Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AUTOMATIC STATE REDUCTION TECHNIQUES
FOR HARDWARE SYSTEMS MODELED USING
UNINTERPRETED FUNCTIONS AND INFINITE
MEMORY

by

Ramin Hojati, Adrian J. Isles, and Robert K. Brayton

Memorandum No. UCB/ERL M97/53

1 May 1997

AUTOMATIC STATE REDUCTION TECHNIQUES
FOR HARDWARE SYSTEMS MODELED USING
UNINTERPRETED FUNCTIONS AND INFINITE
MEMORY

by

Ramin Hojati, Adrian J. Isles, and Robert K. Brayton

Memorandum No. UCB/ERL M97/53

1 May 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Automatic State Reduction Techniques for Hardware S .stems Modeled Using
Uninterpreted Functions and Infinite Memory |

Ramin Hojati (hojati @eecs.berkeley.edu)
Adrian J. Isles (aji@eecs.berkeley.edu) ’
Robert K. Brayton (brayton @eecs.berkeley.edu)

Department of Electrical Engineering and Computer Sciences
The University of California, Berkeley, CA 94720-1770

Abstract

The Integer Combinational Sequential (ICS) concurrency model is designed to represent hardware systems at a high level
of abstraction using infinite memory, uninterpreted and interpreted integer functions and predicates. According to their
semantics, which are natural when dealing with these more abstract entities, many systems which intuitively should have
Jfinite reachable states sets, have infinite state spaces. In this paper, we first define an equivalence notion between two states
in an ICS model, and then present (and prove correct) a set of operations which identify equivalent states. These
optimizations can be used 1o significantly speed-up reachability computations when dealing with uninterpreted functions and
infinite memory. In addition, we present an automatic verification procedure for a set of circuits involving infinite memory,
integer address and data, whose addresses and data are independent, by proving the state-reduced reachability computation
generates a finite state space. Finally, we give an example for which the state-reduced ICS reachability generates a linear
number of states whereas the smallest finite instantiation containing all behaviors has an exponential number of states. The
State reductions presented in this paper are implemented in our second generation ICS reachability tool and some
experimental results are given.

1 Introduction

Reduced Ordered Binary Decision Diagrams (BDDs) [Bry86] have proven to be very successful in verifying control
dominated circuits. BDD based techniques, however, can at best handle a few hundred latches and generally perform poorly
when applied to circuits that contain datapaths and memory. In an attempt to overcome the state space explosion due to
datapaths, the Integer Combinational Sequential (ICS) concurrency model was introduced in [HB95). ICS models allow
finite gates and latches to represent control, but abstract the datapath by representing datapath variables as integers, datapath
operations as integer operations (using both interpreted and uninterpreted integer functions!), and memory operations as
abstract operations on infinite memories. Using uninterpreted functions to represent datapath operations such as addition
and multiplication can reduce the complexity of a design and its associated verification problems considerably. Using such
an abstract representation to model hardware systems is certainly not new. What makes ICS unique, however, is that it
allows for automatic state exploration to be performed on systems described in this fashion. Traditional state exploration
based verification techniques, such as model checking and language containment, can then be used to verify control

1. All that is known about an operation modeled using an uninterpreted function is that it is, in fact, a function (i.e.if @ = b then

f(a) = f(b) for an uninterpreted function f). This is contrast to non-deterministic gates, which may have different outputs for
the same input assignments.

Page 1

properties of ICS state graphs, Since the model allows integers and infinite memory, ICS. models may have, in some cases,
an infinite number of reachable states. In such cases, state exploration can be performed for a finite number of steps (let)
say n). Partial verification can then be used to show that there are no error traces up to length 7. :

There have been several other techniques in the literature that allow for automatic verification of systems modeled at a
level of abstraction similar to ICS. In particular, a special form of symbolic simulation, presented by [BD94], has been
developed that is fast and allows for the automatic verification of a pipelined microprocessor against its instruction set
architecture. Their techmque ‘however, requires the user to specify a superset of the set of reachable states of the system.
Finding such state-invariants can sometimes be extremely difficult for the user [SDB96]. One of the primary advantages of
verifying designs in the ICS paradigm is that state invariants are not needed since the reachable set is computed
automatically. In addition, ICS models allow for a rich set of properties to be verified, since both language containment and
model checking can be used. Another technique that is similar in flavor to ICS is a data structure called Multiway Decision
Graphs (MDGs) [Cor93). An MDG is a decision diagram that is similar to BDDs except that it allows for uninterpreted
function symbols to be represented in the decision diagram. MDGs are the only other technique in the literature that the
authors are aware of that can represent the set of reachable states and perform fixed point state computations on systems
modeled with integer variables and uninterpreted functions. Unlike ICS and [BD94], however, MDGs, cannot represent
infinite memory, which is important when trying to verify hardware systems such as microprocessors.

[IHB96] implemented a routine to generate ICS state graphs and presented ekperimental results on verifying systems
modeled using ICS. The results were poor, however, when compared to [BD94], due to an explosion in the number of states
of even simple microprocessors. This paper presents new state reductions techniques that can significantly improve the
performance of the ICS reachability routine. Below we give an overview of these techniques and some their applications.

Informally, an ICS state § = (latches, memory, predicates) is a set of assignments to finite latches, integer latches,
predicates and memory. Assignments to finite latches take from values in their domains. Assignments to integer latches are
symbolic expressions called ICS terms (to be formally defined later). Memory is a table of address/value pairs which are also
represented using ICS terms. Although, ICS memory is infinite, it is only necessary to explicitly store locations that have
been previously written. Predicates define a set of constraints on the ICS terms in S. Figure 1 shows a diagram of an ICS
state.

L;=0 . An ICS state consists of a set of assignments to
=1 finite latches latches and memory, as well as a set of predicates that

Ly
L =glod are valid in the state. Although memory in infinite,
L;=d 4_'5 @}~ integer latches only locations that have been previously written to

have to be explicitly stored in memory.

c#EX @ predicates
o d Figure 1

(xfic)) /<@ memory

One can then define the state exploration of ICS models in a natural way with the following caveats.
1. A state contains the set of assumptions (predicates) made in reaching that state. For example, if constants a and b are
compared, then both paths, one where a = b and the other where a # b have to be considered. These assumptions must be

remembered and become part of the state, since, for example, along the path where we have assumed a = b, f(a) = f(b)
also holds.

2. When reading from or writing to memory, all possibilities between the accessed address and the addresses currently in
memory have to be considered. For example, if there is a read from address a, and the addresses in memory are a, and a,,

then three possibilities 2 = a,, a = a,, and a being distinct from a, and a, have to be considered.

3. Integer inputs are represented by constant creators. A constant creator returns a new constant whenever called.
Many characteristics of the semantics of ICS models decrease the chance for state sharing. For example, along a path a
constant creator has to always return a new constant, and cannot re-use constants; or “extra” predicates and memory

Page 2

locations which no longer give useful information cannot be deleted. Therefore, many systems which intuitively should have
a finite state space have an infinite state space. For example, a system composed of a single control state, which at every
cycle produces a new constant has an infinite state space. Intuitively, this system should have only one state.

In ihis paper, we first introduce a notion of equivalence between two states in an ICS model, and then define a set of
optimizations which delete extra information, and hence increase the chance of state sharing. More specifically, two states

§; and s, are frace equivalent iff the set of traces starting from s; and s, projected to the set of finite (non-integer)

variables are the same. One can then show that the language from s, is empty iff the language from s, is empty. Since

language emptiness is the vehicle for verification in our environment, trace equivalence preserves verification. An example
of the importance of automatic state reduction in verifying ICS Models is shown in Figure 2. Using this notion of
equivalence, we then show the following operations result in trace equivalent states.

1. Replacing two isomorphic states, i.e. two states which can be mapped to one another by a renaming of the constants, by
one of them.

2. Deleting an equality predicate a = b, and replacing all occurrences of the constant b by the constant a (propagating
equalities).

3. Replacing a term of the form f(o,, ..., a, ..., 0,), where f is an uninterpreted function, by a new constant if a is not
stored in any of the latches, memories, and does not appear in any of the predicates as a term (simplifying functional terms).
4. Deleting an equality, inequality, or uninterpreted predicate, which contains a constant not appearing anywhere else in the
system (deleting dangling predicates).

5. Deleting a memory location (address,data) of the form (a,), where a does not appear anywhere else in the system
(deleting dangling memory locations).

These results are then used to show the following.

1. The language emptiness problem is decidable for decoupled data independent memory systems, in which data and
address paths are separate (i.e. addresses cannot be stored as data in memory), and there are no uninterpreted functions or
predicates, but there could be an infinite memory.

2. There are cases for which optimized ICS reachability produces a linear number of states, but the smallest finite
instantiation has an exponential number of states. For these cases, even after using BDDs or symmetry reduction on the
finite instantiation, the running time of verification is still at best quadratic. Hence, at least in an asymptotic sense, ICS
models (with their potentially infinite state spaces) can have a computational advantage over finite instantiations and the best
known finite state algorithms. Experimental results against the BDD-based tool, VIS [VIS96)], confirms this, and is
presented here. In practice, we expect that our optimizations, possibly extended by other ones, can have a major impact in
reducing the computational complexity of ICS reachability.

It also appears that our optimizations may pave the way to find decision procedures for some open probiems of ICS
models. Two such open problems follow, where it seems if the problems are decidable, then the optimizations proposed in
this paper can be used in conjunction with some new ones to get decision procedures.

1. In [HIKB96], it was shown that if the datapath of an ICS model contains uninterpreted functions and integer equalities,
then the reachability problem is undecidable. However, the decidability of the property “when b becomes 1, x = y), where

b is binary and x and y are integer, of ICS models with only uninterpreted functions in the datapath was left open. Note
that for these ICS models, the equality predicate appears only in the property, and not in the system.

2. The decidability of the reachability problem for data independent memory systems is open, where there is an infinite
memory, and the datapath contains data movement elements and the equality predicate.

The flow of the paper is as follows. Section 2 describes ICS models and their semantics. Section 3 describes the main
technical contributions of the paper. The applications of the results of section 3 are presented in section 4. Some
experimental results are presented in section 5. Section 6 concludes the paper, and presents some future directions. Due to
lack of space, the proofs of many of the lemmas and theorems, which are rather detailed are presented in the appendix.

Page 3

Lgood The circuit C to the left has two integer latches Ly, L, and two finite

1 ‘latcha Lc, Lgood' Assume that C isin a state So where Lo = f(a),

Li=s®),L =0,Ly,,q=1andP = {a=b} (P arethe
predicate assumptions made at Sy)). When L_ =0 (L, = 1), C takes
a term stored in L) (Ll),q)pmsmemmmmcaonfwaw
stores results. In addition, when L e = 0, C also checks to see if the

) L

L

E

terms in Lo and I.l are equal and the result of the comparison is stored

in Lgood' C has an infinite set of states, since ﬂtmgrcaninﬁni!c:etof

s terms £(@), (), s SO (@), £ (), ... that can be assigned to the

Ly 0 latches. Ordinarily, to verify the property that at all states in the future of
Sy, Lgood = 1, would require visiting an infinite set of states.

However, So is trace equivalent (w.r.t. to control behavior) to any other

= 1 for

state S’ where Ly = e, L= D, Lo=0,Lypng

some constant c . Thus, the infinite state graph can be automatically
reduced to a finite graph. The original and reduced graphs are shown
below. Note that C does not have any infinite memory gates.

Figure 2

b o e e e original graph — _ _ _ —__ _ _ JL — — reduced graph _ _

2 Integer Combinational/Sequential (ICS) Concurrency Model

In this section, both the syntax and semantics of ICS models are reviewed. The reader is encouraged to read [HB95] for a
more detailed presentation. ICS is designed to represent systems composed of control, datapath, and memory. Its syntax and
semantics is similar to traditional models for representing hardware systems, with the addition of some machinery to reason
about non-deterministic gates, integers functions and predicates, and infinite memory.

2.1 Syntax

The primitives are: variables, tables, interpreted functions and predicates, uninterpreted functions and predicates, constant
creators, latches, and memory functions.

Variables. Variables are of two types: finite and integer. Finite variables take values from some finite domain; integer
variables take integer values (0, 1,2, ...).
Tables. A table is a relation defined over a set of finite variables, divided into inputs and outputs. A table is a function if

for every possible input tuple there is at most one output tuple (incompletely specified functions are allowed). Otherwise it
is arelation. If a table has only one binary output, and is a function, then it is a predicate.

Interpreted Functions and Predicates. A predefined set of functions and relations over integers is built in. The
interpreted functions are: y:=x, y:=if(b,x), z:=mux(b,x,y),z:=x+y, y:=x+c, where x, y, and z are integer
variables, b a binary variable, and ¢ a non-negative integer (0, 1,2, ...). The interpreted predicates are y = x (equality),
y<x,x=c¢, (xmodm) = r,and (x mod m)<r,where ¢, r,and m are given non-negative integers.

Uninterpreted Functions and Predicates. These are a set of function and predicate symbols where only their arities

and domain variables are given. For example, f(x,,x,) may be the specification of an uninterpreted integer function defined

Page 4

over binary variable x; and integer variable x, . Predicates of the form x = ferm , where x is an integer variable, and rerm

is an ICS term are also allowed. An ICS ferm is built recursively from numerals, constants, interpreted and uninterpreted func-

tions. Therefore, numerals and constants are ICS terms, and if f is an n -ary function and 14, ...n 1, are ICS terms, then
f(t;,...,8,) isalso anICS term. Note that ICS terms do not involve any variables or predicates. Examples of ICS terms
are ¢y, f(cg.¢y)» g(lS, S(cy, ¢3)) , and ¢ + ¢, . Uninterpreted functions are very useful foi' abstracting away details of a

design that are not needed for verification. This is particularly important when verifying, for example, the control logic of a
superscalar microprocessors. Here, verification is independent of the functional units in the datapath, since one only needs to
check whether the processor executes each instruction in the proper sequence and writes back the result to the correct location.
Therefore, the detailed functionality of the datapath is not relevant and can be replaced with uninterpreted functions.

Constant Creators. A constant creator is a special element with no input, and an integer output. Intuitively, it is a higher-
order function, which creates a new constant (i.e. a function with no argument) each time called. A constant creator models an
unconstrained integer input.

Latches. A latch is defined on two variables over the same domain: input (or next state) and output (or present state).
Present and next state variables may overlap, e.g. when an output of a latch is an input to another. Every latch has a set of
initial values, which are a subset of the domain of its variables. If the latch is integer-valued, then the initial value set can

either be a finite set of numerals, or a given constant. Predicates can be used in combination with constants to create an
infinite set of initial values. For example, to declare that the initial set of a latch is all integers greater than 5, we let the

initial value be some constant ¢,. In the first state, the output of the latch is input to a predicate x> 5, and the machine

continues only if the predicate holds. Hence, only those behaviors are allowed where the initial value of the latch is an
integer greater than S.

Memory Functions. Two functions read and write are provided with their usual interpretation; read is a binary function

of a memory and a location; write is a ternary function, whose arguments are a memory, a location, and a value. Location

and value are variables in the model. Reading a location which has not been written, returns a new constant (like a constant
creator).

Definition A generalized gate is a table, an interpreted or uninterpreted function or predicate, or a constant creator.
Definition Data movement operations are x:=y, z:=mux(b,x,y), and y:=if(b,x), where x,y,z are integer
variables, and b is binary.

Every model has only a finite number of variables, latches, and generalized gates. Every variable is the output of exactly
one generalized gate or latch. Hence, every input to a generalized gate or latch is the output of some other generalized gate
or latch; ICS models are closed. A variable can be input to many generalized gates or latches.

Definition A state is a triple (latch, memories, predicates) , where,

a. latch is an assignment of values to the latches. For finite valued latches, the value comes from the domain. For integer
valued latches, the value is an ICS term.

b. memories is a set of memory elements, where a memory is a set of pairs of ICS terms, where the first denotes a location
and the second a value.

c. predicates is a set of atomic formulas, where an atomic formula is any interpreted or uninterpreted predicate applied to
ICS terms. Examples are ¢o< f(cy) and P(f(cy ¢y), 8(cy)) . Note that (cog< f(c)) A(P(f(cy €)), 8(cy))) ismot
an atomic formula. Intuitively, predicates at a state s, is the set of assumptions made to reach 5.

Definition Given two ICS terms t; and f,, and two sets of atomic formulas P = {P..,P,} and

0=1{0...0,}, 8, is equal to 1, subject to P and Q, denoted as tl|P=12|Q iff the formula

Page 5

(Pl/\...AP”AQIIA...AQ"!):(II=12) is valid. For example, if 1, =x, P= {x>7,x$8}., 1, =8, and
Q = O, then ¢, = t, subject to P and Q since (x>7Ax58) = (x=8) is valid. The equality of two ICS terms can
be decided using the algorithms of [Sho79]. ' o
Notation If P = {P,, ..., P,} isasetof predicates, we will use P to denote Py A ... A P, .. For example, P — (b=1)

isthe formula (Py{A...AP,)—>(b=1) .

Definition Let states s, = (L, (M3, ... My),P)) and s, = (Ly, (M, ..., M%), P,) be given. s, = s, if the
“following hold.

a. Let I'; and 1‘2 denote the values of the i-th latch in L, and L,, respectively. If the i-th latch is finite, then l'l oy "

otherwis li =f must hold.
o llP: 2|11,2

b. Let M,i[i] = (a},[i], v,:[i]) denote the i -th address/value pair in M,t, the k-th memory element of s,. Then, for
each M,[i] there exists M2[j] such that a{[i]lp = a,f[j]]P and v,lc[i]IP = v,f[j]|P . Similarly, for each M2[j]
1 2 | 2
S 1. 2. 1. 2.
there must exist M[i] suchthat aylil| = ajlj)| and vilil] = viUjl|, .
Cc. Py=P,,ie.Py=>P, and P, P,.
Definition Aninitial state is a state (latch;,;, D, D) , where latch,,;, is an assignment of an initial value to each latch.

2.2 Operational Semantics of ICS

The operational semantics describes how transitions are made between states of a design modeled using ICS.

Definition A gate graph H is a directed graph where each node is a generalized gate. (x, y) € H if some output variable
of the generalized gate x is an input to the generalized gate y. A cyclic gate graph is said to contain a combinational loop
(or cycle).

Remark For an acyclic gate graph H , a root node either has no inputs or is a latch.

Given s is a state of the model, and a counter n, representing the number of constants created so far during the symbolic
execution of the state space. A state transition is defined by the following algorithm which, given a state u = (L, M, P),

assigns a new value to all next state variables (creating L'), and creates a new memory M', a new set of predicates P', and a

new counter n'. In this case, we say there is a state transition (u,v), where v = (L', M',P'). State transitions are
computed as follows.

0. Let PP =P,n = n.

1. Let a user-given total order on all memory operations be given. Choose a topological sort O of the gate graph consis-
tent with this memory order.

2. Assign the values given by L to the outputs of the latches.

3. Assign values to the outputs of each generalized gate consistent with its inputs, processing the generalized gates in the
topological order O . More precisely, let a generalized gate g(i, 0) be given, where i represents the inputs to the gate
and o its output.

a. If g is a table representing the relation R(i,0) , then (i,0)e R.

b. If g is an integer function, then o = g(i) , where 0 and i are ICS terms.

c. If g is an integer predicate, if P'— (g =0) isvalid letg = 0;if P'—(g=1) isvalid let g = 1; otherwise
leto=00ro=1,and P = Pu{g=0}.

d. If g isa constant creator, then 0 = c,,, where c,, isa fresh constant. Letn' = n'+1.

Page 6

‘e. Assume g is a memory read operation with address o., and memory contains a set of addres;/value pairs
(o,d). If there exists an i suchthat P' — (0. = ai)'is valid, then let 0 = d; (i.e. read the data from location o.;).

If no such o, exists, then perform one of the follo_u{iﬂg f) choose an i, where P'— ('a;f-ai) is not valid, let
P=Puia= “i}' and o = di' or2) forall i where P -)(o.#:ai) isnotvalid let PP = PPu{o# ai} , Ccre-
ate a new fresh constant &', let 0 = d' and add the pair (al., d) to mémory. The second case corresponds fo reading
an address that has never been written to before in which case a new constant is returned.

L If g is amemory write operation. This case is similar to a memory read. A diagram is shown in figure 3.

4. Assignto L' the values given to the corresponding next state latch variables in gate graph. Assign to M° the address/
values pairs in memory at the end of step 3. P’ is defined as above.

Step 3 is referred to as value propagation. Note that the configuration graph is finite-branching, i.e. for every state, there
are a finite number of next states. It is possible that a table is not complete, i.e. there are inputs for which there are no
outputs. Then, the set of values assigned to an output of a table may be empty. The empty values propagate, i.e. if one of
the inputs to a table is empty, then the output is empty as well.

Now that we have defined an ICS state and the operational semantics we can now define the state space of systems modeled
using ICS:

Definition An ICS state graph G , for an ICS model M, is a directed graph where each node is an ICS state. (4, v) € G is
an edge in the graph if there is a transition between ICS states # and v that is allowable by the operational semantics. Note

that the initial state u, = (latch;,;, @, D) is a node in the graph (there can be multiple initial states). In addition, only

reachable states are allowed in G (i.e. there must be a path from an initial state, u, to each state w in G).

2.3 ICS Models and Verification

ICS models can be used to model and verify hardware systems. Fairness constraints, which rule out some unwanted
behavior (introduced due to abstraction), can be placed on finite latches. In order to verify a property, the property is written
as an ICS model, and it is checked that the language of the system is contained in the language of the property. A string in
the language of an ICS model M is obtained by traversing a path in the graph of the operational model of M, such that the
set of infinitely occurring states of the finite latches satisfy the fairness constraints. The language containment must hold for
any interpretation given to uninterpreted functions and constants, i.e. for all possible definitions for the functions and
valuations for the constants. In some cases, the property can be complemented automatically. In other cases, the user must do
this by hand. The complement of the property is then composed with the system, and it is checked that the language of the
composed system is empty. Hence, the verification problem reduces to checking whether the language of an ICS model is
empty. Again, emptiness must hold for all interpretations given to uninterpreted functions and constants.

Page 7

write(cs, k)

M, My ,
[Aims] Da . ﬂl Da:a In the top left diagram, write(c 3, k) is
_g.’l__,_gé%)L ; - g, fl((b) performed in a state with memory M ;

Py ={cp#cyl P, = {(c]:cz).(c;atc_,).(czsc_q)} mmdwm Py - Since ¢3 is not equal
fo the addresses ¢, and) currently

v stored in M ;, all cases have to be

M2 M; explored: c3=c¢p, 6326 and
LA;&H-.—E-"E— : *:kessl ¢ #cy#c3. This creates three new

C T(b) | Cn states, along with their associated
Py = {(cy#cy)(cp=c3)} Py = {(c;2c)),(cy = c)} memories and predicates, M,, M 5,
Figure 3 My and Py, P3 P,.

3 State Reduction Methods

The ICS paradigm only allows finite control variables to be specified explicitly in the property. Thus, any state reduction
technique that preserves the sequential behavior of all finite variables and latches will not cause any loss in verification
accuracy with respect to the property being verified. We formally define this notion below.

Definition Let F(s) denote the projection of the set of traces from s to the set of finite variables. Two states 5, and s,
are said to be trace equivalent iff F(s,) = F(s,) .

Theorem 1 Let 5; and s, be two trace equivalent states in a symbolic graph G. Let G' be obtained from G by deleting
5, and replacing all edges of the form (v, s,) by (v,s,) . Then, L(G) = @ iff L(G) = D .

Proof This follows from the definition of trace equivalent states and the fact that fairness constraints and hence language
containment only depend on the finite variables (QED).
3.1 Deleting Isomorphic States

In this section, we show that two states may be trace equivalent, even though the ICS terms assigned to the integer latches,
predicates and memory may be different. Two states are isomorphic if they have equivalent assignments to finite latches and
one can replace the set of constants occurring in one state with a different set of constants such that the result is syntactically
equivalent to the second state. An example of such a case is shown in Figure 4.

Definition Let the constants of an ICS term t, Cons(t) , be the set of constants appearing in f. Let the constants of a

predicate p be the union of all constants appearing in the ICS terms of p. Similarly, define the constants of a state and a
set of predicates.

Definition Two ICS terms ¢, and ¢, are said to be isomorphic iff there exists an isomorphism [:Cons(t,) — Cons(1,)

where I(¢;) = ¢, (and consequently ¢, = 1'1(12)). Intuitively, two ICS terms are the isomorphic if they are the same up
to a renaming of the constants. Similarly, define isomorphic predicates, sets of predicates, and states.

Lemma 3.1 Let two sets of n predicates P = {p,, ..., p,} and P= {Pys---» P,} be given such that P and P are
isomorphic. We have,

L pyAc.Ap,_1 = p,isvalidiff pyA...ADp,_; = D, is valid;

2. pyA .. AP, _1— D, issatisfiable iff p, A ... A P, _| = P, is satisfiable.

Page 8

Proof We will show if py A ... Ap,_, = p, is valid, p; A ... A p,_, = P, is also valid. The reverse direction and part
2 are similar. Assume to the contrary that py A ... AP, _; = i),; is not valid. Let ¢y, ..., c,, and ¢y, ..., &, be the constants
in P and P respectively. Let 7 be an interpretation for ..., &,,, and the uninterpreted functions and predicates of P,
making Z»l AL A p;,_ l, — p,, false. Let I, an interpretation for P, be derived from 1 by making the same assignments to
Cps s €, and the uninterpreted functions and predicates of P as I does to ¢, ..., ¢,, and the uninterpreted functions and
predicates of P. Note that the uninterpreted functions and predicates of P and P are the same. Since P and P are
isomorphic, the values of each p; and p; under I and T are the same. It follows that Py A ... ADy_1 = D, is false under I,
which is in contradiction to py A ... A p,,_; — p,, being valid (QED).

Definition Given a state s, a topological sort of the gate graph O, and a generalized gate g, a partial state at g, denoted
by P(s, g, 0) , is a state reached during symbolic simulation at gate ¢ when processing the gates at the order given by O.
This state is defined by the values of finite and integer latches at s, the values assigned to the outputs of the gates processed
so far, and the current values of the predicates and memories. Abusing the notation, we sometimes write P(s,g) for
P(s, g, 0) , knowing that a topological sort O is implied.

L =fb) L;=fd) States S; and S, are isomorphic since the
Ly=b Ly=d
a*J(B) c#/(d) constant a can be mappedto € ,and b to d. The
\ as=b I \ c=d I states are trace equivalent.
(a b) (c.d)
(1b), 8(b)), d), g(d)) Figure 4

Theorem 2 Two isomorphic states are trace equivalent.

Proof Let R(sy,s;) hold iff s, and s, are isomorphic. It suffices to show that R is a bisimulation on the symbolic
graph G preserving finite values, ie. if R(s}, s,) and T(s,a, 1,) hold for some assignment to finite variables a, there
exists 1, such that R(1,,) and T(s,,a,1,) hold, and vice versa. We will show one direction since the reverse is similar. "
Let R(sy,s;) and T(sy,at;) hold. Consider a topological sort O of the gate graph used in obtaining t, from s,.
Assume by induction that when gate g is processed, R holds of the partial states P(sy,g) and P(s,,g) (ie. the partial
states are isomorphic). It suffices to show that after processing g, R still holds of the partial states. Let P, and P, be the
predicates in P(s), g) and P(s,, g) respectively. Based on g, we have the following cases:

1. g is afinite gate. Since by the inductive assumption the inputs to g are the same, assign the same value to the outputs.
2. g isaconstant creator. Have the outputs of g, which are new constants, map to one another.

3. g is an integer function. Just apply the function in both cases. By the inductive assumption, the outputs will also be the
same up to a renaming of the constants.

4. g is an integer predicate. By the inductive assumption that P, and P, are isomorphic, and by lemma 3.1, the output of g
is determined by P, iff the output of g is determined by P, (and these values are the same). If both true and false cases

Page 9

have to be considered, have the corresponding cases map to one another.

5. gis aread. Let the address being read in P(s,, g) be o; . We have the following cases.
a. P, -S(al: By) is valid for some address B, . Then by lemma 3.1 Py = (I(o)) = I(By)) 1s also valid. By the
inductive assumption, the values read in both states (i.e. the values stbmd in B, and I(B,))are iéomomﬁc.‘ |

b. P;—(a; =PB,) is not valid for any address B, but for some address B, . we have assumed &, = B, . We have that

Pia(ay#By)A...a(e,#B,) > (o =B,) is satisfiable, which by lemma 3.1, implies

- PyaI(o) #I(B)) A ... AlI(0y) 2 I(B,)) = (o)) = I(B,;)) s also satisfiable. By P, - (o, =PB;) not being
valid for any address B;, and by lemma 3.1, we conclude that for no address Y; in P(s,,8), P> (d,) =1;) is valid.
It follows that the possibility of I(c;) = I(B;) will also be considered in P(s5, g) . By the inductive assumption, the
values read in both states (i.e. the values stored in B, and I(B,).) are isomorphic.

c. The address being read in P(s,;,) is distinct from all other addresses. By lemma 3.1, this possibility also exists in

P(s,,) . In both cases a new location and data value is created. Extend I by mapping these new locations and data values
to each another respectively,
6. g is awrite. Similar to the case of read (QED).

3.2 Propagating Equalities

In this section, we show that some equality predicates in a state may be removed if all the occurrences of one term in the
predicate are replaced with the other. An example of such a case is shown in Figure 5.

In order to prove that the propagating equalities optimization is valid, the following lemma has to be proven (see the
appendix for detail proof).

Lemma 3.2 Let two sets of n predicates P = {p,,..., p,} and P= {P» --» P,} be given such that if all occurrences
of some constant b in p,, ..., p,, are replaced by some constant a, then P and P are isomorphic.
a& pyA...Ap,_Ala=b)—> p, isvalidiff p, A...Ap,_; = P, is valid.
b. pyA...Ap,A(a=Db) issatisfiable iff p; A ... A P, is satisfiable.

Definition We say state ¢ is the result of applying the equality propagation operator 10 state s if ¢ is isomorphic to some

state § obtained from s by the deletion of some equality predicate @ = b and renaming all occurrences of b in the ICS
terms of s by a . Note that the output of the equality propagation operator is well specified up to isomorphism of states.

S; S, L;=0
Lo=1 State S, has been obtained from SI by equality
L =1tb) L; = fla) propagation. Here all occurrence of b have been

Ly=b Ly=a

replaced by a . The states are trace equivalent.

(a b) (@ a) Figure 5
(la), g(a)

Theorem 3 If ¢ is the result of applying the equality propagation predicate to s, then s and ¢ are trace equivalent.

Page 10

3.3 Simplifying Functional Terms

In this section, we prove that some ICS terms in a state can be replaced with a fresh constant, while still maintaining finite
trace behavior. We call this technique simplifying functional terms. An examples in given in Figure 6.

Terminology Let P(a.y, ..., 0;) be a predicate. We say v is aterm in P(a.,, ..., o) ify = o; for some ;. We say ¥

occurs in P(ay, ..., 0t) if ¥ is a subterm in one of the o; ‘s,

In order to prove that the simplifying functional terms optimization is valid, the following lemma has to be proven.

Lemma 3.3 Let py, ..., p, be such that p; A... A p, is satisfiable. Let B = f(o,,...,a,...,04), where f is an
uninterpreted function, a is not one of the ICS terms in the p; ‘s (although a can occur in the p;‘s), and if @ occurs in a
term of the form g(y,,...,4,...,7;), then g in an unintexi;reted function. Let g, ..., q, be isomorphic to a set of

predicates o, ..., 0, obtained from p,, ..., p, by replacing all occurrences of B with a new constant b. Then, the
following holds.

& DA AP, 1D Pp,isvalidiff g, A ... Ag,_;— g, isvalid.

b. pyA... AP, | > p,issatisfiableiff g, A ... A g, _; — g, is satisfiable.

Remark Condition 3 of lemma 3.3 is needed to avoid the following situation. Assume in some state s, the two integer

latches contain f(a) and f(c) respectively, and the predicate a+1 = ¢+ 1 holds. Then f(a) should not be replaced by
anew constant. Condition 3 ensures that this will not happen.

Notation We say a term . is stored in state s if o is stored in one of the integer latches, or is the address or data in some
memory location.

Definition Let a state s and an ICS term B = f(ay, ..., 4, ..., a,) be given. Assume constant g is not one of the ICS
terms stored in s, is not a term in any of the predicates of s, and if a occurs in a term of the form &(Yp -+ @ ..., ¥p) , then

£ in an uninterpreted function. We say state ¢ is the result of simplifying the functional term B in s if ¢ is isomorphic to
some state u obtained from s by replacing the term B in all ICS terms of s by a new fresh constant b .

State Sz has been obtained from S 1 by simplifying
Junctional terms. Here the expression g(a,c) has
been replaced with a constant d since ¢ does not
occur in any other term in S 1- The states are trace
equivalent.

Figure 6

Theorem 4 1f ¢ is the result of simplifying a functional term in s, then s and ¢ are trace equivalent.

Remark In ICS models, it is possible for some infinite run to have no interpretations in standard integers ([HIB96]).
Assume ¢ is obtained by simplifying a functional term in 5. Then, there may be an infinite run r, from s which has no

interpretations in standard integers, but its corresponding run r, from ¢ has an interpretation in standard integers. For

example, let s contain f(a) in some integer latch, and assume @ does not appear anywhere else in the system. Then, s is
trace equivalent to some state ¢ in which f(a) has been replaced by some new constant b. Assume from s the only
possible next state is 5o in which f(a) = 0. Further assume the only possible next state from Sp is s; in which

f(0) = 1. Proceeding inductively, assume the only next state from s; is §;., in which f(i) = i+1. Let

Page 11

Ty = 5805, Let7, = 1,15, 1, ... be the run corresponding to r,. We have f(i) = i+1 holds in #;. Run r, is not
satisfiable in standard integers since if a = n, then both ,vf(a)‘ =0 and f(n) =n+1 shduld hold. However, r, is
satisfiable by letting b = 0. ' A

3.4 Deleting Dangling Predicates

. In this section, we prove that a predicate in a state can be removed if the predicate contains a constant that do not occur in
any other term in that state. We call this reduction deleting dangling predicates. An example is given in Figure 7.

In order to prove that the deleting dangling predicates optimization is valid, the following lemma has to be proven.
- Lemma 34 Let n+1 predicates p,, ..., p,, be given such that p; A ... Ap,,, is satisfiable. Let p, be either an

uninterpreted predicate p(a,, ..., €, ..., &,,) , Or an equality predicate ¢, = c;, or an inequality predicate ¢y #c; such
that ¢, occurs in the other p; ‘s only in terms of the form g(Yy, ..., g, ..., ¥) , where g is an uninterpreted function. Then,
& P\A AP, OD,,isvalidiffp A Ap, =P, isvalid
b. j), A ... AP, D, issatisfiableiff py A...Ap,_; = D, is satisfiable.

Definition A constant ¢, in M is said to be absent if ¢, appears in the predicates, integer latches, addresses and data
values only in terms of the form g(Y,, ..., €y, ..., ¥)) » Where g is an uninterpreted function. We assume ¢ is the result of
deleting a dangling predicate from s, if there exists an equality predicate Co # €y, Of an inequality predicate ¢, = ¢, Or an

uninterpreted predicate p(,, ..., Cg, ..., @,,,) in § with ¢ absent in s, such that deletion of this predicate from s results in

a state isomorphic with 7.

State S, has been obtained from S 1 by deleting
dangling predicates. Here the predicate ¢ = d has
been removed since ¢ does not occur in any other

term in SI. The states are trace equivalent.

Figure 7

Theorem 5 Let ¢ be the result of deleting dangling predicate p(o.y, ..., ¢g, ..., @) from s. Then, s is trace equivalent

to?.

3.5 Deleting Dangling Memory Locations

In this section, we prove that a memory location in a state can be removed if the address of the location is a constant that
does not occur in any other term in the state. We call this reduction deleting dangling memory locations. An example is
given in Figure 8.

Recall that two sets of predicates P = {p,...,p,} and Q = {q,,...,q,,} are equivalent, written as P=Q, iff
PiA-. AP, Q) A ... Aq,, isvalid.
Definition Let P, denote the predicates of state s. We say two states s and ¢ are predicate equivalent iff P,= P,, s and

t agree (have the same values) on the finite latches, integer latches, and memory elements.
Notation Let s be a state and p be a predicate. Then s » denotes the state obtained by adding p to the set of predicates of

§, assuming that 5, is well-defined. For example, if f(a) and f(b) are two memory addresses of a memory element,

Page 12

' S, is undefined, since by the semantics of ICS models, f(a)# f(b) in s, and (@a=Db)A(f(a)=f(D)) is
unsatisfiable. : } :
In order to-prove that the deleting dangling memory locations optimization is valid, the following lemmas has to be proven.
Lemma 3.5 Two predicate equivalent states are trace equivalent.

Lemma 3.6 For any state s and predicate p, F(s,) cF(s) .
Definition Let a be a constant and ¥ an ICS term. A memory address location (a,Y) in some state s is said to be

inaccessible if a does not appear anywhere else in the system, i.e. not in any of the integer latches, non-address predicates,
or memory locations. Address predicates are inequality predicates of the form @, # o, where o, and o, are memory

addresses defined in state s. Inwitively, address predicates are predicates created to ensure that all memory locations are
distinct.

iﬁ';’ State S, has been oblained from S, by deleting
0=

Lec dangling memory locations. Here, the memory

Lj ad location (x, f(c)) can be removed since x does not
ash occur in any other ICS term in S 1 (except for the
(c.d) address predicate ¢ # x). The states are frace

equivalent.

Figure 8
Theorem 6 A state s is trace equivalent to a state ¢ obtained from s by deleting an inaccessible location (a,Y) .

4 Some Implications of Optimized ICS Reachability

In this section, we define a new class of ICS models called decoupled data independent memory systems which, once the
optimizations in this paper have been performed, have a finite state graph.

4.1 Decidability of Language Containment in Some Cases
Definition A decoupled data independent memory system (DDIMS) is an ICS model consisting of four parts: controller,
data path, address path, and an infinite memory. The controller is a set of finite variables, and tables on them. A data
variable can be the output of data movement elements, constant creators, or read operations. An address variable can be the
output of a data movement element or a constant creator. The write operations to memory are of the form write(a, d) ,
where a is an address and d is the data. The only predicates allowed in the data and address paths are equality comparators
oftheform x = y.

The general configuration of a DDIMS. The controller sends
conirol information to the data and address paths. The address
and data paths send the results of inspection of data and
addresses back to the controller. The data path sends and
receives data to and from memory. The address path provides
the addresses of various locations to the memory.

Controller [

Figure 9

We note the following facts about DDIMSs.
1. In DDIMSs data and addresses are separate. Specifically, addresses cannot be stored in memory.

2. DDIMSs can be recognized in polynomial time. Given that, we assume the ICS reachability engine uses different sets of
constants for addresses and data variables.

3. Leta;anda j denote addresses. Since equalities of the form a; = a ; are propagated (section 3.2), the only predicates

Page 13

involving addresses are inequalities of the form a; # a;. Recall that, since all addresses of a memory element are assumed to

be dlstmct, predicates specifying inequality of addresses of memory elements are not part of the set of predicates of a state.

Therefore, inequalities of the form a, #4; must involve some address not in memory. Hence, either a; or a; j is an address

stored in an address latch. It can be shown using the same proof technique as the proof of theorem 7 that in performing
reachability of DDIMSs, inequalities of the form a;#a; can be deleted while preserving language emptiness. We conclude

the only predicates in reachability of DDIMSs are mequalmcs between data variables.
‘We are now ready to prove that the language emptiness problem for DDIMSs is decidable.

Theorem 7 Let M be a DDIMS. Then, the optimized symbolic simulation algorithm terminates, and generates a graph G
such that L(M) = @ iff L(G) = @ |

Proof Let d be the number of integer latches in the data path, a the number of integer latches in the address path, and
n = a+d the total number of integer latches. Since in DDIMSs no address can be stored in memory, and by the fact that
there are no predicates involving addresses in the reachability of DDIMSs, there are at most a accessible memory locations
(section 3.5). By theorem 6, no configuration with more than @ memory locations is needed. Similarly, there are at most
n = a+d accessible data values, d in the data path integer latches, and a in memory. Since equality predicates ére
propagated (section 3.2), the only predicates in a state are inequalities of the form d;=d i where d; and d ; are data

constants. Since there can be at most n data constants stored in data latches and memory, dangling predicates are deleted
(section 3.4), and isomorphic states are renamed (section 3.1), only n data constants will be ever needed, and there can be at
most O(nz) (data) predicates.

Assume the symbolic simulator uses constants a, ..., a, for addresses, and d,, ...,d, for data, then each data latch or

data location in memory can take on one of the d; ‘s, and an address variable one of the a; ‘s. It follows that G is finite and

2
of size O(f2" a“nd+ l) where f is the number of finite states, 2" is due to different predicate configurations, a” comes

from various configurations for address latches, and n?* 1 is due to different configurations of data latches and memory
locations. Since all of our optimizations preserve language emptiness, L(M) = @ iff L(G) = @ (QED).
4.2 Exponential Compaction Compared to Finite Instantiations
Lemma 4.1 There is a DDIMS M with n+1 control states, such that L(M) = @ , the ICS reachability routine generates

n+1 states, but any finite instantiation with non-empty language has O(2") reachable states.

Proof Let the program have one constant creator in its address path, a latch [in its data path, and a comparator between /
and some intermediate line x. We assume the initial value of / is the constant d, and M never changes the value of /. In
every control state i, 0<i<n-1, M creates a new constant 4; in its address path, reads the value d; stored at g; into x,

and compares x to ! (which contains d). If d; #d, M writes d into a;, and goes to state i + 1. Otherwise, M stops (i.e

does not accept). State n is a dead accepting state. The only way M can have an infinite path is by constantly reading a new
location in memory, since all locations which have been visited before have the value d stored in them. Since the address of
the new location is not stored anywhere, the optimized ICS reachability routine always drops the new memory location
(section 3.5), and therefore, explores only n+ 1 states. Any finite instantiation preserving the infinite trace must have at

least » memory locations, and 2 data values. Since all assignment of values to memory locations is reachable, the finite

instantiation contains O(2") states (QED).
Remark Even if we assume that there is only one initial state where all memory locations take the value 0, all possible

Page 14

assignments of values to the memory locations is reachable, winch implies the number of reached states is O(2")
(assuming 2 data values). If a tool such as Murphi ([DDHY 92]) thh interleaving semantics, explxcnt state enumeration, and

symmetry reduction is used, the number of explored states is 1+ 1, whereas the running time is .O(n) , since at every state
O(n) choices have to be considered. If a BDD-based tool is used, the running time is still quadratic. The reason is that the
set of memory configurations reached after i steps is all assignments of values to memory locations with i 1’s (and n—i

0’s). For i = n/2, the BDD representing the set of reachable states is of size O(nz) .

5 Experimental Results

We have implemented some of the optimizations presented in this paper by extending the symbolic reachability analyzer
described in [THB96). These optimizations include performing equality propagation, deleting dangling predicates and
deleting dangling memory locations. Our implementation is unable, however, to detect all isomorphic states. We leave
efficient detection of such states as an open research problem.

Table 1 shows the results of our experiments with the example given in proof of lemma 4.1. The columns are the number
of control states in the example, the number of states reached by ICS reachability, the time taken by VIS (Berkeley’s second
generation BDD-based verifier, [VIS96]) and the number of states reached by VIS. All experiments were run on a DEC-
Alpha server 21164 running at 250MHz with 1 GB of main memory. The reported times are in CPU seconds. As one may
notice, the time for ICS reachability grows more than linearly. The reason is that in our implementation, a hybrid implicit/
explicit approach was used, where BDDs are used to represent the control portion of the model, and a special type of
symbolic simulation generates the behavior of the datapath (see [IHB96] and [HB95] for a more detailed discussion). In this
particular example, the size and complexity of the transition relation grew with the number of control states.

The ICS reachability algorithm can also be implemented explicitly without using BDDs, in which case, we expect linear
run times for this example. Despite this, however, VIS was only able to complete the experiments with 4, 8 and 16 control
states, and ran out of memory for all the other examples. In addition, the time that VIS took to complete each examples was
significantly slower than ICS Reachability. As discussed in the proof lemma 4.1, VIS requires at least n latches in the

datapath to model the memory of a DDIMS with n+ 1 control states. The number of latches for memory does not grow
when ICS reachability is performed, since dangling memory locations were deleted.

Table 1
Control State Num 4 8 16 32 64 128 256 512 | 1024 | 2048 | 4096 8192
_ — — — — = —————
ICS, Time 0.0 0.0 0.1 0.2 0.3 0.7 1.8 4.9 147 | 486 173.7 | 6583
ICS, Reached States Num 4 8 16 32 64 128 256 512 1024 | 2048 | 4096 8192

VIS, Time 0.1 1.2 883.9 - - - - - - - - .

VIS, Reached States Num 114 | 3050 | 1310000 - - - - - - - - -

6 Conclusions and Future Work

This paper presented a set of optimization routines which can drastically reduce the sizes of state spaces of ICS models.
Specifically, they can reduce infinite state spaces into finite ones. These results lead to a decision procedure for language
emptiness of decoupled data insensitive memory systems, and to show that ICS reachability can have a computational
advantage (at least asymptotically) with respect to finite instantiations and the best known algorithms for generating their
state spaces.

We see two future research directions.

1. Extend the optimization routines, and hopefully get decision procedures for more circuit families. Two specific open
problems where one may be able to get decision procedures (that is if the problems are decidable) using more powerful
optimization routines are:

Page 15

a. the language emptiness problem for data insensitive memory systems, in which data and addresses are not separate, and
- therefore addresses can be stored in memory;
4 b. the problem of proving the property “when b becomes true, x = y“where x and y are integer variables, and the -
system is a data computation controller in which the datapath contams data movement operauons and uninterpreted
functions, but no predicates ((HIKB96]).

2. Gain experience with the impact of these optimizations in practice. A good example may be the verification of the ATM
switch described in [LTZSC96].

Acknowledgments
- During this work, the first and second authors were supported by SRC grant 96-DC-324.

References

(BD94] J. Burch, D. Dill, “Automased Verification of Pipelined Micro-processors”, Computer-Aided Verification, 1994.

[Bry86] R. E. Bryant. “Graph-based Algorithms for Boolean Function Manipulation.” IEEE Transactions on Computers, 35(9):677-
691, August 1986.

[Cor93] F. Corella, “Automated High-Level Verification Against Clocked Algorithmic Specifications”, Proceedings of the IFIP WG10.2

Conference on Computer Hardware Description Languages and their Applications, Ottawa, Canada, Apr. 1993. Elsevier Science Publish-
ers B.V.

(DDHY92] D. Dill, A. J. Drexler, A. J. Hu, C. H. Yang, “Protocol Verification as a Hardware Design Aid”, International Conference
on Computer Design (ICCD) 1992.

[HB95] R. Hojati, R. K. Brayton, “Automatic Datapath Abstraction of Hardware Systems”, Conference on Computer-Aided Verifica-
tion, 1995.

[HIKB96] R. Hojati, A. Isles, D. Kirkpatrick, R. K. Brayton, “Verification Using Uninterpreted Functions and Finite Instantiations”
Formal Methods in Computer-Aided Design, November 1996,

[HIB96} Ramin Hojati, Adrian Isles, Robert K. Brayton, “ICS Models with Bounded Integers*, unpublished manuscript, May 1996.
[THB96] A.Isles, R. Hojati, R. K. Brayton, “Reachability Analysis of ICS Models”, SRC Techcon, September 1996.

[LTZSC96) M. Langevin, S. Tahar, Z. Zhou, X. Song, E. Cemy, “Behavioral Verification of an ATM Switch Fabric using Implicit
Abstract State Enumeration”, International Conference on Computer Design: VLSI in Computers and Processors, Austin, October 1996.

[SDB96] J. X. Su, D. Dill, C. W. Barrett, “Automatic Generation of Invariants in Processor Verification”, Formal Methods in Com-
puter-Aided Design, November 1996.

[Sho79] R.E. Shostack, “A Practical Decision Procedure for Arithmetic With Function Symbols”, JACM Volume 26, No. 2, April
1979, pp 351-360.

[VIS96] “VIS: A system for Verification and Synthesis”, The VIS Group. In the Proceedings of the 8th International Conference on
Computer Aided Verification, p428-432, Springer Lecture Notes in Computer Science, #1102, Edited by R. Alur and T. Henzinger, New
Brunswick, NJ, July 1996.

Appendix
Lemma 3.2 Let two sets of n predicates P = {py,...p,} and P= {Py...» D,} be given such that if all occurrences

of some constant b in p, ..., p,, are replaced by some constant a, then P and P are isomorphic.
& PyA...Ap,_A(a=b)— p, isvalidiff p, A... A P,_; = P, is valid.
b. pyA...Ap,A(a=D) issatisfiable iff p; A ... A P, is satisfiable.

Proof We will show that if pyA...Ap,_;A(a=b)—>p, is valid, then p; A... AP, _, — P, is also valid. The
reverse direction of part a, and part b are similar. Assume to the contrary that p; A ... AP, _; — P, is not valid. Let
ab,cy,...c, and &¢,,...,i,, be the constants in P and P respectively. Let I be an interpretation for P, making

PyA...AD,_,— P, false. Let I, an interpretation for P, be derived from 1 by making the same assignments to

Page 16

a,cy, ..., C,, and the uninterpreted functions and predicates of P as I does to @, &,, ..., &, and the uninterpreted functions
and predicates of P. Let I(b) = I(a) = K@) . For each i, if p; does not contain b, then it is isomorphic to p;, and
hence I(p,) = I(p;) . If p; contains b, then p; contains @ in its place. Since I(b) = I(a@) , it follows again that

I(p) = K(p;) . Since pyA...Ap,_,—> P, is false under I, and since I(p,) = I(p,) for all i, we have that
PyA..AP,_; is tue and p, is false under . Since a=2b is true under I, we conclude that
PiA... AP, yA(a=Db)— p, isfalse under I, which is in contradiction to p; A ... A P, -1~ P, being valid (QED).

Theorem 3 1f t is the result of applying the equality propagaﬁon predicate to s, then s and ¢ are trace equivalent.

Proof Let R(s,,s,) hold iff 5, can be obtained by applying the equality propagation operator to s, . It suffices to show
that R is a bisimulation on the symbolic graph G preserving finite values. Let R(sy,s,) and T(sy,a,t,) hold, where a
is an assignment of values to the finite variables. We need to show that there exists £, such that T(s,, a,1,) and R(t,,,)
hold (the reverse direction is similar). Further assume that $, contains a predicate @ = b which was deleted by the equality
propagation operator, and all b ‘s were renamed to a ‘s. Proceeding by induction, assume that before processing a gate g, R
holds of the partial states P(s,, g) and P(1,,8) .

We define the following notations for the rest of the proof. Let P, and P, be the predicates in P(s;, g) and P(s,, 8)
respectively. Let I be an isomorphism which maps P(s,, g) after b has been replaced by a to P(sy,8) . Let I, ()
be the mapping which first renames b ‘s to a ‘s in the ICS term « and then applies I to the result. Similarly define / ba
applied to a state. Let the two new partial states after processing g be u, and u,. Based on g, we have the following cases:

1. g is a finite gate. Since by the inductive assumption the inputs to g are the same, assign the same value to the outputs.
2. g is aconstant creator. Have the outputs of ¢ map to one another. Extend I with this mapping.

3. g is aninteger function. Just apply the function in both cases. We have J b—alll]) = Uy

4. g is an integer predicate. By the inductive assumption and by lemma 3.2, we have that the output of g is determined by
P, iff the output of g is determined by P,, and they are the same. If both true and false cases have to be considered, have
the corresponding cases map to one another.
5. g isaread. Let the address being read in P(s,, g) be o, . We have the following cases.

Sa. Py— (o =P,) is valid for some address B, . By lemma 3.2, P,— (I, (o)) =1, ,(B,)) is also valid. By
the inductive assumption, the data value at o, is mapped by / b—q 0thedatavalueat 7, , (0,).

Sb. Py —» (0 #P;) is valid for all addresses B;. Bylemma3.2, P,—(I,_, ,(0,)#1I,_, ,(B,)) is also valid for all

B;. In both cases a new location and data value is created. Extend I, , , by mapping these locations and data values to
each other respectively.,

5c. For ¥;€ {y,,..., 7} , neither Py—(0y=v;) nor P;—(a;#7y;) holds, but we have assumed o) =v; for some
¥ Hence, Pin(oy =7 DA ;l;lj(al #Y,) is satisfiable. By lemma 32,

Pyn(ly (o) =1, a('yj))/_];].(lb sae)#1, (7)) is also satisfiable, which implies we can assume
]

Page 17

Iy (o) = I, ,(Y;) holdsin P(sy, 8) . By the indu'cti\'ie'a_ssumptipn, the data value at o, is mabped_by I, ;,to the
data value at Ib_,a‘(al) . ' |

5d. For ¥;€ {Yy,...,Y;}, neither P;—(a; =7;) nor P, = (a; #Y,) ho!ds; but we have assumed o, is distinct
from all other addresses. Hence, PyATl(ey #7;) is satisfiable. By lemma 3.2, le\];l(Ib > a(val) #1, ,4(v;) is
also satisfiable, which implies we can assume I b->a(0) is distinctin P(s,, g) as well. In both cases a new location and
data value is created. Extend I, _, , by mappmg these locations and data values to each other respectively
6. g isawrite. Similar to the case of read (QED).

Lemma 3.3 Let p,,..., p, be such that p; A ... A p, is satisfiable. Let B = f(o,..., 4, ...,04), where f is an
uninterpreted function, a is not one of the ICS terms in the p; ‘s (although a can occur in the p;‘s), and if a occurs in a
term of the form g(yy,...,a ...,Y;), then g in an uninterpreted function. Let g, ...,q, be isomorphic to 'a set of

predicates 0y, ...,0, obtained from p,,..., p, by replacing all occurrences of B with a new constant b. Then, the
following holds.
& DyA...AD,_ 1P, isvalidiff g, A ... Aq,_; ¢, isvalid.

b. pyA...AD,_| o p,issatisfiableiff g; A ... Ag,_; — g, is satisfiable.

Proof We will prove part a; part b is similar. By lemma 3.1, it suffices to prove the lemma assuming that ¢, ..., q,, is
obtained from py, ..., p, by replacing all occurrences of B with b. It suffices to show for all interpretations I for
Py --.» Py, there exists an interpretation J for ¢q,...,q, such that I(p,) = J(g;) for all i, and vice versa. Let
Mg _, ;() be the mapping which replaces all occurrences of B with b in the term o.. Given I, let J be obtained from /
by setting J(Mp_, ,(01)) = I(a) (specifically J(b) = I(B)). It follows that I(p,) = J(g;) for all i. Conversely,
given J, let I(a) be a value not equal to any of the values J(y) for all ICS terms y occurring in gy, ..., g, . Obtain /
from J by letting I(B) = J(b) , and I(e) = J(MB Sp(@)) for o= B. Condition 3 in the statement of the lemma
guarantees that this can be done. It again follows that I(p;) = J(g;) forall i (QED).

Theorem 4 If t is the result of simplifying a functional term in s, then s and ¢ are trace equivalent.

Proof Let R(sy,s,) hold iff s, is the result of simplifying a functional term in s, . It suffices to show that R is a
bisimulation on the symbolic graph G preserving finite values. Let R(s,,s,) and T(s, a,t;) hold, where a is an

assignment of values to the finite variables. We need to show there exists ¢, such that R(ty,15) and T(sy, a,1,) hold. To

complete the proof, we need to show the reverse, which is similar and will not be given here. Proceeding by induction,
assume that before processing a gate g, the partial state P(s),g) contains an ICS term B = f(o., ..., 4, ..., 0,) which

was replaced by a new constant b to obtain P(s,, g) .
We define the following notations for the rest of the proof. Let P, and P, be the predicates in P(s;, g) and P(s,, 8)

respectively. Let I be an isomorphism which maps P(s,, g) after B has been replaced by b to P(¢,, g) . Let IB Sp(0),

for a term o, be the mapping which first replaces B ‘s by & ‘s in o and then applies I to the result. Similarly define / Bob

Page 18

 applied to a state of an ICS model. Let the two new partial states after processing g be 4, and u,. We have the following
cases: .
1. g is afinite gate. Since by the inductive assumption the inputs to g are the same, assign the same value to the outputs.
2. g is aconstant creator. Have the outputs of g map to one another. Extend I by this mapping.

3. g is an integer function. Just apply the function in both cases. We have IB () = uy. The requirenient that a
occurs only in terms of the form g(y,, ..., 4, ..., ¥;) will not be violated in u, after processing g .

4. g is an integer predicate. By the inductive assumption and by lemma 3.3, we have that the output of g is determihed by
P, iff the output of g is determined by P,, and they are the same. If both true and false cases have to be considered, have

the corresponding cases map to one another. The requirement that a@ is not one of the terms in any predicates will not
violated since no inputof g is a.

5. g isaread. Let the address being read in P(s;, g) be a;. Note that o; #a, and for all addresses B;, B;# a. We have
the following cases.
Sa. Py — (o, =B,) is valid for some address B,. By lemma 3.3, P,—(Ig_, (o) = Iz, 5(By)) is also valid. By

the inductive assumption, the data value at o, is mapped by IB _»p to the data value at IB Sp(g) .

5b. Py—> (0o #B;) is valid for all addresses B;. Bylemma3.3, P, — (Ig p(0) =1, 5 (By)) is also valid for all
B;. In both cases a new location and data value is created. Extend Ig _,;, by mapping these locations and data values to
each other respectively.

5c. For v;€ {Yy, ..., Y}, neither P, = (o; =7;) nor P;— (a;#7;) holds, but we have assumed o =7; for some

Yj (the requirement that a is not one of the terms in any predicates in u, will not be violated since y;#a). Hence,

Pia(oy = 'Yj)/\ IT (o #7)) is satisfiable, By lemma 33,
i#j
PZA(IB_,b(a1)=Ip_,b(yj))A]'[(IB_,b(al)#IB_,b(y,-)) is also satisfiable, which implies we can assume
i#j

I, p(0y) = Ig (Y) holds in P(s,, g) . By the inductive assumption, the data value at o, is mapped by IB Sp 10

the data value at IB_,,,(OLI) .

5d. For v;€ {Y},.... Y}, neither P;—(a;=7v,) nor P, —(c;#7;) holds, but we have assumed o, is distinct

from all other addresses. Hence, P; A[J(a, #7;) is satisfiable. By lemma 3.3, Pyall(g 5 p(0) #1g_, 5 (1)) s
i i

also satisfiable, which implies we can assume Iﬂ - p(0y) isdistinctin P(s,, g) as well. In both cases a new location and

data value is created. Extend I g —» DY mapping these locations and data values to each other respectively.

6. g is awrite. Similar to the case of read (QED).
Lemma 3.4 Let n+1 predicates p, ..., p,,; be given such that p; A... Ap,,, is satisfiable. Let p, be either an

uninterpreted predicate p(a,, ..., Cg, ..., &,,) , Or an equality predicate €o = €y, Or an inequality predicate ¢y #¢; such
that ¢, occurs in the other p; ‘s only in terms of the form g(y,, ..., € -+-» Yg) » Where g is an uninterpreted function. Then,
& PIA APy Py isvalidiffpya...Ap, | p,, isvalid.

b. pyA... AP, P, issatisfiableiff py A... Ap,_| > p,, issatisfiable.

Page 19

Proof. By the definition of validity, PyA ... ADy_y = P, being valid implies that p; A ... A Pp— Py, is valid. We
will show the reverse; part b is similar. Let py A... A p, — P, | be valid. We need to show pyA...Ap,_, =P, I8
valid. Assume to the contrary that there exists an interpretation J such that J(py A ADy_1)=T and J(p,,)=F.
We will show, contrary td the assumption, that f.here exists an interpretation 7/ such that I(p, A ... A.pn) =T and

I(p'l'i'l) = F.

1. If p,, is an uninterpreted predicate p(a.,, ..., Cg, ..., 0,,) , et I(cy) be a new value not equal to the value of any other
term or subterm under J. For every term g(Y, ..., Cgy -+, Yi) s 10 1(2(¥s -0y €gp s Yp)) = J(8(¥ys ++os € -o0s V1)) -
This is possible since g in uninterpreted and I(c,) is not equal to the value of any other term and subterm under J. Let

I(p(ay, ..., € ..., @) be true, and let 1 agree with J on all other constants, uninterpreted functions and predicates. It
follows that py A ... A p, = P, , | is false.

2. If p, is an equality predicate ¢, = ¢;, and if J does not assign a value to ¢y or ¢, let I be an extension of J with the
extra assignment I(co) = I(c;) . It follows that py A ... A p, — p, , | is false under I. If J assigns unequal values to ¢,
and ¢, let I(cg) = J(cy) = I, where [is a new value not equal to the value of any other term and subterm under J. Let
I agree with J on all other constants, uninterpreted functions and predicates. Again, PyA...AD, =P, isfalse under I.
3. Similar to case 2 (if J(cq) = J(c;) ,thenlet I(c,)#I(c,) with I(cy) and I(c,) taking new values not equal to the
value of any other term and subterm under J) (QED).

Theorem 5 Let t be the result of deleting dangling predicate p(a., ..., €g, ..., &,,) from s. Then, 5 is trace equivalent
totr.

Proof Let R(s,,s,) holdiff s, is the result of deleting dangling predicate p(a., ..., Cg, ..., 0,,) from s, . It suffices to
show that R is a bisimulation on the symbolic graph G preserving finite values. Let R(s;,s,) and T(s;,a,?;) hold,
where a is an assignment of values to the finite variables. We need to show there exists 1, such that R(¢,,?,) and
T(s,, a,1,) hold. Fix a topological sort of the gate graph. Proceeding by induction, assume that before processing a gate
8., the partial state R(P(s),), P(s5, 8)) holds. Let the two new partial states after processing g be u; and u,. We will

show that after processing g, R(u,, u;) holds.

We define the following notations for the rest of the proof. Let P, and P, be the predicates in P(s;,g) and P(s, g)
respectively. Let I be an isomorphism which maps P(s),g) after p(a,,...,cg, ..., @,,) has been deleted to P(z,,8) .

Let 1 P(s) be the mapping which first deletes p(a.,, ..., €, .-, O,,) from s, and then applies I to the result. Based on g,
we have the following cases:

1. g is afinite gate. Since by the inductive assumption the inputs to g are the same, assign the same value to the outputs.

2. g is aconstant creator. Have the outputs of g map to one another, as an extension of the current isomorphism I. Note
that by the semantics of ICS models, this new constant in #, is not ¢, since ¢ occurs in P(s,, 8) .

3. g is an integer function. Just apply the function in both cases. We have I p(ul) = Uy.

4. g is an integer predicate. By the inductive assumption and by lemma 3.4, we have that the output of g is determined by

Page 20

4 P, iff the ouqiut of g is determined by P,, and they are the same If both true and false cases have to be considered, have
the corresponding cases map to one another, as far as bisimulation is concerr.ed.
5. ‘g is aread. Let the address being read in P(s;, g) be o,;. Note that ¢, only occurs in terms of the form
8(Tps veus Cgp s Tg) -

S5a. Pi— (o= Bl) is valid for some address B,. By lemma 34, P,—(I(a))=1I(B,)) is also valid. By the
inductive assumption, the data value at o.; is mapped by /-to the data value at /() . |

5b. Py, — (o, #B;) is valid for all addresses ;. By lemma 34, P,— (I(o;)#I(B,)) is also valid for all B;. In

both cases a new location and data value is created. Extend I by mapping these locations and data values to each other
respectively.

5c. For ¥;€ {Yy, ..., V;}, neither P — (&, =7y;) nor Py —(a; #7;) holds, but we have assumed o, = Yj for some
¥ Hence, Py A (a; = “l'j) Ai];[j(a, #7Y;) issatisfiable. By lemma 34, P,A(I(0,)= I('yj)) A ’_];[j(l(al) #I(y;) is
also satisfiable, which implies we can assume I(o;) = I(Y j) holds in P(s,, g) . By the inductive assumption, the data

value at ¢, is mapped by 7 to the data value at I(o.,;) .
5d. For y;€ {Y),.... Y}, neither P, — (&, =7;) nor P;— (c;#7;) holds, but we have assumed o, is distinct
from all other addresses. Hence, PlA];](al;&'y,-) is satisfiable. By lemma 3.4, PzAl;](l(al);tI(yi)) is also

satisfiable, which implies we can assume I(o:,) is distinctin P(s,, g) as well. In both cases a new location and data value

is created. Extend I by mapping these locations and data values to each other respectively.

6. g is a write. Similar to the case of read (QED).
Lemma 3.5 Two predicate equivalent states are trace equivalent.

Proof The proof uses proposition 1, and is very similar to the inductive proofs we have been doing throughout, and will
continue to do (QED).

Proposition 1 If P=Q, then P — r is valid iff Q — r is valid.

Proof We will show validity of P — r implies validity of Q — r. The other direction is similar. To show, Q= is
valid, assume Q is true. This implies, by P=Q, that P is true, which in turn by the validity of P — r implies r is true
(QED).

Lemma 3.6 For any state s and predicate ¢, F(sp) cF(s) .

Proof The intuitive idea is that by adding more assumptions (i.e predicates), the behavior becomes more restricted. Let
R(sy, s,) hold iff there exists an isomorphism / :§) — 8, such that I(s;) and s, agree on finite latches, integer latches,

and memory elements, and there is a predicate ¢ such that I(P,')EPszuq. Let R(s,,s;) and T'(sy,a,t;) hold, where
a is an assignment of values to the finite variables. We need to show there exists ¢, such that T(s,,a,t,) and R(t,,1;)
hold, or r; and f, are trace equivalent. Proceeding by induction, assume that before processing a gate g,
R(P(sy,8), P(55 8)) holds. Let P, and P, denote the predicates at P(s;,g) and P(s,, g) , respectively. Let u; and

u, denote the states obtained after processing gate g in P(sy, &) and P(s,, g) respectively. Based on g, we have the

following cases:

1. g is afinite gate. Since by the inductive assumption the inputs to g are the same, assign the same value to the outputs.

Page 21

2. g is aconstant creator. Extend / by having the new constants map to each other.
3. g is an integer function. Just apply the function in both cases.

4. g is an integer predicate. Let r; and r, be the predlcates associated with gate g in P(sl,g) and P(s,, g)
respectively. Several possibilities exist:.

a. Py —r, isvalid. Smce‘by proposition 2, P, — r_z is not valid, we have the following possibilities:
al. P, —r, isvalid. Note that by the operational semantics of ICS models 4, and u, do not contain r, and r,, since
they are implied by P, and P,. Hence, by the inductive assumption, R(u,, u,) holds.
| a2. Neither Py —>r, nor P, — 72 is valid. By proposition 3, P(s,, g) isrelated by R to P(s,, g) augmented with
T 2-

b. P, —F is valid. Similar to case a with the roles r, and r, switched.

c. Neither Py —r; nor Py —r, is valid. By proposition 4, neither P, —>r, nor P, — 1, is valid. By proposition 5,
P(sy, 8) augmented with ry and P(sy g) augmented with r, are related by R, as are P(s;,g) augmented by r_l and
P(s,, g) augmented with r, .

5. g isaread. Let the address being read in P(s), g) ,be o, .
a. Py—(a,=B,) is valid for some address B, in memory. Let r, and r, be the predicates o; = B, and

I(0,) = I(B,) , and the values read at B, and B, be ¥, and v,. Since by proposition 2, P, — F is not valid, we have the
following possibilities:
al. P, —>r, is valid. Note that by the operational semantics of ICS models 4, and u, do not contain r, and r,, since

they are implied by P, and P,). Hence, by the inductive assumption, R(u,,4,) holds. By the inductive assumption
I(7)) = ¥,.
a2. Neither P, - r, nor P, — ;; is valid. By proposition 3, P(s,,g) isrelated by R to P(s,, g) augmented with
r,. By the inductive assumption 1(y,) = ¥, .
b. Py — (o, #B,) is valid for some address B, in memory. Since by proposition 2, P, — (I(e,;) = I(B,)) is not
valid for any address B, , we have the following possibilities:

bl. Py—(I(a;)#I(B,)) is valid for all B;. Create a new address and data value in each state, and extend I by

mapping the new addresses and data values to each other respectively. Since no new predicates have been created,
R(uy, u,) still holds.

b2. For some set of addresses {(;} , neither P, — (I(a) =I(B;)) nor P, — (I(a;)#I(B;)) is valid. Consider

the case where we have assumed I(a,)#I(B,) forall i,ie. I(e,) is distinct from all other memory addresses. Create a

new address and data value in each state, and extend I by mapping the new addresses and data values to each other
respectively. By repeated application of proposition 3, it follows that R(u, u,) holds.

c. For some address B;, neither P; — o; = B; nor P, — o, #P; is valid, but we have assumed o, = B,. Let r, and

r, be the predicates o, = B; and I(a;) = I(B;) , and the values read at B, and B, be v, and y,. By proposition 4,

Page 22

neither P, —r, nor Py — r2 is valid. By proposmon 5, P(s,, g) augmented with r, and P(s,, g) augmemed with 7,
are related by R. By the mducuve assumption I(y;) = v,.
d. For some set of addresses {B;} , neither P, — o, = B; nor P, - o, #B; is valid, but we have assumed a, #B; for
all i, ie. o, is distinct from all other memory addresses. By proposition 4, neither P, — (I(a,;) =1I(B;)) nor
Py— (I(0)) #1(B;)) is valid. Hence, the case where .I(al) is distinct from all other addresses in memory in P(s,, g)

is possible. Create a new address and data value in each state, and extend / by mapping the hew addresses and data values
to each other respectively. By repeated application of proposition 5, R(u,, u,) holds.

6. g is awrite. Similar to the case of read (QED).
In the following propositions, let P,, P,, @ be sets of predicates, r and ¢ be individual predicates.

Proposition 2 If Py =P, U q and P| — r is valid, then P, — 7 is not valid.

Proof Assume P, —F is valid. This implies P, Aq— 7 is valid, which in turn implies P, —F is valid. This is in
contradiction to P, — r being valid (QED).

Proposition 3 Let Py=P,uUgq, and assume P, —r is valid, but neither Py—r nor P2—>; is valid. Then,
Pi=Pyuqur. |

Proof To show P, — P, Ag A is valid, assume I(P)) = T for some interpretation /. We need to show I(Py)) =T
I(q)=T,and I(r)=T. Pj=P,Ugq and I(P)) =T implies I(P;) =T and I(q) =T. I(P)) =T and P, —>r
being valid implies I(r) = T. To show P, AgAr— P, is valid, assume I(P))=T,I(q) =T,and I(r) =T for
some interpretation /. We have to show I(P,) = T, which follows from Pi=P,ugq, I(P))=T,and I(q) =T
(QED).

Proposition 4 1f Py =P, U q and P, —r is not valid, then Py — r is not valid either.

Proof Let interpretation I be such that I(P))=T and I(r) = F. By Py=P,ugq, I(P)) =T. I(P)) =T and
I(r) = F implies P, — r is not valid (QED).

Proposition 5 P, =P, U q implies P, ur=P,uqur.

Proof Follows from the definition of equivalence of sets of predicates (QED).

Theorem 6 A state s is trace equivalent to a state ¢ obtained from s by deleting an inaccessible location (a, ¥) .

Proof We will show F(s) c F(t) ; the reverse direction is similar. Let R(sy, s7) holdiff s, is the result of deleting an
inaccessible location from sy. Let R(s),s,) and T(sy,a,t;) hold, where a is an assignment of values to the finite
variables. It suffices to show that there exists t, such that 7(s,,a,1,) holds, and either F(t))cF(t,) , or R(1,,1,)
holds. Proceeding by induction, assume that before processing a gate g, the partial state P(s,, 8) is the result of deleting

an inaccessible location from P(s;, g) .

We define the following notations for the rest of the proof. Let P, and P, be the predicates in P(s),g) and P(sy, g)

Page 23

~ respectively. Let I \be an isomorphism which maps P(s;, g) after (a,y) has been deleted to P(tl, 8) . Let 1,(s) bethe

mapping which first deletes (a,y) from s, and then applies / to the result. Let the two new pamal states aﬁer processmg
8 be u; and u, . Based on g, we have the following cases:

1. g isafinite gate. Since by the inductive assumption the inputsto g are the same, assign the same Vaiue to the outputs.

2. g is aconstant creator. Have the outputs of g map to one another, as an extension of the current 1somorph1sm I.

3. g is an integer function. Just apply the function in both cases. ’

4. g is an integer predicate. By th9e inductive assumption and by lemma 3.1, we have that the eutput of g is determined by
P iff the output of g is determined by P,, and they are the same. If both true and false cases have to be considered, have
the corresponding cases map to one another, as far as bisimulation is concerned.

5. g isaread. Let the address being read in P(s,, g) be o; . We have the following cases.

Sa. Py —(ay =B,) is valid for some address B, . Since a does not appear in any of the predicates, B, is not a. Hence
I (Bl) is well-defined, and P, — (I(a;) = I(B,)) is valid. By the inductive assumption, the data value at 0., is mapped
~ by I to the data value at (o) .

5b. P;— (o, #PB,) is valid for all addresses B,. This situation is not possible with the reason being as follows. Since
a is one of the B, ‘s, and since @ does not appear in any of the predicates of P,, P, > (a;#a) isvalid iff o; is equal to
one of the B; ‘s, which is a contradiction to the assumption that @, is distinct from all addresses B; .

5c. For ;€ {Y},...,Y;},neither P, — (&, =7;) nor P;— (0, #7;) holds, but we have assumed o = v; for some
Y- Hence, Py A (o = 'yj) Aigj(al #7;) is satisfiable,

Sc.l. v; isnot a. Since P, and P, are isomorphic, P, A (I(oy) = I('yj)) A'L[j(l(al) #1(y;)) is also satisfiable,
which implies we can assume I(a;) = I(Y j) holds in P(s,, g) . By the inductive assumption, the data value at o is
mapped by I to the data value at I(c;) .

5c.2. ¥; is a. Inthis case, /(o)) being distinct is possible in P(#, g) . Let the new location be (a, 3) , and the state
obtained u,. Consider the state v, obtained by adding the predicate d= I(Y) to u,. Bylemma 3.6, F(v,)cF(u,) .

By proposition 6, v, is trace equivalent to a state w, in which d has been replaced by I(y) . The predicate d= I(y) is
dangling in w, and can be deleted by theorem 5. Let the resulting state be called Y. We have that u, and y, are

isomorphic (extend / by mapping a to @), which by theorem 2 implies F(u,) = F(y,) . We conclude F(u)) < F(uy) ,
as was desired.
3d. For y;€ {Y), ..., ¥}, neither P, —(a;=7v;) mor P, = (o, #7v;) holds, but we have assumed a,; is distinct

from all other addresses. Hence, P, A f] (o, #7v;) is satisfiable. Without loss of generality, let ¥, = a. We have

Pia il;[l (I(oy)#I(y,;)) is also satisfiable, which implies we can assume I(a.,) is distinctin P(s,, g) as well. Inboth

cases a new location and data value is created. Extend / by mapping these locations and data values to each other
respectively.

6. g is awrite. Similar to the case of read (QED).

Page 24

Probosition 6 l;et.a be a constant and y an ICS term. Ifa = Y is épredicate in s, then replacing all occurrences of a
with y results in a trace equivalent state. ’ o A S
‘Proof Similar.to the proof of theorem 3 (QED).

Page 25

	Copyright notice 1997
	ERL-97-53

