

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DELAY-OPTIMAL TECHNOLOGY MAPPING

BY DAG COVERING

by

Yuji Kukimoto, Robert K. Brayton, and Prashant Sawkar

Memorandum No. UCB/ERL M97/75

10 October 1997

DELAY-OPTIMAL TECHNOLOGY MAPPING

BY DAG COVERING

by

Yuji Kukimoto, Robert K. Brajton, and Prashant Sawkar

Memorandum No. UCB/ERL M97/75

10 October 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Delay-Optimal Technology Mapping
by DAG Covering

Yuji Kukimoto RobertK. Brayton Prashant Sawkarf
Department of Electrical Engineering andComputer Sciences

University of California,Berkeley, CA 94720
Strategic CAD Laboratories, Intel Corporation

Hillsboro,OR97124t
{kukimoto, brayton}@eecs. berkeley. edu

psawkarOichips.Intel.com

October 10,1997

Abstract

We proposean optimal algorithm for delay minimal technology mappingfor
library-based designs. We show that subject graphsneed not be decomposedinto
trees for delay minimization; they can be mapped directly as DAGs. Experimental
results demonstrate that significant delay improvement is possible by this new
approach.

1 Introduction

Logic synthesis typically consists of two phases. The first step, called technology-
independent optimization, is the step in which a given circuit is restructured without
knowing an actual gate library or technology to be used. Generic optimization such as
factoring, resubstitution anddon't careminimizationis performedto seek a goodmulti
level structure. This step is followed by technology mapping, in which the optimized
circuit in the previous step is implemented by only using gates in a given library. The
importanceof technologymapping is increasing significantly since it is very difficult
in deep sub-micron designs to estimate the effect of a generic optimization without
knowing an actual technology to be used.

Technology mapping wasinitiallydoneby rule-based transformations inearly80's.
The approach is ad-hoc and has no guarantee about mapping quality. Furthermore
difft^ent sets of transformation rules need to be maintained for different libraries. In
1987Keutzer[8]proposedan algorithmic^proach to the technologymappingproblem,
in which he obs^edsimilarity between this problemand the code optimization problem

for progranmiiiig languages and ads^ted an existing tree-covoing technique for the
latto- problem to technology mapping. This ^proach soon dominated the rule-based
t^proach and became the de facto standard.

In Keutzer's formulation a technology-indq)endent circuit and each gate in a given
library are decomposedinto NAND2-INVcircuits. The decomposedcircuit is called a
subject graph while each decomposed gate is called a pattern graph. The technology
moping problemcan thenbe formulatedas covering the subjectgraphby usingpattern
graphs. A subjectgraphis a directedacyclicgraph(DAG) in geno-td since it is d^ved
froma givennetwork. Keutz^ showedthat if a subjectgraphis a DAG,graphcovering
for minimum area mappingis NP-hard [9]. He furtherproposeda linear-timedynamic
programming algorithmwhich guaranteesoptimalresults for the case where a subject
graph and patt^ gr^hs are trees. These observations led naturallyto the following
three-step approach.

1. Decomposea subject DAG into a disjoint set of trees

2. Solve the technology mapping problem optimally for each tree

3. Glue the results together.

This separation of the problem again has become a standard approach due to the
theoretical justification i>out the complexity ofDAG covering.

Inspired by Keutzer's result technology mapping has been studied extensively to
optimizedifferentcriteria. Rudell [13] workedon mimmttm-rfe/fly technology mapping
and showed that if loading effects are completely ignored, the minimum-delaymapping
problemfor subject trees can be solvedoptimallyby dynamic progranuning in linear
time. He also considered the minimum-delay mapping problem for trees under loading
effects and showed that by maintaining the best mapping for each possible load at
each node the same dynamic programming approach can guarantee optimal results.
Touati [14] further refined this idea later by combining the optimal tree moping with
sophisticated buffer tree construction. An into'estingfact is that they directly started
lookingat treecoveringwithoutstudyingthecomplexityofDAG coveringforminimum
delay. Thiswaseven truefor a more recent workby Lehman andWatanabe [10].

In parallel to these works on library-based technology mapping the emergence of
FPGAsposed a new technology mapping problemin early 90's. LUT-based FPGAs
can implement any function of k inputs by a single LUT, where k is n fixed constant
depending on a given technology. It is not practical to follow the same ^proach as
library-based technology mapping since one needs togenerate pattern graphs for all 2^
Jb-input functions. Bas^ on this observation many ideas have been proposed for the
FPGA mapping problemagain underdifferentcost criteria [4]. As for minimum area
mapping Levin et al. [11] andFarrahi et al. [7]proved that theproblemis NP-hard for
ife = 4 and A: > 5 respectively. Minimum-delay mapping,on the otherhand,wasshown
for LUT-basedFPGAs to be solvable in polynomial time by Cong et al. in [1,2]. Here
the givencircuitis directlymappedwithoutdecomposing its DAGstructureto trees in
this algorithmunlike conventionallibrary-basedmapping.

In this paper we consider the minimum-delay technology moping problem for
library-based designs where a subject gr^h is a DAG. Careful analysis of [2] shows
thatthebasic dynamic programming ^proach in [2] is notspecific toFPGA mapping
and can beeasily ad^ted tolibrary-based mapping. This leads toalinear time algorithm
forminimum-delay DAG covaingunder load-indq)endent delay models. Asfaraswe
know, this is the first resultthat shows that the minimum-delay technology mapping
problem for DAGs can besolved optimally inpolynomial time. This implies that tree
decomposition inperformance-oriented mapping isnot necessary; agiven subjectDAG
can be directly mapped optimally. We expoimentally confirmed that the additional
solution space ©tplored by this direct approach finds significantly faster mappings
especially under a rich library.

This paper is organized as follows. Section 2 reviews library-based technology
mapping and recent work ondelay-optimal FPGA mapping. The optimal delay map
ping algorithm for FPGAs presented in [2] is overviewed. Based on this algorithm
Section 3 shows that the basic algorithmic principle of [2] is not limited to FPGAs
and discusses how thealgorithm can be adapted tolibrary-based technology mapping.
Section4 discusses an extension of this idea to sequential circuitsunderconsideration
ofretiming. Asimple modification toanexisting FPGA technology mapping algorithm
forminimum-cycle time [12] leads toanalgorithm for optimal cycle-time library-based
technology mapping. An idea ofcombining this work with Ldiiman et fl/.'s work [10]
is also discussed. Experimental results are shown in Section 5 to demonstrate theef
fectiveness ofthisDAG covering approach compared withthetraditional treecovering.
Section6 concludes thepaper with futuredirectionsof this work.

2 Preliminaries

2.1 Library-Based Technology Mapping

Wewill briefly overview basic concepts of library-based technology mapping. We will
closelyfollow a strategy proposed by Keutzer [8].

Given a combinationalBoolean network, it is firstdecomposedinto a NAND2/INV
network by decomposing each node in the network into a NAND2/INV structure.
The resulting network, called a subject graph, is a Boolean network in which every
nodeis either a 2-input NAND or an inverter. Each gatein a given library is similarly
decomposed into aNAND2/INV network, called apatterngraph. TVpically allpossible
NAND2/INV decompositions aregenerated foreach gatemodulo isomorphism so that
thegateisutilized maximally inafinal implementation. Each pattern gr^h isassociated
with the area, delay and other characteristics of the corresponding gate. Once this
decomposition step is done, the subject graph is covered by using pattern graphs to
optimize a given cost critoion.

Since a subject gr^h is constructed from a given Boolean network, it is usually
a directed acyclic graph (DAG). A pattern graph is a tree for mostgates in a typical
library whileit canbe aDAG forsomegates, e.g. anXORgateanda multiplexor gate.

For the sake of sin^licity assume that all the pattern graphs are trees for now.
Keutzer investigated the conq)utational complexity of the minimum-area technol

ogy imqpping problem in [9] and proved that if a subject graph is a DAG, the problem
is NP-hard. Having demonstrated the inherent complexity of the original problem, he
considered the case where a subject graph and pattern graphs are trees. It turned out
that this special case can be solved optimally in linear time using dynamic program
ming. Based on these results he proposed the following three-stq) ^proach as an
approximationto the DAGcoveringproblem.

1. Decompose a subject DAG into a disjoint set of trees

2. Solve the minimum-area mapping problem optimally for each tree

3. Glue the results together.

Since this strategy using tree covering became so common, the same approach has
been also employed in optimizingdelay, but interestingly enough to the best of our
knowledge no oneinvestigated the &cact complexity of the minimum-delay technology
moping problem where a subject graph is a DAG. Probably it was simplyassumed
that the problemis NP-hardwithoutgivingmuchthought.

Now consider the case where some pattmi graphs are DAGs. Rudell showed that
as long as those are leaf DAGs, the tree covering approach can be used without any
modification [13]. A leaf DAG is a DAG in which the only nodes with multiple fanouts
areprimary inputs. AnXORgateanda multiploiorgatehaveleafDAG pattern graphs
and thus can be handled without any problem.

So far we have focused on the case where a subject graph is a tree. To conclude
this subsectionwe reviewpreviouswork on DAGcovering without tree decomposition.
Detjenset al studied this problem for area minimization in [6], but since a heuristic
approach was taken for covering, the results were not impressive. In fact the DAG
covering approach gave resultsof lesser qualitythanthetree-based approach. Although
theyalsodescribed an ideaonnodeduplication similarto [2]to be detailed later, it was
^parently onlytriedforareaoptimization andno resultsare reported on this approach
in [61.

2.2 Technology Mapping for LUT-based FPGAs

Dueto theirunique architecture the technology mapping problem forFPGAs hasbeen
tackledin completely different ways fromlibrary-based technology mapping.

In LUT-ba^ FKJAs each LUT can implement any function of fc-inputs in the
samedelay, where Jk is a constant specific to a given FPGA family. By assuming the
existence of a library containing all fe-input functions, one can solve the technology
mapping problem for FPGAs as an instance of the library-based mapping problem.
Thisapproach, however, has a serious drawback sincethe library constructed thisway

contains 2 '̂' gates^ Even ifthe minimum-area tree covoing for library-based designs
can be solved in time linear in the size of pattom graphs, the number of gates makes
the algorithm highly inefficient.

Hie minimum-areatechnologymopingproblemfor LUT-based FPGAs wasshown
to be NP-hard for /: = 4 in [11] and for fc > 5 in [7]. As in the library-based mapping,
once a network is restricted eith^to a tree, the problem can be solved optim^ly in
polynomial time [7].

The minimum-delay technology mapping problem, however, has a different story.
Cong et al. showed in [1,2] that the problem is solvable in polynomial time even for
DAG networks.

We will have a close look at the FlowMap algorithm presented in [2] next since this
gives the basis of our proposed algorithm.

2.3 Delay-Optimal Technology Mapping for FPGAs

Assumethat a networkisdecomposedinto a Ar-bounded network[2], which is a Boolean
network where the number of fanins of each node is less than or equal to k. If a given
network is not /;-bounded, simple decomposition can yield an equivalent ^-bounded
network. In the following we assume that an LUT has a unit delay and that wiring
delay is negligible.

The key idea of the FlowMapalgorithmis in the labelingprocedure that labels each
node of the DAG its optimal depth achievable. The algorithm visits each node in the
network in a topological order. All primary inputs are labeled 0 assuming that they are
available at f = 0. At each intermediate node the goal is to investigate all cuts ofsize
less than or equal to k in the fanin cone of the node and to find the best delay realizable
at the node. Each such cut rq)resents a mapping of the node. More specifically the
node can be implemented by a single LUT whose inputs are the nodes forming the cut.
The constraint on the size of cuts comes from the fact that an LUT can implement any
function of up to I;-inputs. Since nodes are visited in a topological order, by the time
the current node is ecamined the optimal depths of all the nodes in its transitive fanin
are available. Therefore the optimal depth of the current node x can be computed as
follows by dynamic programming.

optimal.depih{x) = min max{optimaLdepth{xi) + 1)
cut X'\X\<k Xi^X

Notice that thiscost crit^on meets theprinciple ofoptimality of dynamicprogramming.
The cut X that realizes the optimal depth is stored at the node along with the depth.
Although explicit enumeration of all valid cuts is possible by a brute-force approach,
the complexity is pseudo polynomial 0(n*), where n is the number of nodes in a
given network. [2] showed that this optimal depth computation at each node can be

'Strictly speaking the libraiy need notcontainall the 2"^ functions sincesomeare equivalentto each other
underinputpermutationandhavingonerepresentativeis goodenough. Howeverevenafterthis sinqilification
the library is still huge.

formulated as network flow computation whose runtime is sU'ongly polynomial with
respect to k.

Once all the nodes have been labeled by their optimal depths, the network is
traversedbackward fromprimary outputs to primary inputs. At each primary output an
LUT is created whose fanins are the same as the best cut stored at the node. The LUT
creation is repeated for each of those fanins. Ihis process is continued until either a
primary input or a node whose output is already available in the mapping is reached.
Animportant fact is thatintermediate nodes areautomatically duplicated in an optimal
wayto guarantee optimal depthswhilein treemapping noduplication is allowed.

Thecomplicityof theentirealgorithmis O(A;mn), wherem is thenumber ofedges
in the network.

3 Delay-OptimalTechnology Mappingfor Library-Based
Designs

AlthoughtheFlowMap algorithmwasoriginallydeveloped forFPGAs,the basicprin
ciple ofthe labeling procedure isnot necessarily specific tothose architectures^. Inthis
section we will show how the FlowMap algorithmcan be easily adapted to the standard
library-based technology mapping undera load-independent delay model,whereeach
gate has an intrinsicdelay and loadinghas no effect in delays. This extension leads to
a linear time algorithmfor delay-optimal technology mappingof DAGnetworks. We
assumethat a given networkis decomposed into a subjectDAGas usual. Therefore,
the optimalityof delay is claimed withrespect to this subjectDAG.

3.1 Computation of Optimal Delay at Internal Nodes

The onlydifference between FPGAsandlibrary-based designsis how an internalnode
is m^ped. In FPGAs all the local mappings that cover an internal node and part
of its fanin cone are examined by enumerating all k-cuts of the fanin cone, which
givesthe best possible delay realized at the node. This step needs to be modified for
library-based designsso that all successful matches for a givenset of patterngraphsare
systematically examined. However this can be easilydone by mimicking the standard
patternmatching step used in conventional technology mapping. More precisely once
the fanin cone of the node is extracted, the standard matching procedure against pattern
graphs can be applied to exhaustively checkall the successful matches. Thisway the
best delay achievable at each intermediate node can be computed in a similar way to
[2]. The only difference is that actual pin-to-pin delays of gates specified in a given

Ht is interesting to notethat [2]hasa commentas follows.
"Our result makes a sharp contrastwith the fact that the conventionaltedmology m^tping
problem in library-based designs is NP-hard forgeneral Boolean networks."(page 2 [2])

library need tobeused inourcase instead ofunitdelay in [2]. Aswith FPGA mapping,
the principle of optimality is still valid h^e.

Notice that as long as delay is optimized, any DAG pattern graph can be used
directly without losing the optimality, i.e. it is not necessary to restrict the library to
pattern gr^hs of trees and leafDAGs. General DAG patterns are problematic only in
the context of area optimization.

3.2 Pattern Matching

We now examinehowpatternmatching is done between a subjectgraph and a pattern
graph.

Pattern matching between a subject graph and a pattern graph in the context of
technology mapping wasstudied extensively by Keutzer [8] and Rudell [13]. A match
between a subject graph G, = (K,,Ea) and a pattern graph Gp = (V^, Ep) is defined
as follows [13].

Definition 1 A(standard) match ofapatterngraphGp = (Vp, Ep)ona subject graph
Ga = {Va,Ea) is fl one-to-one mapping of thepatterngraphnodes into the subject
graph nodes I :Vp t-^Va such that:

1. Ve = (61,62) G Ep, (/(6i),/(62)) G Ea.

2. Vv G Vp, li(v)| # 0 ^ |i(v)| = \i{I{v))\, where i(t;) = {ty | (11;, u) G E}for
G={V,E).

The first conditionrequires that the edgerelationshipin the patterngraph is completely
preserved in the subject graph. The second condition constrains the in-degree of a
non-primary-input node in the pattern graph to be the same as that of the matching
node in the subject graph. Notice that it is allowedfor a subjectgraph node coveredby
an intermediate pattern graph node to have fanout to nodes which are not covered by
the pattern graph. However, in the conventional tree-covering based approach such a
match is invalid, i.e. all fanouts of a subject graph node matched with an intermediate
pattern graph node need to be covered by the same pattern. A match satisfying this
additional constraint is called an exact match [13] and defined as follows.

Definition2 An exact match of a pattern graph Gp = {Vp,Ep) on a subject graph
Ga = (V,,Ea) is a one-to-one mapping of the pattern graph nodes into the subject
graph nodes I :Vp*-^Va such that:

1. V6 = (61,62) G £'p, (/(ei),/(62)) G Ea.

2. Vv G l^p, |i(v)| 56 0 =• \i{v)\ = hV(v))|

5. Vv G Vp,|i(v)| (iand\o{v)\ ^ 0 =^>- |o(u)l = \o{I{v))\, where o{v) = {ly |
(v, ly) G E}for G = {V, E).

subject graph pattern graph

Figure 1: Standard Match vs. Extended Match

Rudellproposedan algorithmcalledgraphjmatch [13]for the generalcase where
both a subject graph and a pattern graph are DAGs. We can simply use this matching
algorithmto enumerate all successfulstandard matches instead of exact matches.

Although a constraint that a mapping is one-to-one is posed in the above two
definitionsby Rudell, this is safely dropped as follows,which leads to the definitionof
a larger class of matches.

Definition 3 An extended match ofa patterngraphGp = (Vp, Ep) on a subject graph
Ga = {Va.Ea) is o mapping of thepattern graph nodes intothe subject graph nodes
I :Vpt-¥Va such that:

1. Ve = (ei,e2) € £p, (/(ei),/(e2)) 6 Ea.

2. Vv € Vp, |i(t;)| |t(i;)| = \i{I{v))\

Theonlydifference between extended matches andstandardmatches is thatinextended
matches the requirement of a mapping from the pattern grs^h nodes into the subject
graph nodesbeing one-to-one is dropped. Thereforeextended matches subsumestan
dard matches. This relaxation of the requirement allows duplication of subject graph
nodes while searching for a match by unfolding a DAG structure. Figure 1 shows an
examplewhere a patterngraph is matched successfully as an extended match but not
as a standard match. Assume that a two-input node is an NAND2 gate and a single-
input node is an inverter. Consider pattern matching at the top node of the subject
graph shown on the left against the pattern graph on the right. An extended match
exists by mapping both m and m' to n while a standard match does not since such
a mapping violates the one-to-one mapping property. A simple modification to the
graphjnatch algorithmmakes the algorithmsearchall extendedmatchesinstead of
all standard matches without changing its asymptotic complexity.

3.3 Constructing an Optimum Mapping

Once a (best delay, best gate)-pairis computedat each node, a delay-optimal network
can be consuiict^ in exactly the same way as in [2]. We maintain a queue which

8

containsnodesto be createdin the finalmapping. This queue is initializedto the set of
allprimary outputs. Anode ispicked upfrom thequeue and thebestgateat thenodeis
created in the mapping. Each fanin nodeof thegateis then inserted to the queueif the
fanin is nota primary inputanddoesnotyethave acorresponding gatein themt^ping.
Once the queue becomes empty, the mappingis complete.

3.4 Complexity of DAG Mapping for Delay Minimization

Anapplication of graph-match toenumerate allsuccessful matches at a singlenode
is 0{p) [13], where p is the number of nodes in the entire unique pattern graphs
Since Uiis procedure is called once at each nodein a subject graph, the complexity
of the labeling step is 0(sp), where s is the number of nodes in the subject graph.
The final step of constructing a delay-optimal mapping only costs 0(s). Therefore
the complexity of DAG mapping is 0{sp). Since p is aconstant defin^ by agiven
technology, the procedureis linear in the size of a subject graph.

3.5 Comparison between DAG Mapping and TVee Mapping

Inthepast,performance-oriented technology mapping hasbeendoneby a combination
of tree covering and buffer tree construction [14]. The fundamental limitationof this
conventional tree-covering approach is that the search space is highly limited by the
structure of a given subject graph since multiple-fanout points in the subject graph
are completely preserved in the final results. On the other hand, since DAGmapping
does not respect initial multiple-fanout points at all, it can explore a strictly larger
search space. In other wordsmultiple-fanout points are created as the result of delay
optimization as we see later in Figures 2 and 3. Buffering techniques proposed in
the litCTature can be directlyused in conjunction withDAGcovering to speedup such
multiple-fanoutpoints.

Anothermajor difference is how subject graph nodes are duplicatedduring tech
nologymapping. DAGmapping can duplicatesubjectgraphnodeswhilecreatingfinal
mappings whereas in treemapping no duplication is allowed sinceeach subjectgraph
node is covered only once by a single pattern. In some sense, subject graph node
duplication is limited to the buffer tree construction phase in the tree-mapping-based
approach.

Figure 2 illustrates how duplicationof subjectgraph nodes helps reduce the delay
of a mapping. Considera subjectgraphshown on the left. Supposethat a patterngraph
on the right is available in a given library. If tree mapping is invoked on this subject
graph, the pattern graph is of no use since there is no exact match between the subject
graphand the patterngraph. If, on the otherhand,DAGmapping is employed, the two
output nodes in the subject graph are implemented as in Figure 3. The cone rooted

^Note thatp is not equal to the number of nodes in the entire pattern graphs sinceduring matching a
singlepatterngraphis triedfor all possible permutations of its inputs, p is thusthe numberof nodesin the
expanded pattern gnq)hs. See [13] for details.

subject graph pattern graph

Figure 2: Example

Figure 3: Duplication of SubjectGraphNodesin DAGMapping

at the middle node in the subject graph is duplicated in this mapping, which makes
effective use of the pattern graph possible.

Thisexample alsoillustrates howmultiple-fanout pointsare created in DAGmap
ping. Since the middle nodeof the subject graph with multiple fanouts is an internal
node of each of the matchings in Figure 3, the mapped circuit does not inherit the
multiplefanout point. On the otherhand, the twoprimary inputsof the subject graph
in the middlehave multiplefanoutsin the mappedcircuit while each of the inputshas
a single fanout in the subject graph.

4 Extensions

Wewillexaminehowthe approachofSection3 canbe generalized to sequentialcircuits
so thatoptimal cycle timeis guaranteed in conjunction withretiming.Weonlyconsider
sequential circuits with edge-triggered latches all of which arecontrolled by a single
clock.

This problem was studied for LUT-based FPGAs by Pan and Liu [12]. Given a
ib-bound^ network consider the following three-step transformation.

10

ciicuit Delay Area CPU time

tree-mapping DAG-mapping tree-mapping DAG-mapping tree-mapping DAG-mapping
C432 12.13 10.29 442 484 05 0.5

C499 10.16 8.03 904 960 0.9 1.1

C880 9.43 7.87 710 755 0.8 0.9

C1355 13.06 9.66 1146 1488 1.1 1.2

C1908 13.87 10.71 1223 1572 1.5 1.7

C2670 11.54 9.43 1552 2008 23 2.6

C3540 17.20 14.00 2075 2926 3.1 3.7

C5315 1655 13.04 3687 4275 5.4 6.0

C6288 56.99 41.95 4107 9291 4.9 5.9

C7552 14.23 11.06 4983 6452 6.8 8.4

Table 1: Tree mapping vs. DAG mapping for lib2 . genlib

1. Retime an initial circuit

2. Perform technology mapping of the combinational portion of the circuit

3. Retime the resulting mapped circuit.

[12] proposed a polynomial-time algorithm for computing the minimum cycle-time
mapping among all the mapped circuits obtained by the above transformation, which
was later improved in [5]. The key ingredient is a polynomial-time decision procedure
which determines whether there exists a mapping whose cycle time is less than or equal
to a givenvalue. This procedureis used repeatedlyto guide a binary search to determine
the minimum cycle time achievableby retiming and optimal technology mapping. The
core of this decision procedure is again a labeling scheme quite similar to the one used
in FlowMap [2]. All A;-cuts at each intermediate node are explored by considering
retiming possibility. This is again done implicitly by converting the original problem
to a flownetworkproblem. This step of examiningall k cuts can be replaced by pattern
matching as was done for combinational mapping. All the other theories hold without
any modiflcation. Details are omitted here due to page limitation.

So far optimality is guaranteed in terms of a subject graph constructed arbitrarily
from a given circuit by decomposition. Since a single subject graph is chosen among
a huge number of different decompositions without knowing an actual library to be
used, it is likely that many potentially good mappings are simply not ^plored due to
this initial choice. Lehman et al [10] have recently resolved this issue by encoding
various decompositions into a single extended subject gr^h called mapping graph
and performing technology mapping on it. Since this technique is orthogonal to our
technique, the two can be combined to produce even better results.

5 Experimental Results

11

circuit Delay Area CPU time

tree-mapping DAG-mi^>ping tree-mapping DAG-mapping tree-mapping DAG-mapping

C432 24 19 784 1006 0.4 0.4

C499 25 16 1772 2220 0.8 0.8

C880 20 15 1250 1337 0.7 0.7

C1355 27 22 2100 1546 1.0 1.0

C1908 37 24 2251 3058 13 1.3

C2670 27 18 2998 4568 2.0 2.0

C3540 42 30 4007 6640 2.7 2.8

C5315 46 33 6817 8352 4.6 4.8

C6288 125 120 7782 7121 4.3 4.4

C7552 39 28 9552 11149 6.0 6.3

Table 2: Tree mapping vs. DAG mapping for 44-1. genlib

circuit Delay Area CPU time

tree-mapping DAG-mapping tree-mapping DAG-mapping tree-mapping DAG-mapping

0432 21 11 624 1094 21.5 38.5

0499 18 9 1324 1910 35.3 68.9

0880 18 8 946 1466 35.2 55.9

01355 26 10 1796 2440 413 69.3

O1908 28 11 1755 2587 57.2 123.5

O2670 22 10 2314 3943 92.2 159.7

03540 28 13 2983 6148 128.2 255.6

05315 31 15 5115 6685 220.4 3413

06288 125 42 7694 14775 155.1 229.5

07552 27 13 7062 13267 248.7 491.0

Table3: Tree mappingvs. DAGmappingfor 44-3. genlib

12

Toshow theeffectiveness of thisapproach thetechnology mapper ofSISwasextended
so thatdelay-optimal moping isobtained for combinational circuitsbyDAGcovering \
As discussed in the previous sections the delaymodel used in this experiment is the
intrinsicdelay model where a fixed* load-indq)endentdelay isgiven between eachinput
and the output ofagate. This is in fact the delay model us^ in [10]. Although loading
effects arec^ainly an important factor in delays, thereare several justifications. In
design scenarios whore continuousresizing ofanygateispermissibleonewaytoct^ture
thisflexibility in technology mapping is to approximate thisflodbility byhaving many
discretely resized gates. Unfortunately this approach is known to be very expensive.
Theapproach taken in [10] is topickasingledelay foreachgateand perform technology
mapping byignoring loads. Each gateinthefinal mapping is then continuouslyresized
by considering actual loadsso that thedelay matches the oneassociated withthegate.
Even vrithout thecapability ofcontinuous resizing, thebuffer treeconstruction methods
of [14]can be used laterat multiplefanoutpoints to reduceloaddependency of delays.
Therefore the use of this delay model is at least justified as an approximation to the
minimum-delay mappingproblemunder realisticdelay models.

Table 1 shows the comparison of the quality of final circuits between the DAG
mapping approach proposed in thispaper and the standard treemapping approach. In
thisKcperiment eachbenchmark circuit wasfirst decomposed intoa subject graph. We
thenapplied theDAG mapping algorithm andthe treemapping algorithm on thissame
subject graph using MCNC gate library 1ib2. genl ib^. No technology independent
optimization wasapplied to benchmark circuits before technology mapping. No fanout
optimization was used. The effectiveness of the DAG miq)ping ^gorithm is clear. We
could obtain significantly faster circuits. CPUtimewasobtained onDECAlphaServer
8400 5/300 and is reportedin seconds. The increase of CPU time from tree mapping
to DAG mapping is reasonable.

The same experiment was repeated using different libraries to see how the DAG
mapping algorithm performs on rich libraries. MCNC libraries 44-1. genlib and
44-3.genlib were used in this comparison. The former library only contains 7
gates while the latter library has 625 gates, many of which are complex gates with
many inputs 44-3.genlib is a strict supersetof 44-1.genlib. Table 2 and
Table 3 summarize the results of 44-1 and 44-3 respectively. We can see that the
difference in mappingqualitybetween theDAGandtreemapping approaches is further
pronounced with the use of richer libraries.

It is interestingto observethatDAGmappingcan generatefasterand smallerresults
in some cases, for examples in C1355 and C6288 in Hgure 2. The reason is that more
comply gates are used in DAG mapping, which leads to area effective covering in

'*In this experiment we used graph-tnatch for only finding standard matches instead of extended
matches. Therefore the optimality of the resultsis claimedwith respect to standardmatches. So far we
have not beenable to see any majordifferencein nuq^ing qualitybetweenthe use of standardmatchesand
extendedmatches. Weexpect to see a meaningfuldifferenceonce a sequentialmapperbasedon Pan's work
is iiiq>lemented.

^Each gatehasa non-zeroload-dependentdelayspecified in lib2 .genlib. Intheexperiment thiswas
sinq)ly assumed to be zero.

^The largest gatehas 16inputs.

13

some cases in spite of potential node duplication.

6 Conclusions

Wehave shownthat the delay-optimaltechnologymappingproblem for combinational
circuits imder load-indq)endent delay models can be solved optimally in polynomial
timewithoutdecomposing a subjectDAGintotrees. Weexperimentally showedthat the
proposedapproach givessignificant improvement in mappingqualitycompared against
conventional tree moping. Extensions of this technique to sequential circuits have
also been discussed. We are currently implementing Ae minimum cycle-time map
ping algorithmfor sequential circuits. Experimental results for sequential technology
mappingwill be includedin the final versionof this paper.

In this p^>er we focus on delay minimization without any area consideration.
Therefore at each intermediate node the fastest mapping is simply created no matter
how critical the node is. By constructing slower but smaller mapping for non-critical
subnetworks we can have a better control over area increase. Cong et al [3] already
haveresults onarea-delaytradeoffforFPGA mappingbased on theFlowMapalgorithm.
An extensionof this idea to library-basedmapping is currentlybeing investigated.

Acknowledgments

This work is partiallysupported by SRC-97-DC-324. Part of the implementation was
done while the first author was wi^ Intel during the summer of1997.

References

[1] J. Cong and Y.Ding. An optimaltechnology mapping algorithmfor delay opti
mization in lookup-tablebased FPGA designs. In ProceedingsofIEEE Interna
tionalConference on Computer-AidedDesign, pages 48-53, November 1992.

[2] J. Cong and Y. Ding. RowMap: An optimal technology mapping algorithmfor
delay optimization in lookup-table based R'GA designs. IEEE Transactions on
Computer-MdedDesign,13(1):1-12,January1994.

[3] J. Cong and Y. Ding. On area/depth trade-off in LUT-based HPGA technology
mapping. IEEETransactions on WSI Systems, 2(2):137-148,June1994.

[4] J. Cong and Y. Ding. Combinational logic synthesis for lut based field pro
grammable gatearrays. ACM Transanctions onDesign Automation ofElectronic
Systems, 1(2):145-204,April 1996.

[5] J. Cong andC. Wu. An improved algorithmfor performance optimal technology
mapping with retiming in LUT-based FPGA design. In Proceedings of IEEE
International Conference on ComputerDesign, pages572-578, October 1996.

14

[6] E. Detjens, G. Cannot, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang.
Technology mappingin MIS. In Proceedings ofIEEE International Conference
on Computer-MMDesign, pages 116-119, November 1987.

[7] A. Farrahi and M. Sarrafzadeh. Complexity of the lookup-table minimization
problemforFPGAtechnology mapping. IEEE Transactions on Computer-Aided
Design, 13(11):1319-1332, November 1994.

[8] K. Keutzer. DAGON: Technology bindingandlocal optimization by DAGmatch
ing. In Proceedings of24th ACM/IEEE Design Automation Conference, pages
617-623, June 1987.

[9] K. Keutzer and D. Richards. Computational complexity of logic synthesis and
optimization. In Proceedings ofInternational Workshop onLogicSynthesis, May
1989.

[10] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness. Logic decomposition
during technologymapping. In ProceedingsoflEEE/ACMInternational Confer
ence on Computer-AidedDesign,pages 264-271, November 1995.

[11] I. Levin and R. Y.Pinter. Realizing expression graphs using table-lookup FPGAs.
In Proceedings ofthe European Design AutomationConference, pages 306-311,
September 1993.

[12] P.Pan andC. L. Liu. Optimal clock periodFPGA technologymapping for sequen
tial circuits. In Proceedings of33rd ACM/IEEE DesignAutomation Conference,
pages 720-725, June 1996.

[13] R. Rudell.Logic synthesisforVLSIdesign.Technical ReportUCB/ERLM89/49,
University of California, Berkeley, April 1989.

[14] H. J. Touati. Performance-oriented technology mapping. Technical Report
UCB/ERL M90/109, Universityof California, Berkeley,November 1990.

15

	Copyright notice 1997
	ERL-97-75

