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Abstract
Propagation Effects of Partially Coherent Light in Optical Lithography and Inspection
by
Robert John Socha
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California at Berkeley
Professor Andrew R. Neureuther, Chair

This thesis describes a formulation of a computationally efficient method for ana-
lyzing topography scattering with vector polarized partially coherent spatial illumination;
presents the implementation of this method into TEMPEST-PCD (TEMPEST with Partial
Coherence Decomposition); and shows systematic studies and rules of thumb for the
effects of partial coherence in mask imaging, wafer patterning, and wafer inspection by
using TEMPEST-PCD.

The effects of partial coherent light scattering from topography on a mask or wafer
during printing and inspection have been a long-standing unresolved concern in optical
projection printing. This thesis attacks this problem through generalizing the optimal
decomposition to vector electromagnetic scattering. The decomposition method was ini-
tially developed by Gamo for scalar imaging and applied to optical proximity correction
by Patti and Cobb and later used in pupil filter design by von Biinau. The generalization
here decomposes the coherency matrix developed by Mandel and Wolf. Since this vector
decomposition is a transform technique that involves the diagonalization of a matrix, this
decomposition is both optimal in an energy compaction sense (since the least number of
excitations is needed), and has orthogonal eigenvectors such that the partially coherent

case is the direct sum of coherent cases.

The inclusion of partial coherence effects in scattering from topography typically
requires simulation time that is at least two orders of magnitude greater than a single coher-
ent plane wave. However, with the decomposition technique, up to one order of magnitude
can be saved in simulation time. Abbe’s technique, which represents the illumination cone
as a series of obliquely incident plane waves, typically requires 256 simulations for inspec-
tion problems, and 45 simulations for mask imaging and wafer patterning problems. The
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decomposition technique, however, typically requires 30 simulations for the same inspec-
tion problem, and 8 simulations for the same mask imaging problem. The decomposition
technique is recommended for all simulation problems except for truly periodic mask
structures, where aliasing reduces the effectiveness of the decomposition method.

Simulation with experimental verification is used to evaluate effects and develop
rules of thumb for the effect of the partial coherence in optical lithography and inspection.
Using the mutual coherence, a perturbational model is developed that predicts the interac-
tion and impact of a phase defect on the aerial image of a phase mask by considering the
previously known behavior of isolated defects and line features. Where large topographies
are encountered in phase shift masks, it is demonstrated that the assumption that the dif-
fraction efficiencies must be independent of the illumination angle used in Hopkins’ for-
mulation is valid only when the aspect ratio (depth-to-width) of the mask feature is less
than 0.2 for a stepper with GNA less than 0.5.

When simulating the patterning of an image inside a resist on a wafer with device
features, interference effects at low 6 (0.3) due to lateral scattering from the topography
are more pronounced. While these interference effects are pronounced in the latent image
it is shown that when Fickian diffusion occurs after exposure in a subsequent post exposure
bake (PEB) process, the net effect can be similar to exposing with less coherent light. A
consequence is that for most purposes the electromagnetic analysis can be simplified to a
simple normally incident plane wave followed by a PEB. Lateral scattering effects in resist
also play an important role in printing a dark line from a pre-patterned edge of a phase shift
resist layer directly on top of the resist. Lateral refraction of energy into the phase shift edge

A
increases the linewidth beyond the anticipated resolution of y by severalfold.

~ Later, a sound methodology for improving wafer inspection will be demonstrated.
The reciprocity theorem is used to create a filter which compensates for both the topogra-
phy and the thin-film thickness. Such a filter guides light down the hole and increases the
amount of light reaching the bottom of the hole by threefold.

Professor A. R. Neureuther
Committee Chairman
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1 Introduction

Computer aided design (CAD) tools have come to play an important role in the
design of integrated circuits (ICs). CAD tools currently available analyze circuit design
performance, device performance, and semiconductor processing. Circuit design tools
such as SPICE[80] were among the first tools to be developed and to be readily used in the
IC community. As the dimensions of semiconductor devices continue to shrink, CAD tools
that analyze device performance and semiconductor processing are becoming increasingly
important because these tools can find problems in design prior to running costly experi-
ments. These CAD tools that simulate device performance include BSIM[110], MINI-
MOS[107], and PISCES[100], and tools that simulate semiconductor processing include
DEPICT[124], PROLITH[69], SAMPLE[94], SOLID[50], and SUPREM[63]. As the cost
of computation decreases while the cost of experimentation increases, these CAD tools are
essential in the IC community as a cost effective method to produce rapid feed back and

analysis of designs.

During the optical lithography step of the semiconductor process, a mask is trans-
ferred into photoresist covering the wafer surface through the use of imaging optics. Since
the light is projected onto two surfaces, the mask and the wafer, it is important to under-
stand how light scatters from topographical features on these two surfaces. For example,
nonplanar topographies in photomasks cause lateral scattering which may degrade the
image collected by the imaging optics. Further, topography on the wafer may cause light
to scatter into undesired areas causing reflective notching and standing waves in the pho-
tofesist. As dimensions continue to shrink in semiconductor manufacture, the aspect ratio
of these topographies are becoming more severe, and understanding scattering mecha-

nisms are becoming increasingly important. Therefore, simulation of optical lithography
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can give valuable physical insight and can predict problems resulting from scattering

mechanisms prior to observing these problems at the manufacturing stage.

The geometric sizes in these electromagnetic problems are on the order of one
wavelength. Electromagnetic simulation of these wavelength features is computationally
intensive, and neither geometric optics nor Rayleigh’s method is sufficient to accurately
analyze scattering effects. Furthermore, frequency domain analysis of these structures is
not feasible because the features together with the surrounding features are on the order of
several wavelengths which require many spatial frequencies in multiple dimensions to rep-
resent the scattered light. This would involve tracking many spatial frequencies in an iter-
ative approach or would involve the inversion of a large matrix in an integral approach.
Consequently, time domain solutions have been formulated for electromagnetic simulation
for features that are on the order of a wavelength. These time domain solutions are either

iterative, such as finite difference or finite element, or are integral solutions.

A notable simulation which solves Maxwells’ equations using a time domain finite
difference algorithm is TEMPEST([152,153]. This program, developed at UCB, is based on
the algorithm proposed by Yee[155]. The initial version of TEMPEST was built by Guer-
rieri[46] and Gamelin[36] in two-dimensions. This version was expanded to three dimen-
sions by Wong, and was improved computationally (less memory requirements with
increased speed) by Pistor[101]. Electromagnetic wave propagation and scattering are sim-
ulated by solving iteratively the discretized Maxwell’s equations until the electromagnetic

field inside the simulation domain reaches steady-state.

Another physical aspect which must be included in lithography simulation is the
coherence of the optical systems. Previous time domain methods to include partial coher-
ence assume that the light is fully coherent in the space domain (spatial coherence) and in
the time domain (temporal coherence). When light is fully coherent in space, fields add,
however, when light is fully incoherent, intensities add. Although the light used in optical
lithography often has full temporal coherence, the light is rarely fully spatial coherent. It is
important to consider the simulation of this spatial coherence in optical lithography and to

understand the effects of spatial coherence on image formation and on scattering from



topography. Previous simulation techniques have taken the spatial coherence into account
by brute force by repeated simulations. However, this brute force method is computation-

ally time consuming and a more optimal approach is needed.

This thesis will present: a systematic study of the effect of partial coherence in mask
imaging and in wafer patterning; the first formulation of a computationally efficient
method for analyzing topography scattering with vector polarized, partially coherent spa-
tial illumination; and the implementation of this method into TEMPEST-PCD(115] (TEM-
PEST with Partial Coherence Decomposition). The effect of partial coherence in mask
imaging is studied by understanding the influence of the partial coherence on the printabil-
ity of defects on the mask. Its effect in wafer patterning is also researched by examining
reflective notching from the wafer substrate. Finally, the effect of the partial coherence on

wafer inspection is analyzed as well.

This thesis begins by providing a historical account of the different techniques pro-
posed to simulate electromagnetic problems in photolithography in Chapter 2. These tech-
niques include both scalar imaging simulation and vector electromagnetic simulation. Two
techniques to simulate scalar imaging have been used in optical lithography; these are
Abbe’s formulation[1] and Hopkin’s formulation[54]. Abbe’s formulation samples an
incoherent source into a number of incoherent excitations. Since one simulation must be
run for each source sample, it is computationally expensive. For example, if this technique
was used to find the influence of the partial coherence on contact hole inspection in Chap-
ter 8, about 650 simulations are needed to accurately model the partial coherence. How-
ever, Hopkin’s formulation is computationally efficient for calculating the aerial images,
but it is based on the assumption that diffraction from the structure is independent of the

polarization and angle.

Fundamental to many of these methods reviewed in Chapter 2 is the theory of imag-
ing scalar partial coherent light. This theory is described in Chapter 3 by reviewing many
sources in order to present a concise description of scalar imaging. This description is used
in future chapters to explain the influence of the partial coherence on optical lithography

and inspection and to serve as a foundation for extending this scalar theory to include the



vector polarization of the partial coherent light. In Chapter 3, the theory of imaging in par-
tially coherent light is described by first defining the partial coherence and by making sev-
eral assumptions applicable to optical lithography and inspection. These assumptions
assume that the light is quasi-monochromatic, i.e., the temporal coherence is high. Conse-
quently, only efficient methods of simulating the spatial coherence are considered in this
thesis. Chapter 3 continues by describing the theory of scalar imaging for this partially
coherent light and by describing the use of this theory in optical lithography and inspection.
A method for decomposing this partially coherent light into a summation of orthogonal
coherent fields is presented. The energy compaction, accuracy, and simulation implemen-

tation of this decomposition technique are discussed.

Using the theoretical foundation built in Chapter 3, Chapter 4 presents an efficient
method for calculating the effect of the scalar partial coherence on defect printing in an
attenuating phase shift mask. It is based on a perturbational model that is capable of rapid
evaluation of the impact of the illumination, focus, defect size, defect location, defect type,
and feature type on defect printing. From the model, guidelines for defect printability for
attenuated phase shift mask technologies are presented. These guidelines found through
the model are then compared to experimental data from printed wafer. Through the simu-
lations and experiments, the role of the partial coherence on defect printing is emphasized

in order to gain physical insight into suppressing the defect impact.

In Chapter 5, the vector nature of light neglected in the scalar imaging theory is
investigated. The effect of the vector nature of light is examined as it scatters off a topo-
graphical structure that has physical dimensions on the order of one wavelength. The scat-
tering is evaluated with TEMPEST simulation. In these simulations, a gate is patterned
over an active area well. The nonplanar topography of the well causes light to scatter lat-
erally off the sidewalls leading to reflective notching, i.c., a local region where resist has
been exposed and etched away due to lateral reflection of light. As mentioned previously,
these TEMPEST simulations assume that the light is monochromatic and is fully coherent
in space. As well as understanding the reflective notching through TEMPEST simulation,
Chapter 5 presents experimental SEM’s which show reflective notching in the gate and
which validate the predictive capability of the TEMPEST simulations.
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In Chapter 6, the formulation for modelling the partial coherence is extended to
include the vector polarization of the light. In this extension, the coherence matrix is intro-
duced, and the elements of this coherence matrix are calculated. As shown in Chapter 3 for
the case of the scalar mutual intensity matrix, this coherence matrix is decomposed in
Chapter 6 into a summation of orthogonal coherent electric or magnetic fields. Since these
electric or magnetic fields represent coherent excitations, TEMPEST can then be used to
simulate the scattering of these individual excitations from topography. This extension for
including the decomposition of the vector polarized partial coherence is included in the
existing TEMPEST program, and this new program is called TEMPEST-PCD (TEMPEST
with Partial Coherence Decomposition). The energy compaction of TEMPEST-PCD is
compared to Abbe’s formulation. The accuracy of TEMPEST-PCD is checked in Chapter
6 by comparing aerial images of an attenuated phase shift mask calculated with TEM-
PEST-PCD to aerial images calculated with Abbe’s formulation.

Chapter 7 explains effects that vector polarized partial coherence have on mask
imaging and reflective notching. For mask imaging, aerial images of an attenuated phase
shift mask are calculated with TEMPEST-PCD and compared to aerial images calculated
with Abbe’s formulation and with scalar image theory. To determine the effect of the par-
tial coherence on reflective notching, TEMPEST is used to pattern a gate into photoresist
over an active area well. This well structure is similar to the topographical structure used
in Chapter 5. Since the photoresist used in this example is chemically amplified, a post
exposure bake (PEB) is needed to diffuse the acid concentration [160]. Therefore, the
effect of the PEB versus the partial coherence is also studied in Chapter 7.

The difficult problem of simulating optical inspection of contact holes with par-
tially coherent light is investigated in Chapter 8. TEMPEST-PCD is used to evaluate the
effectiveness of a pupil filter to improve contact hole inspection. The chapter begins by
using a ray tracing method to find the induced spherical aberration to detect a defect at the
bottom of a thin-film stack. Building on this ray tracing work, TEMPEST-PCD is used to
simulate the inspection of a contact hole. In order to optimize the inspection, a pupil filter
is devised by using the reciprocity theorem of electromagnetics [4]. A point source is

placed at the bottom of the contact hole, and the radiated fields are measured at the top of

5



the simulation domain. By the reciprocity theorem, these fields represent the excitations
needed to image a point at the bottom of the hole. These fields can then be projected back
through the imaging system to any plane in order to create an optimal pupil filter. TEM-
PEST-PCD is then used to determine the effectiveness of this pupil filter. Since this filter
is only optimum for coherent illumination, TEMPEST-PCD is used to explore how partial
coherence reduces the influence of process variation to produce a filter that is still advan-

tageous to inspection.

Chapter 9 concludes the thesis. In the conclusion, the complexity of implementing
the partial coherence into the TEMPEST simulation program is discussed. Since simula-
tion of the partial coherence requires more computational time than simulation of coherent
light, guidelines are presented which outline when simulation of the partial coherence is
necessary. Furthermore, if the partial coherence is simulated, the increased computational

cost is discussed as well.



v

Simulation Techniques for Modelling
the Partial Coherence in Optical
Lithography and Inspection

2.1. Introduction

In this chapter, previous studies concerning the effects of the partial coherence in
optical lithography and inspection are described with emphasis on simulation techniques.
Simulation techniques for scalar imaging have been developed over the past century. In
1873, Abbe formulated one of the first techniques to describe the imaging of a microscope.
Later, in 1951, Hopkins developed an alternative approach to Abbe’s formulation. Hop-
kins’ approach is computationally more efficient, however it assumes that diffraction is
independent of the illumination angle. Recently, another alternative approach that Gamo
formulated in 1964 is gaining much attention in the lithography community as an optimal
methodology for including the partial coherence in optical proximity correction and in
pupil filter design. With the advent of faster computers with larger memories beginning in
the 70s, techniques that directly simulate the propagation and scattering of the electromag-
netic field are now feasible. These techniques can be classified as either frequency-domain
or time-domain methods and are briefly highlighted in this chapter by literature review.
This chapter concludes by presenting previous work concerned with important effects
observed in lithography. These include a description of the effect of the partial coherence
on linewidth variation, on defect printing, on reflective notching, and on pupil filtering.
This work will serve as a foundation for developing a theory that will help explain phe-

nomena observed in these problems.



2.2. Scalar Imaging Simulation Techniques

In scalar imaging, the coupling between the electric and magnetic fields is ignored
at the physical boundaries of the object under study. When the coupling is ignored, all the
vector components of the electric and magnetic field can be imaged separately through
scalar Kirchhoff diffraction theory [120]. The coupling between the electric and magnetic
field is negligible when the structure under study is large compared to the wavelength of
the light. This is equivalent to the requirement that the diffraction angles caused by the

structure are small.

Although optical lithography and inspection are almost always concerned with
studying structures that are on the order of a wavelength, scalar theory is often used as a
first order model to simulate optical imaging. An important consideration in optical litho-
graphic imaging and inspection is that the illumination source is partially coherent in the
spatial domain. Historically, two techniques have been formulated to model scalar imaging
which include partial coherence. These techniques are Abbe’s formulation and the more
widely used Hopkins’ formulation. These techniques and their historical background are

discussed in the following sections.

2.2.1. Abbe’s Formulation

Abbe’s formulation [1] was originally proposed as a method to model the scalar
imaging performed by a microscope when the illumination source is incoherent. Since the
source is incoherent, the total intensity in the image plane can be found by sampling the
incoherent source with a number of point sources. In a microscope with Kéhler illumina-
tion [12], each of these point source samples produce a fully coherent plane wave that is
obliquely incident on the object. These oblique waves, when projected into a simulation
domain, produce an excitation with a sine wave modulation. Since the source is incoherent,
each excitation is orthogonal to the other excitations. The intensity at the image plane is
then found by using the Kirchhoff diffraction integral to calculate the image intensity from
each of these incident plane waves. The total intensity is then the summation of the inten-

sities produced by each of the plane wave excitations. Thus, the coherence is modelled by



summing (integrating) over the plane waves after their individual intensities have been

evaluated.

Since the optical system used in lithography and inspection is essentially a micro-
scope, this formulation can be used in lithography to simulate scalar imaging. However,
since the source is integrated over last in Abbe’s Formulation, it is computationally inten-
sive and is rarely used to simulate scalar imaging. The more computationally efficient Hop-

kins’ Formulation is the method of choice for scalar imaging with partially coherent light.

2.2.2. Hopkins’ Formulation

In Hopkins’ formulation[54] the coherence is modelled by integrating over the
source first before integrating over the diffraction orders. That is, the order of integration
is switched. The order of integration can be switched if the plane wave excitations pro-
duced by Abbe’s formulation create diffraction orders having magnitudes that are indepen-
dent of the oblique angle of incidence. Since scalar imaging theory always implies that the
coupling between the electric and magnetic fields is negligible, the magnitude of the orders
are always assumed to be independent of the incident excitation angle. By integrating over
the source first, a transmission cross coefficient is created that takes the partial coherence
of the system into account. By creating these transmission cross coefficients which depend
only on the optical system and are independent of the mask, Hopkins’ formulation is capa-

ble of even further improving the computational efficiency.

Following the publication by Hopkins in 1953, his formulation was widely used in
optics through the late 50s and 60s to find the aerial images of objects illuminated by par-
tially coherent light with some of the earlier work being highlighted here. Since elements
of the optical system are circular, Hopkins’ formulation has been used extensively in the
literature to find the image of circular objects. One of the earliest applications of using
Hopkins’ formulation was by Weinstein who calculated the image of disks with diameters
on the same order of magnitude as the Airy disk [140]. Later, De and Som also used the
formulation to calculate the image of circular apertures[28], of circular phase objects[29],
and of annular objects[118] when illuminated with partially coherent light. Imaging a cir-
cular hole with Hopkins’ formulation was investigated by Charman[23]. Canals-Frau and
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Rousseau described the images of an opaque disk[19]. As well as using Hopkins’ formu-
lation to image circular objects, many people, Hopkins[52], Steel[121], Canals-Frau and ‘
Rousseau[19], Considine[27], Thompson[128], and many others, have used the formula-
tion to find the diffraction images of non-rotationally symmetric objects such as an edge,
a slit, a line, and a three bar target. In addition to these studies, the formulation, along with
a mathematical framework for the partial coherence theory, has been presented in books,
with Born and Wolf[9], Beran and Parrent[7], Marathay[73], Goodman[41], and Mandel
and Wolf[72] being cons’ulted for this thesis work.

Hopkins’ formulation has been widely used to simulate imaging in the optical
lithography community. Hopkins’ formulation has been used to find the image degradation
due to partial coherent illumination through focus. O’Toole[95] implemented Hopkins’
formulation to find the image of a square aperture in photoresist. Kintner[61] also used a
method based on Hopkins’ formulation to describe partially coherent imagery through
focus. Subsequently, Subramanian[122] later modified this work by calculating the trans-
mission cross coefficient. Based on this work, Toh implemented Hopkins’ formulation into
a lithography simulation tool called SPLAT[126,64]. Many other aerial imaging tools
based on Hopkins’ formulation, such as PROLITH[69] and iPHOTO[104], have also been
developed.

2.2.3. Decomposition Formulation

As described above, Abbe’s formulation takes the partial coherence of a source into
account by expanding the partial coherence of the source into a number of fully coherent,
orthogonal, sine wave excitations. Since the source is incoherent, each sine wave excitation
is incoherent to the other excitations. A sine wave excitation results when taking the Fou-
rier transform of a sampled point on the source which implies that Abbe’s technique is a

Fourier transform technique.

In addition to Abbe’s formulation, alternative expansions of the partial coherence
produced by the source are also possible. In these alternative expansions, the partial coher-
ence in the object plane is first calculated as a function of the source coherence. The partial

coherence is described by the mutual intensity. The mutual intensity at the object plane can
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be found with the van Cittert-Zernike theorem [73], which states that the mutual intensity
of an incoherent source is the Fourier transform of the source. This implies that light gath-
ers coherence as it propagates. This can be understood by considering a stellar example.
The light produced by stars is incoherent. The light of our sun observed on earth is still
incoherent because the light has traveled over a short distance relative to the sun’s size.
However, when Alpha Centauri, which is also an incoherent source, is viewed from earth,
the light from Alpha Centauri is measured to be fully coherent because the light has prop-
agated over a great distance. By using the fact that the light from an incoherent source gath-
ers coherence as it propagates, an alternative transform technique is sought that takes

advantage of this gathered coherence.

Several transformations have been studied in communication theory including the
Fourier transform, cosine transform[66], wavelet transform[135], and Karhunen-Loeve
transform[41]. The latter transform, Karhunen-Loeve, has been proven to have the optimal
energy compaction [67], i.e., the least number of mutually uncorrelated signals are needed
to represent a partially correlated signal. It is important to note that the Fourier transform
(Abbe’s formulation) is not optimal in this sense. The Karhunen-Loeve transform diago-
nalizes the correlation matrix into a set of eigenvalues and eigenfunctions. Each of these
eigenfunctions represent fully coherent excitations yet are incoherent to the other eigen-
function excitations. This diagonalization technique is called the decomposition formula-

tion throughout this thesis.

* The Karhunen-Loeve transformation technique has been applied previously in
optics to remove the correlation in the mutual intensity. Gamo[38] showed that the mutual
intensity can be decomposed into a set of orthogonal eigenvalues and eigenfunctions. With
this technique, the mutual intensity is represented by an incoherent sum of coherent fields.
This technique, as proposed by Gamo, was later rediscovered by Wolf{ 150] and applied by
Saleh et al.[106] to find the aerial image of an edge and of a star pattern. In optical lithog-
raphy, this decomposition technique has also been successfully applied to optical proxim-
ity correction [97,24] and to depth of focus enhancement [16].
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2.3. Vector Electromagnetic Simulation Methods

In this section, methods of simulating the propagation of vector electromagnetic
fields are discussed with those used in lithography being highlighted. Most of the methods
simulate light that is monochromatic and fully coherent in space while methods to simulate
monochromatic, partially coherent, vector electromagnetic fields are relatively few. In
Section 2.3.1, simulation of fully coherent fields is first discussed followed by the simula-
tion of partially coherent fields in Section 2.3.2.

2.3.1. Coherent Excitations

Many sources that describe the simulation of monochromatic, fully coherent elec-
tromagnetic fields exist in the literature. Those used in photolithography simulation are
highlighted in this section. In electromagnetic problems of interest in photolithography,
typical feature sizes are on the order of one wavelength. In this regime, the coupling
between the electric and magnetic fields cannot be neglected; consequently, the scalar
techniques discussed previously are inaccurate. The problem of addressing this coupling
between the fields and of considering the vector components of these fields has been
addressed by various techniques. These techniques can be classified as either frequency-

domain or time-domain methods.

2.3.1.1. Frequency Domain Methods

Several frequency domain methods have been proposed to simulate the scattering
of light from topographic features used in lithography. These methods include Rayleigh’s
method, the waveguide method, and differential and integral methods.

In Rayleigh’s method, the fields are expressed as a linear superposition of propa-
gating and evanescent waves[105]. Later, Petit and Cadihac found that Rayleigh’s method
was only valid when the product of the wave number times the grating depth is less than a
unitless quantity 0.448 [99]. This implies that the grating depth must be less than 0.07
wavelengths or 26nm for features illuminated with light having a wavelength of 365nm.
This is a severe restriction in the simulation of lithography because structures studied

almost always have depths that vary by 0.07 wavelengths. Despite this restriction, Gall-
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atin[35] as well as Bobroff and Rosenbluth[8] used Rayleigh’s method to simulate imaging

of alignment marks under photoresist.

In the waveguide method, Maxwell’s equations are solved by a separation of vari-
ables method. In this method, the electric fields are equivalent to a truncated infinite series
that satisfy a set of equations found by separating the variables. Burckhardt used this
waveguide method to find the fields diffracting from a sinusoidal dielectric grating [18],
and later, Kasper used the method for non-sinusoidal lossy dielectric gratings [59]. Nyys-
sonen and Kirk extended this work to examine scattering from alignment marks [85].
Lucas also used the technique to study the image formed by a three dimensional phase shift
mask [68]. The one disadvantage of the waveguide method is that it is computationally

expensive. For three dimensional problems, Yeung states that the method has a storage cost

on the order of n* and a cpu cost of n% where n is the number of grid points in each dimen-
sion [159].

In frequency domain differential methods, the electromagnetic field and the wave
number squared are expanded into a Fourier series. When this expansion is substituted into
the Helmholtz equation, a set of coupled differential equations results. Neviere used this
method to study resonance in holographic film couplers [83]. However, this method pro-
duces incorrect results for highly conducting materials. Neureuther and Zaki proposed an
integral method which alleviates this problem in differential methods when highly con-
ducting materials are present [81)]. In this method, a set of integral equations are solved
where the kernels of these integrals are the periodic Green’s function and its derivative.
Several other integral methods have also been proposed. Most notably, a finite element
method to solve the integral equations has been used by Matsuzawa to find a photoresist
image above a conducting substrate [75]. This approach of Matsuzawa was improved by
Urbach and Bernard to include more general domains and to include partial coherence
[132]. Using a set of Legendre polynomial basis functions, Barouch simulated the reflec-
tive notching from a three-dimensional substrate using a finite element method [6]. Direct
solution of any of these integral equations can be solved through the method of moments.

However, solution of these integral frequency domain equations is impractical in three
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dimensions because the solution involves inverting a large matrix which is computation-
ally expensive. In Barouch’s choice of basis functions, however, the computational cost is
reduced because the matrix may be condensed. Yeung further reduced the computational

cost by using a fast multipole method to find an iterative solution of these integral equa-
tions [158,159]. In Yeung’s method the storage cost is reduced to n® and the cpu cost

reduce to n333 x N where n is the number of grid points in one dimension and N is the

number of iterations [159].

2.3.1.2. Time Domain Methods

In the previous section, frequency methods were described to solve Maxwell’s
equations in which the excited field is monochromatic and fully coherent. These tech-
niques are rigorous and accurate. However, since lithography problems have feature
dimensions that are on an order of a wavelength, many spatial frequencies are needed to
represent the scattering from these features. Since many spatial frequencies are required,
frequency methods prior to Yeung’s work required inverting a large matrix. Time domain
methods, however, require no matrix inversion since Maxwell’s differential equations are
solved by a time marching iterative approach. These differential, time domain, iterative

methods require many additions and multiplications. In these time domain methods, the

storage cost is on the order of n> and the cpu cost is on the order of n> x N where n is the
g P

number of grid points in one dimension and N is the number of iterations [159].

The finite difference time domain (FDTD) method is one time domain method that
has been used to simulate lithography. In a FDTD method, Maxwell’s equations are solved
at discrete points on a cubic staggered grid where the excitation field is monochromatic and
fully coherent, i.e., electric and magnetic fields add. These equations are then iterated in
time through a leap frog technique proposed by Yee [155]. In order to study problems of
interest in photolithography, Guerrieri[46] formulated and Gamelin[36] implemented a
two-dimension FDTD program called TEMPEST[153] on a connection machine. TEM-
PEST was extended to three dimensions by Wong[152], and the speed and memory effi-
ciency was improved by Pistor[101]. In addition to this finite difference method, Wojcik

applied a finite element method to solve Maxwell’s equations in the time domain [149]. A
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finite element method has the advantage that a conformal grid can be placed on a surface
in contrast to a finite difference grid which represents a surface as a staggered stair case.
In the past, because of the computational demands required by time domain methods, super
computers were required to solve problems of interest in lithography. With the advent of
fast computers having large memories, time domain methods because of their ease of

implementation are becoming more feasible.

2.3.2. Partially Coherent Excitations

The previous section described methods for simulating fields that are monochro-
matic and fully coherent in the spatial domain. Although the light used in a photolitho-
graphic system or inspection system is often monochromatic, the light is rarely fully
coherent. Therefore, this section describes previous methods that simulate the partial

coherence in optical lithography and optical microscopy.

In optical lithography, the source is incoherent in the spatial domain and produces
Kohler illumination. Through Abbe’s formulation as described in Section 2.2.1, the source
is sampled into a discrete number of point sources where each point source is imaged as an
obliquely incident plane wave. Since the source is incoherent, the total intensity is then the
summation of the intensities produced by each of these obliquely incident plane wave. In
the simulation of optical lithography, Abbe’s formulation has been implemented by
Urbach and Bernard[132] and by Wojcik[149]. In the approach of Urbach and Bemard, the
source is sampled into a number of point sources. These point sources are imaged by the
optical system as sine wave excitations. The scattered electromagnetic fields produced by
these sine wave excitations are calculated through a frequency domain, finite element
method. Like Urbach and Bernard, Wojcik used Abbe’s formulation and calculated the
scattered electromagnetics fields through a time domain, finite element method. Abbe’s
formulation, however, suffers from the disadvantage that it is computationally intensive

because one simulation must be run for each sampled source point.

In Section 2.2.2, Hopkins’ formulation for scalar light which efficiently models the
partial coherence can be applied to simulate vector, partially coherent fields under one cer-

tain restriction. This restriction is that the magnitude of the diffraction orders produced by
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a structure must not be a function of the angle of oblique incidence. Under this restriction,
the diffraction orders need only be calculated with a single normally incident plane wave.
The partial coherence of the system is then modeled by using Hopkins’ formulation. Using
Hopkins’, the diffracted orders from the single, incident plane wave are collected and
weighted by the transmission cross coefficients of the optical system. This weighting by
the transmission coefficients produces an aerial image resulting from partially coherent
illumination. This method has been implemented into TEMPEST, and in this thesis it is
referred to as TEMPEST-HN (TEMPEST with Hopkins’ imaging for a Normally incident
plane wave). Wojcik[149] has also successfully applied this method to evaluate the aerial
images due to a phase shift mask. However, this method only applies to aerial image cal-
culation and does not apply to imaging into the photoresist over some wafer topography.
Furthermore, for some masks, the assumption that the diffraction orders are independent

of excitation angle is not valid.

2.4. Effect of Partial Coherence in Optical Lithography and Inspection

In this section, the effect of partial coherence on printing and inspecting small fea-
tures on wafers is examined by presenting previous work in the literature. In optical lithog-
raphy, the performance of a optical system is characterized by measuring the linewidth, as
known as the critical dimension (CD). In the first section, previous work describing the
effect of the partial coherence on the CD is presented. Later sections highlight previous
work in defect printing, in reflective notching, and in pupil filter design.

2.4.1. Effect of the Partial Coherence on Critical Dimension

The performance of steppers is significantly affected by a change in numerical
aperture and in partial coherence (o) when operating at the resolution limit. For example,
when printing a grating with a line-space width on the order of a wavelength, the CD
remains constant over a larger focus window when the partial coherence increases, i.e., the
depth of focus increases as ¢ increases. This is often called the proximity effect in the
lithography community, and has lead to a trend of using higher 6. This proximity effect is
shown through experiment and through simulation by Mack[71], Canestrari[21],
Partlo[96], Yamanaka[154], André[2], and many others. In contrast to this work, King[60]

16



observed an increased depth of focus for structures which are far from the resolution limit.
Due to this trade-off between resolution and depth of focus, ¢ must be adjusted to best

maintain the CD uniformity over the wafer.

As well as affecting the CD, the uniformity of the partially coherent source can
impact the uniformity of the CD across the exposure field. Canestrari[21] found that the
uniformity of the source varies by +4.5% . This can adversely affect the printing of dense
features and can reduce the effectiveness of optical proximity correction. Borodovsky[14]
observed that variations in the local partial coherence across the exposure field might be
responsible for the excessive linewidth variation and for poor uniformity across the field.
Progler[103] also observed that, in addition to optical aberrations, variation in partial
coherence, variation in intensity, variation in NA, and stray light cause CD variation across
the field.

2.4.2. Defect Printing

Experiment, aerial image simulation and algebraic modelling are useful in charac-
terizing the effect of defects. The impact of defect printing on features for standard chrome
masks has been studied through experiment [143,144,20,146] and through modelling and
simulation [82,74,56]. However, characterizing the printing of defects is now more com-
plicated due to the advent of phase shift masks (PSM’s)[65]. Problems in manufacturing
PSM’s may cause phase shift defects which are more difficult to detect and to repair
[136,145,138,161,87]. Detection of these phase defects depends on parameters associated
with the tool, with the mask, and with the defect. The problem is compounded by interac-
tions between the defect and the feature. These interactions depend on defocus, on defect
location, and on coherence. Simulation and experimental studies on PSM’s have shown the
complexity of PSM’s by demonstrating the tendency of phase shift defects to print when
out of focus [136,111,114]. The printing of phase defects is further complicated by using
modified illumination [108,113] and by printing through the thin-film layers lying on the
wafer [113].
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2.4.3. Reflective Notching

As the wavelength used in lithography decreases, the reflectivity of silicon
increases. This increase in reflectivity causes an increase in the standing wave amplitude
on a flat silicon wafer. Numerical solutions for calculating the standing wave intensity in
photoresist have been studied [77,62,57,141,32]. An analytical expression for the standing
wave intensity in photoresist has been calculated by Mack[70] based on the work of Bern-
ing[5]. This standing wave effect is important because the coupling of light into the pho-
toresist causes the CD of the feature to vary through focus where this variation is a function

of resist thickness and of illumination partial coherence [131].

The topography of the wafer substrate can cause light to scatter light into unexposed
areas which may adversely effect the CD. The effect is particularly noticeable where pos-
itive tone photoresist lines must cross concave upward features. This reflected light may
cause reflective notching where concentrated light causes linewidth narrowing as observed
by Widmann[142]. In order to reduce this narrowing, Petersen[98] has proposed a design
methodology to minimize the linewidth variation in photoresist patterns over polysilicon
topography by systematically varying the resist thickness, the bake temperature, and the
bake time. Reflective notching in gate lines have also been corrected by using anti-reflec-
tive coatings [84,86,31] and by increasing the absorption of the photoresist by adding dye
[55,127]. As well as observing the notching experimentally, simulation has proven to be a
valuable tool for analyzing various corrections prior to performing time consuming exper-
iments. [148, 75, 132, 37, 123, 129, 112, 116].

2.4.4. Pupil Filter Design

In the printing and inspection of wafers, spherical aberration is induced by photo-
resist when printing with a high numerical aperture stepper [33]. Yeung[157] showed that
the effect of arbitrary thin-film layers on a wafer can be modelled by ray tracing through
the thin-film layers to find the optical path difference (OPD). This OPD induces aberra-
tions which can be modelled by modifying the pupil function of the imaging system. Sim-
ilar to this work, Progler[102] then proposed using a merit function that is capable of
determining which aberrations may actually benefit printing. This merit function is depen-

dant on the mask feature and on the various thin-film layers covering the wafer.
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As well as studying the effect of thin-film layers on optical printing, designing pupil
filters that improve depth of focus have been studied. In these studies, Tsujiuchi[130] first
described a cosine filter to improve depth of focus. This filter was later re-invented by
Ojeda-Castafieda[92] and was implemented by Fukuda[34]. The effect of filtering with a
Fresnel zone plane [58], a partitioned pupil [133], and various analytic pupil functions was
also studied by several authors[79,91,109]. By using McCutchen’s theorem [76], Ojeda-
Castafieda designed filters for increased depth of focus [88,89]. Alternatively, von
Biinau[15-17] designed a filter for increased depth of focus by using the decomposition
technique described in Section 2.2.3. Pupil filters which reduce the effect of aberrations
other than defocus have been studied as well [90,93,130].

2.5. Summary

Electromagnetic simulation of photolithography is difficult because many factors
are involved in forming an image. These factors include parameters of the optical system,
of the mask, and of the wafer. Since many parameters must be considered, simulation of
photolithography problems can be computationally expensive. Therefore, efficient algo-
rithms are needed to solve these expensive problems, and guidelines are needed to under-
stand which parameters are important. The following chapters present an efficient
algorithm for the simulation of partially coherent light and present guidelines when this
simulation is necessary. The algorithm involves an extension to TEMPEST to model the
vector scattering of electromagnetic fields when these fields are partially coherent. This
extension is based on generalizing the decomposition of the scalar mutual intensity pro-
posed by Gamo to include the polarization of the partially coherent electromagnetic field.
After developing this algorithm, it is applied to the simulation of problems encountered in
optical lithography and inspection. These simulations are accompanied by experimental
verification. From these simulations and experiments, physical insight into the effects of
partial coherence is presented. From this insight, guidelines for understanding the impact
of the partial coherence are developed for problems encountered in optical lithography and

optical inspection.
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Theory of Scalar Partial Coherent
Light

3.1. Introduction

This chapter presents the theory of scalar imaging which creates a foundation for
extensions of this theory in subsequent chapters of this thesis. The theory of scalar imaging
with partially coherent light is widely discussed in the literature [1,9,41,42,49,72,73].
Therefore, the purpose of this chapter is not intended to justify the validity of scalar imag-
ing, but to bring together many sources from the literature to form a theoretical foundation
which will be presented in this chapter and expanded in future chapters. The expansion of
this theoretical foundation will then allow the development of models capable of analyzing

problems in optical lithography and inspection that were previously difficult to model.

Before considering these new problems, the theoretical foundation is first built by
describing the temporal and spatial coherence in Section 3.2. Scalar imaging from the
object plane to the image plane is then described in Section 3.3 for three states of spatial
coherence. These three states are coherent light, partially coherent light, and incoherent
light. The pupil function of the imaging system is presented in Section 3.4. This pupil func-
tion represents the transfer function of the optical system in the frequency domain and
describes the imaging from the object plane to the image plane. This scalar theory is used
to model imaging in the optical lithography system that is described in Section 3.5. Since
the light in a lithography and inspection system is partially coherent, Section 3.6 uses the
theory presented in Section 3.3 to describe two methods for imaging partially coherent
light. These two methods are Abbe’s Formulation and Hopkins’ Formulation. In
Section 3.7, the decomposition of the mutual intensity calculated by Hopkins’ Formulation

which was developed by Gamo[38] is presented using the notation of von Biinau. The
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accuracy of this decomposition is analyzed in Section 3.8 by comparing the mutual inten-
sity calculated with the decomposition technique to the mutual intensity calculated analyt-
ically. Since the source is radially symmetric, the decomposition technique is performed in
radial coordinates which may cause problems when the simulation domain is rectangular.

These problems are discussed in Section 3.9.

3.2. Temporal and Spatial Coherence

The coherence of light is divided into two classifications, temporal and spatial. The
ability of light emitted from the same point to interfere with a delayed wavefront of itself
is described by means of temporal coherence. The ability of light along the same wavefront

to interfere is described by means of spatial coherence.

The degree of temporal coherence is quantified by the coherence time, 7. The

coherence time is the temporal interval over which the phase of a light wave can be reason-
ably predicted at a given point in space. The coherence time is related to the bandwidth of
the light source, Av, and is proportional to 1/Av. Another parameter used to measure the

temporal coherence is the coherence length, 1., which is given by ¢t where c is the speed

of light. When Av is zero, the coherence time is infinite, and the light is said to be mono-
chromatic, even though truly monochromatic light is never attainable. However, it is often
the case in optical lithography that the maximum path length difference in the passage of
light from the source to the mask or to the wafer is much smaller than the coherence length.
Under this condition the light is quasi-monochromatic and the field E(r,t) is given by
E(r)el®. Throughout this dissertation, quasi-monochromatic light is assumed. This is not
a limitation since light used in optical lithography is often nearly monochromatic. Further-
more, if the assumption that light is quasi-monochromatic is not valid for a particular
lithography system, the temporal coherence can be modelled by sampling the frequency
spectrum at discrete frequencies with a sampling interval in which the light is quasi-mono-

chromatic over this interval.

The degree of spatial coherence is quantified by the mutual coherence, J(x1,X2,%).

Mutual coherence measures the correlation between two points separated in space and is
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related to the spatial interval over which the phase of the light wave can be reasonably pre-
dicted at a given point in time. The mutual coherence at two points depends on the propa-
gating mechanisms of the light and is also related to the physical size of the source. For a
field that is statistically wide sense stationary, i.e., the mean is independent of time and the
correlation function is a function of the time difference only, the mutual coherence is a time
averaged intensity between the field at two points, x; and xp, over a period of T as shown
in Equation 3-1. These two points, x; and X3, can be located at any reference plane, such
as at the source or at the object plane. Statistically, Equation 3-1 implies that the mutual
intensity is the autocorrelation between two electric fields. Equation 3-1 can be simplified
under the quasi-monochromatic approximation. The optical spectral intensity, J(v), of

quasi-monochromatic light is approximately a delta function; therefore, the mutual coher-
ence is the product of the mutual intensity, J(x1,%2), and €27V 45 shown in Equation 3-2.
Equation 3-1. J (%), X0, T) SCE(x, ) E" (X5, t+71))

Equation 3-2.  J(X;,Xp,V) = J (X, X,) 8 (V) 2T (X, %5, 1) = J(xp X)€"

The mutual intensity can be normalized by the intensity at the two points, x; and

X5, and is called the complex degree of mutual coherence, [1(x,x2). The complex degree

of the mutual coherence is defined in Equation 3-3 and its value ranges between 0 and 1.
J (x4, X,)

(X, Xy) = ———r—=—or
H X s %)) T (%50 %5)

If the light at two points is completely correlated, p=1, the light is spatially coherent and

Equation 3-3.

the radiated fields add. If the light is completely uncorrelated, p=0, the light is spatially
incoherent and the intensities at these two points add. Mathematically, incoherence implies
that the electric fields between two points are orthogonal. When 1 is between 0 and 1, the
light is partially coherent. Because the quasi-monochromatic assumption is used through-
out this thesis, the word, coherence, will always refer to the spatial coherence rather than
the temporal coherence. Therefore, incoherent light refers to spatial incoherent light,
coherent light to spatial coherent light, and partial coherent light to spatial partial coherent
light.
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3.3. Imaging in the Spatial Domain

3.3.1. Coherent Light

The image of an object illuminated by coherent light serves as the foundation for
imaging scalar partially coherent light and as the foundation for second order coherence
theory. The image of a coherent object as it propagates through an imaging object is illus-

trated in Figure 3-1. The object diffracts the light which is collected by an optical system

| VR T

Object Plane Pupil Plane Image Plane

Figure 3-1. Coherent optical imaging system

The object plane diffracts the light which is collected by optical system and imaged at the
image plane. Optical system here is represented as two lens and a pupil.

and is projected onto the image plane. The field of the object, a,, is first formed at the pupil
plane, a;, through Fresnel-Kirchhoff diffraction theory [43]. Under the Fresnel approxima-

tion, the quadratic phase factors are eliminated because of the lens law, and the image at
the pupil plane is given by Equation 3-4. In Equation 3-4, the paraxial approximation has
been made as the light is assumed to diffract into small angles. The paraxial approximation

is not a limitation because high angular diffraction due to the lens can be modelled by mod-
ifying the pupil function, P (X, ¥,) , to include an obliquity factor. The field at the pupil
plane, a,, is then formed on the image plane, a;, again through Fresnel-Kirchhoff diffrac-
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tion theory as shown in Equation 3-5. In Equations 3-4 and 3-5, x and y represent physical

1¢p .- - 2T . . - - I
Equation3-4. a, (%ps ¥p) = 78 f-[ _[ a,(xyY,) exp[zrf (xaxp+yoyp)]dxodyo

Equation 3-5. a; (x;, y;) Xf-[ j a, (x, yp) P(x,, yp) exp[ 7 (x X; +ypy,) ]dx dyp

dimensions and have length units and f is the focal length of the imaging system. These
equations are simplified by transforming the physical dimension variables, x and y, into

normalized variables, x and y as shown in Equations 3-6, 3-7, and 3-8. The normalized

, NA . -
Equation 3-6. Xo = (X0 ¥,) = 5= (X1 ¥o)
, NA . .
Equation 3-7. x; = (xpy) = e (xiy9)
Equation 3-8. X, = (%,,¥,) = (x » ¥p)

dimensions at the object plane and image plane in Equations 3-6 and 3-7 are normalized
by the wavelength, A, and the numerical aperture, NA, which is equivalent to a/f under the
paraxial assumption. The pupil dimensions in Equation 3-8 are normalized by the physical
size of the lens, a. These normalized units are used throughout this dissertation unless oth-
erwise stated. After substituting in the normalized variables, Equations 3-4 and 3-5 sim-
plify to Equations 3-9 and 3-10, respectively. Finally, the field at the image plane is found

i2nx e x
xo

Equation 3-9. ( = — Ja (x,)e
ia

121txp *x, dx

Equation 3-10. a;(x;) = lf j a,(x,)P(x))e

by substituting Equation 3-9 into Equation 3-10, and shown in Equation 3-11. From
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Equation 3-11, the field at the image plane is the convolution of the field at the object plane
with the image transfer function, K(x) which is given by Equation 3-12.

Equation 3-11. a;(x;) = I a,(x,) K (x;—x,)dx,
Equation 3-12. K(x) = [P(x,) e Ny

3.3.2. Partial Coherent Light

The mutual intensity of an object illuminated by partial coherent light as shown in
Figure 3-1 can be found by generalizing the theory of imaging coherent light in
Section 3.3.1. The mutual intensity in the image plane, Ji(x3.Xjp), is defined by
Equation 3-13 and is found by substituting the fields in the image plane, a;(x;;) and a;(x;2),
given by Equation 3-11 into this definition. After substituting, the time average is then
taken resulting in Equation 3-14 which gives the mutual intensity in the image plane as a
function of the image transfer function, K, and as a function of mutual intensity in the

object plane, J,(x,7,X,2)- In deriving Equation 3-14, the definition of J,(x,;,X,2) was used,
ie., Jo (Xol’ xoZ) = <ao (xol) ao* (x02) )

Equation 3-13. J; (%;1, X)) = (a; (x;1) ai* (x;9) )

3.3.3. Incoherent Light

The mutual intensity of an object illuminated by incoherent light is a limiting case
of imaging with partial coherent light. The mutual intensity in the image plane is found by
using the equations of Section 3.3.2. The fields at two separate points, X, and Xy, in an
incoherent source placed in the object plane are, by definition, completely uncorrelated.

This implies that the mutual intensity is zero when X, #X,, and non-zero when
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X, = X,, because the field must be correlated with itself. Mathematically this implies
that the mutual intensity at the object plane is given by Equation 3-15.
Equation 3-15. J,(X,1:X,0) = 1(x,,)8(x,;—X,,)
The mutual intensity at the image plane is found by substituting the mutual intensity at the
object plane, J,,, (Equation 3-15) into Equation 3-14. After replacing the image transfer
function, K, in Equation 3-14 with Equation 3-12, the mutual intensity at image plane for

an incoherent object is given by:

—i21 (X, ®X; —X,3 ® X;5)

Equation 3-16. J;(x;;,X;) = [ [ dx,dx,0P (%)) P* (x,5) €

—00

X I dx I (x,) e "L 0 %) 0%l

The single integral in Equation 3-16 is the Fourier transform of the source. Under the
assumption that the source is uniform and the source is large, i.e., it completely fills the
pupil, the single integral can be replaced by 108(xp1-xp2). By replacing the single integral,
a Hopkins’ effective source is said to be located in the exit pupil plane [54]. This Hopkins’
effective source is incoherent; consequently, Equation 3-16 reduces to Equation 3-17.

Equation 3-17. J;(x;,%;,) =1, j dxpl P (xp) I2e—i2n (%, - %) ox,

Equation 3-17 implies that the spatial coherence of a incoherent source is equiva-
lent to the spatial Fourier transform of the optical intensity distribution. This result is
known as the van Cittert-Zernike theorem [73]. The van Cittert-Zernike theorem implies
that the light gathers spatial coherence as it propagates. This fact will be used in future sec-
tions and chapters where it will be shown that a partially coherent field can be decomposed

into a minimum number of coherent fields.
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Equation 3-17 implies that the mutual intensity of an incoherent source with a cir-
cular pupil aperture is an Airy function, which is given in Equation 3-18 below.

I J' dxp dx e—i21:(Ax,x,,+Ay,,yP) - 2" 1(27ry,)

Equation 3-18.J; (x;, y13%5 ¥3) = 27y,

xp+yp<1

where Ax; = x;; —X;, = r1,€080,,, Ay; = ¥ —Yip = r1psin0y,, x; = p;cosd,

y; = p,sing, and ry, = JAx2+Ay? = Jo +p%—2ppcos (,,~6;,) - It should be
noted that the mutual intensity is a function of only three variables, p1, p2, and A¢. Since
the mutual intensity is a function of A¢ rather than ¢, and ¢y, the optical system is rotation-

ally symmetric. The rotational symmetry of the mutual intensity implies that the mutual

coherence has some order or correlation.

3.4. The Pupil Function

The image transfer function, K, determines the ability of the imaging system to
resolve a feature. As shown by Equation 3-12, the image transfer function is the Fourier
transform of the pupil function, P. The pupil function describes the imaging characteristics
by ray tracing the optical path difference (OPD) through each point of the optical system.
These characteristics include aberrations, high numerical aperture effects, defocus, pupil
filtering, and the effect of imaging into a thin stack. The pupil function is most often mod-

ified to include non-idealities such as a focus error (defocus) [53,45] and aberrations. The
aberrations of a system are characterized by the aberration function [10], @ (J'Ep, j'xp), which

is given in wavelengths of error. The pupil function for an aberrated optic with defocus is
shown Equation 3-19 below where circ is one when the argument is less then zero other-

wise circ is zero. The effect of high numerical aperture on imaging can be included by mod-

2 . -
Equation 3-19. P(xp) =P (xp, yp) = exp[iTnd)(x , yp)]

X exp [—iZRZIVIE Jl —NA? (xf, + y;) ]circ ( xf, + yﬁ)

ifying the pupil function with an obliquity factor [156,26]. For an optical system with of a

large numerical aperture, aberrations, and defocus, the pupil function is given by
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Equation 3-20. The pupil function can be generalized further to include the effect of a thin-

/4
1-NA? (x§ +y2) /Mz] [ o ]
exp

Equation3-20. P (x,y,) = i@ (X, Yp)
pep [ 1-NA® (%) +3) A TROR

. 1 2,2, 2 1..; 2, 2
X exp [—t2nzﬁJl—NA (.xp +yp) ]czrc ( x, + yp)
film stack by using ray tracing inside the stack to find the OPD[157]. Equation 3-21 shows
the effect of the thin-film stack on the pupil function where Py is a matrix describing the
OPD at a xy plane at a level z in the stack and where M,; is a matrix describing the polar-
ization rotation between the entrance pupil and the exit pupil of the optic.
1-NA? (2 +y5) /M
2,2, 2
1-NA" (x, +Yp)

4
Equation 3-21. P (x,y,) = |: } Py (xp, ¥p32) My (%55 ¥p)

2r . - -
X exp [i7<1> (%55 3p) ]exp [—i2nz# J1-NA2 (2 +yD) ]circ (X2 +y2)

3.5. Optical Lithography and Inspection Systems

In optical lithography, a mask that is either transmissive or reflective is located in
the object plane. This mask is imaged into photoresist covering a wafer located in the
image plane. Similarly in an optical inspection system, the light diffracted or reflected from
a mask or a wafer is located in the object plane and is imaged onto a CCD camera located

in the image plane.

A model for the lithography system or for the inspection system is shown in
Figure 3-2. This is the same model used in microscopy. In this model, the condenser optic
projects light from an incoherent source on to a mask (in lithography). The mask diffracts
the light into a series of diffracted orders as shown in Figure 3-2. Typically, the projection

optic is capable of collecting and imaging only the lowest diffracted orders on to a wafer.

3.6. Optical System Simulation
Simulation of the optical system requires calculating the mutual coherence as it

propagates through the mask, through the lens, and onto the wafer. Topographical struc-
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Figure 3-2. Optical Lithography and Inspection System Optic

tures on the mask and on the wafer scatter the mutual coherence. This scattering could be
simulated by solving the set of coupled wave equations [13] shown in Equations 3-22 and
3-23 below. Equations 3-22 and 3-23 describe how partially coherent light interacts with
matter through the coupled set of equations for the mutual intensity, J. These equations
could be solved through an integral or differential technique described in Chapter 2. How-
ever, since the mutual coherence is a function of seven variables, X1, y1, Z1, X2, y2, Z2, and
7, the simulation would be memory and time intensive. In addition, this approach does not
take advantage of the fact that the field gathers coherence as it propagates. This gathering
of coherence implies that there is redundancy between the two coupled equations, since

Equation 3-22 would be equivalent to Equation 3-23 for a fully coherent field.

; 1 a2
Equation 3-22. V‘;'J (X5 ¥1» 213% Y 295T) = —288—2](x1, V1> 213%95 Ygs 2557T)
c“ ot
: 2 1 52
Equation 3-23. Vo (X1, Y15 213% Y2, 23T) = _28_2J (X1 Y15 213%25 Y25 2937T)
c" ot

Another possibility for calculating the partial coherence as it propagates and scat-
ters the mask and wafer involves simulating the statistics of the light. The statistics are sim-

ulated by modulating the excited field with a random transmittance and phase that varies
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according to a probability density function. Since the mutual intensity represents the auto-
correlation of the field, it is possible to define a probability density function that represents
the transmittance and the phase of the light. The probability density function for a source
with a random phase was calculated by Goodman [40] and is repeated in Equation 3-24. In

exp 5
26 (1 -
16m%c* (1 - )

Equation 3-24. p;(1,,1,0,,9,) =

Equation 3-24 I; is the random transmittance at point i=1 or 2, 8; is the random phase,

n= |y ¢V is the complex degree of coherence given by Equation3-3, and

20° = (I,) = (I,). Since L is a function of two points, (x1, y;) and (xp, y2), the probabil-
ity density is a function of (x, y) and of (x2, y2) as well. This implies that the random
transmittance and phase depends on the coupling between two points in the excitation
plane. Therefore, the excitation at one point depends on the amount of coupling between
all the other points in the excitation plane. Consequently, in order to describe the propaga-
tion of the mutual coherence through statistical modeling, two coupled wave equations,
Equation 3-22 and Equation 3-23, must also be solved. Since solving these coupled equa-

tions is memory and time intensive, statistical modeling is also memory and time intensive.

The simulation time and memory required in propagating the mutual coherence can
be reduced by decoupling wave equations 3-22 and 3-23. These two coupled partial differ-
ential equations can be decoupled by transforming the mutual intensity, J, into an orthog-
onal basis. In an orthogonal basis, the basis vectors are correlated or coherent with itself
but are uncorrelated or incoherent with the other vectors. As well as orthogonality between
basis vectors, it is desirable to represent the mutual intensity with least number of basis
vectors in order to reduce the simulation time. The transform technique that decomposes
the mutual intensity into the least number of basis vectors is said to have the optimal energy
compaction. In summary, a transform technique that has the following two properties is
sought:

 a sum of excitations where each excitation is coherent with itself yet incoherent or
orthogonal with other excitations.

» optimal energy compaction.
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3.6.1. Abbe’s Formulation

In the lithography and inspection system, the source is incoherent and is imaged
onto the mask by Kéhler illumination [12]. In Kéhler illumination rays from each discrete
point on the source emerge from the condenser as a plane wave. Each of these plane waves
are diffracted by the mask, collected by the projection optic, and imaged on to the wafer.
An incoherent source implies that these plane wave excitations form an orthogonal basis
of coherent fields. Since the excitations are orthogonal, the total intensity on the wafer is
the sum of the intensities produced by each of these individual plane waves. This method
is known as Abbe’s formulation [1] which is shown schematically in Figure 3-3. In
Figure 3-3, each of the plane wave excitations are simulated individually. The total inten-
sity, Ito, is found by summing the intensities produced by these individual simulations.
This implies that in Abbe’s formulation the source is integrated over last. Since the excita-
tions form an orthogonal basis of coherent fields, Abbe’s formulation has the first desired

property stated in Section 3.6.

Since Abbe’s formulation has the first desired property of orthogonal coherent
excitations, Abbe’s formulation is next tested to determine if it has the second desired
property, that of optimal energy compaction. In Abbe’s formulation, the Hopkins’ effec-
tive source is sampled at discrete points into a set of delta functions. The coherence of each
of these individual delta functions is found by using the van Cittert-Zernike theorem. Using
this theorem, the Fourier transform is taken for each delta function resulting in a plane
wave excitation. Since these excitations are found by taking a Fourier transform, Abbe’s
formulation is a Fourier transform technique for representing the partial coherence of the
source. Since each of these excitations require one simulation, it is desirable to represent

the source with the least number of samples that accurately represents the mutual intensity.

The number of samples needed in the Abbe Formulation to represent the partial
coherence of the source can be found through the Bragg condition. For a periodic square
simulation domain with length, w, the Bragg condition states that the diffracted orders
occur at discrete angles as stated in Equation 3-25. The maximum order produced by the

illumination source is related to the numerical aperture of the illumination lens and is given
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Figure 3-3. Pictorial representation of Abbe’s formulation.

by sinB, == ONA. This is substituted into Equation 3-25; however, since the lens col-

lects both the maximum positive m order and the maximum negative m order, a factor of
2 must also be substituted into Equation 3-25. After making both these substitutions,
Equation 3-25 becomes Equation 3-26. The number of samples needed in a one dimen-
sional simulation domain is calculated from Equation 3-26 by solving for m and is shown

in Equation 3-27. The number of samples needed in two dimensions is given in Equation 3-

T
28, and is found by squaring Equation 3-27 and multiplying by 1 because the source is

circular rather than square. In Equations 3-27 and 3-28, an over sampling term N has been
included. This over sampling term is chosen by slowly increasing N until the best repre-
sentation of the mutual intensity is found.

Equation 3-25. m)\ = wsin®
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Equation 3-26. mA = 20NAw

. 26NAw
Equation 3-27. nip = Ny—5—
n _ 26NAw 2
Equation 3-28. mop = g (Ns——x—w)

The ability of Abbe’s formulation to represent the mutual intensity is demonstrated
in Figure 3-4. Figure 3-4 is a plot of the mutual intensity of a condenser optic with 6 of 0.5,

1

.....

Abbe N of sirs.=45
‘Abbe N of sims.=193

mututal coherence

separation (um)

Figure 3-4. Comparison of the Mutual Intensity for Various Over Sampling Values, Ng

An incoherent circular source with NA=0.5, 6=0.6 and =248nm was sampled and mutual
intensity was imaged to the mask plane. The solid line corresponds to the analytical solu-
tion and the dashed lines to a source sampled a number of times in cartesian coordinates.

NA of 0.5 and A of 248nm. The solid line in Figure 3-4 corresponds to the analytical mutual
intensity which is an Airy function as given by Equation 3-18. The analytical mutual inten-
sity is compared to the mutual intensity of a sampled illumination source in which Ng=1,
2, and 4. When N is 1, 2, and 4, the source is sampled 9, 45, and 193 times, respectively.
Comparing the analytical mutual intensity of Figure 3-4 with sampled source mutual inten-
sities (dotted lines), the source is better represented as Ny increases. When Ny is 4, the sam-

pled mutual intensity approximates the main lobe of the analytic solution to 1% accuracy,

and the first side lobe to 5% accuracy. This accuracy, however, requires many samples, 193
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for Ng=4; consequently, many simulations are needed to accurately model the partial

coherence.

Although Abbe’s formulation has the desirable property that the simulation excita-
tions form an orthogonal basis of coherent fields, it requires many simulations, i.e., it has
poor energy compaction. It is important to note that this poor energy compaction property
of Abbe’s formulation can be understood physically. As a result of the van Cittert-Zernike
theorem, the fields gather spatial coherence as a result of propagating. This gathering of
coherence is not utilized in Abbe’s formulation because the source is integrated over after
the intensities produced by each of its rays has been computed. In addition, it is also known
in signal and image processing that the Fourier transform technique requires many basis
vectors [66]. In order to represent the mutual intensity with the least number of basis vec-
tors, it is necessary to find an alternative method to transform the mutual intensity into the

least number of orthogonal coherent fields.

3.6.2. Hopkins’ Formulation

Alternatively to Abbe’s formulation, the mutual intensity at the wafer can be found
by calculating the mutual intensity incident onto the mask by integrating over the source
first rather than after finding the intensities produced by each of the rays in the source as
in Abbe’s formulation. This technique is known as Hopkins’ formulation [12,54]. By
assuming that the incoherent source is uniform and large, the condenser optic can be
replaced by a Hopkins’ effective source located a focal length in front of the mask as shown
in Figure 3-5. The radius of the effective source is equivalent to the numerical aperture of

the condenser optic, NA_. In optical lithography as in microscopy, it is convenient to define

a partial coherence factor, 6. The partial coherent factor is the ratio of the radius of the illu-

mination cone to that of the acceptance cone of the lens that is 6=NA/NA, where NA is

the numerical aperture of the projection optic. Since the effective source is incoherent, the
mutual intensity incident onto the object is given by the van Cittert-Zernike theorem.
Through this theorem, the Fourier transform of this circular effective source with radius
oNA is taken resulting in an Airy function representation for the mutual intensity as shown
in Equation 3-30. The mutual intensity at the wafer plane is found through Equation 3-14
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Figure 3-5. Lithography Optic with a Hopkins’ Effective Source

The illumination optic can be replaced by a Hopkins’ effective source with radius cNA.

of Section 3.3.2 with a slight modification in which the mutual intensity at the mask is
modulated by the transmission of the mask as shown in Equation 3-29. The intensity in this

Equation 3-29.

Ji (X Xjp) = _[ _[Jo (X510 X02) 5 (X1) ty (X,0) K (x4 = X)) K* (X3 =%,5) dx,,1dx,,

plane is given when x;; is equal to x;», i.e., I (x;) = J;(x;, x;) . For a condenser system
with a circular pupil, J, is an Airy function as given by Equation 3-30 where |x; — X,| is

given by Equation 3-31 in Cartesian coordinates and by Equation 3-32 in polar coordi-

nates.
Ji(x ;=% 4|)
Equation 3-30. J, (X,1:%,,) =2 1 (o1 = %o
Ixol - x02|
) 2r -~ - .2 - i D
Equation 3-31. X, =%, = TNAGJ(xol —X52) + (¥o1 = Yo2)
. 2n [.. ) -
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This formulation is an efficient method for calculating the mutual intensity in the
image plane, J;(x;1,X;2). Due to this efficiency, Hopkins’ formulation is widely used in the
lithography community to calculate the scalar image of a mask produced by a lithography
system. Although Hopkins’ formulation is widely used to calculate the scalar image, the
formulation calculates only the mutual intensity, J;(x;1,X;2) which is a function of two cou-
pled spatial points, x;; and xjy. Since a coherent excitation is a function of only one spatial

variable, Hopkins’ formulation does not produce coherent excitations, and simulating the
propagation of the mutual intensity as it interacts with topography would be computation-

ally expensive.

Although Hopkins’ formulation does not produce coherent excitations, the formu-
lation does take advantage of the fact that the light has gathered coherence through its prop-
agation from the incoherent source to the object plane or to the image plane. This gathering
of coherence implies that the light is more correlated and that there is some redundancy of
information. Since there is redundancy, it is possible to find a more efficient representation

for this light. This representation is described in the next section, Section 3.7.

3.7. Decomposition of the Scalar Mutual Intensity

A more efficient representation for the mutual intensity is developed by using tech-
niques from communication theory. By noting that the mutual intensity is the correlation
matrix of the light at a particular imaging plane, the Karhunen-Loeve transform[41] from
communication theory can be used to decompose this correlation matrix. The Karhunen-
Loeve transform[41] has been proven to have the optimal energy compaction, i.e., the least
number of mutually uncorrelated signals are needed to represent a partially correlated
signal. The Fourier transform used in Abbe’s formulation is not optimal in this sense. The
Karhunen-Loeve transform decomposes the correlation matrix into a set of eigenvalues
and eigenfunctions. These eigenfunctions represent coherent excitations which are by def-

inition orthogonal or incoherent with the other excitations.

The Karhunen-Loeve transformation technique has been applied previously to
optics to remove the correlation in the mutual intensity. Gamo[38] showed that the mutual

intensity can be decomposed into a set of orthogonal eigenvalues and eigenfunctions. With
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this technique, the mutual intensity is represented by an incoherent sum of coherent electric
fields. This decomposition technique has also been successfully applied to optical proxim-
ity correction[97,24], to depth of focus enhancement[15], and to topography scattering
with partially coherent illumination[115].

The mathematical detail of using the Karhunen-Loeve transform to decompose the
mutual intensity was developed by von Biinau[17] and is repeated below. The Karhunen-
Loeve transform diagonalizes the correlation matrix (in this case the mutual intensity, J, at
either the object plane or the image plane) into a set a of eigenvalues and eigenfunctions.

This is represented mathematically by Equation 3-33.

Equation 3-33. [ I (i1 %i2) @, (%) dxy = D, (%)

—00

with the diagonalization properties of Equations 3-34 and 3-35.

Equation 3-34. [, )@ (x)dx = §,,

Equation 3-35. T (X, %5) = 3 M@, (x,) @," (x5)
k=1

The diagonalization of Equation 3-33 can be simplified by recognizing that the
mutual intensity, J, depends on ¢1-¢, as given by Equations 3-30 and 3-32. This implies
that the mutual intensity is rotationally symmetric and the diagonalization can then be writ-
ten as:

2

Equation3-36. [ [J(py, p, 0, =0,) @, (P, 0,) d0,p,dp, = X, D, (P}, 9,)
00

Since the mutual intensity or the kernel of the transform depends upon the different angle
8¢0=01-9,, $1 can be replaced with ¢1+5¢ and ¢, with ¢,+6¢ as shown in Equation 3-37.

02T

Equation 3-37.[ [ J(p,, Py, ¢, = 6,) B, (P, &, +30) d,p,dp, = L@, (P, 0, +50)
00

By subtracting Equation 3-37 from Equation 3-36, dividing by 8¢ and taking the limit
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3¢ — 0, Equation 3-38 results. Equation 3-38 implies that the angular derivatives are also
eigenfunctions.

02T
Equation 3.38. j j S 0, (p,, 0,) dd,p,dp, = ka%l“’k Py &)
9 :
3¢ °
diagonal to the basis formed by the eigenfunctions given by Equation 3-36. This implies
that:

The eigenfunctions given by Equation 3-38 are chosen such that the operator

Equation 3-39. D, (p,9) < ¢d’ (p, 9)

and requiring that ®y is continuous in ¢.

Equation 3-40. @, (p,0+27m) = @, (p,9)

Therefore, Equations 3-39 and 3-40 imply that the eigenfunctions must be products of the
form given in Equation 3-41 where the index n specifies the radial order of the eigenfunc-
Equation3-41.  ®_ (p,¢) = &, (p)e™ m = 0,£1,%2, ...

tions and the index m specifies the angular order. After substitution of Equation 3-41 into

Equation 3-36 and diving through by eim', Equation 3-36 becomes:

Equation 3-42. [7(py0,) @,, (P PP, = 1, @, (P))
0

where J (p 1» P) is given by Equation 3-43. Equation 3-42 implies that @, m(p) are eigen-

2n
Equation 3-43. T(pyppy) = [T(pppyad) ™ dAd
0

functions of 7 (p,, p,) -

Since the diagonalization of the correlation matrix into its eigenfunctions implies
that the basis is orthogonal, the eigenfunctions, @y (p,9), are incoherent with the other
eigenfunctions yet each eigenfunction is coherent with itself. These eigenfunctions essen-

tially represent the electric field contributions to the mutual intensity. Since each eigen-
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function field is coherent with itself, the field can be propagated to another plane by using
the scalar coherent theory developed in Section 3.3.1. After propagation, the intensity at
this other plane is found by summing the squared contributions from the eigenfunctions

weighted by the eigenvalues as shown in Equation 3-44.

Equation 3-44. 10 =3 Y Al®, ®)

n=1m=0

This approach is the same technique proposed by Gamo in 1964 as an alternative
method to Hopkins’ formulation. In this approach, Gamo found the mutual intensity at the
object plane by using the van Cittert-Zernike theorem, and he decomposed this mutual
intensity into a set of eigenfunctions. Gamo then used these eigenfunctions to calculate the
intensity of a grating in an image plane. In this calculation, each of these eigenfunctions
was propagated through the grating to the image plane by using the scalar diffraction
theory of Section 3.3.1. Through Equation 3-44, the intensity in the image plane is calcu-
lated by squaring and summing over the diffracted eigenfunctions as weighted by the
eigenvalues. Like Hopkins’ formulation, the total intensity from this decomposition tech-
nique models the effect of using partially coherent illumination in scalar imaging. This
decomposition technique proposed by Gamo was later re-invented by Wolf[150] and used

by Saleh[106] to calculate the image of a grating.

3.7.1. Decomposition of the Mutual Intensity Block Matrix
In Section 3.7, the mutual intensity, which depends on four spatial variables,
(p1,01) and (p2,42), was decomposed into a set of eigenfunctions by first removing the

angular, ¢, dependence. It is also possible to find the eigenfunctions without removing the
angular dependence. This is accomplished by transforming the four dimensional mutual

intensity into a two dimensional mutual intensity by using block matrices[25].

Since the source is circular, the decomposition is performed in polar coordinates

where the location of point x; and of point x; is represented by the coordinates, (p1,¢1) and
(P2.07), respectively. Representing these polar coordinates, p1, ¢1, P2, and ¢, with 4, j, k,

I, respectively, the block notation of the four dimensional mutual intensity, J(i,j,k, l),canbe
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written in two dimensions as shown in Equation 3-45. This block matrix is then diagonal-
Equation 3-45.

T, 1,1,1) J(1L,1,2,1) ... J(LLN,1) J(1,1,1,2) 7(1,1,2,2) ... J(L,L,N,N)|
J(2,1,1,1)

J(N, 1,1, 1)

Gkt = |[T(L2LD
J(2,2,1,1)

J(NLLY)

|J(V, N, 1,1) J(N,N,N,N)|

ized. The eigenvector, ®,(x;), of the diagonalization is represented by a column vector
shown in Equation 3-46, and the eigenvector, ®p(x5), is represented by a row vector shown

in Equation 3-47. These eigenvectors like those in Section 3.7 represent the electric field

(@ (1,1)]
@ (2,1)

®_ (N, 1)
®,(1,2)

Equation 3-46. d (x,) =
Y e, (2,2)

@ (N,2)

, (N, M)

Equation 3-47.
@ (x;) = [@n(l,l) ® (2,1) ...2,(N1) &,(1,2) D,(2,2) ... <I>n(N,N)]

excitations where each excitation is coherent with itself yet incoherent or orthogonal with
other excitations. The eigenvector and eigenvalue solution when the block matrix is diag-

onalized is equivalent to the solution of the previous section where the rotational ¢ depen-

dence is removed. However, when the ¢ dependence is removed, a matrix, J (P P,) » that
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is two-dimensional must be diagonalized which is computationally faster to diagonalize

than a four dimensional block matrix.

3.8. Energy Compaction and Accuracy of the Decomposition

In this section, the decomposition method proposed in Section 3.7 is evaluated for
its ability to accurately represent the mutual intensity with the least number of coherent
excitations. The mutual intensity, J, at the mask plane is given by the van Cittert-Zernike
theorem as shown in Equation 3-30 of Section 3.6.2. Using Equations 3-41 and 3-42, the
eigenvalues and eigenfunctions of this mutual intensity were found for two optical sys-
tems, optical system A with A=365nm, NA=0.9, and 6=1 and optical system B with
A=248nm, NA=0.5, 6=0.5.

The eigenvalues and eigenfunctions of optical systems A and B are shown in Fig-
ures 3-6a, 3-6b, 3-6¢c, and 3-6d, respectively. The eigenvalues in Figures 3-6a and 3-6b are
plotted in descending order. In both optical systems, the mutual intensity matrix is hermi-
tian which implies that the eigenvalues are real. Furthermore, since the eigenvalues are
non-negative, the mutual intensity matrix is non-negative. Physically, a non-negative
mutual intensity matrix implies that the intensity is non-negative as well. The first five non-
degenerate eigenvalues multiplied by the square root of its corresponding eigenvalue are
plotted in Figures 3-6¢ and 3-6d. Figures 3-6c and 3-6d show that the lower order eigen-
vectors represent the center of the domain and the higher order eigenvectors represent the
edges of the domain. A closed form solution for these eigenfunctions has been found by
Tejnil[125] in which the eigenfunctions are linear combinations of the Lommel func-
tions[9].

Since the eigenfunctions form an orthogonal basis set, each eigenvalue and eigen-
function pair requires one simulation. Since the eigenvalues in Figures 3-6a and 3-6b decay
with a 1/n relationship, the summation that represents the mutual intensity in Equation 3-
35 can be truncated once an error criteria is met. The error criteria consists of calculating
the mumal intensity with the decomposition method by summing the eigenfunctions
through Equation 3-35 and comparing this mutual intensity to the analytical mutual inten-

sity at the center and at the edge of the simulation domain. If the error between the analyt-
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Figure 3-6a. Eigenvalues of an optical system
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Figure 3-6b. Eigenvalues of an optical system

with A=248nm, NA=0.5, and 6=0.5.
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Figure 3-6¢. First five non-degenerate eigen-
vectors of an optical system with A=365nm,
NA=0.9, 0=1.0.

Figure 3-6d. First five non-degenerate eigen-
vectors of an optical system with A=248nm,
NA=(.5, 6=0.5.

Figure 3-6. Plots of the eigenvalues and eigenfunctions calculated with the decomposition
formulation.

ical solution at the edge of domain is less than a certain percentage, the summation is

truncated. The number of eigenfunctions or simulations needed before the truncation is

directly proportional to the GNA of the system, i.e., as GNA increases, the number of sim-

ulations increases. This is demonstrated in Figure 3-7 where the mutual coherence of the

eigensolution between points x; and x5 for optical systems A and B is compared as a func-
tion of x; at xo=0.0pm, 0.5ptm, and 1.0pum over a 2x2pum simulation domain. In Figure 3-

7 the mutual coherence is truncated after 82 and after 19 eigenfunctions in optical systems

A and B, respectively. Figure 3-7 shows that the mutual coherence from the decomposition
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Figure 3-7. Comparison of the mutual coherence calculated with the decomposition
formulation and with analytical result.
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The mutual coherence was calculated for optical systems A (left) and B (right) at the cen-
ter of the domain (top), at three quarters of the domain (middle) and at the edge of the
domain (bottom). Figure 3-7 shows that throughout the domain, the decomposition formu-
lation is in close agreement with the analytical mutual coherence.



is in excellent agreement with the analytical mutual coherence at the center (x9=0.0pm)
and half-way to the edge of the simulation domain (x,=0.5um). The peak of the main lobe

does show about 4% discrepancy between the analytical solution and the decomposition

representation at the edge of the domain (xp=1.0pm).

The energy compaction of the decomposition representation is compared to Abbe’s
formulation in Figure 3-8a and in Figure 3-8b for optical systems A and B, respectively. In
these figures, the analytical mutual coherence is compared to the mutual coherence gener-
ated with the decomposition technique and with Abbe’s formulation at the center of the
simulation domain (x,=0.0pm) as a function of x;. The mutual coherence generated by

Abbe’s formulation is shown when the illumination source is sampled with Ng=1, 2, and

4, In both Figure 3-8a and Figure 3-8b, the plot of the mutual coherence from the decom-

Optical System A A=365nm, 6=1, NA=0.9 Optical System B A=248nm, 6=0.5, NA=0.5

1 1
cilcalsed calculated
decomp. N of tims.c82 decomp. N of sims.=19
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Figure 3-8a. Comparison of the mutual coher- Figure 3-8b. Comparison of the mutual coher-
ence for optical system A (A=365nm NA=0.9 ence for optical system B (A=248nm NA=0.5
o=1.0). 0=0.5).

Figure 3-8. Comparison of the mutual coherence.

The mutual coherence calculated analytically with Equation 3-30 to the mutual coherence
calculated with the decomposition formulation and with Abbe’s formulation when N; is 1,
2, and 4. The comparison is shown for optical systems A (left) and B (right).

position technique is the same as the analytical mutual coherence; consequently, there is
only one solid line representing both the analytical result and the decomposition result. In
optical system A the decomposition technique is capable of accurately representing the

mutual coherence with 82 simulations while Abbe’s formulation would require over 1125
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simulations to represent the mutual coherence with slightly less accuracy. Also, in optical
system B, the decomposition requires 19 simulations while Abbe’s needs over 193 simu-

lations to produce the mutual coherence.

In the previous paragraphs, the accuracy of the decomposition method and Abbe’s
method were determined by qualitatively comparing the mutual coherence calculated with
both techniques to the analytical mutual coherence. The accuracy can also be quantified by
calculating the root mean square error. The root mean square error is defined by

Equation 3-48 where i, is the analytical mutual coherence and where g is the mutual

coherence from the decomposition technique or from Abbe’s formulation. In Table 3-1,
the root mean square error between the analytical mutual coherence and the decomposition
mutual coherence is calculated and compared to the root mean square calculated for
Abbe’s method. From Table 3-1, the decomposition representation is most accurate in the
center of the simulation domain, and the accuracy with the decomposition representation
at the edge of the domain increases as the number of eigenfunctions increases. The decom-
position is accurate in the center of the domain because as shown in Figure 3-6 the lower
order eigenfunctions are largest in the center and the higher order eigenfunctions are larg-
est at the center of the domain. Consequently, as the number of eigenfunctions increases
the edge of the domain is better represented. Also from Table 3-1, the root mean square
error at the center and at the edge of the simulation domain is less when using the decom-
position technique than when using Abbe’s formulation. The plots in Figure 3-7 and the
error in Table 3-1 indicate that fewer simulations are needed with the decomposition tech-
nique than with Abbe’s formulation. This implies that the decomposition technique has

better energy compaction than Abbe’s formulation.

Equation 3-48. RMSE = ( Jzz [, G ) =, (5, )12 7 (NN
™5
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Table 3-1. Root mean square error between the analytical mutual coherence versus
those calculated with the decomposition formulation and versus those calculated with
Abbe’s formulation.

Table 3-1 shows comparison results for optical system A (top) and B (bottom) at the
center of the domain, at three quarters of the domain, and at the edge of the domain. The
coherency elements are calculated with Abbe’s formulation when N is 1, 2, and 4.

F Opical System A (A=365mm NA=0D 0=10) |
Center of Three quarters Edge of
Mutual Coberence Representation Domain of Domain Domain
(0.0um) (0.5pm) (1.0pm)
Decomposition technique with 82 samples 0.01% 0.08% 0.12%
Abbe’s formulation with 45 samples 1.19% 1.19% 1.19%
Abbe’s formulation with 249 samples 0.45% 045% 045%
Abbe’s formulation with 1125 samples 0.18% 0.18% 0.18%
Optical System B (A=248nm NA=0.5 0=0.5)
Decomposition technique with 19 samples 0.01% 0.02% 0.15%
Abbe’s formulation with 9 samples 1.14% 1.14% 1.14%
Abbe's formulation with 45 samples 041% 0.41% 041%
Abbe’s formulation with 193 samples 0.18% 0.18% 0.18%

In conclusion, the decomposition technique has both of the desired properties stated
in Section 3.6: it is capable of representing the mutual intensity with a sum of excitations,
where each excitation is coherent with itself yet incoherent or orthogonal with other exci-
tations; and the decomposition technique has superior energy compaction as compared to
Abbe’s formulation.

The eigenfunctions and eigenvalues in Table 3-1 where calculated by discretizing

the spatial variables, (p1,01) and (p2,97), and by calculating the eigenfunctions and eigen-

values of the block matrix as discussed in Section 3.7.1. In Table 3-1, all four spatial vari-
ables, py, pp, 01, and ¢,, were sampled with 50 points. The radial variables, p, extended
from O to 1um and the angular variables, ¢, from 0 to 2x. The number of sample points
were then increased to 100 points. The eigenvalues with 50 sample points and 100 sample
points were then compared. In both optical systems, A and B, the eigenvalues with 50
points differed by less than 1% than the eigenvalues with 100 points. This indicates that
the spatial variables need only be sampled with 50 points and the eigenfunctions can be
interpolated to 100 points if needed. Sampling with the least number of variables is desired
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because the computational time to decompose the matrix is proportional to the number of
sample points. This independence of the eigenvalues on the number of samples was first

stated by von Biinau and applied in this section to test its validity [17].

3.9. Circular Simulation Domain versus Rectangular Simulation
Domain

In the previous sections, since the illumination source is circular, the mutual inten-
sity is analyzed in polar coordinates rather than in cartesian coordinates. Consequently
when the mutual intensity is decomposed into its eigensolution, the field excitations are in
polar coordinates. Since simulation programs such as TEMPEST and SPLAT use rectan-
gular periodic simulation domains, the use of polar coordinates can pose some aliasing
problems. Since many of the eigensolutions have odd rotational symmetry, the rectangular
periodic domain introduces high frequencies due to the discontinuity at the edge of the sim-

ulation domain. This is demonstrated in Figure 3-9. In Figure 3-9 the odd signal is forced

period of the

. . period of the
ag— simulation —pp. @— simulation —p»
domain domain
Desired odd field excitation Actual simulated excitation

over a periodic domain

Figure 3-9. Schematic showing the aliasing resulting from simulating a sine wave
excitation in a periodic domain.

to be periodic resulting in a discontinuity at the boundary which introduces nonphysical
high frequency excitation components into the simulation. In order to completely cover a
periodic rectangular simulation domain with a circular excitation, the circular excitation

must extend into the neighboring simulation domain as is shown in Figure 3-10. In
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Figure 3-10, the circular excitations overlap in the shaded regions resulting in aliasing

when the decomposition method is used.

Rectangular periodic Circular region where
simulation domain coherence is simulated

Shaded areas
where aliasing
occurs

Figure 3-10. Schematic showing aliasing resulting from using an excitation calculated in
radial coordinates when the simulation domain is rectangular.

Although the polar coordinate treatment of the decomposition may introduce alias-
ing, lithography simulation most often is concerned about simulation of isolated features.
For example, patterning a gate over an active area well or inspecting a contact hole are iso-
lated features. Of course in these cases, it is desirable to have a simulation tool that simu-
lates scattering from truly isolated features. However, currently TEMPEST and other 3D
scattering simulators assume a periodic simulation domain. Another alternative does exist
when using a periodic simulation tool. Since the intensity inside the active area well or the
intensity scattering from the contact hole are of more concern than the intensity far from
the well or hole, it is possible to simulate the coherence using the decomposition technique

by using a circular excitation that surrounds the feature of concern. This is demonstrated

48



in Figure 3-11 where the rectangular periodic simulation domain completely encloses the
circular source region. The field excitations outside the circle are allowed to decay to zero,
resulting in no aliasing at the boundary. Since the simulation domain must be increased in
this method, it may seem disadvantageous because a larger simulation domain requires
more simulation time and memory. However, since an isolated boundary condition does
not currently exist, the simulation domain must also be increased in order to model an iso-
lated feature in a periodic simulation domain. When modeling this isolated feature, an iso-
lation buffer is placed around the feature. Since the field is not important inside this buffer,
the coherence is only simulated in a circle that contains the isolated feature and not the
buffer.

Rectangular periodic Circular region where
simulation domain coherence is simulated

N

Figure 3-11. Schematic showing an excitation calculated in radial coordinates in which
the feature simulated is contained within an excitation circle and fields outside this circle
are not important.

Although the decomposition technique offers improved energy compaction and
fewer simulations for an isolated feature, in cases where a truly periodic feature is to be
simulated, such as diffraction grating, the decomposition technique may still be used. For

a periodic domain, each of the field excitations produced by the decomposition technique
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are transformed to k space through the Fourier transform. The k space representation is

then sampled with period 2m/wy and 2nt/wy where wy and wy is the period of the simulation

domain in the x and y directions, respectively. The effectiveness of using the decomposi-
tion technique over a periodic domain is measured by comparing the mutual coherence
with the decomposition technique to Abbe’s formulation and to the analytical solution.

These are shown in Figure 3-12 for optical system A (A=365nm, NA=0.9, 0=1.0) and B

Optical System A A=365nm, 0=1, NA=0.5 Optical System B A=248nm, 6=0.5, NA=0.5

Mutual Coherence, 1, between x; and x5 Mutual Coherence, p, between x; and x;
when x,=0.0um

when x,=0.0um
1 v . i T A~ "

s ez
Abbe Nof sims.=45
decomp N of sims.=82

Mutual Coherence, |, between x; and x; Mutual Coherence, M, between x; and x;

when x3=1.0pm when x=1.0um
1 T T
i #f | Abbe Nof sims.d§ Abbe Nof ims.=9
\ i | &comp N of sims.=82 decomp N of sims.=3
| A =
A | i ol
VW Hi 5
\ ,..
\ i
] o . o !
o i "i l' Sane’ ‘i ," 4,
( ’:l ‘\" ) . “-:’ .
02y 0 1 e 0 1

Figure 3-12. Comparison of the mutual coherence when the coherence calculated with the
decomposition formulation is forced to be periodic.

The comparison of the mutual coberence between points x; and x, is shown for optical

systems A (left) and B (right) at the center (top) and at the edge (bottom) of the simulation
domain.

(A=248nm, NA=0.5, 6=0.5) for locations at the edge and at the center of the domain. The
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mutual coherence using the decomposition technique in Figure 3-12 was generated with 19
and 82 excitations for optical systems, A and B, respectively and is compared to the mutual
coherence using Abbe’s formulation with 45 and 9 excitations for systems, A and B. The
root mean square error from using both these techniques is given in Table 3-2. As seen in
Table 3-2 and in Figure 3-12, the decomposition technique more accurately models the
analytical mutual coherence in the center of the domain as compared to Abbe’s method.
However, at the edge of the simulation domain the mutual coherence calculated with the
decomposition method significantly differs from the analytical mutual coherence, while
the mutual coherence calculated with Abbe’s method is in better agreement. Furthermore,
Abbe’s method has better correlation with the analytical mutual coherence throughout the
simulation domain in comparison to the decomposition method. Therefore, Abbe’s tech-
nique is best suited for simulating truly periodic structures such as a line-space array on a
phase shift mask, and the decomposition technique is best suited for simulating isolated

features such as a contact hole in a mask or scattering from wafer topography.

Table 3-2. Root mean square error between the analytical mutual coherence versus
those calculated with Abbe’s formulation and versus those calculated with the
decomposition formulation over a periodic rectangular domain.

Table 3-2 shows comparison results for optical system A (top) and B (bottom) at the
center of the domain and at the edge of the domain. The coherency elements are calcu-
lated with Abbe’s formulation when N; is 1

— Center of — Edge of |
Mutual Coherence Representation Domain Domain
(0.0pm) (1.01m)
Optical System A (A=365nm NA=0.9 0=1.0)
Sampled decomposition technique with 82 samples 0.56% 1.75%
Abbe’s formulation with 45 samples 1.19% 1.19%
Optical System B (A=248nm NA=0.5 ¢=0.5)
Sampled decomposition technique with 19 samples 0.44% 3.10%
Abbe’s formulation with 9 samples 1.14% 1.14%

3.10. The Summary

In this chapter, the imaging of scalar partially coherent light was presented in order
to form a theoretical foundation for future chapters. Two techniques, Abbe’s formulation
and a scalar decomposition technique, were presented in order to simulate imaging with

partially coherent illumination. Both these techniques modeled the partial coherence
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through a summation of coherent excitations where each excitation is incoherent with the
other excitations. Although both techniques involve a summation of coherent excitations,
Abbe’s technique requires more excitations than the decomposition technique in order to
represent the partial coherence of the system. For example, an inspection system having a
wavelength of 365nm and a NA of 0.9 and ¢ of 1 requires 1125 excitations with Abbe’s
formulation while the decomposition technique requires 82 excitations to model the mutual
intensity over a 2 X 2um simulation domain. The decomposition technique is accurate
over a circular window. This was shown to cause some inaccuracies in periodic structures
because aliasing occurs when a radially symmetric source is applied to a rectangular sim-
ulation domain. However, for isolated structures, the circular window used by the decom-
position technique does not lead to inaccuracies because the mutual intensity need only be

decomposed in a region than encompasses the isolated structure of interest.

The scalar theory and the scalar decomposition technique in this chapter will be
used in future chapters. In Chapter 4, the scalar theory is used to develop a perturbation
model to describe defect printing in phase shift masks. In Chapter 6, the scalar decompo-

sition is expanded to include polarization of the vector electromagnetic field.
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Effect of Scalar Partial Coherence on
Defect Printing

4.1. Introduction

In this chapter, the scalar imaging theory described in Chapter 3 is used to charac-
terize defect printing. Understanding defect printing is important as the ability to make
defect free masks is a key requirement in optical projection printing. The term “defect free”
usually implies “printable defect free,” and this chapter characterizes acceptable limits on
defect size, phase, location, etc. The characterization depends on many parameters such as
tool, mask, and defect parameters. Understanding the tendency of defects to print is com-
pounded by interactions between the defect and feature due to defocus, defect location, and
coherence interactions. Because printing depends on all these interactions, an algebraic
model which can rapidly assess the impact of a defect on a feature is developed in this

chapter.

Using the scalar theory developed in Chapter 3, this chapter presents a modeling
based approach in Section 4.2 to provide physical insight into the mechanisms that effect
defect printing. In this approach a perturbational model is developed which characterizes
defect interaction with features. In Section 4.4, the perturbational model is used to calcu-
late the impact of a defect on a line, on an array, and on a contact hole. Using the perturba-
tional model, this impact is evaluated by examining the aerial image, the image inside a
thin-film stack, and the image due to modified illumination. In Section 4.5, the physical
attributes of the optical system used in the perturbational model are characterized and those
attributes that have the largest impact on defect printing are discussed. In Section 4.6, the
trends in defect printability found by using the perturbational model are verified by exper-

iment.
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4.2, Perturbational Model

In this section the perturbation model developed for isolated phase shift defects of
Ref. 111 is extended to include the interaction between a defect and a feature. In this exten-
sion, the mask is modeled by breaking the problem into five contributions. These five con-
tributions add to give the same electric field transmitted through the mask and are shown

in Figure 4-1. The first contribution is modeled as a plane wave transmitted through the

background of the mask with phasor representation J?TBew” . Since this is a uniform field

and the effect of the lens system is normalized to a clear field image field of 1.0.£0°, the

electric field at the wafer is just ,'/’!TBei%. The feature is constructed by subtracting the

geometry of the feature in an opaque background with the geometry having transmittance

and phase of the feature which is represented with the phasor, JTTBei%EF and then adding.
These phasor notations for the feature contain an additional term, Eg, which represents the
imaged electric field of the feature in an opaque background. Next, the imaged electric
field of the defect is taken into account. This defect electric field is modeled similarly to
the feature in that it is represented by subtracting a pinhole in an opaque background with
the pinhole having the same transmittance and phase of the background, and then by
adding a pinhole with phase and transmittance of the defect in an opaque background.

These fields are represented with phasors, ,[TTBei%E p and ﬁ‘;ei%E p, Tespectively where
the Ep term represents the imaged electric field of a pinhole. These pinholes act as point

sources, and the image of this point source is calculated in the isolated defect perturbational

model with the Lommel functions[9].

The total intensity of the feature and defect is calculated by taking the magnitude
squared of the sum of the five electric field contributions as shown in Equation 4-1. The
total intensity contains cross terms between the feature and the defect weighted by the

mutual coherence. After expanding Equation 4-1, the terms are grouped into the intensity
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Figure 4-1. Pictorial of the extended perturbation model.

This example shows a defect near an attenuating phase line, where the line and defect are
decomposed into electric fields.

Equation 4-1. Ijpr = (A+B+C+D+E) (A+B+C+D+E)"

of the feature and defect with additional cross terms to include the interaction between the
defect and the feature in Equation 4-2.
Equation 4-2.

Iror = Leature * Laegect — AA* +2Re (BD")

+ (2Re (BE*) +2Re (CD*) +2Re (CE"))

The intensity of the feature is calculated through SPLAT and the intensity of the
defect is calculated with the perturbational model for an isolated defect of Ref. 111. The
cross terms between the feature and the defect are now expressed in terms of the electric

fields, Ep and Ep, of a feature and a pinhole in an opaque background. The influence of Ep
on Ep may be expressed through the mutual coherence theory developed in Chapter 3 and

is defined below in Equation 4-3 where |11, and yis the magnitude and phase of the mutual
Equation 4-3. EFEP* = lefiYJI_}rJE
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coherence function (MCF) between a pinhole and a feature, and where I and Ip are the
intensities of the feature and pinhole, respectively. Physically, the mutual coherence func-
tion weighs the electric fields from the defect and from the feature according to the time
average cancellations; therefore, the electric fields add for a mutual coherence of magni-
tude one (coherent illumination) while intensities add for mutual coherence of magnitude

zero. Using this detailed expression for each pattern, the total intensity, Itor, is expressed

below where the transmittance and phase of the background, defect, and feature are

expressed by Tg, ¢, Tp, ¢p, Tr, and ¢, respectively.
Equation 4-4.
Iror = Leature * Laegecs = Tp + 2012 TpIplpcosY = 20, TpTp JIpIpcos (65— 0p +7)

20, JTrT g TrTpc0s (05— 0p+ 1) + 21, [TeTp [T Tpcos (7= 0p +7)

This extension of the perturbational model to include the impact of a defect on a
feature reduces the complexity of the problem as the transmittance and phase parameters
of the mask have been removed through Equation 4-4. Therefore, the mutual coherence is
only a function of the mask geometry, illumination, and imaging system. Once this mutual
coherence function is determined, the total image intensity may be evaluated for any back-
ground transmittance and phase and for any defect and feature transmittance and phase.
The mutual coherence in Equation 4-4 above is the coherence measured after the mask is
imaged onto the wafer. Consequently, this coherence differs from the coherence measured
at the mask. The coherence on the wafer includes propagation effects through the imaging
system and propagation effects of multiple reflections of rays in a thin film substrate. This
total intensity is evaluated by calculating two separate images, the intensity of the feature
and the intensity of the isolated defect, plus the contribution of the mutual coherence
between the feature and defect. The image of the feature can be simulated and stored in
advance as this image is the desired intensity result. The image of the isolated defect can
be calculated with the isolated defect perturbational model. Finally, the mutual coherence
must be calculated which will be shown as a function of parameters that may be simulated

and stored in advance, as described in the next section.
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4.3. Calculation of the Mutual Coherence Function

In this section, the mutual coherence used in the perturbational model of
Section 4.2 is calculated. The mutual coherence between a defect and a feature weighs how
much the defect electric field interacts with the feature electric field. This mutual coher-
ence function is a function of the type of illumination, such as conventional, quadrupole,
and annular, and is also a function of the condenser optics and of the thin-film substrate.
While these interactions are rigorously modeled in thin-film SPLAT for any particular
defect and pattern, both physical insight into the nature of this effect and rapid assessment
are possible using an image perturbational approach based on modelling the mutual coher-

e€nce.

In order to calculate the mutual coherence function between a feature and a defect,
the electric fields from the pinhole and from the feature in an opaque background must be
calculated. As discussed in the previous section the mutual coherence is represented by the
electric field of the feature and defect normalized by the square root of the intensity of the
feature and defect. In Section 3.3.1, it was shown that the electric field at the image plane
for a feature is related to the electric field at the object plane by Equation 3-11. Equation 3-
11 is repeated below as Equation 4-5. Similarly the imaged electric field of a pinhole is

given in Equation 4-6 where t,, is the transmittance of the object, K is the transfer function

Equation 4-5.

[ ]

a; (xpp Ypi) = _”K (Xpis YFisXFor YFo) to (XFor YFo) @0 (XFo» YFo) GXFodYFo

Equation 4-6.
a; (Xp;s Ypi) = K(Xpy YpiiXpgs Ypo) 1o (Xpo» Ypo) @5 (Xpos Ypo)

of the imaging optics, and a; and a, is the electric field at the image and object plane,
respectively. In Equation 4-5, (Xgo,YFo) and (Xg;,YE;) represent the spatial coordinates of

the feature in the object plane (mask) and in the image plane (wafer), respectively. In

Equation 4-6, (xpg,¥po) and (xp;,yp;) represent the coordinates of the pinhole at the mask
and wafer, respectively. From these equations the cross term EgEp* is found by Equations

4-5 and 4-6 above and is shown in Equation 4-7 after rearranging the terms of integration.
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The first term after the integral in Equation 4-7 is the mutual intensity incident on the
Equation 4-7.

* X
ar; (xXpi Yri) @pi (Xpip Ypi) = jjaro (XFos YFo) @ Po (Xpos Ypo)

* ) *
XA (Xpp YpiXpor Vo) B (Xpis YpisXpos YPo) to (Xpps YEo) By (Xpgs Ypo) AXE,AYE,

object under the quasi-monochromatic assumption. Assuming that an incoherent source
illuminates the object, this mutual intensity is given by the Van Cittert-Zernike theorem
discussed in Section 3.3.3. From this theorem, the mutual intensity at the object plane is
the Fourier transform of the incoherent source as given by Equation 3-17 and is repeated
in Equation 4-8 below. For a circular source the mutual intensity is an Airy function as
shown in Equation 4-9 below, where d is the separation between two points on the object
plane. As shown in Section 3.3.1 through Equation 3-12, the transfer function of the imag-
Equation 4-8.

2
ar, (Xpp YFo) a Po(Xpp Ypo) = I jls (o, B)exp {JTu (o (xp,—xg,) + B (Ypo=Ypo) 1} dodp

Equation 4-9.

. J,[210d/ (A/NA)]
o (Xrp YFo) & Po(por YPo) = 2—3rcirmrnay

ing optics, K, is given by the Fourier transform of the pupil function, and Equation 3-12 is
repeated below as Equation 4-10 where P is the pupil function. The pupil function includ-
ing high NA, thin film effects, aberrations and defocus is given in Equation 3-21 of
Section 3.4 and is repeated below as Equation 4-11.

Equation 4-10.

€ (X Y% Y052) = [ [P (%0932 exp {=i2R [x, (x,— Mx)) +x, (y,~ My)) 1 } dx,dx

1-NA? (o2 +y2) /M*
2,2 2
1-NA? (2 +y2)

v
Equation 4-11. P (x,,y,) = [ :| Py (xps ¥532) My (%, ¥p)
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X exp [1‘.2}71:(1) (x,, }':p) :I exp [—iZRzI-;’lXEJl—NAz (xz + ylz,) :lcirc ( x; + y;‘;)

As outlined above, to calculate the impact of a defect on a feature, the mutual coher-

ence function (MCF) between the feature and the defect must first be evaluated. To calcu-
late the MCF, the geometry of the mask is evaluated in an opaque background which
corresponds to a pinhole near a space as shown in Figure 4-2. In calculating the MCF the
mutual coherence at the object plane which is only a function of the illumination source is
calculated and stored. The image transform function, K, is next calculated and stored since
it is a function of the condenser optics and the thin-film substrate. The transfer function and
consequently the MCF is calculated along an imaging plane, which can either form an

aerial image or form an image at a depth z in a thin-film stack.

Figure 4-2. Mask used for calculating the MCF which corresponds to the geometry of
Figure 4-10.

4.4. Comparison of the Perturbation Model with SPLAT Image
Simulation

In this section, the accuracy of the perturbational model is validated through com-
parison to SPLAT simulation in Section 4.4.1. In Section 4.4.2, the perturbational model
is used to systematically evaluate the impact that various size and phase defects have on
the printing of attenuating phase shift lines, arrays, and contact holes. Section 4.4.3 extends
the results of Sections 4.4.1 and 4.4.2 for aerial images to analyze defect impact inside a

thin-film stack and for various modified illumination sources.
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4.4.1. Defect Impact on the Aerial Image

The accuracy of the perturbational model is compared to SPLAT simulation for an
isolated line and for an isolated space in an attenuating PSM. Using the perturbational
model, the impact of a defect on a feature may be evaluated. The impact of a defect on an
isolated line and space for attenuating phase shift masks will be discussed; however, the
theory may also be used to evaluate the impact of a defect on a contact and an array. First

Equations 4-3 and 4-7 are used to calculate the mutual coherence, 115, between a 0.35um

line and a 0.25 A/NA square pinhole. Next, the images of an isolated attenuating phase shift
line and of an isolated space in an opaque background are simulated with SPLAT. The
images of an isolated defect and of a pinhole in an opaque background are calculated with
the perturbational model through Ref. 111. Finally, Equation 4-4 may be used to calculate

the total intensity for the defect interacting with the feature.

The perturbational model is compared to SPLAT for the image of a quartz bump

defect on the edge of an isolated line as shown in Figure 4-3. In this example, the desired

0.150/NA defect
100% Transmittance
120° phase

0.35pm line
10% Transmittance
180° phase

Figure 4-3. Geometry of an example showing a transparent phase defect on edge of a
attenuating phase shift line.

feature is an isolated line that has 10% transmittance and 180° phase. The perturbational

model is then used to calculate the impact of a square 0.25 A/NA 150° 100% transmitting
quartz bump that is on the edge of the line. Using SPLAT and the perturbational model,
Equation 4-4 was used to calculate the total image due to the defect and the isolated line.

Figure 4-4 shows the images calculated by the perturbational model and by SPLAT for an
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attenuating phase shift mask at 0.0pm defocus. The perturbational model and SPLAT show
close agreement along the image slope of the line with less agreement in the minimum.
This discrepancy is caused by approximations used in calculating the image of the isolated
defect. In the isolated defect perturbational model, the image of the defect is approximated
to be the image of a defect created by fully coherent light. As previously shown, this
approximation predicts more ringing in the image side lobes. This ringing causes the dis-
crepancy between the image generated from SPLAT and by the perturbational model. The
accuracy of the model can be improved by first breaking the defect into smaller defects,
and then calculating the image as created by the sum of the interactions of the smaller
defects. However, the line width is the parameter of interest, and the perturbational model
and SPLAT are in agreement at the 0.3 intensity contour which is assumed to be the devel-

oped resist line width.
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Figure 4-4. Comparison of aerial image calculated with the extended perturbational
model and with SPLAT for the geometry shown in Figure 4-3.

The geometry is that of a 120° quartz bump on edge of an attenuating phase shifted line at
0.0pum defocus and 6=0.5.
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Figure 4-6 compares images calculated with the perturbational model to images
calculated with SPLAT at 0.5um defocus. In this example, a defect is on edge of an isolated

0.35 um space in a 10% transmitting, 180° phase background as shown in Figure 4-5. The

t'.'- ey
10% Transmittance
180° phase

1 U. A/INA defec
1 100% Transmittance
150° phase

0.35pm line
00% Transmittance
0° phase

Figure 4-5. Geometry of an example showing a pinhole defect on edge of a space in an
attenuating phase shift background.

pinhole is a square 0.25 A/NA 100% transmitting defect with a 150° phase as compared to
the 0° phase space. Since the geometry of Figure 4-5 is the same as the geometry of
Figure 4-3, the same mutual coherence used to generate Figure 4-4 is used to Figure 4-6.
This demonstrates the versatility of the perturbational model, as Equation 4-4 shows that
the impact of a defect on feature is only a function of the geometry and imaging system;
not the mask parameters. Figure 4-6 shows that the perturbational model and SPLAT are
in close agreement. The isolated space is more accurate compared to the isolated line
because the 10% transmittance of the background when printing an isolated space attenu-

ates the ringing from the isolated defect, reducing the defect impact on the feature.

The extended perturbational model can also be used in the inspection process to
generate contours which cause 10% line width variation at 0.3 intensity. Intensities are nor-
malized to unity for a clear field mask. These contours were generated in Figure 4-7 using
the same geometry in Figure 4-3, i.e., aquartz bump defect on edge of a 0.351um 10% trans-
mitting 180° phase isolated line. Figure 4-7 shows 10% line width variation contours as a
function of defect phase and size for variable defocus. Defects of phase and size that lie to

the right of a contour are printable while defects to the left are unprintable. Figure 4-7 also
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Figure 4-6. Comparison of aerial image calculated with the extended perturbational
model and with SPLAT for the geometry shown in Figure 4-5.

The geometry is that of a 150° pinhole defect on edge of an attenuating phase shifted

space in a 180° 10% attenuated phase shifted background at 0.5um defocus and 6=0.5.
shows the tendency of a defect to cause more line width variation when out of focus. For
example, a 120° phase quartz bump defect as small as 0.12 A/NA will cause 10% line
width variation at 0.751um defocus while a larger 150° phase 0.12 A/NA defect is needed
to cause 10% line width variation at 0.0pm defocus. As an accuracy check, experimental
results are plotted at 0, 0.25, 0.5, and 0.75um defocus for phases of 150°, 120°, and 90°.
The perturbational model shows more discrepancy from experiments when out of focus,
and due to small errors in the isolated defect perturbational model. However, the extended
perturbational model yields worst case results as contours generated by extended perturba-

tional model always lie to the left of the experimental results.

4.4.2. Defect Impact on Lines, Arrays, and Contacts in Attenuating PSM
In this section, the perturbation model will be used to analyze several phase shifting
mask (PSM) technologies. These PSM technologies are thin chrome attenuating PSM and
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Figure 4-7. Using the extended perturbational model to generate printable defect
guidelines.

Solid lines are from the model with discrete points from the experimental results.

embedded shifter attenuating PSM. In thin chrome attenuating PSM, as the name implies,
a thin layer of 9-30° of chrome is deposited on a quartz blank or quartz with a spin on glass
(SOG) layer blank. The light passing through this thin layer of chrome is not fully attenu-
ated and the transmittance of light through the mask ranges between 6-10%, depending on
the thickness of chrome. The chrome is then patterned and etched. Following the chrome
etch, the quartz or SOG backing on the mask is typically etched 150° in order to achieve
a total phase change of 180° for light passing through the feature and through the back-
ground. In the embedded shifter attenuating PSM, the attenuation and phase transformation
takes place in a single material and no quartz or SOG etch is needed. In this approach the
embedded shifter is deposited to a thickness of 180° and to the desired attenuation. The
mask is then patterned and the full 180° of the attenuating material is etched where fea-
tures are to be defined. This type of technology is advantageous since only one material
needs to be etched as opposed to two materials in thin chrome attenuated PSM. Later, it
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will also be shown that the embedded shifter attenuating PSM is more defect tolerant than
the thin chrome attenuating PSM.

In these two types of attenuating phase shift technologies, different types of defects
result from problems in patterning and etching the mask. To facilitate discussion of these
defect types, we need to develop appropriate terminology. In thin chrome attenuating PSM,
a common defect occurs when, due to patterning or adhesion problems, the thin chrome
attenuating material flakes off. When this type of defect occurs inside the feature, it is
called a pinhole; when this type of defect occurs outside the feature it leaves a pillar of
quartz or glass behind and is called a quartz bump. These quartz bump defects may also be
partially etched during the quartz etch leaving behind a variable phase quartz bump defect.
Also, pinhole defects in thin chrome attenuating PSM may be fully etched for a total of
180° or may be partially etched for a variable phase defect. In both the pinhole and quartz
bump cases, the defect will be 100% transmitting in thin chrome attenuating PSM. Another
defect may result when the attenuating material is left on top of the quartz bump, and this
defect will be called a pinspot defect which, in the case of thin chrome attenuating PSM,
will be a 10% transmitting 180° phase defect. Similar defects occur in embedded attenu-
ating PSM. Like the thin chrome attenuating PSM, when a defect occurs inside of a feature
it will be called a pinhole defect; however, unlike the thin chrome PSM, a defect that occurs
outside of a feature will always be called a pinspot. Both the pinhole and pinspot defects
may be fully or partially etched which causes a variable defect phase and transmittance.
Note that a quartz bump with the attenuating material in thin chrome attenuating PSM and
a bump of material in embedded attenuating PSM are both called a pinspot defect. This is
because the perturbational model and the SPLAT simulations are scalar approaches, and

both defects electrically appear to be the same.

Examples of defect interactions with features from simulation and from the pertur-
bational model provide insight into the complexity of the impact of a defect on a feature.
Defect interactions are discussed for three features: defects near isolated attenuated phase
shift lines, defects near arrays, and defects near contacts. These three cases are summarized

in tables which show worst case scenarios. The following simulations are studied for an i-
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line system (365nm) with a 0.5 ¢ and an NA of 0.5. Results for other systems (such as
NA=0.6) can be determined from the dimensions in A/NA.

The impact of a defect was simulated for isolate lines and spaces. These defects had
variable type, focus, defect size, defect phase, and separation between the defect and the
feature. In the case of an isolated line, the line is 10% transmitting with a 180° phase and
is 0.35um (wafer dimension) wide, while an isolated space was 0.5um wide in a 10% trans-
mitting 180° phase background (a 0.151m bias was applied to the space in order to allow
sufficient light to pass). From these simulations, the placement of a quartz bump or a pin-
spot defect near an attenuating phase shift line is critical in causing line width variation.
Quartz bump and pinspot defects have greatest impact when separated from the line; how-
ever, pinhole defects have the greatest impact when on edge of a space. Also, defects of
phase other than 180° produce more line width variation when out of focus (Figure 4-8).

For example, a 150° quartz bump defect produces the largest line width variation when at

a defocus of about 0.25um, and a 90° quartz bump has greatest impact on line width at
close to 0.75um defocus. This defocus effect on line width variation agrees with the iso-
lated quartz bump defect in which the maxima in line width variation occurs at approxi-
mately the same focus. Figure 4-8 also shows that the impact of a quartz bump defect on
line width variation is reduced if the phase of the defect is decreased which may possibly

be achieved through an etching repair.

For defects near arrays, several observations about the impact of quartz bump and
pinhole defects in attenuating phase shift arrays can be made from the simulations for a
10% transmitting, 180° phase, 0.35um wide line/space pattern. Figure 4-9 shows that the
line width variation is greater when the defect is separated from the array edge (the con-
vention used throughout this paper is that separation is measured from the defect edge to
the line edge). From Figure 4-9 the line width variation is proportional to the defect area
and independent of aspect ratio for small area and relatively symmetric aspect ratios. For
example, the 0.04 x 0.08 um defect and the 0.02 x 0.16 um defect produce about the same
amount of line width variation, and as the area increases, the 0.04 X 0.16pum defect and

0.08 x 0.08 um defect produce similar line width variations (within 10%). However, if the
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Figure 4-8. Percent linewidth variation versus defocus for a quartz bump defect near an
isolated attenuating phase shift line.

The defect size is 0.25 X 0.25A/NA and the separation distance is 0.1pum.

area is increased further or if the aspect ratio is made more unsymmetrical, shape depen-
dent line width variation differences occur. This is due to the fact that the defect can no
longer be modeled as a pinhole and the mutual coherence function becomes dependent
upon shape. Trends for defect impact on an array agree with trends for the isolated line.
These trends are: quartz bump and pinspot defects cause more line width variation than
pinhole defects, quartz bump and pinspot defects produce more line width variation when
separated, and pinhole defects produce the most line width variation when on edge of the

line.

For defects inside and outside a contact, several observations can be made about the
effect of quartz bump defects, pinspot defects, and pinhole defects in attenuating PSM for
a 0.5x%0.5um contact in an 10% transmitting 180° background (a 0.15um bias was
applied to the space in order to allow sufficient light to pass). A quartz bump defect in thin
chrome PSM has a greater effect on contact width variation than the fully etched pinhole

defect in embedded PSM. The quartz bump defect in thin chrome PSM causes more con-
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Figure 4-9. Percent linewidth variation for a quartz bump defect in an open region of an
array.

The defect is missing the attenuating layer producing a 150° phase error when the defocus

is 0.5um.
tact width variation than a pinspot defect in embedded PSM. Also, defects in the middle of
a contact have greater impact on the contact width variation, with a defect on edge causing

the second most variation, and a defect in the corner producing the least.

From these simulations, we now attempt to systematically tabulate the minimum
wafer dimension square defect. In the isolated defect case the smallest defect to cause an
intensity minimum of 0.3 is recorded, and in a defect near a feature the defect which causes
a 10% feature variation at an intensity of 0.3 is tabulated. In all the guidelines, the mini-
mum size defect was assumed to be in the worst defect location such as the middle of an
array, the middle of a contact, etc. The tables also apply through a 1.5ptm (1 Rayleigh Unit)
defocus range in which the defect size was determined at the worst focus condition. The
composite set of guidelines for the printability of defects based on defect type, size, and
phase and are shown in Tables 4-1, 4-2, 4-3, and 4-4.

The smallest defects capable of producing a 10% feature variation in thin chrome
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attenuating PSM are highlighted in Tables 4-1 and 4-2. These tables show the guidelines

for defects in which a pinhole is missing in an attenuating thin chrome layer of 10°, 20°,

or 30° phase and for defects in which a quartz bump is missing the attenuating material.

As stated previously, the isolated line has a width of 0.35im while an isolated space and

contact are oversized with a 0.50um width. From Tables 4-1 and 4-2 the smallest defect to

Table 4-1. Pinhole absorber defects in thin chrome attenuating PSM

Minimum Printable Defect Size

Missing Absorber Defects E::g:sz o \ NAZ0.5 NA=0.5
NA pm) | @@

— — =

Isolated pinhole 10° 0.25 0.18 0.15
20° 0.25 0.18 0.15
30° 0.25 0.18 0.15
Pinhole near an isolated space 10° 0.35 0.26 0.21
20° 0.35 0.26 0.21
30° 0.35 0.26 0.21
Pinhole in an array 30° 0.18 0.13 0.11

Table 4-2. Quartz bump defects in thin chrome attenuating PSM

Minimum Printable Defect Size

Quartz Bump Defects Phase

Error A¢ A NA=0.5 | NA=0.5

NA (um) (m)

Isolated quartz bump ~ 150° | 030 0.22 0.18

120° 0.33 0.24 0.20

90° 0.40 0.29 0.24

60° 0.49 0.36 0.30

Quartz bump near a line 150° 0.16 0.12 0.10

120° 0.17 0.12 0.10

90° 0.19 0.14 0.12

60° 0.26 0.19 0.16
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Table 4-2. Quartz bump defects in thin chrome attenuating PSM

Minimum Printable Defect Size
Quartz Bump Defects Phase
Error A} L NA=0.5 | NA=0.5
NA (Hm) (hm)
— —_—— —_—
30° 043 0.31 0.26
Quartz bump in an array 150° 0.07 0.05 0.04
Quartz bump in a contact 150° 0.13 0.10 0.08

Tables 4-3 and 4-4 list the smallest size defects in embedded attenuation PSM that

degree phase error in the thin chrome material.

cause 10% line width variation is the quartz bump. A 150° quartz bump defect as small as
0.07 A/NA in the middle of an array causes 10% feature variation while 2 0.13 A/NA 150°
quartz bump in the middle of a contact produces 10% variation. The third worst defect and
the worst pinhole defect in thin chrome attenuating PSM is a 0.18 A/NA pinhole with a 30-

are capable of causing a 10% variation in the feature. Table 4-3 shows pinhole defects for

Table 4-3. Missing absorber in embedded attenuating PSM

Minimum Printable Defect Size

Isolated pinspot 0.34 0.25 0.21

Missing Absorber
180° phase 10% Att. Error A NA=0.5 | NA=0.5
NA (um) (um)
_
Isolated pinhole 0.35 0.26 0.21
Pinhole near an isolated space 0.25 0.18 0.15
Pinhole in an array 0.13 0.10 0.08
Pinhole near a contact 0.21 0.15 0.13
Table 4-4. Extra absorber in embedded attenuating PSM
Minimum Printable Defect Size
Extra Absorber
180° phase 10% Att. Error A NA=0.5 | NA=0.5
NA (Lm) (um)

Pinspot near an isolated line

0.15

0.11

0.09

70

4



Table 4-4. Extra absorber in embedded attenuating PSM

Minimum Printable Defect Size
Extra Absorber
180° phase 10% Att. Error A NA=0.5 | NA=0.5
NA (Lm) (Lm)
Pinspot in an array o 0.10 0.07 0.06
Pinspot in a contact 0.14 0.10 0.09

missing absorber defects which produce a phase 10% transmittance error. Table 4-4 lists
the pinspot defects or extra absorber defects that have a 180° phase 10% transmittance
error. It should be noted that partially etched defects of variable phase and attenuation are
also possible. However, a 180-degree phase 10% transmitting defect will always cause the
most feature variation in embedded attenuating PSM and are the only defects listed in
Tables 4-3 and 4-4.

Several defects from the table should be highlighted. Once again a pinspot defect
in embedded attenuating PSM causes the most feature variation, and a pinspot as small as
0.10 A/NA in the middle of an array is capable of producing a feature width variation of
10%. The second smallest pinspot defect to cause 10% line width variation is a0.14 A/ NA
pinspot defect in the middle of a contact. The pinhole defect that produces the most line
width variation in embedded attenuating PSM is a 0.13 A/NA pinhole in the middle of an
array. In summary, as in the case of a quartz bump in an array, a pinspot defect as small as

0.10 A/NA may be difficult to detect during mask inspection.

Comparing the results of all four tables, several observations about defect printabil-
ity should be highlighted. First, the minimum pinspot defect size is smaller than the mini-
mum pinhole defect size. This is consistent with the previous case study results, where it
was shown that a pinspot defect impacts a feature more than pinhole defects. Second, a
150° quartz bump defect causes more feature variation than embedded 10% transmitting
180° phase pinspots; however, the minimum size quartz bump defect depends on the phase
error, as defect size is inversely proportional to defect phase error. Third, a 150° quartz

bump defect as small as 0.07 A/ NA will cause a 10% line width variation in the array pat-
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tern. This implies that if an i-line 5X stepper with NA=0.6 is used, a mask defect of 0.2um
needs to be detected prior to printing. Finally, an important observation is that the mini-
mum size defects in embedded attenuating PSM capable of producing 10% feature varia-
tion are larger than the minimum size defect in thin chrome attenuating PSM. This implies
that embedded attenuating PSM’s are more defect tolerant than thin chrome attenuating

PSM'’s.

4.4.3. Effect of Modified Illumination and Thin-Film Substrates on Defect Printing
In this section the effect of modified illumination and thin-film substrates on defect
printing is not only evaluated using the perturbational model formulated in Section 4.2, but
also is compared to SPLAT simulation. The mutual coherence function (MCF), 115, is cal-
culated with Equations 4-3 and 4-7. The effect of modified illumination on the MCF is
found by first using Equation 4-8 to calculate the MCF at the object plane and substituting
this into Equation 4-7 which gives the MCF in the image plane. The effect of thin-film sub-
strates on the MCF is found by using the modified pupil function of Equation 4-11. In
Equation 4-11, the thin-film substrate is taken into account through Pik(xp,yp;z) which is

the OPD of ray tracing the light to a plane, z, inside the thin-film stack.

After calculating the MCF, Equation 4-4 is then used to calculate the impact of a
defect on a feature. The mask defect and feature considered in this section is that of a 0.15A/

NA defect with phase of 150° and transmittance of 100% separated from a 0.35um line

0.15A/NA defect
D 100% Transmittance
150° phase

0.35pm line
10% Transmittance
180° phase

Figure 4-10. Mask used in the perturbational model example.
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that is 10% transmitting with a 180° phase. This geometry is shown in Figure 4-10 where
the separation from the center of the line to the center of the defect is 0.35um. This mask
pattern was illuminated at i-line with three different sources and collected with a condenser
having an NA of 0.5. These three illumination sources are the conventional “top-hat,”
annular, and quadrupole illumination; however, any illumination source of arbitrary shape
may be evaluated. Figure 4-11 shows the pupil of these three illumination sources normal-
ized by the NA of the condenser, i, the conventional illumination source has a ¢ of 0.5.
The effect of the substrate on defect printing was determined for three substrates using
three different illumination systems. These three substrates are: aerial image (no substrate),
resist over a polysilicon gate stack, and resist over a TiN ARC (Anti-Reflective Coating),
poly gate stack. The dimensions and material parameters of the later two stacks are shown
"m Figure 4-11. Unless otherwise stated for all three illumination sources, a 0.5pm defocus
was used, and the impact of the defect on a feature was found in the middle of the resist

(0.5um) for the two gate stacks.

A comparison of the MCF at the wafer for the three different illumination sources
shows that the magnitude of the MCF for quadrupole illumination is less than the magni-
tude of the MCF for annular or conventional illumination. Using Equations 4-3 and 4-7 the
magnitude and phase of the MCF was calculated for the geometry of Figure 4-10 for the
three illumination sources and the three substrates. For the three illumination sources, the
MCF was found with no substrate at a defocus of 0.5um as shown in Figure 4-12. In this
figure, the line is centered at 1.0pm and the defect is centered at 1.35um, the MCF is cal-
culated in the image plane at 0.5um into the resist. The ripples in the magnitude of the MCF
in Figure 4-12 occur when the image of the space or pinhole are near or at a null in the
intensity image. If the image transfer function becomes a constant due to an infinitely large
numerical aperture or at extreme defocus, these ripples disappear and the magnitude of the
MCF is a constant. Therefore, the ripples are due to the low pass filtering action of the
imaging system. The discrete points in Figure 4-12 indicate the magnitude of the MCF
(L17) at the line edge (1.175um) where the point marked with a square, a diamond and a

triangle indicate conventional, annular, and quadrupole illumination, respectively. These

discrete points occur at a MCF magnitude of 0.80, 0.73 and 0.57 for conventional, annular,
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Figure 4-11. Illumination sources and thin-film stacks used in calculating the MCEF in the
perturbational model.

and quadrupole illumination, respectively. It should also be noted from Figure 4-12 that the
phase of the MCF (y) is almost independent of illumination as the phase deviates by 1° to
3

The MCF was calculated for the geometry of Figure 4-10, for the thin-film sub-
strates of Figure 4-11, and for the three illumination sources. The magnitude and phase of
the MCEF for the poly gate stack with and without TiN ARC are shown in Figure 4-13. The
MCF’s in Figure 4-13 was calculated in the middle of the resist at 0.5um defocus, and the
line and defect are located in the same position of Figure 4-10. Once again, Figure 4-13
shows not only that the magnitude of the MCF is smaller in quadrupole illumination but
also that conventional illumination has the greatest MCF magnitude. The spike in the mag-
nitude of the MCF at 1.45um occurs at a null in the image intensity of a space. When this

MCEF is substituted into the total perturbational model intensity Equation 4-4, the spike is
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Figure 4-12. Magnitude (left) and argument (right) in radians of the MCF for the thin-film
stack without a substrate at 0.5um defocus.
cancelled by the null in the image intensity of the space; therefore, this spike is a result of
the numerical calculation and does result from a physical phenomenon. By comparing the
three discrete points in Figures 4-12 and 4-13 which indicate the magnitude of the MCF at
the line edge, the magnitude of the MCEF for the three types of substrates are all within one
percent for a given illumination; consequently, the MCF is a weak function of the substrate.
The phase of the MCF shown in Figures 4-12 and 4-13 also show that the phase of the MCF
is a weak function of the thin-film substrate and illumination as the phase is only a function

of the mask geometry and the condenser optics.

Both the thin-film stacks of Figure 4-13 and the MCF were calculated for various
positions within the resist at variable defocus, resist thickness, and defect-to-line separa-
tion. Varying the defocus causes both the magnitude and phase of the MCF to become
smoother as the MCF approaches a constant DC value with a 0° phase. The resist thickness
was increased in quarter-wave increments to insure that the MCF was not being calculated
at an electric field null. By varying the defect-to-line separation, the maximums and mini-
mums in the magnitude of the MCF where found to be a function of the mask geometry. In

all the calculations, the MCF was found to be a weak function of the thin-film substrate.

Intensity images calculated with the perturbational model are in excellent agree-
ment with images from thin-film SPLAT. Using the perturbational model and the MCF in

the previous figures, the image of Figure 4-10 was calculated for various substrates and
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Figure 4-13. Magnitude and phase of the MCEF for the thin-film stacks in Figure 4-11.

illuminations and compared to thin-film SPLAT. The perturbational model is compared to
thin-film SPLAT in Figure 4-14 for the two different thin-film stack structures of Figure 4-
11: a thin-film stack without the TiN ARC at 0.5um defocus, and a thin-film stack with the
TiN ARC at 0.5um defocus. In Figure 4-14 the image of the isolated line was calculated
with SPLAT while the image of the defect was estimated using an algebraic expression for
the intensity from the defect perturbational model of Ref. 111. The impact of this defect on
the image of the line was then calculated with the perturbational model of Equation 4-4.
Figure 4-14 demonstrates that the perturbational model is in close agreement with thin-
film SPLAT and can be used for spread sheet type estimates of defect printability. The

slight error in the images was due to the grid size discretizing the number of nearby pixels
in Equation 4-7.
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Figure 4-14. Comparison of the images from thin-film SPLAT and from the perturbational
model.

4.5. Importance of the Aerial Image Edge Slope on Defect Printing

In Section 4.4.3, it was shown that the magnitude of the MCF is least for quadru-
pole illumination, followed by annular, with conventional illumination having the largest
MCF magnitude. The magnitude of MCF was shown to be a weak function of the thin-film
substrate. This would seem to indicate that since the MCF is least for quadrupole illumina-
tion, quadrupole illumination is more defect tolerant, i.e., under quadrupole illumination
defects are less likely to print. Although the MCF is less for some illumination schemes,
the impact the defect has on the feature also depends on the intensity of the feature and the
pinhole defect. This is seen from Equation 4-4 of the perturbational model. In Equation 4-

4, the impact the defect has on the feature is represented in the cross terms of Equation 4-

3,EpEp = leew JIzJTp. These cross terms are a function not only of the MCF, |15, and
the intensity of the feature but also the pinhole defect, Ip and Ip. Therefore, in order to eval-
uate the impact that a defect has on a feature, the role of the MCF, as well as Iz and Ip must

be considered.

The role of the defect is small because the defect size is small, the intensity of the
defect is independent of the type of illumination. The role of the feature, however, is more

significant because the intensity of the feature is a strong function of the type of illumina-
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tion. The significance of the feature intensity on defect printing in binary masks was shown
by Neureuther to be a function of the line edge slope of the image intensity [82]. Neu-
reuther showed that the linewidth variation is inversely proportional to the line edge slope
of the feature intensity, i.e., an image of a feature with large slope is more defect tolerant
than a feature producing a smaller image intensity slope. Since the perturbational model

shows that the mutual intensity, |15, is a function of the mask geometry only, this obser-

vation also applies to phase shift masks.

The role of the image slope on defect printing is best understood by example. The
aerial images produced by a binary mask with a 0.5um line-space (1.0pum pitch) array and
with a 0.35um (0.7um pitch) array are shown in left and right plots of Figure 4-15, respec-

Aerial image of 0.5um line-space array Aerial image of 0.35um line-space array
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Figure 4-15. Aerial images of a chrome line-space array.

The image on the left is for a 0.5um line-space array while the image on the right is for a
0.35um line-space array. Both aerial images are for an i-line stepper with NA of 0.6 and ¢
of 0.5.

tively. The images are those produced by an i-line (A=365nm), NA=0.6, and 6=0.5 stepper
with conventional (top hat), annular, and quadrupole illumination sources. Figure 4-15
indicates that the image edge slope is greatest with conventional illumination in the 0.5um
line-space array while quadrupole illumination produces the greatest slope in the 0.35um
line-space array. Since the linewidth variation is inversely proportional to the image slope,

the larger image slope for quadrupole illumination for dense line-space arrays implies that

78

(£



quadrupole illumination is more defect tolerant when the line-space pattern is dense. This

is demonstrated in Figure 4-16 where the percent critical dimension (CD) loss is plotted as
50

a function of line-space array 0.15x0.15um chrome defect is in the middle of a chrome

array. Figure 4-16 also indicates that when a defect is in the middle of the array, quadrupole
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Figure 4-16. Effect of the aerial image line edge slope on the printing of a chrome defect
in the middle of a chrome array.

The chrome defect is 0.15X0.15um and is in the middle of a chrome array. The stepper is

an i-line stepper with NA=0.6 and 6=0.5. Figure 4-16 shows that the line edge slope (or
contrast) near a pitch of 0.8um inverts the effect of the illumination on defect printing.

illumination produces more CD variation when the pitch is larger than 0.75um. This result
agrees with the work of Shaw[108] who found experimentally that a 1.0im pitch array illu-

minated with a quadrupole source produces the most CD variation, and conventional illu-
mination has the least CD variation. However, when the pitch is less than 0.7um (dense
array), the simulation results in Figure 4-16 show that the CD variation is less with quadru-
pole illumination. This reduction in CD loss is due to the increased line image edge slope
when a dense array is illuminated with a quadrupole source as seen in Figure 4-15. In con-

clusion, although the MCF may be less for one type of illumination, the impact a defect has
on a feature depends on both the line edge slope of the image and on the MCF.
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4.6. Experimental Verification

In this section, the perturbational model is compared to experiments conducted
under the guidance of Rajeev Singh of SEMATECH, and the results were originally pub-
lished in Ref. 114. In this experimental work, a thin chrome attenuating mask (6% trans-
mission at a wavelength of 365nm) was manufactured with a test pattern having
programmed defects of different sizes. The mask was quartz etched to provide the 180°
phase shift between the light transmitted through the transparent area and through the
attenuating film area. Experiments were performed on a mask with three different pro-
grammed defect test structures in a 1.75um (mask dimension, throughout Section 6 mask
dimensions are reported) line/space array. The first test structure (CLIEG175) is a variable
size pinspot defect protrusion with 6% transmittance and 180° phase on edge of the array
line. The second test structure (P1IEG175) is a variable size, 100% transmitting, 170°
quartz bump protrusion on edge of the array line. The last test structure (M1EG175)
exposed is the fully etched, 100% transmitting, 180° phase error pinhole defect on edge of
the array line. The mask was then exposed on a bare silicon wafer with a 1.07jum thick high
contrast positive resist. An i-line stepper with a NA=0.6, 5X magnification, and 6=0.6 was

used, and the best exposure and best focus was found to be 400mJ/cm? and -0.3pm, respec-
tively. Critical dimension (CD) measurements were then made on the exposed wafer for
three test structures by using an AMRAY 1830 SEM while a Hitachi 6000 SEM was used

to measure the mask line, space, and defect dimensions.

The fabrication of programmed defects in attenuating PSM’s is complicated by the
etch of the mask quartz backing. During this etch step the anisotropic etch will cause under-
sizing of the defects. This under-sizing occurs during both the chrome and quartz etch. The
etching process also causes rounding of the defect comers. This comer rounding makes
measuring the defect area difficult, and some estimation of the defect area is needed.
Throughout this paper, when measured defect dimensions are reported, the maximum
amount the defect protrudes or intrudes on the feature is reported first, and the width of the

defect at 50% of the maximum protrusion or intrusion is reported last. The rounding of
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defect corners is clearly seen in Figure 4-17a for a SEM taken of a 170° quartz bump pro-

trusion on edge of a 1.75um wide array line.

Figure 4-17a. Mask image of quartz bump Figure 4-17b. Effect of a quartz bump defect
defect on edge of an 1.75um APS line. on an array (P1EG175) after exposure.

Figiifé 4-17c Effect of I‘J'i.ns‘pot defectson an | Figure 4-17d. Ma'gniﬁed'iﬁiégé'b'f é(pihSpc‘)‘t
array (C1EG175). Note the bridging. impacting an array (C1IEG175).

Figure 4-17. SEM’s showing a defect on a mask and showing the impact of a phase shift
defect on patterning an attenuating phase shift array.

SEM'’s of experimental results were taken for a quartz bump, a pinspot, and a pin-
hole defect that are approximately 0.5um square with the results shown in Figures 4-17b,
4-17c, and 4-17d. In 4-17b, the developed pattern is shown for the quartz bump protrusion
(P1EG175), and this figure shows that the defect is just large enough to cause the array pat-
tern to bridge. Experimental results for protruding pinspot defects on edge of an array line

(C1EG175) are shown in Figures 4-17¢ and d. In Figure 4-17c, the developed resist pattern
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is shown for pinspot defects of several sizes with defects to the left being rectangular
defects and with defects to the right being square defects. This figure agrees with the sim-
ulation result that line width variation is proportional to area as rectangular pinspots impact
the array more than square pinspots. A magnified image of Figure 4-17c for the impact
0.5um square pinspot defect is shown in Figure 4-17d. From Figures 4-17b and d, the
experimental results agree with the previous simulation results of Section 4.4.2 where
Section 4.4.2 showed that a quartz bump defect impacts the feature more then a pinspot
defect.

The measured CD of an array line with a quartz bump on edge (P1EG175) is shown
in Figure 4-18. Experimental results are shown for smaller defects because larger defects
cause significant bridging. The measured line width for a line without a defect is shown as
a control with £10% CD variation tolerances shown as dotted lines. From the figure the
small 0.28x0.27um quartz bump defect remained within the 10% tolerance; however, the
larger 0.66x0.73um and 0.33x1.70pum quartz bumps cause the most variation. The
0.66x0.73um quartz bump produced the most line width variation when the focus was at
its best; which in this case is -0.3pum. This result is consistent with the previous simulation
results because the 170° quartz bump which is close to a 180° bump should cause the most
line width variation when near best focus. The 0.66x0.73um quartz bump, however, pro-
duced more line width variation when at -0.9um and +0.3um defocus then at -0.6um and
0.0pm defocus. This disagrees with the previous simulation result that line width variation
for a 170° quartz bump should decrease when going out of focus. This result may be due
to statistical uncertainty in the line width measurement in which more sample measure-
ments would produce more reliable results. The experimental results are compared to the
extended perturbational model for the 0.66x0.73um quartz bump. The line width of the
simulated array without a defect is also shown for comparison. The simulation without a
defect predicts a line width that is approximately 35nm greater than the experimental
result. This increased line width predicted by simulation may be due to vector electromag-
netic scattering and to resist amplification. In the scalar perturbational model, neither
vector electromagnetic scattering effects nor resist amplification is taken into account. The

perturbational model for the 0.66x0.73um defect predicts a line width that is approxi-
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mately SOnm greater at 0.0, -0.3, and -0.6um. This increase in line width is approximately

the same increase predicted by the simulation for an array without a defect.
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Figure 4-18. Measured CD for a quartz bump defect impacting an array line (PLEG175).

The experimental results (exp.) are compared to the perturbational model (perb.).

Figure 4-19 shows the measured CD for an array line with a pinspot defect on edge
(C1EG175). From the figure the smaller pinspot defects of 0.42x0.57um and of
0.23x2.01um cause line width variation that are within the 10% CD tolerance. The larger
0.48x2.02um pinspot, however, causes significant line width variation. From the simula-
tions in the previous sections, the 0.48x2.02uum pinspot should have the greatest impact
while focussed. The experimental results for the 0.48x2.02um pinspot, however, does not
show the trend that the line width should steadily decrease when out of focus. This discrep-
ancy is also seen in Figure 4-18 for the 0.66x0.73um quartz bump, and more experimental
samples may improve the experimental accuracy. Also from comparing Figures 4-18 and

4-19, the quartz bump defect causes more line width variation. For example, the smaller

0.66x0.73pum quartz bump (O.48um2 area) begins to cause 10% variation while a pinspot

of 0.48x2.02pm (0.97;1m2 area) is needed to cause 10% variation. The perturbational
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model was used to generate results for an array without a defect and for an array with a
0.42x0.57um pinspot defect on edge of the line. As in the quartz bump results, the pertur-
bational model for the array without a defect and for the 0.42x0.57um pinspot predict a
slightly greater line width than observed in experiment, and this increase may be due to
resist effects or measurement uncertainty. The perturbational model and experiment, how-

ever, agree in predicting the trends that the 0.42x0.57um pinspot have on line width vari-

ation.
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Figure 4-19. Measured CD for a pinspot defect impacting an array line (C1IEG175).
The experimental results (exp.) are compared to the perturbational model (perb.).

In Figure 4-20, the CD variation caused by a fully etched pinhole defect on an array
is shown. Figure 4-20 shows that attenuating PSM arrays are more tolerant to pinhole
defects as all the defect sizes cause less than 10% CD variation. Once again comparing
Figure 4-20 with Figure 4-18, the 0.62x0.70um pinhole causes less variation than the
0.66x0.73um quartz bump. This result agrees with previous simulation results in which it
was seen that the quartz bump defect causes more feature variation than the pinhole defect.

The effect of a 0.62x0.70um pinhole defect on an array was simulated with the perturba-
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tional model and is shown in Figure 4-20 for comparison. The simulated line width is
approximately 40nm greater than the experimental results for an array without a defect and
for an array with a 0.62x0.70um pinhole. These simulation results, however, show that the
0.62x0.70um pinhole produces little line width variation which is consistent with the

experimental trends.
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Figure 4-20. Measured CD for a fully etched pinhole defect impacting an array line
(M1EG175).

The experimental results (exp.) are compared to the perturbational model (perb.).

4.7. Conclusions

In this chapter, both direct simulation and the perturbational model have been used
to determine guidelines for defect printability. These guidelines include focus as well as
illumination parameters, defect size, defect location, defect type and feature type. Because
of the many factors involved in defect printability, the perturbational model can give phys-
ical insight and allow the effects of as many as 9 mask and 3 stepper variables to be rapidly
assessed. The perturbational model in Section 4.2 calculates algebraically the effect of the

defect on a feature image by considering the electric field passing through the defect to be
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a perturbation on the field from the feature. The perturbational model separates the influ-
ence of the 9 mask parameters and the influence of the 3 stepper variables. These mask
parameters include feature transmittance and phase, defect size, transmittance, and phase,
and the background transmittance and phase. The effect of the stepper parameters on defect
printing influence the mutual coherence function (MCF).

The MCF is a weighting of the electric field from the defect and of the electric field
from the feature and was calculated in Section 4.3. The effect of modified illumination, of
high numerical aperture, and of thin-film interference on defect printing is included in the
MCEF. Because the MCF is able to consider many stepper parameters, the MCF gives phys-
ical insight into defect printing as it determines how much the defect image will perturb the
feature image. Using the algebraic model for linewidth perturbation and the MCEF, the
impact of a defect on a feature can be rapidly assessed through parameters which are inde-
pendent of the mask and may be calculated and stored prior to mask inspection. These
parameters include the image transform function, the mutual coherence function at the
object plane, and the desired image of the feature. Therefore, only the MCF at the image

plane and the image of the defect need to be calculated during inspection.

Using the MCF in the perturbational model, the type of illumination can reduce the
impact a defect has on a feature. In annular and quadrupole illumination, the center part of
the source, which is coherent, is removed. The quadrupole illumination source examined
in this chapter blocks illumination on the horizontal and vertical axes; consequently, when
a defect is oriented along an axis where the source is blocked, the MCF between a defect
and a feature is reduced. This reduction of coherence in quadrupole and annular sources
causes the MCF to decrease. Although the MCF is less for quadrupole and annular illumi-
nation than for conventional illumination, Section 4.5 showed that defect printing depends
strongly on the line edge slope of the image intensity. Depending on this line edge slope,
some illumination sources are more defect tolerant. For example, it was shown in
Section 4.5 that quadrupole illumination is more defect tolerant for dense arrays because

of its improved line edge slope.
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In Section 4.4, the perturbational model was used to determine the trends in defect
impact on attenuating phase-shift lines, arrays, and contact holes. These trends, determined
by the perturbational model in Section 4.4, were compared to trends found through exper-
iment in Section 4.6. In Section 4.4, the perturbational model was shown to provide more
than adequate accuracy in determining design rules for defect inspection and in determin-
ing the trends observed in experiments. The experiments as well as perturbational model
results show that the quartz bump defect has more impact on line width variation than the
pinspot and pinhole defects. Due to mask fabrication tolerances and noise in line width
measurements through focus, the experimental results were difficult to interpret for quartz
bump defects. The experiment results, however, did not exceed the line width offset
between the experimental array results and the results predicted by the perturbational
model. In the case of chrome pinspot and pinhole defects the perturbational model was able

to predict the impact of these defects on an array.

The scalar image theory of Chapter 3 used to develop the perturbational model in
this chapter will be used again in Chapter 6 to develop a technique for simulating vector
polarized partial coherent light. Before considering the partial coherence, Chapter 5 pre-
sents TEMPEST which simulates scattering from topography of vector polarized light that
is fully coherent. In Chapter 5, TEMPEST results are presented for simulating the gate pat-

terning process over an active area well.
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Simulation of Vector Coherent Light
Scattering from Topography

5.1. Introduction

As the wavelength used in lithography becomes shorter, the reflectivity of silicon
increases. This increase in reflectivity causes the topography to scatter additional light into
unexposed areas. The effect is particularly noticeable where positive-tone resist lines must
cross concave upward features. This reflected light may cause what is known as reflective
notching, where concentrated light causes linewidth narrowing [142]. This reflected notch-
ing problem has been observed experimentally and has been corrected by using anti-reflec-
tive coatings [84,86,31] and by increasing the absorption of the photoresist [55,127]. Dyed
photoresist is the least costly processing solution and shows some reduction of reflective
notching; however, it has been shown that dyed photoresist reduces resolution as well. A
TiN anti-reflective coating (ARC) has been shown to eliminate notching, but is the most
costly processing solution since another layer is deposited and may cause heavy metal con-
tamination. A related phenomena also mitigated by dyed resist and ARC is the variation in
energy coupling characterized by the swing curve. While topography can produce resist
thickness variations which affect energy coupling and linewidth, the reflective notching
problem, which involves lateral reflection effects as well as vertical coupling effects, can
be far more devastating. In this chapter, the three-dimensional simulation with TEMPEST
is used to gain insight into the effectiveness of dyed photoresist and into the effectiveness
of anti-reflective coatings in suppressing reflective notching from a three-dimensional sub-

strate feature.

This chapter begins by briefly summarizing TEMPEST, which was described ear-
lier in Chapter 2. TEMPEST is used throughout this dissertation to simulate scattering
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from topography. In collaboration with Myron Cagan and Zoran Krivokapic of Advanced
Micro Devices (AMD), we demonstrated the accuracy of TEMPEST in predicting reflec-
tive notching from an active area well. The TEMPEST results presented here were com-
pared to those obtained by Cagan at AMD. These results were presented at Optical/Laser
Microlithography VIII Conference in 1995 and published in its Proceedings [112]. The
active area well structure studied in this collaboration is described in Section 5.3 and is
formed by a LOCOS process [151]. In the LOCOS process, a field oxide step is formed
through thermal oxidation. After the oxidation, a conformal polysilicon layer is then
deposited. In Section 5.4, experimental results are presented that show reflective notching
caused by light reflecting off this step covered in polysilicon. Experimental results of using
a TiN anti-reflective coating and of adding dye to the resist are also investigated in
Section 5.4. In Section 5.5, experimental results are compared to three-dimensional TEM-

PEST simulation results.

5.2. Finite Difference Time Domain Electromagnetic Simulation:
TEMPEST

The simulation of reflective notching from wafer topography has been examined
through various methods. These methods can be divided into frequency domain-simulation
techniques and time domain-simulation techniques. By using a frequency domain-simula-
tion technique, Matsuzawa[75] was one of the first to simulate the image inside photoresist
above a conducting substrate. Matsuzawa’s approach employs a finite element method to
solve the frequency domain integral equations. Urbach and Bernard[132] extended this fre-
quency domain-simulation approach to find notching from non-conducting substrates.
Yeung[158] also used a frequency domain approach to simulate reflective notching by
using a multipole method to solve the frequency domain integral equations. In time
domain-simulation techniques, a finite difference time domain (FDTD) method is used to
simulate reflective notching. In a FDTD method, Maxwell’s equations are solved at dis-
crete points on a cubic staggered grid, where the excitation field is monochromatic and
fully coherent, i.e., electric and magnetic fields add. In order to study problems of interest
in photolithography, Guerrieri[46] formulated and Gamelin[36] implemented a two-
dimension FDTD program called TEMPEST[153] on a connection machine. Tadros[123]
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used this two-dimensional version of TEMPEST to study reflective notching, and verified
these simulations with experiment. TEMPEST was extended to three dimensions by
‘Wong[152], and the speed and memory efficiency was improved by Pistor[101]. In addi-
tion to this finite difference method, Wojcik[149] applied a finite-element method to solve

Maxwell’s equations in the time domain.

TEMPEST-3D was used here to study reflective notching from an active area well.
In these TEMPEST-3D simulations, the active area was modeled with six planes rather
than by the true experimentally observed topography in order to gain some simple physical
insight. This topography structure is then excited by a plane wave normal to the topogra-
phy. The amplitude of the plane wave excitation is modulated by the intensity distribution
calculated by SPLAT. In this chapter, the TEMPEST-3D simulations were based on the
assumption that the light of this SPLAT intensity-modulated excitation is fully coherent.
In the next chapter, Chapter 6, a method is developed that allows the partial coherence of
vector polarized light to be simulated. This method is then used in Chapter 7 to explain the
effect of partial coherence in reflective notching. These TEMPEST-3D simulations were
run on a single-program multiple-data supercomputer called the Connection Machine 5
(CM-5). The CM-5 used in the simulations of this chapter is located at the National Center
for Supercomputing Applications (NCSA). This CM-5 has 512 processors and 4G bytes of
total memory and is capable of operating at speeds of 20G flops.

In these TEMPEST simulations on the CM-5, the electric field in the resist material
is first calculated for each photoresist bleaching cycle. In a photoresist bleaching cycle, the
intensity of the resist is first calculated and then the absorption constant is updated with
Dill’s A, B, C model. After updating the absorption constant, the fields in the next bleach-
ing cycle are simulated. A total of five bleaching cycles was simulated on the CM-35, where
each of these bleaching cycle simulations requires approximately 10 minutes of cpu time
on 128 of 512 processors and needs approximately 2G bytes of memory, which is half the
total memory of the CM-5 machine. After completing all five bleaching cycles, the photo-
active compound (PAC) concentration inside the resist is calculated from the electric field
with Dill’s A,B,C model. Once the PAC concentration is found, other simulation tools such
as SAMPLE can perform a post-exposure bake (PEB) and develop the resist.
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5.3. Topography of the Gate Patterning Process

The active area-topography structure examined here was formed through a LOCOS
process. First a pad oxide was grown, and then a layer of silicon nitride was deposited and
patterned with an active area mask. The field oxide was then grown using LOCOS to a
thickness of 0.27um. The lateral encroachment was approximately 0.3um leading to a
“bird’s beak” whose upper surface is approximately a plane at an angle of 23°. Growing
this field oxide for the structure under study resulted in an approximately rectangular active
area of 1.15um x 5pum. After growing the oxide, 0.25um of polysilicon was deposited
over the structure. One set of wafers was patterned with the as-deposited polysilicon and a
second set received an additional 50nm of deposited TiN ARC layer. To pattern the gate,
an experimental positive i-line resist was spun on to achieve a thickness of 1.0um over the
field region. In addition to examining the case of leaving the resist undyed, two concentra-
tions of dye were added to the photoresist and are called “low dye” and “medium dye”
resist in the following sections. A schematic of the active area topography is shown in
Figure 5-1, where the topography has been approximated with planar surfaces. In this
figure, a top view and a cross-section show the resulting topography, material parameters,
and dimension. As shown in the top view, the two planar structures will form a 45° inter-
section in the corner of the active area well. The bird’s beak at the sides and at the ends of
the active area forms a 23° angle with respect to the substrate. The gate is then patterned
in the middle of the active area well in order to achieve a 0.35um line in a 5X i-line stepper
with NA of 0.5 and a conventional illumination source with & of 0.6. The resist was then
developed and the resulting photoresist gate lines were examined with a SEM to determine

the extent of reflective notching.

From optical ray tracing, some intuitive results can be gained by considering how
a plane wave will reflect off the structure depicted in Figure 5-1. Using optical ray tracing,
reflections from the corners, ends, and sides are shown in Figure 5-2. A plane wave of light
incident on the ends and sides of the poly step will reflect at an angle of 46° with respect
to the incident light; therefore, light will expose the middle of the active area at a height of
0.56pum, which is given by (active area width)/2tan(reflection angle) (=1. 15/2tan46°). The
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Figure 5-1. Model of the recessed active area with six planes.

The top view is shown on the right and a cross-sectional view of the topography on the

right. All dimensions are in micrometers.
reflection of light from the ends and sides interfere, and the superposition of these reflected
fields acts as a corner reflector. This light is reflected at an angle which is the bisector of
the angle forming the corner that is 45°. Therefore, for the coordinate system defined in
Figure 5-1, light is reflected at an angle of 45° in the xy plane and at an angle of 46° in
the xz and yz planes. The summation of these reflections causes the greatest amount of
light to be reflected into the middle of the active area at a height of 0.56um in the active
area well and at a distance of 0.575um from the end of the active area (x=1.925um). This
is the location where the maximum notching should occur. The impact of these reflections
can be lessened by reducing the reflectivity of the substrate or by increasing the absorption

of the resist.

5.4. Reflective Notching - Experimental Results
In experiments done by Cagan of AMD, polysilicon gates were patterned over

wafers with an active area well, as described in Section 5.3. SEM’s were taken of these
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Figure 5-2. First-order model for calculating the location most susceptible to reflective
notching through ray tracing.

This location is 0.575um away from the well edge at a height of 0.56uum above the bottom
of the well.

wafers with as-deposited polysilicon (on left) and with TiN (on right) for no dye, low dye,
and medium dye added to the resist (see Figures 5-3, 5-4, and 5-5, respectively). In the
SEM'’s of wafers with a TiN layer, the actual outline of the recessed active area can be
clearly seen as a rounded bowl and differs from the modeled planar structure of Figure 5-
1. In Figures 5-3, 5-4, and 5-5 the bright areas of the SEM’s are from the sloping resist pro-
files; therefore, the width of the gate at the top of the resist is the dark area, and the width
at the bottom of the gate is at the edge of the bright area. From these measured linewidths,
the amount of slope in the resist line edge can be quantified in a slope parameter. This slope
parameter is defined as line width at the top of the gate divided by the line width at the
bottom of the gate. These widths can be measured from the SEM’s.

In Figures 5-3, 5-4, and 5-5, the SEM’s without a TiN layer show a very slight neck-
ing in the linewidth at the location predicted to be the most susceptible to notching, i.e., at
an angle normal to the bowl formed by the LOCOS process. The SEM’s also show that the
deposited polysilicon layer appears slightly more grainy than the TiN layer, and this grain-
iness may contribute to the necking of the resist line. In comparing the six SEM’s, adding
a TiN ARC layer clearly reduces the reflective notching and improves the resist line slope.
In the three SEM’s on wafers with as-deposited poly, there is considerable degradation of
the resist line near the bird’s beak. Adding dye to the resist shows some reduction of the
reflective notching problem; however, the improvement from adding dye is considerably

less apparent than the improvement in adding a TiN ARC.
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Figure 5-3. SEM pictures of photoresist gate lines without dye.

The SEM on the left is for a wafer without a TIN ARC and that on the right is for a wafer
with a TiN ARC. In both pictures, no dye has been added to the photoresist. The TIN ARC
removes the necking problem at the bird’s beak.

Figure 5-4. SEM pictures of photoresist gate lines with low dye.

The SEM on the left is for a wafer without a TIN ARC and that on the right is for a wafer
with a TiN ARC. In both pictures, low dye has been added to the photoresist. The TiN
ARC removes the necking problem at the bird’s beak.
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Figure 5-5. SEM pictures of the photoresist gate lines with medium dye.

The SEM on the left is for a wafer without a TiN ARC and that on the right is for a wafer
with a TIN ARC. In both pictures, medium dye has been added to the photoresist. The TiN
ARC removes the necking problem at the bird’s beak.

In addition to reducing the risk of reflective notching, adding a TiN layer improves
the resist line edge slope. In wafers without the TiN layer, the slope parameter was mea-
sured to be 0.30, 0.22, and 0.24 for the no dye, low dye and medium dye conditions, respec-
tively; however, in wafers with TiN, the edge slope is improved and was measured as 0.55,
0.50, and 0.45 for the same respective conditions. In comparing these slope parameters,
adding dye to the photoresist causes degradation of the resist line slope when a TiN ARC
is present, and adding dye does not seem to improve the resist slope when a TiN ARC is

omitted.

Although the TiN ARC helps prevent the reflective notching problem, the value of
TiN as an effective ARC must be weighed against problems associated with its implemen-
tation. Using an TiN ARC increases the processing complexity as its use requires the addi-
tional steps of deposition over poly, TiN and poly etch, and TiN strip after poly etch. Not
only is there an increase in processing complexity, but failure to completely remove the

TiN may result in furnace contamination during subsequent poly dopant diffusion steps.
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5.5. Reflective Notching: Simulation Results

Using TEMPEST, the topography of Figure 5-1 with the gate mask was simulated
with as-deposited polysilicon and with a TiN ARC with no dye, low dye, and medium dye.
To determine the effect of the topography on the resist line, PAC concentration profiles
were examined at several cross sections along the yz plane at various positions along the x
axis for the topography in Figure 5-1. These positions include the middle of the resist at
x=0.0pum, the location most susceptible to reflective notching at x=1.925um as predicted
by ray tracing, and outside the well at x=3.0um. As previously mentioned, the PAC was

calculated with Dill’s model with A,B,C parameters of 0.844um’!, 0.068um™, and

0.016cm?/mJ, respectively, for undyed photoresist. After generating the PAC in TEM-
PEST, the PAC profiles underwent a post-exposure bake (PEB) in SAMPLE 2D with a dif-
fusion length of 0.04um. The profiles, however, were left undeveloped due to a lack of a

good development model.

In Figure 5-6, PAC profiles are first shown for the recessed active area for wafers
with as-deposited polysilicon and with undyed photoresist. In Figure 5-6, a planar sub-
strate without a TiN layer (upper-left corner) is the desired profile. Working down from the
planar substrate in the upper-left corner of Figure 5-6, PAC results are shown in the middle
of the active area well (at x=0.0pm) and at the location most susceptible to notching
(x=1.925um). Continuing from the bottom left to the top right, cross-section cuts are
shown in the well near the bird’s beak (at x=2.41um), along the sloping bird’s beak (at
x=2.7um), and at the top of the well in the field-oxide region (at x=3.0um). Examining the
five PAC profiles when the topography is present, a wave is scattered off the field oxide
step at an angle of approximately 46, which consequently causes a sharply angled resist
line edge. This degradation in the resist line-edge angle is in agreement with the ray tracing
explanation given above in that a 46° angle is observed in the PAC profile. Also, as can
be seen by comparing profiles, while moving from the center of the well (0.0pm) to the top
of the field oxide (3.0um), the PAC concentration increases and the line-edge slope
improves. This indicates that the light scattered off the birds beak is notching the resist
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PAC on a Planar Substrate PAC in yz-plane at x=2.4um
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Figure 5-6. Simulated PAC concentrations after PEB on wafers with the as-deposited
polysilicon and with undyed resist.

The simulations show profiles with poor edge slope and with reflective notching. The pro-
file at x=0.0um occurs in the middle of the active area in Figure 5-1 with the following
profiles moving closer to the end of the active area. The profile with the least average PAC
occurs at 1.925um and is the location most susceptible to reflective notching. The profile
at x=3.0pm is outside the active area on top of the field oxide.

PAC profile. As predicted by ray tracing, the cross section with the least average PAC and

consequently the greatest notching seems to occur at 1.9251um.

Through simulation, the effect of adding dye to the photoresist was shown to be
ineffective at reducing reflective notching and at improving the resist line edge slope.
Figure 5-7 shows the PAC profiles when leaving the wafers with as-deposited polysilicon
and when a low and medium concentration of dye is added to the resist. Adding dye to

resist increases the B parameter of Dill’s model to 0.19 and 0.335 in the low- and medium-

97



dye cases, respectively. The PAC profiles along the yz plane at x=1.925um are shown in
Figure 5-7 for low dye (left) and medium dye (right). Figure 5-7 indicates that adding dye
to the resist does not change the line-edge slope, which is still approximately 46°. These
PAC profiles agree with experiment, where it has been shown that adding dye to the resist
does not change the edge slope. Comparing the profiles of Figure 5-7 with the profile for
undyed resist at 1.925um in Figure 5-6, adding dye to the resist does increase the average
PAC concentration in the resist line. This increase may reduce the notching in the devel-
oped resist line; however, the PAC profiles for dyed resist are still poor, and a better solu-
tion is needed.

PAC with low-dyed resist in yz- PAC with medium-dyed resist in
plane at x=1.925um yz-plane at x=1.925um

y (um) y (um)

Figure 5-7. Simulated PAC concentration after PEB on wafers with the as-deposited
polysilicon and with low-dye (left) and medium-dye (right) resist.

The profiles are located at the position most susceptible to notching. The dye is ineffective
at reducing the reflective notching and at improving the resist line-edge slope.

Simulation results of adding a TiN ARC layer to the topography show that adding
TiN improves the line edge-slope angle and eliminates the reflective notching problem.
Figure 5-8 shows the case of undyed resist when a TiN ARC layer is added. Four PAC pro-
files along the yz plane are shown in Figure 5-8, beginning with a planar substrate in the
upper-left corner, the PAC profile at x=0.0pm in the lower left, at x=1.925um in the upper
right, and at x=3.0um in the lower right. Comparing the four profiles of Figure 5-8 with
their corresponding profiles in Figure 5-6 for the as-deposited polysilicon, the line-edge
angle improves and the average PAC in the resist line increases when a TiN layer is
present. It should also be noted that the profiles with TiN in the well are in closer agreement

with the desired planar substrate profile than the profiles without TiN are to the desired
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planar substrate profile. These PAC profiles agree with experiment in showing that the

deposition of a TiN ARC eliminates notching and improves the resist line-edge slope.

PAC on a Planar Substrate PAC in yz-plane at x=1.925um

z (Lm)

15

0 05 15 05

y (Hm) y (m)

PAC in yz-plane at x=0.0pm

Sy

PAC in yz-plane at x=3.0pm

0 05 I 15 05
y (Lm)

1
y (pm)
Figure 5-8. Simulated PAC concentrations after PEB on wafers with a TIN ARC layer on

undyed photoresist.

The TiN layer improves the line-edge slope and eliminates the reflective notching prob-
lem.

Increasing the oxide slope of the bird’s beak from 23° to 32° degrades the sharp-
ness of the line-edge angle and increases the susceptibility of the resist line to reflective
notching. As predicted by ray tracing in the 32° case, the location into which the most light
will scatter into still occurs at x=1.925um in the yz plane though at a different height in the
resist, 0.28m above the bottom of the well. In Figure 5-9, the PAC profiles for undyed
resist are shown when the TiN is left undeposited (left) and when the TiN ARC is deposited
(right). Examining and comparing Figure 5-9 to previous figures for an oxide slope of 23°,
the incident light is now scattered off the oxide step at a greater angle, approximately 64°.
This increased scattering angle now causes more light to be reflected toward the unexposed
area and consequently causes a decrease in the steepness of the resist line-edge slope. The
PAC profile simulated without a TiN ARC has less average PAC compound than the pro-
file with the TiN, which again indicates that the TiN ARC layer decreases the risk of reflec-
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tive notching, even at this steep angle. In comparing the 32° PAC profiles with the 23°
profiles, the 32° profiles seem to have less average PAC concentration in the unexposed
line area than the 23° profiles. This demonstrates that increasing the oxide slope increases

the risk of reflective notching.

PAC without ARC in yz-plane at PAC with TiN ARC in yz-plane at
x=3.0pm x=3.0pm

0 05

y (um) Yy um

Figure 5-9. Simulated PAC concentrations after PEB on wafers with a 32° slope at the
bird’s beak in undyed photoresist.

The PAC profile on the left is for the as-deposited polysilicon wafer; the profile on the
right is for the wafer with a TiN ARC. Even at this steep slope, the TiN layer improves the
line-edge slope and eliminates the reflective notching problem.

5.6. Conclusions

Comparing the experimental results to simulation has demonstrated the effective-
ness of TEMPEST in accurately predicting problems of reflective notching from a three-
dimensional wafer topography. From the PAC profiles, TEMPEST simulations of the loca-
tion most susceptible to notching and of the edge slope agree with experiment. Both sim-
ulation and experiment have shown that the use of dyed photoresist neither reduces the
reflective notching nor improves the resist edge slope. However, both simulation and
experiment have also demonstrated the effectiveness of using a TiN ARC layer to prevent
reflective notching in three-dimensional topography structures. As materials become more
reflective at shorter wavelengths and as feature dimensions continue to shrink, the ability
to test a topography prior to costly experiments will become increasingly important. TEM-
PEST simulations can help locate problems and test solutions that eliminate scattering

from the wafer topography. These include problems which are considerable, such as,
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reflective notching from severe disk head topography; arbitrary 3D-shaped topography;

and non-planar resist.

In this chapter, the TEMPEST simulations were based on the assumption that the
light is fully coherent. In Chapter 6, a method is developed that allows the partial coherence
of vector-polarized light to be simulated. This method is then used in Chapter 7 to explain
the effect of partial coherence in imaging a phase-shift mask and in patterning a gate line

over an active area well.
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Theory of Vector Polarized Partial
Coherent Light

6.1. Introduction

Since the electric and magnetic fields are vectors, the theory developed in Chapter
3 for the decomposition of scalar partial-coherent light is extended in this chapter to
include the vector nature of the electric and magnetic fields. This extension is similar to the
decomposition technique presented in Chapter 3. In Chapter 3, a matrix that represents the
mutual intensity of the system was decomposed into a set of orthogonal eigenvalues and
eigenfunctions. This chapter presents a method in which a matrix that represents the partial
coherence of vector polarized light is decomposed into a set of orthogonal eigenvalues and
eigenfunctions as well. Since this decomposition is based on diagonalizing a matrix, this
technique is called the vector decomposition. Since transforms involving matrix diagonal-
ization have the optimal energy compaction, this vector decomposition, like the scalar
decomposition, is also optimal in an energy compaction sense. Furthermore, matrix diag-
onalization techniques by definition produce eigenfunctions that are coherent with them-
selves yet incoherent with the other eigenfunctions. These eigenfunctions represent the
field excitations. Since each point in these field excitations is coherent with all the other
points in the excitation, TEMPEST can be used to simulate the scattering of these excita-
tions from a topographical structure.

Section 6.2 describes field polarization and the calculation of the image of a point
source with transverse electric (TE) field polarization located in the object plane. Using the
calculation of this field in the object plane, a coherence matrix is defined in Section 6.3,
and the elements of this matrix are calculated in Section 6.4. The coherency matrix, for TE

polarized light, describes the state of mutual coherence between the vector components of
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the electric field for a given spatial location. In Section 6.5, this coherency matrix is then
diagonalized into a set of orthogonal eigenvalues and eigenfunctions. These eigenfunctions
represent the electric field excitations for TE polarized light. The accuracy of this vector
decomposition is then compared to Abbe’s formulation in Section 6.6. In Section 6.7, the
vector decomposition and Abbe’s formulation are used to find the aerial image of a contact

hole in an attenuated phase-shift mask.

6.2. Polarization

The scalar theory of Chapter 3 is expanded here to include the effect of the field polar-
ization. Any electromagnetic field can be represented as the sum of a transverse electric
(TE) field and of a transverse magnetic (TM) field. The TE field is defined here to have no
E, vector component while the TM field is defined to have no H, component. The TE fields

and TM fields are defined in Equations 6-1 and 6-2, respectively. The direction of propa-

gation, k, is defined from the electric and magnetic fields as shown in Equation 6-3.
Equation 6-1. TE Fields

Erp = —#&sind + ycosd

Hpp = —&cosOcos¢—9cosOsing + ZcosB
Equation 6-2. TM Fields

Hypy = xsing—ycos¢

Eqy = —%cosBcos¢—9cosBsing + ZcosO
Equation 6-3. Direction of Propagation

koS = Ex H = %sinBcos¢ + §sin@sin¢ + ZcosO
In Abbe’s formulation, a point in the effective source is imaged as a plane wave onto

the object. By definition, this effective source is located in the exit pupil of an illumination
optic, where it is assumed to be fully incoherent. An effective source with TE polarization
can be represented by a collection of point sources where each point in this effective source
has TE polarization and can be represented mathematically by Equation 6-4. In

Equation 6-4, x, and yp, are the coordinates of the effective source located in the exit pupil

and x, and y are a sampled source point where ¢ is atan';ﬁ . The image from each of these
£
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polarized points can be calculated by using the scalar diffraction theory on each vector
component. This image under the Fresnel approximation was given by Equation 3-12 and

is repeated as Equation 6-5, where x,, and y,, are the coordinates at the object plane. As dis-

Equation 6-4. E,(x;)) = (-%sin¢+Jcosd) 8 (x,—x,)8(y, ;)
i27Z 2R
* k) — T P E TxP.xod
Equation 6-5. E(x,) =e j (x,)E, (x,) e X,
i2n
- (X, +y.y,+2,2,)

= (~2sin¢ +ycosd) P (x, y,) e *
cussed in Section 3.6.2, Equation 6-5 assumes that aberrated and large NA systems can be

taken into account by using a modified pupil, P, as given in Equation 3-20 and repeated in

Equation 6-6. The pupil, P, can be simplified in accord with the following assumption that

4
1-NA? (x5 +y7) /Mz] 2
exp |:

T -~ ~
Equation 6-6. P(x,y,) = i—®(x,,y ):I
a »p [ 1-NAZ (<2 +2) A ?

X exp l:—ianLzA/l —NA? (xlz, + y,z,) ]circ ( xﬁ +y§)
NA

magnification of the illumination optic is one (M=1), which implies that the high NA term
(the first term in Equation 6-6) is 1. With this assumption, the magnitude of the pupil filter
term, P, in Equation 6-5, equals one. With this simplification and after replacing cartesian
coordinates of the source with spherical coordinates (0 and ¢), Equation 6-5 becomes
Equation 6-7.
2 (xsin®cos$ + ysin Osin¢ + zcos6)

Equation 6-7. E(x,) = (-Xsin¢+Jcosd)e

Equation 6-7 is the electric field incident on to the object plane that is generated by a
point in the TE polarized source. As in Abbe’s formulation, the source can be sampled at
a number of points. Each of these points generates a field incident onto the object with
polarization and phase shown in Equation 6-7. Since the source is spatially incoherent, the
mutual intensity is non-zero only when x; is not equal to x,5. Consequently, the intensity
incident onto the object is given by adding the intensities produced by each sample source

point, i.e., the source is integrated over last.
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6.3. The Coherence Matrix

Instead of integrating over the source last, the source can be integrated over first to
produce a mutual intensity at the object plane. This mutual intensity can then be decom-
posed as was done in Chapter 3 for scalar light to produce a mathematical representation
of the mutual intensity with better energy compaction. This can be done by first generaliz-
ing the scalar decomposition technique developed in Chapter 3 to include polarization of
the electromagnetic field. Consider a TE field propagating (E,=0), the state of partial
coherence for the vector electric field that s given by the coherence matrix. The coherency
matrix is defined in Equation 6-8 where Equation 6-8 uses the notation of Mandel and
Wolf of Ref. [72]. With this notation, J (X, X,,, 0) is the coherence matrix for quasimo-
nochromatic light and Jyy, Jyy, Jxy, and Jyy are the mutual intensity elements which repre-
sent the coupling between the vector components.

Equation 6-8.

Jxx (xol’ xoz) ny (xol’ xoZ)] = [<Ex (xol) Ex* (xoZ) ) (Ex (xol) Ey* ("oz) >:|

J(x,1,%,0,0) =
ez |:Jyx (X512 X52) Jyy (X015 X,52) <Ey (x,1) Ex* (x,2) ) (Ey (xol) Ey* (x,2) )

The coherence matrix is a measure of the correlation between the different vector
components of the light, which in this case is the correlation between the electric field com-
ponents for TE polarization. The diagonal elements are the mutual intensity for the x and

y vector components and when x,; = X,,, these elements represent the intensity in the x

or y components. The off-diagonal elements represent the cross-correlation between the

two components. From the definition of the off-diagonal elements in Equation 6-8, Jyy and
Jyx are complex conjugates of each other, i.e., J,, = J xy* . This implies that the coherence
matrix is hermitian and that the eigenvalues are real [134]. If ny = Jyx = Jyy = 0, the
field is linear polarized in the x direction; if J,, = J,,, = J,, = 0, the fieldis linear polar-
ized in y direction; and, if J,, = Jy, = 0, the field is unpolarized. The elements of the

coherence matrix are also related the Stoke’s parameters. The Stoke’s parameters are linear

combinations of the elements of the coherence matrix as described in Ref. 72.
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6.4. Calculation of the Mutual Intensity Elements of the Coherence
Matrix, Jiy, Jyy, and Jyy

Using the definition of the coherence matrix of Equation 6-8 and the scalar theory
developed in Chapter 3, the mutual intensity elements of the coherence matrix, Jyy, Jyy, Jxy,

and Jy, can be calculated by integrating over the source first. The electric field with TE
polarization is Erg = —%siny + $cosy. For a TE polarized spatially-incoherent source,
by using the definition of J,, in Equation 6-8, the J;; mutual intensity at the source is given
by Equation 6-9. Similarly, by calculating Jyy, Jxy, and Jy,, the coherence matrix for this
TE polarized-incoherent source results are generated as shown in Equation 6-10.

Equation 6-9.

I (X, %p9) = (B (X,1) E.Y (x,5)) = Isiny, siny,8 (x,, —x,,)

= I,sin®yd (x,, - X,,)

—cosysiny  cos?y

.2 _ .
Equation 6-10. J(x,,%,,) = [ Sy coswsmql]los (x,,—X,,)
Using scalar wave theory and Equation 6-5, the mutual intensity elements of the
coherence matrix in the image plane, J (x;;, X;,) , can be calculated from the elements in
the object plane, J (x,;, X,,) , where the object plane is the source in this case. The scalar

wave theory can be used to evaluate all the elements of the coherence matrix provided that
the matrix elements are found in a dielectric medium (in this case, air), which has the prop-
erties of being linear, isotropic, homogeneous, and non-dispersive [42]. For example, the

J4x component in the image plane is shown in Equation 6-11 and simplifies to Equation 6-

12 for a circular source. In Equation 6-12, rj and 01 are the same as those used in

qulation 6-11. Jxx (x“, Xiz) = “‘dxploSinZ\VIP (xp) I2e—i21€ (X —%;5) x,
12n .
Equation 6-12. Joe (X1 Xig) = I I wdwdy sinzllfe—'zm“""'""s (v-8,)

00

Equation 3-18. After substituting the complex representation for sin?y into Equation 6-
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12, Equation 6-12 becomes Equation 6-13. The integral of y can be evaluated by using the
definition of the Bessel function shown in Equation 6-14. After using Equation 6-14,

12w
Equation 6-13. J,, (x;;,X;,) = j j wdwdy (%_% e12¢_% e-12¢) e—121tr,2wcos (y-6,,)
00
im0 2n )
Equaﬁon 6-14. 27timelm qu (u) - J‘ e:m\yemcos (y—-86,,) d\l!
0

Equation 6-13 becomes Equation 6-15. Since the integrals of uJy(u) and uJ,(u) have
closed-form solutions, Equation 6-15 can be simplified to Equation 6-16, which is J4, in

Equation 6-15.
1 1

T iy i) = 5 (2m) [T (2mwrg) wabw + 7 (27) 0528, [, (2mwryg) wadw
0 0

Equation 6-16.
Jy(2rry,) 1

2nr 2.2
12 2n°r,

the image plane. Using the procedure outlined above of using the complex representation

for the trigonometric functions, the other elements of the coherency matrix, Jyy, Jxy, and

J., can be calculated, resulting in Equation 6-17 and Equation 6-18.

yx,
Equation 6-17.

Ty (X1, X)) = 2w 21:27'%2 c0s20,, [1-Jy (27ryy) —mr pJ; (27r),) ]
Equation 6-18.
|
12

The mutual intensity elements of the coherency matrix given by Equations 6-16,
6-17, and 6-18 represent the correlation between the electric field components of the TE
polarized light. The mutual coherence for optical system A, A=365nm, NA=0.9, o=1,

between two points, x; and x5, is plotted in Figure 6-1 versus X1, where x5 is held constant
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Optical System A (A=365nm, NA=0.9, 6=1)
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Figure 6-1. Plots J,4, Jyy, and J, between x; and x; for four values of ¢;.

along the optical axis, i.e. X,=(p,=0; ¢,=0°), and where the radial component, py, of x; is

varied continuously from 0 to 1 and the azimuthal component, ¢, is varied in discrete steps
of 0°, 22.5°, 45°, and 90°, i.e. x1=(p1=0 to 1; $;=0°, ¢1=22.5°, ¢1=45°, $;=90°). From
Figure 6-1, the mutual coherence of the J,, element when ¢;=0° is the same as the mutual
coherence of the Jy, element when $1=90°. This occurs because the TE polarization,
E;p = Zcosy—9$siny, is symmetric with respect to y=45°. Furthermore, J,,, when

$1=45°, equals J,, when $;=45°, where both J,, and Jyy are Airy functions. The fact that
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Jxy and Jy, are non-zero at angles other than multiples of 90° implies that the matrix is

polarized, in this case with TE polarization.

6.5. Diagonalization of Coherence Matrix

As described in Section 3.7.1 in which block matrices were used to decompose the
mutual intensity, the eigenvalues and eigenfunctions of the coherency matrix given by
Equation 6-8 are found by transforming J(x,x5) into a block matrix. Since the source is
circular, the decomposition is performed in polar coordinates, where the location of point
x; and of point x, is represented by the coordinates, (p1,91) and (p2,92), respectively. The
block notation of the four-dimensional coherence matrix, J(i,j,k,1), in two dimensions is

shown in Equation 6-19 , where i, j, k, l represent the variation in pj, ¢1, p2, and ¢, respec-

Equation 6-19.
(7 (L4 LD T (21 e I LN e L (LLNN) T (LY L (LL21) e I (LLND o (LLND
1,211, : 2, (21,LD) :
I, (N1, 1y (N.L LD
SGiED = [N I, NNNN) I (NNLY 1, (N.N.N.N)
o LALLLD (21 e L (LAY e L LLN Ly (LD Ty (L6210 e Jy (LLAD . S (LLN)
1, (20,1,1 : LRCANN) :
RUANRY 1, (N1,
EUA AT R LANNNN T (NN 1, (N.N.N,N)]

tively. This is the same notation used in Equation 3-45 for the scalar mutual intensity,
J(ij,k1). The size of the block coherency matrix is 2NpN¢ X 2NpN¢, where Np is the

number of samples in p and Ny is the number of ¢ samples. For example, if p and ¢ are

sampled 25 times, the size-block coherency matrix is 1250 X 1250. Although this matrix
is large, the matrix can be diagonalized using SuperLU developed by Demmel[30] in sec-

onds. As shown in Equation 6-20, the eigenvector, ®;,(x1), of the diagonalization is repre-
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sented by a column vector and the eigenvector, ®;(x), is represented by a row vector .

Equation 6-20.

®.(x)) = [°M(l.l) @20 .. OL N . D (N.N) °yn(|' 1) 0’“(2,1) O’R(N,l) O”(N,N):I

These eigenvectors represent the electric field excitations and include polarization where

the electric field in x is given by ®yy, and the field in y is given by ®yy,. Each excitation is

coherent with itself yet incoherent or orthogonal with the other excitations.

The eigenvalues of the decomposition of the coherency matrix are plotted in
Figure 6-2 for optical system A (A=365nm,NA=0.9, 6=1) and optical system B (A=248nm,
NA=0.5, 6=0.5). Similar to the eigenvalues of the scalar mutual intensity, the eigenvalues
of the coherency matrix are real and non-negative. This implies that the coherence matrix
is Hermitian, i.e. the coherence depends only on the separation between two points. Fur-

thermore, since the eigenvalues are non-negative, the intensity is non-negative. As seen in

Optical System A (A=365nm, NA=0.9, 6=1) Optical System B (A=248nm, NA=0.5, 6=0.5)
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Figure 6-2. Plots of the eigenvalues for two different optical system.

The system on the left, optical system A, is an inspection system where A=365nm,
NA=0.9, and o=1. The system on the right, optical system B, is a lithography system
where A=248nm, NA=0.5, and 6=0.5.

Figure 6-2, some of the eigenvalues are also degenerate. For example, Figure 6-2 indicates
that the first and second orders in both optical systems are degenerate. This degeneracy of
the first and second order is due to the polarization of the field and due to the symmetry of
the source. The third eigenfunction is non-generate, while the fourth and fifth are once

again degenerate. Similar to the eigenvalues of the scalar mutual intensity, the eigenvalues
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descend with an approximately 1/n relationship, where n is the order. This indicates that

the number of field excitations needed to represent the coherence can be truncated.

The eigenfunctions of the first three orders are plotted in Figure 6-3 and Figure 6-
4 for optical system A and optical system B, respectively. These eigenfunctions represent
the E and E, field excitations for TE polarized light or represent the Hy and Hy field exci-

tations for TM polarized light. Comparing the eigenfunctions of systems A and B, the
eigenfunctions have the same functional representation in which the positions of the
minima, the maxima, and zero crossings differ between the optical systems. The degener-

ate first and second orders are similar in that the first order E; field is the transpose of the
second-order Ey field, and due to symmetry, the first-order Ey is the transpose of the
second order Ey. In fact, for all degenerate eigenfunctions, NA=0.9 and Ey, are transposes

of each other. In comparing Figure 6-3 to Figure 6-4, the eigenfunctions are similar in that
they have the same functional relationship. The only difference between the eigenfunctions

of Figure 6-3 and Figure 6-4 is the position of the maxima and minima. This is because the

maxima and minima occur at different locations, where this location depends on SNA: For

example, the first-order E, eigenfunction of Figure 6-3 is similar to the first-order Ey

eigenfunction of Figure 6-4, except that it is compressed.

These eigenfunctions form an orthogonal basis set in which each eigenfunction is
incoherent with the other eigenfunctions in the set. The elements of the coherency matrix,

Jxx> Jyy» and Jyy, are given by summing these eigenfunctions weighted by the eigenvalues.

The elements, Jy4, Jyy, and Jyy are given in Equations 6-21, 6-22, and 6-23, respectively.
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Optical System A (A=365nm, NA=0.9, 6=1.0)
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Figure 6-3. First three eigenfunctions of optical system A.



Optical System A (A=248nm, NA=0.5, 6=0.5)
first order E, first order E,
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-05 0
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Figure 6-4. First three eigenfunctions of optical system B.
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Equation 6-21. T (X %)) = SME (X)) E, (%))
i
. *
Equation 6-22. Ty (X1, Xp) = ZliEy‘.(Xl)Eyi (x,)
i

Equation 6-23. Joy (X1 Xp) = inExi (xp) Ey,-* (x;)
i
Since the eigenfunctions form an orthogonal basis set, each eigenfunction repre-

sents one simulation, where the eigenfunction represents the electric field excitation. These

electric field excitations, E; (x) , are given by Equation 6-24 for the TE polarization case.

Equation 6-24. Ei(x) = [N [2E (p. 0) +9Ey; (p. 9)] 7

Since each point of these electric field excitations is fully coherent to the other points: in
the excitation, the scattering from these excitations incident upon a topographical structure
can be simulated by TEMPEST. The implementation of this decomposition technique into
TEMPEST is called TEMPEST-PCD (TEMPEST with Partial Coherence Decomposi-
tion). The number of TEMPEST-PCD simulations needed is proportional to the numerical
aperture of the illumination system, oNA, i.e., as 6NA increases, more simulations are
needed. Since the eigenfunctions form a orthogonal basis set, the total intensity is the sum

of the intensities produced from the individual simulations. This total intensity is given by

Equation 6-25, where EJ" (x) is electric field in the TEMPEST-PCD simulation domain

after convergence. This decomposition technique is shown pictorially in Figure 6-5.

N N :
Equation 6-25. Ivor = 3 Ej (x) ¢ Ej (x) = Y, (lE:j (X)|2+ lE;, (X)lz)

j=1 ji=1

The number of simulations or eigenfunctions needed to represent the coherency
matrix can be truncated once an error criteria is met since the eigenvalues of Figure 6-2
decay. The amount of this error can be quantified by comparing the analytical elements of
the coherency matrix, as calculated with Equations 6-16, 6-17, and 6-18, to the elements
calculated with the truncated decomposition representation given in Equations 6-21, 6-22,
and 6-23. This comparison is demonstrated in Figure 6-6 for optical systems A and B. In

Figure 6-6, Jy4, Jyy, and Iy, of the decomposition between points x; and x; is compared to

the analytical solution as a function of x;, where x; is located at the center of the domain
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Figure 6-5. Pictorial representation of the decomposition formulation.

(pp=0pum) and at the edge of the domain (pp=1.0um). The elements of the coherency

matrix given by the decomposition technique are plotted when the decomposition sum is
truncated after 93 eigenfunctions for optical system A and after 26 eigenfunctions for opti-
cal system B. The elements of the coherency matrix calculated after truncating the decom-
position summation are in excellent agreement with the analytical solution at the center of

the domain (p,=0pm). The peak of the main lobe shows about 5% error between the ana-

lytical coherence and the decomposition coherence at the edge of the domain (p=1.0pm).

6.6. Comparison of the Decomposition Formulation versus Abbe’s
Formulation

In this section, the energy compaction and accuracy of the decomposition represen-
tation are compared versus Abbe’s formulation for optical systems A and B. In Figure 6-
7a and 6-7b, each element of the coherency matrix, Jyy, Jyy, and Jyy, is calculated with the
decomposition formulation and with Abbe’s formulation, and are then compared to the ele-

ments calculated analytically with Equations 6-16, 6-17, and 6-18. The elements are plot-
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Optical System A (A=365nm, NA=0.9, 0=1)  Optical System B (A=248nm, NA=0.5,6=0.5)
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Figure 6-6. Comparison of Jyy, Jyy» and Jy calculated with the decomposition
formulation and calculated analyfically with Equations 6-16, 6-17, and 6-18.

Jxx» Jyy and Iy, between points x; and x; is compared for optical system A and B and is
compared when p,=0.0pm and when p,=1.0um.

ted as a function of p;, where ¢ of x; is fixed at 0° and where p, and ¢, of x, are both 0.
For optical system A, the decomposition representation with 93 eigensolutions is in exact
agreement with the analytical solution for all elements, Jyy, Jyy, and Jyy. For optical system
B, the decomposition representation with 26 eigensolutions is again in exact agreement
with the analytical solution. However, it should be noted that both optical system A and B
required a few more eigensolutions than the decomposition on the scalar mutual intensity
as the decomposition of the scalar mutual intensity required 82 and 19 eigensolutions for

optical systems A and B, respectively. This increase in the number of eigensolutions is
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most likely due to polarization causing more degenerate eigensolutions. In both optical
systems A and B, the analytical solution is compared to Abbe’s formulation when the illu-

mination source is sampled with Ng=1, 2, and 4. As in the case of the scalar light of Chapter

3, the illumination source of optical system A was sampled 45, 249, and 1125 times when
N;=1, 2, and 4, respectively, and optical system B was sampled 9, 45, and 193 times. In

both optical systems, the error difference between the analytical solution and Abbe’s for-
mulation decreases as the number of source samples increases. Abbe’s formulation also
shows more error in the side lobes than in the main lobe. The root mean square error for

both optical systems is tabulated and shown in Table 6-1. Table 6-1 shows the error

Table 6-1. Root mean square error between the analytical mutual coherency elements,
Jxxs Jyy, and Jyy, versus those calculated with the decomposition formulation and versus
those calculated with Abbe’s formulation.

Table 6-1 shows comparison results for optical system A (top) and B (bottom) at the
center of the domain and at the edge of the domain. The coherency elements are calcu-
lated with Abbe’s formulation when N; is 1, 2, and 4.

Optical System A (A=365um, NA=0.9, 6=1.0)

— —

e T dy Ly Ty
Center Edge Center Edge of Center  Edgeof
. of the of the of the the of the the
Mutual Coherence Representation Domain Domain Domain Domain Domain  Domain

Oum)  (lgm)  (Opm)  (Ipm)  (Oum)  (Ipm)
Decomposition technique with 93 samples 001% 011% 000% 007% 007% 0.12%

Abbe’s formulation with 45 samples 1.03% 103% 024% 024% 0.10% 0.10%
Abbe’s formulation with 249 samples 040% 040% 0.11% 0.11% 0.10% 0.10%
Abbe’s formulation with 1125 samples 0.15% 005% 005% 005% 0.10% 0.10%

Optical System B (A=248nm, NA=0.5 , 6=0.5)
Decomposition technique with 19 samples 0.00% 009% 000% 0.11% 0.02% 0.04%

Abbe’s formulation with 9 samples 1.14% 1.14% 082% 0.82% 0.11% 0.11%
Abbe’s formulation with 45-samples 045% 045% 039% 039% 0.11% 0.11%
Abbe’s formulation with 193 samples 028% 028% 026% 026% 0.11% 0.11%

between the analytical solution for the coherency matrix‘ elements and between both
Abbe’s formulation and the decomposition representation. The error is tabulated at the
center of the domain (pp=0, ¢,=0°) and at the edge of the domain (p=1.0pm, $2=0°).

From Table 6-1, the root mean square error at the center is less than at the edge in the
decomposition method. Although the error of the decomposition method increases at the

edge, the decomposition error is less than the error introduced with Abbe’s formulation.
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Figure 6-7a. Comparison of the elements of the
coherency matrix, Jxx, Jyy, and J,,, for optical
system A (A=365nm, NA=0.9, 6=1.0).

Figure 6-7b. Comparison of the elements of the
coherency matrix, Jyy, Jyy, and J,y, for optical
system B (A=248nm, NA=0.5, =0.5).

Figure 6-7. Comparison of the elements of the coherency matrix.
The elements calculated analytically with Equations 6-16, 6-17, and 6-18 to those calcu-

lated with the decomposition formulation and with Abbe’s formulation when N,is 1, 2,
and 4. The comparison is shown for optical systems A (left) and B (right).
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The number of simulations required for a 2% deviation of the partial coherence over
a 6\ x 6 mathematical plane (a 3D-simulation domain) as a function of 6*NA is plotted
in Figure 6-8 for a circular symmetric source. The number of simulations for the decom-
position technique, as plotted in Figure 6-8, was found by truncating the eigenfunction
summation. With this summation, the mutual coherence was calculated for two instances:
the mutual coherence between a point in the center of the plane to all points across the
entire 6A X 6\ plane, and the mutual coherence between a point at the edge of the plane
(6)) to the entire plane. When the mutual coherence of the eigenfunction summation in
these two instances differed by less than 2% across the entire plane from the true mutual
coherence, the eigenfunction summation was truncated. The number of eigenfunctions
needed to represent this truncated summation is equivalent to the number of simulations.
The number of simulations needed with Abbe’s formulation was given by Equation 3-28

and is repeated in Equation 6-26 for a circular symmetric source, where N is the over-sam-

20NAw 2
Equation 6-26. nap = 3 (N, =)

pling period. In this case, N of 4 was used because, as shown in Chapter of 3, Ng of 4 pro-

duced the most accurate mutual coherence. As observed in Figure 6-8, a comparison of the
number of simulations needed with the decomposition technique to the number needed
with Abbe’s formulation indicates that the decomposition technique requires 5 to 10 times
fewer simulations than Abbe’s formulation. For example, for a stepper with NA=0.6 and
6=0.5, TEMPEST-PCD requires 22 simulations while Abbe’s formulation would require
136 simulations for a 6.2 reduction in the number of simulatibns. For an inspection system
with NA=0.9 and 6=1, Abbe’s formulation would require 1350 simulations while TEM-
PEST-PCD requires 125 simulations, for a 10.8 x reduction.

Much of this computational reduction is due to the Karhunen-Loeve transform,
which has the optimal energy compaction property. The Karhunen-Loeve transform repre-
sents the mutual intensity with fewer signal excitations as compared to the Fourier trans-
form or Abbe’s formulation. The optimal decomposition is in radial coordinates since the
source is radially symmetric. This, as in the case of the scalar decomposition of Chapter 3,

causes inaccuracies due to aliasing of applying a radially symmetric source to a rectangular
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Figure 6-8. Number of simulations needed with the decomposition formulation and with
Abbe’s formulation.

The number of simulations was calculated in order to maintain 2% error across the simula-

tion domain. The number of simulations with Abbe’s formulation was found when N=4.
TEMPEST simulation domain. However, as demonstrated in Chapter 3, physics helps
because the area of cross-talk from partially-coherent light scattering off the topography is
often much smaller than the entire simulation domain. For example, in a reflective notch-
ing problem light scattering from the active area well is of interest and the mutual intensity
need only be decomposed in a region that encompasses the active area well. Therefore, the
partially coherent light should be decomposed in an area where the light scattering is sig-

nificant.

6.7. Simulation Example: A 3D Hole in an Attenuated Phase-Shift Mask
In order to demonstrate the accuracy of the decomposition technique in three

dimensions, the aerial image intensity produced by a contact hole in an attenuated phase-
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shift mask was simulated using TEMPEST-PCD and using TEMPEST with Abbe’s formu-
lation. In this comparison example, the contact hole is square, 0.3 x 0.3um . This hole is
slightly over-etched in order to maintain a peak contrast that will cause a 0.25 X 0.25um
hole after resist development. The hole is etched in an embedded attenuated phase-shift
mask. The embedded attenuated phase-shift material is generated by the technique
described by Mikami et al. [78]. In this technique, a 23nm chrome layer is first deposited
on a quartz blank. This chrome layer causes most of the attenuation and provides some
phase shift since its complex refractive index is 1.36—j1.91. After deposition of the chrome,

a 55nm thick chromium fluoride layer is deposited onto the chrome. This chromium fluo-
ride layer provides most of the 180° phase shift. With this technique a phase-shift mask

with 180° phase shift and with 6.4% transmittance is generated. The 0.3 X 0.3um hole is
then etched into the mask. A schematic of this mask is shown in Figure 6-9, which gives a
cross-sectional view and a bottom-up view of the mask. The fields propagating through this
mask are then simulated with TEMPEST using a 248nm stepper with NA of 0.7 and ¢ of
0.6. The diffracted orders are then calculated by taking the Fourier transform of the fields
ata plane which is parallel to the mask and is at the bottom of the simulation domain. These
orders are collected by the projection optic and imaged with SPLAT. The numerical aper-
ture is chosen to be large in order to insure that off-axis illumination of sufficiently high
angle is incident onto the mask. The mask was also chosen to have a magnification of 1. In
this 1X stepper, the aspect ratio of the hole is 3.8 to 1 (300:78). The aspect ratio was chosen
to be small because both Wong[152] and Wojcik[149] have found that Hopkin’s formula-

tion is not applicable in phase-shift masks with small aspect ratios.

The aerial images calculated with four different methods are compared in Figure 6-
10. In Figure 6-10, the aerial image is plotted along a cut-line passing through the middle
of the hole. These images are calculated with the decomposition method presented in this
chapter (TEMPEST-PCD) and are then compared to the aerial image calculated with
Abbe’s method, TEMPEST-HN (TEMPEST with Hopkin’s imaging for a Normally inci-
dent plane wave, as discussed in Chapter 2), and SPLAT (scalar imaging). The aerial image
calculated with SPLAT predicts a larger intensity in the middle. This is most likely due to
neglecting the boundary conditions assumed in scalar imaging. The boundary conditions
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Figure 6-9. Attenuated phase-shift mask used to compare simulation results calculated
with the decomposition formulation and with Abbe’s formulation.

for vector polarized light create currents along the hole. These currents effectively reduce
the amount of light passing through the hole. Consequently, the peak intensity calculated
with SPLAT is greater than the intensity calculated with TEMPEST, in which the vector
fields are solved. The aerial image calculated with TEMPEST and using Hopkin’s formu-
lation (TEMPEST-HN), using Abbe’s formulation, and using the decomposition method
are in close agreement with each other. The TEMPEST-HN image is in close agreement
because, for this NA and o, the diffraction orders are independent of the illumination angle
and Hopkin’s formulation remains valid. It is important to note that TEMPEST-HN
requires only one simulation. Further, though the TEMPEST-PCD aerial image is in excel-
lent agreement with Abbe’s formulation, it requires fewer simulations than does Abbe’s
formulation. The aerial images using the decomposition method required 12 simulations

while Abbe’s formulation required 37 simulations.

6.8. Conclusions

A vector decomposition representation that includes polarization and partial coher-
ence of the source was formulated by generalizing the scalar decomposition technique pre-
sented in Chapter 3. Each of these field excitations generated by this vector decomposition
is coherent with itself yet incoherent with the other excitations. Since each excitation is

coherent, TEMPEST can be used to analyze the scattering of this field from a topographi-
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Figure 6-10. Comparison of aerial images for a contact hole in attenuating phase-shift
mask of Figure 6-9.

The aerial image intensity was calculated with four techniques: SPLAT, TEMPEST-HN,

TEMPEST with Abbe’s formulation, and TEMPEST with the decomposition method. The

hole is printed with a stepper having NA of 0.7, ¢ of 0.6, and A of 248nm.
cal structure. Furthermore, since this vector decomposition is a transform technique that
involves diagonalizing a matrix, this decomposition is optimal in an energy compaction
sense, i.e., the least number of excitations are needed to represent the coherency and the

polarization of the system.

The accuracy of this vector decomposition was analyzed by comparing the mutual
intensity elements, Jyx, Jxy, and Jyy, of the coherence matrix generated with the decompo-
sition to elements calculated analytically. The vector decomposition technique is accurate
in the center of the simulation and suffers some loss of accuracy at the edges of the simu-
lation. However, in non-periodic simulation domains the decomposition technique is more
accurate than Abbe’s formulation and requires fewer simulations. For example, in an

inspection system with NA of 0.9 and © of 1, the decomposition technique would require
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93 simulations for a 0.01% error in the center of the domain while Abbe’s formulation

would require over 1125 simulations to produce the same error.

Using the vector decomposition, field excitations were generated for TE polariza-
tion. The propagation of these excitations incident upon an attenuating phase-shift contact
- bole was simulated with TEMPEST. Through these simulations, aerial images were calcu-
lated with the vector decomposition and with Abbe’s formulation. The aerial image from
the vector decomposition is nearly equivalent to the aerial image from Abbe’s formulation.
Since the vector decomposition is accurate in the center of the domain, the aerial image
with the vector decomposition is most accurate in the center of the domain, and the aerial
image with the decomposition begins to differ from the image using Abbe’s formulation at

the edge of the domain.

The vector decomposition technique is used in Chapters 7 and 8. Chapter 7 uses the
vector decomposition technique to simulate two-dimensional structures for finding the
aerial image from a phase-shift mask and of patterning a gate line into a two-dimensional
active area well. Chapter 8 uses the vector decomposition technique to determine the effec-
tiveness of using a pupil filter to analyze a three-dimensional structure, a contact hole

etched in silicon dioxide.

124



Effect of Vector Polarized Partial
Coherence on Phase Shift Methods
and Reflective Notching

7.1. Introduction

In this chapter, the decomposition technique discussed in Chapter 6 and imple-
mented through TEMPEST-PCD (TEMPEST with Partial Coherence Decomposition) is
used to simulate scattering from two-dimensional topographical structures. The goal is to
assess the role and importance of partial coherence in lateral scattering at the wafer level
in optical projection printing. The simulations studied in this chapter include imaging an
attenuated phase-shift mask, patterning a line created by a two-layer phase-shifting resist
edge, and patterning a gate line over an active-area trench. In Section 7.2, the accuracy of
the TEMPEST-PCD simulations is verified by comparing aerial images of an attenuated
phase-shift mask calculated with TEMPEST-PCD to aerial images calculated with TEM-
PEST and Abbe’s formulation. The TEMPEST-PCD results are also compared to aerial
images calculated with SPLAT and TEMPEST-HN (TEMPEST with Hopkin’s imaging

for a normally incident plane wave discussed in Chapter 2). Section 7.3 examines the fea-

sibility of using a 180° phase-shifting two-layer resist edge in producing a sub-wavelength
resolution line through TEMPEST-PCD simulation. In Section 7.4, TEMPEST-PCD is
used to simulate the patterning of a gate line over an active-area trench. This active-area
trench topography is similar to the topography reviewed in Chapter 5. However, the simu-
lations in Section 7.4 are conducted with incident light that is partially coherent. Since a
post-exposure bake (PEB) is normally performed on such simulations, the effect of PEB
and the effect of the partial coherence () on the final image profile will be discussed in

Section 7.5.
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7.2. Phase Shift Mask

In the first example, aerial images are calculated by collecting the light diffracting
from a 1X two-dimensional attenuating phase-shift mask. This section was originally pub-
lished in Ref. 115. At the time of publication, only a two-dimensional version of TEM-
PEST-PCD was available. Consequently, all the simulations in this section were done with
a 1D cylindrical lens. Despite this, some valuable insight is to be gained on the validity of
using TEMPEST-HN. It is important to recall from Chapter 2 that TEMPEST-HN makes
the assumption that the diffraction orders are independent of the incidence angle and only

one simulation is needed. Consequently, the goal of this section is to determine when the
TEMPEST-HN simulation, as opposed to the TEMPEST-PCD, is valid.

The mask structure simulated with TEMPEST-HN and TEMPEST-PCD is shown
in Figure 7-1a and consists of two 0.25um attenuating phase-shift lines separated by an
etched 0.45um space. The dimensions were chosen to produce an image of nearly equal
0.35um lines and spaces in a 1X i-line stepper with an NA of 0.6. In this phase-shifting
mask technology approach, a 6% attenuation is designed into the mask by etching a
0.108um thick attenuating material with n=2.115 and k=-j0.756 followed by a 0.130um

etch of the glass in order to achieve a 180° phase-shift.

Simulation results are shown in Figures 7-1b and 7-1c for a ¢ of 0.5 and of 0.7,
respectively. The aerial images are calculated by four simulation methods: SPLAT (scalar
imaging), TEMPEST-HN, TEMPEST using Abbe’s formulation, and TEMPEST-PCD.
The aerial images from a scalar mask using a simple vertical ray mask model (1D SPLAT
simulation) shows considerable intensity in the middle of the feature. In 1D SPLAT, the
transmission cross coefficient is calculated for a cylindrical lens. The aerial image is then
given by integrating overlapping step functions of the transmission cross coefficient with
the transmission function of the mask rather than overlapping circles in 2D SPLAT. These
SPLAT imeiges are compared to images from Hopkin’s formulation with TEMPEST-HN.
Using TEMPEST-HN, only one simulation is performed. This simulation calculates the
diffracted orders due to a normally incident plane wave. These diffracted orders are col-

lected by 1D SPLAT, which forms the aerial image intensity. The results with TEMPEST-
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HN show reduced intensity of the feature as compared to SPLAT. The reduced intensity is
expected due to the mask edges shorting out the parallel electric fields. It is important to
note that TEMPEST-HN requires only one simulation. For both the 6=0.5 and 6=0.7 cases,
the TEMPEST-PCD aerial image is in excellent agreement with Abbe’s formulation,
which yields the most accurate solution provided, however, that many obliquely incident
plane waves are needed to accurately represent the illumination. Note, though, that a minor
asymmetry is apparent in the images, which is most likely due to the numerical implemen-
tation of Maxwell’s equations on a discrete grid on TEMPEST. This asymmetry can be

eliminated by decreasing the grid spacing.

Due to the energy compaction property of the decomposition, TEMPEST-PCD is
capable of analyzing the angular scattering dependence of the image with fewer simula-
tions than the Abbe formulation. For 6=0.5, the aerial image using TEMPEST-PCD
required 7 simulations while the image with Abbe’s formulation required 21 simulations.
Likewise in Figure 7-1c for 6=0.7, TEMPEST-PCD required 11 simulations while Abbe’s

formulation required 27 simulations.

Insight regarding the dominant sources of error in SPLAT can be gained through
examination of the aerial images in Figure 7-1. These images, calculated with TEMPEST,
predict that the peak intensity decreases compared to the images calculated with SPLAT.
This decrease is due to a breakdown in the scalar assumption used in SPLAT. The scalar
assumption neglects the currents created by the vector-like nature of the light, which cre-
ates currents in the mask layers. These currents decrease the amount of light passing
through the opening. Consequently, the peak intensity calculated with TEMPEST is less
than that calculated with SPLAT. The aerial images calculated with TEMPEST-PCD differ
slightly from the images calculated with TEMPEST-HN. This is because Hopkin’s formu-
lation assumes that the diffraction orders are independent of the oblique angle of incidence,
and for this mask structure this assumption is not valid. However, the mask studied in this
section is used on a system with 1X magnification. On 1X masks the aspect ratio of open-
ing width versus opening depth is small, and for the mask of Figure 7-1 this aspect ratio is
0.45um to 0.238uum or 1.9:1. For 5X mask, however, this aspect ratio is much larger, in the
order of 9.5:1. Wojcik found that when the aspect ratio is below 0.2 (depth to width) for a
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Figure 7-1a. Attenuating phase-shift mask that produces an image of nearly equal 0.35um lines
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Figure 7-1b. Aerial image intensity for the four techniques with 6=0.5, NA=0.6, A=365nm.
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Figure 7-1c. Aerial image intensity for the four techniques with 6=0.5, NA=0.6, A=365nm.

Figure 7-1. Comparison of aerial images produced by TEMPEST-PCD, TEMPEST-Abbe,
TEMPEST-HN, and SPLAT
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phase-shift mask, the diffraction orders are independent of incident angle for a mask
imaged with an i-line stepper having NA of 0.6 and ¢ of 0.6 [149]. This implies that for 5X
and 4X systems with typical NA’s (<0.6) and ¢’s (0.3 to 0.7), imaging a PSM with the
paraxial approximation used in Hopkin’s formulation is valid. As a rule of thumb, when
the system magnification is 4X and 5X, the aspect ratio is most likely less than 0.2; TEM-
PEST-HN, which requires one simulation, is accurate; and it is only necessary to use TEM-
PEST-PCD, which requires more than one simulation, when the system magnification is

1X and 2X and the aspect ratio is greater than 0.2.

7.3. Phase Shifting, Two Layer Resist Process

In the second example, TEMPEST-PCD is used to simulate patterning of a line by
using a two-layer resist process. Mike Watts of Hewlett Packard suggested that this two-
layer resist process would be effective at creating sub-wavelength resolution resist lines.
This section is a simulation study of results he observed through experiments [139]. When
the phase-shift layer is on the mask, light diffracting from the mask is collected by the col-
lection optic. This collection optic low pass filters the light and eliminates the higher spa-
tial frequencies. However, when the phase-shift layer is on the wafer, the light diffracted
from the edge does not pass through the lens, which low pass filters the light. Conse-
quently, higher spatial frequencies expose the resist in the phase-shifting, two-layer resist
process. These higher spatial frequencies should improve the resolution when the shifter is
on the wafer. Although the higher spatial frequencies expose the resist in the two-layer
resist process as compared to the phase-shift mask, the two-layer resist may cause asym-
metry in the image inside the resist or may cause alignment problems. Therefore, this sec-
tion attempts to determine the feasibility of using a phase-shifting, two-layer resist process
through TEMPEST-PCD simulation.

In this two-layer resist process, the top layer of resist is sensitive to one wavelength

of light (such as 365nm) and the bottom layer is sensitive to a different wavelength such as
248nm. The top layer of resist is spun on, such that it provides a 180° phase-shift. This top

layer of resist is exposed, in this case to 365nm light, and developed to form a 180° phase-

shift edge. The resulting topography from this process is shown in Figure 7-2. This topog-
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Figure 7-2. The topography of the two-layer 180° phase-shifting resist process.

raphy is then exposed at the second wavelength (248nm) and the 180° resist edge creates

an exposed area below the line because of the 180° phase-shift. This unexposed area cre-
ates a photoresist line after development. The ability of this process to successfully create
a line with sub-wavelength resolution that does suffer from process variation is examined

with TEMPEST-PCD.

The topography in Figure 7-2 was simulated with TEMPEST-PCD for variable ¢
of 0.3, 0.5, and 0.7 at a wavelength of 248nm and an NA of 0.6. The intensity profiles for
these three G cases are plotted in Figure 7-3 prior to the post-exposure bake (PEB). In all

~ of the intensity profiles, the 180° layer of resist is outlined in white. This 180° layer pro-
duces an unexposed area under the edge. This unexposed area will remain after develop-

ment resulting in a photoresist line. The profiles in Figure 7-3, however, are not
symmetrical, inasmuch as the contrast under the top layer resist (180° shifter area) is better

than the contrast in the area not covered by the top layer (0° shifter area). These non-sym-
metric profiles are probably due to diffraction from the top layer resist and due to an index
mismatch between the top layer resist (n=1.6) and the bottom layer resist (n=1.56). These

non-symmetric intensity profiles may lead to non-symmetric developed line as the slope of

the developed line in 0° shifter area will probably be poorer than the line slope in the 180°

shifter area. In examining the effect of ¢ on the intensity, the profiles also indicate that the
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Figure 7-3. Intensity profiles before the PEB due to top layer phase-shifting edge for ¢ of
0.3, 0.5, and 0.7.
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intensity contrast between this unexposed area and the exposed area is greatest at lower ¢
(0=0.3) throughout the 700nm of resist. This improved contrast at ¢ of 0.3 produces a
developed line with better edge slope throughout the resist.

To better measure the intensity contrast better, the intensity a quarter wavelength
above the silicon substrate (z=0.14pm) is plotted in Figure 7-4 as a function of x at ¢ of

0.3, 0.5, and 0.7. Figure 7-4 then compares these images for the two-layer resist process

with the image of a 180° phase-shift on the mask produced with an NA of 0.6 and ¢ of 0.5

stepper. Figure 7-4 demonstrates the improved image contrast and improved image inten-

1 .6 1 L v v T 1 s Y Y ¥ 1)
sigma=0.3
sigma=0.5
sigma=0.7
strong PSM
=y
g
24
8
1 N " N N | M N N N 3
-?).55 0 0.55

X (pm)
Figure 7-4. Intensity plot of the profiles in Figure 7-3 along the bottom of the resist a
quarter wavelength above the silicon interface.
When o is 0.3, the contrast is largest, which indicates that ¢ of 0.3 is probably the optimal
o. For comparison sake, the image from a strong PSM printed at NA of 0.6 and 6 of 0.5 is

plotted as well. Note that the resolution is better with the two-layer resist process than with
the strong PSM.

sity slope at lower ©. In addition to indicating the reduction in line slope, Figure 7-4 also
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shows that the intensity minimum does not occur at Opm, which is where the edge located.
When ¢ is 0.3, the intensity minimum is shifted 62nm away from the edge, and this dis-
tance increases as © increases. In comparing the images produced with the phase-shifting
two-layer resist process to the image produced with a strong phase-shift mask, the image
minimum with the phase-shift mask is aligned with the phase edge on the mask. However,
the linewidth at the 0.3 intensity threshold produced with phase-shift mask is 256nm while
the linewidth with two-layer process is 206nm. This indicates that the resolution with two-
layer process is better than the resolution with the strong phase-shift mask. Although the
two-layer process produces a line with better resolution, the resolution is still far from the
theoretical resolution limit. The theoretical limit occurs when the NA is 1, which would
produce a wave that propagates with a direction parallel to the substrate. This would cause

a wave propagating in both directions to interfere with a peak-to-valley interference dis-

A
tance of I’ which is 40nm for this process. In the two-layer process, however, the peak-

to-valley distance is approximately 300nm, which is far from the theoretical limit.

Although the two-layer process is capable of producing a line after development,
process variation may limit the effectiveness of this two-layer resist process. To understand
the role of the process variation, the thickness of the resist was varied, the slope of the 180°
edge was changed, and top layer resist was made attenuating. The intensity profiles from
these variations are plotted in Figure 7-5 for 6=0.3 only, since this ¢ leads to the best inten-
sity contrast. In Figure 7-5, the intensity of profile is shown at the top left when the top
resist layer is 180° (207nm thick resist), the edge of this top layer is 90°, and the layer is
non-attenuating (n=1.6-j0.0). The effect of matching the real and imaginary parts of the top
layer resist index to the bottom-layer resist index (index is 1.56-j0.0129 in both top- and
bottom-layer of the resist) is shown in the top right of Figure 7-5, effect of attenuating top
layer resist (n=1.6-j0.013) is shown in the middle right, the effect of reducing the thickness

of the resist 10% (thickness of 187nm which is 163°) in the middle left, effect of increasing
the thickness 10% (227nm or 198°) in the lower left, and the effect of an 80° edge slope

rather than a 90° edge slope in the lower right. These process variations give an indication
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Figure 7-5. Intensity profiles for various process variations when & is 0.3.
These variations include using an attenuating top layer (middle left), a 10% decrease in

top layer thickness (middle right), a 10% increase in the top layer thickness (bottom left),
and a 80° sloped top layer edge.
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of how tightly the index of the resist, the resist thickness, and edge slope must be controlled
in order to successfully use this two-layer phase-shifting resist process. In all of the profiles
the top-layer resist edge is still capable of producing an unexposed area under the edge of
the resist, which will lead to a line after the PEB and development. In comparing the top
left profile (matched resists) to the top right profile (unmatched resists), some insight into
the nature of the phase-shift due to the resist can be gained. Both profiles indicate that light
is refracted into the top layer of the resist due to the phase edge created by the index change

between the air and the top layer of resist. This refraction is due to a critical angle effect.

Light incident at an angle of 90° with respect to the phase edge is refracted into the higher
index material at an angle equivalent to the critical angle. Consequently, this critical angle
effect increases the intensity under the top layer resist layer. This increase causes asymme-

try in the aerial image and alignment problems with this two-layer process.

Although the profiles in Figure 7-5 look similar, there are slight differences. These
differences are more apparent when the intensity in the resist is plotted a quarter wave-
length above silicon interface as shown in Figure 7-6. In Figure 7-6, the intensity profiles
for all the process variations are plotted as a function of x. These profiles show that all the
intensity profiles are asymmetric. This asymmetry may produce an asymmetric photoresist
line after development. In addition to this asymmetry, the profiles also indicate that the
location of the minimum intensity changes as the process is varied. This change in mini-
mum intensity location will shift the location of the printed line and may lead to alignment
problems. In addition to these alignment problems, the line width was measured at 0.3
intensity threshold. The line width for the ideal process is 206nm and changes as the pro-
cess is varied. The effect of these process variations on the location of the intensity mini-

mum and on the line width at 0.3 intensity are displayed in Table 7-1.

In Table 7-1, the alignment error is the separation on the minimum intensity from
the phase-shift edge, and the line width percent change error (last column) is the percent
deviation from the line width with respect to the matched resist process. Table 7-1 indi-
cates that the alignment error without process variations is 62nm away from the phase-shift

edge. This 62nm offset is probably due to a shadowing effect created by the diffraction
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Figure 7-6. Intensity plot of the profiles in Figure 7-5 for the various process variations
along the bottom of the resist a quarter wavelength above the silicon interface.
from the phase-shifting edge. This error is correctable by applying a 62nm bias to the edge.
Again, from Table 7-1, we observe that a change in the resist thickness produces the most
alignment error have a 10% increase in thickness causes the alignment to deviate by 26nm
as compared to the alignment error without variation. This large deviation in alignment

indicates that the thickness of the resist must be tightly controlled. When the resist edge

slope is changed from 90° to 80°, the alignment deviates by 11nm as compared to the align-

ment without variation. Although only one angle change was tested, this seems to suggest

Table 7-1. Alignment and line width errors in the two-layer phase-shifting resist process

Process Variation “Alignment  Line width _ Line width

error (nm) (nm) (% change)
Matched Resists 58 211 0.0%
Unmatched Resists 62 206 -2.4%
Attenuating Top Layer Resist 57 216 +2.4%
-10% Top Layer Thickness 75 200 -5.2%
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Table 7-1. Alignment and line width errors in the two-layer phase-shifting resist process

Process Variation Alignment  Linewidth  Line width

error (nm) (nm) (% change)
+10% Top Layer Thickness 36 225 +6.6%
80° Slope Top Layer Edge 73 205 -2.8%
Strong Edge on PSM 0 256 +21.3%

that the thickness must be more tightly controlled than the angle. The line width at the 0.3
intensity threshold is also listed in Table 7-1. We see that change in the linewidth is also
most pronounced when the thickness is varied, as a 10% increase in thickness causes 9.2%

increase in line width.

Table 7-1 indicates that process variations in the top layer resist thickness of a few
nanometers in the spun on resist causes several nanometer changes in the line width and in
the alignment. Consequently, the top layer resist must be tightly controlled in order to limit
changes in the line width and in alignment. Since this section was intended to examine only
the feasibility of a two-layer phase-shifting resist process, the simulations were performed
for a flat substrate and topography on the wafer was neglected. Based on the results for the
flat substrate, it was shown that a few nanometer deviation in the resist thickness causes
alignment and line width control problems. Since topography on the wafer may produce
changes in the thickness of the spun on resist, the wafer topography plays a significant role
in limiting the performance of this two-layer process, topography should not be neglected

in future studies.

In conclusion, Table 7-1 and Figures 7-5 and 7-6 show that using a 180° phase-
shifting two-layer process is capable of producing a sub-wavelength line. The resolution
of this line with the two-layer process was shown to be on the order of a wavelength, while
the resolution with a strong PSM is on the order of two-thirds of a wavelength. The simu-
lations also indicate that the two-layer process is capable of producing an intensity mini-
mum that is less than 0.1 when & is less than 0.3. This intensity minimum is necessary in
order to produce a well-defined photoresist line after development. The phase-shift edge
of the top layer resist causes light to refract into the bottom of the resist into a region
directly below the top layer. This refraction occurs even when the index of the top resist

layer is matched to the index of the bottom resist layer. This refraction is due to the critical
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angle effect of lighf incident at a 90° incident angle with respect to the phase edge. This
critical angle effect causes asymmetry in the intensity profile which may cause asymmetry
in the developed resist line. The refraction at the edge also causes the 25nm shift in align-
ment of the line with the top layer resist edge. Finally, £10% thickness variation in the top
layer resist causes as much as +5% linewidth variation and 25nm shift in alignment, while
the slope of the phase edge was shown to produce little change in the linewidth and align-

ment.

7.4. Reflective Notching Due to Patterning over a 2D Active Area Trench

In the third example, TEMPEST-PCD is used to simulate patterning of a gate over
a two-dimensional active-area trench. This active-area trench topography is similar to the
topography simulated in Chapter 5. However, in this chapter, the partial coherence of the
field has been included in the simulations through TEMPEST-PCD whereas the simula-
tions of Chapter 5 assumed that the excitation field is fully coherent. In addition to looking
at the influence of &, the results of simulations examined the effect of the post-exposure
bake (PEB) on the resist image when the acid diffusion due to the PEB is Fickian. This sec-
tion was done in collaboration with Chris Progler of Texas Instruments (TI). The experi-
mental results generated at TI were than compared to the simulation results with
TEMPEST-PCD. This work was presented at the Optical Microlithography X SPIE Con-
ference and published in the proceedings [116].

7.4.1. Topography of the Gate Patterning Process

The active-area topography structure examined in this paper is that of a LOCOS
process. First a pad oxide was grown, and then a layer of silicon nitride was deposited and
patterned with an active-area mask. The field oxide was then grown using LOCOS to a
thickness of 2500A. The lateral encroachment lead to a “bird’s beak” forming a trench with
a side wall step angle of 25° with rounded corners. Active area trenches were grown with
varying moat widths of 0.6, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 7.0, and 10.0um. After
growing the oxide, 250nm of polysilicon was deposited over the structure. Top down
SEM'’s show that the polysilicon has significant granularity. In order to examine the trench
topography, a wafer was cleaved and an SEM was taken of the resulting topography, which

138

o



is shown in Figure 7-7. Although the SEM has a bottom anti-reflective coating (BARC), a
BARC was not deposited on the bare polysilicon in the wafers patterned, simulated, and
studied here. To pattern the gate, a chemically-amplified positive DUV resist was spun on
to achieve a thickness of 700nm over the field region. A gate was then patterned over the
active-area trench in order to achieve a 0.25um line on a DUV 248nm stepper having an
NA of 0.5 and a 6 of 0.3 and 0.6. The resist was then developed and the resulting photore-
sist lines were examined with top down SEM’s to determine the extent of reflective notch-

ing.

t,x photoresist

:}E).mm 156-j0.0129
y0.125um N <L25° polysilicon

{(_ moat 1.68-j3.58
width

10,7,5,4,3,

2.5,2,15,1,

0.6pm

Figure 7-7a. SEM cross section of the wafer Figure 7-7b. Simulation topography repre-
topography. Although this SEM has a sentation of the wafer used in the 2D TEM-
BARC, a BARC was not used in any of the PEST-PCD simulations.
experimental or simulation results contained

herein.

Figure 7-7. The topography used in the experimental and simulation studies to determine
the effect of ¢ on reflective notching.

The 2D active-area trench from the SEM in Figure 7-7a was modeled by the struc-
ture shown in Figure 7-7b for simulation. The trench consists of a planar structure having

moat widths of 0.6, 1, 1.5, 2, 2.5, 3,4, 5,7, and 10um. The polysilicon deposited over the

LOCOS trench formed a 25° step with rounded corners. The spun on resist was modeled
as a planar surface that fully covers the trench with a resist thickness of 700nm. The image
formation in these 2D trenches was then simulated using TEMPEST-PCD, as described in
Section 7.4.2.
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7.4.2. Simulation Technique
The aerial image of a 0.25um (wafer dimension) line formed by a DUV 248nm

stepper with NA of 0.5 and & of 0.3 and 0.6 was calculated by SPLAT. From this incident
aerial image the intensity inside the photoresist of the topography structure shown in
Figure 7-7 was simulated by TEMPEST-PCD. These TEMPEST-PCD simulations were
run on a Sun Ultra 2 workstation. Each 2D simulation, including the partial coherence
required only SMB of RAM and ran in 5 minutes. The topography structure scatters the
incident image from exposed areas into unexposed areas, causing reflective notching. In
each TEMPEST-PCD simulation, the intensity inside the photoresist was calculated by
using Dill’s A,B,C model. The A,B,C parameters of the positive photoresist used in the
experiments were measured to be A=-0.48},tm’l ,B=1 .134|.un'1, and C=0.0006cm2/mJ with

=1.56. Since C is small and the dose used in the experiments was 12mJ/cm?, the bleaching
of the resist is negligible and A and B can be replaced by complex refractive index 7, where
v is given in Equation 7-1. From the intensity, I(x,z), the exposure state, M, which is lin-
Equation 7-1. Y=n-jk=n-jA(A+B)/4n = 1.56—j0.0129
Equation 7-2. M(x,z) = exp[-DCI(x,2)]
early proportional to photoactive compound concentration (PAC), can be calculated by
Dill’s model as shown in Equation 7-2, where D is the dose and I(x,z) is the intensity at a
point (x,z) in the resist. In some chemically-amplified DUV resists, a post-exposure bake
(PEB) diffuses the PAC through a non-linear concentration-dependent diffusion [160].
Since we are concerned with the optical effects of the spatial coherence, the PEB diffusion
is modelled by a Fickian diffusion process rather than the concentration-dependent diffu-
sion. The exposure state after PEB for a Fickian diffusion process, N, is given by the expo-
sure state, M, convolved with a Gaussian function with diffusion length, a = A/4n. Since
D multiplied by C is much less than one, the PAC can be expended into a Taylor expansion
[39] as shown in Equation 7-3, where * is the convolution operator. The PAC after PEB is

Equation 7-3. N(x,z) = M(x,2)*exp [—-12- ,J (Jc2 + zz) / a2]

= [1-DCI (x,z)] *exp [-% N (x2 + zz) /a2]
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proportional N and since N is proportional to the intensity, I(x,z), the PAC after PEB is pro-
portional to the intensity, I. The intensity profiles in Section 7.4.3 are shown before and
after the PEB convolution. The profiles after the PEB were left undeveloped to better
understand the effect of the optical model.

7.4.3. Simulation Results

In Figure 7-8, the intensity profiles are shown before the PEB over the recessed
active-area trench with varying moat widths of 0.6, 1.0, 1.5, and 2.0pm and with ¢ of 0.3
and of 0.6. The profiles are arranged with ¢ of 0.3 on the left-hand column and with ¢ of
0.6 on the right-hand column, the moat width increasing from the top of the page to the
bottom of the page. In the following paragraphs, the CD profile before the PEB is first con-
sidered first, then the CD profile after the PEB is examined in order to determine the effect
of a PEB on CD profile.

The topography caused light to scatter from exposed areas into unexposed areas.
For example, the 25° poly step in Figure 7-7 causes light to scatter specularly off the topog-

raphy at an angle of approximately 50°. This scattered light interferes to form a bright
intensity area along a line bisecting the poly step angle. When the light is normally incident

(0°), the electric field reflectivity at the resist and polysilicon interface is 0.74, while at 25°
incidence, the reflectivity is 0.76. When the moat width is 2.0pm, the light scattering off
the poly step reflects off the top of the photoresist. This light reflecting off the top of the
photoresist is scattered into the unexposed gate area, thus increasing the total intensity in
the gate area. This increase in total intensity causes a narrower CD. In comparing the sim-
ulation results for the 2.0um moat width at various o, we find that the ¢ has little impact
on the CD profile, the profiles being almost identical at & of 0.3 and of 0.6. When the moat
widths are 1.5um and 1.0um, the light reflects off the poly step and interferes near the top
of the resist. As the moat width increases, the light interferes further down from the top of
the resist in the unexposed gate line area. In comparing theses results versus G at a moat
width of 1.51m, the intensity in the © of the 0.3 case is approximately 0.7 at a position of
x=0pm and z=0.7um. However, when & is 0.6, the intensity is approximately 0.4 at the

same location. This indicates that the interfering intensity is larger in the unexposed area
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Figure 7-8. Two-dimensional TEMPEST-PCD simulated intensity profiles before the PEB
when patterning a gate line over an active-area trench with topography of Figure 7-7.

The simulations show an increased intensity in the middle of the unexposed line near the
top of the line at o of 0.3 (left) as compared to a ¢ of 0.6 (right).
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when 6 is 0.3 than when ¢ is 0.6. This effect is more readily seen in the profiles when the
moat width is 1.0um and 0.6um. In both of these cases, the light reflects of the step into
the unexposed gate area. The intensity is higher in this area when ¢ is 0.3 than when ¢ is
0.6 in both 1.0pum and 0.6um moat widths. This would seem to indicate that higher ¢ have
less reflecting notching problems than lower 6. However, since a post-exposure bake is
always performed on chemically-amplified 248nm resists, the effect of the PEB must be
taken into account prior to reaching a conclusion on the role of ¢ on reflective notching

and on CD variation.

In order to understand the effect of the post-exposure bake, a PEB was performed
on the intensity profiles of Figure 7-8 by using Equation 7-3. These intensity profiles after
a PEB are shown in Figures 7-9 and 7-10. In Figures 7-9 and 7-10, intensity profiles are
given for wafers with varying moat widths of 0.6, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, and 5.0pm and
with 6 of 0.3 and 0.6. In order to parallel the profiles before the PEB in Figure 7-8, the pro-
files in Figures 7-9 and 7-10 are arranged with ¢ of 0.3 on the left and & of 0.6 on the right
and with increasing moat width from the top to the bottom. The effect of the topography
and ¢ is measured by using the CD length at the bottom of the trench and by using the CD

quality (steep-profile edge slope) as performance metrics.

The effect of the PEB and of the topography is first considered by examining the
effect of the moat width on the CD quality. When the moat width is 5.0pum, the steps from
the moat are separated by such a large distance that light reflecting from the steps no longer
impacts the CD. As the moat width decreases to 2.0um, the simulations show that light dif-
fracting from the step forms a beam of radiation along the line bisecting the poly step angle.
This beam reflects off the top of the photoresist into the unexposed area causing an increase
of the total intensity, as shown in the cartoon of Figure 7-11a. This increase in the total
intensity in the unexposed area leads to a narrower CD. At a moat width of 2.5um, the step
separation is larger, and the light reflecting off the top of the resist is farther from the unex-
posed area. This reflected light still increases the total intensity in the unexposed area, but
to a lesser extent than the 2.0um moat width. Consequently, the CD is slightly wider at
2.0um than at 2.5um. As the moat width increases from 2.5um, the CD continues to

increase until a steady CD is achieved when the moat width approaches 5.0pm. In the cases
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Figure 7-9. Two-dimensional TEMPEST-PCD simulated intensity profiles after the PEB
when patterning a gate line over an active-area trench with the topography of Figure 7-7.

The top of the gate is knocked off when the moat is 0.6pm wide. The CD at the bottom of
the line increases on the 1.0 and 1.5pum wide moats due to diffraction from the step. The
CD decreases on the 2.0pum wide moats due to reflection from the top of the resist. The CD
is slightly wider at o of 0.3 than at o of 0.6 due to the larger coherence area at ¢ of 0.3, All
the dimensions above are in micrometers.
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Figure 7-10. Continuation of Figure 7-9

The CD continues to increase as the moat width increases because of the wider separation
between light reflecting off the step into the unexposed area.
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with moat width of 1.0um and 1.5um, the light on either side of the dark gate area interacts
with a step topography which is on the order of 2 to 3 wavelengths. The light incident onto
this step is diffracted into a beam in which the diffraction area of the beam is given by the
aperture radiation equation. This equation states that light diffracts into a beam with an area
that is inversely proportional to the aperture size. Since the step topography is on the order
of 2 to 3 wavelengths, the light is diffracted into a large area, as shown in Figure 7-11b.
This diffraction causes degradation of the CD edge slope and increases the CD at the
bottom of the trench. For the simulations with a 0.6im moat width, the bright intensity area
due to light reflecting off the step interferes at the top of the unexposed line. This interfer-
ence knocks the top off the line and is subject to rapid linewidth change during dissolution,

producing a line with wide CD at the bottom, as seen in Figure 7-11c.

I
Nﬁ —
Figure 7-11a. Reflection from  Figure 7-11b. Reflection Figure 7-11c. Reflection from the
the step and the top of the  from the step reduces the step exposes the top of the resist
resist reduce the CD when the  edge slope but leaves the CD line when the moat width is 0.6pm.
moat width is 2.0um and  at the wafer surface unaf-

2.5um, fected when the moat width
is 1.0pm and 1.5p1m.

Figure 7-11. Schematics showing the physical phenomena observed in Figures 7-9 and 7-
10 for reflective notching into the gate.

In considering the effect of ¢ on CD, the light from the exposed area scatters off the
poly step into the unexposed gate area. The total intensity in the unexposed gate is the sum
of the scattered intensities weighted by the partial coherence. The coherence between two
points on the wafer is given by the mutual coherence. For a circular source, the mutual

coherence between two points, rq and ry, is given by the Airy function, as observed in
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Equation 7-4. The first null of the Airy function occurs at 0.61A/6NA which corresponds

2n
Jy (—)TO'NA|r1 —-1,)
Equation 7-4. B(r,ry) =2

27
-~ oNA|rl - r2|

to 1.0um and 0.5um for ¢ of 0.3 and 0.6, respectively. The location of this first null is crit-
ical in determining the notching in the line from the topography. At low o, the first null
occurs at a larger separation than at higher 6. This implies that the light is coherent over a
larger area and the light interacts over a larger distance at low 6. However, images formed
at low o have a larger intensity slope, which leads to better edge slope in the photoresist.
Therefore, at low © the light reflecting off the topography step has a greater tendency to
cause notching, but results in a sharper resist edge profile. This trade-off is seen in the sim-
ulations when the moat widths are 1.0 and 1.5 um. From Figure 7-8, before the PEB, there
is a slight increase in intensity and notching at z=0.7um when ¢ is 0.3 as compared to a ¢
of 0.6 because the light is coherent over a larger area at low 6. Although there is a slight
increase in intensity in the unexposed area for the narrower moat widths at ¢ of 0.3 as com-
pared to & of 0.6, the PEB diffusion averages the increase over a large area, as seen in
Figure 7-9. Because of the PEB diffusion, there is little impact of ¢ on notching at these
narrow moat widths. On the wider moats (2.0um and greater), the simulations show that
the CD is influenced by multiple reflections off the step and off the top of the photoresist.
At such wide moat distances, the CD is impacted by interference in the unexposed area
from light reflecting off the topography step. The intensity of this light is added as
weighted by the mutual coherence. Since the moat steps are separated by a distance that is
much larger than the first zero in the mutual coherence, the mutual coherence is small, and
the intensities add at a ¢ of both 0.3 and 0.6. This implies that, similar to the narrow moat

width cases, there is little effect of ¢ on notching at large moat widths as well.

7.4.4. Experimental Results

In Figures 7-13, 7-14, and 7-15, top down SEM’s of developed photoresist gate
lines are shown inside the active-area trench for wafers with varying moat widths of 0.6,
1.0, 2.0, 2.5, 3.0, 4.0, and 5.0 and with a ¢ of 0.3 and of 0.6. The profiles in Figures 7-13,
7-14, and 7-15 are arranged to parallel the simulation results with ¢ of 0.3 on the left-hand
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column and 6 of 0.6 on the right-hand column and with the moat width increasing from the
top of the page to the bottom of the page. The CD at the bottom of the trench was measured
and recorded above the SEM’s in Figures 7-13, 7-14, and 7-15. Since the exposure dose

was not changed from 12mJ/cm? in exposing the lines with 6 of 0.3 and 0.6, the lines with
o of 0.6 were over exposed as compared to the lines exposed with ¢ of 0.3. Consequently,
the CD at ¢ of 0.6 is slightly smaller than the CD with ¢ of 0.3.
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Figure 7-12. Experimental measurement of the percent CD change as a function of moat
width for ¢ of 0.3 and for ¢ of 0.6.

The functional relationship is similar for both 6’s; however, the percent CD change curve
with ¢ of 0.3 is shifted to larger moat widths where the coherence area is larger.

The percent CD change from the mean CD at ¢ of 0.3 and at 0.6 as a function of
moat width was determined from the experiments and is plotted in Figure 7-12. This plot
shows that percent CD change has a damped sinusoidal behavior as a function of moat
width. The reasons for this damped sinusoidal CD behavior can be understood from the
observations made from the simulations. As shown for the simulation of a moat with width
2.5um and greater, the CD slowly increases because the moat step is separated far from the
unexposed area where it has less effect on the percent CD change. In the case of 1.5um-

2.5um wide moats, the percent CD change is negative and slowly decreases. By definition,
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the negative percent CD change occurs when the CD is less than the average CD. The sim-
ulations indicate that smaller CD occurs in this moat width regime because light reflects
off the step and off the top of the resist into the unexposed area, thereby increasing the
intensity. This increased intensity in the unexposed area results in smaller CD after devel-
opment. In 1.0 and 1.5um wide trenches, the light is diffracted into a large beam area, as
shown in the simulations. This leads to a larger than average CD (positive percent CD
change). The percent CD decreases as the moat width increases because the light is dif-
fracted into a smaller area at larger moat widths as given by the aperture radiation area
equation. As shown for the simulation with a 0.6um wide moat, the CD slightly increases
and the top of the line is knocked off from light scattering off the step, as seen in the sim-
ulation of Figures 7-9 and 7-10 and in the SEM of Figures 7-13, 7-14, and 7-15.

In Figure 7-12, the percent CD curves have the same functional damped sinusoidal
relationship at 6 of 0.3 and at ¢ of 0.6, with a slight shift in curve at ¢ of 0.3. This shift is
due to the larger coherence area at smaller 6 being able to affect the line CD at larger moat
widths. Since the curves at ¢ of 0.3 and at 0.6 are similar in shape, the curves indicate that
the topography has a similar impact on the percent CD change regardless of the coherence.
The lines in the SEM’s of Figures 7-13, 7-14, and 7-15, however, show more CD variation
along the line when o is 0.3 than when & is 0.6. As seen in the SEM’s of Figures 7-13, 7-
14, and 7-15, the polysilicon deposited onto the LOCOS trench shows a large amount of
granularity as seen in the SEM’s of Figures 7-13, 7-14, and 7-15. These polysilicon grains
scatter light from the exposed area into the unexposed gate area, causing CD variation and
slight notching along the line. The total intensity scattering into the unexposed gate area is
given by intensity contributions of light scattering from the various grains as weighted by
the mutual coherence. As discussed in Section 7.4.3, the location of the first null is critical
in determining the notching from the topography. In this case the topography is caused by
the polysilicon grains. When ¢ is 0.6, light scattering off polysilicon grains separated by
0.5um or less add in the unexposed area and impact the CD. Likewise, when ¢ is 0.3, grains
separated by 1.0um or less impact the CD. The amount of CD variation depends on the
intensity in the area bounded by the first null. Since the intensity is smaller in the unex-

posed area at a separation of 0.5uum than at 1.0pum, the gates patterned with & of 0.6 show
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Moat Width=0.6pm 6=0.3 CD=260nm Moat Width=0.6pum ¢=0.6 CD=241nm

Moat Width=1.0pum 6=0.3 CD=291nm Moat Width=1.0pm 6=0.6 CD=261nm

Moat Width=2.0um 6=0.3 CD=241nm Moat Width=2.0pm ¢=0.6 CD=166nm

Figure 7-13. Top down SEM’s showing the photoresist gate as a function of moat width
(0.6, 1.0, and 2.0 pm) and o©.

The CD is recorded as measured at the wafer surface. The CD trends agree with the expla-
nations learned from simulation. The CD on SEM’s patterned when & is 0.3 show more
variation when o is 0.6 due to an increase in the coherent interaction between the light and
the polysilicon grains at lower ©.
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Moat Width=2.5um ¢=0.3 CD=209nm Moat Width=2.5um ¢=0.6 CD=165nm

Moat Width=3.0pm 6=0.3 CD=195nm Moat Width=3.0pm 6=0.6 CD=180nm

Figure 7-14. Continuation of Figure 7-13.

Top-down SEM’s showing the photoresist gate as a function of moat width (2.5, 3.0, and
4.0 pm) and ©. The CD is recorded as measured at the wafer surface.
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Moat Width=5.0pum ¢=0.3 CD=226nm Moat Width=5.0um ¢=0.6 CD=225nm

Moat Width=10.0pm 6=0.3 CD=268nm  Moat Width=10.0um ¢=0.6 CD=235nm

Figure 7-15. Continuation of Figure 7-14.

Top down SEM'’s showing the photoresist gate as a function of moat width (5.0 and 10.0
pum) and o. The CD is recorded as measured at the wafer surface.
less CD variation and roughness than gates patterned with & of 0.3, which is consistent

with the experimental results.

7.5. The Influence of the Post-Exposure Bake on Reflective Notching
Although the simulation results prior to a post-exposure bake show that the inten-
sity increases in the unexposed area as ¢ decreases, the simulations and experimental
results after the PEB indicate that ¢ has little effect on the CD profile. The lack of an effect
after the PEB is due to the fact that the PEB diffusion averages the intensity increase over
a large area, as seen in the simulations of Figures 7-9 and 7-10. Therefore, because of the

PEB diffusion, there is little impact of ¢ on notching at these narrow moat widths.
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To demonstrate the effect of the post-exposure bake on imaging inside silicon,
Young’s double slit interference experiment [11] was simulated. In Young’s experiment,
the image of two slits in a opaque mask are illuminated with an incoherent source. This
image is projected onto a CCD camera, as shown in Figure 10.4 of Ref. 11. In this simula-
tion of Young’s experiment, however, the image is recorded in 1pum of photoresist above
a silicon substrate instead of using a CCD camera. In the 2D simulation, the slits are sepa-
rated by 0.5um and are illuminated with a 248nm wavelength source with a variable partial
coherence factor (o) of 0.0, 0.3, and 0.6. The light is then collected by a projection optic a
NA of 0.5. The optical system used in this simulation is assumed to act like the optic used

in a Kohler illumination system; consequently, the two slits are imaged as plane waves

incident onto the photoresist. Each of the waves have an angle of incidence of 25°, which

is shown in the schematic of Figure 7-16. The intensity image of these two plane waves in

A=248nm NA=0.5
Wave 1 Wave 2 6=0.0, 0.3, 0.6

n=1.68-j3.58

Figure 7-16. Schematic of the two planes produced by Young’s experiment imaged in
Ium of photoresist.

photoresist is shown in Figure 7-17 for 6=0.0 (fully coherent light). In Figure 7-17, the
fields in the photoresist should be found through the integral technique proposed by Som-
merfeld[119] because the silicon is lossy. However, since this example is intended to show

the effect of the PEB rather than the fields above a lossy surface, the silicon was assumed

153



to be a perfect conductor and the intensity in the photoresist was found through image
theory [3]. The intensity inside the photoresist prior to the PEB is shown in Figure 7-17a,
and the intensity after the PEB, in Figure 7-17b. The intensity after the PEB was calculated
with Equation 7-3, in which a 0.04pm diffusion length, a, was assumed. Figure 7-17 indi-
cates that there is a large standing wave ratio prior to the PEB; after the PEB, however, the
standing waves nearly disappear. In Figure 7-17, the intensity was taken at a constant

z=0.5um cut-line and plotted in Figure 7-18. In Figure 7-17, the intensity is plotted prior
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Figure 7-17a. The intensity in the resist Figure 7-17b. The intensity in the resist
before the PEB when 0=0.0 after the PEB when ¢=0.0

Figure 7-17. The intensity inside the photoresist for coherent illumination (6=0.0) before
a PEB (Figure 7-17a) and after a PEB (Figure 7-17b).

to the PEB and after the PEB when ¢ is 0.0, 0.3, and 0.6. In Figure 7-18, the standing wave
ratio of intensity prior to the PEB decreases as o increases. This is due to the fact that as ¢
increases the light is more incoherent, and in the extreme of incoherent illumination, the
intensity of the two fields adds, which results in an image without standing waves. The
intensity in Figure 7-18 for all the o cases after the PEB is within £10% of 1, the clear
field intensity. This shows that the post-exposure bake effectively eliminates the standing
waves, and the intensity inside the resist is that of an image resulting from incoherent illu-
mination. Therefore, since the image after the PEB with 6=0.0 is approximately the image
with both 0.3 and 0.6, as shown in Figure 7-18, coherent illumination (6=0.0) can be

assumed when simulating the image in a chemically-amplified resist.
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Figure 7-18. The intensity inside photoresist along a cut-line taken in the middle of the
resist.

The intensity is plotted and before and after at post-exposure bake for ¢ of 0.0, 0.3, and
0.6. For all values of ¢ after the PEB, the intensity is within 10% of 1 which indicates that
the PEB removes the standing waves in the resist.

7.6. Conclusions

The goal of this chapter was to define the role of the partial coherence in projection
printing through the simulation of the imaging of an attenuated phase-shift mask, the pat-
terning of a line created by a two-layer phase-shifting resist edge, and the patterning of a

gate line over an active-area trench

In Section 7.2, a two-dimensional version of TEMPEST-PCD was used to study the
effect of partial coherence on imaging a phase-shift mask. The aerial images calculated
with TEMPEST predict that the peak intensity decreases from the images calculated with
SPLAT. This decrease is due to a breakdown in the scalar assumption used in SPLAT
which neglects the currents induced by the vector nature of the light. Although the scalar
assumption is invalid for the PSM studied in this section, it is still possible to use Hopkins’
formulation through TEMPEST-HN. When the aspect ratio is less than 0.2 (depth to width)
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for a feature on a mask, the diffraction orders are independent of incident angle. This
implies that for 5X and 4X systems with typical NA’s (<0.6) and ¢’s (0.3 to 0.7), imaging
a PSM with the paraxial approximation used in Hopkin’s formulation is valid. As a rule of
thumb, when the system magnification is 4X and 5X, TEMPEST-HN, which requires one
simulation, is accurate; on the other hand, one need only use TEMPEST-PCD, which

requires more than one simulation, when the system magnification is 1X and 2X.

In Section 7.3, the feasibility of using a two-layer resist process with a 180° phase-
shifting edge to print a sub-wavelength line was studied by using TEMPEST-PCD simu-

lations. These simulations showed that it is possible to print a sub-wavelength 200nm line

A
with this process, but this resolution is far greater than the theoretical limit of e which

is 40nm for this process. Thickness changes in the resist cause alignment and line width
problems. Although this resolution is far from the theoretical limit, the resolution improves
with the two-layer process as compared to the resolution with a strong PSM when using a
0.3 threshold model for the resolution. The linewidth with the two-layer process is approx-
imately 21% less than the linewidth with a strong PSM. The phase-shift edge of the top-
layer resist causes light to refract into the bottom of the resist into a region directly below
the top layer. This refraction is due to a critical angle effect and occurs even when the index
of the top-resist layer is matched to the index of the bottom-resist layer. This critical angle
effect causes asymmetry in the intensity profile which may cause asymmetry in the devel-
oped resist line. The refraction at the edge also causes the 25nm shift in alignment of the
line with the top-layer resist edge. Finally, £10% thickness variation in the top-layer resist
cause as much as £5% linewidth variation and 25nm shift in alignment, while the slope of
the phase edge was shown to produce little change in the linewidth and alignment. Conse-
quently, the thickness of the top layer resist must be tightly controlled in order to limit
changes in the line width and in alignment. Since topography on the wafer may produce
changes in the thickness of the spun on resist, the wafer topography plays a significant role
in limiting the performance of this two-layer process and the topography should not be
neglected in future studies.
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As shown in Section 7.4, TEMPEST-PCD simulations also accurately modelled
the patterning of a gate over an active-area trench. The image inside the resist before the
PEB predicted that the intensity contrast increases for hot spots in the unexposed area as ¢
decreases. When the PEB diffusion is Fickian, however, the PEB diffusion low pass filters
the initial PAC concentration and eliminates these hot spots and standing waves in the
resist. The PEB diffusion eliminates these interference effects when the diffusion length is

A
near the theoretical resolution limit of the resist, e For example, in the profiles of

Section 7.4 a diffusion length of 40nm was used, which is equivalent to the theoretical res-
olution limit. Consequently, reflective notching in the resist is eliminated. When the diffu-
sion length of a Fickian process is near the theoretical resolution limit, the profiles with
partially coherent illumination after the PEB are similar to the profiles that would be gen-
erated with incoherent illumination. This implies that simulation of the partial coherence
is not necessary, and coherent illumination can be assumed when the diffusion length is

near the theoretical resolution limit.

This chapter presented TEMPEST-PCD simulation results for a lithography
system. These results are expanded in the next chapter, Chapter 8, where TEMPEST-PCD

results are presented for a wafer inspection system.
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The Effect of Partial Coherence on
Wafer and Mask Inspection

8.1. Introduction

In an optical inspection system, a condenser optic with a large numerical aperture
images light from an incoherent source onto a wafer or onto a mask. The large numerical
aperture produces light that is obliquely incident at large angles. This obliquely incident
light reflects off the topography of the wafer or of the mask and is collected by the same
condenser optic, i.e., 6=1. Since the van Cittert-Zernike theorem, discussed in Chapter 3
implies that obliquely incident light is partially coherent, the illumination incident on the
wafer or on the mask is partially coherent as well. The partial coherence of the light causes
it to scatter in unexpected ways off the wafer or off the mask. For example, when inspect-
ing for a defect at the bottom of a thin-film stack, the changes in refractive index from the
stack induce aberrations which degrade the optical system resolution. In addition to these
induced thin-film aberrations, the topography of the inspected structure can cause the light

to refract out of areas of interest leaving these areas unresolved.

In printing into a thin-film stack, Flagello[33], Yeung[157], and Progler[102] have
shown that spherical aberration is induced by the photoresist when printing with a high
numerical aperture stepper. Yeung showed that the effect of arbitrary thin-film layers on
imaging can be modelled by ray tracing through the thin-film layers to find the optical path
difference (OPD). This OPD induces aberrations which can be modelled by modifying the
pupil function of the imaging system. Similar to this work, Progler then proposed using a
merit function that is capable of determining which aberrations may actually benefit print-

ing.
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Since some aberrations may actually help in printing certain features, it is possible
to deliberately introduce beneficial aberrations by using a pupil filter. One type of pupil
filter that has received considerable study is a filter that improves printing through focus.
In these studies, Tsujiuchi[130] first described a cosine filter to improve depth of focus.
This filter was later re-invented by Ojeda-Castafieda[92] and was implemented by
Fukuda[34]. By using McCutchen’s theorem [76], Ojeda-Castafieda designed filters for
increased depth of focus [88,89]. Alternatively, von Biinau[15-17] designed a filter for

increased depth of focus by using the decomposition technique described in Section 2.2.3.

In this chapter, the aberrations introduced by printing and by inspecting through a
thin-film stack are first discussed in Section 8.2. These aberrations degrade both the reso-
lution of the printing system and of the inspection system. The inspection of a thin-film
stack is generalized to include topographical structures in Section 8.3. In Section 8.3, the
inspection of a contact hole is studied through simulation. A methodology for improving
this contact hole inspection by introducing a filter into the optical system is presented in
Section 8.4. The effect of the partial coherence on the filter performance is studied in
Section 8.4.4 and the effect of topography changes induced by process variation in
Section 8.4.5.

8.2. Aberrations Induced by Inspecting Through a Thin-Film Stack

In optical lithography, a mask must be imaged into a thin-film stack whereas in
optical inspection an object under the thin-film stack must be found. Due to refractive
index changes in the thin-film stack, rays from different annuli of the optical system are
refracted, different amounts leading to spherical aberration. The amount of spherical aber-
ration can be found by ray tracing through the stack and finding the optical path difference
introduced by the stack. This is demonstrated in Figure 8-1 for an air-to-glass interface.
Figure 8-1 models a glass layer over a silicon substrate in which the reflection from the
substrate is neglected as the glass is assumed to be infinite in the z direction. The optical
path difference induced by the glass can be understood through the use of an analogy. In
this analogy, a fish that is swimming a distance, w, below the surface would actually be

perceived by an observer outside the water to be swimming a distance, d, below the sur-
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face. The difference in path length that the light must travel between the true location of
the fish and the perceived location multiplied by the index of refraction of the water is the
optical path difference. This optical path difference depends on the index change from the
air to the water, on the distance from the interface to the fish, and on the angle of incidence

onto the interface which is related to the numerical aperture of the optical system.

Air
A
Photoresist or Glass
with refractive index, n
w
Y

Figure 8-1. Schematic showing the optical path difference when printing or inspecting
into a dielectric.

This optical path difference introduces aberrations into the optical system. The opti-
cal system can take these aberrations into account by modifying the pupil function to
include an optical path difference term, ®, as discussed in Section 3.4. In Section 3.4, the
pupil function is given by Equation 3-19, which is repeated in Equation 8-1 where the
defocus term has been included in ®. The optical path difference term, @, is calculated by

. 21 . . .
Equation8-1.  P(x) = P(x,y,) = exp[l—fﬂb(x ,y,,)]ctrc( Xo+y2)

ray tracing into the thin-film stack as shown in Equation 8-2, where x; is the actual path
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length and x; is the induced path length. Since a = dtan6, Equation 8-2 simplifies to
Equation 8-3. In addition to the optical path difference induced by the stack, W(0), the

2

Equation 8-2. _ _ __ha _na _ na_ na
quation 8-2 W;(6) = n(x=x) sin®, sin® ~ sin® sin®
Equation 8-3. W,(0) = —n(n—1)dsecOd

defocus error, A, induces some aberration, and the amount of this aberration is given as
W4(0) in Equation 8-4. The total aberration, W(0), is the sum of W(B) and of W () as

A
Equation 8-4, W,(8) = ~-tan’0

shown in Equation 8-5. The angular coordinates, 6, used in Equation 8-5 can also be con-

verted to radial pupil coordinates, p, shown in Equation 8-6 by using the fact that

NA?
tan® = .
1—NA2p
. nA
Equation 8-5. W, (8) = Ttan 0-n(n-1)dsecO
Equation 8-6. W, (p) = -A— (—]—v—'ﬁ—z)pz—n(n— l)djl+ ( NA® 2)p2
2 1-NA 1-NA

By using Equation 8-6, the Strehl ratio[10], which is a measure of the optical
system aberrations, can be calculated as a function of NA. This ratio is defined in
Equation 8-7 and has a value between 0 and 1, where 1 corresponds to a perfect unaber-
rated system. The defocus, A, offers a degree of freedom to choose the best focal plane such

that the Strehl ratio due to W(6) is minimized.

2% sin'NA 2
j do j dotanBexp [jkW (6, 0) ]
Equation 8-7. Ur,y) = = °2 — .
T sin
j do j dotan®
0 0

Here, after finding this optimal defocus, the Strehl ratio as a function of numerical

aperture is plotted (see Figure 8-2) for an air-to-glass interface. In Figure 8-2, the ratio is
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calculated at various depths, d=0.2, 0.4, 0.6, 0.8, and 1.0pm, into the glass, where the glass
has a refractive index of 1.47453 and is illuminated with light having a wavelength of

365nm. The Strehl ratio in Figure 8-2 does not begin to deviate from 1 until the NA

: Rl ey
i d=0.4
Al By
{1 d=0.6
| d=0.8

. £l d=1.0

& |

= i

B | "L

72] =|!

0
0
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Figure 8-2. The Strehl ratio as function of NA when printing or inspecting through glass.
The ratio is plotted for an air-to-glass interface at various depths, d, into the glass of 0.2,

04, 0.6, 0.8, and 1.0um. The glass has a refractive index of 1.47453 and a 365nm wave-
length optic is used.

approaches 0.8. Figure 8-2 indicates that the Strehl ratio decreases as NA increases and
indicates that the ratio decreases as the depth, d, into the glass increases. Only when d is
1.0um and NA is 0.9 does the Strehl ratio drop below 0.96. Therefore, the Strehl ratio pre-
dicts that an inspection system with an NA of 0.9 is capable of imaging through about
1.0um of glass before the aberration induced by glass begins to degrade the image quality.

Since the Strehl ratio is a general figure of merit that indicates the resolution of the

inspection system, it does not necessarily predict the overall resolution of the system. Con-

162

is



«®

sequently, a better indication of the resolution is given by the image transfer function of
the system, K. The image transfer function is equivalent to the field produced by a point
source located in the object plane. The image transfer function was given by Equation 3-
12, which is repeated in Equation 8-8 in angular coordinates, 6. Using Equation 8-8, the
Equation 8-8.

21 sin”'NA
K(r,y) = [do j d9tanBexp [jkW (0, §) ] exp [—jkrsinBcos (¢ — )]
0 0

magnitude and phase of K is plotted as a function of r (in um) in Figure 8-3 for a 365nm
wavelength illumination optic having a NA of 0.9 at a depth, 4, into the glass of 0.2, 0.4,
0.6,0.8, and 1.0pm. In Figure 8-3, the magnitude of the transfer function is relatively unaf-
fected by imaging deeper into the glass. However, the phase of the transfer function begins
to show significant deviation from an ideal square wave when d is 0.8pum and is most pro-
nounced when d is 1.0um. These slight changes in the phase of K are not negligible since

the phase has a large impact on image quality.

In addition to using the image transfer function to measure optical system perfor-

mance, the total optical path difference, W(p), can also be represented as a sum of Zernike

polynomials [10]. Since the interface in Figure 8-1 is assumed to be infinite in the x and y
directions and since the optical system is rotationally symmetric, the aberrations induced
by the interface are rotationally symmetric as well. This implies that the aberrations are
spherical aberrations only. These spherical aberrations caused by imaging into the glass are
shown in Table 8-1. In Table 8-1, the piston and defocus aberration has been omitted since
these are correctable by moving the plane of focus. The first four non-correctable spherical
aberrations are displayed along with the total rms aberration. In an optical lithography
system, the total rms aberration should be less than 0.02A in order to maintain high resolu-

tion [147]. Since the total rms aberration at a depth of 2 1.0um into the glass is greater
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Figure 8-3. The magnitude and phase of the image transfer function, K.

The image transfer function is plotted for 365nm wavelength illumination optic having a
NA of 0.9 at a depth, d, into the glass of 0.2, 0.4, 0.6, 0.8, and 1.0pum.

164



than 0.02A, the inspection system may be incapable of producing high enough resolution

to properly image a defect in the glass.
Table 8-1. First four non-correctable spherical Zernike polynomials.

The polynomials are calculated as a function of depth, d, and the total rms aberration is

calculated.
spherical aberrations aj,
depth, d,inpm | 4 o2 2 2 RMS
0.2 0.0029A | -0.0012A | 0.0008A | -0.0004A | 0.0032A
04 0.0057A | -0.0024A | 0.0016A | -0.0007A | 0.0065A
0.6 0.0086A | -0.0036A | 0.0024A | -0.0011A | 0.0097A
0.8 0.0115A | -0.0048A | 0.0032A | -0.0015A | 0.0129A
1.0 0.0165A | -0.0073A | 0.0045A | -0.0025A | 0.0188A

8.3. Contact Hole Inspection

The inspection of a thin-film stack discussed in the previous section is generalized
in this section to include the topographical structure of a contact hole. The goal of the con-
tact hole inspection system is to locate defects at the bottom of the hole which may form
from underetching. If a defect is found, the source of the error can be corrected prior to pro-

cessing more wafers, which amounts to a savings of time and money.

The contact hole studied in this chapter is formed by plasma etching a hole into a

layer of dielectric isolation such SiO; that has been deposited over a silicon substrate. In

this study, the hole is perfectly cylindrical having a diameter of 0.25pm and stops at the
silicon and glass interface. The resulting contact hole topography is shown pictorially in
Figure 8-4. The inspection system illuminates the hole with 365nm wavelength light that
has been imaged with a 0.9 NA condenser optic. This incident light is scattered in all direc-
tions and the reflected light is collected by the same optic used to illuminate the hole, i.e.,
the optical system is a reflective system and ¢ is 1. This collected light is projected onto
the image plane. If a defect is present at the bottom of the hole, a well designed inspection

system should be able to distinguish between the aerial image with a defect and the aerial
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Figure 8-4. Schematic of the contact hole geometry to be inspected.
The hole is etched in 1.0pm of glass over a silicon substrate and is inspected at 365nm
with the optic having a NA of 0.9 and ¢ of 1.0.
image without a defect. In order for this inspection system to distinguish these changes in

the aerial image, the optical system must first deliver light to the bottom of the hole.

Inspection of a contact hole is difficult because of vertical propagation in the hole
and in the oxide. However, the topography of the etched hole causes normally incident
light to refract out of the hole. This is shown in Figure 8-5. The normally incident plane
wave used in Figure 8-5 is generated by imaging a single plane wave (6=0) onto the wafer
topography. This normally incident plane wave is refracted out of the hole, producing an

intensity that is nearly zero throughout the hole. This refraction is due to a critical angle

effect. Since the light is incident at an angle of 90° with respect to the sidewall, the light is
refracted into the glass with an angle equivalent to the critical angle. Because of this refrac-
tion, virtually no light reaches the bottom of the hole. Since little if any light reaches the

bottom, inspection of a defect at the bottom of the hole is impossible.

Since coherent illumination does not assist imaging the bottom of the hole because

of critical-angle refraction, applying obliquely incident illumination may overcome this
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Figure 8-5. Intensity inside the contact hole when illuminated with a single normally
incident plane wave.

Note that the hole topography refracts light out of the hole and little light reaches the bot-

tom of the hole.
and enable imaging the bottom of the hole. Obliquely incident illumination is produced in
the optical system by increasing the size of the illumination source (i.e., increasing O).
Here, the size of the illumination source was increased to from ¢ of 0 to ¢ of 1. The scat-
tering of this obliquely incident light produced by this larger source was simulated with
TEMPEST by using Abbe’s formulation. The intensity profile from the simulation is plot-
ted in Figure 8-6. Comparing Figure 8-5 and Figure 8-6, we observe that after appropriate
normalization, the intensity at the bottom of the hole increases when o=1 (as in Figure 8-
6) as opposed to when 6=0 (as in Figure 8-5). This increased intensity, however, is due to

a standing wave interaction with the substrate.
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Figure 8-6. Intensity inside the contact hole when illuminated with a partially coherent
source with ¢ of 1.0 and NA of 0.9.

8.4. Filter Design to Optimize Contact Hole Inspection

In the previous section, it was shown that using obliquely incident light from a
larger source results in light at the bottom of the hole. In this approach, these waves are
individually incoherent and are incapable of delivering substantial light to the bottom.
Another approach consisting of a collection of coherent excitations may result in more
light at the bottom. These coherent excitations are found by using a synthesis approach

based on the reciprocity theorem.

8.4.1. Point Source Excitation and the Reciprocity Theorem

A point source in free space creates a spherical wavefront, and the converse is true
as well, that is, a point image is generated by time reversing the propagation of a spherical
wavefront. This fact is known as the reciprocity theorem. This theorem can be used in con-

tact hole inspection to synthesize an excitation field that most efficiently guides light to the
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bottom of the hole. This optimal excitation is found by placing a point source at the bottom
of the hole and measuring the fields leaving the hole in a plane that is parallel and above
the SiO,-air interface, as shown in Figure 8-7. Extending the reciprocity theorem, we
hypothesized that the excitation field that most efficiently guides light to the bottom of the

hole is created by time reversing the field leaving the hole.

[ Measure Fields in this plane |

ohep

Si0,

Si

Figure 8-7. Schematic demonstrating the reciprocity principle.

The radiated fields are measured in the plane shown by the thick black line. From the reci-
procity theorem, these fields are taken to represent the optimal excitation needed to pro-
duce a large intensity at the bottom of the hole.

Using TEMPEST, a point source excitation was placed at the bottom of the hole and
allowed to radiated. Figure 8-8 depicts the radiated intensity for a point source having an
electric field polarized in the y direction in the xz plane. The radiated Ey field leaving the
hole was measured in an xy plane one wavelength above the SiO,-air interface; the mag-
nitude and phase of this field is plotted in Figure 8-9. This field has been low passed fil-
tered such that the field contains only the spatial frequencies that an NA of 0.9 illumination

optic is capable of producing.
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Figure 8-8. Electric field in the y direction radiated from a point source placed at the
bottom of the hole.

8.4.2. Magnitude and Phase of the Filter

The radiated fields exiting the hole in Figure 8-9 can be time reversed and allowed
to propagate back into the hole. According to the reciprocity theorem, these fields should
produce a field that efficiently guides light to the bottom of the hole. These fields can also
be propagated to a reference plane in the optical system by using Green’s theorem. By
propagating these fields to any plane, a filter that has both magnitude and phase can be
designed. However, the magnitude of the filter is generated by using an absorbing material
in the construction of the filter. This absorbing material would heat during the operation of
the inspection system, thus causing the properties of the filter to change. For this reason,
the filter is forced to be phase only. Since the field can be propagated to any plane, a filter
that is situated in either the exit pupil plane or in the object plane of the optic can be con-

structed. When a phase-only filter is placed in the exit pupil plane, the light passes through
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Figure 8-9. Magnitude and phase of the E, field measured in the plane above the hole
shown in Figure 8-7.

[



the filter twice because the condenser optic in a reflective system projects light onto the

hole and collects the scattered light.

To test this, the effectiveness of placing a phase filter in the exit pupil plane was
simulated with TEMPEST and was found to be less effective than a phase filter placed in
the object plane. Consequently, in the simulation results presented in this chapter, results
are shown only when the filter is placed in the object plane rather than in the pupil plane.
A schematic of this inspection system with a filter placed in the object plane is shown in
Figure 8-10. Placing the filter in the object plane, however, does have one disadvantage in

that it must be aligned to the wafer.

Ettective

Source Tmage Plane
A=365nm 2 3
Phase only

Filter
Condenser and
Projection
Optic
NA=0.9 c=1

Figure 8-10. Schematic showing the reflective optical inspection system.
The 365nm wavelength source is modulated by the phase filter which is imaged onto the

hole by an 0.9 NA condenser optic. The reflecting from the hole is collected by the same
condenser optic and is projected onto the image plane.
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Using this phase-only filter located in the object plane, the incident fields were cal-
culated by imaging the filter to an excitation plane situated in an xy plane above the hole
topography. These incident fields are plotted in Figure 8-11. In Figure 8-11, the fields have
approximately the same phase relationship as the phase-only filter prior to its projection
through the illumination optic of Figure 8-9. The phase transitions in Figure 8-11, how-
ever, are not as sharp as the transitions in the phase-only filter shown in Figure 8-9. Fur-
thermore, spatial resolution in the magnitude of that observed in Figure 8-11 is reduced
slightly as compared to the spatial resolution of the radiated field leaving the hole as in
Figure 8-9. These variations in magnitude and phase of the incident field from the radiated

field degrade the performance of the filter.

8.4.3. Coherent Fields Inside the Contact Hole Topography

In this section, the light incident upon the contact hole topography is first assumed
to be fully coherent. The fully coherent light is generated by replacing the effective source
found in Figure 8-10 with a point source (6=0). With this point source in conjunction with
the phase filter, an excitation field that is fully coherent is generated, as shown in Figure 8-
11. The scattering of this coherent excitation from the hole topography was then simulated
using TEMPEST. We find that the intensity in the contact hole due to this coherent exci-
tation is shown in Figure 8-12 in the xz plane. The intensity at the bottom of the hole using
the filter is significantly larger than the intensity without a filter under fully coherent illu-
mination (6=0) as was shown in Figure 8-5. The intensity at the bottom of the hole with
the filter and when 6=0 is approximately equivalent to the intensity in Figure 8-6, which
was produced by a source with 6=1. This indicates that the filter uses the illumination from
a point source as efficiently as the illumination from a large source. In addition to improv-
ing the intensity at the bottom of the hole, the filter conditions the light such that it is guided
down the hole. This guided light creates a leaky propagating mode in the hole.

This hypothesis was tested by depositing a 0.1um thick layer of absorbing alumi-
num over the oxide, and then the hole was etched. TEMPEST simulation results when illu-
minating this structure with filtered coherent light (6=0) are plotted Figure 8-13. The
aluminum prevents the refraction through the oxide due to off-axis illumination; conse-

quently, only light that is guided propagates in the hole as a leaky mode. Due to this guid-
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Figure 8-11. Magnitude and phase of the E,. field incident upon the contact hole a
wavelength above the hole.

The field is produced by modulating the source illumination with a phase-only filter and
projecting it upon the wafer with the condenser optic.
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Figure 8-12. Intensity inside the contact hole when using the phase filter and a coherent
point source excitation (6=0).
Note that the intensity at the bottom of the hole is approximately equal to the intensity
shown in Figure 8-6 when using a partially-coherent unfiltered excitation.
ing, the light can now propagate back out of the hole once it has interacted with defects at

the bottom of the hole.

Although the filter conditions light such that it is guided down the contact hole, the
intensity at the bottom of the hole, as in Figure 8-12, is less than the intensity at the bottom
generated by the point source in Figure 8-8. This indicates that the filter is incapable of pro-
ducing the same large field at the bottom of the hole when a point source is placed at the
bottom. This occurs because the filter is forced to be phase only. Consequently, the phase
and magnitude of the excitation generated by the filter seen in Figure 8-11 differs from the
phase and magnitude of the radiated field in Figure 8-9. These differences cause the reduc-

tion in the intensity at the bottom of hole.
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Figure 8-13. Effectiveness of the filter when an attenuating layer is placed on top of the
oxide.

This intensity profile is generated with a point source (c=0). The attenuated layer blocks

off-axis illumination through the oxide; consequently, the filter launches a leaky mode into

the hole.
8.4.4. Effect of the Partial Coherence on Filter Performance

In the previous section, the filter was shown to be effective at guiding coherent light
down the hole. In this section the effect of the partial coherence on the performance of the
filter is examined. Since the contact hole simulation domain is assumed to be periodic, the
partial coherence of the source was included by using Abbe’s formulation rather than the
decomposition technique discussed in Chapter 6. In Abbe’s formulation, the source is sam-
pled such that the periodicity of the simulation domain is maintained. The periodicity is
maintained by forcing the excitation field to be continuous over the simulation domain,
which is accomplished by forcing the angular excitation angles, 6 and ¢, to be discrete.

These angles are discrete when m and n in Equations 8-9 and 8-10 are of integer value
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where P, and Py are the period of the simulation domain in the x and y directions, respec-

tively. The field incident on the contact hole is then found by modulating this continuous

P

Equation 8-9. m= —fsinecosq) m=012,...
P

Equation 8-10. n= -xysinﬂsinq) n=2012,..

excitation field with the filter. This modulated field is projected onto the contact hole by
collecting the light diffracting from the filter with the condenser optic. The scattering of
this projected field from the contact hole topography is calculated by performing one
TEMPEST simulation for each sampled point of the source. In this contact hole simulation,
the source is sampled 29 times, which requires 20 TEMPEST simulations. The total inten-
sity due to the partial coherent illumination is then calculated by summing the individual

intensities produced by each of these 29 simulations.

This intensity is plotted in Figure 8-14, in which the partial coherence of the exci-
tation has been included. In Figure 8-14, the partially coherent light has been modulated
by the filter, and the scattering of this light from the contact hole was calculated through
TEMPEST simulation. The intensity at the bottom of the hole in Figure 8-14 when 0=1 is
approximately half the intensity at the bottom in Figure 8-12 when 6=0. This indicates that
the partial coherence actually degrades the performance of the filter. This degradation
occurs because the filter was designed to perform optimally for a single normally incident
plane wave. However, since the partial coherence is modelled by modulating the filter with
an obliquely incident plane wave in Abbe’s formulation, the modulation with an obliquely
incident plane wave changes the phase of the light propagating through the filter. Due to
this phase change, the phase of the filter is no longer optimal when it is modulated with
obliquely incident illumination; consequently, the performance of the filter is no longer

optimal.

Although oblique illumination degrades the performance of the filter, it is possible
to modify the illumination to maximize the amount of light reaching the bottom of the
hole. The illumination source that maximizes the amount of light at the bottom of the hole

is shown in Figure 8-15. In Figure 8-15, the source is sampled in five locations. In this
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Figure 8-14. Intensity in the contact hole when using the filter and a conventional
illumination source having ¢ of 1.0

source, each hole in the illumination pupil is 0.3 units in diameter relative to the size of
the numerical aperture. These holes are located at (0, 0), (0, 0.85), (0, —0.85), (0.85, 0),
and (—0.85, 0) in relative units of the pupil plane where the pupil is 1 unit in diameter.
Using this source, the intensity in the hole was calculated with TEMPEST simulation and
is plotted in Figure 8-16. Figure 8-16 shows that more light reaches the bottom of the hole
when the source is sampled five times as compared to the intensity observed in Figure 8-
12, when the source is sampled once, or when compared with the results depicted in

Figure 8-14, where the source is sampled 29 times.

The effectiveness of using both the modified illumination and the filter situated in
the object plane can be inferred by comparing results with this combination in Figure 8-16,
to results of using conventional illumination without a filter, as those observed in Figure 8-

6. Figure 8-16 shows that the intensity reaching the bottom when using both modified illu-
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Modified illumination Convention illumination
Each circular source is 0.3 units in diameter The source is sampled 29 times
and is located at (0,0), (0,0.85), (0,-0.85),
(0.85,0), and (-0.85,0)

Figure 8-15. Pupils of the modified illumination source and the convention illumination
source.

mination and the filter is approximately 3 times the intensity at the bottom in Figure 8-6

when neither modified illumination nor the filter is used. To better demonstrate this, the

intensity as a function of z is plotted in Figure 8-17 when x=0.0pm. Figure 8-17 indicates

that the intensity at the bottom of the hole (z=0.2um) up to the middle of the hole

(z=0.7pm) is greater when using the filter with modified illumination than when using con-

ventional unfiltered illumination.

Using this modified illumination, the ability of the filter to image defects at the
bottom of the hole was tested by comparing the aerial image of a hole without a defect to
the aerial image of a hole with a defect. The defect in this test is a 0.05um thick layer of
glass at the bottom of the hole, i.e., the hole was underetched 0.05um. The aerial image
with and without the defect is plotted along the x axis and along the y axis in Figure 8-18.
These aerial images are found by imaging the reflected light from the hole with the 0.9 NA
condenser optic. The effect of the partial coherence on these aerial images is modelled by
using Abbe’s formulation, in which the total intensity is the sum of intensities produced by

each of the five sources in the modified illumination. In these aerial images, the peak inten-
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Figure 8-16. Intensity in the contact hole when using the filter and the modified
illumination source of Figure 8-15.
sity at the center of the hole (x=0, y=0pum) is reduced when the hole is underetched, which

indicates that the filter is capable of imaging defects at the bottom of the hole.

8.4.5. Effect of Process Variation on Filter Performance

It was shown in Section 8.4.4 that the filter is capable of imaging defects at the
bottom of the hole. Due to variations in the process, the actual topography may deviate
from the modeled topography of Figure 8-4. These variations may degrade the perfor-
mance of the filter. In this section, the performance of the filter is tested when the oxide
thickness is reduced from 1.0pum to 0.9um and when the hole is overetched from 0.251um
to 0.3um. Reflected aerial images due to these two variations and from the hole without
any variations again are plotted along the x axis and y axis. In comparing the images in
which the hole diameter changes, the intensity reflecting off the larger diameter hole is

reduced in comparison to the intensity reflecting off the hole with 0.25um diameter. This
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Figure 8-17. Intensity in the center of the contact hole for unfiltered and filtered
illumination.

The intensity is plotted as a function of z when x=0.0um. The intensity with the unfiltered

illumination was given in Figure 8-6 when using conventional illumination with G of 1.0.

The intensity with the filtered illumination was given in Figure 8-16 when using the mod-

ified illumination of Figure 8-15.
is due to light being refracted out of the hole. A larger hole would propagate a leaky mode
with a larger guide wavelength. Since the filter is incapable of creating this leaky mode,
the light no longer propagates down the hole as efficiently as in the case of the 0.25um
diameter hole, and instead of propagating down the hole, the light is refracted out of the
hole. In comparing images in which the oxide thickness changes, the aerial image with a
thinner oxide differs significantly from the image produced from a 1.0um thick oxide. This
difference is most likely due to a focusing problem since the interference in the hole and
in the oxide is occurring at a different plane. Both these variations, larger diameter and
thinner oxide, cause large deviations in aerial image in comparison to the image produced
by the 0.25um diameter hole in 1.0pm thick oxide. These variations may make it difficult
for the filter to determine when a defect is actually present or when a process variation is

causing the difference.
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Reflected aerial image of a fully-etched and under-etched contact hole along the x axis
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Reflected aerial image of a fully-etched and under-etched contact hole along the y axis
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Figure 8-18. Reflected aerial images of fully-etched and under-etched contact holes.

In both the images the modified illumination source of Figure 8-15 is used.
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Figure 8-19. Reflected aerial images of the 0.25um dia. hole in 1.0um oxide as compared
to the image of a 0.3um dia. hole and to the image of a hole in 0.9um oxide.

183



8.5. Conclusions

Thin-film layers induce spherical aberration that becomes significant for high NA
inspection systems. Through a ray tracing model, these spherical aberrations were calcu-
lated for a glass-and-air interface. The aberrations are quantified by calculating the Strehl
ratio, the point spread function, and the Zernike polynomials. These calculations indicate
that 0.8um of glass can be inspected through before the induced spherical aberrations
degrade the image quality. However, since reflected inspection systems are used, the light
must travel through the glass twice. Consequently, a defect below 0.4pm of glass may be

difficult to distinguish because of a loss resolution in the reflected image of the defect.

The success of the filter in imaging the bottom of a contact hole shows that simu-
lation tools are capable of optimizing contact hole inspection. By using this phase filter the
amount of light reaching the bottom of the hole increases by three times. Furthermore, this
filter launches a leaky mode that propagates down the hole. This propagation allows the
light to interact with defects at the bottom of the hole and to propagate up the hole. When
using this filter, the reflected aerial image differs by as much as 10% when the contact hole
is under-etched by 0.05um. Although this initial success shows that the filter is capable of
imaging the bottom of the hole, the introduction of process variations such as a larger hole
diameter or a thinner oxide causes the filter to fail. However, this initial study did not pro-
duce an optimal filter since the partial coherence and defocus was ignored in the design. In
the future, the effect of the partial coherence will be added to the point source excitation.
By fully considering the partial coherence, it may be possible to design a filter that is not

susceptible to process variation.
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9 Conclusions

As dimensions continue to shrink in semiconductor manufacture, understanding
how light scatters from these smaller features becomes increasingly important. Simulation
of these scattering effects in optical lithography can provide valuable process information
and can predict problems due to these scattering mechanisms prior to their observation in
manufacturing. Moreover, simulation is capable of identifying the scattering mechanisms
which adversely effect lithographic performance. By isolating these mechanisms, simula-
tion can be used to find approaches that correct problems due to scattering and to determine
the effectiveness of novel technologies to overcome them. Furthermore, as the cost of per-
forming experiments continues to increase and as the cost of computer time and memory
continues to decrease, simulation is expected to grow as a cost effective means of creating

and analyzing new processing techniques.

This thesis has extended the domain of electromagnetic simulation to include the
propagation effects of partial coherent light in optical lithography and inspection. It pre-
sented the first formulation of a computationally efficient method for analyzing topogra-
phy scattering with vector polarized, partially coherent spatial illumination. The
implementation of this method into TEMPEST-PCD (TEMPEST with Partial Coherence
Decomposition) was also described and a systematic study of the effect of partial coher-
ence in mask imaging and in wafer patterning by using TEMPEST-PCD was also given.

With regard to a computationally efficient method that includes polarization and
partial coherence of the source, a vector formulation was given in Chapter 6. It is based on
generalizing the scalar decomposition technique developed by Gamo which was presented
in Chapter 3. In this method, the coherency matrix is expanded into a set of orthogonal

eigenfunctions. Since the eigenfunctions are orthogonal, each of these eigenfunction exci-
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tations are considered independently. This decomposition is optimal in an energy compac-
tion sense, i.e., the least number of excitations are need to represent the coherency and the
polarization of the system. This energy compaction reduces the simulation time by 7X for
typical lithography problems and reduces the time by 10X for inspection problems. For
example, in an inspection system with NA of 0.9 and ¢ of 1, the decomposition technique
would require only 93 simulations for a 0.01% error in the center of the domain while
Abbe’s formulation would require over 1125 simulations to produce the same error. The
vector decomposition is accurate in the center of the simulation and suffers some loss of
accuracy at the edges of the simulation. The decomposition technique is more accurate in
non-periodic simulation domains; Abbe’s formulation is more accurate, however, in small

periodic simulation domains when aliasing occurs.

This optimal decomposition technique was implemented by creating a new version
of the program called TEMPEST. The new version is called TEMPEST-PCD (TEMPEST
with Partial Coherence Decomposition). TEMPEST-PCD integrates SPLAT and TEM-
PEST into one software package. The software package decomposes the vector polarized
partial coherent illumination and simulates the propagation of the partial coherent illumi-
nation. The software is capable of predicting how the propagation of partial coherent light
influences scattering from the topography in optical lithography and inspection. In optical
lithography or inspection, the aerial image due to the scattering of the partially coherent
vector field from the topography on the wafer can be calculated by the software, and the

image inside the photoresist can be evaluated as well.

The formulation and implementation of methods to include the partial coherence
were made in support of a series of investigations of advanced innovations in optical
lithography. Chapter 4 examined the effect of the partial coherence in mask imaging. By
considering the mutual coherence between two points, X1 and xj, it was possible to develop
a perturbational model which factors the problem into known contributions for rapid alge-
braic evaluation. The impact of a defect on the aerial image of a feature was found to be
directly proportional to mutual coherence and inversely proportional to line edge slope of

the image intensity. Depending on this line edge slope, some illumination sources are more
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defect tolerant. For example, it was shown in Section 4.5 that quadrupole illumination is

most defect tolerant for dense arrays because of its improved line edge slope.

A problematic issue in rapid evaluation of images in optiéal projection printing is
the validity of the approximation that a mask’s diffraction efficiencies are independent of
the angle of illumination. This approximation is the foundation of Hopkins’ method, which
allows the order of integration to be changed such that the transmission cross-coefficients
are a property of the optical system and are independent of the mask. To understand the
effect of vector-polarized partially coherent light, simulations were run for a 2D phase
shifting line pattern (see Section7.2) and for a 3D phase-shifting contact hole (see
Section 6.7). These simulations calculated the aerial image through four methods: scalar
SPLAT simulation, TEMPEST-HN simulation, TEMPEST-PCD, and TEMPEST with
Abbe’s formulation. For both of these phase shifting features, the aerial images with TEM-
PEST-PCD were in very close agreement with the images calculated with TEMPEST-
Abbe. In all the cases simulated, TEMPEST-PCD required fewer simulations than TEM-
PEST-Abbe. The aerial image calculated with TEMPEST-HN, which is an approximate
method to include the partial coherence, begins to deviate from the aerial images with
TEMPEST-PCD when the magnitude of the diffracted orders is no longer independent of
the angle of incidence. These diffracted orders were found to be independent of angle when
the height of the feature is greater than 20% of the opening size and when ¢ multiplied by
NA (6NA) is less than 0.5. In comparison to these TEMPEST simulation techniques, the
scalar simulations with SPLAT, however, predict a larger intensity in the clear areas of the
mask that is incorrect. This increase is due to the fact that the scalar SPLAT simulation
neglects the induced currents on the mask. These currents short the vector fields near mask
edges and decrease the effective width which reduces the amount of light transmitted.
Since SPLAT simulation is much faster than TEMPEST simulation, SPLAT should be
used as a first-order prediction of the aerial image and TEMPEST should be used to deter-
mine second-order effects due to these induced currents. Such studies are needed for sub-

resolution optical proximity correction features.
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By using a pre-patterned edge in resist to produce a 180° phase shift, a line with
sub-wavelength resolution can be patterned. The linewidth with the two layer process is
approximately on the order of a wavelength while a phase-shift edge on a mask can pro-
duce a linewidth that is two-thirds the wavelength. The simulations also indicate that a ¢
less than 0.3 is needed to produce an intensity minimum that is less than 0.1. This intensity
minimum is necessary in order to produce a well-defined photoresist line after develop-
ment. The phase-shift edge of the top-layer resist causes light to refract into the bottom of

the resist in a region directly below the top layer. This refraction is due to the critical angle

effect of light incident at 90° with respect to the phase edge. This introduces an unwanted
asymmetry in the intensity profile and in the developed resist line. The refraction at the
edge also causes a 25nm shift in alignment of the line with the top-layer resist edge.
Finally, £10% thickness variation in the top-layer resist causes as much as £5% linewidth
variation and 25nm shift in alignment. The slope of the phase edge was shown to produce

little change in the linewidth and alignment.

One important reason underlying this research is to enhance our understanding of
the influence of the partial coherence on wafer printing. TEMPEST-PCD simulations more
accurately model the patterning of a gate over an active area trench. TEMPEST-PCD pre-
dicts that the photoactive compound (PAC) concentration in the unexposed gate area will
be higher at low G prior to the post-exposure bake (PEB). This would seem to indicate that
higher ¢ have less reflecting notching problems than lower ¢ in the latent image. However,
since a post-exposure bake is always performed to reduce standing waves, the effect of the
PEB must be taken into account prior to reaching a conclusion on the role of 6 on reflective
notching. When the diffusion is Fickian and when the dose, D, multiplied by the photo
speed, C, is much less than one, the generation of PAC is linearly proportional to intensity.
This implies that the PEB diffusion can be taken into account by convolving the intensity
with a Gaussian diffusion function rather than by convolving the PAC with this Gaussian

function. This PEB diffusion in effect low pass filters the initial PAC concentration. When
A
the diffusion length is near the interference distance in the resist, I’ notching in the pat-

tern is eliminated and the diffusion in effect removes the coherence between the interfering
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beams. This diffusion process implies that simulation of the partial coherence may not be
important in practice, and coherent illumination can be assumed when the diffusion length

. A
is near —.
4n

Studies of wafer inspection lead to several important conclusions about light inter-
action in inspection methods. Thin-film layers induce spherical aberration which becomes
significant for high NA inspection systems, as shown in Section 8.2. Through a ray tracing
model, these spherical aberrations were calculated for a glass-and-air interface. These cal-
culations indicate that a defect below 0.4um of glass may be difficult to distinguish
because of a loss in resolution due to these induced spherical aberrations. In Section 8.4, a
method of designing a filter based on the reciprocity theorem and implemented in TEM-
PEST was presented to find the far fields radiated from a point source placed at the bottom
of a contact hole. From these far fields, a filter was designed and forced to be phase only.
This phase filter increases threefold the amount of light reaching the bottom of the hole.
Evidence that this filter launches a leaky mode that propagates down the hole was also
found. This propagation allows the light to interact with defects at the bottom of the hole
and to propagate up the hole. The sensitivity of this filter was also assessed and found to

have moderate dependence on hole size and oxide thickness.

With this TEMPEST extension to include the partial coherence, TEMPEST-PCD
is effective in modeling two-dimensional and three-dimensional electromagnetic scatter-
ing problems in optical lithography and inspection. Hopefully, this extension will assist in

the development of future lithographic and inspection technologies.

The main goal of this thesis was to extend topography scattering to include partial
coherence effects. The optimal expansion method of Gamo was found to be the best
approach. This problem has plagued the IC industry for some time. A problem that required
256 simulations in the past can now be reduced to 30 simulations with the decomposition
technique. Availability of a tool to simulate partial coherence yielded much substantive
information about the full effect of the partial coherence. While the partial coherence in

topography scattering is not the major concern it was once thought to be, it is hoped that
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the methods and code developed in this thesis will continue to provide a full check of the

partial coherence when needed.

190



Bibliography

[1]

[2]

[3]

[4]
(5]

(6]

[7]

(8]

]

[10]
[11]
[12]
(13]

E. Abbe, “Beitrage zur Theorie des Mikroskops und der mikroskopischen
Wahmnehmung,” Archiv f. Mikroskopische Anat., vol. 9, pp. 413-468 (1873).

S. André and A. Weill, “Variable Numerical Aperture and Partial Coherence
studies: Process Window and Proximity Effects.

C. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, New
York, 1989), pp. 314-323.

ibid., pp. 323-325.

P. H. Berning, “Theory and Calculations of Optical Thin Films,” Physics of Thin
Films, ed. George Hass (Academic Press, New York, 1963), pp. 931-934.

E. Barouch, B. Bradie, G. Karniadakis, and S. Orszag, “Comprehensive 3D
simulator with non-planar substrates,” Proc. of SPIE, vol. 1264, pp. 334-342
(1990).

M. Beran and G. Parrent, Theory of Partial Coherence (Prentice Hall, Englewood
Cliffs, N. ., 1964).

N. Bobroff and A. Rosenbluth, “Alignment errors from resist coating topography,”
J. Vac. Sci. Technol. B, vol. 6, no. 1, pp. 403-408 (1988).

M. Bomn and E. Wolf, Principles of Optics (Pergamon Press, New York, 1980), p.
438.

ibid., pp. 459-468.
ibid., pp. 513-516.
ibid., pp. 519-526.
ibid., pp. 535-537.

191



[14)

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28)

Y. Borodovsky, “Impact of Local Partial Coherence Variations on Exposure Tool
Performance,” Proc. of SPIE, vol. 2440, pp. 750-770 (1995).

R. von Biinau et al., “Depth of focus enhancement in optical lithography,” J. Vac.
Sci. Technol. B, vol. 10, pp. 3047-3054 (1992).

R. von Biinau et al., “Optimization of pupil filters for increased depth of focus,”
Ipn. J. Appl. Phys., vol. 32, pp. 5850-5855 (1993). '

R. von Biinau, “Depth of Focus Enhancement in Optical Lithography,” Ph. D.
Dissertation, Stanford University, 1993.

C. B. Burckhardt, “Diffraction of a Plane Wave at a Sinusoidally Stratified
Dielectric Grating,” J. Opt. Soc. Am., vol. 56, no. 11, pp. 1502-1509 (1966).

D. Canals-Frau and M. Rousseau, Optica Acta, vol. 5, p. 15 (1958).

P. Canestrari, S. Carrera, G. A. Degiorgis, and V. Visentini, “Impact of Reticle
Defects on Submicron 5x Lithography,” Proc. of SPIE, vol. 1261, pp. 225-237
(1990).

P. Canestrari, G. Degiorgis, P. De Natale, L. Gazzaruso, and G. Rivera,
“Optimization of partial coherence for half micron i-line lithography,” Proc. of
SPIE, vol. 1463, pp. 446-455 (1991).

J. R. Carson, “Reciprocal theorems in radio communications,” Proc. IRE, vol. 17,
pp. 952-956 (1929).

W. Charman, “Some experimental measurements of diffraction images in low-
resolution microscopy,” J. Opt. Soc. Am. vol. 53, p. 410 (1963).

N. Cobb and A. Zakhor, “Fast, Low-Complexity Mask Design,” Proc. SPIE, vol.
2440, p. 313 (1995).

N. Cobb, “Sum of Coherent Systems Decomposition by SVD,” not published
(1995).

D. Cole et al., “Extending scalar aerial image calculations to higher numerical
apertures,” Journal of Vacuum Science and Technology B, vol. 10, No. 6, pp. 3037-
3041 (1992).

P. Considine, “Effects of Coherence on Imaging Systems,” J. Opt. Soc. Am., vol.
56, p. 1001 (1966).

M. De and S. C. Som, “Diffraction images of circular openings with partially
coherent illumination,” Opt. Acta, vol. 9, p. 17 (1962).

192

~

()



[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42)
[43]
[44]
[45]

M. De and S. C. Som, “Diffraction Images of Circular Phase Objects in Partially
Coherent Light,” J. Opt. Soc. Am., vol. 53, no. 7, p. 779 (1963).

J. W. Demmel, J. R. Gilbert, and X. S. Li, “SuperLU Users’ Guide,” University of
California at Berkeley (1997).

H. Dijkstra and C. Juffermans, “Optimization of Anti-Reflection Layers for Deep
UV Lithography,” Proc. of SPIE, vol 1927, pp. 275-286 (1993).

F. H. Dill, “Optical Lithography,” IEEE Trans. Electron Dev., vol. ED-22, no. 7,
pp. 440-444 (1975).

D. G. Flagello and R. Rogoff, “The influence of photoresist on the optical
performance of high NA steppers,” Proc. of SPIE, vol. 2440, pp. 340-348 (1995).

H. Fukuda et al., “Spatial filtering for depth of focus and resolution enhancement
in optical lithography,” J. Vac. Sci. Technol. B, vol. 9, pp. 3113-3116 (1991).

G. M. Gallatin, J. C. Wedster, E. C. Kintner, and F. Wu, “Modeling the images of
alignment marks under photoresist,” Proc. of SPIE, vol. 772, pp. 193-201 (1987).

J. Gamelin, “Simulation of Topography Scattering for Optical Lithography with the
Connection Machine,” M.S. Thesis, Memorandum No. UCB/ERL M89/71,
University of California, Berkeley, May 1989.

J. Gamelin, R. Guerrieri, and A. R. Neureuther, “Exploration of Scattering from
Topography with Massively Parallel Computers,” J. Vac. Sci. Technol. B, vol. 7,
no. 6, pp. 1984-1990 (1989).

H. Gamo, “Matrix Treatment of Partial Coherence,” Progress in Optics, (North
Holland, New York, 1964), vol. 3, p. 187.

J. Garafalo, J. DeMarco, J. Bailey, J. Xiao, and S. Vaidya, “Reduction of ASIC
Gate-level line-end shortening by Mask Compensation,” Proc. of SPIE, vol. 2440,
pp. 171-183 (1995).

J. Goodman, “Statistical Properties of Laser Speckle Patterns,” Laser Speckle and
Related Phenomena, edited by J. Dainty, pp. 42- 46, (1984).

J. Goodman, Statistical Optics, (Wiley, New York, 1985), pp. 109-111.
J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1995), p. 32.
ibid., pp. 37-40.

ibid., pp. 102-103.

ibid., pp. 134-136.

193



[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54)

[55]

[56]

[57]

(58]

[59]

[60]

R. Guerrieri, K. Tadros, J. Gamelin, and A. Neureuther, “Massively Parallel
Algorithms for Scattering in Optical Lithography,” IEEE Trans. CAD, vol. 10, no.
9, pp. 1091-1100 (1991).

R. F. Harrington, Time-Harmonic Electromagnetic Fields, (McGraw-Hill, New
York, 1961).

W. H. Hayt, Jr., and J. E. Kimmerly, Engineering Circuit Analysis, Third Edition,
(McGraw-Hill, New York, 1978).

E. Hecht, Optics, (Addison-Wesley, Menlo Park, 1987). pp. 523-528.

W. Henke, D. Mewes, M. Weiss, G. Czech, and R. Schiessl-Hoyler, “Simulation of
Defects in 3-Dimensional Resist Profiles in Optical Lithography,” Microelectronic
Engineering, vol. 13, pp. 497-501 (1991).

H. H. Hopkins, “The concept of partial coherence in optics,” Proc. Roy. Soc. A, vol.
208, p. 263 (1951).

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. Roy. Soc. A,
vol. 217, p. 408 (1953).

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. Roy.
Soc. A, vol. 231, p. 91 (1955).

H. H. Hopkins, “Applications of coherence theory in microscopy and
interferometry,” Journal of the Optical Society of America, vol. 47, No. 6, pp. 508-
526 (1957).

J. C. Housley and D. J. Williams, “Dyes in Photoresist: Today’s View,”
Semiconductor International, pp. 142-144, April 1988.

B. Huynh, K. K. Toh, W. E. Haller and A. R. Neureuther, “Optical Printability of
Defects in Two-dimensional Patterns,” J. Vac. Sci. Technol. B, vol. 6, no. 6, p. 2207
(1988).

D. F. Iiten and K. V. Patel, “Standing Wave Effects in Photoresist Exposure,”
Image Technology, pp. 9-14 (1971).

G. Indebetouw and H. Bai, “Imaging with Fresnel zone pupil masks,” Appl. Opt.,
vol. 23, pp. 4299-4302 (1984).

F. G. Kasper, “Diffraction by thick, periodically stratified gratings with complex
dielectric constant,” J. Opt. Soc. Am., vol. 63, no. 1, pp. 37-45 (1973).

M. C. King, “The emerging technology for 1:1 optical projection lithography,”
COMPCON spring ‘80. VLSI: New Architectural Horizons (IEEE Press, New
York). pp. 294-297 (1980).

194

2

-



-~

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

E. C. Kintner, “Method for the calculation of partially coherent imagery,” Applied
Optics, vol. 17, no. 17, pp. 2747-2753 (1978).

E. Korka, “Standing Waves in Photoresists,” Applied Optics, vol. 9, no. 4, pp. 969-
970 (1970).

M. E. Law and R. W. Dutton, “Verification of Analytic Point Defect Models Using
SUPREM-1V,” IEEE Trans. CAD, vol. 7, pp. 181-190 (1988).

D. Lee, D. Newmark, K. Toh, P. Flanner, and A. Neureuther, “SPLAT v5.0 Users’
Guide,” Memorandum No. UCB/ERL M95/13 University of California, Berkeley
(1995).

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving Resolution in
Photolithography with a Phase-Shifting Mask,” IEEE Trans. Elect. Dev., vol. ED-
31, pp. 753-763 (1984).

J. Lim, Two-Dimensional Signal and Image Processing, (PTR Prentice Hall, New
Jersey, 1990), pp. 154-157.

ibid., pp. 642-647.

D. Lucas, A. Strojwas, and H. Tanabe, “Efficient 3D Phase Shifting Mask
Lithography Simulation,” Proc. of SPIE, vol. 2440, pp. 422-434 (1995).

C. A. Mack, “PROLITH: A Comprehensive Optical Lithography Model,” Proc. of
SPIE, vol. 538, pp. 207-220 (1985).

C. A. Mack, “An analytical expression for the standing wave intensity in
photoresist,” Applied Optics, vol. 25, no. 12, pp. 1958-1961 (1985).

C. A. Mack, “An Algorithm for Optimizing Stepper Performance Through Image
Manipulation,” Proc. of SPIE, vol. 1264, pp. 71-82 (1990).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge
University Press, Cambridge, 1995), pp. 340-373.

A. S. Marathay, Elements of Optical Coherence Theory (John Wiley & Sons, New
York, 1982), pp. 105-112.

V. Mastromarco, A. R. Neureuther, and K. K. H. Toh, “Printability of Defects in
Optical Lithography: Polarity and Critical Location Effects,” J. Vac. Sci. Technol.
B, vol. 6, no. 1, p. 224 (1988).

T. Matsuzawa, A. Moniwa, N. Hasegawa, and H. Sunami, “Two-Dimensional
Simulation of Photolithography on Reflective Stepped Substrate,” IEEE Trans.
CAD, vol. CAD-6, no. 3, pp. 446-451 (1987).

195



[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

C. W. McCutchen, “Generalized Aperture and the Three-Dimensional Diffraction
Image,” J. Opt. Soc. Am., vol. 54, no. 2, p. 240 (1964).

S. Middlehoek, “Projection Masking, Thin Photoresist Layers and Interference
Effects,” IBM Jour. Res. Dev., vol. 14, pp. 117-124 (1970).

K. Mikami, H. Mohri, H. Miyashita, N. Hayashi, H. Sano, “Development and
Evaluation of Chromium-Based Attenuated Phase Shift Masks for DUV
Exposure,” Proc. of SPIE, vol. 2521, pp. 333-342 (1995).

M. Mino and Y. Okano, “Improvement of the OTF of a defocused optical system
through the use of shaded apertures,” Appl. Opt., vol. 10, pp. 2219-2225 (1971).

L.W. Nagel, “SPICE2 - A Computer Program to Simulate Semiconductor
Circuits,” M. S. Thesis, Memorandum No. ERL-M520, University of California,
Berkeley, May 1975.

A. Neureuther and K. Zaki, “Numerical Methods for the Analysis of Scattering
from Non-Planar Periodic Structures,” Intn’l URSI Symposium on Electromagnetic
Waves, Stresa, Italy, pp. 282-285 (1969).

A. Neureuther, P. Flanner, ITI, and S. Shen, “Coherence of defect interactions with
features in optical imaging,” J. Vac. Sci. Technol. B, vol. 5 (1), pp. 308-312 (1987).

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic Study of
Resonances of Holographic Thin Film Couplers,” Optics Communications, vol. 9,
no. 1, pp. 48-53 (1973).

C. Nolscher, L. Mader, and M. Schneegans, “High contrast single layer resists and
antireflection layers - an alternative to multilayer resist techniques,” Proc. of SPIE,
vol. 1086, pp. 242-250 (1989).

D. Nyyssonen and C. P. Kirk, “Optical microscope imaging of lines patterned in
thick layers with variable edge geometry: theory,” J. Opt. Soc. Am. A, vol. 5, no. 8,
pp. 1270-1280 (1988).

T. Ogawa, M. Kimura, T. Gotyo, Y. Tomo, and T. Tsumori, “Practical resolution
enhancement effect by new complete anti-reflective layer in KrF excimer laser
lithography,” Proc. of SPIE, vol. 1927, pp. 263-274 (1993).

H. Ohtsuka, K. Kuwahara, and T. Onodera, “Diagonal Phase Errors Affecting on
Optical Intensity in Phase Defect Repair Elements,” Jap. J. Appl. Physics, Part 1,
vol. 32, no. 12B, pp. 5892-5899 (1993).

J. Ojeda-Castafieda et. al., “Line-spread function relatively insensitive to defocus,”
Opt. Lett., vol. 8, pp. 458-460 (1983).

196

[

r
="

™

.-



»)

[89]

[90]

[91]

[92]

[93]

[94)

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

J. Ojeda-Castaiieda et. al., “Spatial filter for increasing depth of focus,” Opt. Lett.,
vol. 10, pp. 520-522 (1985).

J. Ojeda-Castaiieda er. al., “Annular apodizers for low sensitivity to defocus and to
spherical aberration,” Opt. Leit., vol. 11, pp. 487-489 (1986).

J. Ojeda-Castafieda et. al., “Bessel annular apodizers: imaging characteristics,”
Appl. Opt., vol. 26, pp. 2770-2772 (1987).

J. Ojeda-Castafieda and A. Diaz, “High focal depth quasibifocus,” Appl. Opt. vol.
27, pp. 4163-4165 (1988).

J. Ojeda-Castaiieda et. al., “Apodization of annular apertures: Strehl ratio,” Appl.
Opt., vol. 27, pp. 5140-5145 (1988).

W. G. Oldham, S. N. Nandgaonkar, A. R. Neureuther, and M. M. O’Toole, “A
General Simulator for VLSI Lithography and Etching Process: Part I - Applications
to Projection Lithography,” IEEE Trans. Electron Devices, vol. ED-26, no. 4, pp.
717-722 (1979).

M. M. O’Toole, “Simulation of Optically Formed Image Profiles in Positive
Resist,” Ph. D. Dissertation, U. Calif., Berkeley (1979).

W. N. Partlo, S. G. Olson, C. Sparks, and J. E. Connors, “Optimizing NA and Sigma
for Sub-Half Micrometer Lithography,” Proc. of SPIE, vol. 1927, pp. 320-332
(1993).

Y. Pati and T. Kailath, “Phase-shifting masks for microlithography: Automated
design and mask requirements,” J. Opt. Soc. Am. A, vol. 2438, p. 2438 (1994).

1. Petersen, D. Herr, M. Lutz, and J. Bontrager, “An experimental method for the
minimization of linewidth variation in photoresist patterns over polysilicon
topography,” Proc. of SPIE, vol. 921, pp. 326-336 (1988).

R. Petit and M. Cadihac, “Sur la diffraction d’une onde plane parun réseau
infiniment conducteur,” C. R. Acad. Sci. B, vol. 262, no. 7, pp. 468-471 (1966).

M. R. Pinto, C. S. Rafferty, and R. W. Dutton, “PISCES-II - Poisson and Continuity
Equation Solver,” Stanford Electronics Laboratory Technical Report, Stanford
University, Sept. 1984.

T. Pistor, “Generalizing thé TEMPEST FDTD Electromagnetic Simulation
Program,” M.S. Thesis, University of California at Berkeley (1997).

C. Progler and D. Byrne, “Merit functions for lithographic lens design,” J. Vac. Sci.
Technol. B, vol. 14, no. 6, pp. 3714-3718 (1996).

197



[103]

[104]

[105]

[(106]

[107]

(108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

C. Progler, H. Du, and G. Wells, “Potential causes of across field CD variation,”
Proc. of SPIE, vol. 3051 (1997).

Q.-D. Qian and F. A. Leon, “Fast algorithms for 3D high NA lithography
simulation,” Proc. of SPIE, vol. 2440, pp. 372-380 (1995).

Lord Rayleigh, “On the Dynamical Theory of Gratings,” Proc. R. Soc. London A,
vol. 79, pp. 399-416 (1907).

B. Saleh and M. Rabbani, “Simulation of partially coherent imagery in the space
and frequency domains and by modal expansion,” Applied Optics, vol. 21, pp.
2770-2777 (1982).

S. Selberherr, A. Schiitz, and H. W. Pétzl, “MINIMOS - a Two-Dimensional MOS
Transistor Analyzer,” IEEE Trans. Electron Devices, vol. ED-27, pp. 1540-1550
(1980).

S. Y. Shaw, S. Palmer, and S. J. Schuda, “Printability Study of Opaque and
Transparent Defects Using Standard and Modified Illumination,” Proc. of SPIE,
vol. 2440, pp. 878-890 (1995).

C.J.R. Sheppard and Z. S. Hegedus, “Axial behavior of pupil-plane filters,” J. Opt.
Soc. Am. A, vol. 5, pp. 643-647 (1988).

B. J. Sheu, D. L. Scharfetter, P. K. Ko, and M. C. Jeng, “BSIM: Berkeley short-
channel IGFET model for MOS transistors,” IEEE J. Solid-State Circuits, vol. SSC-
22, pp. 558-565 (1987).

R. Socha, A. Neureuther, and R. Singh, “Printability of Phase Shift Defects Using
a Perturbational Model,” Proc. SPIE, vol. 2087, pp. 277-287 (1993).

R. Socha, A. Wong, M. Cagan, Z. Krivokapic, and A. Neureuther, “Effects of
Wafer Topography on the Formation of Polysilicon Gates,” Proc. of SPIE, vol.
2440, p. 361 (1995).

R. Socha and A. Neureuther, “The Role of Illumination and Thin-Film Layers on
the Printability of Defects,” Proc. of SPIE, vol. 2440, p. 532 (1995).

R. Socha, A. Neureuther, and R. Singh, “Models for Characterizing Phase-Shift
Defects in Optical Projection Printing,” IEEE Trans. Semi. Man., vol. 8, no. 2, pp.
139-149 (1995).

R. Socha and A. Neureuther, “Propagation effects of partial coherence in optical
lithography,” J. Vac. Sci. Technol. B, vol. 14, p. 3724 (1996).

R. Socha, C. Progler, and A. Neureuther, “The Effect of Partial Coherence on
Reflective Notching,” Proc. of SPIE, vol. 3051 (1997).

198

’



[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]
[126]

[127]

[128]

[129]

[130]

[131]

R. Socha and A. Neureuther, “Pupil Filter Design Methodology for Defect
Detection in Wafer Inspection,” J. Vac. Sci. Technol. B., vol. 15, (1997).

S. C. Som, “Diffraction Images of Annular and Disk-like Objects under Partially
Coherent Illumination,” J. Opt. Soc. Am., vol. 57, no. 12, p. 1499 (1967).

A. Sommerfeld, Partial Differential Equations in Physics, (Academic Press, New
York, 1949), pp. 236-265.

A. Sommerfeld, Optics, (Academic Press, New York, 1954), p. 197.

W. Steel, “Effects of Small Aberrations on the Images of Partially Coherent
Objects,” J. Opt. Soc. Am., vol. 47, p. 405 (1957).

S. Subramanian, “Rapid calculation of defocused partially coherent images,”
Applied Optics, Vol. 20, No. 10, pp. 1854-1857 (1854).

K. Tadros, A. Neureuther, J. Gamelin, and R. Guerrieri, “Investigation of
Reflective Notching with Massively Parallel Simulation,” Proc. of SPIE, vol. 1264,
pp. 322-332 (1990).

Technology Modeling Associates, DEPECT-2, Technology Modeling Associates,
1990.

E. Tejnil, Private Communication.

K. K. Toh and A. Neureuther, “Identifying and monitoring effects of lens
aberrations in projection printing”, Proc. of SPIE, vol. 772, pp. 202-209 (1987).

Y. Tomo, T. Kasuga, M. Saito, M. Someya and T. Tsumori, “0.35mm rule device
pattern fabrication using high absorption type novolac photoresist in single layer
deep UV lithography: Surface image transfer for contact hole fabrication,” J. Vac.
Sci. Technol., B, p. 2576 (1992).

B. Thompson, “Image formation with partially coherent light,” Progress in Optics,
vol. 7, pp. 169-230 (1969).

A. Tol, G. Maxwell, H. Urbach, and R. Visser, “Simulation of scattering effects in
photolithography,” Proc. of SPIE, vol. 1264, pp. 294-308 (1990).

J. Tsujiuchi, “Correction of optical images by compensation of aberrations and by
spatial frequency filtering,” Progress in Optics, vol. 3, pp. 131-152 (1963).

T. Uchiyama, S. Shioiri, T. Hashimoto, and K. Kasama, *Standing Wave Effect of
Various Illumination Methods in 0.25um KrF Excimer Laser Lithography,” Jpn. J.
Appl. Phys., vol. 34, pp. 6560-6564 (1995).

199



[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144])

[145]

H. Urbach and D. Bernard, “Modelling Latent Image Formation in
Photolithography using the Helmholtz Equation,” Proc. of SPIE, vol. 1264, pp.
278-293 (1990).

C. Varamit and G. Indebetouw, “Imaging properties of defocused partitioned
pupils,” J. Opt. Soc. Am., vol. 6, pp. 799-802 (1985).

S. Venit and W. Bishop, Elementary Linear Algebra, (PWS-Kent Publishing
Company, Boston, 1989), p. 311.

M. Vetterli, “Multidimensional subband coding: some theory and algorithms,”
Signal Processing, vol. 6, p. 97 (1984).

H. Watanabe, Y. Todokoro, and M. Inoue, Jpn. J. Ser. 5, Proc. Micro-Process, pp.
28-32 (1991).

H. Watanabe, E. Sugiura, T. Imoriya, Y. Todokoro, and M. Inoue, “Detection and
printability of shifter defects in phase shifting masks II. Defocus characteristics,”
Jpn. J. Appl. Phys., vol. 31, p. 4155 (1992).

H. Watanabe and Y. Todokoro, ‘“Phase-shifting lithography: Mask making and its
application,” J. Vac. Sci. Technol. B, vol. 11, no. 6 (1993).

M. Watts, “A high sensitivity two layer resist process for use in high resolution
optical lithography,” Proc. of SPIE, vol. 469, pp. 2-10 (1984).

W. Weinstein, “Images of Incoherently Illuminated Bright and Opaque Disks,” J.
Opt. Soc. Am., vol. 45, p. 1006 (1955).

D. W. Widmann, “Quantitative Evaluation of Photoresist Patterns in the 1pum
Range,” Applied Optics, vol. 14, no. 4, pp. 931-934 (1975).

D. W. Widmann and H. Binder, “Linewidth Variations in Photoresist Patterns on
Profiled Surfaces,” IEEE Trans. Elec. Dev., vol. ED-22, no. 7, pp. 467-471 (1975).

J. Wiley, “The Printability of 5x Reticle Submicron Defects,” Bay Area Chrome
Users Society (BACUS) Eight Annual Symposium, Microlithography News, pp.
15-22 (1988).

J. Wiley, “Process Effects in 5x Reticle Defect Printability,” Bay Area Chrome
Users Society (BACUS) Ninth Annual Symposium, Microlithography News, pp.
168-175 (1989).

J. Wiley, T. Fu, T. Tanaka, S. Takeuchi, S. Aoyama, J. Miyazaki, and Y. Watakabe,
“Phase Shift Mask Pattern Accuracy Requirements and Inspection Technology,”
Proc. of SPIE, vol. 1464, pp. 346-355 (1991).

200



e

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

J. Wiley and J. Reynolds, “Device yield and reliability by specification of mask
defects,” Solid-State Technol., July 1993.

D. Williamson, “The Elusive Diffraction Limit,” OSA Proc. on EUV Lithography,
vol. 23, pp. 68-76 (1994).

G. Wojcik, D. Vaughn, and L. Galbraith, “Calculation of Light Scatter from
Structures on Silicon Surfaces,” Proc. of SPIE, vol. 772, pp. 21-31 (1987).

G. Wojcik, J. Mould, R. Ferguson, R. Martino, K.K. Low, “Some image modeling
issues for I-line, 5x phase shifting masks,” Proc. of SPIE, vol. 2197, pp. 455-465
(1994).

E. Wolf, “New Spectral Representation of Random Sources and the Partially
Coherent Fields that They Generate,” Optics Communications, vol. 38 No. 1, pp. 3-
6 (1981).

S. Wolf and R. N. Tauber, Silicon Processing, vol. 1, (Lattice Press, Sunset Beach,
CA, 1986), p. 192.

A. Wong, “Rigorous Three-Dimensional Time-Domain Finite-Difference
Electromagnetic Simulation,” Ph.D. Dissertation, University of California at
Berkeley (1994).

A. Wong, Tempest Users’ Guide, Memorandum No. UCB/ERL M95/14,
University of California, Berkeley, March 1995.

K. Yamanaka, H. Iwaski, H. Nozue, and K. Kasama, “NA and s Optimization for
High NA I-line Lithography,” Proc. of SPIE, vol. 1927, pp. 310-319 (1993).

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving
Maxwell’s Equations in Isotropic Media,” IEEE Trans. Ant. Prop. vol. 14, pp. 302-
307 (1966).

M. Yeung, “Modeling high numerical aperture optical lithography,” Proc. SPIE,
vol. 922, pp. 149-167 (1988).

M. Yeung, D. Lee, R. Lee, and A. Neureuther, “Extension of the Hopkin’s theory
of partially coherent imaging to include thin-film interference effects,” Proc. SPIE,
vol. 1927, pp. 452-462 (1993).

M. Yeung, “Three-dimensional reflective-notching simulation using multipole
accelerated physical-optics approximation,” Proc. of SPIE, vol. 2440, pp. 395-409
(1995).

201



[159]

[160]

[161]

M. Yeung, “Validity of the Classical Theory of Spontaneous Emission and The Fast
Multipole Method for Electromagnetic Scattering,” Ph. D. Dissertation, University
of California, Berkeley, Memorandum No. UCB/ERL M95/112, (1995).

M. Zuniga, G. Walraff, and A. Neureuther, “Reaction Diffusion Kinetics in Deep-
UV Positive Tone Resist Systems,” Proc. of SPIE, vol. 2438, pp. 113-124 (1995).

L. S. Zurbrick and W. Henke, “The Significance and Detection of Transmissive
Defects on 5x Reticles,” 1993 IEEE/SEMI Advanced Semiconductor
Manufacturing Conference and Workshop (IEEE Press, New York, 1993).

202

P



	Copyright notice 1997
	ERL-97-55 (1)
	ERL-97-55 (2)

