Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DELAY-OPTIMAL TECHNOLOGY MAPPING
BY DAG COVERING

by

Yuji Kukimoto, Robert K. Brayton, and Prashant Sawkar

Memorandum No. UCB/ERL M97/75

10 October 1997

DELAY-OPTIMAL TECHNOLOGY MAPPING
BY DAG COVERING

by
Yuji Kukimoto, Robert K. Brayton, and Prashant Sawkar

Memorandum No. UCB/ERL M97/75

10 October 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Delay-Optimal Technology Mapping
by DAG Covering

Yuji Kukimoto Robert K. Brayton Prashant Sawkart
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720
Strategic CAD Laboratories, Intel Corporation
Hillsboro, OR 97124}
{kukimoto,brayton}@eecs.berkeley.edu
psawkar@ichips. intel.com

October 10, 1997

Abstract

We propose an optimal algorithm for delay minimal technology mapping for
library-based designs. We show that subject graphs need not be decomposed into
trees for delay minimization; they can be mapped directly as DAGs. Experimental
results demonstrate that significant delay improvement is possible by this new
approach.

1 Introduction

Logic synthesis typically consists of two phases. The first step, called fechnology-
independent optimization, is the step in which a given circuit is restructured without
knowing an actual gate library or technology to be used. Generic optimization such as
factoring, resubstitution and don’t care minimization is performed to seek a good multi-
level structure. This step is followed by technology mapping, in which the optimized
circuit in the previous step is implemented by only using gates in a given library. The
importance of technology mapping is increasing significantly since it is very difficult
in deep sub-micron designs to estimate the effect of a generic optimization without
knowing an actual technology to be used.

Technology mapping was initially done by rule-based transformations in early 80's.
The approach is ad-hoc and has no guarantee about mapping quality. Furthermore
different sets of transformation rules need to be maintained for different libraries. In
1987 Keutzer [8] proposed an algorithmic approach to the technology mapping problem,
in which he observed similarity between this problem and the code optimization problem

for programming languages and adapted an existing tree-covering technique for the
latter problem to technology mapping. This approach soon dominated the rule-based
approach and became the de facto standard.

In Keutzer’s formulation a technology-independent circuit and each gate in a given
library are decomposed into NAND2-INV circuits. The decomposed circuit is called a
subject graph while each decomposed gate is called a pattern graph. The technology
mapping problem can then be formulated as covering the subject graph by using pattern
graphs. A subject graph is a directed acyclic graph (DAG) in general since it is derived
from a given network. Keutzer showed that if a subject graph is a DAG, graph covering
for minimum area mapping is NP-hard [9]. He further proposed a linear-time dynamic
programming algorithm which guarantees optimal results for the case where a subject
graph and pattern graphs are trees. These observations led naturally to the following
three-step approach.

1. Decompose a subject DAG into a disjoint set of trees
2. Solve the technology mapping problem optimally for each tree
3. Glue the results together.

This separation of the problem again has become a standard approach due to the
theoretical justification about the complexity of DAG covering.

Inspired by Keutzer’s result technology mapping has been studied extensively to
optimize different criteria. Rudell [13] worked on minimum-delay technology mapping
and showed that if loading effects are completely ignored, the minimum-delay mapping
problem for subject rees can be solved optimally by dynamic programming in linear
time. He also considered the minimum-delay mapping problem for trees under loading
effects and showed that by maintaining the best mapping for each possible load at
each node the same dynamic programming approach can guarantee optimal results.
Touati [14] further refined this idea later by combining the optimal tree mapping with
sophisticated buffer tree construction. An interesting fact is that they directly started
looking at tree covering without studying the complexity of DAG covering for minimum
delay. This was even true for a more recent work by Lehman and Watanabe [10].

In parallel to these works on library-based technology mapping the emergence of
FPGAs posed a new technology mapping problem in early 90’s. LUT-based FPGAs
can implement any function of k inputs by a single LUT, where k is a fixed constant
depending on a given technology. It is not practical to follow the same approach as
library-based technology mapping since one needs to generate pattern graphs for all 2%
k-input functions. Based on this observation many ideas have been proposed for the
FPGA mapping problem again under different cost criteria [4]. As for minimum area
mapping Levin et al. [11] and Farrahi ef al. [7] proved that the problem is NP-hard for
k = 4 and k > 5 respectively. Minimum-delay mapping, on the other hand, was shown
for LUT-based FPGAs to be solvable in polynomial time by Cong et al. in [1, 2]. Here
the given circuit is directly mapped without decomposing its DAG structure to trees in
this algorithm unlike conventional library-based mapping.

In this paper we consider the minimum-delay technology mapping problem for
library-based designs where a subject graph is a DAG. Careful analysis of [2] shows
that the basic dynamic programming approach in [2] is not specific to FPGA mapping
and can be easily adapted to library-based mapping. This leads to alinear time algorithm
for minimum-delay DAG covering under load-independent delay models. As far as we
know, this is the first result that shows that the minimum-delay technology mapping
problem for DAGs can be solved optimally in polynomial time. This implies that tree
decomposition in performance-oriented mapping is not necessary; a given subject DAG
can be directly mapped optimally. We experimentally confirmed that the additional
solution space explored by this direct approach finds significantly faster mappings
especially under a rich library.

This paper is organized as follows. Section 2 reviews library-based technology
mapping and recent work on delay-optimal FPGA mapping. The optimal delay map-
ping algorithm for FPGAs presented in [2] is overviewed. Based on this algorithm
Section 3 shows that the basic algorithmic principle of [2] is not limited to FPGAs
and discusses how the algorithm can be adapted to library-based technology mapping.
Section 4 discusses an extension of this idea to sequential circuits under consideration
of retiming. A simple modification to an existing FPGA technology mapping algorithm
for minimum-cycle time [12] leads to an algorithm for optimal cycle-time library-based
technology mapping. An idea of combining this work with Lehman et al.’s work [10]
is also discussed. Experimental results are shown in Section 5 to demonstrate the ef-
fectiveness of this DAG covering approach compared with the traditional tree covering.
Section 6 concludes the paper with future directions of this work.

2 Preliminaries

2.1 Library-Based Technology Mapping

We will briefly overview basic concepts of library-based technology mapping. We will
closely follow a strategy proposed by Keutzer [8].

Given a combinational Boolean network, it is first decomposed into a NAND2/INV
network by decomposing each node in the network into a NAND2/INV structure.
The resulting network, called a subject graph, is a Boolean network in which every
node is either a 2-input NAND or an inverter. Each gate in a given library is similarly
decomposed into a NAND2/INV network, called a pattern graph. Typically all possible
NAND2/INV decompositions are generated for each gate modulo isomorphism so that
the gate is utilized maximally in a final implementation. Each pattern graph is associated
with the area, delay and other characteristics of the corresponding gate. Once this
decomposition step is done, the subject graph is covered by using pattern graphs to
optimize a given cost criterion.

Since a subject graph is constructed from a given Boolean network, it is usually
a directed acyclic graph (DAG). A pattern graph is a tree for most gates in a typical
library while it can be a DAG for some gates, e.g. an XOR gate and a multiplexor gate.

For the sake of simplicity assume that all the pattern graphs are trees for now.

Keutzer investigated the computational complexity of the minimum-area technol-
ogy mapping problem in [9] and proved that if a subject graph is a DAG, the problem
is NP-hard. Having demonstrated the inherent complexity of the original problem, he
considered the case where a subject graph and pattern graphs are trees. It turned out
that this special case can be solved optimally in linear time using dynamic program-
ming. Based on these results he proposed the following three-step approach as an
approximation to the DAG covering problem.

1. Decompose a subject DAG into a disjoint set of trees
2. Solve the minimum-area mapping problem optimally for each tree
3. Glue the results together.

Since this strategy using tree covering became so common, the same approach has
been also employed in optimizing delay, but interestingly enough to the best of our
knowledge no one investigated the exact complexity of the minimum-delay technology
mapping problem where a subject graph is a DAG. Probably it was simply assumed
that the problem is NP-hard without giving much thought.

Now consider the case where some pattern graphs are DAGs. Rudell showed that
as long as those are leaf DAGs, the tree covering approach can be used without any
modification [13]. A leaf DAG is a DAG in which the only nodes with multiple fanouts
are primary inputs. An XOR gate and a multiplexor gate have leaf DAG pattern graphs
and thus can be handled without any problem.

So far we have focused on the case where a subject graph is a tree. To conclude
this subsection we review previous work on DAG covering without tree decomposition.
Detjens et al. studied this problem for area minimization in [6], but since a heuristic
approach was taken for covering, the results were not impressive. In fact the DAG
covering approach gave results of lesser quality than the tree-based approach. Although
they also described an idea on node duplication similar to [2] to be detailed later, it was
apparently only tried for area optimization and no results are reported on this approach
in [6].

2.2 Technology Mapping for LUT-based FPGAs

Due to their unique architecture the technology mapping problem for FPGAs has been
tackled in completely different ways from library-based technology mapping.

In LUT-based FPGAs each LUT can implement any function of k-inputs in the
same delay, where k is a constant specific to a given FPGA family. By assuming the
existence of a library containing all k-input functions, one can solve the technology
mapping problem for FPGAs as an instance of the library-based mapping problem.
This approach, however, has a serious drawback since the library constructed this way

contains 22" gates'. Even if the minimum-area tree covering for library-based designs
can be solved in time linear in the size of pattern graphs, the number of gates makes
the algorithm highly inefficient.

The minimum-area technology mapping problem for LUT-based FPGAs was shown
to be NP-hard for ¥ = 4 in [11] and for k£ > S in [7]. As in the library-based mapping,
once a network is restricted either to a tree, the problem can be solved optimally in
polynomial time {7].

The minimum-delay technology mapping problem, however, has a different story.
Cong et al. showed in [1, 2] that the problem is solvable in polynomial time even for
DAG networks.

‘We will have a close look at the FlowMap algorithm presented in [2] next since this
gives the basis of our proposed algorithm.

2.3 Delay-Optimal Technology Mapping for FPGAs

Assume that a network is decomposed into a k-bounded network [2], whichis a Boolean
network where the number of fanins of each node is less than or equal to k. If a given
network is not k-bounded, simple decomposition can yield an equivalent k-bounded
network, In the following we assume that an LUT has a unit delay and that wiring
delay is negligible.

The key idea of the FlowMap algorithm is in the labeling procedure that labels each
node of the DAG its optimal depth achievable. The algorithm visits each node in the
network in a topological order. All primary inputs are labeled 0 assuming that they are
available at ¢ = 0. At each intermediate node the goal is to investigate all cuts of size
less than or equal to in the fanin cone of the node and to find the best delay realizable
at the node. Each such cut represents a mapping of the node. More specifically the
node can be implemented by a single LUT whose inputs are the nodes forming the cut.
The constraint on the size of cuts comes from the fact that an LUT can implement any
function of up to k-inputs. Since nodes are visited in a topological order, by the time
the current node is examined the optimal depths of all the nodes in its transitive fanin
are available. Therefore the optimal depth of the current node z can be computed as
follows by dynamic programming.

optimal_depth(z) = ot)IP:%ank Eg{(optimal.depth(z,-) +1)

Notice that this cost criterion meets the principle of optimality of dynamic programming.
The cut X that realizes the optimal depth is stored at the node along with the depth.
Although explicit enumeration of all valid cuts is possible by a brute-force approach,
the complexity is pseudo polynomial O(n*), where n is the number of nodes in a
given network. [2] showed that this optimal depth computation at each node can be

IStrictly speaking the library need not contain all the 22* functions since some are equivalentto each other
underinput permutationand having one representative is good enough. However even after this simplification
the library is still huge.

formulated as network flow computation whose runtime is strongly polynomial with
respect to k.

Once all the nodes have been labeled by their optimal depths, the network is
traversed backward from primary outputs to primary inputs. At each primary output an
LUT is created whose fanins are the same as the best cut stored at the node. The LUT
creation is repeated for each of those fanins. This process is continued until either a
primary input or a node whose output is already available in the mapping is reached.
An important fact is that intermediate nodes are automatically duplicated in an optimal
way to guarantee optimal depths while in tree mapping no duplication is allowed.

The complexity of the entire algorithm is O(kmn), where m is the number of edges
in the network.

3 Delay-Optimal Technology Mapping for Library-Based
Designs

Although the FlowMap algorithm was originally developed for FPGAs, the basic prin-
ciple of the labeling procedure is not necessarily specific to those architectures. In this
section we will show how the FlowMap algorithm can be easily adapted to the standard
library-based technology mapping under a load-independent delay model, where each
gate has an intrinsic delay and loading has no effect in delays. This extension leads to
a linear time algorithm for delay-optimal technology mapping of DAG networks. We
assume that a given network is decomposed into a subject DAG as usual. Therefore,
the optimality of delay is claimed with respect to this subject DAG.

3.1 Computation of Optimal Delay at Internal Nodes

The only difference between FPGAs and library-based designs is how an internal node
is mapped. In FPGAs all the local mappings that cover an internal node and part
of its fanin cone are examined by enumerating all k-cuts of the fanin cone, which
gives the best possible delay realized at the node. This step needs to be modified for
library-based designs so that all successful matches for a given set of pattern graphs are
systematically examined. However this can be easily done by mimicking the standard
pattern matching step used in conventional technology mapping. More precisely once
the fanin cone of the node is extracted, the standard matching procedure against pattern
graphs can be applied to exhaustively check all the successful matches. This way the
best delay achievable at each intermediate node can be computed in a similar way to
[2]. The only difference is that actual pin-to-pin delays of gates specified in a given

21t js interesting to note that [2] has a comment as follows.

“Qur result makes a sharp contrast with the fact that the conventional technology mapping
problem in library-based designs is NP-hard for general Boolean networks."(page 2 [2])

library need to be used in our case instead of unit delay in [2]. As with FPGA mapping,
the principle of optimality is still valid here.

Notice that as long as delay is optimized, any DAG pattern graph can be used
directly without losing the optimality, i.e. it is not necessary to restrict the library to
pattern graphs of trees and leaf DAGs. General DAG patterns are problematic only in
the context of area optimization.

3.2 Pattern Matching

We now examine how pattern matching is done between a subject graph and a pattern
graph.

Pattern matching between a subject graph and a pattern graph in the context of
technology mapping was studied extensively by Keutzer [8] and Rudell [13]. A match
between a subject graph G, = (V;, E;) and a pattern graph G, = (V;, E;) is defined
as follows [13].

Definition 1 A (standard) match of a pattern graph G, = (Vp, E,) on a subject graph
G, = (Vi, E;) is a one-to-one mapping of the pattern graph nodes into the subject
graph nodes I : Vp, — V, such that:

1. Ve = (e1,€2) € Ep,(I(e1),I(e2)) € Es.

2. Yv € V,, li(v)] # 0 = |i(v)| = |i(I(v))], where i(v) = {w | (w,v) € E} for
G=(V,E)

The first condition requires that the edge relationship in the pattern graph is completely
preserved in the subject graph. The second condition constrains the in-degree of a
non-primary-input node in the pattern graph to be the same as that of the matching
node in the subject graph. Notice that it is allowed for a subject graph node covered by
an intermediate pattern graph node to have fanout to nodes which are not covered by
the pattern graph. However, in the conventional tree-covering based approach such a
match is invalid, i.e. all fanouts of a subject graph node matched with an intermediate
pattern graph node need to be covered by the same pattern. A match satisfying this
additional constraint is called an exact match [13] and defined as follows.

Definition2 An exact match of a pattern graph G, = (V;, Ep) on a subject graph
G, = (V, E;) is a one-to-one mapping of the pattern graph nodes into the subject
graph nodes I : Vp, — V; such that:

1. Ye = (e1,€2) € Ep, (I(e1), I{e2)) € Es.
2. Y € Vp, li(v)| # 0 = [i(v)| = |i(I(v))]

3. Yv € Vp, [i(v)| # Oand |o(v)] # 0 = |o(v)| = |o(I(v))], where o(v) = {w |
(v,w) € E} for G = (V, E).

subject graph pattern graph

Figure 1; Standard Match vs. Extended Match

Rudell proposed an algorithm called graph.match [13] for the general case where
both a subject graph and a pattern graph are DAGs. We can simply use this matching
algorithm to enumerate all successful standard matches instead of exact matches.

Although a constraint that a mapping is one-to-one is posed in the above two
definitions by Rudell, this is safely dropped as follows, which leads to the definition of
a larger class of matches.

Definition 3 An extended match of a pattern graph G, = (Vj, E,) on a subject graph
G, = (V,, E,) is a mapping of the pattern graph nodes into the subject graph nodes
I:V, =V, such that:

1. Ve = (e1,€2) € Ep, (I(e1), I(e2)) € Es.
2. Yu € Vj, [i(v)| # 0= i(v)] = |i(I(v))]

The only difference between extended matches and standard matches is that in extended
matches the requirement of a mapping from the pattern graph nodes into the subject
graph nodes being one-to-one is dropped. Therefore extended matches subsume stan-
dard matches. This relaxation of the requirement allows duplication of subject graph
nodes while searching for a match by unfolding a DAG structure. Figure 1 shows an
example where a pattern graph is matched successfully as an extended match but not
as a standard match. Assume that a two-input node is an NAND2 gate and a single-
input node is an inverter. Consider pattern matching at the top node of the subject
graph shown on the left against the pattern graph on the right. An extended match
exists by mapping both m and m' to n while a standard match does not since such
a mapping violates the one-to-one mapping property. A simple modification to the
graph.match algorithm makes the algorithm search all extended matches instead of
all standard matches without changing its asymptotic complexity.

3.3 Constructing an Optimum Mapping

Once a (best delay, best gate)-pair is computed at each node, a delay-optimal network
can be constructed in exactly the same way as in [2]. We maintain a queue which

contains nodes to be created in the final mapping. This queue is initialized to the set of
all primary outputs. A node is picked up from the queue and the best gate at the node is
created in the mapping. Each fanin node of the gate is then inserted to the queue if the
fanin is not a primary input and does not yet have a corresponding gate in the mapping.
Once the queue becomes empty, the mapping is complete.

3.4 Complexity of DAG Mapping for Delay Minimization

An application of graph.-match to enumerate all successful matches at a single node
is O(p) [13], where p is the number of nodes in the entire unique pattern graphs 3,
Since this procedure is called once at each node in a subject graph, the complexity
of the labeling step is O(sp), where s is the number of nodes in the subject graph.
The final step of constructing a delay-optimal mapping only costs O(s). Therefore
the complexity of DAG mapping is O(sp). Since p is a constant defined by a given
technology, the procedure is linear in the size of a subject graph.

3.5 Comparison between DAG Mapping and Tree Mapping

In the past, performance-oriented technology mapping has been done by a combination
of tree covering and buffer tree construction [14]. The fundamental limitation of this
conventional tree-covering approach is that the search space is highly limited by the
structure of a given subject graph since multiple-fanout points in the subject graph
are completely preserved in the final results. On the other hand, since DAG mapping
does not respect initial multiple-fanout points at all, it can explore a strictly larger
search space. In other words multiple-fanout points are created as the result of delay
optimization as we see later in Figures 2 and 3. Buffering techniques proposed in
the literature can be directly used in conjunction with DAG covering to speed up such
multiple-fanout points.

Another major difference is how subject graph nodes are duplicated during tech-
nology mapping. DAG mapping can duplicate subject graph nodes while creating final
mappings whereas in tree mapping no duplication is allowed since each subject graph
node is covered only once by a single pattern. In some sense, subject graph node
duplication is limited to the buffer tree construction phase in the tree-mapping-based
approach.

Figure 2 illustrates how duplication of subject graph nodes helps reduce the delay
of a mapping. Consider a subject graph shown on the left. Suppose that a pattern graph
on the right is available in a given library. If tree mapping is invoked on this subject
graph, the pattern graph is of no use since there is no exact match between the subject
graph and the pattern graph. If, on the other hand, DAG mapping is employed, the two
output nodes in the subject graph are implemented as in Figure 3. The cone rooted

3Note that p is not equal to the number of nodes in the entire pattern graphs since during matching a
single pattern graph is tried for all possible permutations of its inputs. p is thus the number of nodes in the
expanded pattern graphs. See [13] for details.

subject graph pattern graph

Figure 2: Example

PANIAN
X

Figure 3: Duplication of Subject Graph Nodes in DAG Mapping

at the middle node in the subject graph is duplicated in this mapping, which makes
effective use of the pattern graph possible.

This example also illustrates how multiple-fanout points are created in DAG map-
ping. Since the middle node of the subject graph with multiple fanouts is an internal
node of each of the matchings in Figure 3, the mapped circuit does not inherit the
multiple fanout point. On the other hand, the two primary inputs of the subject graph
in the middle have multiple fanouts in the mapped circuit while each of the inputs has
a single fanout in the subject graph.

4 Extensions

‘We will examine how the approach of Section 3 can be generalized to sequential circuits
so that optimal cycle time is guaranteed in conjunction with retiming. We only consider
sequential circuits with edge-triggered latches all of which are controlled by a single
clock.

This problem was studied for LUT-based FPGAs by Pan and Liu [12]. Given a
k-bounded network consider the following three-step transformation.

10

circuit || Delay Area CPU time
|| tree-mapping | DAG-mapping | tree-mapping | DAG-mapping || tree-mapping | DAG-mapping
Ca32 12.13 1029 442 484 05 05
C499 10.16 8.03 904 960 09 1.1
C880 9.43 7.87 710 755 0.8 09
C1355 13.06 9.66 1146 1488 1.1 1.2
C1908 13.87 10.71 1223 1572 15 1.7
C2670 1154 943 1552 2008 23 26
C3540 17.20 14.00 2075 2926 31 37
C5315 16.55 13.04 3687 4275 54 6.0
C6288 56.99 4195 4107 9291 49 59
C7552 14.23 11.06 4983 6452 6.8 84

Table 1: Tree mapping vs. DAG mapping for 1ib2 .genlib

1. Retime an initial circuit
2. Perform technology mapping of the combinational portion of the circuit
3. Retime the resulting mapped circuit.

[12] proposed a polynomial-time algorithm for computing the minimum cycle-time
mapping among all the mapped circuits obtained by the above transformation, which
was later improved in [5]. The key ingredient is a polynomial-time decision procedure
which determines whether there exists a mapping whose cycle time is less than or equal
to a given value. This procedure is used repeatedly to guide a binary search to determine
the minimum cycle time achievable by retiming and optimal technology mapping. The
core of this decision procedure is again a labeling scheme quite similar to the one used
in FlowMap [2]. All k-cuts at each intermediate node are explored by considering
retiming possibility. This is again done implicitly by converting the original problem
to a flow network problem. This step of examining all k cuts can be replaced by pattern
matching as was done for combinational mapping. All the other theories hold without
any modification. Details are omitted here due to page limitation.

So far optimality is guaranteed in terms of a subject graph constructed arbitrarily
from a given circuit by decomposition. Since a single subject graph is chosen among
a huge number of different decompositions without knowing an actual library to be
used, it is likely that many potentially good mappings are simply not explored due to
this initial choice. Lehman et al. [10] have recently resolved this issue by encoding
various decompositions into a single extended subject graph called mapping graph
and performing technology mapping on it. Since this technique is orthogonal to our
technique, the two can be combined to produce even better results.

S Experimental Results

11

circuit Delay Area CPU time
tree-mapping | DAG-mapping || tree-mapping | DAG-mapping || tree-mapping DAG-mapping
C432 24 19 784 1006 04 04
C499 25 16 1772 2220 038 0.8
C880 20 15 1250 1337 0.7 0.7
C1355 27 22 2100 1546 1.0 1.0
C1908 37 24 2251 3058 13 1.3
C2670 27 18 2998 4568 20 2.0
C3540 42 30 4007 6640 27 28
C5315 46 33 6817 8352 4.6 48
C6288 125 120 7782 7121 43 44
C7552 39 28 9552 11149 6.0 6.3

Table 2: Tree mapping vs. DAG mapping for 44-1.genlib

circuit Delay Area CPU time
tree-mapping | DAG-mapping [tree-mapping | DAG-mapping || tree-mapping DAG-mapping
C432 21 11 624 1094 215 385
C499 18 9 1324 1910 353 68.9
C880 18 8 ” 946 1466 i 352 559
C1355 26 10 1796 2440 415 69.3
C1908 28 11 1755 2587 57.2 1235
C2670 22 10 2314 3943 92.2 159.7
C3540 28 13 2983 6148 128.2 255.6
C5315 31 15 5115 6685 2204 3415
C6288 125 42 7694 14775 155.1 2295
C7552 27 13 7062 13267 248.7 491.0

Table 3: Tree mapping vs. DAG mapping for 44-3.genlib

12

To show the effectiveness of this approach the technology mapper of SIS was extended
so that delay-optimal mapping is obtained for combinational circuits by DAG covering 4
As discussed in the previous sections the delay model used in this experiment is the
intrinsicdelay mode] where a fixed, load-independent delay is given between each input
and the output of a gate. This is in fact the delay model used in [10]. Althoughloading
effects are certainly an important factor in delays, there are several justifications. In
design scenarios where continuous resizing of any gate is permissible one way to capture
this flexibility in technology mapping is to approximate this flexibility by having many
discretely resized gates. Unfortunately this approach is known to be very expensive.
The approach taken in [10] is to pick a single delay for each gate and perform technology
mapping by ignoring loads. Each gate in the final mapping is then continuously resized
by considering actual loads so that the delay matches the one associated with the gate.
Even without the capability of continuous resizing, the buffer tree construction methods
of [14] can be used later at multiple fanout points to reduce load dependency of delays.
Therefore the use of this delay model is at least justified as an approximation to the
minimum-delay mapping problem under realistic delay models.

Table 1 shows the comparison of the quality of final circuits between the DAG
mapping approach proposed in this paper and the standard tree mapping approach. In
this experiment each benchmark circuit was first decomposed into a subject graph. We
then applied the DAG mapping algorithm and the tree mapping algorithm on this same
subject graph using MCNC gate library 1ib2 . genl ib’. No technology independent
optimization was applied to benchmark circuits before technology mapping. No fanout
optimization was used. The effectiveness of the DAG mapping algorithm is clear. We
could obtain significantly faster circuits. CPU time was obtained on DEC AlphaServer
8400 5/300 and is reported in seconds. The increase of CPU time from tree mapping
to DAG mapping is reasonable.

The same experiment was repeated using different libraries to see how the DAG
mapping algorithm performs on rich libraries. MCNC libraries 44-1.genlib and
44-3.genlib were used in this comparison. The former library only contains 7
gates while the latter library has 625 gates, many of which are complex gates with
many inputs . 44-3.genlib is a strict superset of 44-1.genlib. Table 2 and
Table 3 summarize the results of 44-1 and 44-3 respectively. We can see that the
difference in mapping quality between the DAG and tree mapping approaches is further
pronounced with the use of richer libraries.

Itis interesting to observe that DAG mapping can generate faster and smaller results
in some cases, for examples in C1355 and C6288 in Figure 2. The reason is that more
complex gates are used in DAG mapping, which leads to area effective covering in

“In this experiment we used graph match for only finding standard matches instead of extended
matches. Therefore the optimality of the results is claimed with respect to standard matches. So far we
have not been able to see any major difference in mapping quality between the use of standard matches and
extended matches. We expect to see a meaningful difference once a sequential mapper based on Pan's work
is implemented.

SEach gate has a non-zeroload-dependent delay specifiedin 1ib2 . genlib. In the experiment this was
simply assumed to be zero.

5The largest gate has 16 inputs.

13

some cases in spite of potential node duplication.

6 Conclusions

'We have shown that the delay-optimal technology mapping problem for combinational
circuits under load-independent delay models can be solved optimally in polynomial
time without decomposing a subject DAG into trees. We experimentally showed that the
proposed approach gives significant improvement in mapping quality compared against
conventional tree mapping. Extensions of this technique to sequential circuits have
also been discussed. We are currently implementing the minimum cycle-time map-
ping algorithm for sequential circuits. Experimental results for sequential technology
mapping will be included in the final version of this paper.

In this paper we focus on delay minimization without any area consideration.
Therefore at each intermediate node the fastest mapping is simply created no matter
how critical the node is. By constructing slower but smaller mapping for non-critical
subnetworks we can have a better control over area increase. Cong er al. [3] already
have results on area-delay tradeoff for FPGA mapping based on the FlowMap algorithm.
An extension of this idea to library-based mapping is currently being investigated.

Acknowledgments

This work is partially supported by SRC-97-DC-324. Part of the implementation was
done while the first author was with Intel during the summer of 1997.

References

{1] J. Cong and Y. Ding. An optimal technology mapping algorithm for delay opti-
mization in lookup-table based FPGA designs. In Proceedings of IEEE Interna-
tional Conference on Computer-Aided Design, pages 48-53, November 1992.

[2] J. Cong and Y. Ding. FlowMap: An optimal technology mapping algorithm for
delay optimization in lookup-table based FPGA designs. IEEE Transactions on
Computer-Aided Design, 13(1):1-12, January 1994.

[3] J. Cong and Y. Ding. On area/depth trade-off in LUT-based FPGA technology
mapping. IEEE Transactions on VLSI Systems, 2(2):137-148, June 1994,

{4] J. Cong and Y. Ding. Combinational logic synthesis for lut based field pro-
grammable gate arrays. ACM Transanctions on Design Automation of Electronic
Systems, 1(2):145-204, April 1996.

[5] J. Cong and C. Wu. An improved algorithm for performance optimal technology
mapping with retiming in LUT-based FPGA design. In Proceedings of IEEE
International Conference on Computer Design, pages 572-578, October 1996.

14

[6] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang.
Technology mapping in MIS. In Proceedings of IEEE International Conference
on Computer-Aided Design, pages 116~119, November 1987.

[7] A. Farrahi and M. Sarrafzadeh. Complexity of the lookup-table minimization
problem for FPGA technology mapping. IEEE Transactions on Computer-Aided
Design, 13(11):1319-1332, November 1994,

(8] K. Keutzer. DAGON: Technology binding and local optimization by DAG match-
ing. In Proceedings of 24th ACM/IEEE Design Automation Conference, pages
617-623, June 1987.

{91 K. Keutzer and D. Richards. Computational complexity of logic synthesis and
optimization. In Proceedings of International Workshop on Logic Synthesis, May
1989.

[10] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness. Logic decomposition
during technology mapping. In Proceedings of IEEE/ACM International Confer-
ence on Computer-Aided Design, pages 264-271, November 1995.

[11] I. Levin and R. Y. Pinter. Realizing expression graphs using table-lookup FPGAs.
In Proceedings of the European Design Automation Conference, pages 306-311,
September 1993.

[12] P.Pan and C.L. Liu. Optimal clock period FPGA technology mapping for sequen-
tial circuits. In Proceedings of 33rd ACM/IEEE Design Automation Conference,
pages 720-725, June 1996.

[13] R.Rudell. Logic synthesis for VLSI design. Technical Report UCB/ERL M89/49,
University of California, Berkeley, April 1989.

[14] H. J. Touati. Performance-oriented technology mapping. Technical Report
UCB/ERL M90/109, University of California, Berkeley, November 1990.

15

	Copyright notice 1997
	ERL-97-75

