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Abstract

This paper studies the semantics of hierarchical finite-state machines that are composed using var-
ious concurrency models, particularly dataflow, discrete-events, and synchronous/reactive modeling. It
is argued that all three combinations are useful, and that therefore the concurrency model should be
selected independently of the decision to use hierarchical FSMs. In contrast, most formalisms that
combine FSMs with concurrency models, such as Statecharts (and its variants) and Hybrid systems,
tightly integrate the FSM semantics with the concurrency semantics. An implementation tﬁat supports

the three combinations studied is described.

1. Introduction

While the complexity of electronic systems continues to increase exponentially, the fundamental
cognitive ability of human designers remains relatively static. Moreover, the ability to handle complex-
ity does not increase even linearly, much less exponentially, with the number of designers, so complex-
ity cannot be conquered through sheer numbers. Our impressive successes so far designing electronic

systems result primarily from our human ability to abstract. With the digital abstraction, for example,
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voltages become irrelevant, and systems are described with boolean expressions. With the synchronous
abstraction, time becomes discrete and individual circuit delays become irrelevant. Although these
abstractions cannot be used all the time, by using them most of the time we can design more complex

systems than would be possible if we had to be concerned throughout with voltages and delays.

The standard abstractions used for digital systems, however, are straining under the load of multi-
million transistor chips, networked, distributed applications, and the increasingly domain-specific
expertise required. Experiments with higher-level abstractions, where systems are constructed by com-
posing subsystem modules, are promising. For example, the signal processing community heavily uses
so-called “block diagram languages” to modularly compose sophisticated algorithms. Software com-
ponents, such as Corba or ActiveX, show promise as a way to modularize complex software systems.
The rules of interaction of modules or components, the semantics of the composition, is what we call
the model of compuztation.

Most complex systems today are concurrent. Modules consist of relatively autonomous agents that
interact through messaging of some sort. Models of computation that support concurrency are numer-
ous. A popular one today, made popular by the Java™ language, is threads, where a set of sequential
processes operate on the same data. More sophisticated concurrent models of computation include
CSP (communicating sequential processes) [17], the pi calculus [25), datafiow [14], process networks
[19], discrete events [9], and the synchronous/reactive model [1]. These models are more sophisticated
in the sense that complex concurrent systems can be more easily designed, and the designs yield better
to analysis. The block diagram languages used in signal processing, for example, almost all have some
variant of dataflow semantics, and often yield to deadlock analysis and static scheduling.

While concurrency is a major source of complexity, it is not the only one. Increasingly intricate

sequential control also adds difficulty to design, particularly when errors in the control sequence can
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have fatal consequences for the user, as is the case in many embedded systems. Finite state machines
(FSMs) have long been used to describe and analyze intricate control sequences. Because of their finite
nature, FSMs yield better to analysis than alternative control models, such as sequential programs with
 if-then-else and goto. For example, with an FSM, a designer can enumerate the set of reachable states

to ascertain that a particularly dangerous state cannot be reached.

Most modern electronic systems have both intricate control requirements and concurrency. Thus,
combining FSMs with concurrent models of computation is an attractive and increasingly popular
approach to design. Since Harel introduced that Statecharts model [16] in 1987, a number of variations
have been explored [28]. The Argos language [24], for example, combines FSMs with a synchronous/
reactive concurrency model [1]. The codesign finite state machines (CFSM) model [11] combines

FSMs with a discrete-event concurrency model.

Harel dramatically increased the usability of FSMs through two innovations [16]. First, FMSs can
be hierarchically combined. A single state a at one level of the hierarchy is interpreted as being in one
of several states, e.g. b, c, or d, at a lower level of the hierarchy. These are often called “or states”
because being in state a is interpreted as being in state b, ¢, or d. Second, FMSs can be concurrently
combined. An FSM with states a and b can be composed with an FSM with states ¢ and d, resulting in
an FSM that is in state ac, bc, ad, or bd. These are sometimes called “and states” because the FSM can
be in both state a and c, for example. Both innovations allow state machines to be represented com-
pactly and intuitively.

While the static interpretation of “and states” is clear, their dynamics are far less clear. Given two
concurrent FSMs, when do they make state transitions, relative to one another? How should they com-
municate their state and/or transitions? These questions greatly complicate the FSM model of compu-

tation, and indeed were not completely resolved by Harel initially. This is part of the reason for the
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proliferation of variations of concurrent hierarchical FSM models of computation [28].

Harel loosely defined state transitions in concurrent FSMs to be simultaneous. A state transition
could broadcast an event, visible immediately to all other FSMs. The other FSMs could then make
state transitions immediately, and also broadcast events. As long as there is no circular logic (circular
dependencies among transitions), this notion of simultaneous transitions is well-defined. Real circular
dependencies can lead to genuine paradoxes and/or to underdetermined behavior. However, apparent
circular dependencies prove to be common in practical systems, primarily because of the use of hierar-
chy, so the model had to be refined. The Argos language [24] and others refine the model by applying
the synchronous/reactive (SR) principle [1], which resolves apparent circular dependencies by seeking
at each instant a fixed point, a globally consistent behavior. The SR principle, first developed by Berry
in the Esterel language [4], gives a well-defined and determinate semantics to simultaneous concurrent
actions.

Perhaps because of Harel’s first use of simultaneous transitions, simultaneity has dominated; most
concurrent hierarchical FSM languages use some variant of simultaneous transitions. A few, however,
use more loosely coupled FSMs. In the codesign FSM (CFSM) model [11], for example, transitions
are placed on a real time line and interaction between FSMs is governed by a discrete-event model of

computation.

In fact, hierarchical FMSs can be dropped into almost any concurrency model. For example, a pro-
cess network is often described as a set of communicating Turing machines. Using FSMs instead of
Turing machines, however, may greatly strengthen the formal analysis of such a system (at some cost
in expressiveness).

This paper advocates decoupling the concurrency model from the hierarchical FSM semantics. We

describe a family of models of computation, called *charts (pronounced “starcharts”). Unlike State-
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charts, CFSMs, Speccharts [26] and other concurrent hierarchical FSMs, *charts do not define a con-
currency model, but rather show how to embed hierarchical FSMs within a variety of concurrency
models. Thus, the concurrency model can be chosen to match the problem at hand. Is tight synchroni-
zation possible? Desirable? If not, then an SR model is inappropriate, and perhaps a dataflow or pro-
cess network model would be a better choice. Is there a globally consistent notion of time? If not, then
a discrete-event model will be inappropriate, and perhaps a CSP model would be a better choice. The

same hierarchical FSM language works with all of these concurrency models.

More interestingly, once we have decoupled FSM semantics from concurrency semantics, hetero-
geneous combinations using multiple concurrency models become possible. Systems can truly be built
up from modular components that are separately designed, and each subsystem can be designed using
the models of computation best suited to it. We describe an implementation of *charts in the Ptolemy
environment [8], where hierarchical FSMs can be combined with dataflow, discrete-event, and syn-
chronous/reactive concurrency models.

We begin by adapting a standard notation for FSMs, which is compact and efficient when consid-
ering an FSM in isolation, to get a notation more suitable for studying compositions of FSMs. To do
this, we have to put more emphasis than usual on the interaction between an FSM and its environment.
We then consider combining FSMs with three popular concurrent models of computation: dataflow,
discrete events, and the synchronous/reactive model. In the case of dataflow, we introduce a new subset
of dataflow called heterochronous dataflow that combines particularly well with FSMs. We then briefly

describe an experimental implementation.

2. Finite State Machines
2.1 THE BASIC FSM

An FSM is a five-tuple [18]
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(Qs z’ At c’ 40) (l)

where -

1. Qs afinite set of symbols denoting states.

2. ZXis a set of symbols denoting the possible inputs.
3. Ais a set of symbols denoting the possible outputs.
4. o is atransition function mapping @ X Zto O X A.

5. gge€ Qis the initial state.

In one reaction, an FSM maps a current state p € Q and an input symbol a € Z to a next state g €
Q and an output symbol b € A, where 6(p, a) = (g, b). Given an input word, or sequence of symbols
from the input alphabet Z, and an initial state, a sequence of reactions will produce a sequence of states
and an output word, or sequence of symbols from the output alphabet A. All sequences are potentially
infinite.

A directed graph, called a state transition diagram, is popular for describing an FSM. As shown in
figure 1, each elliptic node represents a state and each arc represents a transition. Each transition is
labeled by “guard/action”, where guard € X represents the input symbol that triggers the transition,
and action € A represents the output symbol when the transition is triggered. The arc without a source
state points to the initial state, i.e. state o.. During one reaction of the FSM, one transition is triggered,

chosen from the set of enabled transitions. An enabled transition is an outgoing transition from the cur-

b/v

@ P

a/u

FIGURE 1. A basic FSM.
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rent state where the guard matches the current input symbol. The FSM goes to the destination state of
the triggered transition and produces the output symbol indicated by the action of the triggered transi-

tion.

In this paper, we focus on deterministic and reactive FSMs. An FSM is deterministic if from any
state there exists at most one enabled transition for each input symbol. An FSM is reactive if from any
state there exists at least one enabled transition for each input symbol. To simplify notation and ensure
that all our FSMs are reactive, every state is assumed to have an implicit self transition, i.e. going back
to the same state, for each input symbol that is not a guard of an explicit outgoing transition. Each such
self transition has as its action some default output symbol, denoted by €, which has to be an element
of A. Sometimes, this default symbol is interpreted to mean “empty” and is omitted from the output
word [18].

For example (see figure 1), suppose @ = {o, B}, Z={a,b},A={€, 4,v},gg=0aand 6: O XX —
Q x A is such that o(c, b) = (B, v) and 6(B, a) = (., u), then we also must have the implicit self transi-
tions o(c, a) = (o, €) and 6(B, b) = (B, €). A possible trace, or sequence of reactions, is shown in figure

2.

2.2 MULTIPLE INPUTS AND OUTPUTS

An FSM is embedded in an environment. The environment may in fact be part of the overall sys-

Current State oa|loa| BB
Input Symbol al| b | b

Next State a|B|B|a
OutputSymbol | € | v | € | u

FIGURE 2. A possible trace for the basic FSM in figure 1.
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tem under design, or may be out of the control of the designer. In either case, it provides a sequence of
input symbols, and the FSM reacts by providing a sequence of output symbols, meanwhile tracing a
sequence of states.

Frequently, the interaction with the environment needs to be modeled in more detail. It may not be
convenient, for example, to consider the FSM to have only a single input symbol. Multiple Ainputs and
multiple outputs may be a more natural model. To handle this, the input alphabet can be factored and
- expressed as a cross product X = X; X Xy X ... X Z),. Here, the input to the FSM consists of M signals,
where the i signal is a sequence of events represented by symbols from the signal alphaber X;. The
FSM reacts to a set of M simultaneous symbols from the M signals. The output alphabet can be simi-

larly factored. Reactions emit events on signals.

2.3 PURE AND VALUED FSMS

A common special case, called a pure FSM, is where the size of the input symbol set is a power of
two, IZ = 2M, and each signal alphabet has size two, IZ; | = 2 for 1 £ i < M. We interpret this to mean
that at a reaction, each signal consists of an event that is either present or absent (hence Z1=2). A
common notation in this scenario assigns a name to each signal, such as “a”, and denotes the alphabet
corresponding to that signal by X; = {a, a}, interpreted as {a is present, a is absent}. Thus for example,
consider an FSM with two input signals / = {a, b} and two output signals O = {, v}. The input alpha-
bet is written T = {ab, ab, ab, ab} and the output alphabet is written A = {uv, uv, uv, uv}, where £ = v
is the default symbol.

In a valued FSM, the input and output alphabets are again factored into signal alphabets, but at
least one of these signal alphabets has size greater than two (it might even be infinite). We again inter-
pret one element of such an alphabet to denote absence of an event, while the remaining elements

denote presence of an event and a value for the event.

8 of 41 Alain Girault, Bilung Lee, and Edward A. Lee



A Preliminary Study of Hierarchical Finite State Machines with Multiple Concurrency Models

In a pure FSM, the size of the input alphabet grows exponentially with the number of input signals.
Thus, it can become quite inconvenient to define a reactive FSM by explicitly specifying outgoing
transitions from every state for every input symbol. This may be a very large number 6f transitions. To
avoid this problem, a single transition may bear as a guard a subset of I rather than a single symbol. It
would thus repfesent an ensemble of transitions compactly. An arbitrary subset of X can be defined by
a boolean expression in the input signals. For example, if £ = {ab, ab, ab, ab}, the boolean expression
“—a v b” (not a or b) represents the subset {ab, ab, ab}. Thus, for pure FSMs, guards will be repre-
sented as boolean expressions of the input signals.

Consider the example in figure 3 with states Q = {c, B}, input signal alphabet I = {q, b} and output
signal alphabet O = {u, v}. The guard “—a v b” of the transition from a to B is enabled by any input in
{ab, ab, ab}. The guard “a” of the transition from B to B is enabled by any input in {ab, ab}.

For valued FSMs, more complicated boolean-valued expressions are often used for the guards. For
example, suppose that in a valued FSM, the i signal is named “a” and has the alphabet Z; = R, the set
of real numbers. Then a guard may contain comparison operators and real numbers, for example “a <

10”. This compactly represents an uncountably infinite number of transitions.

For pure FSMs, actions are specified with a slightly different, but also reasonably compact nota-
tion. The default output for each signal is assumed to denote an absent event. An action thus only lists
output signals that are to have present events in the current reaction. In other words, all output events

that are not explicitly emitted in an action are absent. For example, in figure 3, the action “u” of the

—avb/uv

an—b/v a/u

—anb

FIGURE 3. A pure FSM.
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transition from B to B implies output symbol uv, i.e. output signal u is present and output signal v is
absent event when the transition is triggered. The absence of v is implicit, not explicit, a fact that will
become important for hierarchical FSMs. If all events in an action are implicitly absent, the action is
omitted altogether. For example, in figure 3, the label of the transition from  to o consists of just the
guard “—a A b”, and when this transition is triggered, both output signals « and v are implicitly absent.

For valued FSMs, an action should denote any output value that is different from default. The

default is again implicitly emitted, and may denote absence of an event.

A possible trace for the FSM of figure 3 is shown in figure 4. Note that in state B, when both inputs

a and b are absent, an implicit self-transition is taken and both outputs u and v are absent.

2.4 HIERARCHY

The basic FSM, which is flat and sequential, has a major weakness; most practical systems have a
very large number of states and transitions. Representation and analysis become difficult. One of
Harel’s solutions to this problem is hierarchy. In a hierarchical FSM, a state may be further refined into
another FSM. We will call the inside FSM the slave and the outside FSM the master in such a compo-
sition. For example, we can let the state f in figure 3 refined into another FSM but let the state o not be

refined, as illustrated in figure 5.

At a fundamental level, hierarchy adds nothing to the model of computation. Nor does it reduce the

CurrentState| o« | o« [ B | B | B

a present| absent | present| absent | absent

b absent | absent | present| absent | present| ..
Next State o | B|(B|B| a

u absent |present|present| absent | absent

v present|present| absent | absent | absent

FIGURE 4. A possible trace for the embedded FSM in figure 3.
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number of states. But it can significantly reduce the number of transitions and make the FSM more
intuitive and easy to understand. The transition from B to o in figure 5 is simply a compact notation for

transitions from ¥ to o and 8 to c.. The state space of the equivalent flat FSM is simply Q = {a, ¥y, 8}.

The input alphabet for the slave FSM is a subset of the input alphabet of its master FSM. In a pure
or valued FSM, the input signals for the slave FSM are a subset of the input signals for the master.

Similarly, the output signals from the slave FSM are a subset of the output signals from its master.

The hierarchy semantics define how the slave FSMs reacts relative to the reaction of its master
FSM. A reasonable semantics defines one reaction of the hierarchical FSM as follows: if the current
state is not refined, the hierarchical FSM behaves just like a basic FSM. If the current state is refined,
then first the corresponding slave FSM reacts and then the master FSM reacts. Thus, two transitions

are triggered, so two actions are taken. These two actions must be somehow merged into one.

In the case of pure FSMs, it is easy to merge the actions and avoid conflicting definitions of the
output between the slave and the master. We take an output event to be present if the action of the mas-
ter or any slave FSM below it emits an event on that output. Since an action does not explicitly emit the
symbol for absence of an event, no conflict is possible in this syntax. For example, if figure 5 is in state

B and substate y and input signal a is present, the triggered action of the slave FSM is “v” and the trig-

-—,avb/u,v

an—=b/v ‘oxo’ a’/u Master FSM
. N
-=a A b \\\
i AN
\ o
i a/v.
0:6 Slave FSM
b/v

FIGURE 5. A hierarchical FSM.
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gered action of the master FSM is “u”. Thus, the output of the hierarchical FSM is uv (both output sig-

nals u and v are present). A possible trace for the hierarchical FSM is shown in figure 6.

For a valued FSM, we adopt the convention again that an action makes no explicit mention of an
absent event. However, since two actions can both emit an event with different values, the syntax per-
mits conflicting definitions of the output. In Esterel, a function can be specified to combine the con-
flicting the definitions [4]. For example, for two reals, the values might be added. We prefer to consider
this an error condition. Thus, for a valued (determinate) FSM, no two triggered transitions should emit

the same output signal.
In the example of figure 5, the hierarchical FSM has only two levels. However, the slave FSM can

actually be another hierarchical FSM, so the depth of hierarchy is arbitrary. The semantics generalizes

trivially.

3. Heterogeneity — Mixing FSMs with Concurrency Models

Hierarchical FSMs are not by themselves adequate for describing most complex systems. For one
thing, numerical computations are extremely awkward to express within this model. For practical
application to complex systems, the FSM mode! of computation has to be combined with others.

One commonly used solution is to generalize the activity associated with an action. For instance,

in the Stateflow tool from the MathWorks, Inc., an action can invoke a function or assign a value to a

CurrentState | o | o |By|B.S| o

a present| absent | present| absent | absen:

b absent | absent | absent | present| absent
Next State a {By|BS| a |By

u absent pre.;ent present| absent |present| . ..
) present|present| present|present|present| ...

FIGURE 6. A possible trace for the hierarchical FSM in figure 5.
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variable. Moreover, FSMs in this tool can be embedded within a block diagram system called Sim-
ulink, allowing for numerical computations outside the FSM. For many applications, this combination
is adequate. However, actions cannot themselves invoke Simulink block diagrams, so the hierarchy has

only two levels.

Function calls and variable assignments, by themselves, are still quite limited. They provide, for
example, no concurrency. One could work around this limitation by using procedures rather than func-
tions, and permitting them to operate on global state outside the FSM. If this is done in an undisci-
plined way, however, it would provide a very chaotic and poorly characterized programming model.
Imposing some discipline on this model seems essential. It needs a model of computation.

Unfortunately, the very richness of possibilities makes it difficult to decide a priori which models
of computation should be used. We advocate leaving that choice up to the application designer, rather
than building it into the language. Thus, the language must support heterogeneity. A convenient way to
support heterogeneity is the black box approach. For a system consisting of a set of interconnected
modules, each module can be treated as a black box. Some model of computation is chosen to govern
the interaction between boxes, but the contents of boxes need not be governed by this same model of
computation. The only requirement is that the interfaces of boxes must conform to a standard accepted
by the outer model of computation. Thus, a box may encapsulate a subsystem specified by one model
of computation within a system specified by another. In other words, heterogeneity allows different

models of computation to be systematically and modularly combined together.

Our hierarchical FSM model of computation is easily extended to support heterogeneity. A state
may be refined to a black box that reacts to some subset of the input signals by emitting events on some
subset of the output signals. Internally, this black box need not be an FSM. It could be, for example, a

Turing machine (that halts), a C procedure (that eventually returns), a dataflow graph, etc.
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In the reverse scenario, the FSM model of computation can be used to describe a module inside
some other model of computation, as long as that model of computation provides a way to unambigu-
ously determine the input symbols and when a reaction should occur. For example, in figure 7, three
FSMs are embedded inside the blocks of a “block diagram language”. The exact semantics of this
embedding (the interaction semantics) needs to be defined in terms of both the semantics of the block
diagram language and the FSM. Most interestingly, however, if the block diagram language has con-
current semantics (e.g. dataflow), then the slave FSMs are concurrent FSMs.

In this section, we explore the interaction semantics of FSMs with various concurrent models of
computation, namely dataflow (DF), discrete-event (DE), and synchronous/reactive (SR). Our objec-
tive is to develop semantics that supports arbitrary nestings of these concurrent models with FSMs. We
wish for an FSM to be able to define a module in a concurrent system and for a state to be able to be
refined to a concurrent subsystem. The depth and order of the nesting is arbitrary. As shown in figure 8,
we adopt the notation that square boxes indicate modules in a concurrent model of computation and

ellipses indicate states in an FSM.

3.1 TERMINATION

In general, the systems of interest may not terminate. Concurrent models of computation are usu-

ally defined with this in mind [12]. The reaction of an FSM, however, will usually need to take finite

a b c d
—_— > > ——
.-'; \ <'l 3 3

/ y /
a b c
9| [ | [
alb blc cld

FIGURE 7. Three FSMs are embedded inside the blocks of a block diagram language.
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time. This means that if a state refines to a concurrent subsystem, that subsystem must react in finite
time to the inputs, possibly emitting output events as a result. This implies a finiteness of computation

that is not intrinsic to many concurrent models of computation.

For some models of computation, there is a simple solution [10]. The execution of a non-terminat-
ing system can often be divided into a sequence of iterations. Each iteration can be associated with a
reaction of the master FSM. We require, therefore, that any concurrent model of computation that can
refine a state of an FSM have a well-defined finite iteration. We will explore the implications of this
requirement in terms of specific examples below.

The reaction of an FSM is discrete and for most applications will be required to take finite time.
The sequence of reactions, however, may not be finite if the input sequence is not finite. Thus, a model
of computation that can include modules refined to an FSM must be capable of supplying an infinite
sequence of inputs and requesting an infinite sequence of discrete reactions. This is not a problem for

any of the concurrent models of computation being considered.

3.2 DATAFLOW WITH FSM

The dataflow model of computation, originally introduced by Dennis [14], can be thought of as a

FIGURE 8. Hierarchical nesting of FSMs with concurrency models.
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special case of the process networks (PN) model, originally introduced by Kahn [19]. In PN, a network
of concurrent processes communicate through unbounded FIFO queues. In the DF special case, a pro-
cess consists of a sequence of discrete firings of a dataflow actor [22]. The DF special case is better
suited to our purposes since the discrete firings map naturally into reactions of a slave FSM playing the
role of a dataflow actor.

Both DF and PN, however, can easily describe applications that do not terminate, meeting our
objective in this regard. For DF (but perhaps not for PN), we can invent a natural definition of an itera-
tion. Specifically, we will define an iteration of a DF graph to be the minimum set of actor firings
(greater than zero) that return the FIFO queues to the same size that they were at the beginning of the
iteration. Unfortunately, for general dataflow graphs, it is undecidable whether a finite iteration exists
[7]. Moreover, there may not be a unique minimum set of actor firings.

To get around these problems, we specialize further to a subclass of dataflow called synchronous
dataflow (SDF) [21], for which these problems evaporate. In SDF, each time a dataflow actor fires, it
consumes and produces a fixed number of tokens on its input and output FIFO queues. Even for this
more restricted model, some interesting fundamental issues arise. We advocate a semantics for com-
bining SDF with FSM that is much more expressive than either SDF or FSM alone, but falls short of
the full expressive power of general dataflow. In exchange for this loss in expressiveness, intrinsic
properties of a design, like deadlock or bounded memory execution, remain decidable, a very desirable

property for embedded systems.

3.2.1 Synchronous dataflow
Under the SDF model of computation, a system consists of a set of blocks interconnected by
directed arcs. The blocks represent computational functions that map input data into output data when

they fire, and the arcs represent streams of data tokens, and are conceptually implemented as
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unbounded first-in-first-out queues. Upon firing, an actor consumes a fixed number of tokens from
each input arc and produces a fixed numt_)er of tokens on each output arc. The number of tokens con-
sumed and produced on each input and output can be viewed as part of the type signature of the actor,
along with, of course, the data type of the tokens. These numbers can be used to unambiguously define
an iteration, or minimal set of firings that return the queues to their original size [21]. This is done by

writing for each arc a balance equation,
TiPi=TjCj, 2

where the arc here is assumed to go from actor i to actor j, and on this arc, actor i produces p; tokens
and actor j consumes c; tokens. Assuming there are M arcs and N actors, then there will be M equations
in N unknowns, r;, 1 £i < N. It can be shown that for a connected graph, there is either a unique small-
est positive solution for the unknowns, called the minimal solution, or the only solution is 7;=0, 1 <i
< N. When the minimal solution exists, we choose the solution r; to give the number of firings of actor

i in an iteration. When there is no solution, the SDF graph is considered defective and an error is
reported. Thus, for SDF, it is decidable whether an iteration exists. If it does, it is unique, and the firing

schedule for an iteration can be determined at compile time. For details, see [21].

The simplest SDF graphs are homogeneous, defined to mean that every actor produces and con-
sumes a single token on each input and output arc. For such graphs, an iteration always consists of
exactly one firing of each actor, r;=1, 1 £i < N. The schedule of such firings must obey the data pre-
cedences (a token must be in a queue before it can be consumed). Thus, to avoid deadlock, all directed
cycles in a homogeneous SDF graph must have at least one initial token (often called a delay) on at
least one arc in the cycle. Arbitrary SDF may require more than one initial token on some arcs, but
unlike general dataflow, it is decidable whether a given set of initial tokens is sufficient to prevent

deadlock [21].
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3.2.2 FSM inside SDF

When an FSM subsystem is a slave to an SDF actor, it must externally obey SDF semantics. Thus
it must consume and produce a fixed number of tokens on every input and every output. In the simplest
case, the FSM subsystem refines a homogeneous SDF actor. Each input to the SDF actor provides a
single data token, which takes on values from some alphabet. The cross product of these signal alpha-
bets forms the input alphabet for the FSM, perfectly matching our FSM model in section 2.2. The
actions of the FSM will be able to emit events on each output signal, representing each event by a sym-
bol from the corresponding signal. Any outputs that are not emitted by the FSM in an action will be

assigned the default element of the alphabet, as usual.

The only subtlety in this approach is that an *“absent” event appears explicitly as a token in the SDF
graph, where the value of this token encodes the “absent” interpretation using the default symbol. A
simple approach would be to encode presence and absence using boolean-valued tokens. In the other
concurrent models of computation, absence of an event will correspond to absence of a token. A key
property of dataflow, however, is that absence of a token is not a well-defined, testable condition, so the

absence of an event must be encoded in a (present) token.

Consider the example in figure 9, where there are two pure FSMs refining homogeneous SDF
actors. An iteration of the SDF graph consists of a single firing of each actor. Since there is no initial
token on the arc between them, actor A fires before actor B in the iteration. The names on the arcs (“a”,
“b”, “x”, etc.) indicate the names of the nearest input or output of a dataflow actor. Suppose that in
some iteration the input tokens have values indicating that a is present and b is absent, and that both A
and B are in state o.. The SDF system reacts as follows:

* fire A: Since a is present, make the transition from o to 8, and let the output x be assigned the

value indicating it is present.
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* fire B: Since ¢ = x is present, make the transition back to state ¢, and let the output y be present.

Although this simple example may not look like a concurrent FSM, it is one, in fact. Within an
iteration, A and B must fire sequentially. Across iterations, however, they can fire concurrently. The i
firing of A may be concurrent with the (i — m)'P firing of B for any m > 0 such that i — m > 0. Of course,

with more complicated SDF graphs, there can be much more concurrency, even within an iteration.

We can easily devise a syntax that permits an FSM to refine a non-homogeneous SDF actor. For a
non-homogeneous actor (i.e., an actor where more than one token of each input/output can be con-
sumed or produced), we syntactically differentiate each token of a given input or output by concatenat-
ing its occurrence to its name. Borrowing notation from the Signal language [2], “a” denotes the most
recent (last) token consumed from input a, “a$1” denotes the next most recent token consumed, and
“a$2” the next most recent. Consider the example in figure 10, focusing for now on levels (d) and (e).
The numbers in parentheses at level (d) indicate the number of tokens consumed or produced by the
corresponding actor. The guard on the arc from a to f in A on level (e) is a A a$1, which means that
both tokens consumed from the a input must have the value representing a present event. In B, the

action y means that the first (oldest) output token on output y will have a value representing an absent

7, b
=

a’/x FSM
c/y
2 & |
7 [A B|

FIGURE 9. Two FSMs, refining homogeneous SDF blocks, are embedded in an SDF system.
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event (because y$1 is not mentioned), while the second (newest) token on output y will have a value
representing a present event (because y is mentioned).

By default, state transitions occur whenever a dataflow actor that refines to an FSM fires. Some-
times, however, we will prefer for transitions to occur only betweén iterations of the dataflow graph.
This will prove important below where states of the FSM may themselves be refined. In this case, there

are two types of firings of the dataflow actor that refines to FSM. In type A, no transition is taken and

SDF
a(4)
(a) b2 @) R
[C]
FSM
a$3 A (a$2 v (a$1 A a))ly
(b) 3
o
bvb$l
[C]
© LN 2
b2) Y2
—_—
SDF
COR 1) ) »2)
(d) b(1) > —
, lK . rﬁ-
/! N /’ ‘x_.
1’; "“
FSM 1 \

ana$l/x FSM

© @fﬁ

b5 [A B

FIGURE 10. Two FSMs, behaving like multirate blocks, are embedded in an SDF system.
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no action is performed, but if the current state is refined, the refinement subsystem is fired. In type B,
the refinement system is fired, a transition is taken, and the corresponding action is performed. Type B

firings will always be the last of an iteration.

The notation described here has an obvious extension to valued FSMs. We leave the details to the

reader.

3.2.3 SDF inside FSM

If an SDF graph refines a state of an FSM, when that state is the current state, the next reaction will
consist of one iteration of the SDF graph followed by a reaction of the FSM. If the slave SDF graph is
homogeneous (consumes a single token from each input and produces a single token on each output),
then it fits the FSM model naturally. At each reaction, each input has a symbol from the corresponding
signal alphabet. Even if this symbol is interpreted as denoting an absent event, it nonetheless provides
a token for the SDF graph to consume.

If the slave SDF graph is not homogeneous, the semantics becomes more subtle. Suppose for
example that the SDF subsystem of figure 10(d) is to be used as a slave within another FSM, say the
one at level (b). Solving the single balance equation for the subsystem at level (d) (there is only one arc
entirely inside the subsystem, and hence only one balance equation) indicates that one iteration will
consist of two firings of A and one firing of B. Thus, as shown at level (c), the type signature for the
subsystem indicates that four tokens will be consumed from input a and rwo from input b, and two
tokens will be produced at output y, in one iteration of the subsystem!. The semantics we choose is that
the resulting composite SDF type signature becomes the type signature of the FSM subsystem itself.

Thus, whatever system the FSM at level (b) is embedded in must treat the FSM like an SDF actor with

1. Note that composing synchronous dataflow actors to create what appears to be a new synchronous dataflow
actor is not always possible. See [20] for a discussion of compositionality of dataflow. For the purposes of this
paper, we assume that such aggregation is possible for the applications of interest.
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the given type signature.

There are a number of potential complications. First, the FSM at level (b) might not be embedded
within an SDF environment. Suppose for example that it is embedded within a discrete-event environ-
ment. In this case, the semantics must be that of SDF embedded within DE, which is covered ih [10].
The key, therefore, is that an FSM that contains slave SDF graphs must itself be treated as an SDF

actor with the type signature determined by the slave SDF graphs.

A second major complication is that the type signature may not be the same in different states. In
this case, the FSM system cannot be treated as an SDF actor because the number of tokens it produces
and consumes is dependent on its state. This possibility is extremely interesting, and represents a
major increment in expressive power, if it can be handled cleanly. We deal with it in the next subsec-

tion.

3.2.4 Heterochronous dataflow

When an FSM system has more than one state refined to an SDF graph, the simplest case is where
the type signatures of the SDF graphs are identical. Then the FSM system itself is treated as an SDF
actor with this type signature. Consider however the situation where the type signatures are different!.
For example, in figure 11, one of the SDF graphs consumes three tokens and produces one, while the
other consumes one and produces two. In this case, there are two possible type signatures for the FSM

subsystem, and hence it cannot be embedded within an SDF graph.

One option is to embed the FSM system within a dynamic datafiow (DDF) or boolean dataflow
(BDF) graph [7]. In DDF and BDF, the number of tokens consumed and produced need not be constant

for each actor. However, the price we pay for this approach is high. In DDF and BDF, many questions

1. Here, we are only concerned with the number of tokens produced and consumed, which is only part of the type
signature. The data types of the tokens might also be different, something that a language supporting heterochro-
nous dataflow may wish to support. This is beyond the scope of this paper.
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about the system are undecidable, such as whether it will deadlock and whether the memory required

by the FIFO queues is bounded [7]. Moreover, it seems that this choice of semantics provides more

generality than we really need for this application. So we invent a new model of computation that we

call heterochronous dataflow (HDF).

In HDF, an actor has a finite number of type signatures, where each type signature specifies the

number of tokens consumed and produced. When an HDF scheduler fires such an actor, it knows

which type signature is in effect. But type signatures are allowed to change between firings.

This model of computation is related to cyclo-static dataflow [6]. In CSDF, an actor cycles through

a finite list of type signatures. In HDF, however, the order in which type signatures are used is not

cyclic, nor even predictable.

HDF
b(2) a(3,1) x(1,2) y(1)
[A] [C
FSM
ana$l/x
o
d B
SDF SDF
a(3) | x(1) a(l) x(2)

FIGURE 11. An FSM with states that refine to SDF subsystems with different type signatures.

Alain Girault, Bilung Lee, and Edward A. Lee

23 of 41



A Preliminary Study of Hierarchical Finite State Machines with Multiple Concurrency Models

If we allow the type signature of an actor to change between any two firings, then it is easy to show
that this model of computation has the full expressive power of BDF and DDF, and hence of Turing
machines. This is not necessarily a good thing, because questions become undecidable. However, if we
restrict the changes in type signature to occur at more controlled points in the execution, then every-

thing remains decidable.

When an HDF system starts execution, there is an initial type signature in effect for each actor.
These type signatures can be used to solve the balance equations, finding an iteration. The semantics
we choose is that each type signature must remain constant for the duration of the corresponding itera-
tion. To ensure this, the FSM components do not change state until their last firing in an iteration. At
the completion of the iteration, a new set of type signatures is in effect, so the balance equations must

be solved anew to redefine an iteration.

In the example in figure 11, the top of the hierarchy is an HDF system. The middle actor in this
system has two possible type signatures, consuming three and producing one or consuming one and
producing two. Since this is the only actor refined into an FSM, there are two sets of solutions to the
balance equations. Two corresponding schedules are {A,A,A,B,B,C,C} and {A,B,B,C,C,C,C}. Since
state o is the initial state of the FSM, the HDF system starts by executing the first schedule. After the
second firing of B, the FSM is allowed to change state based on observations of the inputs. At that
point, if the two most recent consumed tokens (in the iteration) indicated “present,” then the state
changes to 3. After completion of the HDF iteration, instead of repeating the o schedule, the B sched-

ule is invoked.
There are a number of alternatives for implementing HDF. If the number of possible type signature
combinations is small, as for the example in figure 11, it is probably best to precompute (at compile

time) all balance equation solutions, and all iteration schedules. Unlike DDF or BDF, it is always theo-
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retically possible to precompute all schedules for all possible iterations. In general, however, the num-
ber of type signature combinations is exponential in the number of HDF nodes, so this approach can
become impractical. Fortunately, the balance equations can be solved in time that is only linear in the
number of arcs plus the number of actors, and a schedule can be found in time that is linear in the num-
ber of firings and the number of edges [5], so it may not be impractical to compute schedules dynami-
cally between iterations. We are currently exploring these implementation alternatives.

Although the number of type signature combinations can be exponential in the number of actors, it
is finite. For each combination, all key questions are decidable (deadlock, bounded memory), and
schedules can be statically constructed. Thus, we have retained the key advantage of SDF (decidabil-
ity), but have dramatically increased its expressiveness.

HDF has one significant disadvantage. When a state transition occurs depends on a global solution
the balance equations, rather than a local definition. This could make using it harder, as it compromises
the modularity of a design.

Note that in figure 11, in addition to the type signatures implied by the SDF refinements of the
states, there are type signatures implied by the guards on the transitions. The guard a A a$1 implies
that there are at least two tokens consumed from input a in one iteration (and that this input is pure).
The compiler will have to check that these constraints on the type signature are consistent with the type

signature of the refinement of the state from which the arc containing the guard emanates.

3.2.5 Dynamic Dataflow

The dynamic dataflow (DDF) and Boolean dataflow (BDF) models of computation permit actors
to consume and produce a variable number of tokens on each firing. This enhancement by itself is suf-
ficient to make the models Turing complete (they can implement a universal Turing machine) [7]. Ata

fundamental level, these models are therefore much more expressive than SDF or HDF. The price we
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pay is that deadlock and bounded memory become undecidable and schedules can no longer (always)
be constructed at compile time.

To combine FSMs with DDF and BDF, we use the concept of firing rules, formalized in [20]. For
the purposes of this paper, these firing rules simply irﬁply that any dataflow actor must assert, prior to
any firing, how many tokens it needs on each input!. So if an FSM refines a DDF actor, then in each
state of the FSM, we must determine how many tokens need to be consumed on each input for the next

firing (the next reaction of the FSM).

The semantics we adopt is simple; at least one token is consumed on every input signal mentioned
in the guard of any outgoing transition from the current state. If multiple tokens are mentioned for a
single signal, using the notation “a$i” for any positive integer i, then for each such signal, we find the
largest index i mentioned, and consume that many tokens plus one.

Thus, in each state, we know how many tokens will be consumed at each input in the next reaction.
These numbers become the firing rules for the DDF actor refined by the FSM, specifying the number

of tokens that must be present on the inputs for the next firing to occur.

The inverse scenario is a bit more complicated. If a DDF graph refines a state of an FSM, then the
firing rules of the DDF graph are exported to the environment of the FSM. That is, when the FSM is in
the state so refined, the entire FSM becomes a DDF actor that will only be invoked when the firing
rules of the DDF subsystem, treated as an actor, are met. This seems simple enough, but in fact, most
realizations of DDF semantics are not compositional, meaning that a DDF subsystem cannot be
treated as an actor, and hence cannot have well-defined firing rules. Techniques for making DDF com-

positional, and for determining the resulting firing rules, are covered in [20], and are beyond the scope

1. In[20], an actor may also assert what the token values must be. It is a simple exercise to show that omitting this
capability does not compromise Turing completeness. Moreover, for reactive FSMs, adding this capability
would not increase expressiveness. Thus, we omit it.
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of this paper. It is sufficient for our purposes here to know that it can be done.

3.3 DISCRETE EVENTS WITH FSM

Dataflow is a loosely synchronized concurrency model, where events are partially ordered accord-
ing to their data precedences. Because of this partial ordering of events, many realizations of a data-
flow system are possible, so systems are not overspecified. Moreover, it implies a great deal of
concurrency, which can be exploited through parallel implementations. However, the resulting loose
synchronization is also a key weakness of dataflow. Because of it, dataflow is not well suited for
explicitly modeling resource sharing and resource usage. We study, therefore, two popular concurrency
models that are more tightly synchronized, DE and SR. The formal relationship among all of these
models of computation is studied in [23].

The discrete-event (DE) model of computation [9] is particularly useful for modeling distributed
or parallel hardware or software and their communication infrastructure. It carries a notion of global
time, a value, usually a real number, that is known simultaneously throughout the system. An event in
a signal occurs at a point in time. In a simulation of such a system, each event carries both a value and
a time stamp that indicates the time at which the event occurs. The time stamp of an event is typically
generated by the actor that produces the event, and is determined by the time stamp of input events and
the latency of the block. The DE simulator needs to maintain a global event queue that sorts the events
by their time stamps, and chronologically processes each event by sending it to the appropriate actor,

which reacts to the event (fires).

3.3.1 FSM inside DE

Since the DE model of computation, like dataflow, has well-defined firings, embedding FSM

within DE is straightforward from a control perspective. An FSM that refines a DE actor reacts when
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the DE actor fires, which occurs when there is an event at one of its inputs, and that event has the
smallest time stamp of all events in the event queue!. If that event has a value, then that value is made
available to the FSM for testing by the guards. If the other input signals do not also have events with
the same time stamp available for this reaction, then those signals are assigned input symbol indicating
the absence of event. Unlike dataflow, absence of an event is represented in DE with absence of a

token.

In a reaction, an FSM that refines a DE actor may emit output events. Those output events translate
directly into events in the DE domain. However, in DE, they must be assigned a time stamp, somgthing
that the FSM semantics does not provide for. We choose semantics where the FSM system appears to
the DE system as a zero-delay actor. If an output is generated in a reaction, it is assigned the same time
stamp as the input that triggered that reaction.

Consider the example shown in figure 12. Suppose that an event for a with a time stamp 7 is the
next to be processed in the global event queue, and both FSM A and B are in state o.. Then, the DE sys-
tem reacts as follow:

* Fire A: Since there exists an event for a, A makes the transition from o to B, and emits the pure

DE
a a/x
- x c 2 ¢ y
, | B & &)
_’ B
b [A] [B

FIGURE 12. Two FSMs that refine DE actors.

1. There is some ambiguity when there is more than one event in the event queue with the same smallest time
stamp. Various DE simulators deal with situation differently. See [10] for a discussion of this issue. For the pur-
posed of this paper, it makes no difference what technique is used.
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event x. In DE, this event will have time stamp ¢ and thus will be the next to be processed.
* fire B: Since there exists an event for ¢, B makes the transition back to state o, and emits y. In DE,

the event on y will have time stamps ¢.

Since DE semantics is event-driven, an actor does not fire if there are no events at its inputs. This leads
to some subtleties with guards. Consider the example in figure 13, and suppose that the FSM is in state
o. The guard on the only outgoing transition indicates that a must be absent for the transition to trigger.
Implicitly, however, b must be present, or the FSM would not react (there would be no event to trigger

a firing). Thus, it would be clearer to give the guard as —a A b. If the guard were given instead as

—a A —b, the transition would never fire, since a and b are the only two inputs and the actor will not

fire when both are absent.

3.3.2 DE inside FSM

Much as we did with dataflow, if a state in an FSM refines to a DE subsystem, then the properties
of that subsystem are exported to the environment of the FSM. If that environment is not DE, but
something else, such as dataflow, then the semantics of DE within dataflow apply [10]. If more than
one state of the FSM refines, then all must refine to a DE subsystem, but the semantics imposes no

other consistency constraint, as we had to do with SDF!

DE
a —a/x
—
b Gx(') L,
N
b [A

FIGURE 13. The guard on the upper transition is incomplete,
in that event b must be present if a is absent and the FSM is reacting.
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If the environment of an FSM is DE, the semantics is simple. The FSM will react when any of the
inputs is present. The input that triggers the firing will have as its time stamp the current time of the
environment. If the current state refines to a DE subsystem, then that subsystem will be simulated until
its current time matches that of the environment. In the meantime, it may emit events, which become
outputs to the environment with time stamps equal to the current time (or later).

As is always the case with DE modeling where zero-delay actors are permitted, there can be
semantic problems with directed cycles that have zero delay [23]. Consider the example in figure 14.
When A reacts to an event on g, it starts a process by which an event will circulate through the cycle
forever with no advance of time. There are a number of solutions to problem, but all of them are intrin-

sic to DE and not to the DE/FSM combination, and hence are beyond the scope of this paper.

3.4 SYNCHRONOUS/REACTIVE SYSTEMS WITH FSM

Even though time is a real number in a DE system, for any well-behaved DE simulation, time in
fact advances in discrete steps. Recognizing that, we could instead use a model of computation where

only the discrete steps are modeled, and not the time continuum. In addition, we can resolve the prob-

:_, avb/x|
E [A]

DE

A 4

c/y
c " \&xﬂ y

[B

FIGURE 14. As with all DE modeling, zero-delay loops can cause difficulties.

1. A particular programming environment may impose constraints on the data types of the tokens, but that is not an
issue being addressed in this paper.
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lem highlighted above with zero-delay feedback loops by adopting a fixed-point semantics. With these
two innovations, we get the synchronous/reactive (SR) model of computation [1]. SR is synchronous
in the same sense as synchronous digital circuits. Time delays in computations become irrelevant, so a
useful conceptual gimmick is to assume that computations také zero time. SR has a major advantage
over DE in that an SR model can be compiled into either sequential code or parallel circuits. DE, in
contrast, is difficult to implement efficiently in sequential code, although it is used routinely to specify
circuits, which are intrinsically parallel (via the VHDL and Verilog languages).

Execution of an SR system occurs at a sequence of global, discrete, instants called ticks (as in ticks
of a clock). At each tick, each signal either has no event (is absent) or has an event (is present, possibly
with a value). At each tick, signals are related by functions that have signals as arguments and define
signals. In general, directed cycles are permitted. L.e., for signals a and b, and functions f and g, we
might have

a=fb)

b=g(a) (3

Thus, at each tick, signals are defined by a set of simultaneous equations using these functions. A solu-
tion is called a fixed point, and the task of a compiler is to generate code that will find such a fixed
point.

To ensure that the system is deterministic, that the implementation always finds the same solution
given the same inputs, each function is required to be monotonic in a very particular sense. Suppose
that a function f has input signal a with signal alphabet {€, a,, a,, ... }. We augment the alphabet with a
special symbol L, pronounced “bottom,” that we interpret to mean “unknown.” The function must be
defined for input L (the output will often, but not always be _L). We then define a “flat” partial order on

the augmented set, {.L, €, a;, ay, ... }, as shown in figure 15(a). In this diagram, L is below (“less than™)
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everything else in the set, and no two other elements in the set are comparable (neither can be less than

the other). The function fis monotonic if

asad = fla)Sfa), 4)

where the symbol “<” is interpreted with respect to this partial order. The partial-order and the notion
of a monotonic function is easily generalized to allow functions with multiple arguments. It is then
possible to use a fixed point theorem based on the Knaster-Tarski fixed-point theorem to show that any
network of such monotonic functions has a least fixed point, where “least” is with respect to this partial
order [13]. The least fixed point is taken to be the semantics of the network of functions. This basic
approach was pioneered by Scott [27]. Many practical implementations of the SR model have been
constructed, starting with the Esterel language [4].

Finding the fixed point is straightforward, in principle. The functions are simply evaluated in any
order until we converge to a fixed point. Choosing a good order for evaluating the functions can greatly

impact performance, obviously. Edwards gives techniques for choosing [15].

Functions are allowed to change between ticks. Thus, a module in SR has two distinct behaviors
that we call produce and transition. In the produce phase, the current function is evaluated to deter-
mine outputs given the current information about the inputs. In the transition phase, the function is

changed in preparation for the next tick.
Most familiar functions are strict, meaning that all arguments must be known before the function
’ 1
output is defined. Strict functions are always monotonic. A directed loop of strict functions has the

solution L (unknown) for all signals.

€ a a
\i/

FIGURE 15. Partial orders used to define SR functions.
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It is not uncommon, however, to have functions where the output can be determined even if some
of the inputs are not known. The use of non-strict functions allows directed loops with less trivial solu-
tions. We will see that FSMs can be described as non-strict functions that map input events into output

events in each reaction.

3.4.1 Simple FSM inside SR

Embedding an FSM as an SR module seems straightforward in the following sense. If at a tick the
inputs to the FSM are known, then the FSM can react to them and possibly assert output events. Any
output events that are not asserted would then be known to be absent. However, there are two difficul-
ties with SR. First, the current state of the FSM may refine to an SR or non-SR subsystem. Second, the
inputs may not be completely known. In particular, if the SR system includes a directed loop, then the

inputs cannot be known at the start of the tick for all the modules in the loop.

In this subsection, assume the states of the FSM are not refined. Consider the example in figure 16,

where there are two FSMs, A and B, embedded in an SR system and enclosed in a directed loop. In A,

SR
a anb/x
25 @ ) )
b an—-b/x

[A

<. @:éy y

B

FIGURE 16. Two FSMs are embedded in an SR system.
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the function mapping the inputs a4 b into the output x in state o is
f2(a,b) = (aAb) v (aA—b) = a. This function does not depend on b, so if the FSM is in state
o and a is knéwn to be present or absent, then we specify whether x will be present or absent without
knowing b. Thus, in state o, the SR function defined by this FSM is not strict. It only needs to know a,

not b.

The above analysis can be automated to get a simplified function for each output at each state
using standard techniques from digital logic design. These simplified functions will indicate for each

state what inputs need to be known to define an output.

We then define two phases of execution of an FSM within SR, also called produce and transition.
To complement firing types A and B used for FSM within dataflow, we might call these firing types C
and D, respectively. In the produce phase, a type C firing, the FSM looks at the inputs and sees whether
any output function can be evaluated. If so, it is evaluated so that the output is defined. If not, it indi-
cates that the outputs are still unknown. The produce phase may be invoked any number of times in a
single tick, as long as the output functions are monotonic. The transition phase (a type D firing) makes
whatever state transition is enabled by the current inputs, but ignores the action associated with that
transition.

The SR scheduler then executes in three phases (cf. [15]):

1. First, invoke the produce phase for each FSM (and other SR blocks) however many times is
needed for it to either define the outputs or reach a fixed point. An algorithm for ordering these

invocations is given by Edwards [15].
2. If any signals remain undefined, signal a causality loop error.

3. Invoke the transition function of every FSM in the SR system.

The iterative procedure in step (1) may seem costly at first glance, but experience indicates that with
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intelligent scheduling, convergence to a fixed point is very fast [15]. Moreover, the iterative procedure

is amenable to embedding in compiled code, so it does not imply an interpreted execution style.

3.4.2 Refined FSMs inside SR

We consider two cases. If the current state of an FSM refines to an SR subsystem, then the produce
phase of the FSM should invoke the produce phase of the SR subsystem. No other change is needed. If
the FSM refines to non-SR subsystem, then we have to be more cautious. In that case, we assume that

the non-SR subsystem defines a strict function, and modify the SR scheduling as follows:
1. Same as above.

2. Look at all FSMs in the SR system where the current state refines to a non-SR subsystem and that
subsystem has not fired. If there are none, continue to step 3. Otherwise, if all of these have unde-
fined inputs, then signal a causality loop error. Otherwise, fire all refinements that have all inputs

defined and repeat steps 1 and 2.
3. If any signals remain undefined, signal a causality loop error.

4. Invoke the transition function of every FSM in the SR system.

We do not have enough experience with this doubly iterative procedure to know how costly it is. This

is future work.

3.4.3 SR inside FSM

Embedding SR systems within FSM is straightforward. If the current state of an FSM refines to an

SR subsystem, then the semantics of SR are simply exported to the boundary of the FSM.

4. Implementation

An experimental implementation of several of the combinations discussed here has been imple-
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mented in the Ptolemy software environment [8]. The SDF, DE, and SR models were already present
in the software, and minimal modifications were required to interface them to FSM. The only signifi-
cant complication encountered was that, in order to support arbitrary hierarchical combinations of all
four models, all four had to have hooks supporting the produce and transition phases of execution
required for partial evaluation in SR. For SDF and DE, the “produce” phase does nothing, and the
“transition” phase implements a standard firing. Thus, SDF and DE have strict behavior. To get a mod-
ular software architecture, the object-oriented principle of polymorphism is used, where the default

behavior of a model of computation is strict, but specific models can override this behavior.

5. Example

A commonly used example for control-intensive software environments is the “reflex game” [3].
Our version of the reflex game is a two-player game (to introduce more concurrency). The inputs to the
system are coin, ready, go, stop and time. All but the last are user inputs, while the last simply counts
off time. The outputs are blueLt, yellowLt, greenLt, redLt and flashTilt, used to control a user interface.

Normal play proceeds as follows:

1. Either player may assert coin to start the game. A status light turns blue.

2. When player 1 is ready, he presses ready, and the status light turns yellow.

3. When player 2 presses go, the status light turns green and player 1 presses stop as fast as he can.

4. The game ends, and the status light turns red.

The game measures the reflexes of player 1 by reporting the time between ready and stop. There are

some situations where the game ends abnormally, and a “tilt” light flashes. These are:
1. After coin is asserted, player 1 does not press ready within L time units.

2. Player 1 presses stop before or at the same instant that player 2 presses go.
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3. After player 2 presses go, player 1 does not press stop within L time units.

One additional rule is that if player 2 does not press go within L time units after player 1 presses ready,

then go is asserted by the system, and the game advances to wait for player 1 to press stop.

Our realization of the game is shown in figure 17, To simulate the real-time behavior of the game,
we use DE as the topmost level (a), modeling the environment of the game (including the players). The
DE model contains a clock to generate time ticks, models of the two players, a reflex block modeling
the implementation of the game, and a display block. It also contains a merge block because either
player can assert coin.

At the next level of the hierarchy (b), inside the reflex block, we have a two state FSM. The states
are game off and game on. Inside the game on state, at level (c), we use an SR model consisting of the
two players. These are interconnected with a zero-delay feedback loop, so we exploit the fixed-point
semantics of SR.

At level (d), the two players are refined into concurrent FSMs. Player 1 starts in the idle state, and
when ready is asserted, emits a start event and transitions to the wait go state. This causes player 2 to
transition to the wait state and emit a yellowLt event. The rest of the behavior at this level should now

be evident from the figure.

In several states, we need to count ticks from the clock to watch for time outs. This counting is a
simple arithmetic computation that can be performed using the dataflow graph shown at level (e). This
graph simply counts ticks, compares the count against a constant, and emits a timeout event when the

threshold is exceeded.

6. Conclusions

We have described the combination of finite-state machines with three different concurrency mod-
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els, dataflow, synchronous/reactive systems, and discrete-event systems. These three concurrency
models have different strengths and weaknesses, and are thus applicable in different situations. Seman-
tics are given for each one combined with FSM, and an example is described that uses.all four models
~ of computation. The resulting combination is easily understood by anyone familiar with all four mod-
els of computation, but obviously would be obtuse to someone familiar with only a subset. Using so

many models of computation in such a simple design would be ill-advised in practice, for this reason.

There are many issues that are not discussed in this paper. These include enhancements that are
possible in FSM, for example to support preemptive transitions, where the refinement of a state is not
fired prior to taking the transition. Another issue that is not dealt with is what should be done with the
state of a refinement of a state of an FSM. It is possible to support a “history entry,” where entering a

state starts the refinement system in whatever state it was last in.
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