinate frame is
possible.



(instantaneous) camera frame by

0 wsing wcoso 0
S _ | —wsing 0 0 vsin @
9 = ImcIymImImede = | _,cos¢ 0 0 veosg | ¢ (6)
0 0 0 0
Ry, O . .
where gme = 0 1 and R, € SO(3) represents the rotation of the camera frame F. relative

to the mobile frame F,, (by the tilt angle ¢).

Now extracting the individual coordinates of g in the camera frame F, and (6) can be rewritten as

z 0 ysin ¢+ zcos ¢
gy | =1 sing |v+ —zsing w. (7)
z cos ¢ —zCcOosQ

For a unit focal length camera, the image plane is z = 1 in the camera coordinate frame, as shown
in Figure 2.

2.2 Image Curve Dynamics Analysis

In this section, we consider a planar curve " on the ground, and study how the shape of the image
of the curve I evolves under the motion of the mobile robot. For the rest of this paper, we make

the following assumptions:
Assumption 1 The ground curve T' is analytic.
Assumption 1 means I" can be locally expressed by its convergent Taylor series expansion.

Assumption 2 The ground curve T is such that it can be parameterized by y in the camera coor-
dinate frame F..

Assumption 2 guarantees that the task of tracking the curve I' can be solved using a smooth control
law. For example, if the curve is orthogonal to the direction of the heading of the mobile robot,
such as the curve T’y shown in Figure 3, it can not be parameterized by y. Obviously, in this case,
if the mobile robot needs to track the curve I';, it has to make a decision as to which direction to
track the curve: turning right or turning left. This decision cannot be made using smooth control
laws.

2.2.1 Relations between Orthographic and Perspective Projections

According to Assumption 2, at any time t, the curve I' can be expressed in the camera coordinate
frame as (v-(¥,1),¥,7:(y,t))7. Since I is a planar curve on the ground, 7.(y,t) is given by
d+ycoso

T:(y:t) = TR (8)
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Figure 3: An example showing that a ground curve I'; cannot be parameterized by y, while the
curve I'; can be.

which is a function of only y. Thus only vz (y,t) changes with time and determines the dynamics
of the ground curve. In order to determine the dynamics of the image curve we consider both
orthographic and perspective projection cases and show that under certain conditions they are
equivalent.

The orthographic projection image curve of I' in the image plane z = 1 given by (7z(v,t),y,1)T is
denoted by I', as shown in Figure 4.

Fe

Figure 4: The orthographic projection of a ground curve on the z = 1 plane. Here {; = 7, and
§2= %-

On the other hand, the perspective projection image curve, denoted by A, is given in the image

plane coordinates by
£ J— X vt i ¢
X(y1 t) - :;T - ‘Va-l-y.cs:; . (9)

_ sin ¢
Y(y1t) %— +ycos¢

Note in equation (9) that Y (y,t) is a function of y alone and that the derivative of Y (y,%) with
respect to y is given by
oY (y,t) _  dsing
0y ~ (d+ycos¢)?

so long as ¢ > 0 and y # —d/cos¢. Using the inverse function theorem, locally, the image curve
A can be re-parameterized by Y when %3—“1 # 0. A can then be represented by (Ax(Y,t),Y)T

(10)

6



in the image plane coordinates, where the function Ax(Y.t) can be directly measured. However,
since, as we will soon see, for the given ground curve T, it is easier to get an explicit expression
for the dynamics of its orthographic image I' than the perspective projection image A. Thus, it
will be helpful to find out the relations between these two image curves T and A, i.e. the relations
between the two functions 4, and Ay.

First, let us simplify the notation. Define

O=(w.1) i=0,1,2,...

O Ax (Y, t .
Gi+1 = —3}&—) i=0,1,2,... (11)

and

£ = (@&...&)eR  £=¢°
¢ (€1, C2s - G)T € R ¢=(>=. (12)

If vz(y,t) is an analytic function of y, ¥-(y,t) is completely determined by the vector § evaluated
at any y; similarly for Ax(Y,t). Thus, the relations between I' and A are given by the relations

between £ and ( for the case of analytic curves.

Lemma 1 (Equivalence of £, { Coordinates)

Consider the orthographic projection image curve ' = (72(y,t), 5. 1)T and the perspective projection
image curve A = (Ax(Y,t),Y)7, with € and ¢ defined in (11) and (12). Assume that the tilt angle
¢ >0 and y # —d/ cos¢. Then for any fired y,

(" = Aa(y)€" VneN (13)

where An(y) € R**™ is a nonsingular lower triangular matriz.

Proof We prove this lemma by using mathematical induction. For n = 1, from (9), ¢! =
T:;—"%’gfl, so that the lemma is true for n = 1. Now suppose that the lemma is true for all n < k,

i.e.

" = A (y)¢" n=12,...,k (14)
where all A,(y) is 2 nonsingular lower triangular matrix. Clearly, in order to prove that for n = k+1
the lemma is still true, it suffices to prove that (i1 is a linear combination of g+l e

k+1

G = 3 Bily): (15)

=1

Since Ag41(y) is nonsingular, Bx41(y) needs to be non-zero. Differentiating (14) with respect to y,
we have

OCk QY (yst) _ 41 ook o¢*
ay gy e A,
' k
L 0 _ AW e Axly) 06 (16)

= oY (w.t) Y (v.t)
oYy 3(: A2 dy

-1



ko
where the last entry of the column vector %—g}-,- is Cr41 and

ock -

o= (et (17)

Therefore, according (16), (x4 is a linear combination of £€¥*! and, since Ax(y) is a k xk nonsingular

lower triangular matrix, Ak (y)kr # 0, the coefficient B4 (y) = % is non-zero. m}
.4

Example We calculate the matrix A4(y) € R*** to be

sin ¢
p e co; r “ 0 , 0 0
cos cos
4 T4 —U?—_ 0 0 4
¢ = 0 0 d+ycos¢)® 0 & (18)
sin¢
0 0 3 (d+ycosp)?cosp  (d+y cosd)®
d3 sin® ¢ d3 sin® ¢

Lemma 1 tells us that under certain conditions, the dynamics of the system &£ for the orthographic
projection image curve and that of { for the perspective projection image curve are algebraically
equivalent. We may obtain either one of them from the other. ¢ are quantities that we can directly
measure from the perspective projection image A. Our ultimate goal is to design feedback control
laws exclusively using these image quantities. However, as we will soon see, it is much easier to
analyze the curve’s dynamics in terms of £, the quantities in the orthographic projection image. It
also turns out to be easier to design feedback control laws in terms of £. For these reasons, in the
following sections, we choose system £ (i.e. the orthographic projection image) for studying our
problem and design control laws since it simplifies the notation.

2.2.2 Dynamics of General Analytic Curves

While the mobile robot moves, a point attached to the spatial frame F; moves in the opposite
direction relative to the camera frame F,. Thus, from (7), for points on the ground curve I' =

(Y=(9, ), ¥ 72(y))T, we have

Yz(y,t) = —(ysin ¢ + 7, cos p)w. (19)
Also, by chain rule
. _ 0v: , 07z .
¥=(t) = 7+ By Y
= (—92’5+ %(—(vsinqb— wsin ¢)) (20)
T8t Oy 7= ’

The shape of the orthographic projection of the ground curve I' = (v-(y,t),y,1)T then evolves in
the image plane z = 1 according to the following Riccati-type partial differential equation 4

9=

% = —(ysin¢ + v, cosp)w + 3y (vsin ¢ — yzwsin @). (21)

ot
3 Ax(y)xx is the (k, k) entry of the matrix Ax(y).

_ *This equation is called a Riccati-type PDE since it generalizes the classical well-known Riccati equation for the
motion of a homogeneous straight line under rotation around the origin [6] [7].
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Using the notation £ from (11) and the expression (8) for 4., this partial differential equation can
be transformed to an infinite-dimensional dynamic system £ through differentiating equation (21)
with respect to y repeatedly:

(& ) [ &&asino+deotd+ g [ Easing
& §i€ssind + E3sin g+ g §3sin ¢
€3 €184 5in @ + 36263 5in & &ysing
. =- : w+ : v (22)
éi &1&irr18in ¢ + gi(&2, ..., &) &iy15ind
\ /N 5 )\
where g;(&2, . ..,&;) are appropriate functions (polynomials) of only &3, ...,§. In the general case,

the system (22) is an infinite-dimensional system.

Comments. It may be argued that the projective or orthographic projections induce a diffeo-
morphism (so-called homography, in the vision literature Weber et al [26]) between the ground
plane and the image plane. Thus, we could write an equation of the form (22) for the dynamics of
the mobile robot following a curve in the coordinate frame of the ground plane or road. These could
be equivalent to the curve dynamics (22) described in the image plane through the push forward
of the homography. We have not taken this point of view for reasons that we explain in Section 3.

2.2.3 Dynamics of Linear Curvature Curves

In this section, we look at a special case: the ground planar curve I' is a linear curvature curve
(defined below). Its image dynamics £ can then be reduced to a three-dimensional system, which
turns out to be controllable (as will soon be shown in the following sections).

Definition 1 We say that a planar curve has linear curvature if the derivative of its curvature
k(s) with respect to its arc-length parameter s is a non-zero constant, i.e. k'(s) = ¢ # 0. These
curves are also referred to as clothoids. If k'(s) =0, the curve is a constant curvature curve.

Note that, according to this definition, both straight lines and circles are constant curvature curves,
but not linear curvature curves. Constant curvature curves can be regarded as degenerate cases of
linear curvature curves. For linear curvature curves, we have

Lemma 2 For a ground curve T of linear curvature, i.e. k'(s) =c # 0, for any ¢ > 4, & can be
ezpressed as a function of §;,€,, and &3 alone.

Proof Consider the ground curve I' = (vz(y,t), ¥, 7-(y,t))T where 7.(y,t) is given in (8). For
the arc-length parameter s and the curvature %, the following relationships hold

TloN — 07 2 97: 2

s(y)—\/(a—y) +1+(0y) (23)
/ " a32 z

PP L) R ) S .5 (24)

W (e )



where a is defined as @ = \/1+cot?é = (sin®)~!. Thus the derivative of the curvature k with
respect to the arc-length parameter s is given by

3 2 2
Ky _ w3 - 3% (5¥)

k' (s) = = 3 =c. (25)
s'(y) (a2 + (%:5_)2)
Using the definition of £;, from (25) & can be expressed by
_ cla® +€3)%/a+ 3663
fa= TR (26)
Therefore, &, is a function of &;,£;, and &3 alone. According to the definition of &;, it follows that,
for all ¢ > 4, &; are functions of &;,&;,and &3 alone as well. (m]

Using Lemma 2, for a ground linear curvature curve I', the dynamics of its orthographic projection
image T', i.e. system (22) for £, can then be simplified to be the following three-dimensional system

€

& &261sin ¢+ dcot g+ Fo €xsin @
§ | =-| && sing+&sing+ 15 |w+ | &sing |o (27)
€3 £4€1sin ¢ + 362€3sin ¢ €qsin @

where &, is given by (26).

Combining Lemma 1 and Lemma 2, we have the following remark

Remark 1 For a ground curve of linear curvature, the dynamics of ¢ for the perspective projection
image of the curve are completely determined by three independent states (3, (2, (3, or equivalently,
for i > 4, (i is a function of only (1,Ca, and (3. The two systems (3 = ((1,(2,(3)7 and €3 =
(€1,&2,€3)T are equivalent and related by equation (18). This implies, for instance, that these two
systems have the same controllability.

Comments In the case that I" is a constant curvature curve, i.e. k’(s) = 0, one can show that
&3 is actually a function of only &1, &, so for all &;,¢ > 3 are functions of only &;,&,. There are then
only two independent states &;, £, for the dynamics of system &.

Linear curvature is an intrinsic property (which is preserved under Euclidean motions i.e. SE(2))
of planar curves. Thus, the expression (26) always holds under all planar motions of the robot.
However, some other seemingly natural and simple assumptions that the literature has taken for the
ground curve (so as to simplify the problem) might fail to be preserved under the robot’s motions.
For example, if, in order to simplify (22), one assumes &; = 0 for ¢ > 4, i.e. vz(y,1) is of the form

vz (y, t) = E1(yo,t) + E2(¥0,t) (¥ — o) + %Ea(yo» t)(y — vo)? (28)

This property is not preserved under rotations. More generally, it is actually not an intrinsic
property for a planar curve that its Taylor series expansion has a finite number of terms. Therefore,
one cannot simplify system (22) to a finite-dimensional system by assuming that the curve’s Taylor
series expansion is finite (which might be the case only at special positions).®

SEssentially, it only “simplifies” the initial conditions of the system (22), not the system dimension.

10



3 Controllability Issues

We are interested in being able to control the shape of the image curves. From the above discussion,
this problem is equivalent to the problem of controlling system £ (22) in the unicycle case. For linear
curvature curves, the infinite-dimensional system £ is reduced to the three-dimensional system &3
(27). In this section, we look at controllability of such systems. If the systems characterizing the
curve I' are controllable, that essentially means that given our control inputs we can steer the mobile
base in order to achieve desired position and shape of the curve in the image plane. Controllability
of system (27) is directly checked in Section 3.1; controllability of system (22) is obtained through
studying the controllability for arbitrary ground-based mobile robots in Section 3.2.

Once again, using the homography between the image plane and the ground plane the controllability
could be studied on the ground plane alone. We have chosen not to do so for 2 reasons:

e We want to use vision as a servoing sensor in the control loop. Studying the ground plane
curve dynamics alone does not give explicit control laws (for tracking) as we will obtain;

e One could generalize to the case of a camera mounted on an aircraft (a 3D mobile robot)
performing visual servoing. In this case there is no fixed homography between ground curves

and the image plane.

Note that € and ¢ are still functions of y (or ¥'). They need to be evaluated at a fixed y (or Y).
Since the ground curve T is analytic, it does not matter at which specific y they are evaluated (as
long as the relation between £ and ¢ is well-defined according to Lemma 1).% However, evaluating
€ or ( at some special y might simplify the formulation of some control tasks.

Image Plane
z=

~..
S

Figure 5: The orthographic projection image of the point A where the wheel touches the grounci.

For example, suppose a mobile robot is to track the given ground curve I'. According to Figure
5, let A’ be the orthographic projection image of the point A where the wheel of the mobile robot
touches the ground. Obviously, the coordinates of A’ are given by (0,—dcosg,1)T. When the
mobile robot is perfectly tracking the given curve T, i.e. the wheel keeps touching the curve, the
orthographic projection image I' = (vz(y,t), ¥, 1)7 of the curve I should satisfy

')r(ya t)|y=—dcosd> =0. (29)

$For analytic curves, there is a one-to-one correspondence between the two sets of coefficients of the Taylor series
expanded at two different points.

11



Furthermore, the tangent to the curve I' at y = —dcos ¢ should be in the same direction as the
mobile robot. This requires

Ov=(y. t
_by_)'ly=—dcose =0. (30)

Thus, if £ is evaluated at y = —d cos ¢, the task of tracking I' becomes a control problem of steering
both & and & to O for the system (22). For these reasons, from now on, we always evaluate £ (or
() at y = —dcos ¢ unless ezplicitly stated.

3.1 Controllability in the Linear Curvature Curve Case
If the given ground curve I is a linear curvature curve, the dynamics of its image is given by (27).

Theorem 1 (Dimension of Controllability Lie Algebra)
Consider the system (27)

&= fiw+ fv (31)
where the vector fields (fi, f2) are
§i&2sing+deotd + o £;sin ¢
fi = = | &&ssing+EEsing+ ’;,,1.—4, fo=] &sing (32)
&1€qsin @ + 382€3sin @ §4sin ¢

and &4 = cla?+8)°[at368F If¢#0, and y = —dcos ¢, then the distribution A spanned by the Lie

a?+é€5

algebra L(f), f2) generated by (f1, f2) is of rank 3 when ¢ # 0, and is of rank 2 when ¢ = 0.

Proof Directly calculate the Lie bracket [fj, f2]

[f1, f2] = (=1,0,0)". (33)
The determinant of matrix (fi, fo, [f1, f2]) is
det(fl1f2a[f17f2]) = _C(a’2+§§)3/a3‘ (34)

Therefore, the distribution Az spanned by L£(fi, f2) is of rank 3 if ¢ # 0, and of rank 2if ¢c=0. D

Comments Since A is of full rank at all points, it is involutive as a distribution. Chow’s
Theorem [14] states that the reachable space of system (27) for &2 is of dimension 3 when ¢ # 0,
and 2 when ¢ = 0. This makes sense since, when ¢ = 0, i.e. the case of constant curvature curves,
there are only two independent parameters, &; and &, needed to describe the image curves, the
reachable space of such system can be at most dimension 2.

In the next section, we study the general case and show that, for an arbitrary analytic ground
curve under the motion of an arbitrary mobile robot, the dimension of the reachable space of the
system £ (and () is at most 3. This highlights the importance of Theorem 1 from two aspects:
the controllability is at most 3 for controlling the shape of the image of an arbitrary curve, which
means linear curvature curves already capture all the features (51,52,53)T that may be totally
controlled; on the other hand, any other nonholonomic mobile robot cannot do essentially “better”
in controlling the shape of the image curve than the unicycle.

12



3.2 General Case

In this section, we study how the image of an arbitrary (analytic) ground curve changes under the
motion of an arbitrary ground-based mobile robot. Since the dynamics of the mobile robot are now
assumed to be general, one can no longer get an explicit expression of the dynamics of the system £
as we did in the unicycle case. However, the set of all possible motions of any ground-based mobile
robot, regardless of the dynamics, turns out to be in a same space: i.e. the group of planar rigid
body motions SE(2). Denote this group by G.

There exists an explicit representation for G in the camera coordinate frame F. Choose n =
(0,cos ¢, — sin$)T, which, in the camera coordinate frame F;, is an orthonormal vector to the
ground, and choose vectors e;, ez such that (n, ey, e;) forms an orthonormal basis for the camera
coordinate frame. Thus, in the camera coordinate frame, the matrix M which describes the rotation
of the mobile robot about the y,,-axis is given by

1 0 0 nT
M = (n,e1,e2) | 0 cosf -—siné el (35)
0 sin@ cosé el

where 8 is the rotation angle. Each motion g € G (including rotation and translation) then can be
represented by three parameters (8, a;, a2) as the following transformation

&

=go

z
=M| y | +a1e1 + azer. (36)

L @
N 8

Consider a planar analytic curve T’ = (7z(y). ¥, 7=(y))7 in the camera coordinate frame F. where
v-(y) is expressed by Taylor series expansion at y = —dcos ¢ as:

§, dcos¢
Z

Then after motion g, according to equation (36), the new parameterization 4., § of the curve can
be written as

y+dcosg) L. (37)

Yo = hl(y1 6,a1,a2) (38)

g = h?(yaev 0’1,04'2) (39)

for some smooth real functions h; and hy which satisfy hy(y,0,0,0) = v-(y) and h2(y,0,0,0) = y.
By Assumption 2, h3(y, 8, a1, a2) is invertible as a function of y. Thus,

IS

bz = hi(h31 (3,0, 1,02),0, a1, 02) (40)
= h(g,e,al,az) (41)

for some smooth real function A which satisfies h(y,0,0,0) = v,. Now we can expand ¥, at
i = —d cos ¢ the same as (37) and get

Y=(9) = Z& dcf)s,¢( + dcos¢)'~1. (42)
i=1

Clearly, each coefficient 5,( —dcos¢) = —’”—(3’—'1 is a function of (8, @y, az). Therefore £ may be

parameterized by 6, a;, and a2 and the reachable space (or the configuration space) of £ is at most
three-dimensional. We have proved the following theorem:
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Theorem 2 (Dimension of Controllability Lie Algebra for Arbitrary Planar Mobile
Robot)

Consider an arbitrary ground-based mobile robot and an arbitrary ground analytic curve I' =
(72(y). ¥, 7:(y))T with v, given by (8). € is defined as the vector of the coefficients of the Tay-
lor series of vz(y) ezpanded at y = —dcos@,” Then (i) the (locally) reachable space of € under the
motion of the mobile robot has at most 3 dimensions; (ii) if under the motion of the mobile robot, £
(and C) is also a dynamic system, the rank of the distribution spanned by the Lie algebra generated
by the vector fields associated to such a system is at most 3.

Combining this theorem with the previous results about the unicycle and the linear curvature
curves, we have the following corollaries:

Corollary 1 Consider a linear curvature curve (i.e. k'(s) = ¢ # 0) and an arbitrary mazimally
nonholonomic ground-based mobile robot, the reachable space of €3 (and (3) under the motion of
the robot is (locally) of dimension 3. Furthermore, if under the motion of this mobile robot, €3
(and (3) is itself @ dynamic system, then the rank of the distribution spanned by the Lie algebra
generated by the vector fields associated to such a system is ezxactly 3.

This corollary is true because, for a special nonholonomic mobile robot: the unicycle, according
to Theorem 1, the local reachable space has exactly dimension 3 in the case of linear curvature
curves. For any two maximally nonholonomic ground-based mobile robots, their motion spaces are
the same as SE(2). Thus they have the same ability in controlling the shape of the image curve.

In the case of the unicycle, as already derived in section 2.2.2, £ is a dynamic system given by (22),
therefore

Corollary 2 The rank of the distribution spanned by the Lie algebra generated by the vector fields
associated with the system (22) is at most 3. In the case of linear curvature curves, the rank is
exactly 3 (as previously stated in Theorem 1).

Comments In the case of constant curvature curves, there are only two independent parameters
& and & needed to determine the image curve. Obviously, all the above corollaries still hold by

changing 3 to 2.

3.3 Front Wheel Drive Car

In this section, we show how to apply the study of unicycle model to the model of a front wheel
drive car as shown in Figure 6.

The kinematics of the front wheel drive car (relative to the spatial frame) is given by

sin Ou,

cos Qu,

=1 tan au,
U2

(43)

D . N M.
I

. "This definition of ¢ turns out to be exactly the same as we defined in (11) and (12).

14



Figure 6: Front wheel drive car with a camera mounted above the center O.

Comparing it to the kinematics of the unicycle, we have

w=I1"1tanau;, v=u;. (44)
If we rewrite the system (22) as
€= fiw+ fov (45)
the dynamics of the image of a ground curve under the motion of the front wheel drive car is given
by
( 2 ) = ( l“tang'fl + fa )u1 + ( (1) )u2 = fiws + fouz. (46)

Calculating the controllability Lie algebra for this system, we get

= ()

z 0

h = (l‘ltanaf1+f2)
- 0
[fl’fz] = (—l'lsec2af1 )

L 0
[fla[flaf2]] = (1“sec2cr[f1,f2])

Clearly, as long as sec2a # 0, i.e. a is away from +7/2, we have

rank(f1, [fa, fils [f1s [fo, Ail]) = rank(f1, f2,[f1, fal) (47)

Thus, the controllability issues for the front wheel drive car is the same as the unicycle. As a
corollary to Theorem 1, we have

Corollary 3 For a linear curvature curve, the rank of the distribution spanned by the Lie algebra
generated by the vector fields associated with the system (46) is ezxactly 4. For constant curvature
curves, i.e. straight lines or circles, the rank is ezactly 3.

Combining this result with Theorem 2, under the motion of the front wheel drive car, the shape
of a image curve is controllable and only controllable up to its linear curvature terms, similarly as
the unicycle case.



4 Control Design in the Image Plane

In this section, we study the design of control laws for controlling the shape of the image curve in
the image plane so as to facilitate successful navigation of the ground-based mobile robot.

4.1 Controlling the Shape of Image Curves

According to the controllability results presented in the previous section, one can only control up
to three parameters (£;,€2,&3)7 of the image of a given ground curve. This means the shape of
the image curve can only be controlled up to the linear curvature features of a given curve. In this
section, we study how to obtain control laws for controlling the image of a linear curvature curve,
as well as propose how to control the image of an general curve.

4.1.1 Unicycle

For a unicycle mobile robot, the dynamics of the image of a linear curvature ground curve is given
by system (27). According to Theorem 1, this two-input three-dimensional system is controllable
(i.e. has one degree of nonholonomy) for ¢ # 0. Thus, using the algorithm given in Murray and
Sastry [14] [15], system (27) can be transformed to the canonical chained-form.

The resulting change of coordinates is

4

ry = & .
— ___a&
r2 = c(a2+€2)° .
— _ __a&2&s3
3 = (& 2—55—;7“02 ) 2) ) (48)
—ca(a®+£35)°+3a°628
w = SR - S
_ —ca(a®+€2)°43e%6263(a®+€2+€3)  a?+E346s
{ vo= c(a?+€3)° Uy a Uz

where a = (sin ¢)~!. Then, the transformed system has the chained-form:

I =y
.’i‘z = U2 (49)
I3 = 2wy

For the chained-form system (49), using piecewise smooth sinusoidal inputs [15], one can arbitrarily
steer the system from one point to another in R3. Therefore, one can arbitrarily control the shape
of the image of a linear curvature curve.

As for controlling the image of an arbitrarily given ground (analytic) curve, the best we can do is
to approximate this curve locally by a linear curvature curve (if £”(s) = 0) and then, the controls
for controlling the image of this approximating linear curvature curve can approximately control
the image of the original curve freely up to its first three parameters (€1,€2,€3)T in a local range.

Note that when ¢ = 0, i.e. the curve is of constant curvature, the above transformation is not
well-defined. This is because the system £ now only has two independent states §; and §2. It is
much easier to steer such a two-input two-state system than the above chained-form system.

Remark 2 Using Lemma 1, the dynamic system (3 of the perspective projection image of a linear
curvature curve can be also transformed to chained-form.
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4.1.2 Front Wheel Drive Car

In this section we show that the image curve dynamical system (46) for the front wheel drive car
model is also convertible to chained-form. According to Tilbury [23], the necessary and sufficient
conditions for a system to be convertible to the chained-form are given by the following theorem:

Theorem 3 (Murray [13]) Consider a n-dimensional system with two inputs uy, up
T=gu+gouz z€R". (50)

Let the distribution A = span{g,, g2} and define two nested sets of distributions

Eaz = A FF = A
E, = Eo+[EnE) F = Fy+[Fo,Fo
E; = E\+([Ev,E\] F, = FA+[RA,F) (51)
Ein = E+[E,E] Fiu = F+[F, FR).
The system is convertible to chained-form if and only if
dim(E;) = dim(F) =i+2 i=0,...,n—2. | (52)

Then we can directly check the two sets of distributions for the dynamical system (46) of the image
curve for the front wheel drive car

(?)=(l‘ltangfl+f2 )u1+((1))u2=f1u1+f2u2. (53)
Eo=Fy = span {fl»fz}
Ev=F = span{fi, falf, fil} (54)

Clearly, [f1, [/, f2]] € [F1, Fo) C Fy. For a linear curvature curve, (54) is a 4-dimensional system.
According to Corollary (3), dim(Fz) = dim(Fy + [F1, Fo)) = 4. Since F; C Ej, we have dim(E,) =
dim(F,) = 4. Thus, according to Theorem 3, the system (46) is convertible to chained-form. The
coordinate transformation may be obtained using the method given by Tilbury in [23].

Everything we discussed in the previous section for the unicycle also applies to the front wheel
drive car model. In the rest of the paper, only the unicycle case will be studied in detail but it is
easy to generalize all the results to the car model as well.

4.2 Tracking Ground Curves
4.2.1 Tracking Analytic Curves
In this section, we formulate the problem of mobile robot tracking a ground curve as a problem of
controlling the shape of its image with the dynamics described by (22). We design a state feedback

control law for this system such that the mobile robot (unicycle) asymptotically tracks the given
curve.
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First, let us study the necessary and sufficient conditions for perfect tracking of a given curve. As
already explained in the beginning of Section 3, when the mobile robot is perfectly tracking the
given curve

& o= 7'r(yst)|y=—dcosd> =0 (55)
Oz (y,t
& = la('Ty'lly=—dcos¢ =0. (56)
From (27) when & = & = 0, we have
€2 = ~Evsin g+ w/sinp = 0. (57)

This gives the perfect tracking angular velocity

w = E3sin? gv. (58)
It is already known that system (22) is a nonholonomic system. According to Brockett [1], there
do not exist smooth state feedback control laws which asymptotically stabilize a point of a non-
holonomic system. In the following theorem, we give a piecewise smooth state feedback control
law which stabilizes the system £ around the subset {€ € R® : §; = £ = 0}, i.e. the mobile robot

asymptotically tracks the given curve, and as we will soon see, under certain conditions, this control
law may become a smooth one.

Theorem 4 (Tracking Control Laws)
Consider closing the loop of system £-(22) with control (w,v) given by

w = E3sin® gug + sin? o€ vp + K €
v = wvg+sin® @& (&1 + &3)vo — K. E25ign (&) + E3) (59)

where K, K, are strictly positive constants. The closed-loop system asymptotically converges to
the subset

M={cR®:£=6=0) (60)
for initial conditions with &, and £ small enough. Once on M, the mobile robot has the given linear
velocity vo and the perfect tracking angular velocity wo = €3sin? @vg. .
Proof Consider the “partial” Lyapunov function V = &2 + £€2. Through direct calculation, we
get

V= - K,/sin¢ts — K,sin ¢&;
~ Gsing (Kb +Ersin® guo) + Kosign(&r + &) (€ + ). (61)
There exists € > 0 such that, when |£;] < € and |2] < ¢,
| K& + &2 5in? gug| < K. (62)
Thus, in the set W, = {€ € R® : €2 + €2 < €%}
V < -K,/sin¢€2 < 0. (63)
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For any initial value in W, V' (t) is a non-increasing function and is bounded from below, therefore
it has a limit as ¢ = oo. Let

co = lim V(2). (64)

We claim that ¢y has to be zero. We prove this by contradiction. Suppose that ¢ > 0 for a
trajectory £(t) starting from some initial value £(0) in W,. Let

D, = {(€1,62)7 € R*: € + & = co}- (65)
Consider the projection 7 from R*® to R%:
T €— €2 (66)

Then m(£()) is bounded and has a non-empty limit set L in Q¢,. Thus, n~1(L) is the largest set
to which the trajectory £(t) must converge in W,. From the inequality (63), for any (&,&)T

L, we have & = 0. Thus, in #~1(L), & = 0 so that & = 0. For the closed-loop system, when
&2 = 0, we have €, = —sin ¢&1vp. This implies that & = 0 for £ € #~!(L). This is a contradiction
to relationship &2 + &2 = ¢ > 0 for £ € 7~1(L) since L C Q. ]

Comments  Although Theorem 4 only guarantees local stability of the control law (59), com-
bining it with the results obtained in Section 4.1, we can track a given linear curvature curve from
an arbitrary initial position by a two-step control scheme: first, using sinusoidal inputs, steer the
system to a position with &;,&; close to zero; then, switch to the tracking control law (59). In fact,
it can be shown by simulation that, with appropriately choosing K, and K, the tracking control
law (59) itself has a very large domain of attraction. Thus, in most cases, the first step is not quite
necessary.

4.2.2 Tracking C'-Smooth Piecewise Analytic Curves

Although Theorem 4 only concerns about analytic (C*) curves, it actually can be generalized to

Cl-smooth piecewise analytic curves®.

Corollary 4 Consider an arbitrary C-smooth piecewise analytic (ground) curve. If the mazimum
curvature |k|mor ezists for the whole curve, then, when K, > 0 and K, > 0 the feedback control

law given by (59) guarantees that the mobile robot locally asymptotically tracks the given curve.

Proof Consider the same Lyapunov function as the one chosen in Theorem 4. Then, V is still
given by (61). Since |k|mer exists, from (24), |€3| is bounded. Then, according to (61), if K, > 0
and K, > 0, there exist ¢ > 0, which is independent of €3, such that when £ € W, = {€? + ££ < €%}

V < -K,/sing¢€l <0. (67)
The rest of the proof follows that of Theorem 4. (m]

Comments It is very important to note that, in the proof of Theorem 4, the choice of ¢ is
independent of £&3. For a C'-smooth piecewise analytic curve, § and &; are always continuous.

84Cl_smooth” means that the tangent vector along the whole curve is continuous.
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Only & may not change continuously. But the proof shows that the ¥ does not depend on &3 when
€1 and &; are small enough. Therefore the (C*-smooth) switching between different analytic pieces
of the curve does not affect the convergence of the system. In Corollary 4, since &3 is bounded, KA,
can then be set to 0 and the inequality (63) for ¥ still holds locally. In the case of K, = 0, the
control (59) becomes a smooth one.

Remark 3 Using Lemma 1, the control (59) can be converted to a stabilizing tracking control law
for ¢ of the perspective projection image.

4.2.3 Tracking Arbitrary Curves

Corollary 4 suggests that, for tracking an arbitrary continuous (C°-smooth) ground curve (not
necessarily analytic), one may approximate it by a C'-smooth piecewise analytic curve, a virtual
curve, and then track this approximating virtual curve by using the control law (59). However,
since the virtual curve cannot be “seen” in the image, how could one get the estimates of £ for the
“image” of the virtual curve so as to get the feedback controls v and w subsequently? It turns out
that, the virtual £ is exactly the solution of the differential equation of the closed-loop system (22)
with v and w given by (59). The initial conditions for solving such differential equation can be
obtained from when designing the virtual curve.

Now, the control becomes an open-loop scheme, and in order to track this virtual curve, one has to
solve the differential equation (22) (with v and w given by (59)) in advance and then get the desired
controls v and w. It is computationally expensive to approximate a given curve by an arbitrary
analytic curve in which case, in principle, we have to solve the infinite-dimensional differential
equation (22).

However, as argued in Section 2.2.2, a special class of analytic curves, the linear curvature curves,
can reduce the infinite-dimensional system (22) to a three-dimensional system (27), and the three
states £ of the system (27) also have captured all the controllable features of the system &, ac-
cording to Theorem 2. Therefore. it is much more computationally economical to approximate the
given curve by a C''-smooth piecewise linear curvature curve and then solve the three-dimensional
differential equation (27) to get the appropriate controls v and w.

Few applications do require tracking of arbitrary (analytic) curves. The target curves usually can
be modeled as piecewise linear curvature curves. For instance, in the case of vehicle control, in the
United States, most highways are designed to be of piecewise constant curvature, and in Europe, as
clothoids. Therefore, piecewise linear curvature curves are simple as well as good models for most
tracking tasks. :

Comments  Strictly speaking, when approximating a given curve by a piecewise polynomial
curve, for example by using splines [6], in order to get the estimate of £ for the evolution of the
approximating virtual curve, one has to solve the infinite-dimensional differential equation (22).
What the “polynomial” property really simplifies is just the initial conditions of the differential
equation but not the dimension of the problem, as already argued in Section 2.2.3.

Example (Mobile Robot Tracking Corridors) Consider a simple example: the mobile robot
is supposed to track a piecewise linear curve consisting of intersection of /; and I, (as a reasonable
model for corridors inside a building), as shown in Figure 7. A natural and simple way to smoothly
connect them together is to use a piece of arc AB which is tangential to both of the straight lines
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(at points A and B respectively). From point A, the mobile robot switches to track the virtual
curve, arc AB until it smoothly steers into the next piece, i.e. the line /3. The €3(t) for tracking
this virtual arc AB is then given by the solution of the closed-loop system of (27) with ¢ = k'(s) = 0
and the initial conditions at point A: €3(0) = (0,0, —a?/r)7.

>
3
LR
<

.

Figure 7: Using arcs to connect curves which are piecewise straight lines.

Since the approximating virtual curve is to be as close to the original curve as possible, the radius
r of the arc AB should be as small as possible. But, in real applications, the radius r is limited by
the maximal curvature that the mobile robot can track (r = 1/|k|). Thus, one needs to consider
this extra constraint when designing the virtual curves. The following result tells us a way to decide
the maximal curvature |k|mq, that the mobile robot can track:

Fact 1 Consider the unicycle mobile robot. If its linear velocity v and angular velocity w satisfy
|v] > ¢; and w? + v? < c3, then the mazimal curvature that it can track is

k<y/(2) -1 (69

)

Consider now that the image curve obtained is not even continuous, i.e. the robot “sees” several
chunks of the image of the real curve that it is supposed to track. Basically, there are two different
approaches that one might take in order to track such a curve: first, one may use some estimation
schemes and based on the estimated features of the real curve to apply the feedback control law
(as studied by Frezza and Picci [6]); second, one may just smoothly connect these chunks of the
image curve by straight lines, arcs or linear curvature curves and then apply the virtual tracking
scheme as given above to track the approximating virtual curves.

4.3 Simulation Results of Tracking Ground Curves

In this section, we show simulation results of the mobile robot tracking some specific ground curves
using the control schemes designed in previous sections. We assume that all the image features £
are already available. In next section, we discuss how to actually estimate £ from the real (probably
noisy) images. For all the following simulations, we choose the camera tilt angle ¢ = 7/3, and the
control parameters K, = 1, K, = 0.5, and vp = 1. The reference coordinate frame Fy is chosen
such that the initial position of the mobile robot is zfo = 0,20 =0 and 6 = 0.
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4.4 Tracking a Circle

A circle is a constant curvature curve, i.e. ¢ = k'(s) = 0. For the simulation results shown in
Figure 8, the initial position of the nominal circle given in the image plane is £10 = 1, &0 = 1, and
&0 = L.
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Figure 8: Simulation results for tracking a circle. Subplot 1: the trajectory of the mobile robot in
the reference coordinate frame; subplot 2: the image curve parameters §; and &»; subplot 3 and 4:
the control inputs v and w.

4.5 Tracking a Linear Curvature Curve

For the simulation results given in Figure 9, the nominal trajectory is chosen to be a linear curvature
curve with the constant curvature varying rate ¢ = k’(s) = —0.05. Its initial position given in the
image plane is &9 = 0.1, §20 = 0.1, and &3¢9 = 2.

0.15
o 01 xi_1
g —— X2
B 005 '
_;l
0 ’
A /7
205l
% 20 40 60
z_t Time t
1.2 2
-]
g
%1.15 5
R §
§ 2
£ 8
=51.05 3
&
1 -2
)] 20 40 60 () 20 40 60
Time t Time t

Figure 9: Simulation results for tracking a linear curvature curve (¢ = k'(s) = —0.05). Subplot 1:
the trajectory of the mobile robot in the reference coordinate frame; subplot 2: the image curve

parameters &; and &; subplot 3 and 4: the control inputs v and w.
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4.6 Tracking Piecewise Straight-Line Curves

Consider now the example discussed in Section 4.2.3: the mobile robot is to track a piecewise linear
curve consisting of intersection of /; and /3 as shown in the Figure 10. We compare the simulation
results of two schemes: 1. Using only the feedback tracking control law; 2. Using a pre-designed
approximating virtual curve (an arc in this case) around the intersection point. From Figure 10.
it is obvious that, by using the pre-designed virtual curve, the over-shoot can be avoided. But
the computation is more intensive: one needs to design the virtual curve and calculate the desired
control inputs for tracking it.

15F ' T ; y ; ]

———— Feedback coﬁtrol only

.......... Tracking by using a virtual arc
-5 : Lo :

Figure 10: Comparison between two schemes for tracking a piecewise straight-line curve: 1. Using
only the feedback tracking control law; 2. Using a pre-designed approximating virtual curve (an
arc in this case) around the intersection point.

5 Observability Issues and Estimation of Image Quantities

As we have discussed in Section 2.2.1, £ are the features of the orthographic projection image I of
the ground curve T, and are not yet the real image (which, by convention, means the perspective
projection image A) quantities (. However, £ and ( are algebraically related by Lemma 1. In
principle, one can obtain £ from the directly-measurable ¢.

In order to apply the tracking control law (59), one need to know the values of £,&2, and &3, i.e.
¢1,¢2 and (3. Suppose, at each instant ¢, the camera provides N measurements of the image curve

A:
{(Ax(Ye,t),Ye)} k=1,...,N (69)

where {Y7,Y2,...,Yn} are fixed distances from the origin. If the distances between Y, are small
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enough. one can estimate the values of {;(Yx),{2(Y%), and (3(Y}%) simply by:

-

GO = Ax(et)
G(yy) = 2l ixhd) k=1,...,N-2. (70)

k+3=Fk
A v Ax(Vig2.t)=Ax (Yigrot Ax (Vg1 8)=Ax (¥t - -
(V) = (Pxligpdzpxiond - 2alipul=pxCled) (Vg - Yi)

However, in practice, the measurements {(Ax(Yx,t),Yx)} are noisy and the estimates (70) for ¢3
become very inaccurate, especially for the higher order terms {; and (3. It is thus appealing to
estimate (3 or €2 by only using the measurements {(Ax (Yx,t),Yx)} but not their differences.

5.1 Sensor Models and Observability Issues
5.1.1 General Analytic Curves

The curve dynamics are already given by (22). If we only use the measurement {; = Ax(Y,t) as
the output of the vision sensor, then we have the following sensor model:

(E:l \ [ &1&asing+dceotd+ = [ Easing
&2 E1€asin ¢+ E3sin ¢ + = §3sin @
& §1€qsin @ + 3&2683sin ¢ §4sing
. = - . w+ . v .
: : ‘ (71)
& §1&iv15in ¢ + gi(§2. ..., &) §iy18in ¢
., \ 5 J o\
e = G=gineg
where h(£) is the measurable output.
Theorem 5 (Observability of the Camera System)
Consider the system given by (71). Let
[ &1&2sin¢+dcoté+ G [ Esing
&1€asin g + &3 sin ¢ + o £3sin ¢
184 sin ¢ + 38263 sin ¢ §asin @
&1&iv1sin o+ gi(&2, .-, &) iy15ind
\ : ) \ P

If ¢ # 0, then the annihilator Q of the smallest codistribution Q invariant under fy, fo and which
contains dh(§) is empty.

Proof Through direct calculations, the k-th order Lie derivative of the covector field dh(£) along
the vector field f> is

sin""'l ¢

d+ycos¢ £k+1 011’2a y OO (73)

LY, dh(€)
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Thus, Q contains all d§;, i € A" and therefore @ is an empty distribution. m

Comments  According to the Theorem 1.9.8 in Isidori [10]. Theorem 5 guarantees that the
system (71) is observable. In other words, the (locally) mazimal output zeroing manifold of the
system (71) does not exist, according to the Proposition 10.16 in Sastry [19]. Since this system
is observable, ideally, one then can estimate the € from the output h(€). However, the observer
construction may be difficult.

5.1.2 Linear Curvature Curves

The sensor model (71) is an infinite-dimensional system. In order to build an applicable estimator
for €3 (so as to apply the tracking control law (59)), one has to assume some regularity on the given
curve I so that the sensor model becomes a finite-dimensional system. In other words, one has to
approximate I' by simpler curve models which have finite-dimensional dynamics.

In Frezza and Picci [6], the models chosen are third-order B-splines. However, as we have pointed
out in Section 2.2.3, the polynomial form is not an intrinsic property of a curve and it cannot be
preserved under the motion of the mobile robot. Furthermore, simple curves like a circle cannot
be expressed by third-order B-splines. We thus propose to use (piecewise) linear curvature curves
as the models. The reasons for this are obvious from the discussions in previous sections: the
dynamics of a linear curvature curve is a three-dimensional system (27); such a system has very
nice control properties; and piecewise linear curvature curves are also natural models for highways.
However, a most important reason for using linear curvature curves is that, according to Theorem
4, one actually only needs the estimation of three image quantities, i.e. &,& and &3 to be able to
track any analytic curve. All the “higher order terms” §;, ¢ > 4 are not necessary.

For a linear curvature curve, since we do not have a priori knowledge about the constant curvature
varying rate ¢ = k’(s), we also need to estimate it. Let 7 = c and we have the following sensor
model for linear curvature curves:

§:1 §261sin o +dcotd + o ina £ sin @

§2 - — 63'51 sin d’ + §2 sin d) + smtb w+ 63 sin Q” v

&3 €a&1sin ¢ + 3623 sin & §4sin @ (74)
U] 0 0

h(gaa ) = G= d.:;::(,s,ﬁfl

2 3
where £, = 2 +£:2) +/€°+3€’£ and h(£3,n) is the measurable output.

Theorem 6 (Observability of the Simplified Sensor Model)
Consider the system (74). Let

&61sin g+ dcotd+ i nd &2sin¢g
— £alysin @+ E3sin ¢+ s | &sing
= €461 sin ¢ + 36,€sin ¢ fo= | gsing |- (75)
0 0

If ¢ # 0, then the smallest codistribution Q invariant under fy, f, and which contains dh(€3,n) is
of constant rank 4.
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Proof Through direct calculations, we have

. k+1 .
kam(E. gy = S 9 . = 7
Ly, dh(€°,n) = i ycos¢d§k+l k=0,1,2 (76)
and
2 £2\2 o115
3 3 y_ (a*+&5)°sin° ¢ -
L3, dh(g%, n) = ol (")
Thus, Q contains all d&;, d€,, d€3, and dn and it has constant rank 4. (m|

Therefore, the system (74) is observable according to the Theorem 1.9.8 in Isidori [10] or the
Proposition 10.16 in Sastry [19].

5.2 Estimation of Image Quantities by Extended Kalman Filter

The sensor model (74) is a nonlinear observable system. The extended Kalman filter (EKF) is a
widely used scheme to estimate the states of such systems. In the computer vision community,
estimation schemes based on Kalman filter have been commonly used for dynamical estimation of
motion [20] [22] or road curvature [4] [3], etc. Here, we use the EKF algorithm to estimate on-line
the §1,§2,£3, and 7. Alternatives to the EKF, which are based on nonlinear filtering, are quite
complicated and are rarely used.

5.2.1 Multiple-Measurement Sensor Model

In order to make the EKF converge faster, we need to use more than one measurement (in the
sensor models (71) and (74)). From the N measurements

{(/\X(},}:,t),}"k)} k:l,.'.’]\f (78)
we have N outputs
sin ¢ _
he(€) = G(Yx) = mfl(yk) k=1,...,N (79)
where Y, and y; are related by (9) Yi = F—ﬁ%’f_«»'

For linear curvature curves, all the measurements & (yx) are functions of only €2 and the linear
curvature 7 since all the Taylor series expansion coefficients ;, i € A are functions of only €3 and
n according to Lemma 2. Let

[ o}
Z ( y + dcos¢)’~1. (80)
&1(yx) are then given by & (yk) = h(€ ,n,yk)
The sensor model (74) can be modified as
§:1 E61sing+ deot g+ o na &sin ¢
€2 _ _| && sin ¢ + €2 sin ¢ + oz £3sin ¢ v
£3 €a&15in @ + 3€263sin @ €4 Sln ¢ (81)
U 0
he(€,0) = GV = gomEsh(@ny) k=1,
where & = "‘“2"'5;2):/6‘;"'3{2—531, and hj are the measurable outputs.
a%Tre2
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5.2.2 Noise Analysis

In order to track the variations in the rate of change of the curvature of a curve, we choose

=iy (82)

where y, is white noise of appropriate variance.’

The output measurements are inevitably noisy, and the actual ones are given by

m(E1) = GO = g h(E@ oy Fan k=L N (83)
where 5, are appropriate noise models for the N outputs. Strictly speaking, pn, are color noise
processes since image quantization errors!® are main sources for us, which generically produce
color noises. The explicit forms for the output hj are given by the Taylor series expansion (80).
In real applications, one has to truncate it. This can be regarded as another color noise source for
the output noises up,. However, in order to approximately estimate the states €3 and 7, we may
simplify up, to white noise processes and then actually build an extended Kalman filter (Jazwinski

[11], Mendel [12]) to get the estimates €2 and 7 for the states of the nonlinear stochastic model:

& £:615in ¢+ deot ¢ + 7o £ sin ¢ 0

& — _| && Sin.¢ +&sing + 75 | o asing | | 0 by

& €4&1 sin & + 3Ex€3sin & §asin @ 0 (84).
U] 0 0 1

hi(€,m) = G(Yi) = grmesh(€ oy +pn, k=1,...,N

2 243 2
where £; = ale +€:z)+/;§+3ém

, and p, and pp, are white noises with appropriate variances.

5.2.3 The Extended Kalman Filter Algorithm

In order to have a clearer description of the EKF algorithm for system (84), we change the notation:

) = §,22=62,23=83, T4=7 (85)
_ z4(a?+23)3/a + 3z,y23

rs = a2 + x% (86)

X = (‘rl 1 L2y T3, x4)T (87)

u = (wv)7 (88)

h = (hy,...,;N)T (89)

kh = (I‘l'hn“-vuhn)T- (90)

Thus, system (84) can be rewritten as
= £(x,u)+ Gy
z = h(x,u)+pun (91)

90ne may also model 1 as a second order random walk.
YIncluding the errors introduced by the image-processing algorithms used to process the original images.
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where G = (0,0,0.1)7 and
—(z9zysing+dcotgp+ =) z2sin¢g

sin @

f(x,u) = ~(z3r)sin@d+ z3sing + sir‘Ié) z3sin @ . (92)
! —(z571sin 9 + 3zox38in @)  zssing
0 0

Assume the noise variances E{unu,} = o and E{unpy} = R. Let T = tj41 —¢; be the discretization
time-step. The resulting EKF estimator equations are summarized below:

System Linearization and Discretization:
x(k+1) = ®(k+1,k)ox(k)+ ¥(k+ 1,k)6u(k) + pya(k) (
Sz(k+1) = Hx(k+1)éx(k+1)+ Hu(k + 1)0u(k +1)) + pn(k+1) (
B(k+1,k) = B(trsr,tx) m e (95)
(

tkt1 T?
U(k+1,k) = / ®(ths1,7ICkdr = CoT + FiChs- 96)
ty
and
R = of (x, u) Cp = of (x, u) (97)
00X |x=x(k)u=u(k) Ou  |x=x(k)u=u(k)
Ho(k) = 6hgx, u) Hy(k) = ah(ax, u) (98)
X Ix=x(k),u=u(k) u x=x(k),u=u(k)
Qi = E{pna(k)ba(k)} = oGG'T. | (99)
Extended Kalman Filter:
e Prediction Equations:
x(k+1lk) = x(klk)+ ¥(k+1,k)u(k); %(0]0) = %o (100)
P(k+1lk) = ®(k+1,k)P(klk)®'(k+1,k)+Qa; P(0]0) = Fo (101)
Hy(k+1) = w (102)
X Ix=x(k+1]k),u=u(k)
where
Ok+1,k) = T (103)
2
U(k+1,k) = CiT+ F,,Ck% (104)
of
F = EL“) (105)
X Ix=x(kjk),u=u(k)
f
¢, = dxu) (106)
O |x=g(klk)u=u(k)
e Estimation Equations:
§a(k+1) = z(k+1)— h(k(k+ 1|k), u(k+ 1)) (107)
k+1k+1) = x(k+1Jk) + K(k + 1)d2(k +1) (108)
Plk+1k+1) = [I—=K(k+1)Hx(k+1)]P(k + 1|k) (109)
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° Gaiﬁ:
K(k+1) = P+ 1|k)Hy(k + 1)[Hx(k + 1) P(k + 1|k)Hy(k + 1)+ R]". (110)

Comments The computational complexity of Kalman filter is O(n®) where n is the system
dimension [12]. Although, in some sense, both linear curvature curves and third-order B-splines
(Frezza and Picci [6]) are third-order approximations for general curves, the dimension of the
Kalman filter for estimating the B-spline parameters is N + 2 where N is the number of measure-
ments. However, the EKF we propose here is only 4-dimensional. Since the number of measure-
ments N is usually larger than 4, the scheme proposed above is less computationally expensive.

5.2.4 Simulation Results of the Extended Kalman Filter

For illustration, we here give some simulation results of using the EKF to estimate the image
quantities €3 and 7 (i.e. the states of the system (84)).

We first show by a simple example that the EKF converges. The curve is simply chosen to be a
constant curvature curve (a circle) i.e. ¢ = k'(s) = 0. The initial values chosen for the estimates
are £3(0) = (0,0,0)7 and #(0) = 0.1, and for the nominal states £3(0) = (0.1,1,1)T. The number
of output measurements N is 5. The feedback tracking control laws (59) now use the estimates I
for v and w. Since we use synthetic images here, we do not add noise here. The EKF serves as a
nonlinear observer. The simulation results are shown in Figure 11.
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Figure 11: The simulation results of using the Extended Kalman Filter to estimate the image

quantities £ and 7 (= ¢ = k’(s)) with the number of output measurements N = 5: Solid curves
are for true states; dashed curves are for estimates.

These results show that the estimates €3 and # converge to the nominal values &3 and 7 (= ¢). &
and 62 converge especially quickly to & and & and their curves almost coincide. The results also
show that the mobile robot eventually tracks the circle by using the estimates £3 for the tracking
control laws (59) since both & and & eventually converge to zero.

As mentioned in Section 5.2.1, more output measurements might make the EKF converge faster.
For comparison, we did the simulation for the case when there is only one output measurement, i.e.
N =1 (and all the other simulation conditions are still the same). The simulation results given in
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Figure 12 show that, compared to the simulation results for the N = 5 case, the convergence speed
of the EKF is much slower.
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Figure 12: The simulation results of using the Extended Kalman Filter to estimate the image
quantities €3 and 5 (= ¢ = k’(s)) with the number of output measurements N = 1: Solid curves
are for true states; dashed curves are for estimates.

6 Simulation and Animation of the Vision Guided Navigation Sys-
tem

In the previous sections, we have developed control and estimation schemes for mobile robot navi-
gation (tracking given curves) using vision sensors. The image parameters needed for the tracking
control schemes can be efficiently estimated from direct, probably noisy, image measurements.
Combining the control and estimation schemes together, we thus obtain a complete closed-loop
vision-guided navigation system which is outlined in Figure 13.

Ground Curve Mobile Robot Y
with Camera A I A
L= | itew mage
A—T X

Tv,w lkx(Yk,t)

Tracking Control 8,, 82, €3 Extended Kalman
v(§, 8.83) Filter
(&, 8. 8)

Figure 13: The closed-loop vision-guided navigation system for a ground-based mobile robot.
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In order to know how this system works. we simulate it by using synthetic images of the ground
curve. A synthetic image of a ground curve I' = (72(y. 1), ¥.7:(y,1))7 is a set of image points:

I={(Ax(Yut),Y)T : Ax(¥5.1),¥) T =70 (z(¥in 1), v 0w )T, i=1,2,..., M} (111)

where 7 denotes the perspective projection map and the number of image points M maybe different
for different time ¢. The output measurements from this synthetic image I are taken at N pre-fixed
distances: Yi,...,Yn. Linear interpolation is used to obtain approximate value of Ax (Y%, ) if there
is no point in I whose Y coordinate is Y.

Simulation results show that the control and the estimation schemes work well with each other in
the closed-loop system. For illustration, Figure 14 presents the simulation results for the simple
case when I is a circle.
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Figure 14: Simulation results for the closed-loop vision-guided navigation system for the case when
the ground curve is a circle: In subplot 7, the solid curve is the actual mobile robot trajectory (in
the space frame Fy) and the dashed one is the nominal circle; subplot 8 is the image of the circle
viewed from the camera at the last simulation step, when the mobile robot is perfectly aligned with
the circle.

We can also make animations out of these synthetic images and simulation data. It is helpful for
people to see how the entire closed-loop system works through different animated views. Figure 15
shows a synthetic image of a circular road viewed from the camera, which is from a single frame of
the animation movie.!!

1 The animation is available from the authors.
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Figure 15: A synthetic image of a piece of circular road viewed from the camera.

7 Discussion and Future Work

In order to use the vision sensors inside the control servo loop, one first need to study the dynamics
of the image. The dynamics of certain simple geometric primitives, like points, planes and circles,
have been studied and exploited by Espiau [5] Pissard-Gibollet and Rives [16] et al. In this paper,
we show that, for ground-based mobile robot, it is possible to study the dynamics of the image
of a more general class of objects: analytic curves. Based on the understanding of image curve
dynamics, we design control laws for tasks like controlling the shape of a image curve or tracking
a given curve. Our study indicates that the shape of the image curve is controllable only up to its
linear curvature terms (in the 2-dimensional case). However, Theorem 4 states that there exists
a state feedback control law enabling the mobile robot to track arbitrary analytic curves. Such
control laws are not necessarily unique. In real applications, other control laws may be designed
and used to obtain better control performances.

Generally speaking, there are two basic ways to use information from vision sensors for control
purposes: using vision sensors to provide environmental information for higher level decisions (so
called open-loop planning); or using them directly in the feedback control loop as servoing sensors.
As we show in Section 4.2.3 (Tracking Arbitrary Curves), the understanding of the image dynamics
can also help to design appropriate open-loop control when the vision sensor does not provide
enough information for applying feedback control. '

In the cases that one has to approximate a general curve (which has infinite-dimensional dynamics)
by simpler models, it is crucial to use models with properties which are invariant under the Euclidean
motion (so-called intrinsic properties). We propose that linear curvature curves are very good
candidates for such models. In some sense, linear curvature curves are a third-order approximation
for general curves, so are third-order B-splines used by Frezza and Picci [6]. However, the Extended
Kalman Filters needed to estimate their parameters are 4-dimensional and (N + 2)-dimensional
respectively (where N is the number of output measurements). The computation intensities of the
two schemes therefore are different.

Although visual servoing for ground-based mobile robot navigation has been extensively studied, its
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applications in aerial robot navigation have not received much attention. In the aerial robot case,
the motions are 3-dimensional rigid body motions SE(3) instead of SE(2) for ground-based mobile
robots. Intrinsically, a mathematical formulation of this problem can be addressed as follows:

Consider I'(s) to be a curve to be tracked in R3. The way to track this curve is through a projection
to the camera plane

m: R® = R% (112)

7 is either an orthographic or perspective projection. Further, g(t) € SE(3) represents the position
and orientation of the camera respect to the spatial coordinate frame. Thus the curve A(s,?) in
the image plane is

A(s,t) = ( i;g::; ) =nog () oT(s). (113)

Given a mathematical model of the kinematics of the mobile robot
g=flg,u) (114)

where f(g,u) : SE(3) x R™ — T(SE(3)) is a vector field on SE(3), the kinematics can then be
lifted to a dynamical system (a Riccati-type PDE)

. T
( d,\;a('.g)’ mza(ts,t) ) (115)

for the curve in the image plane. The results in this paper relate the controllability properties
of (114) to the controllability properties of the new system (115) for the 2-dimensional case. A
study of the more general 3-dimensional case is in progress. It is important for applications in
autonomous helicopter or aircraft navigation.
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