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Abstract

We address the state reachability problem in FSMs, which is the problem of determining
if one set of states can reach another. State reachability has broad applications in formal
verification, synthesis, and testing of synchronous circuits. This work attacks this problem by
making a series of under- and over-approximations to the state transition graph, using the over-
approximations to guide the search in the under-approximations for a potential path from one
state set to the other. Central to this method is an algorithm to approximate a Boolean function
by another function having a smaller BDD.
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1 Introduction

We are concerned with the problem of determining if there exists a path, in the state transition
graph of a system of interacting FSMs, from a given set of initial states I to a final set F'. We
call this the state reachability problem. This problem is more specific than the usual problem of
determining the set of states R reachable from I. Obviously, if R is known, then by checking if R
and F intersect, the state reachability problem can be answered. However, it may not be necessary
to compute R to decide state reachability.

Finding efficient algorithms to solve state reachability is crucial because several problems in
verification, logic synthesis and testing can be efficiently reduced to the state reachability problem.
For example, to determine if two FSMs M; and M, are equivalent, we can define the set of initial
states I to be those product states that are initial in both M; and M;, and F' to be those products
states where the output values of M; and M, differ. Then, M; and M; are equivalent if and only
if I cannot reach F in the product of M; and M;. As another example, checking safety properties
specified as automata over finite strings can be reduced to state reachability. In particular, if a
monitor T is defined that enters a BAD state when a property is violated, then an FSM M satisfies
the property if and only if the BAD states cannot be reached from the initial states, in the product
of M and T. In summary, an efficient solution to the state reachability problem would provide
efficient solutions to a host of other CAD problems.

When an FSM is described as a set of interacting FSMs, the state reachability problem is
PSPACE-complete [1]. Even so, algorithms based on symbolic breadth-first traversal using BDDs
can handle FSMs with several hundred flip-flops. However, on larger examples, the standard
approaches start to falter because

1. the BDD representing the set of states reached at an intermediate step grows too large, or

2. the image of a given set of states cannot be computed.

This work does not address the first problem directly, but instead focuses on the second problem;
in doing so, we aim to increase the size of FSMs that can be analyzed.

To understand the idea behind our approach, consider the state transition graph G of an FSM
M, representing a set of interacting FSMs. We assume that G is too large to build and analyze
directly. Instead, we make a series of over- and under-approximations to G, where with each ap-
proximation, we attempt to narrow in on a path from I to F, or prove that such a path cannot
exist. An over-approximation of G is a graph containing a superset of the edges! of G, and an
under-approximation of G is a graph containing a subset.

Consider an over-approximation V to G, and restrict V to those transitions lying on a path
from I to F. If there is a path in G from I to F, then this path must exist in the restricted V.
Now, consider an under-approximation U. Denote by I’ all those states that are reachable from J
in U, and by F' all those states that can reach F in U. If I’ and F’ intersect, then certainly I can

1The terms edge and transition are used interchangeably.



reach F in G, because, by definition, all of the transitions in U are in G. On the other hand, if I
and F' do not intersect, then we try to extend the frontier of I’ by looking for true transitions (i.e.,
those in G) among those in V' that lead from states in I’. If no such transition can be found in V,
then we have proven that I cannot reach F' in G. We also try to work backwards from F’ at the

same time, in a similar manner. In summary, V is used to guide the search in U for a path from I
to F.

The feasibility of our approach is predicated upon finding approximations to G that have rea-
sonable BDD sizes, but yet are close enough approximations to G to permit useful information to
be derived. To this end, we introduce two new BDD operators, called bddOverApproz and bddUn-
derApproz. Consider the BDD F representing a function f. BddUnderApproz selectively replaces
some subgraphs in F' by the constant ZERO, yielding a new BDD G representing the function g,
such that G has fewer nodes than F, and ¢ C f. Nodes are selected for replacement based on a cost
function that takes a parameter that controls the tradeoff between reducing the BDD node count,
and reducing the onset size. In a similar manner, bddOverApproz adds minterms to a function by
replacing BDD nodes by the constant ONE. Ravi and Somenzi [17] independently and concurrently
formulated the same BDD approximation problem, although they apply it in a different situation.

The main contribution of this work is a BDD-based algorithm to solve the state reachability
problem, via a series of under- and over-approximations to the state transition graph. To our
knowledge, the idea of using both under- and over- approximations in this domain is novel. Also,

we define, and give a heuristic solution to, the new problem of approximating Boolean functions to
yield a small BDD.

2 The state reachability problem

An FSM is specified as a 5-tuple, M = (S,1,X,X;,T), where:

e S is the state space of size 2!, spanned by the binary variables z = [z;,%2,...,2j). We also
introduce a second set of variables ¥ = [v1,¥2,. .., %] to denote the next state.

e I is a subset of S, denoting the initial states.

X is the set of n inputs, with associated binary variables u = [uj, ug,..., %)

¥; = B" is the input alphabet.

T is the next state function, T : § x 1 — §. T is presented as a vector of ! Boolean
functions, 6§ = [61,82,...,0;], where §; is the next state function of the state variable z;.
T; = (yi = 6;(u,z)) gives the corresponding transition relation of z;, and T’ = Moy T: 6is
typically given as a multi-level logic network.

The state transition graph G(z,y) of M is a binary relation over S defined by

i
G(z7 y) =3u II Tt(za u, yi)‘

i=1
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That is, G(z,y) = 1 if and only if there exists an input u such that from state z = [:cl., T3, .. o i),
8; evaluates to g;, for all 1 < i < . The state sequence 7 = 2% ... is a run of M if (z*,2*+!) € G,
for all ¢ > 0. The run 7 is initialized if 2° € I.

Definition 1 An instance of the state reachability problem consists of an FSM M = (S,I,X,X,T)
and a subset of states F C §. The answer to the state reachability problem is YES if there ezists an
initialized run 2%z ...z" in the state transition graph of M such that z" € F, and NO otherwise.

As defined, the next state behavior of an FSM must be deterministic. However, sometimes
FSMs are specified with nondeterminism, meaning that for a given input and present state, there
may be more than one next state. In this case, a relation, rather than a function, is needed to
specify the next state behavior. Since we are only interested in the state transition graph G derived
from the relation T, nondeterminism does not pose a problem; we stick with determinism for clarity.

Finally, we are interested in analyzing a system of interacting machines, but our definition of
the problem is with respect to a single FSM. This limitation is easily overcome by realizing that
any system of FSMs can be thought of as a single FSM by amassing the next state functions of all
the state variables of the system into a single vector of next state functions.

3 Related work

The problem of traversing the state graph of an FSM, whether to compute the set of reachable
states or to determine if a specific subset of states is reachable, has been the object of intensive
research over the last decade. A breakthrough occurred in 1989 when Coudert, Berthet and Madre
proposed using BDDs to perform symbolic breadth-first traversal of state graphs [9]. With this
approach, the number of states in the graph is no longer the principal limitation (as in depth-first
traversal); instead the “complexity” of the Boolean functions defining the underlying circuit govern
the efficiency.

Since symbolic traversal was proposed, many researchers have suggested various heuristics in a
quest to traverse ever larger and complex FSMs. These heuristics have been shown to be effective
in some cases, and not so in others. Here we review some of the previous work, and how it relates
to our research.

3.1 Image computation

Image computation is the central task in symbolic traversal. Given a set of states A, we want to
determine the successors of A in the graph G of an FSM. The image can be computed as

image(y) = 3z(G(z,y) - A(z))-



That is, a state y is a successor of A if there exists a state z in A such that there is an edge from
z to y in G. Substituting for G from above,

l
zmage(y) = azau(n Ti(-’C, u, yi) : A(:B)).

i=1

The naive approach of first taking the product of the T;’s and A, and then quantifying z and u,
is ill-conceived because often the intermediate product is large even though the final result is not
so large. In general, the full product must be computed because existential quantification does
not distribute over Boolean conjunction. However, a special case can be exploited where it does
distribute. Namely, the equation

Az(f(z,9) - 9(¥))

can be rewritten as
3z(f(z,v)) - 9(v)-

Several researchers have used this fact to quantify some variables before the entire product is formed,
in an attempt to avoid the intermediate blowup in the overall computation [3, 11, 12, 16, 19].

Another technique for simplifying image computation is to use certain sets of states as don’t
cares to simplify the BDDs of the set A of states and the individual transition relations T;. In
particular, suppose that the set R of states has already been reached, and during the previous
image computation, the set B was reached for the first time. For the next image computation
step, there is no harm in re-exploring states in R that are not in B. Thus, any set C such that
B C C C R is suitable for the next image computation. In addition, we can arbitrarily choose the
behavior of T; on any state z not in C, since such states are disregarded when the eventual product
with C is formed. The operators constrain and restrict implement the simplification of BDDs using
don’t care sets [8, 19, 18].

Cabodi et al. [4)] introduce the ezistsCofactor, which is similar to the constrain operator, but
allows existential quantification to distribute over conjunction. In particular, they are able to

rewrite
Az(f(z,y)- 9(z,9))

axf(x, y) * Bzg'(:c, y)),
where ¢'(z,y) is the ezistsCofactor of g with respect to f.

All three of the techniques discussed in this subsection are orthogonal to our approach, and in
fact can be used in combination with our approach

3.2 Exact state reachability

Balarin introduced an algorithm to test for language emptiness of automata over infinite strings [2].
For ease of presentation, we describe his algorithm for the simpler case of automata over finite
strings. An automaton over finite strings has a designated set F of accepting, or final, states. The



language of such an automaton is not empty if and only if there exists a path from I (the initial
states) to F'; thus, state reachability provides the answer to language emptiness.

To solve this problem, Balarin makes a series of successively finer over-approximations to the
state graph G of the automaton, in an attempt to determine if I can reach F. Each over-ap-
proximation V is analyzed to determine if there is a path from I to F. There are two cases to
consider.

1. There is a path from I to F in V: If this path exists in G (G is analyzed for this single path),
then the language is not empty, and the algorithm terminates. Otherwise, a new over-ap-
proximation is constructed that eliminates this path in V, and the procedure is repeated.

2. There is not a path from I to F in V: Then the language is empty, and the algorithm
terminates.

Balarin’s algorithm partly served as inspiration for our approach. However, whereas Balarin ana-
lyzes a single path from I to F in V at a given iteration, we analyze all of the paths from I to F
to guide the search for a real path in the under-approximation U.

The work of Cabodi et al. [5] is similar in spirit to ours. They first compute an over-approxima-
tion of the states reachable from I, and then use this information to constrain an exact backward
search from F. If I is reached in the backward search from F, the state reachability problem is
answered in the affirmative.

The work of Courcoubetis et al. [10] addresses the problem of not being able to build the
transition relation for an FSM M. Instead of employing BDDs and performing BFS on the state
graph, they use DFS, building up the graph one transition at a time. Since this method is explicit,
they are limited in time to exploring roughly 108 states. This method is referred to as “on-the-fly”,
because states are checked to see if they belong to F' while the graph is being built.

3.3 Approximate state reachability

The set of reachable states is the set of states R that can be reached from the initial states I.
Obviously, if R is known, then the set I can reach F if and only if R and F' have a non-empty
intersection. Even if R is not known, sometimes an approximation to R can be used to answer the
state reachability problem. If an under-approximation R~ and F intersect, then clearly R and F
intersect, and the answer to state reachability is “YES”. On the other hand, if an over-approxima-
tion R* and F do not intersect, then R and F do not intersect, and the answer is “NO”. In the
cases where Rt or R~ cannot be used to answer the state reachability problem, they could be used
as a starting point to focus the search for a path from I to F.

Cho et al. [6] have devised various techniques for over-approximating R. The first step of these
techniques is to partition the flip-flops of the FSM to yield a set of & interacting sub-FSMs. This
partitioning is done so that flip-flops with strong interaction tend to be placed in the same sub-
FSM. Next, the set R; of reachable states of sub-FSM; is computed for each ¢. This computation



does not consider the full, dynamic interaction of sub-FSM; with the other sub-FSMs, but instead
considers some partial constraints on the values of the inputs of sub-FSM; driven by the other
sub-FSMs. This yields an over-approximation of the state reachable in sub-FSM;. Finally, an over-
approximation R* of the entire reached set is given by the Cartesian product R* = Ry x ... X Ry.
They use the complement of Rt as an under-approximation of the unreachable states to perform
logic minimization.

Ravi and Somenzi [17] propose a technique to under-approximate R. Their algorithm proceeds
with the usual symbolic BFS, but when the set of states A to explore becomes too large (in terms
of BDD size), they continue the search from only a subset of A. This subset is heuristically chosen
to have a small BDD while retaining as many states as possible from A. As mentioned previously,
this problem of approximating a set using a small BDD is the same problem we have formulated.
As such, we could employ the heuristics proposed by Ravi and Somenzi in our work.

As mentioned earlier, Courcoubetis et al. [10] perform state graph traversal using depth-first
traversal, and not using BDDs. To represent the set of states visited thus far in a traversal, they
use a data structure whose size is directly proportional to the size of the set of states. The problem
is that this set may become too large to represent. To combat this problem, they use a hash table
without collision chains, which hashes a state to a single bit indicating if the state has already been
visited. Since collisions may occur in this hash table, it may be incorrectly deduced that a state has
already been visited, when in fact it has not been. This may in turn lead to visiting only a subset
of the total set of reachable states, thus yielding an under-approximation. They use probabilistic
analysis to quantify the probability of collisions for a randomly chosen hash function.

4 Algorithm to decide state reachability

Figure 1 gives an outline of our algorithm to solve the state reachability problem for the FSM M
and final state set F. The algorithm also takes 0 < a < 1 as input, which controls the degree of ap-
proximation used during the algorithm. Here we discuss the top-level control of the algorithm and
illustrate the algorithm in detail with an example. In Section 6, we discuss each of the subroutines
in detail.

We assume that the graph G(z,y) of M is too big to build and manipulate. Instead, we
construct a series of approximations to G(z,y) that are small enough to manipulate efficiently. We

are willing to trade off execution time in favor of memory savings, in an attempt to handle very
large FSMs.

The initial step is to compute an over-approximation V(z,y) 2 G(z,y) (line 1), and an under-
approximation U(z,y) C G(z,y) (line 2). G is a set of directed edges of a graph, so V' is a superset
and U is a subset of this set of edges. The goal is to choose V(z,y) and U(z,y) so that they are
close to G(z,y), but have much smaller representations. ‘

The algorithm then iterates, adding edges to U(z,y) and removing edges from V(z,y), until
it is determined whether or not there exists a path from I to F in G. The search is conducted
working forward from I and backward from F. In particular, each iteration starts by performing,
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reachable(M, F, a)
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V := InitialOverApproz(M, a)
U := InitialUnderApproz(M, o)

=JTof M
i

I:
F := input parameter F

while (TRUE)

I := I + ForwReachability(U,I) /* states reachable from I in U */
F := F + BackReachability(U, F) /* states which can reach F in U */

if (I intersects F)
return “yes, I can reach F”

V := RestrictToFinal(V, I, F) /* restrict V to edges on paths from I to F */

if (I cannot reach F in V)
return "no, I cannot reach F”

toF := V(z,y) F(z)- F(y) /* transitions to F in V' %/
froml := V(z,y) - I(z)-I(y) /* transitions from I in V' =*/

falseToF(z,y) := ApprozFalseEdges(M, toF,V, o) /* subset of false edges in toF */
trueToF(z,y) := ApprozTrueEdges(M, toF, V,a) /[ subset of true edges in toF */
falseFromK(z,y) := ApprozFalseEdges(M, froml, V, a) /% subset of false edges in froml */
trueFromI(z,y) := ApprozTrueEdges(M, froml, V, a) /* subset of true edges in froml */

if (false ToF and trueToF and falseFroml and trueFroml are empty)
trueToF(z,y) := FzactTrueEdges(M, toF)
trueFromI(z,y) := EzactTrueEdges(M, froml)
if (trueToF or trueFroml is empty)
return "no, I cannot reach F”
else
falseToF(z,y) := toF - trueToF(z,y)
falseFromI(z,y) := froml - trueFromI(z,y)

V := V - (falseToF + falseFroml) [+ remove false edges from V */
U := U + (irueToF + trueTol) /* add true edges to U */

Figure 1: Algorithm to decide state reachability.

9



in U, forward reachability from I and backward reachability from F (lines 6 and 7). Reachability
is carried to a fixed point. Any states reached from I are added to I, and any states that can reach
F are added to F. Since all edges in U are present in G, all states in I and F' can also be reached
in G. If at any time I and F intersect, then we know that a path exists from the original I to the
original F in G (lines 8 and 9).

The next step is to restrict V to those edges that lie on some path from I to F in V (line 10).
If there does indeed exist a path from I to F' in G, then it must lie in the restricted V. Hence, if
it is discovered that there is no path from I to F in V, then we can immediately conclude that no
such path exists in G (lines 11 and 12). This restriction is done on each iteration, because as we
will see, we eliminate some edges from V on each iteration (line 27). Remember that we assume
that the representation for V is small enough so that we can do reachability on V efficiently.

Since we carried reachability in U to a fixed point (lines 6 and 7), by definition, there are no
edges in U leaving I or entering F. Hence, to continue the search in U, we need to find edges of
G leaving I and edges entering F. Where do we look for such edges? Naturally, we look for them
in V. In particular, V focuses our search for a path from I to F, since if such a path exists in G,
it must exist in V. Furthermore, V contains only those edges lying on a path from I to Fin V
(because of line 10). This is a key point. Thus, in lines 13 and 14, we restrict V to those edges
entering F (toF) and those exiting I (fromI). Our intention is to determine which edges in these
sets are “true” (exist in G) and which are “false” (do not exist in G)). Just answering the question
for one edge is already NP-complete (reduction from SAT). Hence, we try to approximate the true
and false sets (lines 15-18). If all of the approximations are empty, then we must do ezact analysis
(lines 20 and 21) on the true edges in order to draw any conclusions. If exact analysis does not find
any true edges, then we can conclude (line 23) that no path exists from I to F'in G.

If at least one of falseToF, trueToF, falseFroml, and trueFroml is non-empty, then we remove
false edges from V, and add true edges to U (lines 27 and 28). Removing false edges from V' is
important because it may further narrow the search. At this point, we repeat the entire loop.

There are three major subroutines in this procedure:

1. initial over-approximation of G (line 1),
2. initial under-approximation of G (line 2), and

3. approximation of edges from I and to F (lines 15-18).

Each of these subroutines involves approximating a set of edges represented by a BDD. For this
task, we make extensive use of the BDD approximation operators. Section 5 addresses the BDD
approximation problem.

4.1 Example

We illustrate the algorithm with a detailed example. Figure 2 shows the graph G(z,y) of a 21-state
FSM. The states are labeled for reference. The set of initial states is I = {3}, and the set of final

10



states is F = {13}. To emphasize, we do not have direct access to this graph in the algorithm; it
is shown here to clarify the operation of the algorithm.

Figure 2: Graph G of a 21-state FSM. The initial state is 3 and the final state is 13.

The initial over-approximation V; and under-approximation U, are shown in Figures 3 and 4,
respectively. Throughout the example, the current sets of states I and F are each indicated by a
dotted region. In addition, the false edges of the over-approximations (although not known a priori
by the algorithm) are indicated by dots.

Iteration 1 Performing reachability in U (lines 6, 7), I is enlarged to {2,3} (because of the edge
3—2) and F is enlarged to {9, 13} (because of 9—13). Since N F' = @, we proceed to restrict V;
(line 10) to edges on paths from I to F, to yield V{ in Figure 5.2. For example, edges 3—6 and
16— 15 are removed. With careful analysis, even edges 9—3 and 1—3 can be removed, since their
removal does not affect the reachability question. In addition, we remove the self-loops in V;. Since
I cannot reach F in V/, the condition at line 11 if false.

As a side note, as the algorithm is presented, whenever we can remove edges from Vi, we do
so. In reality, removing such edges may make the BDD for V needlessly larger. Hence, these edges
should be treated as don’t cares and used to minimize the BDD size of V. In addition, edges

between two states in I, or between two states in F', can be treated as don’t cares in both V and
U.

Continuing with the algorithm, line 13 identifies those edges of V] entering F,
toF = {5—9,10—13,11—13,12-9}.
and line 14 identifies the edges of V{ leaving I,
fromI = {2—1,3—4,3-5}.

2Now the new I and F are shown. Edges contained within I or within F' are not drawn.
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Figure 3: Initial over-approximation V;. The sets I and F are indicated by the dotted region. False
edges are indicated by a dot.

(2

@
G @©

Figure 4: Initial under-approximation U;.
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Figure 5: Over-approximation V{, formed by restricting V3 to edges on paths from I to F. Edges
contained within I or within F' are not drawn.

Since these edges belong to an over-approximation, we do not know a priori which edges are true
and which are false. Suppose lines 15 to 18 make the following approximations:

falseToF = @,
trueToF = {12-9},
falseFromI = {3—4},
trueFroml = {2-1}.

Since not all of these are empty, the algorithm proceeds to lines 27 and 28, where edge 3—4 is
removed from V/ to yield V, (Figure 6), and edges 12—9 and 2—1 are added to U, to yield U,
(Figure 7).

Iteration 2 Reachability on U, expands I to {1,2,3,4,5}, and expands F to {9,11, 12, 13, 17}.
Notice that pre-existing edges in the under-approximation (e.g., 1—4, 4—5) allow the reachability
computation to progress beyond those edges just added to the under-approximation.

I and F still do not intersect, so we restrict V, (for example, by removing all edges to and from
states 18, 19 and 20), to yield V; (Figure 8). I can still reach F in V; (line 11), so we compute

toF = {5—9,10—13,10—11,21-11}, and
froml = {5-7,5-9,5—10}.

Suppose lines 15 to 18 make the following approximations:

falseToF = {10—13,21—11},
trueToF = 0,

13



falseFromI = {5-9},
trueFromlI = {5-7}.

Then the false edges are removed from VJ to yield V3 (Figure 9), and the true edge is added to U,
to yield Us (Figure 10).

Figure 6: Over-approximation V3, formed by removing edge 3—4 from Vj.

O—® @

Figure 7: Under-approximation Uy, formed by adding edges 12—9 and 2—1 to U;.

Iteration 3 Reachability on Uz adds states 7 and 15 to I. I and F do not intersect. Restricting
Va removes edges 10— 7 and 15—21, to yield V3 (Figure 11). Attention is focused on

toF = {10—11}, and
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Figure 8: Over-approximation V;, formed by restricting V2 to edges on paths from I to F.

fromlI = {5—10,15—10}.
Suppose lines 15 to 18 make the following approximations:

falseToF = 0,
trueToF = {10—11},

falseFromI = 0,
trueFromlI = {15—10}.

These two true edges are added to Us to yield Uy (Figure 12).

Iteration 4 Reachability in U, adds state 10 to I, and also to F. At this point, I and F intersect,
and the algorithm returns “yes, I can reach F.”

5 Approximating Boolean functions

Our algorithm to decide state reachability efficiently is predicated upon being able to find close
approximations to sets of edges (e.g., the graph G(z,v), and the sets toF(z,y) and fromI(z,y)),
which have small BDDs. In this section, we define a general problem whose solution can be used
to approximate sets of edges. We discuss the related work of Ravi and Somenzi, and then offer our
own heuristic to solve the problem.
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Figure 9: Over-approximation V3, formed by removing edges 10—13, 21—11 and 5—9 from Vj.

Figure 10: Under-approximation U3, formed by adding edge 5—7 to Us.
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Figure 12: Under-approximation Uy, formed by adding edges 10—11 and 15—10 to Us.
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Bﬂ

Figure 13: The BDD over-approximation problem.
5.1 Statement of the problem

Given a Boolean function f, we say that the Boolean function g if an over-approzimation of f is
g O f. This definition can be extended to relations by considering the characteristic functions of
relations. We want to find an over-approximation g of f such that g just “barely” contains f, and
yet the BDD for g is much smaller that the BDD for f (under a fixed variable ordering). This
problem is illustrated in Figure 13, where the function f is a “complicated” function with a large
BDD, and g is a “simple” function with a small BDD, derived from f by adding some minterms to
the onset.

The demands of having a close approximation and yet having a small BDD are sometimes
conflicting. There are two extreme approximations we could consider. The first is the function f
itself; this approximation is exact, however, by assumption, this function has an unwieldy BDD.
The second approximation is the tautology; this approximation has a BDD of size 1, however, it is
unlikely to be useful since it does not contain any information. These conflicting demands lead us
to the following optimization problem.

Definition 2 The BDD over-approximation problem is, given the BDD for a function f : B* — B
and 0 < a <1, find g D f such that the cost of g is minimized, where

cost(g) = a(log}|onset(g)]) + (1 - )| BDD(g)|
and |onsel(g)| is the size of the onset of g, and |BDD(g)| is the size of the BDD for g.

Several remarks regarding this problem are in order.
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1. The parameter a appearing in the cost function allows us to control the relative weight
between finding a close approximation and finding an approximation with small BDD size.
We see that when a = 1, the minimum cost solution is f itself, and when a = 0, the minimum
cost solution is the tautology.

2. Since for an over-approximation g of f, onset(g)| > |onset(f)|, if cost(g) < cosi(f), then this
implies that |[BDD(g)| < |BDD(f)|.

3. The logarithm of the onset size is used to balance the two terms being summed. Even though
both |onset(g)| and |[BDD(g)| can be exponential in n, functions we can handle typically have
exponential size onsets but polynomial size BDDs. Therefore, so that the onset size term
does not dominate the BDD size term, we take the logarithm of the onset size term; but then
we square it so that it is not too small.

5.1.1 Complexity of the BDD over-approximation problem

The decision problem corresponding to the BDD over-approximation problem is in NP.
Instance: A function f: B® — B represented by a BDD, 0 < a <1, and K < |[BDD(f)-
Question: Does there exist g : B® — B such that g 2 f and cost(g) < K7

Proposition 3 The above problem is in NP.

Proof We must verify in time polynomial in |[BDD(f)] whether or not a guess g is a solution to
the problem. If |BDD(g)| > |BDD(f)|, then we can immediately dismiss g as a potential solution,
by the second remark above. Otherwise, we traverse BDD(g) to determine |onset(g)|; this can be
done in time O(|BDD(g)|). Then we compute cost(g), and verify whether or not cost(g) < K. If
so, we verify that g D f; this can be done by checking that f-g = 0, which can be done in time
O(|BDD(f)| - |IBDD(g))- =

5.1.2 Minterms versus BDD size

The drawing in Figure 13 is meant to suggest that just by adding a “few” minterms to the onset of
f, the BDD size can be drastically reduced. Unfortunately, the truth is not so ideal. We now show
that adding one minterm to the onset of f cannot reduce the BDD size of f by more than n, where
n is the number of variables. Thus, if |[BDD(f)| is exponential in n, then to get an exponential
reduction in the BDD size, we must add an exponential number of minterms, which can no longer
be construed as a “close” approximation.

Let z,,Z,...,%, span the space B". Without loss of generality, assume the BDD variable
ordering is 1 < z2 < ... < Zp, With z; being the top variable.
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Lemma 4 Let f : B* — B and let m € B™ be a minterm in the offset of f. Then |BDD(f+m)| <
|BDD(f)| + n. That is, adding a minterm to the onset of a function cannot increase the size of its
BDD by more than n.

Proof We argue that the number of nodes at level ¢ cannot increase by more than 1. Since there
are at most n levels, the total size cannot increase by more than n.

Let b; € B denote an assignment to z;, and let m be the minterm J},...,b}. Consider the
cofactors of f on all combinations of b, ...,b;—;. Partitions these cofactors into equivalence classes

based on equality. The number of classes whose representative depends on z; gives the number of
nodes at level 7 in the BDD for f.

Now consider the cofactors of f + m on all combinations of by,...,bi—;. First, we note that
cofactoring distributes over disjunction, so

(f + m)bl,-..,b;‘—] = fb;,...,b.’_l + mp,,...bi—1*

The cofactor of m by by,...,b;_; is 0 for every combination of b,,...,b;_1, except for b},...,b}_;.
Thus, all but one of the cofactors of f + m are the same as the corresponding cofactors of f.
Hence, each cofactor remains in the same equivalence class, with the exception of the cofactor by

fy--.,bi_;. In the case that this cofactor forms its own class, and is dependent on z;, the number
of nodes at level i will increase by one. In all other cases (the cofactor joins another class, or forms

its own class but is independent of z;), the number of nodes at level ¢ does not increase. »

Lemma 5 Let f : B* — B and let m € B" be a minterm in the onset of f. Then |BDD(f-m)| <
|BDD(f)| + n. That is, removing a minterm from the onset of a function cannot increase the size
of its BDD by more than n.

Proof The proof is similar to Lemma 4. In this case, we have

(f * —Tﬁ)bl 1--~1bi-—1 = fbll"-vbi—l ) mbl v-"tbi—] *

The only combination of by, ...,b;—; where ™y, 5,_, # 1is b},...,bi_;. Thus, all but one of the
cofactors of f -7 are the same as the corresponding cofactors of f. The rest of the proof is the
same. w

Theorem 6 Let f : B* — B and let m € B™ be a minterm. Changing the value of f on m cannot
change the size of the BDD for f by more than n.

Proof
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Case 1: m isin the offset of f. By Lemma 4, |BDD(f+m)| < |BDD(f)| +n. We must show that
[BDD(f +m)| > |BDD(f)| - n. For sake of contradiction, suppose |BDD(f + m)| < |BDD(f)| — n.
Let g = f + m. By Lemma 5, |BDD(g - )| < |BDD(g)| + n. Since

gm=(f+mm=f-m=f,

then substituting for g gives |BDD(f)| < |BDD(f + m)| + n. By hypothesis, |[BDD(f + m)| <
|BDD(f)| — n, which implies |BDD(f)| < |BDD(f)| — n+ n = |[BDD(f)|, an obvious contradiction.
Thus, adding 2 minterm to f cannot change the BDD size by more than n.

Case 2: m is in the onset of f. By Lemma 5, |[BDD(f - ®)| < |BDD(f)| + n. To show that
|BDD(f - )| > |BDD(f)| — n, we proceed exactly as in Case 1, using Lemma 4 this time. Thus,
removing a minterm from f cannot change the BDD size by more thar n. =

Thus, we see that the effect on BDD size of adding minterms to a function is somewhat gradual.
Adding k minterms can reduce the BDD size by at most kn. Of course, adding minterms can also
increase the BDD size, so choosing which minterms to add requires judiciousness.

5.1.3 Under-approximations

So far we have discussed only the problem of finding good over-approximations. However, we are
also interested in finding good under-approximations. The formal statement of the BDD under-ap-
proximation problem follows.

Definition 7 The BDD under-approximation problem is, given f : B* — B and 0 < @ < 1, find
g C f such that the cost of g is minimized, where

cost(g) = a(log3(loffse(g)])) + (1 — @)| BDD(g)|-

Thus, to minimize the cost, we want to minimize the size of the BDD and the size of the offset,
subject to the constraint that g C f. Note that when a = 1, the minimum cost solution is f itself,
and when a = 0, the minimum cost solution is the zero function.

5.2 The subsetting problem of Ravi and Somenzi

Ravi and Somenzi independently and concurrently formulated a problem, termed the subsetting
problem, which is nearly identical to our BDD under-approximation problem [17]. They employ
subsetting to compute an under-approximation of the set of reachable states of an FSM, as explained
in Section 3. Here, we explain the subsetting problem, and the heuristics they propose for solving
this problem. -
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Definition 8 The subsetting problem is, given @ BDD for f : B — B and a threshold K <
| BDD(f)|, find a function g such that g C f, |BDD(g)| < K, and the number of minterms in the
onset of g is mazimum.

This problem is nearly identical to ours, the only difference being that Ravi and Somenzi use
the threshold K to control the degree of approximation, whereas we use the parameter a.

The first heuristic they propose is termed heavy branch subsetting. This method starts at the
root of the BDD for f and follows a single path through the BDD, setting to the constant ZERO
the side branches along this path. For a given node on this path, it always sets to ZERO that
child “holding” the lesser number of minterms in the onset of f (the “light” child), and keeping
the other (the “heavy” child). The procedure terminates when enough nodes have been eliminated
so that the total BDD size falls below the threshold K. The procedure keeps track of how many
nodes are being eliminated by computing, in a preprocessing step, the number of nodes “held” by
each light child, exclusive of its corresponding child (called the differential_node_count). Using this
technique, the total runtime is linear in |BDD(f)|. The result of this procedure is a BDD with a
string of nodes at the top, each with one child pointing to ZERO.

The second heuristic is called short path subsetting. The idea here is to keep just those short
paths from the root to the constant ONE, because they hold a large number of minterms but cost
little in terms of the number of BDD nodes. The procedure first labels each node with the sum of
its shortest distance from the root, and its shortest distance to the constant ONE; this is called the
path_length. Then, based on the threshold K, it determines a maximum value for path_length such
that removing all nodes with a path_length greater than the maximum will yield a BDD of size less
that K. The resulting BDD may have many disjoint paths, and consequently little sharing of BDD
nodes.

Experiments were conducted to compute under-approximations of the set of reachable states for
several large FSMs. These experiments validated the utility of subsetting. As a side note, neither
heuristic was shown to be superior to the other.

5.3 Heuristic for the BDD under-approximation problem

For a function f with k minterms in its onset, there are 2* functions g C f. Since we want to find
an approximation g with lower cost than f, ¢ must have fewer BDD nodes. We try to find such
a g by replacing some subgraphs of f by the constant ZERO; this is also the general approach of
Ravi and Somenzi. This is guaranteed to reduce the number of nodes, while meeting the condition
that ¢ C f. However, depending on the value of a, replacing a subgraph by ZERO may actually
increase the cost. The challenge is to determine which set of subgraphs to replace by ZERO in
order to maximize the cost reduction.

Although we have not been able to determine a lower bound on the complexity of the BDD
under-approximation problem, it seems likely that solving the problem exactly would be prohibitive.
In fact, since we want to repeatedly apply the approximation operator on BDDs of tens of thousands
of nodes, we require an algorithm that is linear, or nearly so. Because of this, we take a very greedy
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approach.

The basic idea is to visit the nodes of the BDD for f on a level-by-level basis, from top to
bottom. Within a level, the nodes are visited in an arbitrary order. When a node v is visited, we
compute

o numOnset(v), which is the number of minterms in the onset of f that would be removed if
all edges pointing to v were redirected to ZERO, and

o nodeSavings(v), which is the number of nodes in the subgraph rooted at v that would be
saved if v were replaced by ZERO. Note that some nodes in the subgraph of v are shared by
other parts of the BDD, and hence do not contribute to nodeSavings(v).

Given these two measures, we can determine whether or not replacing » by ZERO will increase or
decrease the overall cost; if it will decrease, then we greedily make the replacement. We continue
processing each node in turn until all non-constant nodes have been processed.

We now detail the four major steps of the algorithm, and illustrate it on the BDD in Figure 14.
To simplify the presentation, we assume that complement pointers are not used in the BDD.
However, the implementation must ultimately take into account complement pointers, because all
present-day BDD packages use them. The main complication is that replacing a node v by ZERO
will actually add minterms to the onset of f, if v can be reached by an odd number of complement
pointers.

5.3.1 Step 1: Compute the onsetFraction of each node v in f

For the Boolean function rooted at v, onsetFraction(v) gives the ratio of the size of the onset to
the size of the entire Boolean space. This figure can be computed for all nodes of f in linear time
by applying DFS from the root of f. The terminal cases of the recursion are

onsetFraction(lONE) = 1, and
onsetFraction(ZERO) = 0.

The onsetFraction of a non-constant node is computed in terms of the onsetFraction of its two
children:

onsetFraction(v) = %onsetFraction(v.left) + %onsetchtion{v.rz’ght).
The onsetFraction for each node in our example BDD is shown in Table 1. For example,

onsetFraction(C) = % -:- ; ; = 2
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Figure 14: BDD used to illustrate the bddUnderApproz algorithm.

node onsel-  funcilion- | node- num- num- costBenefil, a
Fraction RefCount| Sav- Min- Onset| 0 2 4 .6 .8 1
tngs lerms

Al 25/32 1 10 64 50110 3.7 -26 -89 -15.2 -21.5
B 3/4 1 5 32 241 5 14 -22 -58 -94 -13.0
C 5/8 1 4 16 101 4 19 -02 -23 -44 -6.5
D 13/16 1 1 32 26 1 -2.0 -49 -79 -10.8 -13.8
E 3/8 1 3 8 3( 3 20 09 -01 -12 -22
F 7/8 3 1 40 35( 1 -26 -62 -98 -134 -17.0
G 1/4 1 1 4 1{1 06 03 -01 -04 -08
H 3/4 2 2 36 271 2 -12 -45 -7.7 -11.0 -14.2
J 1/2 2 1 6 3|l 1 04 -03 -09 -16 -22
K 1/2 1 1 18 91 1 -04 -18 -32 -46 -6.0

Table 1: The bddUnderApproz algorithm applied to the BDD of Figure 14.
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5.3.2 Step 2: Compute the functionRefCount of each node v in f

functionRefCount(v) gives the number of edges pointing to v from within the function f; it excludes
pointers from other functions within the same BDD manager. This figure can be computed for all
nodes of f in linear time by performing BFS from the root. The functionRefCount of each node
is initialized to 0. Then, for each node visited, the functionRefCount of each of its children is
incremented by one. The functionRefCount of each node of our example BDD is shown in Table 1.

5.3.3 Step 3: Approximate the BDD

This step is the heart of the procedure. The nodes are visited via BFS. The subgraph rooted at a
node is replaced by ZERO if this reduces the overall cost of the solution. When this happens, the
functionRefCounts of some nodes in the subgraph are decremented.

The details of this step are now given. For each node v visited that has a non-zero functionRe-
fCount, the following three actions are performed.

Action 1: Compute nodeSavings(v), the number of nodes that would be eliminated in f if just
the subgraph rooted at v was replaced by ZERO. This can be computed by performing a local
BFS starting from v. Each node has a localRefCount, which is initialized to functionRefCount each
time a local BFS is commenced. When a node u is visited during a BFS, if its localRefCount is
non-zero, then u is not explored further, and it does not contribute to nodeSavings of v; a non-
zero localRefCount indicates that such a node is being shared by other parts of the BDD for f.
On the other hand, if the localRefCount of u is zero, then nodeSavings(v) is incremented, and the
localRefCounts of u’s two children are decremented by one.

Consider computing nodeSavings for node B in our example. By definition, B itself contributes 1
to nodeSavings(B). The localRefCountof the children of B are decremented: for C, 1is decremented
to 0, and for F, 3 is decremented to 2. Next, C is visited, and since its localRefCount is now 0,
nodeSavings(B) is incremented (to 2), and the localRefCounts of E and F are decremented, to 0 and
1, respectively. Say F is visited next. Its localRefCount is not 0, so we skip over F and proceed to
E. Its localRefCount is 0, and proceeding in this fashion, we see that E, G and F all contribute to
nodeSavings(B). Hence, nodeSavings(B) is 5. The nodeSavings for other nodes is shown in Table 1.

This step, repeated for each node, can lead to overall quadratic running time (consider a BDD
that is just a single chain of nodes; BFS from each node will explore the rest of the chain). However,
because the local BFS search from a node is pruned at nodes whose localRefCount is non-zero, the
running time in practice should be nearly linear.

Action 2: Compute numOnset(v), the number of minterms in the onset of f that would be
removed if v was replaced by ZERO. This can be computed by multiplying onsetFraction(v) by
numMinterms(v). NumMinterms(v) records how many of the 2" minterms of the Boolean space
“pass through” v. For the root of f, numMinterms is 2". As each node u (that is not replaced by
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ZERO) is visited in the global BFS of Step 3, numMinterms of each child of u is incremented by
one-half of numMinterms(u).

In our example,
numMinterms(A) = 2° = 64,
numMinterms(B) = lnumMinterms(A) = 32,

2
numMinterms(F) = %numMinterms(B) + -;-numMinterms(C) + %numMinterms(D)
= 16+8+16=40

Hence,

numOnsef F) = onsetFraction(F) - numMinterms(F)

7
= -=-.40=35.
8 0

For each node, numOnset can be computed in constant time.

Action 3: Compute costBenefitl(v), which measures the change in cost of the solution if v were
replaced by ZERO, to yield the function fpew. This is computed as follows.

cost(f) — cost( fnew)
[a(log} |offset(f)]) + (1 — )|BDD(f)]
~[o(log3 |offset( fnew)|) + (1 — @)|BDD( frew)l]
= aflog} |offset(f)| - log} |offset( frew)l]
+(1 = a)(IBDD(f)| - |BDD( frew)|)
= aflogl(|offset( f)]) — log3(|offset( )| + numOnsey(v))]
+(1 — a)nodeSavings(v)

costBenefit

If costBenefit(v) is greater than zero, then the flag replaceByZero(v) is set, and the functionRef-
Count of v’s two children are decremented by one. If this causes functionRefCount of a child to fall
to zero, then the functionRefCounts are recursively decremented. For example, if costBenefit(B) is
greater than zero, functionRefCount(F') will fall to one, and functionRefCount of C, E and G will
fall to zero.

If costBenefil(v) is less than or equal to zero, then the flag replaceByZero(v) is reset, and
numMinterms of each child of v is incremented by one-half of numMinterms(v).

The costBenefit computed for a node v is affected by which other nodes have been marked
for replacement by ZERO. In particular, numMinterms(v) may decrease, and nodeSavings(v) may
increase, as nodes at or above the level of v are marked for replacement by ZERO (of course,
if functionRefCount(v) falls to zero, then costBenefit(v) is irrelevant). By processing the nodes
in a top-down fashion, costBenefit(v) needs to be computed just once, when v is considered for
replacement.
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Even though costBenefit(v) is affected by the actions above v, the values for costBenefit in
Table 1 are computed, for illustration purposes only, assuming that no nodes processed before a
given node are marked for replacement. Also, since costBenefit is a function of e, the value of
costBenefit is shown for 6 different values of a. As expected, as a tends to one, the costBenefit
becomes negative, meaning replacement by ZERO is undesirable.

5.3.4 Step 4: Build the new BDD

This process starts from the root and proceeds recursively in DFS fashion. If the constants ZERO
or ONE are reached, then that constant is returned. If a node marked replaceByZero is reached,
then ZERO is returned. Otherwise, for a node labeled by variable z, a new node is created labeled
with z and with children formed by the recursive building process.

For our example, suppose @ = 0.4. Then the first node processed with positive costBenefit is
E. In fact, this is the only node replaced by ZERO (G becomes irrelevant once E is replaced). The
new BDD is shown in Figure 15. Whereas the original BDD had 50 onset minterms and 10 nodes,
the new BDD has 47 onset minterms and 7 nodes.

Figure 15: The result of bddUnderApproz applied to the BDD of Figure 14. E is replaced by ZERO.
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5.3.5 Discussion

Greedily choosing one node at a time for replacement by ZERO may lead to a suboptimal solution.
Consider the partial BDD shown in Figure 16. Both of the children of node A are shared by other
parts of the function, so nodeSavings(A) is one (node A itself). Hence, unless a is nearly zero, A
probably will not be replaced by ZERO. Likewise, nodeSavings(B) is one and B probably will not
be replaced. However, if we considered replacing A and B simultaneously by ZERO, we would find
that nodeSavings({A, B}) is K + 2, where K is the number of nodes in the common subgraph of A
and B. If K is large, this may trigger replacement.

Figure 16: Neither A nor B will be replaced by ZERO when considered individually, but may be
replaced by ZERO if considered simultaneously.

The algorithm could be modified easily to consider pairs of nodes for replacement. However, this
would increase the complexity of the algorithm, which may make it impractical for intermediate to
large BDDs. Also, instead of pairs of nodes, we might want to consider larger sets for replacement.

Another limitation with our approach comes in selecting the value for a. In our example, for
a = 0, all nodes qualify for replacement, whereas at a = 0.6, none of the nodes qualify. Combining
the onset size and the BDD size terms in the same equation makes it difficult to select a precise value
of a that distinguishes “good” replacements from “bad” replacements. Possibly a threshold-based
approach, like that of Ravi and Somenzi, might be more robust.

5.4 Application to binary Boolean operations

In our algorithm for deciding reachability, we frequently want to find a good approximation to the
Boolean combination of a pair of functions, for example, the conjunction f-g. We could define
a new BDD operator that takes as input two functions and returns an approximation to their
conjunction. Instead, we take an alternate approach where we form the conjunction exactly, and
then approximate the result. This approach begs the question if we are able to form the conjunction
exactly. We can, as long as we keep small the intermediate BDDs of the reachability computation.
In other words, if we apply bddApproz to all intermediate BDDs, then we should be able to perform
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local computations exactly. A benefit of this approach is that we can concentrate on developing
heuristics for just a single problem, the BDD approximation problem.

6 Approximating sets of edges

We concluded Section 4 by listing the three major subroutines of our algorithm to decide reach-

ability. Each of these subroutines involves approximating a set of edges; we now discuss each in
detail.

6.1 Initial over-approximation of G

The goal of this subroutine is to find a superset V of the edges of G such that V has low cost, as
defined in Definition 2. As a reminder, the function we wish to approximate is

1
G(z’ y) = Ju H Ti(:t, u, yt')‘

=1

The first step is to build each T;. Then, some u variables are “cut” to partition the T;’s into a set
of clusters. Next, each cluster is built separately, and finally the clusters are conjuncted to yield

the over-approximation V. At each step of this process, bddOverApproz is used to control the size
of the BDDs.

6.1.1 Building each T;

As stated earlier, T} = (v; = &;(z,u)), where §; is the next state function of the ith flip-flop. The
BDD for §; may be too large to build. In this case, T; can be represented by the conjunction of a
set of smaller terms by introducing intermediate variables.

Specifically, starting at the combinational inputs z and u and proceeding in topological order
through the combinational network, we begin by constructing the BDD for each network node in
terms of the combinational inputs. However, if the BDD for the function g; of a given node v;
exceeds a user-settable threshold, then an intermediate variable p; is introduced at node v;. Then
the BDDs of nodes in the fanout of v; are built in terms of p;. T; can then be expressed as the
conjunction of the terms (p; = g;), with the intermediate variables existentially quantified. Each of
these terms can be over-approximated using bddOverApproz so that their product has a reasonable
BDD size. In the sequel, we refer to the result of this step as T;(z, u, ¥:), regardless of whether or
not T; has in fact been approximated.

3This technique has been used by others in a variety of settings, e.g., [14, 13, 15).
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6.1.2 Cutting u variables

The next step is to “cut” some u variables to partition the T;’s into a set of clusters. This approx-
imation relies on the observation that (3zf) - (3zg) 2 32(f - g). The idea is to cut some of the u
variables by moving them into the product. For example, we might cut u; by replacing

3“1, U2 [Tl(z’ Uy, U2, yl) ° T2(za u, y2)]

by
(3w, vz Ta(z, u1, u2, 11)) - (Gur To(z, v, ¥2))-

Equivalently, the problem is to cluster the T;’s; any u variables passing between clusters are cut.
We want to minimize the number of cut variables, so that the amount of over-approximation is
minimized. We formulate the problem as a traditional graph partitioning problem on hypernets. In
particular, we create an undirected graph, where each flip-flop is represented by a vertex, and there
exists an edge labeled by uj; between vertices ¢ and j if T; and T; both depend on uy. Then we
successively apply graph bipartitioning (using, for example, the Fiduccia-Mattheyses algorithm),
minimizing the number of u variables cut. The size of each partition is limited by a user provided
parameter, giving the maximum of the sum of BDD sizes for each partition.*

6.1.3 Building each cluster

At this point, we must construct the graph C;(z,y) for each cluster:
Cj(-’l’, y) =3Ju H Ti(z’ u, yi)
{4

where J is the set of flip-flops in the jth partition. First, we find a schedule for the conjunctions and
quantifications (for example, using the techniques in [12]). In general, this may be in the form of
a tree. Then we build C; according to this schedule, but we apply bddOverApproz to intermediate
results to avoid large BDDs. In particular, there are two types of intermediate computations.

1. Conjunction: form the conjunction exactly and then apply dddOverApproz to the result.

2. Existential quantification: apply bddOverApproz to the results of the intermediate disjunc-
tions (i.e., fz + fz), and to the final result of existential quantification.

6.1.4 Conjuncting the clusters

The last step is to take the product of the clusters C;. Again, we form each conjunction exactly,
and then apply bddOverApproz to the result. The final result is the approximation V.

V should have no more than approximately 10,000 BDD nodes, so that we can manipulate it
efficiently. Hence, we need some dynamic control to make sure that V does not exceed this limit.

‘Thg flip-flop partitioning technique of Cho et al. [7] could also be applied to the present problem.
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This could take the form of stopping the computation when the limit is exceeded, and restarting
it with a lower value of a (i.e., a worse approximation, but smaller BDD size); or we could just
restart the phase of conjuncting clusters with a lower value of a.

6.2 Initial under-approximation of G

The goal of this subroutine is to find a subset U of the edges of G such that U has low cost, as defined
in Definition 7. Computing U follows the same outline as computing the over-approximation V.

We cut the u variables using the same partition found in computing V. However, rather than

ezistentially quantifying the cut variables, we now universally quantify them, relying on the fact

“that (Vzf) - (Vzg) C 3z(f - g)- To build each cluster, we use under-approximation on intermediate
results, rather than over-approximation.

6.3 Approximation of edges from ] in V

The variable fromI in the reachability algorithm contains those edges in the current over-approx-
imation V that pass from a state in I to a state not in I. The set fromI can be partitioned into
two sets.

1. True edges: these are edges that exist in the exact graph G and that, when added to the
under-approximation U (line 28), allow the forward traversal in U to progress (line 6).

2. False edges: these are edges that do not exist in G, and that, when removed from V (line 27),
further restrict the set of potential paths from I to F' (line 10).

The set of true edges E is the set of all edges from I in V, restricted to the exact graph G(z,y):
E(xa y) = G(Z, y) : fromI(a:, y)

1
= (au H T,‘(Z, u, yi)) ~fromI(:c, y)

=1
The set of false edges is then just the set difference of E from V, V(z,y)\ E(z,y).

Ideally, we would like to determine the partition exactly. Unfortunately, this problem is hard,
as deciding if just a single edge is true or false is already NP-complete. Thus, we settle for approxi-
mating the sets of true and false edges. We want to find some edges from I that are definitely false
(line 17), and some that are definitely true (line 18); the status of the remainder of the edges in
JromI will be unknown. . . ’

Clearly, an under-approximation of E yields an approximation to the true edges, and an over-
approximation of E yields an approximation to the false edges. To compute these approximations
of E, we would like to rewrite the equation for E so that it has the same form as the equation for
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G, thus permitting the application of the procedures outlined in Sections 6.1 and 6.2. This can be
done simply:

!
E(z,y) = F(J]Ti(z,u,w))- fromK(z,y)]

i=1

i
= [[[(Ti=, v, %) - froml(z,y))]

i=1
1
= Ju H Ti’(x9 u, yi)
=1

where T! = T; - froml.® Thus, we have expressed the set E of true edges from I in V as the
product of individual transition relations, and we can apply the procedures of Sections 6.1 and 6.2
to compute an over-approximation and under-approximation, respectively. Figure 17 illustrates the
various sets involved in the above computation.

G = exact graph

V = current over-approximation of G
U = current under-approximation of G
fromlI = edges from Iin V ’
E = Gn froml
V! = over-approximation of E
U’ = under-approximation of E
approx. false edges = fromI\V’
approx. true edges = U’

Note that V does not necessarily contain G, because some true edges are removed from V at
line 10.

The procedure for approximating the true and false edges to F' follows analogously.

7 Summary and future work

We have presented a technique for deciding state reachability for large FSMs. Specifically, we seek
to answer if there exists a path from a set I of initial states to a set of F of final states in an FSM.
Several problems in logic synthesis, formal verification, and testing can be reduced to this question,
and hence an efficient algorithm for solving this problem would have great benefit.

Our approach constructs an over-approximation V, and an under-approximation U, to the state
transition graph G. Then, the potential witness paths from 7 to F' in V' are used to guide the search
for a true path in U from I to F.

5 Alternatively, we could define T! = restrict{(T;, froml), using the restrict operator of [8] . Then 3u [IT! is no
longer exactly E(z,y), but can still be used to form approximations.
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Figure 17: Diagram showing over- and under-approximations to E(z,y).
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The success of our approach hinges on the quality of the approximations that we construct.
A good approximation is one that retains most of the original information, yet has a small rep-
resentation. We use BDDs to represent the set of edges of a state graph. We have formulated a
general optimization problem, called the bddApproz problem, which seeks to find a set representing
a close approximation of another set, and yet having a small BDD representation. We presented
a heuristic for solving the bddApproz problem. Ravi and Somenzi formulated the same problem,
and presented several heuristics. We suspect that others will find applications for the bddApproz
problem, and will develop more heuristics for its solution.

As with any heuristic for solving a hard problem, our approach can ultimately be validated only
by implementing the algorithms and testing them on a set of examples. This remains as future
work.
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