

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AUTOMATIC STATE REDUCTION TECHNIQUES

FOR HARDWARE SYSTEMS MODELED USING

UNINTERPRETED FUNCTIONS AND INFINITE

MEMORY

by

Ramin Hojati, Adrian J. Isles, and Robert K. Brayton

Memorandum No. UCB/ERL M97/53

1 May 1997

AUTOMATIC STATE REDUCTION TECHNIQUES

FOR HARDWARE SYSTEMS MODELED USING

UNINTERPRETED FUNCTIONS AND INFINITE

MEMORY

by

Ramin Hojati, Adrian J. Isles, and Robert K. Brayton

Memorandum No. UCB/ERL M97/53

1 May 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Automatic State Reduction Techniques for Hardware l^stems Modeled Using
Uninterpreted Functions and Infinite Memory

Ramin Hojati (hojati@eecs.berkeley.edu)

Adrian J. Isles (aji@eecs.ba:keley.edu)

Robot K. Brayton (brayton@eecs.berkeley.edu)

Department of Electrical Engineering and Computer Sciences
The University of California, Berkeley, CA 94720-1770

Abstract

The Integer Combinational Sequential (ICS) concurrency model isdesigned to represent hardware systems at a high level

of abstraction using infinite memory, uninterpreted and interpreted integer Junctions and predicates. According to their

semantics, which are natural when dealing with these more abstractentities, many systems which intuitively should have

finite reachable states sets, have infinite statespaces. In thispaper, wefirst define an equivalence notion between two states

in an ICS model, and then present (and prove correct) a set of operations which identify equivalent states. These

optimizations can beusedto significantly speed-up reachability computations when dealing with uninterpretedJunctions and

infinite memory. In addition, we present an automatic verification procedure for a setofcircuits involving infinite memory,

integer address anddata, whose addresses anddata are independent, by proving the state-reduced reachability computation

generates a finite state space. Finally, we give an example for which the state-reduced ICS reachability generates a linear

number ofstates whereas the smallestfmite instantiation containing all behaviors hasan exponential number ofstates. The

state reductions presented in this paper are implemented in our second generation ICS reachability tool and some

ejq>erimental results are given.

1 Introduction

Reduced Ordered Binary Decision Diagrams (BDDs) [Bry86] have proven to be very successful in verifying control
dominated circuits. BDD based techniques, however, can at best handle a few hundred latches and generally perform poorly
when applied to circuits that contain datapaths and memory. In an attempt to overcome the state space explosion due to
datapaths, the Integer Combinational Sequential (ICS) concurrency model was introduced in [HB95]. ICS models allow
finite gates and latches torepresent control, but abstract the datapath by representing datapath variables asinteg^s, datapath
operations as integer operations (using both interpreted and uninterpreted integer functions^), and memory operations as
abstract operations on infinite memories. Using uninterpreted fimctions to represent datapath operations such as addition
and multiplication can reduce the complexity ofa design and its associated verification problems considerably. Using such
an abstract representation to model hardware systems is cotainly not new. What makes ICS unique, however, is that it
allows for automatic state exploration to be performed on systems described in this fashion. Traditional state exploration
based verification techniques, such as model checking and language containment, can then be used to verify control

1. All that isknown about anoperation modeled using anuninterpreted function is that it is,infact, a function (i.e. if a = h then

f(u) = fih) for anuninterpreted function f). This iscontrast tonon-deterministic gates, which may have different outputs for
the same input assignments.

Page 1

properties of ICS stategraphs. Since themodel allows integers andinfinite memory, ICS models may have, in somecases,
an infinite number of reachable states. In suchcases, state exploration can be performed for a finite number of steps (let's
say R). Partialverification can thenbe usedto showthat thereare no error tracesup to lengthn.

There have been several other techniques in the lito'ature that allow for automatic verification of systems modeled at a
level of abstraction similar to ICS. In particular, a special form of symbolic simulation, presented by [BD94], has been
developed that is fast and allows for the automatic verification of a pipelined microprocessor against its instruction set
architecture. Their technique, however, requires the user to specify a superset of the set of reachable states of the system.
Finding suchstate-invariants can sometimes be extremely difficult for the user [SDB96]. One of the primary advantages of
verifying designs in the ICS paradigm is that state invariants are not needed since the reachable set is computed
automatically. In addition, ICS models allow for a rich set of properties to be verified, since both languagecontainmentand
model checking can be used. Another technique that is similar in flavor to ICS is a data structurecalled Multiway Decision
Graphs (MDGs) [Cor93]. An MDG is a decision diagram that is similar to BDDs except that it allows for uninterpreted
function symbols to be represented in the decision diagram. MDGs are the only other technique in the literature that the
authors are aware of that can represent the set of reachable states and perform fixed point state computations on systems
modeled with integer variables and uninterpreted functions. Unlike ICS and [BD94], however, MDGs, cannot represent
infinite memory, which is important when trying to verify hardware systems such as microprocessors.

[IHB96] implemented a routine to generate ICS state graphs and presented experimental results on verifying systems
modeled using ICS. The results were poor, however, when compared to [BD94], due to an explosion in the number of states
of even simple microprocessors. This paper presents new state reductions techniques that can significantly improve the
performance of the ICS reachability routine. Below we give an overview of these techniques and some their applications.

Informally, an ICS state S = {latches, memory, predicates) is a set of assignments to finite latches, integer latches,

predicates and memory. Assignments to finite latches take from values in their domains. Assignments to integer latches are
symbolic expressions called ICS terms (to be formally defined later). Memory is a table of address/value pairs which are also
represented using ICS terms. Although, ICS memory is infinite, it is only necessary to explicitly store locations that have

been previously written. Predicates define a set of constraints on the ICS terms in S. Figure 1 shows a diagram of an ICS

state.

L2°g(C.d)
Lj = </+5

c*x

(c.d)

(x.f(c))

finite latches

1— integer latches

predicates

memory

An ICS state consists of a set of assiptments to
latches and memory, as wellas a set ofpredicates that
are valid in the state. Although memory in infinite,
only locations that have been previously written to
have to be explicitlystored in tnemory.

Figure I

One can then define the state exploration of ICS models in a natural way with the followingcaveats.

1. A state contains the set of assumptions (predicates) made in reaching that state. For example, if constants a and b are

compared, then both paths, one where a = f? and the other where a^b have to be considered. These assumptions must be

remembered and become part of the state, since, for example, along the path where we have assumed a ^ b, f(a) = f{b)
also holds.

2. When reading from or writing to memory, all possibilities between the accessed address and the addresses currently in

memory haveto be considered. For example, if thereis a read from address a, and the addresses in memory are and a2*

then three possibilities a - a^, a - a2,^^ a being distinct from Rj and ^2 ^^ve to beconsidered.

3. Integer inputs are represented by constant creators. A constant creator returns a new constant whenever called.
Many characteristics of the semantics of ICS models decrease the chance for state sharing. For example, along a path a

constant creator has to always return a new constant, and cannot re-use constants; or "extra" predicates and memory

Page 2

locations which no longer give useful informationcannot be ddeted. Therefore, many systems which intuitively should have
a finite state ^ace have an infinite state space. For example, a system composed of a single control state, which at every
cycle produces a new constant has an infinite state space. Intuitively, this system should have only one state.

In this paper, we first introduce a notion of equivalence between two states in an ICS model, and then define a set of
optimizations which delete extra information, and hence increase the chance of state sharing. More specifically, two states

and S2 are trace equivalent iff the set of traces starting from and S2 projected to the set of finite (non-integer)

variables are the same. One can then show that the language from is empty iff the language from S2 is empty. Since

language emptiness is the vehicle for verification in our environment, trace equivalence preserves verification. An example
of the importance of automatic state reduction in verifying ICS Models is shown in Figure 2. Using this notion of
equivalence, we then show the following operations result in trace equivalent states.
1. Replacing two isomorphic states, i.e. two states which can be mapped to one another by a renaming of the constants, by
one of them.

2. Deleting an equality predicate a = ^, and replacing all occurrences of the constant b by the constant a {propagating
equalities),

3. Replacing a term of the form /(ttj,..., a,..., a„), where / is an uninterpreted function, by a new constant if a is not
stored in any of the latches,memories, and does not appear in any of the predicatesas a term{simplifyingfunctional terms).
4. Deleting an equality, inequality, or uninterpreted predicate, which contains a constant not appearing anywhere else in the
system {deleting dangling predicates).

5. Deletinga memorylocation {address, data) of the form {a, y), where a does not appearanywhere else in the system
{deleting dangling memory locations).

These results are then used to show the following.
1. The language emptiness problem is decidable for decoupled data independent memory systems, in which data and
address paths are separate (i.e. addresses cannot be stored as data in memory), and there are no uninterpreted functions or
predicates, but there could be an infinite memory.
2. There are cases for which optimized ICS reachability produces a linear number of states, but the smallest finite
instantiation has an exponential number of states. For these cases, even after using BDDs or symmetry reduction on the
finite instantiation, the running time of verification is still at best quadratic. Hence, at least in an asymptotic sense, ICS
models(with their potentiallyinfinitestate spaces)can have a computational advantage over finite instantiations and the best
known finite state algorithms. Experimental results against the BDD-based tool, VIS [VIS96], confirms this, and is
presented here. In practice, we expect that our optimizations, possibly extended by other ones, can have a major impact in
reducing the computational complexity of ICS reachability.

It also appears that our optimizations may pave the way to find decision procedures for some open problems of ICS
models. Two such open problems follow, where it seems if the problems are decidable, then the optimizations proposed in
this papercan be used in conjunction with some new ones to get decision procedures.
1. In [HIKB96], it was shown that if the datapath of an ICS model contains uninterpreted functions and integer equalities,
then the reachability problem is undecidable. However, the decidability of theproperty '*when b becomes 1, jc = y), where

b is binary and x and y are integer, of ICS models with only uninterpreted functions in thedatapath was left open. Note
thatfor these ICS models, theequality predicate appears onlyin theproperty, andnot in thesystem.
2. The decidability of the reachability problem for data independent memory systems is open, where there is an infinite
memory,and the datapath containsdata movementelementsand the equality predicate.

The flow of the paper is as follows. Section 2 describes ICS models and their semantics. Section 3 describes the main
technical contributions of the paper. The applications of the results of section 3 are presented in section 4. Some
experimental results are presented in section 5. Section 6 concludes the paper, and presents some future directions. Due to
lack ofspace, theproofs ofmany of thelemmas and theorems, which arerather detailed arepresented in theappendix.

Page 3

Figure 2

li}=f(a) Lo°ma)

onginal graph

Thecircuit Cto tiie left hoi two integer latehes Lq, andtwo finite

latches L^, Assume that C is in astate Sq where Lq = /(«)>

Lj = f(b), o 0, • I ond P = {a^b) (P aretoe

predicate assumptions aiade at Sg). When = (? (L^ o 2), C takes

term storedin Lq (L^), appUes toe ururUerpretedfitnctom f to itand

stores results. In addition, when " 0, C sdsochecksto see if the

terms in L^and are equaland the resuUofthe comparison isstored

in C hsu an infinite set ofstates,since tiiereare sminfiniteset of

terms /(a), f(b),.... f '̂\b).... that can be assigned to tire
latches.Ordituarify, to verify theproperlytiratat aUstatesin tirefuture of
Sq, I'gg^j ° It would require visitingan infinite setofstates.

However, Sq istrace equivalent (w.rJ. to control behenior) toany otoer

rii) (i),
good

state S where Lg = f '{c), Lj = fi'(c), ^ 0, L

some constant c. Thus, the infinite state graph can be automaticaUy
reduced toafirute grvqh. Theoriprudand reducedgraphs cue shown
below.Notethat C doesnot haveany infirutememorygates.

1 for

^good°J

reduced graph

2 Integer Combinational/Sequential (ICS) Concurrency Model

In this section, both the syntax and semantics of ICS models are reviewed. The reader is encouraged to read [HB95] for a
more detailed presentation. ICS is designed to represent systems composed of control, datapath,and memory. Its syntax and
semanticsis similar to traditional models for representing hardware systems, with the addition of some machinery to reason
aboutnon-deterministic gates,integers functions and predicates, and infinitememory.

2.1 Syntax

Theprimitives are: variables, tables, interpreted functions and predicates, uninterpreted functions and predicates, constant
creators, latches, and memory functions.

Variables. Vari^les are of two types: finite and integer. Finite variables take values from some finite domain; integer

variables take integer values (0,1,2,...).

Tables. A table is a relation defined over a setoffinite variables, divided into inputs and outputs. A table is&function if
for everypossible input tuplethere is at most one outputtuple (incompletely specified functions are allowed). Oth^wise it
is a relation. If a table has only one binary output, and is a function, then it is a.predicate.

Interpreted Functions and Predicates. A predefined set of functions and relations over integers is built in. The

interpreted functions are: y := x, y := if{b,x), z := mux{b,x,y), z := x + y, y := x + c, where x, y, and z are integer

variables, b a binary variable, and c a non-negative integer (0,1,2,...). The interpreted predicates are y = x (equality),

y < X, X = c, (x mod m) = r , and (x mod m)<r , where c, r, and m are given non-negativeintegers.

UninterpretedFunctions and Predicates. These are a set of function and predicatesymbolswhere only their arities

anddomain variables aregiven. Forexample, /(XpX2) may bethespecification ofanuninterpreted integer function defined

Page 4

over binary variable and integer variable JCj • Predicates ofthe form x = term, where ac isan integer variable, and term

is an ICS term are also allowed. An ICS term is built recursively from numerals, constants, interpreted and uninterpreted func

tions. Therefore, numerals and constants are ICS terms, and if / is an n -aryfunction and rj,..., r„ areICS terms, then

/(r t„) is also anICS term. Note that ICS terms donot involve any variables orpredicates. Examples ofICS terms

are Cq , /(Cg,Cj), g(15,/(C2,C3)) , and Cj + C2. Uninterpreted functions arevery useful for abstracting away details ofa

design that are not needed for verifrcation.This is particularly important when voifying, for example, the control logic of a

superscalar microprocessors. Here, verification is independent.of the functional units in the datapath, since one only needs to

check whether the processor executes each instruction in the proper sequence and writes back the result to the correct location.

Therefore, the detailed functionality of the datapath is not relevant and can be replaced with uninterpreted functions.

Constant Creators. A constant creator is a special element with no input, and an integer output. Intuitively, it is a higher-

order function, which creates a new constant (i.e. a function with no argument) each time called. A constant creator models an

unconstrained integer input.

Latches. A latch is defined on two variables over the same domain: input (or next state) and output (or present state).
Present and next state variables may overlap, e.g. when an output of a latch is an input to another. Every latch has a set of
initial values, which are a subset of the domain of its variables. If the latch is integer-valued, then the initial value set can
either be a finite set of numerals, or a given constant. Predicates can be used in combination with constants to create an
infinite set of initial values. For example, to declare that the initial set of a latch is all integers greater than 5, we let the

initial value be someconstant Cq . In the first state, the output of the latch is input to a predicate x > 5, and the machine

continues only if the predicate holds. Hence, only those behaviors are allowed where the initial value of the latch is an
integer greater than S.

Memory Functions. Two functions read and write are provided with their usual interpretation; read is a binary function

of a memory and a location; write is a ternary function, whose arguments are a memory, a location, and a value. Location

and value are variables in the model. Reading a location which has not been written, returns a new constant (like a constant
creator).

Definition A generalized gate is a table, an interpreted or uninterpreted function or predicate, or a constant creator.

Definition Data movement operations are x:=y, z := mux(b, x, y), and y:=if(btX), where JC,y, z are integer

variables, and b is binary.

Every model has only a finite number of variables, latches, and generalized gates. Every variable is the output of exactly
one generalized gate or latch. Hence, every input to a generalized gate or latch is the output of some other generalized gate
or latch; ICS models are closed. A variable can be input to many generalized gates or latches.

Definition A steUe is a triple {latch, memories, predicates), where,

a. latch is an assignment of values to the latches. For finite valued latches, the value comes from the domain. For integer
valued latches, the value is an ICS term.

b. memories is a set of memoryelements,where a memory is a set of pairs of ICS terms, where the first denotes a location
and the second a value.

c. predicates is a set ofatomicformulas, where an atomic formula is any interpreted or uninterpreted predicate applied to

ICS terms. Examples are Cg <f{c^) and P(/(Cg, Cj), g(Cg)) . Note that (Cg </(Cj)) a {P{f{CQ, Cj), g(Cg))) isnot
an atomic formula. Intuitively, predicates at a state j, is the set of assumptions made to reach s.

Definition Given two ICS terms fj and t2, and two sets of atomic formulas P = {Pj,..., P„} and

Q- is equal to rj subject to P and Q, denoted as =12!^ formula

Pages

(PjA... AP„Agi A...A0„)=»(/j =^2) is valid. For example, if /j = x, P = {x>7,x^8}, t2= 8, and
Q = 0, then r| = /2 subject to P and Q since (x>7a x 8)^ (x= 8) is valid. The equality oftwo ICS terms can

be decidedusing the algorithmsof [Sho79].

Notation If P = {Pj,..., P„} isa set ofpredicates, we will use P todenote Pj a ... a P„. For example, P-^{b=\)

is theformula (Pj a ... aP„) -»= 1) .

Definition Let states jj =(Lj, (AfJ,..., AfJ[),Pj) and ^2 == be given, =S2 if the
following hold.

a. Let l\ and denote the values of the 1-th latch in Lj and L2, respectively. If the i-th latch is finite, then 4 = 4'

otherwise,/, =must hold.
*p,

b. Let m{[i] = (fl|[/], v^[i]) denote the i-th address/value pair in m\, the fc-th memory element of . Then, for

each M^[i] there exists such that and vj[i]| =v^[yl| . Similarly, for each
iPj IP2 IP| IP2

there must exist such that and vj[/]| =v^[7]| .
ip, IP2 'Pi IP2

c. Pj s P2, i.e. Pj => P2 and P2 => P^.

Definition An initial stateisa state {latch0,0), where latch^^^^ is anassignment ofan initial value toeach latch.

2,2 Operational Semantics of ICS

Theoperational semantics describes howtransitions aremade between states of a design modeled using ICS.

Definition Agate graph H is &directed graph where each node is a generalized gate, (x, y)e H if some output variable

of thegeneralized gate x is an input to thegeneralized gate y. A cyclic gate graph is said to contain a combinational loop
(or cycle).

Remark For an acyclicgate graph H, a root node eitherhas no inputsor is a latch.

Given .r is a state of the model, and a coimter n, representing the number of constants created so far during the symbolic

execution of the state space. A state transition is defined by the following algorithm which, given a state u - (L, A/, P),

assigns a new valueto all next state variables (creating L), andcreatesa new memory M', a newset of predicates F, and a

new counter ri. In this case, we say there is a state transition (tt,v), where v = (L',Af,P'). State transitions are
computed as follows.

0. LetF = P,n' = n.

1. Leta user-given totalorderonall memory operations begiven. Choose a topological sort O ofthegategraphconsis
tent with this memory order.

2. Assignthe valuesgiven by L to the outputs ofthe latches.
3. Assign values to the outputs ofeachgeneralizedgate consistent with its inputs, processing thegeneralized gates in the

topological order O. More precisely, leta generalized gate g{i,0) begiven, where i represents the inputs to thegate
and 0 its output.

a. If g is a table representing the relation R(i, 0), then (/, o)e R .

b. Ifg is an integerfunction, then 0 = g(i), where 0 and i are ICSterms.

c. If g is an integerpredicate, if P' -»(g = 0) is valid, let g = 0; if F-^{g = I) is valid, let g = 1; otherwise

let 0 ^ 0 or 0 = I, and F = P u {g = 0} .

d If g isa constant creator, then 0 = c„>, where c„. isafresh constant. Let n' = n'+1.

Page 6

e. Assume g is a memory read operation with address a, and memory contains a set of address/value pairs

(a., d.). Ifthere exists an i such thatF (a = a-) isvalid, then leto - d- (i.e. read the datafrom location a,).

If no such a,- exists, then perform one of the following I) choose an i, where F-^(a^a^) is not valid, let

F = F u {a =a^.}, and o = d^, or2) for all i where F (a^a.) is not valid, let F = F\j a^.}, cre

ate a newfresh constant d, let o ^ d and add thepair {a., d) to memory. The secondcasecorresponds to reading

an addressthat has neverbeen written to beforein which case a newconstantis returned,

f Ifg is a memory write operation. This case is similarto a memory read. Adiagramisshown infigure3.

4. Assign to L thevalues given to thecorresponding next state latch variables in gategraph. Assign to Af the address/
valuespairs in memory at the endofstep3. F is defined as above.

Step 3 is referred to asvalue propagation. Note that the configuration graph is finite-branching, i.e. for every state, there
are a finite number of next states. It is possible that a table is not complete, i.e. there are inputs for which there are no
outputs. Then, the set of values assigned to an output of a table may be empty. The empty values propagate, i.e. if oneof
the inputs to a table is empty, then the output is empty as well.
Now that we have defined anICS state and the operational semantics we can now define the state space of systems modeled
using ICS:

Definition An ICSstategraph G, for an ICS model Af, is a directed graph where each node is an ICS state. («, v) e G is
anedge in thegraph if there is a transition between ICS states u and v that is allowable by theoperational semantics. Note

that the initial state Mq = (latch^„^f, 0,0) is a node in the graph (there can be multiple initial states). In addition, only

reachable states are allowed in G (i.e. there must be apath from an initial state, Uq , to each state w in G).

2.3 ICS Models and Verification

ICS models can be used to model and verify hardware systems. Fairness constraints, which rule out some unwanted
behavior (introduced due toabstraction), can beplaced on finite latches. In order toverify a property, the property is written
as an ICS model, and it is checked that the language ofthe system iscontained in the language of the property. Astring in
the language of an ICS model M is obtained by traversing a path in thegraph of the operational model of M, such that the
setof infinitely occurring states of the finite latches satisfy the fairness constraints. Thelanguage containment must hold for
any interpretation given to uninterpreted functions and constants, i.e. for all possible definitions for the functions and
valuations for theconstants. Insome cases, theproperty canbe complemented automatically. In other cases, theusermust do
this by hand. The complement of the property is then composed with the system, and it is checked that the language of the
composed system is empty. Hence, the verification problem reduces to checking whether the language of an ICS model is
empty. Again, emptiness mustholdforall interpretations given to uninterpreted functions andconstants.

Page?

write(fi2, k)
Ml

Address Data

Ci K(a)

Co f(b)

Pj =

A
T
Mj

Address Data

Ci k

Co f(b)

M4
Address Data

Ci K(a)

Co f(b)

Co k

= {(Cj *C2)» 5^ Cj), (C^ ^Cj)}

M3
Address Data

Ci B(a)

Co k

^2 " t(*^7 *^2 '̂ ~*^5^^ ^3 ° {(^i*(<^2 ° *^5^^

Figure 3

Inthe top leftdiagram, write(c^k) is

performed inastate withmemory Mj

andpredicate Pj. Since isnot equal

toAeaddresses Cj and currently

stored in Mj, allcases have tobe

er^lored: a Cj, st C2 and

Cj^C2*c^. This creates three new

states, along witiithwassociated

memories andpreHeates, M2»M^,

M^and P2,P3 P4.

3 State Reduction Methods

The ICS paradigm only allows finite control variables to be specifiedexplicitly in the property. Thus, any state reduction
technique that preserves the sequential behavior of all finite variables and latches will not cause any loss in verification
accuracy with respect to the property being verified. We formally define this notion below.

Definition Let F(s) denote the projection of the setof traces from s to the set of finite variables. Two states and ^2

aresaidto be Urace iff F(5i) = F(S2) .

Theorem 1 Let and ^2 be two trace equivalent states in a symbolic graph G. Let G be obtained from G by deleting

S2 andreplacing all edgesof the form (v,j2) by (v, ij) . Then, L(G) = 0 iff L(G) = 0 .

Proof This follows from the definition of trace equivalent states and the fact that fairnessconstraints and hence language
containment only depend on the finite variables (QED).

3.1 Deleting Isomorphic States

In this section, we show that two states may be trace equivalent, even though the ICS terms assigned to the integer latches,
predicatesand memory may be different.Two states are isomorphicif they have equivalent assignments to finite latches and
one can replace the set of constants occurring in one state with a different set of constants such that the result is syntactically
equivalent to the second state. An example of such a case is shown in Figure 4.

Defmition Let the constants of an ICS term t, Cons(t) , be the set of constants appearing in t. Let the constants of a

predicate p be the union of all constants appearing in the ICS terms of p. Similarly, define the constants of a state and a
set of predicates.

Definition Two ICS terms and t2 are said tobeisomorphic iffthere exists an isomorphism /:Conj(f|) -> Cons(t2)

where /(fj) = <2 consequently t^ = /"\/2))• Intuitively, two ICS terms are the isomorphic if they are the same up
to a renaming of the constants. Similarly, define isomorphic predicates, sets of predicates, and states.

Lemma 3.1 Let two sets of n predicates P = {p^, - ypn) and P = {pj, ...,p„} be given such that P and P are

isomorphic. We have,

1. P| A... Ap„_i -> p„ is valid iffpj a ... a p„_i -»p„ is valid;

2. Pi A... Ap„_ j -> p^ is satisfiable iffpj a ... a p^_ j -> p„ is satisfiable.

Page 8

Proof We7/ill show if Pi a ... a j -> is valid, pj a ... a p^_ j -> p^ is also valid. Thereverse direction and part

2 aresimilar. Assume tothe contrary that Pj a ... a p„_ j ^ p„ is not valid. Let Cj,..and Ci,..., be the constants

in P and P respectively. Let / be an inteipretation for Cj,..., c„, and theuninteipreted functions and predicates of P,

making Pi a ... a p„_j p„ false. Let /, an interpretation for P, be derived from 7 by making the same assignments to

Cj,and the uninterpreted functions and predicates ofP as 7 does to Cj,.... and the uninteipreted functions and

predicates of P. Note that the unint^reted functions and predicates of P and P are the same. Since P and P are

isomorphic, the values ofeach and py under I and 7 are the same. Itfollows that Pia ...a p„_ j p„ is false under /,

which is incontradiction topj a ... a p„_ j ^ p„ being valid (QED).

Definition Given a state s, a topological sortof the gate graph O, and a generalized gateg, apartial state at g, denoted

by Pis, g, 0) , is a state reached during symbolic simulation at gate g when processing thegates at the order given by 0.
This state is defined by the values of finite and integer latches at s, thevalues assigned to theoutputs of thegates processed
so far, and the current values of the predicates and memories. Abusing the notation, we sometimes write Pis,g) for

P(s, g, O), knowing that a topological sort 0 is implied.

/Lj=d\ /Xy=d\
f Lq^I \ S2 / \

/ / L2^f(d)]
Lj^b

a* fib) c*f(d)
a=b c=d

\ (a.b) / \ (c. d) j
Vflb). g(b))/ ^d).g(d))/

States Sj and 82 areisomorphic since the

constanta can bemapped to C, and b to d. The
states are trace equivaient.

Figure 4

Theorem 2 Two isomorphic states are traceequivalent.

Proof Let P(^i, ^2) bold iff and $2 are isomorphic. It suffices to show that P is a bisimulation on the symbolic

graph G preserving finite values, i.e. if S2) and TCJi, a, Ij) hold for some assignment to finite variables a, there

exists t2 such that Rit^,12) and T(S2, a, ^2) bold, and vice versa. We will show one direction since the reverse is similar.

Let R(s^,S2) and T(Si,a,t^) hold. Consider a topological sort 0 of the gate graph used in obtaining from .

Assume by induction that when gate g is processed, R holds ofthe partial states P(Sj, g) and P{S2, g) (i.e. the partial

states are isomorphic). Itsuffices to show that after processing g, R still holds ofthe partial states. Let Pj and P2 be the

predicates in P(Sj,g) and Pis2,g) respectively. Based ong, wehave thefollowing cases:

1. g is a finite gate. Since by the inductive assumption the inputs to g are the same, assign the same value tothe outputs.
2. g is aconstant creator. Have the outputs of g, which are new constants, map toone another.

3. g is an integer function. Just apply the function inboth cases. By the inductive assumption, the outputs will also be the
same up to a renaming of the constants.

4. g isan integer predicate. By the inductive assumption that Pj and P2 are isomoiphic, and by lemma 3.1, the output ofg

is determined by Pj iff the output of g is determined by P2 (and these values are the same). If both true and false cases

Page 9

have tobe considered, havethecorresponding cases map to oneanother.

5. g isaread. Let the address being read in P(jj, g) be aj. We have the following cases.

a. Pj -^(aj = pj) is valid for some address Pj. Then by lemma 3.1 = '(Pi)) is also valid. By the

inductive assumption, the values read in both states (i.e. the values stored in pj and /(Pj)) are isomorphic.

b. Pj ->(ttj = p,.) isnot valid for any address p,-, but for some address Pj, we have assumed ttj = Pj. We have that

P] A(ai P2) A... A(aj * p„) -> (Cj = pj) is satisfiable, which by lemma 3.1, implies

P2A(/(ai);t/(P2)) A...A(/(ai)?t/(Pj)-»(/(aj) =/(Pi)) is also satisfiable. By P,->(aj = p,) not being

valid for any address P,-, and by lemma 3.1, we conclude that for no address y,- in P{S2, g), P2 ('(<*1) = Y,) isvalid.

It follows that the possibility of /(ttj) = /(Pj) will also be consid^ed in P(S2,g) . By the inductive assunqition, the

values read inboth states (i.e. the values stored in p^ and /(Pj)) are isomorphic.

c. The address being read in P(5|,g) is distinct from all other addresses. By lemma 3.1, this possibility also exists in

^) • cases a new location and data value is created.Extend I by mapping these new locations and data values
to each another respectively.

6. g is a write. Similar to the case of read (QED).

3.2 Prop^ating Equalities

In this section,we show that some equality predicates in a state may be removed if all the occurrences of one term in the
predicateare replaced with the other. An exampleof sucha case is shownin Figure5.

In order to prove that the propagating equalities optimization is valid, the following lemma has to be proven (see the
appendix for detail proof).

Lemma 3.2 Let two sets of n predicates P = {pj,..., p^} and P = {pj,..., p^} begiven such that if all occurrences

of some constant b inpj,.p„ arereplaced bysome constant a, then P and P areisomorphic.

a. pj A... Ap„_ j /^{a = b)-^ isvalid iffP| a ... a p„_j p^ is valid.

b. Pj A... Ap„ A(fl= b) is satisfiable iffpj a ... a p„ is satisfiable.

Definition We saystate t is theresult of applying theequality propagation operatorto state j if / is isomorphic to some

state s obtained from s by the deletion of some equality i^edicate a - b and renaming all occurrences of b in the ICS

termsof 5 by a. Note that the outputof the equalitypropagation operatoris well specified up to isomorphism of states.

State S2 has been obtainedfrom Sj byequaSty

propagation. Here all oeeurreneeof b havebeen

replacedby a. Thestatesare trace equivalent.

Figure 5

Theorem 5 If r is theresultof applying theequality propagation predicate to s, then s and t are trace equivalent.

Page 10

3.3 Simplifying Functional Terms

this section, we prove that some ICS terms in a state can be replaced with a finesh constant,while still maintaining finite
tracebehavior. We call this technique simplifying fimctional terms.An examplesin given in Figure6.

Terminology Let P(ai,..., a^) be apredicate. We say y is a term in F(a|,..., a^) ify = for some a^. We say y

occurs in /*(ai,..., if y is asubterm in one ofthe a^- *s.

In order toprove that thesimplifying fimctional terms optimization is valid, thefollowing lemma hastobeproven.

Lemma3.3 Let Pj, be such that pjA...Ap„ is satisfiable. Let p = /(ttj, ...,a^), where / is an

uninterpreted function, a is not one of the ICS terms in the *s (although a can occur in the p,- 's), and if a occurs in a

term of the form g(yj, ...,fl, ...,y/), then g in an uninterpreted function. Let ^j, be isomorphic to a set of

predicates Op..., obtained from Pp..., p„ by replacing all occurrences of p with a new constant Then, the

following holds.

a. Pi A... Ap„_i -» p„ is valid iff a ... a^„_i -^q^ is valid.

b. Pi A... Ap„_1^ p„ issatisfiable iff gi a ... a i -»is satisfiable.

Remark Condition 3 of lemma 3.3 is needed to avoid the following situation. Assume in some state s, the two integer
latches contain /(a) and /(c) respectively, and the predicate a +1 = c+1 holds. Then /(a) should not bereplaced by
a newconstant.Condition 3 ensuresthat this will not happen.

Notation Wesay a term a is stored in state j if a is stored in one of theinteger latches, oris theaddress or data in some
memory location.

Definition Let a state j and an ICS term p = /(ttp ..., fl,..., a„) be given. Assume constant a is not one ofthe ICS

terms stored in j, isnot a term in any ofthe predicates ofs, and if a occurs in a term ofthe form g(yp ..., c,..., y^), then

g in an uninterpreted function. We say state t is the result ofsimplifying thefunctional term P in 5 if f is isomorphic to
some state u obtained firom s by replacing the term p in all ICSterms of 5 by a newfresh constant b.

/Li^ d\
/ Lo=i \ S2

/Lj^a\
/ \

' L2 =g{a,cf
L3 = b

UII

atso a=o

a*f(b) a* fib)

\ (o.b) /
\myrw

I {a. t>) j
\<f(bhf(b))/

State $2 has been obtainedfrom Sj by simplifying

functional terms. Here the expression g{a,c) has

been replaced witha constant d since c does not

occur inany other term in Sj . The states aretrace

equivaleid.

Figure 6

Theorem 4 If t is the result ofsimplifying a functional term in s, then s and t are trace equivalent.

Remark In ICS models, it is possible for some infinite run to have no interpretations in standard integers ([HIB96]).
Assume t is obtained by simplifying a functional term in s. Then, there may be an infinite run r_, fi-om s which has no

inteipretations in standard integers, but its corresponding run r, from t has an interpretation in standard integers. For

example, let s contain f{a) in some integer latch, and assume a does not appear anywhwe else in the system. Then, s is
trace equivalent to some state t in which f{a) has been replaced by some new constant b. Assume from s the only
possible next state is Sq in which f{a) - 0. Further assume the only possible next state from Sq is in which
/(O) = 1. Proceeding inductively, assume the only next state fi-om is in which /(/) = i+ l. Let

Page 11

r, = , Letr, = ... bethe nm corresponding to r,. We have /(i) = i+1 holds in r,.. Run isnot

satisfiable in standard integers since if a = n, then both /(a) = 0 and /(n) = n+1 should hold. However, r, is

satisfiableby letting b = 0.

3.4 Deleting Dangling Predicates

In this section, we provethat a predicate in a statecanbe removed if thepredicate contains a constant thatdo not occur in
anyothertermin thatstate.Wecall thisreduction deleting dangling predicates. An example is givenin Figure7.

In order to prove thatthedeleting dangling predicates optimization is valid, thefollowing lemnda has to beproven.

L£mma 3.4 Let n + 1 predicates Pp 1 be given such that Pi a ...aj is satisfiable. Let p„ be either an

uninterpreted predicate p(a|,..., Cq, a„), or an equality predicate Cq = c^, or an inequality predicate such

that Cq occurs intheother p,- 's only interms ofthe form g(Yi,.... Cq, y^), where g is anuninterpreted function. Then,

a. pjA...Ap„-^p„^.i isvalidiffpiA... Ap„_i^p„^.,isvalid.

b. Pi A... Ap„ -»p„^ j is satisfiable iffpj a ... a p„_ j -» P„+ i is satisfiable.

Definition A constant Cq in M is said to be absent if Cq appears in the predicates, integer latches, addresses and data

values only in terms of the form g(yj,..., Cq, ..., Yj^), where g is an uninterpreted function. We assume t is theresult of

deleting a danglingpredicate from s, if there exists an equality predicate Cq ^ , oraninequality predicate Cq = , oran

uninterpreted predicate p(aj,..., Cq, ..., a^) in s with Cq absent in s, suchthatdeletion of thispredicate from s results in

I.

s?
f Ljsfl ^

LjBb
actb
cab

a* fib)

\ (a. b) /

a* fib)

(a,b)

State S2 has been obtainedfrom Sj by deleting

dangUngpredicates. Here the ^dieate c b d has

been removedsince c does not occur in any other

term in Sj. The states aretrace equivedetU.

Figure 7

Theorem 5 Let r be theresult of deleting dangling predicate pCa^,..., Cq, ..., a„) from s. Then, s is trace equivalent

to /.

3.5 Deleting DangUng Memory Locations

In this section, we prove that a memory location in a state can be removed if the address of the location is a constant that
does not occur in any other term in the state. We call this reduction deleting dangling memory locations. An example is
given in Figure 8.

Recall that two sets of predicates P = {Pp ...,P„} and g = {qj,are equivalent, written as P^Q, iff

Pi A... Ap^<->qi A ... A^„ is valid.

Definition Let P^ denote thepredicates of state s. Wesaytwo states j and / arepredicate equivalent iff P^= Pf, s and

t agree (have the same values) on the finite latches, integer latches, and memory elements.

Notation Let ; be a state and p be a predicate. Then denotes the state obtained by adding p to the set of predicatesof

s, assuming that is well-defined. For example, if /(a) and f{b) are two memory addresses of a memory element,

Page 12

^a =b Undefined, since by the semantics of ICS models, f{a)i^f{b) in 5, and ia-b)Aif{a)*f{b)) is
unsatisfiable.

In order to prove that the deleting dangling memory locations optimization is valid, the following lemmas has to be proven.

Lemma3.5 Two predicate equivalent states are trace equivalent.

Lemma 3.6 For any state s and predicate p, F(j^)g F{s) .

Definition Let a be a constant and y an ICS term. A memory address location (a, y) in some state s is said to be

inaccessible if a does not appear anywhere else in the system, i.e. not in any of the integer latches, non-address predicates,

or memory locations. Address predicates are inequality predicates of the form ttj a2, where and are memory

addresses defined in state s. Intuitively, address predicates are predicates created to ensure that all memory locations are
distinct.

c^x

(c.d)

Controller

Data

Path

Address

Path

Infinite

Memory

State 82 has been obtainedfrom Sj by deleting

dangling memorylocations. Here, the memory
location (x, f(c)) can be removed since x does not

occur inany (Hher ICS term in S2 (exceptforthe

addresspredtctOe c*x). The states are trace

equivalent.

Figure 8

Theorem 6 A state s is trace equivalent to a state t obtained from s by deleting an inaccessible location (a, y) .

4 Some Implications of Optimized ICS Reachability
In this section, we define a newclass of ICS models called decoupled data independent memory systems which, once the

optimizations in this paper have been performed,have a finite state graph.

4.1 Decidability of Language Containment in Some Cases

Definition A decoupleddata independentmemory system (DDIMS) is an ICS modelconsisting of four parts: controller,
data path, address path, and an infinite memory. The controller is a set of finite variables, and tables on them. A data
variable can be the output of data movementelements, constant creators, or read operations. An address variable can be the

output of a data movement element or a constant creator. The write operations to memory are of the form write(a, d),

where a is an address and d is the data. Theonlypredicates allowed in thedataandaddress pathsare equality comparators

of the form x = y.

The general configuration ofa DDIMS. The controller sends
control information to the data and address paths. The address
and data paths send the results of inspection of data and
addresses bade to the controller. The data path sends and
receivesdata to andfrom memory. The address path provides
the addressesofvariouslocationsto the memory.

Figure 9

We note the following facts about DDIMSs.

1. InDDIMSs data andaddresses areseparate. Specifically, addresses cannot bestored in memory.
2. DDIMSs can berecognized in polynomial time. Given that, weassume the ICS reachability engine uses different sets of
constants for addresses and data variables.

3. Let aI and denote addresses. Since equalities of the form a,- = are propagated (section 3.2), the only predicates

Page 13

involving addresses are inequalities of the form *aj. Recall that, since all addresses of amemory element are assumed to
be distinct, predicates specifying inequality ofaddresses ofmemory elements are not part ofthe set ofpredicates ofa state.
Hierefore, inequalities of the form a-^Oj must involve some address not in memory. Hence, either or fly is an address
stored in an address latch. It can be shown using the same proof technique as the proof of theorem 7 that in performing
reachability of DDIMSs, inequalities of the form Oj can be deleted while preserving language emptiness. We conclude

theonlypredicates in reachability of DDIMSs are inequalities between datavariables.
Wearenowready to provethat thelanguage emptiness problem forDDIMSs is decidable.

Theorem 7 Let M bea DDIMS. Then, the optimized symbolic simulation algorithm tmninates, and generates agr^h G

such that L{M) = 0 iff L(G) = 0.

Proof Let ^ be thenumber of integ^ latches in the data path, a thenumber of integer latches in theaddress path, and

n = fl + the total number of integer latches. Since in DDIMSs no address can be stored in memory, and by the fact that

there areno predicates involving addresses in thereachability of DDIMSs, there are at most a accessible memory locations

(section 3.5). By theorem 6, no configuration with more than a memory locations is needed. Similarly, there are at most

n - a +d accessible data values, in the data path integer latches, and a in memory. Since equality predicates are

propagated (section 3.2), the only predicates in a state are inequalities of the form d^^dj, where d^ and dj are data

constants. Since there can be at most n data constants stored in data latches and memory, dangling predicates are deleted

(section3.4), and isomorphicstates are renamed (section3.1), only n data constantswill be ever needed, and there can be at
2

most 0(n) (data) predicates.

Assume the symbolic simulator uses constants flj, ...,fla for addresses, and flfj, for data, then each data latch or
data location in memory can take onone of the </,• *s, and an address variable one of the 's. It follows that 0 is finite and

a d + I ^ofsize 0(f2" a*n *), where / isthe number offinite states, 2" isdue to different predicate configurations, a" comes

from various configurations for address latches, and is due to different configurations of data latches and memory

locations. Sinceall of ouroptimizations preserve language emptiness, L(Af) = 0 iff L(G) = 0 (QED).

4.2 Exponential Compaction Compared to Finite Instantiations

Lemma 4.1 There is a DDIMS M with n+l control states, such that L(Af) ^0 , the ICS reachability routine generates

n+I states, but any finite instantiation with non-empty language has 0(2") reachable states.

Proof Let theprogram have oneconstant creator in its address path, a latch I in itsdatapath, and a comparator between /

andsome intermediate line x. We assume the initial value of / is the constant d, and M never changes the value of /. In

every control state i, 0^i<n-l, M aeates a new constant fl,- initsaddress path, reads the value d^ stored at fl,- into x,

and compares x to I (which contains d).lf d^^d, M writes d into fl,-, and goes to state /+ 1. Otherwise, M stops (i.e

doesnot accept). State n is a dead accepting state. Theonly wayM canhavean infinite pathis by constantly reading a new

location in memory, since all locations which have been visited before have the value d stored in them. Since the address of

the new location is not stored anywhere, the optimized ICS reachability routine always drops the new memory location
(section 3.5), and therefore, explores only n+l states. Any finite instantiation preserving the infinite trace must have at

least n memory locations, and 2 data values. Since all assignment of values to memory locations is reachable, the finite

instantiation contains 0(2") states (QED).
Remark Even if we assume that there is only one initial state where all memory locations take the value 0, all possible

Page 14

assignments of values to the memory locations is reachable, which implies the number of reached states is 0{1)
(assuming2 data values). If.a tool such as Murphi ([pDHY92]) with interleaving semantics,explicit state enumeration, and

2
symmetry reduction is used, the number of explored states is n + 1, whereas the running time is 0(n), since at every state

0(n) choices have to be considered. If a BDD-based tool is used, the running time is still quadratic. The reason is that the

set of memory configurations reached after i steps is all assignments of values to memory locations with i Ts (and n-i

0*s). For i = n/2, the BDD representing the set of reachable states is of size 0(n) .

5 Experimental Results

We have implemented some of the optimizations presented in this paper by extending the symbolic reachability analyzer
described in [IHB96]. These optimizations include performing equality propagation, deleting dangling predicates and
deleting dangling memory locations. Our implementation is unable, however, to detect all isomoiphic states. We leave
efficient detection of such states as an open research problem.

Table 1 shows the results of our experiments with the examplegiven in proof of lemma 4.1. The columns are the number
of conhol states in the example, the number of states reachedby ICS reachability, the time takenby VIS (Berkeley's second
generation BDD-based verifier, [VIS96]) and the number of states reached by VIS. All experiments were run on a DEC-
Alpha server 21164 running at 250MHz with 1 GB of main memory. The reported times are in CPU seconds. As one may
notice, the time for ICS reachability grows more than linearly. The reason is that in our implementation, a hybrid implicit/
explicit ^proach was used, where BDDs are used to represent the control portion of the model, and a special type of
symbolic simulation generates the behavior of the datapath (see [IHB96] and [HB9S] for a more detailed discussion). In this
particular example, the size and complexity of the transition relation grew with the number of control states.

The ICS reachability algorithm can also be implemented explicitly without using BDDs, in which case, we expect linear
run times for this example. Despite this, however, VIS was only able to complete the experiments with 4, 8 and 16 control
states, andranout of memory forall the other examples. In addition, the timethatVIStookto complete eachexamples was
significantly slower than ICS Reachability. As discussed in the proof lemma 4.1, VIS requires at least n latches in the

datapath to model the memory of a DDIMS with n + 1 control states. The number of latches for memory does not grow
whenICS reachability is performed, sincedanglingmemorylocations weredeleted.

Table 1

Control State Nnm 4 8 16 32 64 128 256 512 1024 2048 4096 8192

ICS, Time 0.0 0.0 0.1 0.2 0.3 0.7 1.8 4.9 14.7 48.6 173.7 658.3

ICS, Reached States Num 4 8 16 32 64 128 256 512 1024 2048 4096 8192

VIS, Time 0.1 1.2 883.9
- - - - - - - - -

VIS, Readied States Num 114 3050 1310000
- - - - - - - - -

6 Conclusions and Future Work

This paper presented a set of optimization routines which can drastically reduce the sizes of state spaces of ICS models.
Specifically, they can reduce inhnite state spaces into finite ones. These results lead to a decision procedure for language
emptiness of decoupled data insensitive memory systems, and to show that ICS reachability can have a computational
advantage (at least asymptotically) with respect to finite instantiations and the best known algorithms for generating their
state spaces.

We see two future research directions.

1. Extend the optimization routines, and hopefully get decision procedures for more circuit families. Two specific open
problems where one may be able to get decision procedures (that is if the problems are decidable) using more powerful
optimization routines are:

Page 15

a. the language emptiness problem for data insensitive memory systems, inwhich data and addresses are not separate, and
therefore addresses can be storedin memory;

b. the problem of proving the property "when b becomes true, x = y"where and y are integer variables, and the
system is a data computation controller in which the datapath contains data movement operations and unint^reted
functions, but no predicates([HIKB96]).
2. Gain experience with the impact of these optimizations inpractice. A good example may be the verification of the ATM
switch described in [LTZSC96].

Acknowledgments

During thiswork, thefirst andsecond authors weresupported by SRCgrant96-DC-324.

References

[BD94] J. Burcb, D. Dill, "Automated Verification ofPipelinedMicro-processors", Computer-Aided Verification, 1994.
[Bry86] R. E.Bryant "Graph-based Algorithmsfor Boolean Fimction Manipulation." IEEE Transactions on Computers, 35(9):677-

691, August 1986.

[Coi93] F. CoreUa, "Automated High-level Verification Against Clocked Algorithmic Specifications", Proceedings of theMP WG10.2
Conference on Computer Hardware Description Languages andtheir Applications, Ottawa, Canada, Apr. 1993. Elsevier Science Publish
ers B.V.

[DDHY92] D. Dill, A. J. Drexler, A. J. Hu,C. H. Yang, "Protocol Verficationas a HardwareDesignAid", International Conference
on Computer Design (ICCD) 1992.

[HB9S] R. Hojati, R. K. Braytpn, "Automatic DatapathAbstraction ofHardware Systems", Conference on Computer-Aided Verifica
tion, 1995.

[HIKB96] R. Hojati, A. Isles,D. Kirkpatrick, R. K. Brayton, "Verification Using Uninterpreted FurMions and Finite Instantiations",
FormalMethods in Computer-AidedDesign, November 1996.

[HIB96] Ramin Hojati, Adrian Isles,RobertK.Brayton, "ICSModels with Bounded Integers", unpublished manuscript. May1996.
[IHB96] A. Isles,R.Hojati, R. K.Brayton, "ReachabilityArudysis of ICSModels", SRCTechcon, September 1996.
[LTZSC96] M. Langevin, S. Tahar, Z. Zhou, X. Song, E. Cemy, "Behavioral Verification of an ATM Switch Fabric using Implicit

Abstract StateEnumeration", International Conference onComputer Design: VLSI inComputers andProcessors, Austin, October 1996.
[SDB96] J. X. Su, D. Dill, C. W. Barrett, "Automatic Generation of Invariants in Processor Verification", Formal Methods in Com

puter-Aided Design, November 1996.

[Sho79] R.E. Sbostack, "A Practical Decision Procedure for Arithmetic With Function Symbols", JACM Volume 26, No. 2, April
1979, pp 351-360.

[VIS96] "VIS: A system for Verification and Synthesis", The VIS Group. In the Proceedings of the 8th International Conference on
Computer Aided Verification, p428-432, Springer Lecture Notes in Computer Science, #1102, Edited by R. Alur andT. Henzinger, New
Brunswick,NJ, July 1996.

Appendix

Lemma 3.2 Let two sets of n predicates P = {pj,..., p^} and P = {pj,..., p„} be given such that if all occurrences

ofsome constant b inpj,..., p„ arereplaced bysome constant a, then P and P areisomorphic.

a. Pi A... Ap„_ JA(fl = h) -»p„ is valid iff pj a ... a p„_ j -» p„ is valid.

b. Pi A... Ap„ A(fl = h) is satisfiable iffPi a ... a p„ is satisfiable.

Proof We will show that if Pi a ... a p„_ i a (a = h) ->p„ is valid, then pj a ... a p„_ j ->p^ is also valid. The

reverse direction of part a, and part b are similar. Assume to the contrary that pj a ... a p„_ j p„ is not valid. Let

a,b,Ci, ...,c„ be the constants in P and P respectively. Let 7 be an interpretation for P, making

Pi A... Ap„_j-»p^ false. Let /, an interpretation for P, be derived from 7 by making the same assignments to

Page 16

a, Cj,c„ and the uninteipreted functions and predicates ofP as 7 does to a,Cj,and the uninterpreted functions

and predicates of P. Let /(h) = /(a) = 7(5) . For each /, if p,- does not contain h, then it is isomorphic to p,-, and

hence /(p,) = 7(py) . If p- contains h, then p- contains 5 in its place. Since 1(b) = 7(5) , it follows again that

'(P,) = ^(A) • Since Pia ... Ap„_i ^p^ is false under 7, and since /(p,) = l(p.) for all i, we have that
PiA...Ap„_j is true and p„ is false under I. Since a = h is true under /, we conclude that

Pi A... Ap„_j A(fl = h) -» p„ is false under I, which is in contradiction to Pj a ... a p„_j -» p„ being valid (QED).

Theorem 3 If f is the result ofapplying the equality propagation predicate to s, then s and t are trace equivalent.

Proof Let Ris^^ ^2) hold iff can beobtained by applying the equality propagation operator to . It suffices to show

that P isa bisimulation on the symbolic graph G preserving finite values. Let R(s^, S2) and r(ji, a, /j) hold, where a

isan assignment ofvalues to the finite variables. We need to show that there exists t2 such that T(S2, fl, ^2) ^('i» '2)

hold (the reverse direction is similar). Further assume that Ji contains a predicate a = b which was deleted by the equality

propagation operator, and all b's were renamed to a *s. Proceeding byinduction, assume that before processing a gate g, R

holds ofthe partial states P(s^, g) and P(t^,g) .

We define the following notations for the rest ofthe proof. Let Pj and P2 be the predicates in Pis^, g) and P(S2, g)

respectively. Let I be an isomorphism which maps P(5i, g) after b has been replaced by a to P(52, g). Let /^.^^(a)

be the mapping which first renames b'sto a's in the ICS term a and then applies I to the result. Similarly define

applied to astate. Let the two new partial states after processing g be «j and «2 • Based on g, we have the following cases:

1. g isa finite gate. Since by the inductive assumption the inputs to g are the same, assign the same value to the outputs.
2. g isaconstant creator. Have the outputs of g map toone another. Extend I with this mapping.

3. g isan integer function. Just apply the function in both cases. We have //,_>a("i) = "2 •

4. g isan integer predicate. By the inductive assumption and by lemma 3.2, we have that the output ofg isdetermined by
Pj iffthe output of g is determined by P2, and they are the same. If both true and false cases have tobeconsidered, have

the correspondingcases map to one another.

5. g isaread. Let the address being read in P(s^, g) be ttj. We have the following cases.

5a. ?i->(ai = Pi) isvalid for some address Pi. By lemma 3.2, P2^ih-^a^^\) ^ isalsovalid. By

the inductive assumption, the data value at aj is mapped by Ito the data value at /^.^^(oti).

5b. Pj-^(ai9tp.) is valid for all addresses P,.. By lemma 3.2, isalso valid for all

p,-. In both cases a new location and data value is created. Extend i'y mapping these locations and data values to
each other respectively.

5c. For Yj< e {yj,..., y^^}, neither P^ (aj =y^) nor Pj -»(ai 9fcy,) holds, but we have assumed ttj = y- for some

Y;* Hence, a (tti =y^) ^y,) is satisfiable. By lemma 3.2,

= A^^^(/£,_>^(ai)^/^_^^(y^.)) is also satisfiable, which implies we can assume

Page 17

~ holds, in PiS2*g). Bythe inductive assnmption, the data value at ttj ismapped bytothe

data value at^(ttj).

5d. For y.e {yj,y^^}, neither Pj ->(ttj = y,) nor Pj -»(aj ^y,) holds, but we have assumed ttj is distinct

from all other addresses. Hence, Pj a issaUsfiable. By lemma 3.2, «

alsosatisfiable, which implies we can assumeis distinct in P(^2»^) aswell. In both cases a new location and

datavalueis created. Extend by mapping theselocations anddatavalues to eachotherrespectively.

6. g is a write. Similar to the case of read (QED).

Lemma 3.3 Let Pi, ...,p„ be such that pjA...Ap„ is satisfiable. Let p = /(ttj, ...,a aj^), where / is an

uninterpreted function, a is not one of the ICS terms in the *s (although a can occur in the 's), and if a occurs in a

term of the form g(yp ...,y/), then g in an uninterpreted function. Let q^, ...,^„ be isomorphic to a set of

predicates Oj,..., obtained from Pj,..., p„ by replacing all occurrences of p with a new constant b. Then, the

following holds.

a. pj A... Ap„_j p„ is valid iff a ... a^^_j ->q„ is valid.

b. Pi A... Ap^_ j -»p^ is satisfiable iff a ... a _ j ^ is satisfiable.

Proof We will prove part a; partb is similar. By lemma 3.1, it suffices to prove the lemma assuming that q^,is

obtained from pj, ...,p„ by replacing all occurrences of p with b. It suffices to show for all interpretations I for

Pi, ...,p„, there exists an interpretation J for qi,...,q„ such that /(p,) = J{q^) for all i, and vice versa. Let

A/p £,(a) be the mapping which replaces all occurrences of p with b in the term a. Given /, let 7 be obtained from I

by setting 7(Mp_^^(a)) = /(a) (specifically J(b) = /(P)). It follows that /(p,) = Jiq^) for all i. Conversely,

given 7, let I{a) be a value not equal to any of the values 7(y) for all ICS terms y occurring in ...,q„. Obtain /

from 7 by letting /(p) = J(b) , and /(a) = 7(A/p^^(a)) for a itp. Condition 3 in the statement of the lemma

guarantees that thiscanbe done. It again follows that /(p,) = Jiq/) forall / (QED).

Theorem 4 If / is the resultof simplifying a functional term in s, then s and t are traceequivalent.

Proof Let P(jj, J2) hold iff J2 is the result of simplifying a functional term in 5j. It suffices to show that P is a

bisimulation on the symbolic graph G preserving finite values. Let ^nd hold, where a is an

assignment ofvalues to the finite variables. Weneed to show there exists {2 such that R{t^,t2) and T{S2,a,tf) hold. To

complete the proof, we need to show the reverse, which is similar and will not be given here. Proceeding by induction,

assume that before processing a gate g, the partial state P(Ji,g) contains an ICS term p = /(ttj,..., a,..., a„) which

wasrq)laced bya new constant b to obtain P(S2» g) •

We define the following notations for the rest of the proof. Let Pj and P2 be the predicates in P(jj, g) and P(S2, g)

respectively. Let 7be an isomorphism which maps P(Sj, g) after p has been replaced by b to P(rj, g). Let /p _>|,(a),

for aterm a, be the mapping which first replaces p's by 's in a and then applies I to the result. Similarly define /p ^

Page 18

applied to a state ofanICS model. Letthetwo new partial states after processing g be and U2. Wehave the following

cases:

1. g is a finite gate. Sinceby the inductiveassumption the inputs to g are the same, assign the same value to the outputs.

2. g is a constantcreator. Have the outputsof g map to one another. Extend I by this mapping.

3. g is an integer function. Just apply the function in both cases. We have = "2 • requirement that a

occurs only in terms ofthe form g{y^, will notbeviolated in Uj after processing g.

4. g is an integer predicate. By the inductive assumption andby lenuna3.3, we havethat the output of g is determined by

Pi iff the output of g is determined by Pj»they are the same. If both true and false cases have tobeconsidered, have

the corresponding cases map to one another. The requirement that a is not one of the terms in any predicates will not

violated since no input of g is a.

5. g is a read. Let the address being read in P{spg) be ttj. Note that ai^a, and for all addresses p,., p,- 9^ fl. We have

the following cases.

5a. Pj-»(ttj =pj) is valid for some address pj. By lemma 3.3, Pj =^p ->fc(Pi)) is also valid. By

the inductive assumption, the data value at ttj is mapped by /p to the data value at /p £,(aj) .

5b. Pj (ttj p,) is valid for all addresses p,-. By lemma 3.3, P2 (/p £,(ai) /p i,(Pi)) is also valid for all
P,-. In both cases a new location and data value is created. Extend /p by mapping these locations and data values to
each other respectively.

5c. For Yj- € {Yj, ...,Yj^} >neither Pj (ttj =Y,) nor Pj -> (ttj ^y,) holds, but we have assumed ttj = Yy for some

Yj (the requirement that a is not one of the terms in any predicates in «j will not be violated since y^^a). Hence,

Pi A(tti = Y/) A n (<*1''Yj) is satisfiable. By lemma 3.3,
i^j

^2^^= fp->fe(Y;)) An (fp-»&(oti)5^/p_>i,(Y|)) is also satisfiable, which implies we can assume
i*j

= fp_>t(Yy) holds in P{s2,g) . By the inductive assumption, the data value at ttj is mapped by /p_^i, to
the data value at /p) .

5d. For Yf e {Yi» •••» Yjt)» neither Pj (ttj = y,) nor Pj —> (ttj ^ y,) holds, but we have assumed ttj is distinct

from all other addresses. Hence, Pj a nCoti 9tY,) is satisfiable. By lemma 3.3, P2 An(fB-»£»(®^i)''ffl-^feCY,)) i®
I i

also satisfiable, which implies we can assume /p £,(ai) is distinct in P{S2, g) as well. In both cases anew location and

data value iscreated. Extend /p ^ by mapping these locations and data values to each other respectively.

6. g is a write. Similar to the case of read (QED).

Letnma 3.4 Let n+1 predicates pj, P„+1 be given such that pj a ... Ap„^ 1 is satisfiable. Let p„ be either an

uninterpreted predicate pCttj,...,Cq, ..., a^,), or an equality predicate Cq = c^, or an inequality predicate such

that Cq occurs inthe other p-'s only in terms ofthe foim g(Yi» • Cq, ..., Y^)»where g isan uninterpreted function. Then,

a. Pi A... Ap„-»p„^j isvalidiffpi A... Ap„_i->p„^i is valid.

b. Pi A... Ap„ p^^1issatisfiable iffPi a ... a p„_j -» p„^1issatisfiable.

Page 19

Proof, By the definition ofvalidity, a ... a j -> i being valid implies that p, a ... a -> ^, isvalid. We

will show the reverse; part b issimilar. Let a ... a p„ j be valid. We need to show Pi a ... a p„_ j j is

valid. Assume to the contrary that there exists an interpretation J such that 7(pj a ... a p„_i) = T and Jip„ +i) - F.

We will show, contrary to the assumption, that there exists an interpretation I such that /(PiA...ap„) = T and

nPn.l) = P-

1. If p„ is an uninterpreted predicate p(aj,..., Cq, ..., a^), let /(Cq) be a new value not equal to the value ofany other

term or subterm under 7. Forevery term gCyj, ...,Co Y*), let /U(Yi. .. .Co, ...,7^) = 7(g(Yi,..., Cq, Y/fe)) •

This is possible since g in uninterpreted and I(Cq) is not equal to the value of any other term and subterm under J. Let

^(P(tti..... Cq, ..., a„)) be true, and let I agree with J on all other constants, uninterpreted functions andpredicates. It

follows thatPi A... Ap„ -> p„^ I is false.

2. If p^ is an equality predicate Cq = , and if J does not assign a value to Cq or , let 7 be anextension of J with the

extra assignment I(Cq) = /(c^) . It follows that p^ a ... a p„ p„ ^ j is false under /. If 7 assigns unequal values to Cq

and Cjfc, let I(Cq) - JiCj^) = / , where / is a newvalue not equal to the valueof anyothertermandsubterm under 7. Let

I agree with 7 on allother constants, uninterpreted functions and predicates. Again, Pi a ... a p„ p„^ i is false under /.

3. Similar to case 2 (if 7(Co) = JiCj^) , then let I{c^) ^ /(c^) with I(cq) and taking new values notequal to the

value of any other term and subterm under 7) (QED).

Theorem 5 Let r be the result ofdeleting dangling predicate pCttj,.... Cq, ..., a^) from s. Then, s is trace equivalent

to r.

Proof Let /?(jj, $2) hold iff $2 is theresult ofdeleting dangling predicate p(aj,..., Cq, ..., a„) from . It suffices to

show that 7? is a bisimulation on the symbolic graph G preserving finite values. Let jj) and r(jj,fl,rj) hold,

where a is an assignment of values to the finite variables. We need to show there exists t2 such that 12) and

T(s2> a, ^2) ^ topological sort of the gategraph. Proceeding by induction, assume that before processing a gate

g, thepartial state R(P(Si, g), P(S2, g)) holds. Let the twonew partial states afterprocessing g be and U2. Wewill

show thatafter processing g, Riu^, U2) holds.

We defme the following notations for the rest of the proof. Let Pj and Pj t>e thepredicates in Pis^y g) and P{S2, g)

respectively. Let / be an isomorphism which maps PCJj.g) after pfaj, ...,Co,..., a„) has been deleted to Piti,g) .

Let Ipis) be the mapping which first deletes pfa^ ..., Cg, a^) from s, and then applies I to the result. Based on g,
we have the following cases:

1. g is a Bnite gate. Since by the inductiveassumptionthe inputs to g are the same, assign the same value to the outputs.

2. g is a constantcreator. Have the outputsof g map to one another, as an extension of the current isomorphism /. Note

thatbythesemantics of ICS models, thisnew constant in Uj is not Cg since Cg occurs in P(f g) .

3. g is an integer function. Just apply the function in both cases. We have Ipiu{) = U2 •

4. g is an integer predicate. By the inductive assumption and by lemma 3.4, we have that the output of g is determined by

Page 20

Pj iff theoutput of g is determined by P2, and they are thesame. !f both true andfalse cases have to be considered, have

the corresponding cases map to one another, as far as bisimulation is concerned.

5. g is a read. Let the address being read in P^s^.g) be aj. Note that Cq only occurs in terms of the form

•

5a. Pj -> (ttj = pj) is valid for some address pj. By lemma 3.4, P2->(/(aj) = /(Pi)) is also valid. By the

inductive assumption, thedata value at Uj is mapped by / to the data value at /(aj).

5b. Pi -»(tti p,) is valid for all addresses p,-. By lemma 3.4, P2 (/(tti) ^ /(Pi)) is also valid for all P,-. In

both cases a new location and data value is created. Extend I by mapping these locations and data values to each other

respectively.

5c. For y-e (Yi, ...,Yj^} , neither Pi -> (ttj =y,) nor Pi -»(tti ^ Y/) holds, but we have assumed tti = Yy for some

jj. Hence, Pi a(tti =Yy) ayP^.C^i ^Yi) is satisfiable. By lemma 3.4, P2 a(/(tti) =/(Yy)) a .p.(/(ai)'̂ /(Y/)) is
also satisfiable, which implies we can assume /(tti) = /(Yy) holds in P{S2>g) . By the inductive assumption, the data

value at ttj is mapped by I to thedatavalue at /(tti).

5d. For Y/G {Yi, Yjt)» neither Pj -> (tti = Yi) nor Pj (tti ^Yi) holds, but we have assumed tti is distinct

from all other addresses. Hence, Pi a]p(ai ^^Yi) is satisfiable. By lemma 3.4, P2 Ap(/(ai)^i/(Y,)) is also

satisfiable, which implies wecan assume/(tti) is distinct in P(s2,g) as well. Inboth cases a new location and data value

is created. Extend / by mapping these locations anddata values to eachotherrespectively.

6. g is a write. Similar to the case of read (QED).

Lemma 3.5 Two predicateequivalentstatesare traceequivalent.

Proof The proofusesproposition 1, and is very similar to the inductive proofs we have been doing throughout, and will
continue to do (QED).

Proposition 1 If P = Q, then P -»r is valid iff j2 —> is valid.

Proof We will show validity of P -> r implies validity of Q-^r. The other direction is similar. To show, (2 is

valid, assume Q is true. This implies, by P=Q, that P is true, which in turn by the validity of P ^ r implies r is true
(QED).

Lemma 3.6 For any state s and predicate q, F{Sp) q F(s) .

Proof The intuitive idea is that by adding more assumptions (i.e predicates), the behavior becomes more restricted. Let

P(rj, ^2) hold iff there exists an isomorphism IiSy -^S2 such that /(5j) and S2 agree on finite latches, integer latches,

and memory elements, and there is apredicate q such that /(Pj^) =Pg^uq . Let RiSy, S2) and T{Sy, a, ty) hold, where

a is an assignment ofvalues tothe finite variables. We need to show there exists t2 such that T(s2, a, 12) and R(ty, 12)

hold, or ty and t2 are trace equivalent. Proceeding by induction, assume that before processing a gate g,

F{P{Sy, g), P{S2, g)) holds. Let Py and P2 denote the predicates at P{Sy, g) and P{S2, g), respectively. Let Uy and

«2 denote the states obtained after processing gate g in P(Sj,g) and P{S2,g) respectively. Based on g, we have the

following cases:

1. g is a finite gate. Since bythe inductive assumption the inputs tog are the same, assign the same value tothe outputs.

Page 21

2. ^ is aconstant create. Extend / byhaving the new constants map toeach other.

3. g is an integ^ function. Just apply the function in both cases.

4. g is an integer predicate. Let Tj and Tj be the predicates associated with gate g in P(5i,g) and P(S2>g)
respectively. Several possibilities exist:

a. Pi -» r j is valid. Since byproposition 2, Pj ''2 notvalid, wehave the following possibilities:

al. P2 fbat by the operational semantics ofICS models U| and U2 contain and r2, since

they are implied by Pj andP2. Hence, by the inductive assumption, P(aj, £<2) holds.

a2. Neither P2 -> r2 nor P2 r2 is valid. By proposition 3, P(jj, g) is related by R to P(52» augmented with

'•2-

b. Pj -> f is valid. Similar to case a with theroles and r2 switched.

c. Neither Pj -> Tj nor Pj -> rj is valid. Byproposition 4, neither P2 r2 nor P2^ is valid. By proposition 5,

P(5i,g) augmented with r| and P(S2,g) augmented with r2 are related by P, as are P(Ji,g) augmented by rj and

^(^2' 8) augmented with r2.

5. g is a read. Lettheaddress being read in P(5j, g) ,be a^.

a. Pi->(a| = Pi) is valid for some address pj in memory. Let Tj and r2 be the predicates ttj = pj and

/(aj) = /(Pi) , and the values read at Pj and P2 beYi and 72. Since by proposition 2, P2 -» f isnot valid, we have the

following possibilities:

al. P2-» r2 isvalid. Note that bythe operational semantics ofICS models Wj and M2 donot contain rj and r2, since

they are implied by Pj and P2). Hence, by the inductive assumption, P(mj, «2) holds. By the inductive assiunption

/(Yi) = 72 •

a2. Neither P2 r2 nor P2 r2 is valid. By proposition 3, P(jj, g) is related by R to P(S2, g) augmented with

r2. Bytheinductive assumption /(7j) = 72.

b. Pj -> (ttj ^pj) is valid for some address pj in memory. Since by proposition 2, P2 -> (/(ttj) = /(Pj)) is not

valid for any address Pj, wehave thefollowing possibilities:

bl. P2-> (^(oti)^^(Pi)) is valid for all pj. Create a new address and data value in each state, and extend I by

mapping the new addresses and data values to each other respectively. Since no new predicates have been created,

P(Uj,U2) stillholds.

b2. For some setof addresses {pJ, neither P2-»(/(ttj) =/(p,.)) nor P2^(/(aj)!i^/(p,)) is valid. Consider

thecase where wehave assumed /(ttj) ^ /(P,) for all i, i.e. /(aj) is distinct from all other memory addresses. Create a

new address and data value in each state, and extend I by mapping the new addresses and data values to each other

respectively. Byrepeated application ofproposition 3, it follows that «2) holds.

c. For some address p,-, neither Pj Oj = p,- nor Pj p,- is valid, butwe have assumed = pj. Let fj and

r2 be the predicates ttj = p,. and /(ttj) = /(P,) , and the values read at Pj and P2 be 7j and 72. By proposition 4,

Page 22

neither Pj '*2 ^2 ®y proposition 5, P(jj, g) augmented with Tj and P{S2f g) augmented with r2

arerelatedby P. Bytheinductive assumption/(Yj) = Y2-

d. For some set ofaddresses {pj , neither Pj -> = P,- nor Pj ->aj ^ p,- is valid, but we have assumed ttj ^ p,- for

all i, i.e. ttj is distinct from all other memory addresses. By proposition 4, neither P2-»(/(aj) =/(P,)) nor

P2 -»(/(aj) ^/(P,)) isvalid. Hence, the case where /(ttj) isdistinct from all other addresses in memory in P(52» g)

is possible. Create a new address and datavaluein eachstate, andextend I by mapping the new addresses and data values

toeach other respectively. By repeated application ofproposition 5, Riu^, U2) holds.

6. g is a write. Similar to the case of read (QHD).

Inthe following propositions, let Pj, P2, (2 besets ofpredicates, r and q beindividual predicates.

Proposition 2 If Pj s P2u ^ and Pj -»r is valid, then P2-> r isnot valid.

Proof Assume P2 ->r is valid. This implies P2 a ^ r is valid, which in turn implies Pj -» f is valid. This is in

contradiction to Pj -> r being valid (QED).

Proposition 3 Let Pj s Pj u ^, and assume P^ r is valid, but neither P2 ->r nor P2 r is valid. Then,

Pj sP2ug u r.

Proof To show Pj -»P2 a ^ a r is valid, assume /(P|) = T for some interpretation /. We need to show /(P2) = T,

I{q) = 7',and /(r) = T. P^ =P2^q and /(Pj) = T implies /(P2) = T and /(?) = T. /(Pj) = T and P^^r

being valid implies lir) = T. To show P2A^Ar-»Pi is valid, assume /(P2) = T, I(q) = T, and /(r) = T for

some interpretation /. We have to show /(Pj) = T, which follows from PjsP^u^, /(P2) = T, and I{q) = T

(QED).

Proposition 4 If Pj s P2 u ^ and P| r isnot valid, then P2-»r is not valid either.

Proof Let interpretation I be such that /(Pj) = T and /(r) = P. By PjsPjU^, /(P2) = T. /(P2) = T and

/(r) = F implies P2 ^ r is not valid (QED).

Proposition 5 Pj s P^u ^ implies Pjursp^u^ur.

Proof Follows from thedefinition ofequivalence ofsetsofpredicates (QED).

Theorem 6 Astate s is trace equivalent to a state t obtained from s bydeleting an inaccessible location (a,Y) •

Proof We will show F{s) g F{t) ; the reverse direction issimilar. Let R{s^, sfi hold iffS2 is the result ofdeleting an

inaccessible location from . Let P(jj, 52) and T(Si,a,tf) hold, where a is an assignment of values to the finite

variables. It suffices to show that there exists ^2 such that T(S2,a,t2) holds, and either P(/j)cF(t2) , or R(ty, ^2)

holds. Proceeding by induction, assume that before processing agate g, the partial state P(j2, g) is the result ofdeleting

an inaccessible location from P(Si,g).

We define the following notations for the rest ofthe proof. Let Pj and P2 be the predicates in P(5j, g) and P(j2, g)

Page 23

respectively. Let / be an isomorphism which maps Pis^g) after (a, y) has been deleted to P(^i, g). Let I^is) be the

moping which first deletes (a,y) from s, and then applies I to the result Let the two new partial sutesafter processing
g be nj and U2. Based on g, wehave thefollowing cases:

1. g isafinite gate. Since by the inductive assumption the inputs to g are the same, assign the same value tothe outputs.
2. g isaconstant creator. Have the outputs ofg m^ toone another, asan extension ofthe current isomorphism I.

3. g is an integer function. Just apply thefunction in bothcases.

4. g is an integer predicate. By th9e inductive assumption and bylemma 3.1, we have that the output ofg isdetermined by
Pj iffthe output of g isdetermined by P2, and they are the same. If both true and false cases have tobeconsidered, have

the corresponding cases map to one another, as far as bisimulation is concerned.

5. g is a read. Let the address being read in P(5j,g) be Wehave the following cases.

5a. Pj —> (ttj = pj) is valid for some address . Since a does not appear in any of the predicates, is not a. Hence

/(Pj) iswell-defined, and P2-»(/(oti) =/(Pi)) isvalid. By the inductive assumption, the data value at aj ismapped

by I to the data value at .

5b. Pj —> (ttj ^ p,-) is valid for all addresses p,-. This situation is not possible with thereason being as follows. Since

a isone ofthe p^ 's, and since a does not appear in any ofthe predicates ofPj, Pj ->(aj ^a) isvalid iff ttj isequal to

one ofthe p,- %which isacontradiction to the assumption that isdistinct from all addresses p,-.

5c. For y,- e {yj y^}, neither Pj (ai =y,) nor Pj -> (a^ ^y,) holds, but we have assumed ai = yj for some

yj. Hence, Pj a (aj = yp a ^y,) is satisfiable.

5c.l. y,. is not a. Since Pj and P2 are isomorphic, P2 a (/(aj) =/(yp) a^.px/(ai) ^/(Y,)) is also satisfiable,
which implies we can assume /(tti) = /(yp holds in P{s2,g) . By the inductive assumption, the data value at ttj is

mapped by I to thedatavalueat /(tti) .

5c.2. y- is a. In this case, /(ttj) being distinct ispossible in P(/i,g) . Let the new location be (5,rf), and the state

obtained M2. Consider the state V2 obtained by adding the predicate d = /(y) to U2. By lemma 3.6, F(v2) gP(u2) •

By proposition 6, V2 is trace equivalent to a state W2 in which d has been replaced by /(y). Thepredicate d = /(y) is

dangling in W2 and can be deleted by theorem 5. Let the resulting state be called y2- Ya

isomorphic (extend I by mapping a to 5), which by theorem 2 implies F(tt|) = F(y2) . We conclude F(«j) c F(tt2) ,
as was desired.

5d. For y^ g {yj,..., y^}, neither Pj -»(aj = y,) nor Pj -»(aj iity,) holds, but we have assumed is distinct

from all other addresses. Hence, Pj a '̂ Yf) is satisfiable. Without loss of generality, let y^^ = a. We have

k 1
/*! ^ Uio-i) *• /(Y|)) is also satisfiable, which implies we can assume /(a^) isdistinct in P(j2,g) aswell. In both

cases a new location and data value is created. Extend I by mapping these locations and data values to each other
respectively.

6. g is a write. Similar to the case of read (QED).

Page 24

Proposition 6 Let a be a constant and y an ICS term. If a = y is a predicate in^ , then replacing all occurrences of a

with Y results in a trace equivalent state.

Proo/Similar to the proof of theorem 3 (QED).

Page 25

	Copyright notice 1997
	ERL-97-53

